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HEAVY BARYONS IN THE CHIRAL QUARK–SOLITON
MODEL: A POSSIBILITY FOR EXOTICA?∗
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We discuss possible interpretation of five excited Ω0
c states within the

Chiral Quark–Soliton Model. We show that it is not possible to interpret
all five Ω0

c s as parity minus excitations and argue that two narrowest states
are pentaquarks belonging to the SU(3) representation 15.
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1. Chiral Quark–Soliton Model

In this report, we summarize our recent works on heavy baryons
[1–4] where we have applied the Chiral Quark–Soliton Model (χQSM) to
the baryonic systems with one heavy quark. An expanded version of this
report has been published in Ref. [5] where a complete list of references can
be found. There are two other contributions based on [1–4] that have been
already published elsewhere [6, 7].

The χQSM [8] (for review, see Ref. [9] and references therein) is based
on an old argument by Witten [10] that in the limit of a large number of
colors (Nc →∞), Nval = Nc relativistic valence quarks generate chiral mean
fields represented by a distortion of a Dirac sea that, in turn, interacts with
the valence quarks themselves. The soliton configuration corresponds to
the solution of a pertinent Dirac equation for the constituent quarks (with
gluons integrated out) in the mean-field approximation, where the mean
fields respect the so-called hedgehog symmetry. This means that neither
spin (S) nor isospin (T ) are good quantum numbers. Instead, a grand spin
K = S + T is a good quantum number. In Ref. [1], following [11], we have
observed that the same argument holds for Nval = Nc − 1, which allows to
replace one light valence quark by a heavy quark Q = c or b.
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For light baryons, the ground state soliton configuration corresponds
to the occupied KP = 0+ valence level (with Nval = Nc), as shown in
Fig. 1 (a). Therefore, the soliton does not carry definite quantum numbers

Fig. 1. Schematic pattern of light quark levels in a self-consistent soliton configu-
ration. In the left panel, all sea levels are filled and Nc (= 3 in the figure) valence
quarks occupy the KP = 0+ lowest positive energy level. Unoccupied positive
energy levels are depicted by dashed lines. In the middle panel, one valence quark
has been stripped off, and the soliton has to be supplemented by a heavy quark not
shown in the figure. In the right panel, a possible excitation of a sea level quark,
conjectured to be KP = 1−, to the valence level is shown, and again the soliton
has to couple to a heavy quark. Strange quark levels that exhibit different filling
pattern are not shown.

except for the baryon number resulting from the valence quarks. It is also
possible that one of the valence quarks gets excited to some K > 0 level
(see e.g. [12]), which influences the quantization of the soliton spin emerging
when the rotations in space and flavor are quantized. The resulting collective
Hamiltonian is analogous to the one of a symmetric top with the following
constraints:

1. allowed SU(3) representations must contain states with hypercharge
Y ′ = Nval/3,

2. the isospin T ′ of the states with Y ′ = Nval/3 couples with the soliton
spin J to K, which is 0 for the ground state configuration but may be
non-zero for an excited state: T ′ + J = K.

For light baryons Nval = Nc, K
P = 0+, and as a result, the lowest lying

positive parity baryons belong to the SU(3)flavor octet of spin 1/2 and decu-
plet of spin 3/2. The first exotic representation is 10 of spin 1/2 with the
lightest state corresponding to the putative Θ+(1540) [13]. The model has
been successfully tested in the light baryon sector [9].
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2. χQSM and heavy baryons

Recently [1], following Ref. [11], we have made a proposal how to gen-
eralize the above approach to heavy baryons, by stripping off one valence
quark from the KP = 0+ level, as shown in Fig. 1 (b), and replacing it by
a heavy quark to neutralize the color. The only difference to the previous
case is the quantization condition, since Nval = Nc − 1. The lowest allowed
SU(3) representations are in this case 3 of spin 0 and 6 of spin 1 shown in
Fig. 2.

