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Abbreviations 

AP, aminopeptidase; APN, neutral aminopeptidase; D3, Distributed Drug Discovery; 

ePepN, Escherichia coli neutral M1-aminopeptidase; 4CR, four-component reaction; I-

MCR; isocyanide-based multicomponent reaction; Leu-pNA, L-leucine-p-nitroanilide; 

MAP, metallo-aminopeptidase; MD, Molecular Dynamics; PBC, periodic boundary 

conditions; pmAPN, porcine kidney cortex microsomes containing neutral aminopeptidase; 

SALI, Structure-Activity Landscape Index; SPS, solid phase synthesis; TPM, tetrazole-

peptidomimetic. 
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Abstract 

The Escherichia coli neutral M1-aminopeptidase (ePepN) is a novel target identified for the 

development of antimicrobials. Here we describe a solid-phase multicomponent approach 

which enabled the discovery of potent ePepN inhibitors. The on-resin protocol, developed 

in the frame of the Distributed Drug Discovery (D3) program, comprises the 

implementation of parallel Ugi-azide four-component reactions with resin-bound amino 

acids, thus leading to the rapid preparation of a focused library of tetrazole-peptidomimetics 

(TPMs) suitable for biological screening. By dose-response studies, three compounds were 

identified as potent and selective ePepN inhibitors, as little inhibitory effect was exhibited 

for the porcine ortholog aminopeptidase. The study allowed for the identification of the key 

structural features required for a high ePepN inhibitory activity. The most potent and 

selective inhibitor (TPM 11) showed a non-competitive inhibition profile of ePepN. We 

predicted that both diastereomers of compound TPM 11 bind to a site distinct from that 

occupied by the substrate. Theoretical models suggested that TPM 11 has an alternative 

inhibition mechanism that doesn’t involve Zn coordination. On the other hand, the activity 

landscape analysis provided a rationale for our findings. Of note, compound TMP 2 showed 

in vitro antibacterial activity against Escherichia coli. Furthermore, none of the three 

identified inhibitors is a potent haemolytic agent, and only two compounds showed 

moderate cytotoxic activity toward the murine myeloma P3X63Ag cells. These results 

point to promising compounds for the future development of rationally designed TPMs as 

antibacterial agents. 

Keywords: multicomponent reaction, tetrazole, antibacterial, ePepN, molecular docking, 

protease inhibitor 
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1. Introduction 

A cornerstone of infectious disease-based drug discovery is the identification of a single, 

but essential protein target that is prone to inhibition. This approach aims to boost the 

discovery of new targets besides those accounting for cell wall biosynthesis, membrane 

integrity, translation, transcription and DNA synthesis [1]. Proteases are final performers in 

the cytosolic degradation of proteins, an essential process in all living cells [2], and they 

participate in biologic processes as diverse as angiogenesis, antigen presentation or 

hormone processing. In addition, they are connected to pathologies such as hypertension, 

inflammation, while several studies describe their incidence in tumor-associated processes 

[3]. In bacteria, proteases are virulence factors targeting host proteins and tissues [4,5]. One 

of the most studied bacterial proteases is the neutral M1-alanyl aminopeptidase (AP) from 

the Gram negative bacterium Escherichia coli (ePepN) [2]. 

M1-APs are widely distributed throughout all phyla except for viruses, and comprise two 

conserved catalytic sequence motifs, i.e., a consensus zinc-binding motif (HEXXH-(X18)-E) 

and the ‘GXMEN’ exopeptidase motif [3]. ePepN, as all metallo-aminopeptidases (MAPs) 

belonging to this family, catalyzes the removal of polypeptide N-terminal amino acids 

throughout the nucleophilic attack of a water molecule that is activated by a Zn2+ cation 

[6−8]. Besides E. coli, human pathogens such as Plasmodium falciparum, the etiological 

agent of malaria, bear neutral APs (APNs) that are essential for their survival [9]. As a 

result, APNs are often considered therapeutic targets, and assessing their function, structure 

and inhibition is of significant interest for the scientific community [3]. 
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ePepN has the highest ATP-independent AP activity in E. coli, and it participates in the last 

stages of the protein degradation pathway in the bacterium cytosol [5,10]. This enzyme 

carries out crucial functions in cellular maintenance, growth and development. The 

expression of the ePepN gene is increased in anaerobic conditions [11], as a response to the 

stress induced by chemical compounds, like sodium salicylate [5], and in minimal medium 

at high temperatures [12,13]. Despite not being essential in basal conditions [14], the AP 

activity of ePepN is required for a fast growth in the indicated circumstances [12,13]. 

Previously, we have described the utilization of isocyanide-based multicomponent reactions 

(I-MCRs) for the preparation of small combinatorial compound libraries targeting the M1-

AP of P. falciparum [15] and E. coli [16]. Those reports comprised the solution-phase 

parallel synthesis of the library members by means of stepwise routes including the I-MCR 

and deprotection steps. In an endeavour to facilitate access to a focused library of potential 

AP inhibitors, herein we report the solid-phase multicomponent synthesis of novel 

tetrazole-peptidomimetics (TPMs) by the Ugi-azide four-component reaction (Ugi-azide-

4CR) of resin-bound amino acids. We also report the evaluation of the inhibitory activity 

against ePepN for all library members, and the antibacterial activity of the most relevant 

compounds. Finally, similarity/activity cliffs analysis was performed in order to identify 

critical moieties for improving both the inhibitory and antimicrobial activities. 

Compounds bearing the tetrazole ring have exhibited a wide range of medicinal 

applications, including analgesic, anti-inflammatory, antiviral and anticancer, among others 

[17]. Recent reports also highlight the antimicrobial activity of varied tetrazolic compounds 

against pathogenic bacteria and protozoa [18,19]. However, it was the metal-chelating 
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capacity of tetrazoles that caught our attention [20]. We hypothesized that suitably 

functionalized tetrazoles – i.e., armed with enzyme-active site matching functionalities – 

could inhibit the ePepN enzymatic activity via chelation of the Zn2+ cation. 

2. Results and Discussion 

2.1. Solid-phase multicomponent synthesis 

To provide a fast and diversity-generating method for the assembly of TPMs, we sought to 

employ an I-MCR enabling the easy variation of the functionalities attached to the tetrazole 

ring. Thus, the Ugi-azide-4CR [21] was chosen because it provides an efficient access to 

1,5-disubstituted tetrazoles [22] with three different sites of diversity generation, arising 

from the amine (R1), carbonyl (R2) and isocyanide (R3) components (Scheme 1). Recently, 

several group have extended the scope of the Ugi-azide-4CR to produce structurally diverse 

tetrazole-containing scaffolds [23−47], but relying on traditional solution-phase 

approaches. 

 

Scheme 1. The Ugi-azide-4CR using a protected amino acid as amino component. 

We chose to implement a solid-phase protocol enabling the fast parallel synthesis of all 

library members and the subsequent evaluation of the ePepN inhibitory activity. Since the 

Ugi-azide-4CR has rarely been implemented on-resin [48-49], an initial assessment of the 

synthetic efficiency of the solid-phase procedure was done prior to the construction of the 

combinatorial library for biological screening. Thus, among all solvent mixtures tested for 
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the on-resin Ugi-azide-4CR, the best one turned out to be THF/MeOH 1:1 (v/v), which 

guaranteed the solubility of all reactants and led to full conversion in 72 h.  

Table 1. Solid-phase synthesis of tetrazole-peptidomimetics by on-resin Ugi-azide-4CR. 

 

Compounda Amino acid 
(R1) 

R2 R3 
Yield 
(%)b 

d.r.c 

1 Tyr(Bzl) H cyclohexyl 60 - 

2 Tyr(Bzl) p-OMe-phenyl cyclohexyl 83 2:1 

3 Trp H cyclohexyl 65 - 

4 Trp 2-furyl cyclohexyl 73 1:1 

5 Trp p-OMe-phenyl cyclohexyl 83 1.4:1 

6 Trp 2-imidazolyl cyclohexyl 60 1:1 

7 Trp 3-pyridyl cyclohexyl 81 1.7:1 

8 Val p-OMe-phenyl cyclohexyl 80 3:1 

9 Val 2-imidazolyl cyclohexyl 68 2:1 

10 Val 3-pyridyl cyclohexyl 68 3:1 

11 Trp 2-furyl benzyl 83 1.4:1 

12 Trp p-OMe-phenyl benzyl 80 1.4:1 

13 Trp 2-imidazolyl benzyl 69 1.6:1 

14 Val H benzyl 61 - 

15 Val 2-imidazolyl benzyl 64 1.6:1 

16 Val p-OMe-phenyl benzyl 73 3:1 

17 Val H 3-phenyl-propyl 63 - 

18 Val p-OMe-phenyl 3-phenyl-propyl 85 3.4:1 

19 Val 2-imidazolyl 3-phenyl-propyl 60 4.7:1 

20 Phe 2-furyl cyclohexyl 66 1:1 

21 Phe 2-furyl benzyl 75 1:1 

aAll compounds were purified to >95% HPLC purity. bYield of pure isolated products. cDetermined by 1H 
NMR  

Following the concept of the D3 program [50,51], which focuses on simple, powerful and 

reproducible approaches for drug discovery, the parallel on-resin Ugi-azide-4CRs were 

implemented with resin-bound amino acids using the D3 Bill-Board-6-pack apparatus. As 
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shown in Table 1, amino acids having hydrophobic side chains, such as Phe, benzyl-

protected Tyr, Trp and Val, were chosen to assemble TPM scaffolds, aiming at favouring 

the hydrophobic interactions within the enzyme active site. Of note, Phe, Trp and Tyr have 

been previously described as ePepN inhibitors [52] – a fact that supports the decision of 

using them for the multicomponent derivatization. The overall solid-phase protocol 

comprises the deprotection of the resin-bound (Wang resin, loading 1-1.5 mg/mmol) amino 

acids by Fmoc removal, followed by the on-resin Ugi-azide-4CRs for 72 h and final 

cleavage from the resin. A simple purification procedure using cyanosilica cartridges 

rendered the final compounds in good overall yield and purity suitable for biological 

evaluation (i.e., >95 % as determined by HPLC). A variety of available carbonyl and 

isocyanide components were employed in the parallel syntheses, producing a total of 21 

new TPMs. In most cases, the choice was to introduce hydrophobic substituents at R2 and 

R3, some of them even bearing metal chelating moieties like the pyridyl. The aldehyde 

components enabled the incorporation of substituents such as 2-furyl, p-OMe-Ph, 3-pyridyl 

and 2-imidazolyl. Due to the poor stereoselectivity of the Ugi-azide-4CR, the use of these 

latter aldehydes rendered the final products as a mixture of two diastereomers, which could 

not be separated by column chromatography. As a result, such compounds were subjected 

to biological evaluation as a mixture of diastereomers. In order to assess the effect of such 

substituents, we also chose to prepare compounds derived from formaldehyde as carbonyl 

component, for which we relied on an aminocatalysis-mediated transimination protocol 

recently developed by our group [53−55]. Thus, the on-resin Ugi-azide-4CR reaction with 

paraformaldehyde consisted of imine formation by transimination of the resin-bound amino 

acid in THF/MeOH 1:1 (v/v) – using the piperidinium ion derived from previous reaction of 
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paraformaldehyde and piperidine – followed by addition of the isocyanide component and 

TMSN3 and shaking for 72 h.  

2.2. Biological evaluation 

2.2.1. Evaluation of the TPMs as ePepN inhibitors   

In order to evaluate the inhibition of the recombinant ePepN enzyme by the tetrazole-

peptidomimetics, dose-response studies were performed and the IC50 values were 

determined. A dose-dependent reversible inhibition was obtained for all the inhibitors (see 

curves in Fig. S1, Supplementary Material) using a pre-incubation step of 15 min to reach 

the equilibrium. The IC50 values vary from 0.26 µM to more than 1000 µM (Table 2). Thus, 

seven TPMs showed IC50 values higher than 100 µM (i.e., 3, 5, 9, 16, 17, 18 and 19), ten 

TPMs showed IC50 values in the range 10-100 µM (i.e., 1, 6, 7, 8, 10, 13, 14, 15, 20 and 

21), three TPMs between 1 and 10 µM (2, 4 and 12), and one lower than 1 µM (11). 

