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Abstract

Brain imaging genetics attracts more and more attention since it can reveal associations between 

genetic factors and the structures or functions of human brain. Sparse canonical correlation 

analysis (SCCA) is a powerful bi-multivariate association identification technique in imaging 

genetics. There have been many SCCA methods which could capture different types of structured 

imaging genetic relationships. These methods either use the group lasso to recover the group 

structure, or employ the graph/network guided fused lasso to find out the network structure. 

However, the group lasso methods have limitation in generalization because of the incomplete or 

unavailable prior knowledge in real world. The graph/network guided methods are sensitive to the 

sign of the sample correlation which may be incorrectly estimated. We introduce a new SCCA 

model using a novel graph guided pairwise group lasso penalty, and propose an efficient 

optimization algorithm. The proposed method has a strong upper bound for the grouping effect for 

both positively and negatively correlated variables. We show that our method performs better than 

or equally to two state-of-the-art SCCA methods on both synthetic and real neuroimaging genetics 

data. In particular, our method identifies stronger canonical correlations and captures better 

canonical loading profiles, showing its promise for revealing biologically meaningful imaging 

genetic associations.

1 Introduction

In recent years, brain imaging genetics becomes a popular research topic in biomedical and 

bioinformatics studies. Brain imaging genetics refers to the study of modeling and 

understanding how genetic factors influence the structure or function of human brain using 

the imaging measurements as the quantitative endophenotype [12, 11, 13]. Both the genetic 

factors, such as the single nucleotide polymorphisms (SNPs), and the imaging measurements 
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such as the imaging quantitative traits (QTs) are multivariate. Therefore, discovering 

meaningful bi-multivariate associations is an important task in brain imaging genetics.

Equipped with feature selection, sparse canonical correlation analysis (SC-CA) gains 

tremendous attention for its powerful ability in bi-multivariate association identification. 

There are many SCCA methods using different types of shrinkage techniques. The ℓ1-norm 

penalty and its variants are widely used, but they only pursuit individual level sparsity [16, 

8]. In biomedical studies, the genetic biomarkers usually function simultaneously other than 

individually [14]. This is also the case for the imaging measurements. Therefore, the 

structure level sparsity, such as the group structure or the graph/network structure, is of great 

interest and importance in brain imaging genetics [14, 15].

To capture the high-level structure information, several different structure-aware penalties 

have been proposed. There are roughly two kinds of structured SCCA methods according to 

their different penalties [4]. The first kind of SC-CA methods consider the group 

information using the group lasso regularizer, which is an intra-group ℓ2-norm and inter-

group ℓ1-norm [1, 6]. The group lasso tends to assign equal weights for those variables in a 

same group, and each group will be selected or not as a whole [18]. To our knowledge, this 

type of SCCA methods require the priori knowledge to define the group structure. This 

limits their applications as it is hard to obtain precise priori knowledge in real biological 

studies [4]. The second kind of SCCA methods rebuild the structure information via the 

graph guided or network guided penalty [3, 6, 2, 5, 4]. These SCCA methods can capture the 

structure information using any available priori knowledge. Moreover, they can also recover 

the structure information based on the input data [4]. Three types of graph guided penalties 

have been used: (1) the graph guided fused lasso penalty and its variants [3, 1, 7], (2) the 

correlation sign based graph guided fused ℓ2-norm penalty [2], and (3) the improved 

GraphNet based penalty [4]. Du et al. [4] has shown that the first two types of graph guided 

penalties could introduce estimation bias because of the sign of the correlations can be 

wrongly calculated. The reason could be that the sign of the correlations can be easily 

changed when removing a fraction of the data or perturbing the data as in bootstrap or sub-

sampling. The improved GraphNet utilizes ℓ2-norm with respect to the structure penalty 

terms, which may not produce desirable sparse results at structure level.

Inspired by the success of group lasso in group selection, we consider a case where each 

group is made up of only two variables. Both variables will be extracted together with 

similar or equal weights. Interestingly, this novel group lasso can be used in data-driven 

mode where no priori knowledge is provided. We call it graph guided pairwise group lasso 

(GGL) which bridges the gap between the group lasso and graph guided penalties. We then 

propose a new graph guided pairwise group lasso based sparse canonical correlation analysis 

model (GGL-SCCA) with intention to recover the structure information automatically. The 

proposed SCCA method is sample correlation sign independent and it is robust to those 

existing SCCA methods using graph guided penalty. We also propose an efficient 

optimization algorithm to solve the problem. Besides, we also provide a quantitative upper 

bound for the grouping effect of our method to demonstrate its structure identifying ability. 

