
ACCEPTED MANUSCRIPT

Atomistic Modeling of Resistivity Evolution of Copper 

Nanoparticle in Intense Pulsed Light Sintering Process

Lingbin Meng, Yi Zhang, Xuehui Yang, Jing Zhang*

Department of Mechanical and Energy Engineering, Indiana University-Purdue University 

Indianapolis, Indianapolis, IN 46202, USA

*Email: jz29@iupui.edu; Phone: 317-278-7186; Fax: 317-274-9744

Abstract

In this work, the intense pulsed light (IPL) sintering process of copper nanoparticle ink is 

simulated using molecular dynamics (MD) method. First, the neck size growth between the two 

copper nanoparticles during the IPL sintering process is computed. The resultant electrical 

resistivity is then calculated by substituting the neck size into the Reimann-Weber formula. 

Overall, a rapid decrease of electric resistivity is observed in the beginning of the sintering, 

which is caused by quick neck size growth, followed by a gradually decrease of resistivity. In 

addition, the correlation of the simulated temperature dependent resistivity is similar to that of 

the experimentally measured resistivity. The MD model is an effective tool for designers to 

optimize the IPL sintering process.
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1. Introduction

In recent years, sintering process of nanoparticle ink using intense pulsed light (IPL) becomes a 

popular technique for flexible electronics [1-7]. Rapid low-temperature sintering of nanoparticles 

into patterns and thin films on a large area is an attractive feature for fabrication of flexible 

electronics. IPL process has several advantages over the conventional sintering techniques, e.g., 

furnace-based, microwave, plasma, and electrical methods, including low temperature, fast 

sintering rate, and large area. Since the substrate of current flexible electronics is made by 

polymer [8], the processing temperature of conductive network on the substrate is limited. 

Benefiting from the low processing temperature [9], IPL becomes a strong alternative for flexible 

electronics manufacturing. Owing high surface area to volume ratio, nanoparticles possess
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extremely lower melting temperature than their bulk forms [10, 11], because surface atoms have 

fewer neighbors and are more weakly bound and less constrained in their thermal motion than 

atoms in the particles [12]. Therefore, nanoparticles are suitable nanoinks in the low processing 

temperature in IPL technique. In a typical IPL system, IPL is generated using an arc plasma 

phenomenon in the xenon flash lamp [4]. Nanoink with metal nanoparticles of about 5 nm 

diameter are uniformly dispersed on the top of polymer substrate [5]. When the lamp is triggered 

using a pulse controller, approximately 1000 A of electrical current is delivered within 

milliseconds from the supercapacitor (40,000 μF) [4]. The optical spectrum of light from the 

xenon lamp covers a range of wavelengths from 160 nm to 2.5 μm [4]. Nanoink is then sintered 

by the IPL to form conductive network on flexible polymer substrate. 

In printed electronics field, the electrical conductivity is a key property determining the 

performance of the printed products [13]. Regarding the material selection, though metals such 

as gold and silver possess high electrical conductivity, they are too expensive to achieve mass 

production. Copper is a popular material in flexible electronics [2, 5-7, 13] due to its low cost 

and excellent electrical conductivity. Besides material selection, the electrical conductivity is 

mainly affected by the sintering behavior of nanoparticles [13]. Therefore, this study focuses on 

the electrical resistivity of the sintered copper nanoparticles.  

The electrical resistivity of copper nanoparticles sintered by IPL has been studied from 

experimental measurements [5-7]. Kim et al. [5] tested the resistivity of sintered copper nanoink 

with light intensity in a range of 20-50 J/cm2. In their result, the resistivity is decreased with 

increased pulse energy. The polymer substrate remained undamaged under a pulse energy of 50 

J/cm2, and the resultant resistivity is 5 μΩ·cm. Wang et al. [7] tested the copper nanoink 

resistivity under a wide range of pulse energy. They found that the pulse energy of 60 J/cm2 is an 

inflection point of the resistivity. When the pulse energy exceeds 60 J/cm2, bubbling arose on the 

surface of Cu film, so the resistivity will increase due to the increasing pores created by the 

bubbling. If the pulse energy is over 70 J/cm2, the polymer substrate will be damaged. The 

resultant resistivity in their study is 3.21-5.27 μΩ·cm when the light energy ranged from 40 to 60 