Table 2. Inhibition of recombinant ePepN by the Ugi-azide-4CR derived TPMs. 

Compound Structure 
IC50 

(µµµµM)a Compound Structure 
IC50 

(µµµµM)a 

1 

 

44 ± 5 2 

 

1.4 ± 
0.2 

3 

 

110 ± 4 4 

 

2.2 ± 
0.3 

5 

 

630 ± 50 6 

 

48 ± 4 
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7 22 ± 2 8 90 ± 4 

9 127 ± 2 10 27 ± 2 

11 
0.26 ± 
0.06 

12 
7.2 ± 
0.9 

13 25 ± 1 14 47 ± 4 

15 71 ± 3 16 > 1000

17 170 ± 10 18 
160 ± 

10 

19 470 ± 20 20 41 ± 3 

21 
17.0 ± 

0.9 
bestatin 7 ± 4 

aThe data are presented as the mean ± the standard error. 

These results allow for conducting a preliminary structure-activity relationship analysis for 

the TPM combinatorial library. For example, the comparison of TPMs 1 and 2, both 

derived from Tyr(Bzl) and cyclohexyl isocyanide, suggests that the presence of the central 

p-OMe-phenyl group at R2 favours the ePepN inhibition, compared with the lack of

substituent in this position (Table 2). In this sense, compound 2 can be considered as a 

potent inhibitor of the target enzyme, showing an IC50 value of 1.4 µM. 
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In the series of the five TPMs bearing the cyclohexyl and indole moieties (i.e., 3, 4, 5, 6 and 

7 derived from Trp), both the lack of R2 substituent and the presence of p-OMe-phenyl at 

this position proved unfavourable for the inhibition of ePepN. Alternatively, the greatest 

potencies in the inhibitory activity were obtained for TPMs with the substituents 2-furyl, 2-

imidazolyl and 3-pyridyl at position R2. Thus, TPM 4 bearing the 2-furyl moiety proved to 

be the most active one of this series.  

Interesting results were also obtained for the series of TPMs derived from benzyl 

isocyanide (i.e., R3 = Bn). For example, the combination of benzyl at R3 and Trp as amino 

acid resulted in the active compounds 11 (R2 = 2-furyl) and 12 (R2 = p-MeO-phenyl), 11 

being the most potent inhibitor among all tested compounds. In contrast, the amino acids 

Val and Phe did not afford very active compounds in any of the combinations of aldehyde 

and isocyanide components. The lack of a central substituent at R2 or the presence of the 

imidazole group in this position resulted in compounds with poor inhibitory activity against 

ePepN. As a partial summary of this analysis, we may conclude that amino acids in position 

R1 with bulky aromatic side chains like those of Trp and benzyl-protected Tyr, provide very 

active TPMs when combined in position R3 with either aliphatic (cyclohexyl) or aromatic 

(Bn) isocyanides and an aromatic aldehyde. Thus, to obtain good ePepN inhibitors, this 

class of TPM skeleton requires an aromatic side chain at R1 position, while the R3 

substituent can be either aliphatic or aromatic, but it must be a bulky substituent enabling 

favourable hydrophobic interactions with the enzyme binding site. As the three compounds 

showing the best inhibitory activity against ePepN were evaluated as diastereomeric 

mixtures, we tried the separation of each stereoisomer by semi-preparative RP-HPLC. 

Unfortunately, after various attempts with different solvent systems, it was not possible the 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 

resolution of two peaks for compounds 2, 4 and 11, using a standard C-18 column (see 

analytical HPLC traces in the Supplementary Material). This was unfortunate, because 

some of the non-active compounds appear as two separate peaks in RP-HPLC and could 

have been separated in case of good inhibitory activity.      

The inhibition of the recombinant ePepN enzyme by TPMs incorporating such hydrophobic 

substituents is coherent with other literature reports. For example, the favourable 

hydrophobic interactions between the bestatin’s benzyl group and the APNs’ active site 

have been well described [2,56−58]. Other examples come from the work of Addlagatta et 

al. [52], who verified by X-ray crystallography of ePepN–amino acids complexes that the 

enzyme’s active site can accommodate well the side-chains of phenylalanine, tyrosine and 

tryptophan.  

2.2.2. Assessment of the selectivity in the inhibition of bacterial versus mammalian APNs 

As a result of the dose-response studies, the TPMs 2, 4 and 11 were selected for further 

biological studies regarding the selectivity for the APNs. We performed dose-response 

studies with these compounds toward porcine kidney cortex microsomes containing neutral 

aminopeptidase (pmAPN), using the L-leucine-p-nitroanilide (Leu-pNA) substrate (Table 3 

and Fig. S2). In this manner, it was observed that the three inhibitors are highly selective 

for ePepN with selectivity indexes higher than 900, as compared with its porcine ortholog 

APN in the context of the microsomal fraction. This selectivity can be considered as a very 

relevant result, as it is an essential requirement for the potential therapeutic use of these 

compounds, and such selectivity indexes are not frequent in many AP inhibitors reported so 

far. For example, in addition to the general inhibitor of the M1- and M17-APs, i.e., bestatin, 
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very few micromolar or submicromolar inhibitors of ePepN have been reported [59,60]. It 

is important to explain that the inhibition potency towards ePepN is expressed with the IC50 

parameter, and not with the inhibition constant (Ki), since the recombinant ePepN was not 

purified to reach the total homogeneity (>90 % of purity), as it was not pmAPN.  

The use of microsomes from porcine kidney cortex, instead of purified porcine APN, for 

the enzymatic inhibition assays, is based on the work of Byzia et al. [61]. These authors 

demonstrated that the kinetic properties of soluble porcine APN are very similar to those 

showed by the membrane-associated enzyme. For this reason, the extraction and 

purification of the protein is not necessary for the screening of inhibitors. As a negative 

aspect of this methodology, it should be taken into account that a fraction of the inhibitor 

could be either distributed in the lipid bilayer on this heterogeneous system or interact with 

the acid AP, another M1-family member of MAPs which is co-localized with the APN in 

the kidney cortex membrane [62]. In both cases, the inhibitory potency toward the porcine 

enzyme would be underestimated, and the selectivity for ePepN would be overestimated. 

However, the use of the microsomal fraction in the assays allows reproducing better the 

microenvironment in which an inhibitor would act in a future therapeutic application, where 

it would face the APN bound to the plasmatic membrane in different cellular types and 

tissues [63]. 

Although the architecture of the APNs’ active sites is well conserved among different 

species, there are structural variations that determine the differences in the affinity by 

distinct ligands. For example, Met260 of ePepN is substituted by Ala in the porcine and 

human APN, which leads to variations in substrate specificity and kinetic parameters [64]. 
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These differences between the active sites of ePepN and mammalian APN could be 

responsible for the inhibition selectivity of compounds 2, 4 and 11. 

Table 3. Dose-response studies for the inhibition of the pmAPN aminopeptidase by the three most 

potent TPM inhibitors of the ePepN enzyme. 

Compound IC50 pmAPN 

(µµµµM)a

IC50 rePepN 

(µµµµM) a

Selectivity index 

(IC50 (pmAPN)/IC50 (rePepN)) 

2 1,580 ± 20 1.4 ± 0.2 1,128 

4 2,000 ± 500 2.2 ± 0.3 909 

11 6,100 ± 700 0.26 ± 0.06 23,461 

aThe data are presented as the mean ± the standard error. 

2.2.3. Partial kinetic characterization of selected ePepN inhibitors 

For compound 11, the most potent and selective toward the recombinant ePepN enzyme, it 

was observed that a 15-min pre-incubation time for the ePepN/inhibitor mixture is enough 

to reach the inhibition equilibrium (Fig. 1A). In addition, it was determined that 11 is a 

non-competitive inhibitor (α < 1) of this E. coli AP (Fig. 1B). 

Figure 1. Kinetic characteristics for the inhibition of ePepN by compound 11. A) Study of the 

enzyme/inhibitor pre-incubation time necessary to reach the inhibition equilibrium. E: enzyme. I: 

inhibitor. Different letters represent significant differences for p < 0.05. B) Determination of the 
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inhibition type. The KM and vmax values are apparent. All data are presented as the mean ± the 

standard deviation. 

The fact that TPM 11 is not a competitive inhibitor of the E. coli enzyme suggests that the 

identified ePepN inhibitors could bind the enzyme at a region different to that of the active 

site, although maintaining some influence on the conformation of this cavity. The 

knowledge of the kinetic type of inhibition of a target enzyme by a family of structurally-

related compounds is of vital importance both to elucidate the inhibition mechanism and to 

guide the optimization of the molecule’s scaffold seeking for a higher potency and 

selectivity. Besides, it facilitates the in silico studies for the binding mode of the inhibitor to 

the enzyme and contributes to the design of new inhibitors. In the case of ePepN, there is 

no literature evidence regarding kinetic studies aimed at assessing the type of inhibition 

mechanism of this enzyme. Therefore, the determination in this work that the mode of 

ePepN inhibition – by 11 – is non-competitive (α < 1) represents a relevant contribution to 

this field. 

2.2.4. Computational studies of the putative binding modes of the ePepN–TPM 11 

complexes 

In order to investigate the binding modes of the most active TPMs to ePepN, structural 

analysis, molecular docking, MD simulations and free energy calculations were combined. 

For this, we took advantage of the available experimental data to support the docking 

process (receptor selection, search space definition) and selection of the final models. MD 

simulations and binding free energy calculations using the LIE method [65] were employed 

for assessing the stability of the predicted poses for each complex. 
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First, the focus was on searching for a proper receptor for docking simulations, because 

many structures of ePepN enzyme are available at PDB. The analysis of 37 ePepN 

structures retrieved from PDB showed coincident positions for almost all residues at the 

active site. However, Met260, which is involved in substrate recognition, showed a high 

degree of conformational diversity among all analysed structures (see Fig. S3). It has been 

described that the conformation of this residue in the ligand-free form of the enzyme differs 

from that of the ligand-bound [2,52,66]. Therefore, the conformation of this residue in the 

selected receptor was crucial to ensure the quality of the final models. Additionally, other 

residues far away from S1 site showed a high flexibility (see Fig. S3). Finally, before 

selecting the receptor, not only the structural analysis was considered, but also the kinetic 

characterization of the most active compound, i.e., 11. 

Taking into account both the structural and experimental data, we chose as target the 3D 

structure of ePepN (PDB ID: 4XNB) in complex with L-β-homophenylalanine (L-β-

HPheAla), a substrate-like inhibitor. In this structure, the side chain of Met260 swings out 

from the S1 hydrophobic pocket, providing space for the phenyl side chain of L-β-

HPheAla. L-β-HPheAla was removed from the active site of the enzyme before starting 

docking simulations. 

Similar binding modes were predicted for both TPM 11 isomers, although with different 

scores. TPM 11_S exhibited a score of -10.1 kcal/mol, while the score for TPM 11_R was 

-7.8 kcal/mol. According to our models, the Met260 side chain served as anchoring point to

the central core of the inhibitors (Fig. 2). In both cases, the R3 moiety linked to the tetrazole 

ring interacted with the residues Met260, Asn373, Asn374, Tyr376, Gln821, Ser824 and Arg825, 

located in a pocket with a volume similar to that of benzyl group. It is worth noting that this 
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pocket becomes accessible when the substrate binds, and that both Met260 and Arg825 

approach to each other and interact through hydrogen bond (Fig. S4). 

