
INTEGRATE MODEL AND INSTANCE BASED MACHINE LEARNING FOR

NETWORK INTRUSION DETECTION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Lena Ara

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

December 2018

Purdue University

Indianapolis, Indiana

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/162543582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Brian King, Co-Chair

Electrical and Computer Engineering

Dr. Xiao Luo, Co-Chair

Computer Information Technology

Dr. Mohamed El-Sharkawy

Electrical and Computer Engineering

Approved by:

Dr. Brian King

Head of the Graduate Program

iii

This research work is dedicated to my parents.

iv

ACKNOWLEDGMENTS

This research work is dedicated to my father Dr. D. M. Afzal Khan, mother

Mrs. Tabassum Ara for their unbeatable love and support throughout my Masters in

the USA. I am thankful to my sisters for their affection and motivation. Heartfelt

thanks to my advisor Dr. Xiao Luo for motivating to learn and explore in Intru-

sion Detection System using Machine Learning. Her guidance has played a crucial

role throughout my journey at IUPUI. I would like to thank my committee members

Dr. Brian King and Dr. Mohamed El Sharkawy for their valuable feedback. I am

thankful to Sherrie Tucker for her timely help during deadlines and with thesis docu-

mentation. I thank all my friends for being patient and helpful during the final stage

of submission. A special thanks to my Pinnacle Solutions team for their support and

