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Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. As the prodromal stage of 

AD, Mild Cognitive Impairment (MCI) maintains a good chance of converting to AD. How to 

efficaciously detect this conversion from MCI to AD is significant in AD diagnosis. Different from 

standard classification problems where the distributions of classes are independent, the AD 

outcomes are usually interrelated (their distributions have certain overlaps). Most of existing 

methods failed to examine the interrelations among different classes, such as AD, MCI conversion 

and MCI non-conversion. In this paper, we proposed a novel self-learned low-rank structured 

learning model to automatically uncover the interrelations among different classes and utilized 

such interrelated structures to enhance classification. We conducted experiments on the ADNI 

cohort data. Empirical results demonstrated advantages of our model.
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1 Introduction

Alzheimer's Disease (AD) usually progresses along a temporal continuum, initially from a 

preclinical stage, subsequently to mild cognitive impairment (MCI) and ultimately 

deteriorating to AD [19]. As the transitional step between normal aging and dementia, MCI 

has attracted high attention since it provides promising opportunities for early detection of 

AD. MCI is recognized as a clinical state of individuals who are memory impaired but 

functioning well otherwise, which does not meet the clinical criteria for dementia [13]. 
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According to [11], MCI patients preserve a conversion-to-AD rate of approximately 15% per 

year, thus it is of great importance to distinguish MCI patients with high potential of AD 

conversion from those not years before dementia.

Recent advances in neuroimaging have offered a helping hand for exploring associations 

between brain structure and behavior, which have provided effective features for early 

detection of AD[7,8]. In the past few years, several machine learning techniques have been 

applied to predict MCI conversion by means of neuroimaging data [12]. Researches utilized 

various classification models to identify MCI converters from other classes, e.g., health 

control samples and MCI non-converters by adopting neuroimaging data only in baseline 

time, which indicated a promising approach of “forecasting” stage changes of MCI patients 

several years before the conversion happens. As successful early detection of MCI 

conversion can boost therapeutic intervention of AD to a large extent, studies on this topic 

have attracted high attention in recent time.

However, most existing models hold a simple and common assumption that the 

neuroimaging data is drawn from an unimodal distribution [11,12,18,17,16], which is not 

applicable for all occasions. In AD research, since MCI converters and AD eventually evolve 

to AD with certain common biological mechanism, it is reasonable to assume that these 

subjects share similar distribution patterns, but their distributions are distinct from that of 

health control samples. That is to say, the brain data may come from multimodal 

distribution, e.g., mixture of Gaussian. Thus, it is natural to assume latent group structure 

exists among different classes. Discovery of such subspace structure can enhance MCI 

conversion prediction and improve image biomarker discovery.

The most straightforward way to discover such groupwise interrelations is to cluster 

different data into groups before classification. However, since the clustering step is 

detached with the classification model, the learned interrelation structures are not associated 

to the prediction results. Such separated steps usually lead to suboptimal result. Here, we 

propose a novel structured low-rank learning model to simultaneously uncover the 

interrelations among different diagnostic stages and employ such interrelated structures to 

enhance the prediction of MCI conversion. We adopt Schatten p-norm to identify the shared 

low-rank subspace. Our new model is applied to the ADNI cohort for MCI conversion 

prediction. All empirical results show that the proposed classification model is capable of 

predicting MCI conversion with better performance.

2 Self-Learned Low-Rank Structured Classification Model

Multi-class classification problem with c classes can be seen as a multi-task learning 

problem with c tasks, where each task is to classify one class from all others via the one-vs-

rest technique. Suppose these c tasks come from g groups, where tasks in each group are 

mutually related. We introduce and optimize a group index matrix set Q = {Q1, Q2, … Qg} 

to discover this group structure. Each Qi is a diagonal matrix with Qi ∈ {0, 1}c×c showing 

the assignment of tasks to the i-th group. For the (k, k)-th element of Qi, (Qi)kk = 1 means 

the k-th task belongs to the i-th group while (Qi)kk = 0 means not. To avoid overlap of 

groups, we have .
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Since each group of tasks share correlative dependence, we reasonably assume the latent 

subspace of each group maintains a low-rank structure. Schatten-p norm [10] can be used as 

a low-rank regularization for uncovering common subspaces shared by tasks.