 

Figure 2. Binding mode of the ePepN:TPM 11 complexes A) ePepN:TPM 11_S, B) ePepN:TPM 

11_R. Both diastereomers are represented as stick. Color codes: inhibitor atoms: carbon in yellow, 

oxygen in red, and nitrogen in blue. Residues belonging to substrate binding site are represented as 

lines and colored as follows: carbon in green, oxygen in red, and nitrogen in blue. The Zn atom is 

represented as a grey sphere. The π-π-stacking and Zn coordination bonds are represented orange 

and grey dotted lines, respectively. For clarity, we don't represent the hydrogen bonds and the van 

der Waals interactions. C) Superposition of the modelled complexes in a surface diagram of ePepN 

active site. Substrate-like inhibitor L-β-HPheAla is depicted as sticks. Color codes: L-β-HPheAla 

atoms: carbon in cyan, oxygen in red, and nitrogen in blue. Table in right shows the energetic 

components (in kcal/mol) as depicted in AD4 scoring function: estat (electrostatic), hb (hydrogen 

bond), vdw (van der Waals), desolv (desolvation) and tors (torsional). 
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On the other hand, the indole-methyl group in both isomers interacted through π-π-stacking 

with Tyr381, a residue involved in the stabilization of the tetrahedral transition state. 

Intriguingly, the TPM did not coordinate the zinc ion in the active site (Fig. 2). It was also 

observed a prevalence of hydrophobic interactions with aliphatic (Leu378), polar (Thr377), 

aromatic (Tyr376) and charged (Glu355, Glu382, Glu828, Arg832, and Lys864) residues (Fig. 2). 

The critical differences in the predicted binding mode for both diastereomers are the 

accommodation of the benzyl group as well as, the formation of a hydrogen bond between 

TPM 11_S and the carbonyl group of Tyr376. The former cannot be established with TPM 

11_R since the N-H group is in the opposite direction to that of TPM 11_S (Fig. 2). The 

absent of this hydrogen bond in the predicted binding mode for TPM 11_R, accounts for a 

score decrease in ~1.0 kcal/mol. 

To understand the non-competitive inhibition profile, it was critical to address the inhibitor 

interactions with residues enrolled in the substrate binding pocket and other putative 

subsites. For comparison purposes, we aligned the 3D structure of the ePepN:L-β-HPheAla 

complex over the predicted ePepN:inhibitor complexes to generate ternary ePepN:L-β-

HPheAla:inhibitor complexes (Fig. 2C). As expected for non-competitive inhibitors, none 

of the isomers interacted with most residues belonging to the substrate binding site, leaving 

unoccupied spaces that allow inhibitor and substrate binding to the enzyme at the same time 

(Fig. 2C). Furthermore, interaction with Tyr381, a critical residue for catalysis, supported the 

non-competitive inhibition mode. These results are similar to those described for 

compounds BTB11079, JFD00064, and BTB07018, all non-competitive inhibitors of 

mammalian APNs [67]. 
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The predicted complexes were subjected to MD simulations in order to assess the stability 

of the predicted binding modes. The inspection of the trajectories and free energy profiles 

revealed that complexes of both diastereomers remained stable during the whole MD 

simulations (30 ns) (Fig. 3). Throughout MD simulations, we observed a similar interaction 

pattern as compared with that predicted by docking. Both diastereomers fit well into the 

active site, by interacting with a common group of aminoacids (Met260, Leu351, Asn373, 

Asn374, Tyr376, Thr377, Leu378, Tyr381, Glu382, Gln821, Ser824, Arg825, Glu828, and Lys864) (Fig. 

3). Nevertheless, and as expected, slight differences were observed, because of a more 

accurate description of the interactions, explicit consideration of solvent effects and 

complexes dynamic itself. Called our attention the interaction of diastereomer 11_S with 

His297, a residue coordinating the Zn2+ ion. By interacting simultaneously with both, His297 

and the catalytic Tyr381, the indole-methyl group was placed at the S1 site entrance. 
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Figure 3. Results from MD simulations for ePepN:TPM 11 complexes. Final structures of A) 

ePepN:TPM 11_S, B) ePepN:TPM 11_R, after 30 ns. Both diastereomers are represented as stick. 

Also, the inhibitors have been rendered as mesh, to give an impression of overall volume. Colour 

codes: inhibitor atoms: carbon in yellow, oxygen in red, and nitrogen in blue. Free energy profiles 

for predicted complexes C) ePepN:TPM 11_S and D) ePepN:TPM 11_R. Histograms showing 

normal distribution of calculated binding free energies, are included. E) Contributions to binding 

free energy of each ePepN-inhibitor complex (left 11_S, right 11_R) using LIE-D method. Green 

bars represents the statistical values (mean ± standard deviation) for polar contribution (∆Gpolar), red 

bars represents the statistical values (mean ± standard deviation) for non-polar contribution (∆Gnon-

polar) to binding, blue bars represents the statistical values (mean ± standard deviation) for calculated 

binding free energies (∆Gcalc), and purple bars represents the statistical values (mean ± standard 
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deviation) for experimental binding free energy (∆Gexp). F) Average occupancy percentage of all the 

residues located at less than 4.0Å from the inhibitors. For clarity, only those residues with an 

average occupancy above 50 % are showed. 

Free energy calculations with the LIE-D method supported docking predictions. Again, 

from binding free energy calculations it was possible to predict that the complex 11_S-

ePepN (∆Gbind = -10.9 kcal/mol) was more stable than the complex 11_R-ePepN (∆Gbind = -

9.4 kcal/mol). Our results showed that both, the non-polar ( ) 

and polar ( ) contributions, were favourable for the binding of both 

diastereomers (Fig. 3). 

To sum up, by combining molecular docking, MD simulations and free energy calculations 

we explained the non-competitive (α < 1) profile observed for TPM 11 in the kinetic 

assays. We observed that both diastereomers bound in a different site to that of the substrate 

and interacting with Tyr381, a critical residue for catalysis. In addition, they filled a pocket 

located near from S1 site (Fig. 3). This pocket is created when the substrate binds and 

Met260 side chain moves away from S1 site (Fig. S4). That way, the substrate must bind 

first before the inhibitor does. We believe that the inhibition could proceed mostly by 

interacting with catalytic Tyr381 or blocking sterically product exit from the active site. Both 

variants are perfectly possible because of the presence of bulky hydrophobic substituents 

able to interact either with Tyr381 or trapping the product into the active site. 

2.2.5. Activity landscape modelling 

Activity landscape modelling, allowed us to explain the observed structure-activity 

relationships. Similarity analysis based on FragFp descriptor [68], showed two main 

clusters with almost the same number of compounds, but a remarkable difference in activity 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

22 

(Fig. 4). Cluster number 1 containing nine compounds (i.e. 8, 9, 10, 14, 15, 16, 17, 18, and 

19) showed an average pIC50 of 3.88. All these inhibitors contain an isopropyl function at

R1 (Fig. S5). According to the proposed models (Fig. 2 and 3), isopropyl function is unable 

to establish optimal interactions with Tyr381 at the active site, which may justify the low 

activity of these compounds. On the other hand, cluster number 2 with eight compounds 

(i.e. 3, 4, 5, 6, 7, 11, 12, and 13), showed an average pIC50 of 4.64. Conversely, all the 

inhibitors contain the indole-methyl function at R1, which is able to establish optimal π-π-

stacking interactions with Tyr381 at the active site, thus justifying the higher activity of 

these compounds (Fig. 2, 3 and S5). TPMs 20 and 21, having intermediate properties, 

showed up between the two main clusters. TPM 2 was related mostly to TPMs 5 and 8. 

Finally, TPM 1 was related only to TPM 2. 

Figure 4. SALI 2D-Plot of studied series. Compounds are shown as spheres in 2D space. Size and 

colour of the sphere represent maximum values of SALI for each compound and pIC50, respectively. 

Lines connect compounds with a similarity index above 85 % (neighbours). Code of the compound 

is shown below the corresponding sphere. 
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The highest SALI values were observed for TPMs 11 and 13, both with SALI = 78. The 

only difference between these compounds is related to the central function. TPM 11 has a 

2-furyl function, while TPM 13 has an imidazole. Thus, exchanging these chemical 

functions with each other causes a dramatical effect on the activity. An identical effect was 

observed for TPMs 4 and 6 (SALI = 56) with 2-furyl and imidazole functions, respectively. 

In the case of imidazole, the unfavourable interactions established with the enzyme’s active 

site could be due to not to the volume but the electronic distribution. 

The analysis of activity landscape, has become a popular method for characterizing 

structure-activity relationships [69,70]. Activity landscape modelling crucially depends on 

molecular representations and similarity metrics used to assess structural similarity [69]. 

Here, the structural similarity analysis was based on the FragFp descriptor. The FragFp 

descriptor is based on a predefined dictionary of 2D structural fragments. This is 

recommended because it does not require 3D information and similarity calculations are 

practically instantaneous [71]. Similarity threshold was set to 85 %, in order to get a well 

equilibrated distribution in terms of similarity relationships and number of clusters. Beyond 

mere visualization, we employed SALI values for quantitatively characterizing activity 

landscape features. Originally, SALI scores have been utilized to identify activity cliffs as 

compound pairs [72]. 

The analysis of the other functions at R2 and R3, allowed explaining not only the variability 

in the observed activity between clusters, but also inside of each cluster. In general, having 

2-furyl and benzyl functions at R2 and R3, favours the inhibitory activity. Conversely, 

having voluminous p-methoxy-phenyl and 3-phenyl-propyl functions at R2 and R3, is 

unfavourable (Fig. S5). A pleasant surprise came with TPM 2, since it was identified as a 
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potent inhibitor of ePepN, even when having a voluminous p-methoxy-phenyl group at R2. 

TPM 2 is related to TPMs 5 and 8, both having a p-methoxy-phenyl group at R2, but with a 

poor inhibitory activity. Notably, the only difference between these compounds is related to 

the chemical function at R1. TPMs 5 and 8 have the indole-methyl and isopropyl groups, 

respectively; while TPM 2 has the p-benzoxy-benzyl function. The dramatical increase of 

inhibitory activity was observed when p-benzoxy-benzyl was at R1, thus suggesting that 

both, the size and flexibility of chemical group at R1, are important for the well-fitting of 

other groups into the interaction site. In addition, p-benzoxy-benzyl group increases the 

hydrophobicity of the compound, which could improve its transport across membranes, a 

critical step for warranting a higher effective concentration of the compound inside the cell. 

2.2.6. Evaluation of the inhibition of the in vitro growth of Escherichia coli 

Finally, the in vitro antibacterial activities of the potent and selective ePepN inhibitors 2, 4 

and 11 were evaluated. In this experiment, neither bestatin – used as a positive control for 

the inhibition of the AP – nor TPMs 4 and 11 inhibited the growth of the cultures of the 

bacterium E. coli, tested up to 100 µM concentration for 3 h, 6 h and 20 h (Fig. 5). There 

was also no antibacterial activity for compound 16, the worst ePepN inhibitor of the series 

(IC50 > 1000 µM; Table 2). In contrast, compound 2 inhibited the in vitro growth of E. coli 

with IC50 values lower than 50 µM, at 3 h and 6 h of exposition (Fig. 5A and B), and lower 

than 100 µM at 20 h (Fig. 5C). 
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Figure 5. Dose-response studies for the inhibition of the in vitro growth of the bacterium 

Escherichia coli BL21 by the TPMs 2, 4 and 11. A non-treated bacterial culture and another one 

exposed to DMSO (vehicle) were used as growth positive controls.  The antibiotic ampicillin (amp) 

was also used as positive control for growth inhibition. Bestatin (best), a known inhibitor of ePepN 

AP, and TPM 16, the worst ePepN inhibitor of the series, were tested as well. A), B) and C) Dose-

response curves at 3 h (37ºC), 6 h (37ºC) and 20 h (42ºC starting at 6 h), respectively. D) and E) 

Growth curves of the cultures and comparison of the growth values, respectively, at the higher 

compound concentrations tested. All data are presented as the mean ± the standard deviation. 