understanding.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

SYMBOLS . xi

ABBREVIATIONS . xii

ABSTRACT . xiii

1 INTRODUCTION . 1

2 BACKGROUND . 3

2.1 Intrusion Detection System . 3

2.1.1 Host Based vs Network Based 4

2.2 Machine Learning for Network Traffic Analysis 5

2.2.1 Supervised Learning . 5

2.2.2 Unsupervised Learning . 6

2.3 Model Based and Instance Based . 6

3 SYSTEM FRAMEWORK . 8

3.1 Overview . 8

3.2 System Framework . 8

4 DATA SOURCES . 13

5 HOST CLUSTERING . 18

5.1 Literature Review . 18

5.2 Algorithms . 19

5.2.1 Data Fusion Algorithm . 19

5.2.2 Maximal Cliques Algorithm . 22

5.3 Merging the Clusters into One . 23

5.4 Merged Model and Instance Based Approach 24

vi

Page

5.5 Experimental Results . 25

5.5.1 Dataset I . 25

5.5.2 Dataset II . 29

5.5.3 Dataset III . 30

6 NETWORK INTRUSION DETECTION . 31

6.1 Traditional Methods for Intrusion Detection 31

6.2 Literature Review of Model Merging 33

6.2.1 Model Merging Based on Data Mining Approaches 33

6.2.2 Ensemble Learning . 34

6.3 Proposed Approach for Model Merging 35

6.3.1 Feature Selection . 35

6.3.2 Decision Region Analysis . 37

6.4 Merged Model with Instance Based Approach 38

6.5 Results . 40

6.5.1 Dataset I . 40

6.5.2 Dataset II . 46

6.5.3 Dataset III . 50

6.5.4 Results Analysis . 53

7 CONCLUSION AND FUTURE WORK . 59

7.1 Conclusion . 59

7.2 Future Work . 60

7.2.1 More Robust Method . 60

7.2.2 Integrating the Models of Hosts in Cluster 60

7.2.3 Dynamic Approach Towards Intrusion Detection 61

REFERENCES . 62

A APPENDIX . 67

vii

LIST OF TABLES

Table Page

4.1 Description of Botnets . 14

4.2 Selected Network Flow Features of CTU-13 Data 15

5.1 Dataset I Cross-testing F1-measure of Decision Tree 25

5.2 Dataset I Cross-testing F1-measure of k-Nearest Neighbors 26

5.3 Dataset I Cross-testing F1-measure of Support Vector Machines 27

6.1 Random Forest Model of Dataset I Tested on Itself 32

6.2 Random Forest Model of Dataset I Tested on each Host of Dataset II . . . 32

6.3 Random Forest Model of Dataset I Tested on each Host of Dataset III . . 33

6.4 Detection Rate when Maximal Clusters Tested on each Other 40

6.5 False Positive Rate Maximal Clusters Tested on each Other 40

6.6 Model of Dataset I Tested on Itself . 42

6.7 Model of Dataset I Tested on Dataset II 42

6.8 Model of Dataset I Tested on Dataset III 43

6.9 Dataset II - DR when Maximal Clusters Tested on each Other 46

6.10 Dataset II - FPR when Maximal Clusters Tested on each Other 46

6.11 Model of Dataset II Tested on Itself . 47

6.12 Model of Dataset II Tested on Dataset I 48

6.13 Model of Dataset II Tested on Dataset III 49

6.14 Dataset III - DR when Maximal Clusters Tested on each Other 50

6.15 Dataset III - FPR when Maximal Clusters Tested on each Other 50

6.16 Model of Dataset III Tested on Itself . 50

6.17 Model of Dataset III Tested on Dataset I 51

6.18 Model of Dataset III Tested on Dataset II 52

6.19 Botnets Included in Datasets . 57

viii

Table Page

A.1 Instances Count for Dataset I . 67

A.2 Instances Count for Dataset II . 67

A.3 Instances Count for Dataset III . 67

A.4 Dataset II Cross-testing F1-Measure of Decision Tree 68

A.5 Dataset II Cross-testing F1-Measure of KNN 69

A.6 Dataset II Cross-testing F1-Measure of SVM 70

A.7 Dataset III Cross-testing F1-Measure of Decision Trees 71

A.8 Dataset III Cross-testing F1-Measure of KNN 72

A.9 Dataset III Cross-testing F1-Measure of SVM 73

A.10 Random Forest Model of Dataset II Tested on Itself 73

A.11 Random Forest Model of Dataset II Tested on Dataset I 74

A.12 Random Forest Model of Dataset II Tested on Dataset III 74

A.13 Random Forest Model of Dataset III Tested on Itself 74

A.14 Random Forest Model of Dataset III Tested on Dataset I 74

A.15 Random Forest Model of Dataset III Tested on Dataset II 74

ix

LIST OF FIGURES

Figure Page

2.1 Machine Learning for Host Based Intrusion Detection 5

3.1 Overview of Our Model . 12

3.2 Overview of a Traditional Model . 12

4.1 Characteristics of Botnet Scenarios . 13

4.2 Data Distribution of Dataset I . 16

4.3 Data Distribution of Dataset II . 16

4.4 Data Distribution of Dataset III with and without Host A 17

4.5 Histogram Plots of One of the Hosts of Dataset I 17

5.1 Merged Cluster Illustration . 23

5.2 Model-Instance Based Approach . 24

5.3 Host Clustering for Dataset I . 28

5.4 Host Clustering for Dataset II . 29

5.5 Host Clustering for Dataset III . 30

6.1 Merging of Decision Boxes Starting from Upper Left [52] 34

6.2 Merged Cluster for Dataset I . 41

6.3 Macro Average Comparison for Dataset I with NB 44

6.4 Macro Average Comparison for Dataset I with LR 44

6.5 Macro Average Comparison for Dataset I with RF 45

6.6 Merged Cluster for Dataset II . 47

6.7 Macro Average Comparison for Dataset II with RF 49

6.8 Merged Cluster for Dataset III . 51

6.9 Macro Average Comparison for Dataset III with RF 52

6.10 Various Inter-Dataset Models Tested on Host B of Dataset I 53

6.11 Scatter Plot of Host B Dataset I . 54

x

Figure Page

6.12 Various Inter-Dataset Models Tested on Host N of Dataset II 55

6.13 Various Inter-Dataset Models Tested on Host A of Dataset III 56

6.14 Scatter Plot of Host N Dataset II . 57

6.15 Scatter Plot of Host A Dataset III . 58

6.16 Detection Rate for Host C and D of Dataset III 58

A.1 Macro Average Comparison for Dataset II with NB 68

A.2 Macro Average Comparison for Dataset II with LR 69

A.3 Macro Average Comparison for Dataset III with NB 70

A.4 Macro Average Comparison for Dataset III with LR 75

xi

SYMBOLS

χ Chi

ζ Regularization factor

P Probability

E Expectation

||.|| Vector norm

α Threshold

xii

ABBREVIATIONS

IDS Intrusion Detection System

SVM Support Vector Machines

KNN K Nearest Neighbors

DR Detection Rate

FPR False Positive Rate

TPR True Positive Rate

RF Random Forests

NB Naive Bayes

LR Logistic Regression

xiii

ABSTRACT

Ara, Lena. M.S.E.C.E, Purdue University, December 2018. Integrate Model and In-
stance Based Machine Learning for Network Intrusion Detection. Major Professors:
Xiao Luo and Brian King.