J/cm2. Overall, the experimental results show that the sintering temperature is a key factor of 

resultant electrical conductivity. 
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To explain the temperature-dependent resistivity, it is imperative to understand the sintering 

process of copper nanoparticles and its influence on the performance. However, the sintering 

behavior during the sintering process is hard to be recorded because the sintering time is too 

short. Therefore, there is a need of an effective model to simulate the sintering process and 

predict the resultant properties. Forerunners developed many molecular dynamics (MD) models 

to simulate the sintering process. Zhu and Averback [14] developed a MD model to simulate the 

sintering process of two single-crystal copper nanoparticles at 700K. They found that the 

timescale of the whole sintering process is only tens of picoseconds [14]. Pan et al. [15] studied 

the sintering process of two gold nanoparticles. They developed an analytical model to compute 

the electrical resistivity by neck growth, and their results are consistent with the MD simulation 

predictions [15]. Zhang et al. [16] studied the resistivity evolutions of two silver nanoparticles at 

two different temperatures and found that the resistivity of sintered silver nanoparticles at higher 

temperature is lower due to the larger neck size. These imply that molecular dynamics model is 

effective to simulate the sintering process in IPL technique. In spite of the efforts of forerunners, 

effective simulation of electric resistivity in low temperature sintering process of copper is rarely 

reported. If an effective simulation model is developed, designers can make use of it to optimize 

the IPL sintering process.

For metal and alloy systems, the atomistic interaction potentials are typically represented by the 

embedded atom method (EAM) [17], which is a semi-empirical approach. EAM is effective for 

predicting material properties such as thermal expansion, melting temperatures, phase 

transformations, surface energies and vacancy formation energies, and simulation of structural 

behaviors such as grain boundaries and dislocations [17]. Besides the aforementioned MD 

simulations, MD is widely applied to low-dimensional systems such as nanowires [18-21], thin 

films [22, 23] and nanoparticles [24-26], which indicates that EAM is capable to apply to low-

dimensional systems. Therefore, EAM is employed in this study.

In this paper, a molecular dynamics model of sintering of copper nanoparticles at varied 

temperature is developed. The neck growth between two copper nanoparticles during the 
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sintering process is studied. The resistivity is calculated by the neck size using Reimann-Weber 

formula and then compared against experimental result. 

2. Method

2.1. Resistivity computation

In sintering process, neck size is the dominant factor of electrical resistivity, because with 

increased neck size, the contact cross-sectional area between the two particles increases, and 

hence the resistivity reduces. The normalized electrical resistivity ( ) can be computed by 𝑟

Reimann-Weber formula [27]:

. (1)𝑟 =
𝜆𝑠

𝜆𝑒
=

1
𝑥 +

1
𝜋ln

2
𝑥

Here  is the effective conductivity,  is the conductivity for bulk copper and  is the neck size 𝜆𝑒 𝜆𝑠 𝑥

( ) normalized by particle radius ( ), such that .𝑋 𝐷 𝑥 = 𝑋/𝐷

To extract the resultant electrical resistivity, it is necessary to obtain the neck size from the 

molecular dynamics model.

2.2. Molecular dynamics model

A molecular dynamics model is developed to simulate the sintering process at atomistic scale. 

The atomistic interactions are represented by the embedded atom method. In EAM, the total 

energy ( ) of an atomistic system is represented by the summation of energy of all atoms in 𝐸𝑡𝑜𝑡

the system, and the energy of atoms is calculated based on atom positions as in the following 

equation [28]:  

. (2)𝐸𝑡𝑜𝑡 =
1
2

∑𝑖𝑗𝑉𝑖𝑗(𝑟𝑖𝑗) + ∑𝑖𝐹𝑖(𝜌𝑖)

Here  is the pairwise interaction energy between atoms  and  separated by a distance , and 𝑉𝑖𝑗 𝑖 𝑗 𝑟𝑖𝑗

 is the embedded energy of atom  as a function of the host electron density , which is also 𝐹𝑖 𝑖 𝜌𝑖

based on atom position as:

, (3)𝜌𝑖 = ∑𝑖 ≠ 𝑗𝜌𝑖(𝑟𝑖𝑗)

where  is the electron density function calculated by density functional theory (DFT) [28].𝜌(𝑟)
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The sintering process of copper nanoparticles is simulated by the Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS) [29]. The motion of all atoms in the system is 

calculated with a time step of 0.002 ps by integrating the atomistic equations of motion based on 

the potential function using velocity-Verlet numeric integrator. In each time step, the 

displacement of each atom is computed from the atomistic positions of previous step. The 

structure of a copper nanoparticle is modeled by a spherical particle cut from a large FCC single 

crystal supercell within a radius of 3.0 nm. The number of atoms in the single copper 

nanoparticle is 9564. This nanoparticle is then duplicated to form a two-particle sintering model. 

The two nanoparticles are placed in a non-periodic simulation box with shrink-wrapped 

boundaries to form an isolated system [16], with an initial center-to-center distance of 6.2 nm, as 

shown in Fig. 1. The whole system is subject to constant temperatures by rescaling the atom 

velocity with NVT ensemble [16] for 80 ps. The constant temperatures are maintained by Nose–

Hoover thermostat. This timescale is sufficient for the neck size of the two nanoparticles being 

stable [14]. To avoid translation and rotation of the system, the centers of mass and angular 

momentum for the whole system are eliminated. During the simulation, the position of center of 

mass for each nanoparticle as well as the positions and velocities of all atoms are recorded at 

every 0.1 ps. The sintering processes of copper nanoparticles at temperatures of 150°C, 200°C, 

250°C, 300°C and 350°C are simulated. Additional computational details refer to Ref. [16].