It is intriguing that the two potent ePepN inhibitors showing no in vitro inhibition of E. coli 

growth are those derived from tryptophan, i.e., 4 and 11. A rationale for this result could be 

that these indole-containing compounds also have other targets in E. coli, such as enzymes 

from tryptophan’s metabolic pathways or transporters of this amino acid. This fact would 

either lead to a reduction of the effective concentrations of 4 and 11 in the cell or transform 

them into other molecules without inhibitory effect on ePepN. In this sense, metabolic 

pathways for the synthesis of secondary metabolites of indolic nature have been described 
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in E. coli [73]. On the other hand, the possibility that compound 2 exert its antibacterial 

effect by a mechanism independent of the ePepN inhibition is also plausible. 

2.2.7. Evaluation of the haemolytic activity and cytotoxicity over mammalian cells of 

selected ePepN inhibitors 

As it is shown in Fig. 6, the compounds 2, 4 and 11 are not potent haemolytic agents. The 

TPM 11 caused a haemolysis of 15 %, estimated from the haemoglobin release at 20 h of 

treatment in a concentration of 100 µM. However, 2 and 4, in the same conditions, 

promoted around 40 % of haemolysis. HC20 values representing the compound 

concentration necessary to reach the 20 % of haemolysis, are shown (Table S1). For none 

of the compounds it was possible to determine the HC50. 
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Figure 6. Haemolysis (%) induced at different concentrations of the TPMs at A) 3 h, B) 6 h and C) 

20 h after treatment with the indicated doses. 

The cytotoxic effect of the three compounds on P3X63Ag cells was further evaluated by 

MTT assay, which assesses mitochondrial dehydrogenase activity in living cells [74]. As it 

is shown in Fig. 7, the TPMs 2 and 4 provoked a reduction of the cellular viability from 50 

µM at 3 h of assay (until 60 %), effect that was also observed at 6 and 20 h (until 50 %). 

However, the compound 11 did not cause a significant decrease of the cellular viability. 

Determination of IC50, the concentration necessary to kill the 50 % of cells, was only 

possible for the TPM 2 at 6 and 20 h and 4 at 20 h of treatment, and resulted of 100 µM 

(Table S2). 
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Figure 7. Cytotoxic effect of the TPMs 2, 4 and 11 on P3X63Ag cells. It is shown the percentage of 

mitochondrial activity (cellular viability), determined by the reduction of tetrazolium salt (MTT 

assay) at A) 3 h, B) 6 h and C) 20 h after treatment with the indicated doses of the compounds. 

3. Conclusions 

We have implemented a solid-phase combinatorial approach based on the Ugi-azide-4CR 

for the parallel synthesis of TPMs endowed with three centers of diversity generation. 21 

different compounds were produced following a simple and reproducible on-resin protocol 

that enabled the variation of the amino acid, the carbonyl and the isocyanide components 

taking part in the multicomponent reaction. The screening of the inhibitory activity of the 

ePepN allowed for the discovery of three potent inhibitors, which also proved high 
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selectivity for the bacterial enzyme as compared with the mammalian APN ortholog. The 

structural characteristics of the TPM scaffold favouring a potent ePepN inhibition can be 

summarized as: i) an amino acid moiety with a bulky, hydrophobic aromatic side chain as 

R1, ii ) a central aromatic substituent as R2 and iii ) a bulky aliphatic or aromatic substituent 

R3 attached at the tetrazole ring. The most potent TPM 11 showed a non-competitive (α < 

1) inhibition mode for ePepN, which was suitably explained by combining docking, MD

simulations and free energy calculations. In contrast to our original idea, the inhibition 

mode suggests that there is no coordination of Zn2+ in the active site by the tetrazole ring. 

From the three potent ePepN inhibitors, only compound 2 displayed antibacterial activity in 

vitro toward E. coli, indicating that further investigations are needed for developing an 

effective lead compound based on this antibacterial target. Additionally, none of the three 

identified inhibitors is a potent haemolytic agent, and only two compounds show moderate 

cytotoxic activity toward the murine myeloma P3X63Ag cells. In summary, taking into 

account that ePepN is considered as a model for the rapid identification of microbial APN 

inhibitors, the new insight provided by this study on the structural-activity relationship and 

mode of action of this novel class of inhibitor shows prospect for the future development of 

antimicrobial agents.  

4. Experimental section

4.1. Chemistry 

4.1.1. Materials and Methods 

1H NMR and 13C NMR spectra were recorded at 500/400 MHz and 125/100 MHz on a 

Bruker/Avance DRX 500 and on a Varian Mercury 400 (400 MHz) at 25oC. Chemical 
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shifts (δ) are reported in parts per million related to the residual solvent signals, and 

coupling constants (J) are reported in hertz. High resolution ESI mass spectra were 

obtained from a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer, an 

RF-only hexapole ion guide and an external electrospray ion source. Solid phase synthesis 

(SPS) and Ugi-tetrazole-4CR were carried out in Bill-Board-6-pack equipment [51] as a 

part of the D3 program. Chromatography purification was carried out using cyanosilica 

cartridges and the purity of the final products was analyzed by HPLC. Analytical HPLC 

was carried out with the employment of an Agilent 1100/1200 series HPLC equipped with 

an Agilent 1100/1200 quaternary pump at 25oC, with a flow of 0.800 mL/min and a 

gradient mixture of A (water + 0.1% FA) and B (acetonitrile + 0.1% FA) from 5 % B to 

100 % B in 30 min.  

4.1.2. General procedure for the SPS based on Ugi-azide-4CR 

The Fmoc α-amino acid (10 eq. relative to the resin is placed in a round bottom flask with a 

magnetic stirrer and dissolved in a solution containing DCM (2.5 mL) and some drops of 

DMF at 0 oC. N,N-diisopropylcarbodiimide (DIC) (5 eq., 117 µL) is then added and the 

mixture is stirred for 10 min at 0oC. The previous solution is added to the 

hydroxymethylphenoxy-polystyrene resin (Wang resin, 1.0-1.5 mmol/g) – pre-swollen in 

DCM and placed in a “Bill-Board-6-pack” apparatus equipped with six 3.5 mL reaction 

vessels, with screw caps on both ends and a fused frit at one end. Then, 4-

dimethylaminopyridine (DMAP) (1 eq., 183 mg) in DMF (0.5 mL) is added to the resin. 

After 1 h, the resin beads are washed with DCM (3 × 3 mL), DMF (3 × 3 mL), and dried 

each time with the help of an air-push apparatus. The remaining reactive groups on the 

resin are capped by adding acetic anhydride (5 eq., 708 µL) and pyridine (1 eq., 121 µL) in 
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DMF (2 mL) to the resin (previously swollen in DCM) and then, shaking for 30 additional 

minutes. The Fmoc deprotection is carried out by treating the pre-washed resin twice with 

piperidine 20 % in DMF (2 mL) for 10 min. The resin is washed and swollen again with a 

mixture of THF/MeOH 1:1, then the aldehyde (4 eq.) is added – in the form of piperidium 

ion in the case of paraformaldehyde – and the mixture is shaken for 30 min. After washing 

the resin beads with THF and swelling them again with a mixture of THF/MeOH 1:1, a 

solution of the isocyanide (4 eq.) and TMSN3 (4 eq., 792 µL) in THF/MeOH 1:1 is added. 

The shaking is maintained for 72 h to run the Ugi-azide-4CR to completion. The resin 

cleavage is performed by adding a mixture of TFA/H2O/TIS 95:2.5:2.5 (2.5 mL) to the 

resin beads and shacking for 2 h. The resulting crude product is purified using column 

chromatography (cyanosilica as stationary phase and n-hexane/acetone 3:1 as eluting 

phase). The pure product is concentrated under reduced pressure, then suspended in 

water/acetonitrile 4:1 (5 mL) and lyophilized to furnish the TPM. 

Compound 1. To a L-Tyr(Bzl)-loaded Wang resin (ca. 0.10 mmol), in a mixture of 

THF/MeOH 1:1, paraformaldehyde (12 mg, 0.40 mmol) and piperidine (40 µL, 0.40 mmol) 

and then, cyclohexyl isocyanide (50 µL, 0.40 mmol) and TMSN3 (53 µL, 0.40 mmol) were 

added to carry out the on solid phase Ugi-azide-4CR as described in the general procedure. 

Compound 1 (26 mg, 60 %) was obtained as a light yellow amorphous solid. Rt = 14.4 min. 

1H NMR (400 MHz, CDCl3): δ = 1.18 – 1.41 (m, 2H); 1.41 – 1.56 (m, 1H); 1.57 – 2.33 (m, 

7H); 2.84 – 3.02 (m, 1H, CH2); 3.08 – 3.26 (m, 1H, CH2); 3.57 – 3.72 (m, 1H, CH); 4.10 – 

4.35 (m, 2H, CH2); 4.50 (tt, 1H, J = 11.7/ 3.9 Hz, CH); 4.99 (s, 2H, CH2 benzyl); 6.83 – 

6.92 (m, 2H, 2 × CH, Ar); 7.05 – 7.17 (m, 2H, 2 × CH, Ar); 7.28 – 7.46 (m, 5H, Ar); 8.59 

(s, 1H, NH); 13C NMR (100 MHz, CDCl3): δ = 25.0, 25.3, 33.3 (CH2); 59.0 (CH); 70.2 
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(CH2); 115.2, 127.6, 128.1, 128.7 (CH); 128.8 (C); 130.5 (CH); 137.0 (C), 140.7 (CH). 

ESI-MS: m/z = 458.4 [M+Na]+; 893.5 [2M+Na]+ (calculated for C24H29N5NaO3: 458.2). 

HRMS: m/z = 436.2336 [M + H]-  (calculated for C24H28N5O3 : 434.2192) 

Compound 2. To a L-Tyr(Bzl)-loaded Wang resin (ca. 0.10 mmol), in a mixture of 

THF/MeOH 1:1, p-methoxybenzaldehyde (49 µL, 0.40 mmol) and then, 

cyclohexylisocyanide (50 µL, 0.40 mmol) and TMSN3 (53 µL, 0.40 mmol) were added to 

carry out the on solid phase Ugi-azide-4CR as described in the general procedure. 

Compound 2 (45 mg, 83 %) was obtained as a light yellow solid. Rt = 17.9 min. A mixture 

of diastereomers in a 2:1 ratio was observed by NMR. 1H NMR (400 MHz, CDCl3): δ = 

1.01 – 1.42 (m, 5H); 1.58 – 1.91 (m, 5H); 2.78 (dd, 1H, J = 14.0/ 9.8 Hz, CH2); 3.21 (dd, 

1H, J = 14.0/ 4.0 Hz, CH2); 3.42 (dd, 1H, J = 9.8/ 4.0 Hz, CH); 3.77 (s, 3H, OCH3); 3.82 – 

3.95 (m, 1H); 4.82 (s, 1H); 5.08 (s, 2H, CH2 benzyl); 6.73 (d, 1H, J = 8.6 Hz, CH, Ar); 6.81 

– 6.93 (m, 4H, Ar); 7.07 (d, 2H, J = 8.5 Hz, 2 × CH, Ar); 7.13 – 7.22 (m, 1H); 7.30 – 7.49

(m, 5H, Ar). 13C NMR (100 MHz, CDCl3): δ = 24.8, 25. 32.2, 38.1 (CH2); 55.5 (CH3); 

56.4, 58.3, 60.4 (CH); 70.3 (CH2); 114.7, 115.4, 127.5, 128.8, 129.0 (CH); 129.2 (C); 130.5 

(CH); 137.1, 154.9, 158.1, 160.0, 160.2 (C); 174.7 (C=O). HRMS: m/z = 542.2754 [M + 

H]+ (calculated for C31H36N5O4 : 542.2767); 1083.5437 [2M + H]+ (calculated for 

C62H71N10O8: 1083.5456). 

Compound 3. To a L-Trp-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, paraformaldehyde (12 mg, 0.40 mmol) and piperidine (40 µL, 0.40 mmol) and then, 

cyclohexyl isocyanide (50 µL, 0.40 mmol) and TMSN3 (53 µL, 0.40 mmol) were added to 

carry out the on solid phase Ugi-azide-4CR as described in the general procedure. 