In computer networks, the convenient internet access facilitates internet services,

but at the same time also augments the spread of malicious software which could

represent an attack or unauthorized access. Thereby, making the intrusion detection

an important area to explore for detecting these unwanted activities. This thesis con-

centrates on combining the Model and Instance Based Machine Learning for detecting

intrusions through a series of algorithms starting from clustering the similar hosts.

Similar hosts have been found based on the supervised machine learning techniques

like Support Vector Machines, Decision Trees and K Nearest Neighbors using our pro-

posed Data Fusion algorithm. Maximal cliques of Graph Theory has been explored to

find the clusters. A recursive way is proposed to merge the decision areas of best fea-

tures. The idea is to implement a combination of model and instance based machine

learning and analyze how it performs as compared to a conventional machine learning

algorithm like Random Forest for intrusion detection. The system has been evalu-

ated on three datasets by CTU-13 [1]. The results show that our proposed method

gives better detection rate as compared to traditional methods which might overfit

the data. The research work done in model merging, instance based learning, random

forests, data mining and ensemble learning with regards to intrusion detection have

been studied and taken as reference.

1

1. INTRODUCTION

The convenient and rapid Internet access has been facilitating many Internet services,

but also continues to accelerate the spreading of malicious software. This makes

the detection of malicious activities difficult. Computer networks have been playing

important roles in modern society, however, their security is always at risk. We need

efficient ways to protect the system. Intrusion detection [2] is a technology to protect

the network from malicious activities.

The detection on network traffic is critical in preventing intrusions. Since intrusion

detection is for network data with large traffic size, machine learning algorithms seem

to be a good approach for handling this problem.

Utilizing our proposed data fusion along with clustering algorithms, this research

work explores an approach to identify intrusions on network following the identifica-

tion of maximal clusters of hosts. We have found clusters of hosts that we believe has

given us a more robust model without retraining. The already learned model of hosts

that are in a cluster are merged based on the decision regions obtained from their

decision making trees, thus reducing the retraining cost. The decision regions of the

trees of the hosts in the cluster have been merged to obtain a model. Then according

to our proposed algorithm intrusion detection is done using either the model or the

instance based knn approach.

Machine learning algorithms [3] [4] have been investigated for intrusion detection

in the past years. Many researches are being attempted to apply machine learning

techniques to this area of cybersecurity [5]. Research work by [5] implemented IDS

using ML at application layer where they explain that it is challenging to stay fixed

with the features. They analyzed the payload and the type of code it contains like

Javascript and SQL. At host level, one or more machine learning algorithms can

be deployed on the hosts of a network for identifying intrusions. Generating robust

2

learning models from the training data pose to be a critical component for using

supervised machine learning algorithms for intrusion detection. The training needs

to be efficient that relies on the huge amount of network traffic.

Definitely, there are a lot of challenges involved here. These challenges include

the generation of robust learning models, systematic training methods on large size

data and the periodic refreshing of detecting models for showing up the latest net-

work traffic behavior and attack patterns. This research work focuses on intrusion

detection for similar and non similar hosts on a network and new incoming data. For

new incoming traffic, if the network flows are similar with regards to the intrusion

detection, it might imply that these are under the attack by a hacker who is using

the same hacking mechanism to attack different machines in a network. We have

proposed a technique which includes model and instance based approach.

Furthermore, if the network flows are similar enough, these host then can be

clustered into the same group. Finding out the similarity among network flows by

comparing the flows of each host one by one to those of another host is not a vi-

able solution. Hence, we proposed to employ machine learning for summarizing the

network behaviors from the generated learning models. The hypothesis is that if the

generated learning model based on the network flows of one host can be used to detect

the intrusion flows of the other host, these two hosts should be in the same cluster.