Compared with the state-of-art SCCA methods such as NS-SCCA [2] and AGN-SCCA [4], 

GGL-SCCA can not only obtain higher or equal and more stable correlation coefficients 
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than the competing methods, but also find out cleaner canonical loading patterns on both 

synthetic data and real imaging genetic data.

2 The Graph Guided Pairwise Group Lasso

Throughout this paper, we denote a vector as the boldface lowercase letter, and a matrix is 

denoted by a boldface uppercase one. The Euclidean norm of vector u is ‖u‖. Let X = [x1;…; 

xn]T ⊆ ℝp and Y = [y1; …;yn]T ⊆ ℝq be the SNP data and the QT data from the same 

participants.

We have known that the group lasso tends to extract a subset of the features. However, it 

depends on the priori knowledge and there is no overlap between groups. The graph guided 

fused lasso overcomes this limitation, but it requires the sign of the sample correlations to be 

defined in advance. This will introduce undesirable estimation bias [17]. In this paper, we 

introduce the graph guided pairwise group lasso penalty by taking advantage of both group 

lasso and graph guided fused lasso. The GGL penalty is defined as,

(1)

where E is the edge set of the graph where those highly correlated features are connected.

The GGL penalty has the following two merits. First, if there is no priori knowledge, every 

pairwise term will be included to encourage |ui| ≈ |uj| which is guaranteed by the pairwise ℓ2-

norm. This holds for both positively and negatively correlated features, which will be 

demonstrated later in Theorem 1. Second, if some priori knowledge such as the pathway 

information about genetic markers is provided, the whole penalty will be guided by the 

pathway information. This will encourage |ud| = |uj| no matter whether they are positively or 

negatively correlated. Therefore, the two genetic markers have very high probability to be 

selected simultaneously. The same results hold for the imaging measurements if we have the 

brain connectivity pattern such as the human connectome.

3 Method

3.1 GGL-SCCA Model and Optimization

We then propose the GGL-SCCA model,

(2)
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where ΩGGL(u) and ΩGGL(v) are the GGL penalty to assure structure information. Of note, 

we use ‖Xu‖2 ≤ 1 instead of ‖u‖2 ≤ 1 to accommodate the in-set covariance XTX which can 

improve the model performance [6].

In order to solve this problem, we write the objective function of GGL-SCCA into matrix 

form using the Lagrange method,

(3)

We approximate the objective function by a quadratic function. Obviously, the first term 

uTXTYv is bilinear and biconvex in u and v. We then show the quadratic expression of the 

GGL term. Let ut and ut+1 be the estimation at steps t and t + 1 respectively, the first-order 

Taylor expansion of term  regarding  is,

(4)

where . From the point of view of 

optimization, the term C makes no contribution towards optimizing ui.3

Then the GGL penalty can be simplified,

(5)

with C* being the sum of C across all pairwise penalty terms. Therefore, the GGL penalty is 

quadratically expressed.

Now the objective function conveys to a quadratic function, and there exists a closed-form 

solution. Since GGL-SCCA is biconvex in u and v, we take the derivative with respect to 

them respectively. The solution to the Eq. (3) satisfies,

3Each ui can be solved with uj's (j ≠ i) fixed (i.e., we use  to approximate  in C), thus uj's do not contribute to the optimization 
of ui [9].
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(6)

(7)

Algorithm 1 The GGL-SCCA Algorithm

Require:

X = [x1, …, xn]T, Y = [y1, …, yn]T

Ensure:

Canonical loadings u and v.

1: Initialize u ∈ ℝp×1, v ∈ ℝq×1;

2: while not convergence do

3:  Update the diagonal matrix D1 by taking derivative of Eq. (5);

4:  Solve u according to Eq. (8);

5:  Update the diagonal matrix D2 by taking derivative of Eq. (5);

6:  Solve v according to Eq. (9);

7: end while

8: Scale u so that ‖Xu‖2
2 = 1, and v so that ‖Yv‖2

2 = 1

where D1 can be deduced from the previous step's value of u according to Eq. (5). D2 can be 

computed similarly. Therefore, D1 is a diagonal matrix with the k1-th element being 

, and D2 is a diagonal matrix with the k2-th element being 

.4

Therefore, u and v have the closed-form updating expressions,

(8)

4Note that an element of diagonal matrix D1 will nonexist if . We handle this issue by regularizing it as 

 with ζ being a tiny positive number. Then the objective function regarding u becomes 

. We can prove that ℓ̃(u) will reduce to the original 

problem (3) when ζ approaching zero. Likewise,  can be regularized by the same method.
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(9)

We have known that GGL-SCCA model is biconvex with respect to u and v respectively. 