For a matrix A ∈ ℝd×n, suppose σi is its i-th singular value, then the rank of A can be written 

as , where 00 = 0. The definition of p-th power Schatten p-norm (0 < 

p < ∞) is:

The well-known trace norm (a.k.a. nuclear norm) is a special case of Schatten p-norm with p 

= 1: .

Obviously, when 0 < p < 1, Schatten p-norm makes a better approximation of rank(A) thus a 

more strict low-rank constraint than trace norm. The more closer p is 0, the more strict low-

rank constraint the regularization term  imposes.

According to the above analysis, we can formulate our novel self-learned structured low-

rank classification model as follows:

(1)

In Problem (1), we use a general classification loss ℒ(Y; X, W, b), which can be any loss 

function, e.g., logistic regression, hinge loss, etc. W ∈ ℝd×c is the weight matrix for 

classification, b ∈ ∈c×1 is the bias, and Y ∈ ℝn×c is the label matrix. Moreover, we add a 

power parameter k to the Schatten p-norm regularization term for robustness of Problem (1), 

whose influence will be elaborately discussed in Section 4.

When 0 < p < 1, it is apparent that the new objective is non-convex thus difficult for 

optimization. In the next section, we adopt an efficient re-weighted optimization algorithm.

3 Optimization Algorithm

Here, we first introduce a re-weighted algorithm to solve a general problem where Problem 

(1) is a special case, and then talk about the detailed optimization of (1).

3.1 Optimization Algorithm for A General Problem

Lemma 1. Let gi(x) denote a general function over x, where x can be a scalar, vector or 

matrix,  denotes the constraints on x, then we can claim:
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When δ → 0, The optimization problem

is equivalent to

Proof: When δ → 0, it's apparent that the optimization problem

(2)

will reduce to

(3)

So with a fairly small parameter δ, we turn the non-smooth Problem (3) to the smooth 

Problem (2).

The Lagrangian function of Problem (2) is:

where ĨC(x) equals 0 if x ∈ C and ∞ otherwise [4]. Take derivative w.r.t. x and set it to zero. 

Based on the chain rule [2], we have:

(4)

According to the Karush-Kuhn-Tucker conditions [4], if we can find a solution x that 

satisfies Eq. (4), then we usually find a local/global optimal solution to Problem (2). 

However, it is intractable to directly find the solution x that satisfies Eq. (4). Here we came 

up with a strategy as follows:
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If  is a given constant, Eq. (4) can be reduced to

(5)

Based on the chain rule [2], the optimal solution x* of Eq. (5) is also an optimal solution to 

the following problem:

(6)

Based on this observation, we can first guess a solution x, next calculate Di based on the 

current solution x, and then update the current solution x by the optimal solution of Problem 

(6) on the basis of the calculated Di. We can iteratively perform this procedure until it 

converges.

3.2 Optimization of Problem (1)

It is obvious that Problem (1) can be optimized via Lemma 1. Noticing that , our 

objective becomes:

(7)

where Di is defined as:

(8)

with δ being a fairly small parameter close to zero.

We can solve Problem (7) by means of the alternating optimization method.

The first step is fixing W and solving Q, then Problem (7) becomes:
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(9)

Let Ai = WTDiW, then the solution of each Qi is evident as follows:

(10)

The second step is fixing Q and solving W, b, then Problem (7) becomes:

(11)

Problem (11) can be solved according to the choice of the classification loss ℒ(Y; X, W, b).

Here, we take an example to illustrate the optimization steps of Problem (11) when we adopt 

hinge loss for ℒ(Y; X, W, b). Problem (11) can be written as:

(12)

where H ∈ ℝn×c is a slack variable defined as follow:

(13)

Take derivative of Problem (12) w.r.t. b and set it to zero, then we get: . which 

indicates that b can be updated according to the support vectors.

Take derivative of Problem (12) w.r.t. wj and set it to zero, then we get:
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We can iteratively update D, Q, W and b with the alternating steps mentioned above and the 

algorithm of Problem (7) is summarized in Algorithm 1.