Going deeper with the research, these clusters can be merged into a bigger cluster

based on the detection rate of the attack traffic. The ways to merge the decision tree

models of hosts in such clusters have been studied. Merging the decision tree regions

of similar hosts has been found to be the best approach for our work. We have then

compared the results obtained using the proposed method with the traditional way

of using machine learning methods. By the traditional machine learning methods

we mean having a model achieved by training on the training set and testing on the

testing set. Our proposed method is different from the traditional way where we have

tried to eliminate the retraining process for the new incoming traffic and thus be more

robust.

3

2. BACKGROUND

2.1 Intrusion Detection System

An intrusion detection system (IDS) is a system that issues alerts when malicious

or abnormal activities are detected on a network that is being monitored. Intrusion

detection primarily detects and reports malicious activity or anomalous traffic, there

are IDS that are capable of taking actions like blocking traffic sent from suspicious

IP addresses against malicious behavior.

Significant amount of work has been done in past with respect to intrusion de-

tection. As mentioned in paper [6] two general approaches are popular for intrusion

detection: Misuse detection, which involves patterns of known attacks to identify

intrusions; and anomaly detection which aims to find the outliers from the normal

patterns. Anomaly based IDS monitors network traffic and compares it against an es-

tablished baseline. This baseline identifies normal and attack traffic. Intuitively, this

baseline identifies the sort of bandwidth, protocols and ports and devices connected

to are normal for that network and alert the administrator or user when traffic is de-

tected which is aberrant, or significantly different than the baseline. In the research

work described in [7] misuse detection and anomaly detection have been combined to

detect unknown intrusion and achieve better detection and false positive rates. They

extracted class association rules from training database and then classified the data

as normal, known intrusion or unknown intrusion through the analyses of matching

degree of data with the rules.

Machine learning techniques have been explored for detecting intrusions. Accord-

ing to paper [8] signature based approach has high detection rate but is not efficient

for novel attacks. Anomaly based methods can detect but give high false positive

rate. Using machine learning, a detection model is developed at the training phase.

4

In this research, a comparative study of SVM, Naive Bayes, J.48 and decision table

for anomaly detection on KDD99 dataset [9] has been presented. They found different

results for each class when tested with different algorithms and out of the five algo-

rithms no single algorithm gave high TPR for the classes. But they concluded that

decision tree based technique J.48 has high overall accuracy with low false positive

rate. Decision tree yielded a good result with redundant features. Their future work

mentions the use of feature selection with the J.48 for better results. The research

work mentioned in the paper [10] has classified attack types for intrusion detection

using machine learning. The performance has been analyzed using Random Forest

algorithm on Kyoti 2006+ dataset [11]. Going beyond the supervised techniques for

intrusion detection, outlier detection using unsupervised method in cloud comput-

ing environment has been explored by [12] [13]. Unsupervised techniques appear to

be good approach because they do not require any training data set or any kind of

previous knowledge for detecting the possible novel attacks.

2.1.1 Host Based vs Network Based

Based on the location in a network, IDS can be categorized into two groups: Host

Based and Network Based.

Host based IDS are at the host level as the name suggests. The traffic originating

and coming to a particular host are monitored. Apart from monitoring incoming and

outgoing traffic, a host based IDS can also analyze the file system of a host, users

login activities, running processes, data integrity etc. As described in Figure 2.1, at

host level intrusion detection, the hosts on a network can deploy one or more machine

learning algorithms for intrusion detection.

Network based IDS are the types of IDS which are strategically positioned in a

network for detecting any attack on the hosts of that network. IDS is placed at the

entry and exit point of data from the network to the outside world, for capturing

all the data passing through the network. IDS can also be strategically positioned,

5

Fig. 2.1. Machine Learning for Host Based Intrusion Detection

depending on the level of security needed in our network. The speed of traffic anal-

ysis is important, since the network based IDS need to monitor all the data passing

through the network with dropping as much little traffic as possible.

2.2 Machine Learning for Network Traffic Analysis

Machine Learning algorithms are efficient way of tackling problems with huge

data. The work done by [14] have used various ML algorithms to compare and find

the algorithm which gives the best accuracy. Their work shows that decision tree

C4.5 classifier gives the best accuracy among Support Vector Machines, Decision tree

C4.5, Bayesian networks and Naive Bayes. Feature scaling before implementing any

algorithm has also been done to select the best features that give most accurate

classification.