Fig. 2. (Color online) Rotational band of a soliton with one valence quark stripped
off. Soliton spin corresponds to the isospin T ′ of states on the quantization line
Y ′ = 2/3. We show three lowest allowed representations: antitriplet of spin 0,
sextet of spin 1 and the lowest exotic representation 15 of spin 1 or 0. Heavy
quark has to be added.
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 1 .  Σ+ +c (1/2) → Λ +c  + π +

 2 .  Σ+c (1/2) → Λ +c  + π 0

 3 .  Σ0c (1/2) → Λ +c  + π -

 4 .  Σ+ +c (3/2) → Λ +c  + π +

 5 .  Σ+c (3/2) → Λ +c  + π 0

 6 .  Σ0c (3/2) → Λ +c  + π -

 7 .  Ξ+c (3/2) → Ξ c  + π
 8 .  Ξ0c (3/2) → Ξ c  + π
 9 .  Ω0c (1/2)  −  t o t a l
1 0 .  Ω0c (3/2)  − t o t a l

Fig. 3. (Color online) Decay widths of the charm baryons. Full circles (red) cor-
respond to our theoretical predictions. Triangles (dark green) correspond to the
experimental data [14]. Data for decays 4–6 of Σc(61, 3/2) have been divided by a
factor of 5 to fit within the plot area. Widths of two LHCb [15] Ωc states that we
interpret as pentaquarks are plotted as full squares (black) with theoretical values
shown as full circles (red).
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As a result, both 6–3 splitting and the ms splittings inside these mul-
tiplets are predicted using as an input the light sector spectrum [1] except
for a hyperfine splitting of 6 due to the spin–spin interaction of a soliton
and a heavy quark that has been parameterized phenomenologically. More-
over, we have calculated the decay widths [3], which are in surprisingly good
agreement with the data (see Fig. 3 for charm baryons decay widths).

3. Excitations of heavy baryons

The χQSM allows for two kinds of excitations [2]. Firstly, higher SU(3)
representations, similar to the antidecuplet in the light sector, appear in
the rotational band of the soliton of Fig. 1 (b). The lowest possible exotic
SU(3) representation is 15 of positive parity and spin 1 (15 of spin 0 is
heavier) shown in Fig. 2. Second possibility corresponds to the excitation of
the sea quark from the KP = 1− sea level to the valence level [11] depicted
in Fig. 1 (b) (or, alternatively, valence quark excitation to the first excited
level1 of KP = 1−). In this case, the parity is negative but the rotational
band is the same as in Fig. 2 with, however, different quantization condition,
since J and T ′ have to couple to K = 1.

We have shown that the model describes well the only fully known spec-
trum of negative parity antitriplets of spin 1/2 and 3/2 [2]. There has been
no experimental evidence for the sextet until recent report of five Ω0

c states
by the LHCb [15] and later by Belle [16]. In the sextet case, the quantization
condition requires the soliton spin to be quantized as J = 0, 1 and 2. By
adding one heavy quark, we end up with five possible total spin S excitations
for J = 0: S = 1/2, for J = 1: S = 1/2 and 3/2, and for J = 2: S = 3/2
and 5/2. Although the number of states coincides with the experimental re-
sults [15,16], it is not possible to accommodate all five Ω0

c states within the
constraints imposed by the χQSM [2]. We have, therefore, forced model con-
straints (note that in the 6 case, we cannot predict the mass splittings, since
there is a new parameter in the splitting Hamiltonian that corresponds to
the transition of Fig. 1 (c), which is not known from the light sector), which
allows to accommodate only three out of five LHCb states (see black verti-
cal lines in Fig. 4). Two heaviest χQSM states (gray vertical (green) lines
in Fig. 4) lie already above the decay threshold to heavy mesons, and it is
quite possible that they have very small branching ratio to the Ξ+

c + K−

final state analyzed by the LHCb. Two remaining states indicated by arrows
(dark blue) in Fig. 4, which are hyper fine split by 70 MeV (as the ground
state sextets that belong to the same rotational band), can be therefore in-
terpreted as the members of exotic 15 of positive parity shown as a gray
(red) dot in Fig. 2. This interpretation is reinforced by the decay widths,

1 We thank Victor Petrov for pointing out this possibility.
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which can be computed in the model. These widths are of the order of 1 MeV
and agree with the LHCb measurement (see Fig. 3). Such small widths are,
in fact, expected in the present approach, since the leading Nc terms of the
relevant couplings cancel in the non-relativistic limit [4].

Two	narrow	
states		
(1	MeV)		
inerpreted	as	
pentaquarks	
	

Fig. 4. (Color online) Spectrum of the Ω0
c states [15] with theoretical predictions

of the present model.

Our identification implies the existence of the isospin partners of Ω0
c in

the 15. They can be searched for in the mass distribution of Ξ0
c + K− or

Ξ+
c + K̄0. Our model applies also to the bottom sector, and — where the

data is available — it describes very well both masses and decay widths [1,3].
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