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Abstract 

This module can manipulate audio signals, in real time, by modulating them in the time domain. 

This device is nicknamed “The Time Machine”. This device is meant for DJs and musicians who 

wish to be able to change characteristics about the music that they are playing during a live 

performance. This device allows the user to be able to change the playback speed of a song, 

such as slowing the song down and speeding it up. It allows the user to reverse the song. This 

device allows the user to perform momentary loops at various lengths for a stutter effect. This 

device can even change up the rhythm of a song by rearranging parts within a sequence. This 

device also lets the user perform vinyl effects, like what DJ’s do. This device lets the user be 

able to remix music on the fly and in real time.  

The device has a touch screen user interface and a set of 12 hardware push buttons. The user is 

able program each of the buttons using a touch screen interface. The user selects which button 

they want to program with the touch screen interface. They can then select from a list of 25 

different delay-based audio effects to program to the button. This gives the user full 

customizability of the layout on the control board. The user can load all 12 buttons with 

different effects in any arrangement they choose. The user plugs their audio device into the 

input of the module with a 3.5 mm jack. They then plug in a speaker or headphones. There is a 

Tap Tempo on the GUI used to synchronize the effects to the tempo of any song. After the song 

is synchronized, the user can then perform combinations of delay-based audio effects to remix 

any song.  

The origins of this device came from a project for the Multi-Disciplinary Undergraduate 

Research Institution at IUPUI. I led a team of 3 other researchers where we were tasked with 

developing a digital audio effects module. During the research, we evaluated several different 

types of digital signal processors and devices to house our touch screen graphical user interface 

which was used in this project. I expanded on this project to add more functionality and 

customizability to the device.  

The inspiration for this project came from a VST (Virtual Studio Technology) plugin called Gross 

Beat, from Image Line.  
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Introduction 

Problem Statement  

DJs and musicians are becoming more and more reliant on technology in modern day 

musical performances. Artists need a device that will allow them to be able to manipulate audio 

signals in new and creative ways. Most people turn to hardware controllers that are required to 

be used in combination with software on a laptop. The problem with this is that personal 

computers can be unreliable. Laptop computers have so many other programs running in the 

background that can hinder the performance of the application. Personal computers are also 

very prone to bugs and viruses that can completely disrupt a musical performance. Sometimes 

the only thing a person can do when this happens is to try to restart their computer. When they 

do this, computers can take up to 5 to 10 minutes in order to fully boot up again. When you 

have a whole crowd of people wondering where the music went, 5 minutes is now an eternity. 

They need something that is reliable and easy to use that can allow them to have powerful 

creative control over their music. I have developed a standalone device that can be used by DJs 

and musicians who want to be able manipulate their music without the need for a laptop and 

allows the user to have powerful creative control by modulating audio signals in the time-

domain.  

System Overview 

This device allows the user to be able to change the playback speed of a song, such as 

slowing the song down and speeding it up. It allows the user to reverse the song. This device 

allows the user to perform momentary loops at various lengths for a stutter effect. This device 

can change up the rhythm of a song by rearranging parts within a sequence. This device also 

lets the user perform vinyl effects, like what DJ’s do on turntables.  

The device has a touch screen user interface and a set of 12 hardware push buttons. The 

user is able program each of the buttons using a touch screen interface. The user selects which 

button they want to program with the touch screen interface. They can then select from a list 

of 25 different delay-based audio effects to program to the button. This gives the user full 

customizability of the layout on the control board. The user can load all 12 buttons with 

different effects in any arrangement they choose. The user plugs their audio device into the 

input of the module with a 3.5 mm jack. They then plug in a speaker or headphones. There is a 

Tap Tempo on the GUI used to synchronize the effects to the tempo of any song. After the song 

is synchronized, the user can then perform combinations of delay-based audio effects to remix 

any song.  
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System-Wide Design Decisions 

The hardware selection process was done with the team that I worked with during the 

MURI project. This effect module utilizes a rolling buffer that is allocated in RAM memory. Most 

delay-based audio effects need to have some form of RAM into order to access recorded 

signals. It was important in hardware selection process that our DSP chip would be able to be 

supplied with enough RAM to give us the desired delay effect. In order to get audio signal 

information into the buffer, an audio codec was needed. The audio codec converts analog 

signals from the music source into digital signals and digital signals back to analog signals. The 

audio codec also gives us the platform for our 3.5mm audio in and out jacks. Our audio codec 

needed to have an AD/DA conversion resolution of at least 16-bits to give us the desired audio 

quality.  Once we figured out our desired specifications, we selected several DSP evaluation kits 

from various manufacturers. We chose kits from Texas Instruments, Analog Devices, and Cirrus 

Logic. We tried to develop on each of the boards. We had trouble trying to find helpful 

information on how to develop on most of the boards. We also selected several micro-

controller boards in order to develop our user interface on. We chose to evaluate the Arduino 

Mega, Freescale FRDM-KL125Z, and a Raspberry Pi 3 Model B. We needed a micro-controller 

that would allow us to establish serial connection to our DSP chip in order to control the DSP 

program and to provide us with the environment to make out touch screen GUI. We listed off 

all of critical specifications in order to make a decision on hardware by utilizing a decision 

matrix for both the DSP and the micro-controller.   