2.2.1 Supervised Learning

In supervised learning an algorithm is employed to learn a mapping function

from the input variables (X) to the output variable (Y). The training dataset can

be thought of as a teacher supervising the learning process, so it is called supervised

6

learning. The learning continues and stops when the algorithm achieves an acceptable

level of performance after the algorithm iteratively makes predictions on the training

data. Supervised learning includes regression and classification. Supervised machine

learning algorithms like Linear Regression for regression problems, Random Forest

for classification and regression problems, Support Vector Machines for classification

problems are well known algorithms.

2.2.2 Unsupervised Learning

Ensuring the security of large and complex networks appears to be a challenging

task. Unsupervised ML techniques have also been explored in past to study anomaly

detection. Research work by [15] focuses on unsupervised learning algorithms for

approaching the problem of anomalies in complex systems. They implemented Self

organizing maps that overcome the dimensionality problem of network based systems.

2.3 Model Based and Instance Based

Model based approach have been extensively used for solving machine learning

problems. As the name suggests there is a model to predict the output either for

regression or classification. Instance based learning also called memory based learn-

ing is described as the family of learning algorithms that compares new problem

instances with instances seen in training that are stored in the memory. So, instead

of performing explicit generalization, it uses memory based techniques.

As described in this research [16], the central idea of model-based is to create a

custom model tailored specifically to each application. The model can even be associ-

ated together with an inference algorithm. ”Typically, model-based machine learning

will be implemented using a model specification language in which the model can

be defined using compact code, from which the software implementing that model

can be generated automatically”. The key goals of model based approach have been

mentioned. These goals include the specific nature of models corresponding to the

7

application. The application might include a combination of clustering and classifica-

tion. Describing the model based approach, in this study they focused on a framework

based on Bayesian inference in probabilistic graphical models.

Model based approaches are studied in a vast area of applications including med-

ical research areas. For instance model based techniques are explored in this pa-

per [17]. In this research they have explored both model-based like logistic regression

and model-free or non-parametric techniques like random forests, support vector ma-

chines for investigating falls in patients with Parkinson’s disease. They used general-

ized linear models with linear regression when the outcomes are measured on binary

scale and follow Bernoulli distribution. Comparing the two techniques their research

depicts scalability for different problem statements. Algorithms like Random Forest,

AdaBoost, Support Vector Machines, Neural Network benefit from constant learning

or retraining as optimized results are not guaranteed.

On the other hand, instance based approaches have also been used in various

applications. The idea behind instance-based learning is that similar examples have

similar label. KNN is instance based algorithm where selecting the optimum number

of neighbors is important. Depending on the data, usually value of k is selected

neither too large nor too small.

8

3. SYSTEM FRAMEWORK

3.1 Overview

In this research, we have experimented with three different supervised learning al-

gorithms - Decision Tree, k-Nearest Neighbors and Support Vector Machines. A data

fusion algorithm and host clustering algorithm are developed to group the hosts into

clusters based on their known network flows. The host clustering algorithm is based

on the Bron-Kerbosch algorithm [18] which is used to identify the maximal complete

subgraphs (Cliques) in an undirected graph. Finally, attack traffic is identified by

merged model which is a model and instance based technique. Three subsets of the

publicly available botnet intrusion detection data set CTU-13 [1] are used in our work

where first step is to identify the clusters of the hosts with regards to intrusion de-

tection and then integrate the final model. Each of the three datasets belong to a

different bot category from thirteen of the CTU-datasets.

3.2 System Framework

In this work, we have found a generalized model for our problem, so that retraining

efforts are reduced for the hosts. The generalized merged model is found by first

finding similar hosts. The assumption is that the network traffic flows (normal vs.

attack) can be summarized and inferred by the machine learning model that is derived

by the learning algorithm and the training data. If the models based on the same

learning algorithm and training data of two hosts are the same or one is a subset

of the other, these two hosts can be clustered into one cluster. Otherwise, they are

not in the same cluster. However, different learning algorithms make use of different

9

optimization functions and processes to generate models. In this work, we proposed

the host clustering algorithm that can make use of m different learning algorithms.