Convergence and time analysis—Our algorithm as a whole employs the alternating 

optimization method to update variables, whose convergence has already been proved in [3]. 

Our model usually converges in 15 iterations. In our experiments on the ADNI data, the 

runtime for five-fold cross validation is around 3 seconds.

Algorithm 1 Algorithm to solve problem (7).

Input:

 Imaging feature data X ∈ ℝd×n, label matrix Y ∈ ℝn×c, parameter p, k, γ, group number g.

Output:

 Weight matrix W ∈ ℝd×c and g different group matrices  which groups the c classes into g 
subspaces.

 Initialize W by the optimal solution to the ridge regression problem.

 Initialize Q randomly.

 while not converge do

  1. Update D according to the definition in Eq. (8)

  2. Update Q according to the solution in Eq. (10)

  3. Update W and b by solving Problem (11). The solution differs w.r.t. the choice of loss function ℒ(Y; X, W, b).

 end while

4 Discussion of Parameters

We introduced several hyper-parameters to make our model more general and adaptive to 

various circumstances. Here, we analyze the functionality of each parameter in detail.

In Problem (1), the parameter p is the norm parameter for the low-rank regularization term. 

It adjusts the stringency of the low-rank penalty. As is analyzed in previous section, Schatten 

p-norm makes a more strict low-rank constraint than trace norm when 0 < p < 1. The closer 

p is to 0, the more rigorous low-rank constraint the regularization term  imposes. But 

empirically we don't set p to a too small value since it makes the model contain too many 

local-minima thus is sensitive to noise and outliers.

The parameter k in Problem (1) is proposed to guarantee the robustness of our model. When 

p is small, the number of local solutions becomes more thus lead the model to be more 

sensitive to outliers. Under this condition, a larger k value will render the model more robust 

to outliers.

Let's take an intuitive example for understanding p and k: Suppose p → 0, then in Problem 

(1) our regularization term approximates to . Assume rank(W) = 10 and 

there exist two latent low-rank subspaces that rank(WQ1) = 5 and rank(WQ2) = 5.
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If k = 1, the real latent low-rank subspaces WQ1 and WQ2 give the minimum regularization 

value as 5 + 5 = 10. However, if we find some non-low-rank subspaces WQ3 and WQ4 

instead, the regularization value is at most 10 + 10 = 20, which maintains no big difference 

from 10.

If k = 2, the optimal regularization value is 52 + 52 = 50, while WQ3 and WQ4 cause a value 

of 102 + 102 = 200, which is much larger than 50. In this case, the algorithm will favor the 

real low-rank subspaces. This is how a larger k value makes our model robust when p is 

small. According to our pre-experiments, we usually set k value in the range of [2, 3].

Parameter γ is use to balance the role of the low-rank penalty, which can be adjusted to 

accommodate different cases. γ can be set to any positive value.

When conducting the experiments, we did not spend too much time tuning the parameters. 

On the contrary, in order to fairly compare all methods, we simply set each parameter to a 

reasonable value, which is discussed in the next section. While these parameters introduced 

significant challenges in optimizing our objective, they make our model more flexible and 

adapt to different situations.

5 Experimental Results

5.1 Experimental Settings

In the classification experiment, we employed hinge loss in Problem (1). We compared with 

the following methods: Support Vector Machine with ℓ1-norm loss (L1SVM) as baseline, k-

Nearest Neighbors algorithm (KNN), Least Square SVM (LSSVM) [15] and SVM with with 

ℓ2-norm loss (L2SVM). To apply SVM model to the multi-class classification problem, we 

adopted 1-vs-all mechanism. Besides, we compared with one state-of-art method conducting 

structured multi-task learning via trace norm regularization (TMTL) [9]. In TMTL model, 

we also used hinge loss to conduct classification. It is notable that TMTL makes a special 

case of our model (1) with p = 1 and k = 1.

In our experiments, we exploited the toolbox of LIBSVM [6] to implement both L1SVM 

and L2SVM. All participating data sets were normalized to the range of [0, 1] and randomly 

divided using 5-fold cross validation. We excavated the classification result in each fold and 

recorded the average in these 5 times repetition.