Fig. 1. System of two copper nanoparticles
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Once the computation of simulation is completed, the configuration changes of the two 

nanoparticles can then be extracted from the atom trajectory. Diameter of each particle is 

computed by the average of the upper and lower bounds of the particle. The center-to-center 

distance between the two nanoparticles is obtained by the positions of center of mass of the two 

nanoparticles. To obtain the neck size from MD computation, a dynamically allocated block 

region with a 0.2 nm thickness is defined between two nanoparticles [16]. Neck size is calculated 

from atoms upper and lower bounds in this region. The neck size computed by this method is 

consistent with the analytical results based on lattice diffusion [16]. 

3. Results and discussion

3.1. Neck Growth

MD simulations of the two-particle sintering model are performed in isothermal conditions of 

150°C, 200°C, 250°C, 300°C and 350°C. Configuration evolution of the two-particle system at 

200°C is shown in Fig. 2. The local crystal structures are mapped on each atom according to its 

coordination number. The two particles are cut from their center plane to display interior atoms. 

The particle surfaces are amorphous whereas the interiors remain FCC crystal structure of bulk 

copper. The initial state of the two particles are shown in Fig. 2(a), in which the two particles are 

separated by initial distance of 0.2 nm. Then, the two particles move towards each other. At 3 ps, 

the initial neck formed and the gap between two particles is filled up, as shown in Fig. 2(b). At 

11 ps, the neck grows rapidly and some dislocations are generated due to the formation of a 

plane of staking faults between the particles, as shown in Fig. 2(c). The configuration of the two 

particles are similar in Fig. 2(d) and (e), indicating that the neck growth becomes slower and the 

dislocations growth has stopped. The configuration evolution is consistent with previous MD 

model [16].
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Fig. 2. Configuration evolution of the two-particle system at 200°C: (a) 0 ps, (b) 3 ps, (c) 11 ps, 

(d) 51 ps, and (e) 80 ps.

The neck growth during the sintering process at different temperatures is plotted in Fig. 3. A 

rapid neck growth region can be observed in the time range of 4 ps to 8 ps. The rapid sintering 

occurs by a dislocation mechanism due to the high shear stresses that are developed in small 

particle contacts which exceed the theoretical strength of the particles [14]. After the rapid neck 

growth region, the sintering can be considered as intermediate stage as neck growth becomes 

slower. Regarding temperature, the neck sizes at 250°C and 300°C are similar and larger than the 

neck sizes at other temperatures. Based on the trend, the final neck size will reach a maximum 

value at a temperature between 250°C and 300°C. 
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Fig. 3. Simulated neck growth with respect to sintering time at varied temperatures

3.2. Resistivity evolution

By substituting the neck size into Reimann-Weber formula, the normalized resistivity evolution 

during the sintering process can be obtained, as shown in Fig. 4. The resistivity at the initial stage 

has a rapid dropping region due to the rapid neck growth. As the sintering process enters the 

intermediate stage, the change rate of resistivity becomes low, as the neck size tends to be stable. 

The normalized resistivity at 250°C and 300°C are smaller than the other three temperatures, 

which follows the similar trends as the neck size.
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Fig. 4. Simulated normalized resistivity with respect to time at varied temperatures

To compare the simulated results to the experimental results, the resistivity from experiment [7] 

is normalized by the resistivity of bulk copper (1.678 μΩ·cm) [30], as shown in Fig. 5. It can be 

observed that the normalized resistivity follows similar trend with respect to both temperatures in 

simulations and light intensity in experiments. The largely increased resistivity of 70 J/cm2 light 

intensity is due to the formation of pores caused by the bubbling arose in high light intensity [7], 

which cannot be modeled by two-particle system. 
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Fig. 5. Normalized resistivity with respect to temperature and light intensity, with upper abscissa 

being the light intensity in experiment, and lower abscissa being the temperatures in simulation 

4. Conclusions

In this study, the sintering process of copper nanoparticles at low temperatures is simulated by

MD models. The major findings are summarized as follows:

1. Neck growth during the sintering process is extracted from the MD simulations. At initial

stage, the neck size increases rapidly in several picoseconds. After that, the sintering process

enters an intermediate stage and change of neck size becomes much smaller.

2. Resistivity evolutions during the sintering process are computed by substituting the neck size

from MD simulations into the Reimann-Weber formula. The resistivity decreases rapidly in

the initial stage of sintering, due to the rapid neck growth at this stage

3. The correlation of the simulated resistivity with respect to temperature is similar to that of the

experimentally measured resistivity Overall, MD models are effective tool for designers to

simulate the sintering process of IPL technique.
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