Indeed, some pre-processing steps including feature reconstruction are employed

before the network flows are fed into the learning algorithms. The non-numerical

values for some features, such as protocol and direction have been replaced by iden-

tifiable numbers using one-hot encoding [19]. For example, TCP protocol is replaced

by value 12. After pre-processing, all network flows are used to train the supervised

learning algorithms to generate the learning models respectively. It is worth noting

that the testing process is different from the general training and testing process. The

training process is to generate the model based on all network flows of a host, the

testing process is to test the correctness of the generated model on classifying the

network flows of the other host. We call this testing process as cross-testing. Once

the cross-testing matrices are obtained, they are further used in the Data Fusion

algorithm described in the chapter Host Clustering.

In this research, we applied three widely used supervised learning algorithms: k-

Nearest Neighbors, Decision Tree and Support Vector Machines. These three learning

algorithms are briefly described in the following sections.

Decision Tree

Decision tree learning techniques have been used for network intrusion detection

in the literature and archived competitive performances [20] [21]. There are differ-

ent decision tree algorithms, such as ID3, C4.5, C5.0 and CART (Classification and

Regression Trees). Decision tree algorithm such as J.48 [22] have been used for de-

tecting intrusions as well. The trained model of the decision tree can be decoded and

visualized as a tree structured form. Whereas, other trained models are difficult to

interpret. That is one of the important differences between decision tree algorithms

and other supervised learning algorithms. In this work, optimized CART which was

implemented in python Scikit-Learn package, was employed. CART is very similar

10

to C4.5. The difference is that it supports numerical target variables (regression)

and does not compute rule sets. Decision trees algorithm is considered a simple yet

effective supervised ML algorithm. The trees often mimic the human level thinking

which makes them simple to understand the data and provide good interpretations.

K-Nearest Neighbors

k-Nearest Neighbors (k-NN) learning technique has been used in pattern recog-

nition and classification since the beginning of 1970s as a non-parametric technique.

It has been studied extensively for data mining and network flow analysis [23] [24].

k-NN uses a majority vote of its neighbors to classify a data instance. k is a positive

integer. If k = 1, then the data instance is simply assigned to the category of its

nearest neighbor. Typically, we experiment with a different k to find the optimal k

value to classify a given data set. The neighborhood distance function varies from

different implementation of k-NN. The typical one is Euclidean distance which was

used in this work. The k value was 2 in this work.

Support Vector Machines

Support Vector Machines (SVMs) was one of the classification algorithms evalu-

ated. SVMs is a large margin classifier, and has been widely used in many different

data analytic tasks and network intrusion detections [25] [26]. The SVMs classifier

aims to separate the input data using hyperplanes. In order to generate a less complex

hyperplane function for classification, the maximum margin between the hyperplane

and the support vectors which is defined by a fraction of the input data instances

is required. Support Vector Machines use a function called kernel function for non-

linearly transforming the training features from a two dimensional space to a higher

dimensional feature space.

11

That means the kernel function defines the distance measurement between the

data points in the high-dimensional space. For example, if the function is radial basis

function (RBF) [27].

k(x, y) = exp(−γ||x− y||2) (3.1)

where x and y represent two data vectors, γ is training parameter. For making

the decision boundary smoother, the parameter γ is used. Another regularization

parameter ζ controls the trade-off between low training error and large margin.

The ability to learn from large feature spaces and the dimensionality independence

make the support vector machines a universal learner for data classification. In our

experiments libsvm [28] has been used for calculating data fusion matrices.

Describing the framework

The intuition behind this research is to identify the known attacks in a faster

way without involving a retraining process like in a traditional machine learning

approach. Our proposed model uses the data fusion algorithm described in below

sections for calculating cross-testing matrices. By cross-testing matrix we mean the

matrix obtained by training on one set of hosts and testing on each other. The

similar hosts are represented on an undirected graph where an edge between two nodes

represent the similarity between them. Going further, the bron kerbosh algorithm

implies the output as maximal cliques which are the clusters found. The maximal

cliques with largest number of nodes or hosts are combined into a bigger cluster

based on their ability to detect attacks. The decision regions of this cluster has

been merged according to our proposed decision region merging algorithm after the

feature selection. The hosts that are outside the cluster have an instance learning

based approach for detecting attacks. The basic overview is described the diagram in

Figure 3.1.