 

Digital Signal Processor Selection Matrix 
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Micro-Controller Selection Matrix 

The DSP chip that we went with is the TI OMAP-L138. This chip is an ARM9 processor + 

C6748 DSP. The ARM allows for more flexible control of the C6748 DSP, such as using a Linux 

operating system. We developed on the OMAP-L138 Low Cost Development Kit (LCDK).  The 

LCDK comes equipped with all of the necessary hard ware connectors that we need for our 

device, such as 3.5mm audio jacks, USB UART connectors, and serial connectors. The LCDK 

comes equipped with a 128 MB of SDRAM, which allows us to have quite a large buffer size. We 

were able to create a max buffer size of 16,777,216 samples, which gave us a delay of 350 

seconds. The LCDK is equipped with an audio codec that has a variable AD/DA conversion 

resolution of 8-32 bits. Code was developed in C programming language on Texas Instrument’s 

Code Composer IDE.  

The micro-controller that we went with to use as our user interface is the Raspberry Pi 3 

Model B. A touch screen shield for the Pi is used for the user interface. The GUI was developed 

on the Raspberry Pi using Python programming. The Raspberry pi is equipped with HDMI ports, 

USB Hosts ports, serial connectors, and GPIO. We used the USB host port on the Raspberry Pi to 

communicate and send commands to the OMAP-L138 LCDK.  We originally developed the GUI 

on the Arduino Mega; however, we were not able to successfully establish a serial connection 

to the OMAP. We also learned that the Arduino would not be able to process the commands to 

the DSP very fast. It would not have been ideal for our audio application as the system needs to 

be fast responding for good operation. The Raspberry Pi has a processor speed of 1.2 GHz 

compared to the Arduino Mega, which has a 16 MHz processing speed. In my design, I decided 

to use an Arduino Nano to handle the hardware push button user interface.  
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SYSTEM ARCHITECTURAL DESIGN 

SYSTEM COMPONENTS 

 

 

A Raspberry Pi 3 served as a central hub for the devices to communicate as it has 4 

available USB Host drives. The Raspberry Pi 3, Arduino Nano, and the TI OMAP-L138 LCDK 

communicate over serial with each other using UART USB protocol. An Uctronics 3.5 Inch TFT 

Touch Screen shield was placed on top of the Raspberry Pi 3 and used for the touch screen GUI, 

connected via GPIO and HDMI. The Arduino Nano takes care of all the GPIO and logic for the 

physical buttons. The Arduino Nano sends data over to the Raspberry PI 3 when a push-button 

is pressed, over USB. Once the Raspberry Pi 3 reads the data from Arduino, it sends commands 

to the TI OMAP-L138 LCDK over USB. The TI OMAP-L138 LCDK contains a Digital Signal 

Processor, SDRAM, and an audio codec all in one package. The OMAP-L138 LCDK is powered by 

a 5V 3A power supply. The OMAP-L138 LCDK powers the Raspberry Pi 3 via USB host connect 

from the LCDK to the Raspberry Pi 3 with a USB micro.  
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CONCEPT OF EXECUTION 

 

The functional architecture is shown above. The user uses the touch screen to program 

the 12 hardware push buttons. There are 12 buttons on the touch screen GUI that correspond 

with the 12 hardware push buttons in order. The user selects a button they want to program on 

the touch screen, where it will then prompt the user to select an effect. The user selects an 

effect, such as ½ speed, reverse, 2X speed, and many others. The selected effect is then 

programmed to the selected push-button.  

The touch screen GUI code was created using object-oriented programming techniques, 

written in Python on the Raspberry Pi 3. This program reads incoming data from the Arduino 

Nano, and relays data to the OMAP-L138. The Arduino has 12 buttons attached to it, as well as 

pull up resistors for each of the buttons. The Arduino is programmed to send over different 

ASCII characters via serial. Each pushbutton sends a different ASCII character when pressed. 