Then the Alternate Convex Search (ACS) method which is designed to solve the biconvex 

problem can be employed [10]. According to the ACS method, we address our SCCA model 

via alternative optimization by updating u and v alternatively. The procedure of the GGL-

SCCA is shown in Algorithm 1. In every iteration, u and v are updated in turn till the 

algorithm converges or reaches a predefined stopping condition.

3.2 The Grouping Effect

In structured learning, a method that can estimate equal or similar values for a group of 

variables is more desirable [19, 4]. This is called grouping effect and of great importance. 

We have the following theorem with respect to the grouping effects of the GGL-SCCA 

method.

Theorem 1. Given two views of data X and Y, and the tuned parameters (λ, 7). Let u* be 

the solution to our SCCA problem. For the sake of simplicity, we assume there are only two 

features, e.g. ui and uj, are connected on the graph. Let ρij be their sample correlation. Then 

the optimal u* satisfies,

(10)

Proof. (1) We first prove the inequations when ρij ≥ 0 indicating features being positively 

correlated. We have the following two equations,

(11)

Given ui and uj are the only connected features, we have . Then we 

arrive at

(12)

Subtracting these two equations, we have
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(13)

Taking ℓ2-norm on both sides, we arrive at

(14)

Using , ‖Xu‖ ≤ 1, ‖Yv‖ ≤ 1 and −uTXTYv ≤ 1, we obtain the 

upper bound

(15)

(2) If ρij < 0, it is clear that sign(ui) = −sign(uj). By adding both equations in Eq. (12) instead 

of subtracting them, we finally arrive at,

(16)

Note that GGL-SCCA model is symmetric about u and v, we can obtain the same upper 

bound of grouping effect for canonical weights v.

The Theorem 1 provides a qualitative theoretical description of the bound for both 

differences and sums of the coefficients. The bound between two coefficients directly 

depends on their correlation. If ρij ≥ 0, a higher correlation between two variables makes 

sure a smaller difference between their estimated coefficients. If ρij < 0, a smaller value 

assures a smaller sum between their coefficients. This implies that the two coefficients will 

be approximate in amplitude. Therefore, the GGL-SCCA is capable of capture structure 

information no matter whether those features are positively or negatively correlated.

3.3 The Complexity Analysis

In Algorithm 1, Steps 2-7 are repeated until convergence. In each iteration, Step 3 is easy to 

calculate as D1 can be computed via matrix manipulation to avoid time consuming loop. 
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This is the same case for Step 5. Step 4 and Step 6 are the key steps, and we compute them 

via solving a system of linear equations with quadratic complexity instead of computing the 

matrix inverse with cubic complexity. This can reduce the computation burden greatly. Step 

8 is a rescale steps and very simple to calculate. Therefore, the algorithm runs fast and 

efficiently.

In this study, we terminate Algorithm 1 when either of the two conditions satisfies, max{|δ| |

δ ∈ (ut+1 – ut)} ≤ ∊ and max{|δ| |δ ∈ (vt+1 – vt)} ≤ ∊, where ∊ is a desirable estimation error. 

We chose ∊ = 10−5 empirically from experiments in this paper.

4 Experimental Study

4.1 Experimental Setup

We compare GGL-SCCA with two structure-aware SCCA methods. The first one is the 

network guided fused lasso based SCCA (NS-SCCA) which takes the sample correlation 

signs into consideration [2]. The second method is the AGN-SCCA which uses the absolute 

value based GraphNet to penalize those correlated variables [4]. These two methods are 

different in both modeling and optimizing techniques, and is deemed to be among the best 

structured SCCA methods by now.

We tune the parameters based on the following considerations to reduce time consumption. 

(1) According to Theorem 1, λi=1,2 and γi=1,2 contribute to the grouping effect oppositely. 

(2) The grouping effect is more sensitive to λi=1,2 than to γi=1,2. Therefore, we fix γi=1,2 to a 

moderate constant, and let γi=1,2 = 10 in this paper. Finally, we have only two parameters 

λi=1,2 to be tuned and optimally tune them via a grid search from a moderate range 10−2 to 

102 through nested five-fold cross-validation to make sure efficiency. The parameters that 

generate the highest correlation coefficients are used.