Compound 3 (24 mg, 65 %) was obtained as a dark yellow solid Rt = 11.6 min. 1H NMR 
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(400 MHz, CD3OD): δ = 1.13 – 1.19 (m, 1H); 1.21 – 1.46 (m, 3H); 1.65 – 1.98 (m, 6H); 

3.19 (dd, 1H, J = 14.8/ 8.2 Hz); 3.38 (dd, 1H, J = 14.8/ 4.6 Hz); 3.58 – 3.72 (m, 1H); 3.83 

(dd, 1H, J = 8.1/ 4.8 Hz); 4.15 (d, 1H, J = 14.9 Hz); 4.27 (d, 1H, J = 14.9 Hz); 7.02 (ddd, 

1H, J = 8.0/ 7.0/ 1.1 Hz, Ar); 7.11 (ddd, 1H, J = 8.0/ 7.0/1.1 Hz, Ar); 7.15 (s, 1H, Ar); 7.36 

(d, 1H, J = 8.0 Hz, Ar); 7.58 (d, 1H, J = 8.0 Hz, Ar). HRMS: m/z = 369.2029 [M + H]+ 

(calculated for C19H25N6O2: 369.2039). 

Compound 4. To a L-Trp-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, 2-furaldehyde (33 µL, 0.40 mmol) and then, cyclohexyl isocyanide (50 µL, 0.40 mmol) 

and TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase Ugi-azide-4CR 

as described in the general procedure. Compound 4 (31 mg, 73 %) was obtained as a light 

yellow solid. Rt = 15.0 min. A mixture of diastereomers in a 1:1 ratio was observed by 

NMR. 1H NMR (400 MHz, CDCl3): δ = 1.12 – 1.30 (m, 3H); 1.47 – 1.58 (m, 1H); 1.64 – 

1.91 (m, 6H); 3.12 (dd, 1H, J = 14.6/ 8.4 Hz, CH2); 3.38 (dd, 1H, J = 14.6/ 4.5 Hz, CH2); 

3.72 (dd, 1H, J = 8.4/ 4.5 Hz, CH); 4.27 – 4.37 (m, 1H); 5.30 (s, 1H); 6.09 (d, 1H, J = 3.1 

Hz, Ar); 6.18 – 6.23 (m, 1H, Ar); 7.03 – 7.23 (m, 3H, Ar); 7.30 (s, 1H, Ar); 7.35 (dd, 1H, J 

= 7.9/ 5.2 Hz, Ar); 7.49 (d, 1H, J = 7.9 Hz, Ar); 8.36 (s, 1H, NH). 13C NMR (100 MHz, 

CDCl3): δ = 24.9, 25.3, 29.0, 32.7 (CH2); 50.3 (CH3); 50.6, 58.7, 59.7, 108.9; 110.0 (CH); 

110.1 (C); 110.9, 111.6, 118.7, 119.8, 122.4 (CH), 127.6, 136.4 (C); 143.3 (CH); 149.5, 

152.2 (C); 175.7 (C=O). HRMS: m/z = 435.2131 [M+H]+ (calculated for C23H27N6O3: 

435.2145); 869.4201 [2M+H]+ (calculated for C46H53N12O6 : 869.4211). 

Compound 5. To a L-Trp-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, p-methoxybenzaldehyde (49 µL, 0.40 mmol) and then, cyclohexyl isocyanide (50 µL, 

0.40 mmol) and TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase 
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Ugi-azide-4CR as described in the general procedure. Compound 5 (40 mg, 83 %) was 

obtained as a light yellow solid. Rt = 15.1/15.3 min. A mixture of diastereomers in a 1.4:1 

ratio was observed by NMR. 1H NMR (400 MHz, CD3OD): δ = 0.93 – 1.08 (m, 1H); 1.07 – 

1.45 (m, 4H); 1.46 – 1.86 (m, 6H); 3.05 (dd, 1H, J = 14.4/ 9.4 Hz); 3.39 (dd, 1H, J = 14.4/ 

4.1 Hz); 3.61 (dd, 1H, J = 9.4/ 4.1 Hz); 3.73 (s, 3H, OCH3); 3.98 – 4.08 (m, 1H); 5.15 (s, 

1H); 6.66 (d, 2H, J = 8.4 Hz, Ar); 6.83 – 6.92 (m, 2H, Ar); 7.15 (d, 1H, J = 7.9 Hz, Ar); 

7.18 (s, 1H, Ar); 7.41 (d, 2H, J = 8.4 Hz, Ar); 7.61 (d, 1H, J = 7.9 Hz, Ar). 13C NMR (100 

MHz, CD3OD): δ = 25.9, 26.2, 30.0, 33.7 (CH2); 55.7 (CH3); 56.2, 59.1, 60.8 (CH); 111.1 

(C); 112.5, 115.3, 119.4, 120.0, 122.7, 124.7 (CH); 128.4 (C); 130.1 (CH), 138.3, 155.6, 

161.4 (C); 176.5 (C=O). HRMS: m/z = 475.2442 [M + H]+ (calculated for C26H31N6O3: 

475.2458); 949.4819 [2M + H]+ (calculated for C52H61N12O6: 949.4837). 

Compound 6. To a L-Trp-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, imidazole-2-carbaldehyde (39 µL, 0.40 mmol) and then, cyclohexyl isocyanide (50 µL, 

0.40 mmol) and TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase 

Ugi-azide-4CR as described in the general procedure. Compound 6 (26 mg, 60 %) was 

obtained as a light yellow solid. Rt = 10.3/10.6 min. A mixture of diastereomers in a 1:1 

ratio was observed by NMR. 1H NMR (400 MHz, CD3OD): δ = 1.10 – 1.52 (m, 3H); 1.57 – 

1.91 (m, 7H); 1.98 (d, 1H, J = 8.8 Hz); 3.04 (dd, 1H, J = 14.6/ 8.5 Hz); 3.60 – 3.65 (m, 1H); 

3.75 (dd, 1H, J = 8.5/ 4.5 Hz); 4.31 – 4.42 (m, 1H); 5.48 (s, 1H); 5.88 (s, 1H); 6.91 – 7.02 

(m, 1H, Ar); 7.05 – 7.14 (m, 2H, Ar); 7.31 – 7.39 (m, 2H, Ar); 7.45 (d, 1H, J = 8.0 Hz, Ar); 

7.51 (d, 1H, J = 7.9 Hz, Ar). 13C NMR (100 MHz, CD3OD): δ = 26.0, 29.9, 33.8, 34.1 

(CH2); 49.0 (CH); 49.3 (CH3); 59.6 (CH); 110.3 (C); 112.5, 119.2, 120.0, 121.2, 121.0, 

122.6, 124.9 (CH); 128.5, 138.2, 145.0, 152.5 (C); 175.9 (C=O). HRMS: m/z = 435.2240 
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[M + H]+ (calculated for C22H27N8O2: 435.2257); 869.4421 [2M + H]+ (calculated for 

C44H53N16O4: 869.4436). 

Compound 7. To a L-Trp-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, 3-pyridincarbaldehyde (38 µL, 0.40 mmol) and then, cyclohexyl isocyanide (50 µL, 

0.40 mmol) and TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase 

Ugi-azide-4CR as described in the general procedure. Compound 7 (36 mg, 81 %) was 

obtained as a light yellow solid. Rt = 11.2/12.1 min. A mixture of diastereomers in a 1.7:1 

ratio was observed by NMR. 1H NMR (400 MHz, CD3OD): δ = 1.12 – 1.43 (m, 3H); 1.47 – 

2.10 (m, 8H); 3.07 (dd, 1H, J = 14.5/ 8.5 Hz); 3.27 (dd, 1H, J = 14.5/ 4.7 Hz); 3.60 (dd, 1H, 

J = 8.5/ 4.7 Hz); 4.31 – 4.44 (m, 1H); 5.59 (s, 1H); 7.02 (t, 1H, J = 7.4 Hz, Ar); 7.08 – 7.18 

(m, 3H, Ar); 7.37 (d, 1H, J = 8.3 Hz, Ar); 7.53 (d, 1H, J = 7.8 Hz, Ar); 7.61 (dd, 1H, J = 

8.0/ 5.3 Hz, Ar); 8.17 (d, 1H, J = 8.0 Hz, Ar); 8.56 (d, 1H, J = 5.3 Hz, Ar), 8.70 (s, 1H). 13C 

NMR (100 MHz, CD3OD): δ = 25.9, 26.1, 33.6, 33.9 (CH2); 49.3 (CH); 59.3, 60.7 (CH); 

111.5 (C); 112.6, 119.3, 119.9, 122.6, 124.6, 126.5 (CH); 128.7, 138.1, 138.2 (C); 142.5, 

144.9, 146.2 (CH), 154.8 (C); 177.0 (C=O). HRMS: m/z = 446.2286 [M + H]+ (calculated 

for C24H28N7O2: 446.2304); 891.4513 [2M + H]+ (calculated for C48H55N14O4: 891.4531). 

Compound 8. To a L-Val-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, p-methoxybenzaldehyde (49 µL, 0.40 mmol) and then, cyclohexyl isocyanide (50 µL, 

0.40 mmol) and TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase 

Ugi-azide-4CR as described in the general procedure. Compound 8 (31 mg, 80 %) was 

obtained as a white solid. Rt = 14.6/14.9 min. A mixture of diastereomers in a 3:1 ratio was 

observed by NMR.1H NMR (400 MHz, CD3OD): δ = 0.97 (d, 3H, J = 6.7 Hz, CH3); 0.99 

(d, 3H, J = 6.8 Hz, CH3); 1.13 – 1.39 (m, 2H); 1.41 – 1.54 (m, 1H); 1.66 – 1.98 (m, 8H); 
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1.98 – 2.13 (m, 1H); 3.02 (d, 1H, J = 5.1 Hz, CH); 3.81 (s, 3H, OCH3); 4.55 – 4.65 (m, 

1H); 5.27 (s, 1H); 6.97 (d, 2H, J = 8.7 Hz, Ar); 7.38 (d, 2H, J = 8.7 Hz, Ar). 13C NMR (100 

MHz, CD3OD): δ = 18.6, 19.8 (CH3); 26.1. 26.3 (CH2); 32.5 (CH); 33.8 (CH2); 55.9 (CH3); 

56.6, 59.2, 65.0, 115.4 (CH), 130.0 (C), 130. 7 (CH), 156.8, 161.6 (C); 176.9 (C=O). 

HRMS: m/z = 388.2340 [M + H]+ (calculated for C20H30N5O3: 388.2349); 775.4602 [2M + 

H]+ (calculated for C40H59N10O6: 775.4619). 

Compound 9. To a L-Val-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, imidazole-2-carbaldehyde (39 µL, 0.40 mmol) and then, cyclohexyl isocyanide (50 µL, 

0.40 mmol) and TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase 

Ugi-azide-4CR as described in the general procedure. Compound 9 (24 mg, 68 %) was 

obtained as a dark yellow solid. Rt = 13.0/13.4 min. A mixture of diastereomers in a 2:1 

ratio was observed by NMR. 1H NMR (400 MHz, CD3OD): δ = 0.92 (d, 3H, J = 7.2 Hz, 

CH3); 0.94 (d, 3H, J = 7.0 Hz, CH3); 1.27 – 1.52 (m, 1H); 1.43 – 1.65 (m, 2H); 1.72 – 1.84 

(m, 1H); 1.86 – 2.27 (m, 7H); 3.21 (d, 1H, J = 4.8 Hz, CH); 4.67 – 4.79 (m, 1H); 5.93 (s, 

1H); 7.54 (s, 2H, Ar). 13C NMR (100 MHz, CD3OD): δ = 18.3, 19.8 (CH3); 26.0, 26.2 

(CH2); 33.0 (CH); 34.2 (CH2); 59.7, 66.0, 121.1, 121.4 (CH); 145.5, 152.4 (C); 176.3 

(C=O). HRMS: m/z = 348.2133 [M + H]+ (calculated for C16H26N7O2: 348.2148); 695.4195 

[2M + H]+ (calculated for C32H51N14O4: 695.4218). 