12

The final model shown in this figure is the combination of Merged and Instance

Based methods. The approach used in our research work is different than the tradi-

tional model which has all data combined and trained for predictions as described in

Figure 3.2.

Fig. 3.1. Overview of Our Model

Fig. 3.2. Overview of a Traditional Model

13

4. DATA SOURCES

We evaluated the proposed system based on the aforementioned supervised learning

algorithms using CTU-13 data sets. These were captured at CTU and made publicly

available [1].

CTU-13 has 13 different datasets, each one is specified for a botnet, and totally

7 botnet viruses are analyzed [29]. CTU labelled the traffic as: Background, Bot-

net, C&C Channels and Normal. In our experiments, we used the three subsets of

the CTU-13 data sets which contain 6 different characteristics of the botnet attack

scenarios, such as ClickFraud, Port Scan, DDoS and so on.

Fig. 4.1. Characteristics of Botnet Scenarios

There are 13 different sub sets covering different botnet malwares with traffic

labels: Background, Botnet, and Normal. The CTU-13 dataset consists of thirteen

captures (called scenarios) of different botnet samples. On each scenario a specific

malware was executed. Figure 4.1 shows the characteristics of the botnet scenarios

as provided in the CTU website. Table 4.1 describes the general types of botnet that

are a network security threat.

14

Table 4.1. Description of Botnets

Botnet Description

IRC Bot Scripts that connect to Internet Relay Chat as a client [30]

SPAM Emails about counterfeit goods and security issues

DDOS Distributed Denial of Service attack targets a system denying services to

P2P Decentralized botnet without C and C servers

We used 10, 2 and 13 (I, II and III) subsets for our experiments. Since the original

data sets have all the network flows of the whole network in one file, the flows are

grouped according to the destination IP addresses. Each unique IP address is treated

as a host. After grouping the network flows, we found that some of the hosts only

contain normal and background network flows. Hence, those hosts are excluded.

Only the hosts that contain both normal and botnet attack flows are kept for further

analysis.

Following the process described above, in the end, there are total of 16 hosts that

are selected for identifying the host clustering in Dataset I, 21 hosts for Dataset II and

18 hosts for Dataset III. 10 network flow features out of 13 are used for the proposed

host clustering algorithms. The network flow features are listed in following Table

4.2. For Datasets I and III, experiments are done considering all of the data of each

host. For Dataset II, 75 percent of host data has been considered and for testing all of

the host data has been considered. There are few hosts in Dataset II with either one

normal or botnet instance, those hosts are eliminated in the similar hosts calculation

step, but are included as unseen data for testing.

Before beginning further analysis, it is always good to have a look at the data.

In Figures 4.2 and 4.3, counts of normal and botnet instances are shown for the

Datasets I and II respectively. Dataset II has 21 hosts, since for this dataset, results

are calculated 75 percent cross validation, so the hosts with either 1 normal or 1 botnet

are not considered here, they are included for testing only. The counts of instances

15

for each host of datasets are shown in Tables A.1 to A.3 in the Appendix. Data

distribution for Dataset III is shown in Figure 4.4. The purpose of showing data

distribution with and without Host A is to give a clear picture of the distribution

because the number of instances of this host is very large as compared to others.

Table 4.2. Selected Network Flow Features of CTU-13 Data

Features Description

Duration Duration of the connection in seconds

Protocol Type of the protocol (TCP, UDP, ICMP)

DPort The port of the connection destination

SPort The port of the connection source

dTos Type of Service from destination to source

sTos Type of Service from source to destination

SrcBytes Total bytes from source to destination

TotBytes Total bytes of the flow

TotPkts Total packets of the flow

Dir Direction of the flow

Viewing the histogram plots are a quick way for getting an idea of the distribu-

tion of each attribute. A count of the number of observations in each bin can be

calculated by grouping data into bins using histograms. The histogram plot of host

C of Dataset I is shown below in Figure 4.5, where we can clearly see that label 3

(botnets) represented by histogram 11 are very less as compared to label 2 (normals).