4.2 Results on Simulation Data

Four different data sets with different properties are generated in this study. We also set the 

number of observations be smaller than the number of features to simulate a large p small n 
problem. The details of the data sets are as follows. Firstly, u and v are generated according 

to the predefined structure. Secondly, a latent variable z ∼ N(0, In×n) is generated. And 

thirdly, X is created by xi ∼ N(Ziu, Σx), where (Σx)jk = exp−|uj–uk|. Similarly, Y with the 

entry: yi ∼ N(Ziv, Σy), where (Σy)jk = exp−|vj–vk| is created. During this procedure, the true 

signals and the correlation strengths of the data are all distinct to assure diversity. This setup 

can make a thorough comparison.

We apply GGL-SCCA, NS-SCCA and AGN-SCCA to all four data sets. The true and 

estimated canonical loadings u and v are shown in Fig. 1. We observe that both GGL-SCCA 

and AGN-SCCA identify similar canonical loading profiles that are consistent to the ground 

truth across all data sets. NS-SCCA produces too many signals which are not so perfect to 

the ground truth. In addition, we also show the estimated correlation coefficients on both the 

training and testing sets calculated using the trained SCCA models in Table 1 (Left). The 

results show that GGL-SCCA obtains highest scores on both training and testing sets. Its 

testing result is only inferior to the NS-SCCA on the second data. The results implies that 
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GGL-SCCA has better training performance and generalization ability than those 

benchmarks. The area under ROC (AUC) shown in Table 1 (Right) indicates the sensitivity 

and specificity. It reveals that GGL-SCCA outperforms the competing methods as it holds 

the highest values for the most times. In summary, the simulation results demonstrate that 

GGL-SCCA could identify not only stronger testing associations but also more better signals 

on these diversified data sets.

4.3 Results on Real Neuroimaging Genetics Data

The real imaging genetics data used in the preparation of this article were obtained from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The 

ADNI was launched in 2003 as a public private partnership, led by Principal Investigator 

Michael W. Weiner, MD. One primary goal of ADNI is to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment (MCI) and early Alzheimers disease (AD). For up-to-date 

information, please refer to www.adni-info.org.

We use the genotyping and baseline amyloid imaging data (preprocessed [11C] Florbetapir 

PET scans) contributed by 567 non-Hispanic Caucasian participants. The amyloid imaging 

data used in this study are downloaded from LONI (adni.loni.usc.edu). Preprocessing is 

conducted to format this imaging data, and we finally generate 191 ROI level mean amyloid 

measurements in which the ROIs are defined by the MarsBaR AAL atlas [4]. The 

genotyping data includes 58 candidate SNP markers from the AD-related genes, such as the 

APOE gene. The aim is to evaluate the associations between the SNP data and the amyloid 

data, as well as which SNPs and amyloid measurements are correlated in this AD cohort.

All three SCCA methods are performed on the real neuroimaging genetics data. Shown in 

Fig. 2 are the canonical loadings obtained from the training data, where the relevant imaging 

measurements and genetic markers are exhibited. It is clear that GGL-SCCA identifies two 

relevant ROIs and one SNPs for easy interpretation due to the novel GGL penalty. The two 

strongest imaging measurements come from the right frontal region, which are positively 

correlated with SNP rs429358, a confirmed AD related allele in APOE e4. The AGN-SCCA 

identifies similar results to our method, which however has many interfering signals for the 

genetic markers. The NS-SCCA finds out too many imaging signals that are very hard to 

interpret. To give a clear view, we map the canonical loadings regarding the imaging 

measurements of GGL-SCCA onto the brain. Fig. 3 clearly shows that our method only 

highlights a small region of the whole brain. Moreover, we present the training and testing 

correlations in Table 3. GGL-SCCA obtains the highest values on both training set and 

testing set. Although AGN-SCCA has the same mean on training data, its standard deviation 
is larger than GGL-SCCA. Moreover, GGL-SCCA obtains better testing results than both 

competing methods. This implies that GGL-SCCA is more stable and has better 

generalization ability than AGN-SCCA and NS-SCCA. The results on this real data 

demonstrate that GGL-SCCA has better bi-multivariate identification ability than the 

benchmark methods. The strong association between the frontal morphometry and the 
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APOE in AD cohort, indicating GGL-SCCA's promising and potential power in identifying 

biologically meaningful imaging genetic associations.

5 Conclusions

We have proposed a novel graph guided pairwise group lasso (GGL) based SC-CA method 

(GGL-SCCA) to identify associations between brain imaging measurements and genetic 

factors. The existing group lasso based methods [1, 6] were dependent on the priori 

knowledge which was not always available. The graph/netwrok guided fused lasso based 

approaches [3, 6, 2, 5, 4] only focus on the positively correlated variables, or depended on 

the signs of the sample correlation which were sensitive to the partition of the data. Our 

SCCA method combines the merits of group lasso and the graph/network guided fused 

lasso, which is independent to not only the signs of the sample correlation, but also the priori 

knowledge. Moreover, our method can also incorporate the priori knowledge to recover 

specific structures.