Compound 10. To a L-Val-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, 3-pyridincarbaldehyde (38 µL, 0.40 mmol) and then, cyclohexyl isocyanide (50 µL, 

0.40 mmol) and TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase 

Ugi-azide-4CR as described in the general procedure. Compound 10 (25 mg, 68 %) was 

obtained as a dark yellow solid. Rt = 11.0 min. A mixture of diastereomers in a 3:1 ratio 
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was observed by NMR. 1H NMR (400 MHz, CD3OD): δ = 0.97 (2 × d, 2 × 3H, J = 6.8 Hz, 

2 × CH3); 1.29 – 1.43 (m, 1H); 1.49 – 1.64 (m, 2H); 1.74 – 2.19 (m, 8H); 2.99 (d, 1H, J = 

4.9 Hz); 5.00 – 5.11 (m, 1H); 5.46 (s, 1H); 7.74 (dd, 1H, J = 7.9/ 5.1 Hz, Ar); 8.32 (dt, 1H, 

J = 8.0/ 2.0 Hz, Ar); 8.68 (d, 1H, J = 5.1 Hz, Ar); 8.84 (d, 1H, J = 2.0 Hz, Ar). 13C NMR 

(100 MHz, CD3OD): δ = 18.3, 19.7 (CH3); 26.2, 26.3 (CH2); 32.5 (CH); 34.0, 34.2 (CH2); 

54.1, 59.1, 65.3, 126.7 (CH), 137.9 (C); 141.9, 147.9, 148.0 (CH); 155.8 (C); 176.5 (C=O). 

dr = 60.00. HRMS: m/z = 359.2184 [M + H]+ (calculated for C18H27N6O2: 359.2195); 

717.4295 [2M + H]+ (calculated for C36H53N12O4: 717.4313). 

Compound 11. To a L-Trp-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, 2-furaldehyde (33 µL, 0.40 mmol) and then, benzyl isocyanide (49 µL, 0.40 mmol) and 

TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase Ugi-azide-4CR as 

described in the general procedure. Compound 11 (37 mg, 83 %) was obtained as a light 

brown solid. Rt = 14.3 min. A mixture of diastereomers in a 1.4:1 ratio was observed by 

NMR.1H NMR (400 MHz, CDCl3): δ = 3.03 (dd, 1H, J = 14.8/ 7.5 Hz, CH2); 3.18 (dd, 1H, 

J = 14.8/ 4.7 Hz, CH2); 3.44 (dd, 1H, J = 7.5/ 4.7 Hz, CH2); 5.01 (d, 1H, J = 15.5 Hz, CH2); 

5.19 (d, 1H, J = 15.5 Hz, CH2); 5.30 (s, 1H); 5.94 (d, 1H, J = 3.0 Hz, Ar); 6.03 (d, 1H, J = 

3.0 Hz, Ar); 6.82 (m, 1H, Ar); 6.95 – 7.28 (m, 8H, Ar); 7.35 (d, 1H, J = 8.0 Hz, Ar); 7.53 

(d, 1H, J = 8.0 Hz Ar); 8.27 (s, 1H, NH). 13C NMR (100 MHz, CDCl3): δ = 28.7 (CH2); 

50.7 (CH); 51.1 (CH2), 59.7, 109.4; 110.8, 111.6, 118.7, 119.9, 122.5, 123.6 (CH); 127.2 

(C); 127.4 (CH); 127.5 (C); 128.7, 129.0 (CH); 133.3, 136.4 (C); 143.4 (CH), 148.7, 153.2 

(C); 175.8 (C=O). HRMS: m/z = 443.1819 [M+H]+  (calculated for C24H23N6O3: 443.1832); 

885.3577 [2M + H]+ (calculated for C48H45N12O6: 885.3585). 
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Compound 12. To a L-Trp-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, p-methoxybenzaldehyde (49 µL, 0.40 mmol) and then, benzyl isocyanide (49 µL, 0.40 

mmol) and TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase Ugi-

azide-4CR as described in the general procedure. Compound 12 (39 mg, 80 %) was 

obtained as a light yellow solid. Rt = 14.1/14.4 min. A mixture of diastereomers in a 1.1:1 

ratio was observed by NMR. 1H NMR (400 MHz, CD3OD): δ = 1.15 (d, 1H, J = 5.9 Hz); 

3.00 (dd, 1H, J = 14.3/ 9.6 Hz); 3.37 – 3.42 (m, 1H); 3.52 (dd, 1H, J = 9.5/ 4.1 Hz); 3.68 (s, 

3H, OCH3); 5.10 (s, 1H); 5.17 (d, 1H, J = 15.7 Hz); 5.29 (d, 1H, J = 15.7 Hz); 6.53 (d, 2H, 

J = 8.2 Hz, Ar); 6.62 – 6.70 (m, 2H, Ar); 6.88 (d, 1H, J = 7.1 Hz, Ar); 6.93 – 6.99 (m, 1H, 

Ar); 7.02 – 7.29 (m, 5H, Ar); 7.35 – 7.45 (m, 2H, Ar); 7.57 (d, 1H, J = 7.9 Hz); 8.28 (s, 1H, 

NH). 13C NMR (100 MHz, CD3OD): δ = 30.0 (CH2); 51.7 (CH2); 55.6 (CH3); 56.5, 61.2 

(CH); 111.1 (C); 112.5, 115.1, 119.4, 120.0, 122.7, 125.0, 128.1 (CH); 128.5 (C); 128.6, 

129.8, 130.1 (CH); 134.6, 135.1, 138.3, 157.3, 161.2 (C); 176.9 (C=O). HRMS: m/z = 

483.2129 [M + H]+ (calculated for C27H27N6O3: 483.2145); 965.4193 [2M + H]+ (calculated 

for C54H53N12O6: 965.4211). 

Compound 13. To a L-Trp-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, imidazole-2-carbaldehyde (39 µL, 0.40 mmol) and then, benzyl isocyanide (49 µL, 

0.40 mmol) and TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase 

Ugi-azide-4CR as described in the general procedure. Compound 13 (31 mg, 69 %) was 

obtained as a red-brown solid. Rt = 10.0/10.2 min. A mixture of diastereomers in a 1.6:1 

ratio was observed by NMR. 1H NMR (400 MHz, CD3OD): δ = 2.87 – 3.01 (m, 1H); 3.21 

(dd, 1H, J = 12.1/ 3.8 Hz); 3.63 (dd, 1H, J = 9.3/ 3.8 Hz); 5.03 (d, 1H, J = 15.3 Hz); 5.24 

(d, 1H, J = 15.3 Hz); 5.54 (s, 1H); 6.76 (d, 1H, J = 7.2 Hz, Ar); 6.88 – 7.01 (m, 2H, Ar); 
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7.01 – 7.12 (m, 1H; Ar); 7.12 – 7.37 (m, 7H, Ar); 7.48 (d, 1H, J = 7.9 Hz, NH). 13C NMR 

(100 MHz, CD3OD): δ = 30.8, 52.1 (CH2); 59.6, 62.2 (CH); 110.7 (C); 112.7, 119.3, 120.1, 

121.0, 122.7, 124.9 (CH); 128.2 (C); 128.8, 129.2, 129.7, 130.0 (CH), 134.6, 135.3, 138.2, 

153.0 (C); 176.2 (C=O). HRMS: m/z = 443.1926 [M + H]+ (calculated for C23H23N8O2: 

443.1944); 885.3789 [2M + H]+ (calculated for C46H45N16O4: 885.3810). 

Compound 14. To a L-Val-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, paraformaldehyde (12 mg, 0.40 mmol) and piperidine (40 µL, 0.40 mmol) and then, 

benzyl isocyanide (49 µL, 0.40 mmol) and TMSN3 (53 µL, 0.40 mmol) were added to carry 

out the on solid phase Ugi-azide-4CR as described in the general procedure. Compound 14 

(18 mg, 61 %) was obtained as a light yellow solid. Rt = 10.6 min. 1H NMR (400 MHz, 

CD3OD): δ = 0.94 (d, 6H, J = 6.6 Hz, 2 × CH3); 1.94 – 2.11 (m, 1H, CH); 3.16 (d, 1H, J = 

4.9 Hz, CH); 4.03 (d, 1H, J = 14.9 Hz, CH2); 4.20 (d, 1H, J = 14.9 Hz, CH2); 5.74 (d, 1H, J 

= 15.4 Hz, CH2 benzyl); 5.79 (d, 1H, J = 15.1 Hz, CH2 benzyl); 7.29 – 7.40 (m, 5H, Ar);. 

13C NMR (100 MHz, CD3OD): δ = 18.7, 19.4 (CH3); 32.1 (CH); 41.5, 52.0 (CH2); 67.8, 

129.1, 129.8, 130.1 (CH); 135.4, 154.1 (C); 175.9 (C=O). HRMS: m/z = 304.1763 

[M(MeOH) + H]+ (calculated for C15H22N5O2: 304.1773); 607.3457 [2M(MeOH) + H]+ 

(calculated for C30H43N10O4: 607.3469). 

Compound 15. To a L-Val-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, imidazole-2-carbaldehyde (39 µL, 0.40 mmol) and then, benzyl isocyanide (49 µL, 

0.40 mmol) and TMSN3 (53 µL, 0.80 mmol) were added to carry out the on solid phase 

Ugi-azide-4CR as described in the general procedure. Compound 15 (23 mg, 64 %) was 

obtained as a dark yellow solid. Rt =8.9/9.1 min. A mixture of diastereomers in a 1.6:1 ratio 

was observed by NMR. 1H NMR (400 MHz, CD3OD): δ = 0.85 (d, 3H, J = 5.7 Hz, CH3); 
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0.88 (d, 3H, J = 6.3 Hz, CH3); 1.90 – 2.07 (m, 1H); 3.11 (d, 1H, J = 4.8 Hz, CH); 5.48 (s, 

1H); 5.79 (d, 1H, J = 10.9 Hz); 5.91 (d, 1H, J = 10.9 Hz); 7.21 – 7.41 (m, 6H, Ar); 7.46 (s, 

1H, Ar). 13C NMR (100 MHz, CD3OD): δ = 18.3, 19.5 (CH3); 33.0, 50.4 (CH); 52.5 (CH2); 

65.0, 65.9, 121.3, 121.6, 128.7, 129.2, 129.8, 130.2 (CH), 135.2, 144.8, 155.4 (C); 176.1 

(C=O). HRMS: m/z = 356.1825 [M + H]+ (calculated for C17H22N7O2: 356.1835); 711.3578 

[2M + H]+ (calculated for C34H43N14O4: 711.3592). 

Compound 16. To a L-Val-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, p-methoxybenzaldehyde (49 µL, 0.40 mmol) and then, benzyl isocyanide (49 µL, 0.40 

mmol) and TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase Ugi-

azide-4CR as described in the general procedure. Compound 16 (29 mg, 73 %) was 

obtained as a light yellow syrup. Rt = 16.4/16.8 min. A mixture of diastereomers in a 3:1 

ratio was observed by NMR. 1H NMR (400 MHz, CD3OD): δ = 0.89 (d, 3H, J = 6.9 Hz, 

CH3); 0.92 (d, 3H, J = 6.9 Hz, CH3); 1.88 – 2.01 (m, 1H); 2.95 (d, 1H, J = 5.7 Hz); 3.78 (s, 

3H, OCH3); 5.10 (s, 1H); 5.60 (d, 1H, J = 15.6 Hz); 5.67 (d, 1H, J = 15.6 Hz); 6.85 (d, 2H, 

J = 8.7 Hz, Ar); 7.02 – 7.10 (m, 2H); 7.19 (d, 2H, J = 8.7 Hz, Ar); 7.24 – 7.37 (m, 3H, Ar). 

13C NMR (100 MHz, CD3OD): δ = 18.8, 19.6 (CH3); 32.7 (CH); 51.9 (CH2); 55.8 (CH3); 

56.4, 65.4, 115.2, 128.6, 129.5, 129.9, 130.6 (CH); 135.5, 157.9, 161.4 (C); 176.1 (C=O). 