The evaluation of different methods was based on the percentage of correctly classified 

samples, i.e., classification accuracy. For KNN, we set k = 1. For all other methods using the 

hinge loss, we tuned the C parameter in the range of {10−3, 10−2, …, 103} on training and 

validation data and recorded the performance on testing data using the best parameter w.r.t. 
each method.

Our model consists of several other parameters such as p, γ, k and δ. In our pre-

experiments, we use cross-validation to find a reasonable range for each parameter. We 

found the performance of our model relatively stable within the reasonable range of 

parameters (data not shown). Indeed, we can further improve the performance with fine-

tuning the parameters. Instead, we simply fix p = 0.25, γ = 1, k = 3 and δ = 10−12 in the 
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experiments. Unless specified otherwise, we set the number of groups as g = 2. The values 

of these parameters were determined according to the theoretical reasonable range discussed 

in Section 4 and empirical convention.

5.2 Description of ADNI Data

Data used in the preparation of this paper was obtained from the ADNI database (http://

adni.loni.usc.edu). One goal of ADNI has been to test whether serial MRI, PET, other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of MCI and early AD. For up-to-date information, we refer 

interested readers to visit www.adni-info.org. We downloaded baseline 1.5 T MRI scans and 

demographic information for 818 ADNI-1 participants. For each baseline MRI scan, 

FreeSurfer [14] was employed for brain segmentation and cortical parcellation, and 

extracted 90 thickness and volume measures, which were pre-adjusted by intracranial 

volume (ICV) using the regression weights derived from the healthy control (HC) 

participants. Besides, we performed voxel-based morphometry (VBM) [14] on the MRI 

data, and extracted mean gray matter (GM) density measures for 90 target regions of interest 

(ROIs). The time points examined in this study for both imaging markers and diagnostic 

status included baseline (BL) and Month 36 (M36). All participants with no missing 

BL/M36 MRI measurements and diagnostic status were involved in this study. All in all, we 

include 516 sample subjects in our study, including 105 AD samples, and 237 MCI samples 

and 174 health control (HC) samples. Among the 237 MCI samples, 9 of them become HC 

in M36, 95 become AD in M36 while the rest 133 remain as MCI along this three-year 

continuum.

5.3 Performance Comparison on ADNI Cohort

We labeled the ADNI data according to a three-year clinical observation to five different 

classes, which are are: 1. health control (HC), 2. MCI(baseline)-HC(M36), 3. 

MCI(baseline)-MCI(M36), 4. MCI(baseline)-AD(M36) and 5. AD. Classification 

experiments were performed only on the baseline neuroimaging data so as to compare the 

“forecasting” ability of different methods. Our goal is to classify these different classes 

using baseline data, i.e., detect MCI stage changes three years before the clinical diagnosis, 

which will make a contribution to therapeutic intervention of AD in the most effective stage. 

The comparison results are summarized in Table 1.

From Table 1, we found that our new method performs better than the counterparts in 

classifying the different classes using merely baseline data. Besides, we get two other 

interesting observations: 1) SVM methods outperforms KNN on the ADNI data; 2) L1SVM 

and L2SVM perform equal or better than LSSVM. The reason may go as follows: For KNN, 

it is a method focused more on the local data structure, while SVM model is meant to 

effectively find the separating hyperplanes, which is more suitable for classification. The 

unilateral loss is more interpretable and robust than bilateral loss for classification, thus we 

notice that L1SVM and L2SVM perform equal or better than LSSVM method. As for our 

proposed method, we utilized the unilateral hinge loss to be adaptive for classification and 

also automatically discovered the groupwise structure among different classes, which 

strengthened the classification performance. To compare our method with TMTL, even 
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though both methods attempted to detect the groupwise structure among different tasks, our 

model is more general and robust. The use of Schatten p-norm and the power parameter k 
make our model better approximate the low-rank structure of the latent subspaces thus 

perform better.