The Raspberry Pi program has a set of 12 different functions that get called based on the ASCII 

characters sent from the Arduino. Each function represents a pushbutton. These functions 

contain a unique global variable that can be changed at any time that correspond with a 

pushbutton. By default, the variables are empty strings. These values are changed when the 

user selects a button they want to program and makes an effect selection. When the user 

makes an effect selection on the touch screen GUI, it changes the value of the global variable 

inside a button function to a particular ASCII character. Each effect corresponds with a unique 

ASCII character, such as “#”, “$”, or letters. When a user presses a button, the ASCII character 

programmed to a global variable are sent over to the OMAP-l138. The OMAP will then read this 

character which activates the function within the DSP module to carry out the process that 

creates the desired audio effect.  
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The OMAP-L138 interprets the ASCII characters as a decimal value. The program checks 

to see if a particular decimal value is sent over. When a value that corresponds with a particular 

effect is sent, it carries out the function that particular effect. The functions on the OMAP tell 

the system to play back data stored in RAM memory, much like how delay effects work, but at 

different locations as time moves forward. By using difference equations, the system can 

perform these effects by modulating the numerical value of the playback index used to access 

the data in the rolling buffer in RAM sequentially. The Tap Tempo is used to change the size of 

the rolling buffer and to change the variable “oneBeat”. The Tap Tempo function is essentially a 

sample counter that starts and stops a counter after the Tap Tempo button is pressed on the 

touch screen GUI. This allows the user to synchronize the module with any song. The Tempo 

Shift Up and Down buttons simply shifts the sample size in “oneBeat” up or down for added 

precision. Unit Step functions are used to perform momentary loops and to switch up the beat. 

Ramp functions were used to speed up, slow down, and reverse the song. Exponential functions 

are used to create vinyl effects. Examples of the C code are shown on the following pages.  

 

 
Step Function 

 

Ramp Function 
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Exponential Function 

The functions shown are used in a global variable called “goBack”, which is used to 

change the value of the index used to access the rolling buffer in SDRAM sequentially. The 

different effects are created from different variations of this variable. Example of this code is 

shown below.  
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The variable “goBack” changes over time using these functions. The variable is then used in the 

heart of the program, that plays back the data stored in the rolling buffer. The code is shown 

below  

 

The variable called “fluxCapacitor” is the index used to access the rolling buffer, for a good 

reason. It drives the “Time Travel”. The data stored in the buffer is then sent to the audio codec 

to be processed into an analog signal.  
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INTERFACE DESIGN 

 

Figure 1: Hardware Interface Design  

 

Figure 2: Actual Interface  
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Figure 3: Main Menu 

 

Figure 4: Effect Selection Menu for MOD 1 

 The Raspberry PI 3 houses the touch screen, receives information from the Arduino 

Nano, and sends data to the TI OMAP-L138 LCDK. There is a set of 12 physical hardware 

buttons, as shown in Figure 2. On the touch screen there are 12 touch buttons, labeled Mod 1, 

Mod 2, etc. Each of these “Mods” correspond with a physical hardware button. There user 

selects which button they want to program by clicking the corresponding mod. When they do 
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this, it brings them to the effect selection menu, shown in Figure 4. The user then selects an 

effect. When they select an effect, the button gets programmed to carry out that function. This 

also brings them back to the main menu. I have replaced the tempo knob idea with a simple 

tempo shift up or tempo shift down. This is way more effective and quicker than using a tempo 

know. This helps the user get synchronized a lot quicker.  

USER SETUP AND OPERATION 

There are several steps in order to operate this machine as of right now. 

• Plug 5 Volt 3A power supply into the TI OMAP-L138 LCDK 

• Plug USB Type B Micro from the OMAP LCDK HOST USB port to the Raspberry Pi 3 Power 

• Plug USB Micro from bottom left HOST USB on Raspberry Pi to Arduino Nano  

• Plug USB Micro from Bottom Right HOST USB on Raspberry PI to OMAP LCDK  

• Plug in music source with AUX cord to input  

• Plug in speaker to output  

• Play Song 

• Synchronize Time Machine to BPM of the song using Tap Tempo  

• Select button to program on the touch screen GUI  

• Select Effect  

• Push and hold down push button to activate effect  

Conclusion/Recommendations 

This report has talked about the scope of my senior project and what I have achieved 

during the project. This paper talked about the problem statement and what my plan was to fix 

this problem. This paper talked about the functionality of the Time Machine. This paper talked 

about the System Wide Design Decisions, the System Architectural Design, as well as the 

Interface Design of my project. This paper talked about set up procedure of the project.  