HRMS: m/z = 410.2176 [M (OMe) + H]+ (calculated for C22H28N5O3: 410.2192); 819.4282 

[2(M(OMe)) + H]+ (calculated for C44H55N10O6: 819.4306). 

Compound 17. To a L-Val-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, paraformaldehyde (12 mg, 0.40 mmol) and piperidine (40 µL, 0.40 mmol) and then, 3-

phenylpropyl isocyanide (68 µL, 0.40 mmol) and TMSN3 (53 µL, 0.40 mmol) were added 

to carry out the on solid phase Ugi-azide-4CR as described in the general procedure. 
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Compound 17 (20 mg, 63 %) was obtained as a white solid. Rt = 15.5 min. 1H NMR (400 

MHz, CD3OD): δ = 0.95 (d, 3H, J = 6.3 Hz, CH3); 0.96 (d, 3H, J = 5.3 Hz, CH3); 1.98 – 

2.08 (m, 1H); 2.31 (p, 2H, J = 7.5 Hz, CH2); 2.73 (t, 2H, J = 7.5 Hz, CH2); 3.09 (d, 1H, J = 

5.0 Hz, CH); 4.06 (d, 1H, J = 14.6 Hz, CH2); 4.20 (d, 1H, J = 14.6 Hz, CH2); 4.47 – 4.56 

(m, 2H); 7.17 – 7.26 (m, 3H, Ar); 7.30 (t, J = 7.5 Hz, Ar). 13C NMR (100 MHz, CD3OD): δ 

= 18.6, 19.7 (CH3); 31.9 (CH2); 32.3 (CH); 33.5, 41.5, 48.1 (CH2); 68.0, 127.3, 129.5, 

129.6 (CH), 141.8, 154.5 (C); 176.5 (C=O). HRMS: m/z = 318.1917 [M + H]+ (calculated 

for C16H24N5O2: 318.1930); 635.3766 [2M + H]+ (calculated for C32H47N10O4: 635.3782). 

Compound 18. To a L-Val-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, p-methoxybenzaldehyde (49 µL, 0.40 mmol) and then, 3-phenylpropyl isocyanide (68 

µL, 0.40 mmol) and TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase 

Ugi-azide-4CR as described in the general procedure. Compound 18 (36 mg, 85 %) was 

obtained as a light yellow solid. Rt = 14.9/15.4 min. A mixture of diastereomers in a 3.4:1 

ratio was observed by NMR. 1H NMR (400 MHz, CD3OD): δ = 0.94 (d, 3H, J = 6.9 Hz, 

CH3); 0.97 (d, 3H, J = 7.0 Hz, CH3); 1.78 – 2.07 (m, 4H); 2.43 – 2.63 (m, 2H, CH2); 2.98 

(d, 1H, J = 5.0 Hz, CH); 3.79 (s, 3H, OCH3); 4.31 (t, 2H, J = 7.6 Hz, CH2); 5.17 (s, 1H); 

6.92 (d, 2H, J = 8.6 Hz, Ar); 7.12 (d, 2H, J = 7.2 Hz, Ar); 7.17 – 7.32 (m, 5H, Ar). 13C 

NMR (100 MHz, CD3OD): δ = 18.6, 19.7 (CH3); 31.9 (CH2); 32.4 (CH); 33.4, 48.1 (CH2); 

55.8 (CH3); 57.4, 64.9, 115.5, 127.3, 129.5, 129.6 (CH); 130.1 (C); 130.8 (CH); 141.7, 

157.2, 161.7 (C); 176.7 (C=O). HRMS: m/z = 424.2349 [M + H]+ (calculated for 

C23H30N5O3: 424.2349); 438.2491 [M (OMe) + H]+ (calculated for C24H32N5O3: 438.2505); 

847.4603 [2M + H]+ (calculated for C46H59N10O6: 847.4619). 
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Compound 19. To a L-Val-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, imidazole-2-carbaldehyde (49 µL, 0.40 mmol) and then, 3-phenylpropyl isocyanide (68 

µL, 0.40 mmol) and TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase 

Ugi-azide-4CR as described in the general procedure. Compound 19 (23 mg, 60 %) was 

obtained as a light brown solid. Rt = 10.3/10.5 min. A mixture of diastereomers in a 4.7:1 

ratio was observed by NMR. 1H NMR (400 MHz, CD3OD): δ = 0.89 (d, 3H, J = 6.8 Hz, 

CH3); 0.92 (d, 3H, J = 6.8 Hz, CH3); 1.93 – 2.13 (m, 2H); 2.25 – 2.38 (m, 2H); 2.70 – 2.81 

(m, 2H); 3.06 (d, 1H, J = 4.3 Hz, CH); 4.49 – 4.62 (m, 2H); 5.81 (s, 1H); 7.09 - 7.26 (m, 

5H, Ar); 7.53 (s, 2H, Ar). 13C NMR (100 MHz, CDCl3): δ = 18.4, 19.6 (CH3); 32.0 (CH2); 

32.9 (CH); 33.6, 54.8 (CH2); 65.1 (CH3); 65.9, 121.2, 121.6, 127.4, 129.3, 129.6 (CH), 

141.7, 145.1, 153.3 (C); 176.3 (C=O). HRMS: m/z = 384.2136 [M + H]+ (calculated for 

C19H26N7O2: 384.2148); 767.4206 [2M + H]+ (calculated for C38H51N14O4: 767.4218). 

Compound 20. To L-Phe-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, 2-furaldehyde (33 µL, 0.40 mmol) and then, cyclohexyl isocyanide (50 µL, 0.40 mmol) 

and TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase Ugi-azide-4CR 

as described in the general procedure. Compound 20 (26 mg, 66 %) was obtained as a light 

brown solid. Rt = 15.6 min. A mixture of diastereomers in a 1:1 ratio was observed by 

NMR. 1H NMR (400 MHz, CD3OD): δ = 1.15 – 1.58 (m, 4H); 1.63 – 1.93 (m, 7H); 2.87 

(dd, 1H, J = 13.7/ 8.7 Hz, CH2); 3.14 (dd, 1H, J = 13.7/ 4.7 Hz, CH2); 3.55 (dd, 1H, J = 8.7/ 

4.7 Hz, CH); 4.41 (tt, 1H, J = 11.6/ 3.8 Hz); 5.54 (s, 1H); 6.23 (d, 1H, J = 3.2 Hz, Ar); 6.38 

(dd, 1H, J = 3.2/ 1.9 Hz, Ar); 7.18 – 7.35 (m, 5H, Ar); 7.43 (d, J = 1.8 Hz, 1H, Ar). 13C 

NMR (100 MHz, CD3OD): δ = 26.1, 26.3, 33.9, 40.1 (CH2); 51.1, 59.5, 61.6, 109.4; 110.4, 

111.6, 129.5, 130.4 (CH); 139.0 (C); 144.6 (CH), 151.0, 154.6 (C); 176.4 (C=O). HRMS: 
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m/z = 396.2021 [M+H]+  (calculated for C21H26N5O3: 396.2036); 791.3973 [2M+H]+  

(calculated for C42H51N10O6: 791.3993). 

Compound 21. To a L-Phe-loaded Wang resin (ca. 0.1 mmol), in a mixture of THF/MeOH 

1:1, 2-furaldehyde (33 µL, 0.40 mmol), and then, benzyl isocyanide (50 µL, 0.40 mmol) 

and TMSN3 (53 µL, 0.40 mmol) were added to carry out the on solid phase Ugi-azide-4CR 

as described in the general procedure. Compound 21 (30 mg, 75 %) was obtained as a light 

brown syrup. Rt = 15.2 min. A mixture of diastereomers in a 1:1 ratio was observed by 

NMR. 1H NMR (400 MHz, CD3OD): δ = 2.71 (dd, 1H, J = 13.6/ 8.9 Hz, CH2); 2.93 (dd, 

1H, J = 13.6/ 4.7 Hz, CH2); 3.42 (dd, 1H, J = 8.9/ 4.7 Hz, CH); 4.83 (d, 1H, J = 15.7 Hz); 

5.32 (d, 1H, J = 15.7 Hz); 5.44 (s, 1H); 6.06 (d, 1H, J = 3.3 Hz, Ar); 6.18 (dd, 1H, J = 3.3/ 

1.9 Hz, Ar); 6.76 – 6.80 (m, 1H, Ar); 6.99 – 7.24 (m, 10H, Ar). 13C NMR (100 MHz, 

CD3OD): δ = 40.0, 51.7 (CH2); 51.8, 61.8, 109.7; 109.9, 127.7, 128.9, 129.3, 129.5, 129.8, 

130.3 (CH); 135.3, 138.6 (C); 144.2 (CH), 150.6, 155.4 (C); 176.3 (C=O). HRMS: m/z = 

404.1708 [M+H]+ (calculated for C22H22N5O3: 404.1723); 807.3346 [2M+H]+ (calculated 

for C44H43N10O6: 808.3367). 

4.2. Biology 

4.2.1. M1-alanil-aminopeptidases from Escherichia coli and porcine microsomes (pmAPN) 

Recombinant ePepN (rePepN) was overexpressed in E. coli and purified in an Ionic 

Exchange step as was previously described [75]. Porcine APN enzyme was used as a model 

of the human APN, since both share a high sequence similarity and show very similar 

kinetic properties [76]. This enzyme associated to the microsomes of the porcine kidney 

cortex was used [61] with the aim to study the selectivity of the selected inhibitors. 
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4.2.2. Murine myeloma P3X63Ag cells 

Murine myeloma P3X63Ag was obtained from American Type Culture Collection 

(ATCC). Cells were cultured in DMEM-F12 (Gibco-BR, Paisley, UK), supplemented with 

10% heat inactivated fetal calf serum (FCS) (Invitrogen, USA), 2 mM L-glutamine, 25 mM 

HEPES, 100 U/mL penicillin, 100 mg/mL streptomycin, and maintained at 37ºC with 5 % 

CO2. 

4.2.3. Aminopeptidase activity assay for recombinant ePepN and pmAPN 

The AP enzymatic activity (EA) was determined by a continuous kinetic method [77]. The 

chromogenic substrate Leu-pNA (Bachem, Sweden) 75 µM was used (~ 1 apparent 

Michaelis-Menten’s constant (KMapp); dissolved in DMSO; 2 µL for the microplate assay 

and 10 µL for the cuvette assay) and the increase of the absorbance at 405 nm (due to the 

liberation of the pNA chromogen) was registered in function of time during 3 min, realizing 

measurements each 15 sec. The determinations were realized at 25°C, as in 96-well 

microplates (200 µL final volume), using a microplate spectrophotometer (Multiscan FC, 

Thermo Scientific, EUA), as in a cuvette of 1 cm of path length (1 mL final volume), using 

a kinetic spectrophotometer (UV-1800 Shimadzu, UV Spectrophotometer, Japan). The 

buffer 50 mM Tris-HCl pH 8.0 was used, as well as volumes of ePepN or pmAPN linearly 

related with the initial velocities (v0). The final DMSO concentration in the assays was not 

higher than 2 % (v/v). Only the linear portions of the progress curves, corresponding to 

substrate consumption lower than 5%, were used to measure the reaction rates. The slopes 

with R2< 0.98 were not considered. The slope values of the reaction progress curves 

(∆Abs/∆t) were taken as values of v0. The assays were performed in triplicate. 
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4.2.4. Aminopeptidase activity inhibition assays for ePepN and pmAPN 

The recombinant ePepN or pmAPN enzymes were pre-incubated with 10 µL (for the 

cuvette assay) or 2 µL (for the microplate assay) of bestatin or the compounds (dissolved in 

DMSO), at 25ºC for 15 min. Subsequently, the substrate Leu-pNA at 75 µM (~ 1 KMapp) 

was added and the assays of AP activity were performed. The control was prepared by the 

pre-incubation of the enzyme with the same volume of DMSO in the previous conditions. 

The residual activity (vi/v0) was defined as the ratio between the reaction rate in the 

presence of the compound and the reaction rate corresponding to the control. 