We have compared GGL-SCCA with two state-of-the-art structured SCCA methods on both 

synthetic data and real imaging genetic data. The results on the synthetic data show that 

GGL-SCCA performs better than both NS-SCCA and AGN-SCCA across all data sets. The 

results on real data show that, GGL-SCCA not only reports better canonical correlation 

values than the competing methods, but also obtains more accurate and cleaner canonical 

loading patterns. GGL-SCCA finds out a strong associations between the superior frontal 

morphometry and the APOE e4 SNP, revealing its power in brain imaging genetics. In this 

paper, we merely use the graph guided pairwise group lasso penalty to induce structured 

sparsity. In the future work, we will incorporate lasso into the model to assure additional 

sparsity, and incorporate the priori knowledge to evaluate the performance of GGL-SCCA.
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Fig. 1. 
Canonical loadings estimated on synthetic data. The first row is the ground truth, and each 

remaining row corresponds to a SCCA method: (1) NS-SCCA, (2) AGN-SCCA, and (3) 

GGL-SCCA. For each method, the estimated weights of u are shown on the left panel, and 

those of v are shown on the right.
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Fig. 2. 
Canonical loadings estimated on real imaging genetics data set. Each row corresponds to a 

SCCA method: (1) NS-SCCA, (2) AGN-SCCA, and (3) GGL-SCCA. For each method, the 

estimated weights of u are shown on the left panel, and those of v are shown on the right.
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Fig. 3. 
Mapping averaged canonical loading v of GGL-SCCA onto the brain.

Du et al. Page 14

Inf Process Med Imaging. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Du et al. Page 15

Table 1

Performance comparison on synthetic data. Training and testing correlation coefficients (mean±std) of 5-fold 

cross-validation are shown for NS-SCCA, AGN-SCCA and GGL-SCCA. The best value are shown in 

boldface. The AUC (area under the curve) values (mean±std) of canonical loadings are also shown.

Data set

Training Correlation Coefficients Area under ROC (AUC): u

NS-SCCA AGN-SCCA GGL-SCCA NS-SCCA AGN-SCCA GGL-SCCA

data1 0.39±0.07 0.53±0.10 0.60±0.07 1.00±0.00 1.00±0.00 1.00±0.00

data2 0.31±0.08 0.35±0.08 0.48±0.08 0.20±0.45 0.60±0.55 0.60±0.55

data3 0.20±0.07 0.29±0.07 0.40±0.07 0.20±0.45 0.80±0.45 1.00±0.00

data4 0.44±0.08 0.44±0.07 0.50±0.05 1.00±0.00 1.00±0.00 0.93±0.15

Testing Correlation Coefficients Area under ROC (AUC): v

data1 0.42±0.10 0.60±0.10 0.62±0.23 1.00±0.00 0.96±0.09 1.00±0.00

data2 0.25±0.18 0.21±0.14 0.22±0.08 0.20±0.45 0.80±0.45 1.00±0.00

data3 0.28±0.19 0.33±0.24 0.43±0.21 0.20±0.45 1.00±0.00 1.00±0.00

data4 0.25±0.10 0.32±0.24 0.44±0.24 1.00±0.00 1.00±0.00 1.00±0.00
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Table 2

Participant characteristics.

HC MCI AD

Num 196 343 28

Gender(M/F) 102/94 203/140 18/10

Handedness(R/L) 178/18 309/34 23/5

Age (mean±std) 74.77±5.39 71.92±7.47 75.23±10.66

Education (mean±std) 15.61±2.74 15.99±2.75 15.61±2.74
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Table 3

Performance comparison on real data. Training and testing correlation coefficients (each fold and mean±std) 

of 5-fold cross-validation are shown for NS-SCCA, AGN-SCCA and GGL-SCCA. The best mean±std is 

shown in boldface.

Method Training Results mean±std Testing Results mean±std

NS-SCCA 0.41 0.40 0.43 0.39 0.41 0.41±0.01 0.37 0.41 0.23 0.43 0.37 0.36±0.08

AGN-SCCA 0.49 0.43 0.52 0.49 0.51 0.49±0.03 0.48 0.46 0.33 0.55 0.43 0.45±0.08

GGL-SCCA 0.48 0.48 0.52 0.46 0.49 0.49±0.02 0.51 0.45 0.34 0.55 0.47 0.46±0.08
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