It is also worth mentioning that in this classification, we only use neuroimaging data but not 

cognitive test information as previous papers do, e.g., [12]. In [12], the classification 

accuracy is over 70% by adding the cognitive test information to prediction. However, 

cognitive assessment is a direct diagnostic criterion of MCI and AD [1]. Predicting MCI 

with cognitive scores is like classifying with label information, which will definitely boost 

the performance. But using the cognitive test scores as features, the classification is no 

longer “forecasing” but just a classification of existing information.

Moreover, we present the detected groupwise structure from TMTL and our method on 

VBM analysis in Fig. 1. It seems that TMTL fails to detect the appropriate group structure 

among the five classes, but put them all together in one group. On the contrary, our method 

successfully finds the intrinsic group information among different classes. Fig. 1 shows an 

interesting phenomenon that no matter what the group number g we set, our model always 

groups the five classes into two clusters. This illustrates that our model is able to find the 

intrinsic group structure regardless of g parameter settings. Also, according to the detected 

structure, we know that even though three different types of MCI patients i.e., class 2, 3 and 

4, end up with 3 different stages in month 36, they adopt a similar pattern in the baseline. As 

a subdivision, MCI-AD shows a potential similarity with AD while the other two types of 

MCI obtain patterns like HC. Such detected group information may help with the diagnosis 

of MCI and AD.

5.4 Discussion on Top Ranked Features

In this section, let's take an insight into the results. We use heat maps and brain maps to 

intuitively indicate the degree of influence imposed by each imaging feature, such that 

important features in classification can be determined.

Shown in Fig. 3 and Fig. 2 are the heat maps of sorted neuroimaging feature weights and 

corresponding brain maps. The figures demonstrate the capture of a small set of features that 

are predominant for classification. Among the selected features, we found LHippoCampus 

and LPostCentral on the top, whose impact on AD have already been proved in the previous 

papers [5,20]. These identified imaging disease associations warrant further investigation in 

independent cohorts. If replicated, these findings can potentially contribute to biomarker 

discovery for diagnosis and drug design.

5.5 Experiments of Convergence Analysis

In this subsection, we empirically analyze the convergence of our algorithm with respect to 

the two parameters p and k in Eq. (1). We apply our method to the entire data with two 

different p values (i.e., 0.25 and 0.75) and two different k values (i.e., 2 and 3), then record 

the objective value of our model in each iteration.
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We use the results on FreeSurfer as an example. The convergence plots are shown in Fig. 4. 

We notice that the number of iterations need before convergence is fairly stable with respect 

to the settings of p and k parameters. No matter what p and k values are, our model usually 

converges within 15 iterations.

6 Conclusions

In this paper, we proposed a novel low-rank structured classification model to predict MCI 

conversion using neuroimaging data in the baseline time. Our model simultaneously 

uncovered the interrelation structures existing in different classes and employed such 

structure to enhance the classification model. Moreover, we utilized Schatten p-norm to 

extract the common low-rank subspace shared by different patient classes. We conducted 

experiments on ADNI cohort. Empirical results validated the effectiveness of our model by 

demonstrating improved classification performance compared with competing methods. In 

addition, the top ranked biomarkers in our method were verified by previous literature, 

which indicated the potential contribution of our model to AD diagnosis and drug design.
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Fig. 1. 
Illustration of the detected group structure among different classes in our method ((a) and 

(c)) and TMTL ((b) and (d)) in the VBM analysis. We set the number of groups to be 2 and 

3, respectively. White blocks denote that a class belongs to a certain group while black block 

denote otherwise. The five classes are: 1. health control (HC), 2. MCI(baseline)-HC(M36), 

3. MCI(baseline)-MCI(M36), 4. MCI(baseline)-AD(M36) and 5. AD.
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Fig. 2. 
Neuroimaging features mapped on the brain for the FreeSurfer analysis.
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Fig. 3. 
Heat maps of sorted neuroimaging feature weights in our method in descending order from 

left to right. The feature weight matrix is learned on the entire data.

Wang et al. Page 15

Inf Process Med Imaging. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Objective function value of Eq. (1) with different k and p parameters in each iteration on the 

FreeSurfer data.
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