4.2.5. Dose-response studies for the inhibition of the ePepN and pmAPN enzymes 

The inhibition assays of the ePepN’s EA were performed as was previously described, with 

the 21 TPMs. Compounds 2, 4 and 11 were also evaluated in the pmAPN inhibition assays. 

In all cases, different concentrations of each compound were used (prepared in DMSO by 

double serial dilutions) spanning the range 0.781−100 µmol/L (concentrations in the assay). 

When de IC50 value was not reached in this range, lower or higher inhibitor concentrations 

were tested. The IC50 values were calculated by the nonlinear fit of the logistic function to 

the experimental data, using OriginPro 8 SR0 software (version 8.0724 (B724); OriginLab 

Corporation [http://www.OriginLab.com]) with default parameters. The logistic function is: 

y = 1 / (1 + [I] / IC50), where y: residual AP activity, and [I]: inhibitor concentration in the 

assay [78]. All assays were performed at least in triplicate. 

4.2.6. Determination of the time necessary to reach the inhibition equilibrium 

Inhibition assays with ePepN and TPM 11 were performed with pre-incubation of the 

enzyme with the inhibitor during 5, 10, 15, 30 and 45 min. 
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4.2.7. Determination of the inhibition mode 

Assays of AP EA with ePepN were performed as previously described, in the presence of 

the compound 11 at the concentrations 0, 1.56, 3.125 and 6.25 µM. For each inhibitor 

concentration, after pre-incubation for 15 min, the substrate Leu-pNA was added at 

different concentrations, spanning the range 18.75-1200 µM in the assay. In the absence of 

inhibitor, the enzyme was pre-incubated with the same DMSO volume. The experimental 

data were transformed and the Lineweaver-Burk double reciprocal plots were constructed. 

The equation is: 1/v0 = (KMapp / vmaxapp) (1/[S]0) + 1/vmaxapp, where vmaxapp: apparent 

maximal rate of the enzymatic reaction, and [S]0: initial substrate concentration in the assay 

[78]. The transformed experimental data were analyzed by a simple linear fitting using the

software Microsoft Office Excel 2007™ (Microsoft Corporation; EUA; 

[https://www.microsoft.com/]). The inhibition type was determined graphically from the 

lines of the double reciprocal plots [78]. 

4.2.8. Structural and molecular docking studies 

In silico studies were focused on the most potent compound of the studied series, i.e. TPM 

11. The putative binding modes of both TPM 11 diastereomers were predicted by

combining structural analysis and docking simulations. Two-dimensional structures of 

compounds were used to build 3D models from the corresponding SDF files. Because 

inhibitors were evaluated as diastereomeric mixtures, we considered the two possible 

configurations of TPM 11 at position R2 using ChemAxon software [79], while the 

configuration of the amino acid residue R1 is always (S). For clarity, we named isomers 

according to the structure around the asymmetric carbon bonded to R2 (Fig. S6). The 3D 
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structures of both TPM 11 diastereomers were minimized in Avogadro using the MMFF94 

force field [80]. Protonation states of protein residues were calculated using PDB2PQR 

[81]. We took care that histidine residues interacting with Zn atom were properly

protonated. PDBQT files were generated with AutoDockTools [82]. Molecular docking 

simulations were conducted with the Autodock4Zn force field [83]. The receptor coordinates 

were chosen based on the analysis of all the available non-redundant 3D X-ray structures of 

ePepN retrieved from the Protein Data Bank repository (http://www.rcsb.org/pdb). 

4.2.9. Molecular dynamic simulations 

In order to assess the stability of the predicted complexes, MD simulations were performed. 

Predicted structures were used as starting points for MD simulations of 30 ns, using the 

GROMACS (version 4.6.5) software package [84], periodic boundary conditions (PBC), 

and the Amber99sb force field [85]. Protonation states of protein residues were calculated 

as described above. Ligand parameters were generated from the general Amber force field 

(GAFF) [86], and charges were calculated using AM1-BCC, a semi-empirical 

approximation available in the Antechamber program [87,88].  

All systems were neutralized (Na+/Cl−) and solvated with explicit water molecules, which 

were modelled by the TIP3P [89] parameter set, in a rhombic dodecahedron box. The 

distance between the protein-ligand complexes and the edge of the box were set to 10 Å. 

The LINCS algorithm was used to constrain all the covalent bonds in non-water molecules 

[90], while the SETTLE algorithm was used to constrain bond lengths and angles in water 

molecules [91]. 
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To avoid Zn2+ ion unbinding from the active site and/or incorrect pseudovalence bond 

formation (due to the use of a classical force field), a 10 kcal/(mol Å2) harmonic constraint 

was applied on the Zn2+ ion for ensuring a correct ligation state. A similar constraint was 

applied to heavy atoms of both, the protein and the ligand, in order to prevent unbinding 

processes during system’s equilibration and thermalization stages [92]. 

Energy minimization was carried out using a steepest descent algorithm followed by the 

conjugate gradient method. Then, systems were gradually heated for 300 ps to reach the 

experimentally reported assay temperature. The Leapfrog scheme [93], with an integration 

time step of 2 fs, was employed to integrate the equations of motion. The temperature was 

controlled using a weak coupling to a bath with a time constant of 0.1 ps [94]. For pressure 

control, a Berendsen coupling algorithm with a time constant of 1.0 ps was employed [94]. 

Initial velocities were randomly generated from a Maxwell distribution at 50 K, in 

accordance with the atomic masses. 

In order to preserve the coordination geometry throughout the production run, a 10 

kcal/(mol Å2) harmonic constraint was applied on the Zn2+ ion, as well as the heavy atoms 

of the residues His297, His301 and Glu320 coordinating the Zn2+ ion. Furthermore, a small (0.5 

kcal/(mol Å2)) harmonic constraint was applied on the Cα atoms of the residues beyond the 

active site to avoid undesirable artefacts due to applied constraints for preserving 

coordination geometry. The heavy atoms of the ligands and those of the residues belonging 

to the active site were kept unrestrained [92]. 

The Leapfrog scheme [93], with an integration time step of 2 fs, was employed to integrate 

the equations of motion. The temperature was controlled using a weak coupling to a bath 

with a time constant of 2.0 ps. For pressure control, a Parrinello-Rahman [95] coupling 
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algorithm with a time constant of 5.0 ps was employed. Long-range electrostatic 

interactions were handled by Particle Mesh Ewald (PME) summation [71,96]. The van der 

Waals interactions were modelled by Lennard-Jones (6-12) potential [84]. As GROMACS 

is not straightforward to obtain long-range electrostatic contributions from the PME 

algorithm, these were recalculated using the Reaction Field zero algorithm throughout the 

generated trajectory [84]. All ligands were solvated in a rhombic dodecahedron box with 

the same size as the one generated for its respective protein-ligand complex. Finally, 5 ns 

simulations were run using the above protocol. 

4.2.10. Free energy calculations 

In order to validate docking results, we used the Linear Interaction Energy approach 

proposed by Miranda et al. [65,97] (coined LIE-D) to predict binding free energies. The 

LIE-D formula takes into account the intra-ligand electrostatic interactions as suggested by 

Almlöf et al. [98] and takes the form of equation 1: 

where  is the predicted binding free energy, and denotes 

the change of both intra-ligand electrostatic and van der Waals interactions when it is 

transferred from solution (free state) into the solvated receptor binding site (bound state). 

We calculated a  specific values for each ligand using the parameterization model E 

proposed by Almlöf et al. [98] and  value was set in 0.18. We calculated  using the linear 

correlation between D parameter and (equation 2) [65]:  

where  and  are the slope (-0.95) and intercept (-2.06), respectively. 
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The D parameter encompasses the balance (difference) between electrostatic (polar) and 

van der Waals (non-polar) energies in protein-ligand complexes (equation 3) [65]:  

4.2.11. Activity landscape modelling. Similarity/activity cliffs analysis 

Similarity/activity cliffs analysis was performed with DataWarrior program [68]. Similarity 

criterion for arranging molecules on the 2D-map was based on the default FragFp 

descriptor. A similarity threshold was set to 85 % for establishing similarity relationships. 

In addition to the similarity analysis, the so-called Structure-Activity Landscape Index 

(SALI) was calculated for all pairs of similar molecules. The SALI value is a measure of 

how much activity is gained (or lost) with a relatively small change in structure and, it was 

calculated as follows [68,72]: 

being , the structural similarity between the molecules and  the activities of 

two neighbors. SALI was calculated for every compounds identified as neighbors. 

4.2.12. Inhibition assay for the in vitro growth of E. coli BL21 

Cultures of E. coli BL21 were prepared by inoculation with the 1 % volume from an over-

night culture, in 200 µL-aliquots of LB medium in 96-well plates. The cultures were 

exposed to eight concentrations of compounds: bestatin (positive control of ePepN 

inhibition), 2, 4, 11 and 16 (negative control of ePepN inhibition), prepared by double serial 

dilutions in DMSO and spanning the range 0.781-100 µM (assay concentrations). In 

addition, were prepared cultures non-exposed to neither compound, other treated with 
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DMSO (positive control of growth), and other exposed to 200 µg/mL ampicillin antibiotic 

(negative control of growth). Also was used non-inoculated medium as blank and control of 

contamination. Four replicates by condition were tested. The cultures were incubated for 20 

h at 37ºC, and the absorbance at 595 nm was assessed in a microplate spectrophotometer at 

0, 3, 6 and 20 h. The temperature was increased at 42ºC at 6 h of culture. Finally, the dose-

response curves were constructed, normalizing the DO values as regards the DMSO 

control, taken as 100 % of growth. 

4.2.13. Haemolytic activity 

The cytotoxic effect of the compounds on erythrocytes was evaluated by the haemolysis 

according to [99]. In brief, erythrocyte suspensions were prepared using fresh human red 

blood cells, washed and resuspended in physiological buffer solution (PBS: 145 mM NaCl, 

10 mM Tris-HCl pH 7.4). The concentration of the standard cellular suspension was 

adjusted by addition of PBS to obtain an approximate absorbance of 0.7 at 540 nm when 

one mL of the suspension of cells was totally lysed with 14 mL Na2CO3 (0.1 %). The 

haemolytic activity (HA) was evaluated by the amount of haemoglobin remaining in the 

supernatant after centrifugation after 3 h, 6 h and 20 h of incubation with the compounds. 

Cells without treatment were used as control and cells treated with DMSO (1 %) were used 

to verify the effect of DMSO. 

4.2.14. MTT assay 

Viable cells were quantified by the MTT colorimetric assay, which measures tetrazolium 

dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction by 

mitochondrial enzymes [74]. Briefly, P3X63Ag cells were plated with serum-free 
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DMEMF12 medium and treated with different concentrations of compounds for 3 h, 6 h 

and 20 h. After washing with PBS, MTT was added to the cells for three hours; next, the 

crystals were dissolved with DMSO and the absorbance was measured in an ELISA reader 

(Organon Teknika, Salsburg, Austria) at 450 nm with the 620 nm as reference. Cells 

without treatment were used as control. Cellular viability (%) was calculated from the 

following equation: 

Cellular viability (%) = 100 × At / Ac 

where At is the absorbance of treated cells and Ac is the absorbance of non-treated cells 

(control cells). 

4.2.15. Statistical analyses 

Normal distribution and homogeneity of variances of the experimental data were verified 

by the Kolmogorov-Smirnov and the Bartlett test, respectively [100]. Afterward, an 

analysis of variance of simple classification was carried out. The means were compared by 

the Tukey HSD test [101]. A level of signification of 0.05 was used. To perform these 

analyses, the software Statistica (version 8.0; StatSoft Inc. [http://www.statsoft.com]) was 

used. 
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Highlights 

� A library of tetrazole-peptidomimetics was obtained by a multicomponent reaction 

� Three potent inhibitors of the E. coli neutral M1-aminopeptidase were discovered 

� High selectivity for the microbial M1-aminopeptidase versus the mammalian one 

� A non-competitive inhibition mode was found and explained by molecular docking 

� In vitro antibacterial activity was found for one compound 