I think that this project could be improved greatly. I needed to figure flashed on the 

Raspberry Pi and on the OMAP-L138 LCDK that would automatically load the program as soon 

as the device was turned on. In its current state, I have to debug the program from my laptop 

onto OMAP every time I want to use it. However, I can unplug the debugger after it has been 

loaded on, making it a standalone device, without a laptop. Another point of improvement 

would be to change the labels on the touch screen GUI button modules to let the user know 

which effects are loaded on each of the push buttons.  

I originally had much bigger ideas for this project. The hardware used for this project has 

a lot of potential. The amount of RAM on the OMAP LCDK could store a lot of sound. I wanted 

to add a sound sampler and sequencer capability to this device. I wanted the user to be able to 

make songs using sequenced samples using the push buttons, as well as have the Time Machine 

Functionality. There is a lot of room for exploration and research with the hardware selected.    
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Appendix 

Gross Beat Functionality  

Image Lines Gross Beat is the inspiration behind this device. I incorporated ideas from 

Gross Beat into the device, that made the Time Machine a powerful real time standalone 

device. Gross Beat is a delay-based audio effect virtual studio technology (VST) plugin that 

allows the user to temporarily change the rhythm, pitch, and playback speed of a song in real 

time by manipulating the signal within the time domain. It also lets the user add on custom 

volume gates as well.  The ideas behind Gross Beat can be complicated. In this section, I am 

going to explain how Gross Beat works and how I incorporated the time manipulation idea of 

Gross Beat into the Time Machine. The VST GUI is shown below.  

 
Figure 1 

 

 Gross beat works within a 2-bar rolling buffer. The x-axis represents time (going from 

left to right). The y-axis represents how much time goes backwards (going from top to bottom). 

The maximum length of the x-axis is 1 bar. There are 4 beats in each bar. The green vertical line 

that is parallel to the y-axis is the playback locator. The playback locator will scroll from left to 

right and will loop around to the beginning when it reaches the end. The playback locator 

essentially represents “Real-Time”. The line that looks like green stairs is the mapping 

envelope. The playback locator will read the location of the mapping envelope in order to 

determine how far back in the 2-bar rolling buffer the track will go. The image shown above is a 

simple 1 beat repeat. It repeats the first beat of song data that goes into Gross Beat for 4 beats, 

as you can see graphically. The stairs are riding on a dark sloped line in Figure 1. This is called 

the “safety line”.  Placing the mapping envelope at any point on the safety line will access the 

location in the buffer where the function first started. This is the start of the 1 bar. The stairs 
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cause repeats, because it’s going from -1, to -2, to -3. This line ends at -4 beats on the y-axis, 

the same length as the x-axis. The image shown in is Gross Beat performing a 2x speed increase. 

This makes the song seem like it’s going 2x fast. This is working by starting at 1 bar behind what 

is played in real time and essentially “playing catch up” to music played in real time. However, 

this effect generates a 1/2 bar delay in 2x speed because the program is accessing information 

previously stored in the buffer and can only go fast until it hits the safety line.  

 
Figure 2 

  
 

Figure 3 
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Figure 4  

 

 We can change the pitch of the incoming signal with Gross Beat as well. It is just like the 

2x speed but at smaller intervals. Gross Beat can switch up the rhythm and beat of a song by 

following an envelope like the one shown in Figure 3. Gross Beat has mapping envelopes in 

order to control the volume as well, as shown in Figure 4. This can give the user the ability to 

remove parts of a song or add volume-based effects such as side chaining. In my device, the 

user inputs BPM into the effect. This will judge how fast the position indicator will scroll from 

left to right as well as determine how large the buffer will be. This will sync the functionality to 

the speed of the song that is being played. The only downside of this is that the user will have 

to know the BPM at which the song is played. A tap tempo will be used in order to give the user 

an idea as to what BPM the song is at. In a real-time environment, I can make this a one shot or 

a press and hold effect when the user chooses an envelope. The user will press the desired 

effect to trigger the playback locator (starting from the left) for 4 beats only one time, instead 

of looping back. The instant the user presses the button; they can call upon data from up to 2 

bars.  As time goes on, this information gets replaced. Think of the 2-bar rolling buffer as always 

following behind the playback locator as it goes from left to right, with data continuously 

getting added and erased. If this function is activated instantaneously, the user can call on the 

buffer at any point in time.  

 The envelopes for both the Time and Volume are essentially difference functions over a 

period. I created difference functions in order to create each of these timing envelopes and 

then converted the step functions into C code. With the functions I was be able to create the 

steps, slopes, and curves that are shown in the effect. For Time, these functions are used to 
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access the different locations inside the memory buffer to play back the audio data stored there 

for a 4 bar period. The user uses buttons in order to select the mapping envelope of their 

choosing. They are essentially playing time. 