We can also see that the source ports represented by histogram 2 with less values are

also very few from its histogram plot.

16

Fig. 4.2. Data Distribution of Dataset I

Fig. 4.3. Data Distribution of Dataset II

17

(a) (b)

Fig. 4.4. Data Distribution of Dataset III with and without Host A

Fig. 4.5. Histogram Plots of One of the Hosts of Dataset I

18

5. HOST CLUSTERING

5.1 Literature Review

Before implementing our ideas, it is good to study the work that has been done in

past. Previous research has been done to cluster or classify hosts based on the traffic

behavior or host roles. Wei and colleagues studied host clustering based on traffic

behavior profiling [31].

Another research work [32] in host clustering has been done by Xu and colleagues.

It includes analyzing behavior of the end hosts in the same network prefixes by consid-

ering both host and network level information. A network aware behavior clustering

was implemented in the research, where bipartite graphs were implemented to model

network traffic. Bipartite graph implementation is obtained based on the communi-

cation between source and destination. The bipartite graph was then divided into

sub-graphs which represent each source or destination host in the network. The spec-

tral clustering algorithm were used to cluster the end hosts in the same network

prefixes.

Some research has used the supervised learning algorithms to classify hosts based

on their roles in the network [33]. Some host roles are clients, whereas some are email

servers, etc. Because of the huge volume of network traffic and overlap among host

roles, modeling host roles based on network flow data is challenging. Derived features

based on the network flows, such as number of unique host system ports, standard

deviation of ports, number of most often used port, number of unique protocols have

been used to identify the roles. However, since host behaviors and roles can change

over time, the learning models need to be updated over time.

On the other end, unsupervised and supervised learning algorithms, using flow or

packet based data have been investigated for intrusion detection system (IDS) and

19

anomaly detection systems (ADS) since long. Usually the performance metrics of the

algorithms are detection rate and false alarm (positive) rate. Many researches [3] [4]

[34–38] proposed and explored different machine learning mechanisms for improving

the detection rate and reducing the false positive rate and detecting different types

of attack behaviors. However, the common challenge is how often to update the

generated learning models and whether a generated learning model can be directly

applied to a new host without training process. To the best of our knowledge, our

research is the first to cluster the hosts based on the cross-testing using the generated

models. The following section explains the algorithms that are implemented for host

clustering.

5.2 Algorithms

5.2.1 Data Fusion Algorithm

If the model generated by the flows of host A can correctly classify all the network

flows of host B and vice versa, that means the network flows patterns of host A and

B are very similar to each other. Hence, host A and B can be clustered into the same

group. F1-measure (given in Formula 5.1) is used to evaluate the correctness of the

cross-testing. Given N hosts within a network, the cross-testing F1-measure values

will be stored in a matrix as Formula 5.2.

F1 = 2∗TruePositive
(2∗TruePositive)+FalseNegative+FalsePositive

(5.1)

L =

1 F11,2 ... F11,N

F12,1 1 ... F12,N

. . . .

F1N,1 F1N,2 . 1

 (5.2)

20

In L, F1i;j is the F1-measure of testing the network flows of host j using the

machine learning model that is generated on host i based on its network flows. F1i;i

represents F1-measure of testing the network flows of host i using the machine learning

model that is generated on host i. Essentially, all the values of F1i;i is 1. In this

research, a data fusion algorithm is designed to integrate the cross-testing F1-measure

matrices (L) of different learning algorithms, then generate host clusters. Given N

hosts in the network and m machine learning algorithms, the data fusion algorithm

is given in Algorithm 1. Algorithm 1 calls Algorithm 2 to identify the maximal host

cluster in a network. Any host in the maximal host cluster are similar to all other

hosts within the cluster. In this work, the hosts within the network are treated as

nodes in an undirected graph, whereas, the edges between the hosts are the similarities

between the hosts. The similarity is reflected by the cross-testing F1-measure. An

edge (i;j) exists only when F1(i;j) and F1(j;i) are 1 for all cross-testing F1-measure

matrices corresponding to the machine learning algorithms. When considering 75-100

cross-validation threshold may be selected a value less than 1, for example 0.6.

21

Algorithm 1 Data-Fusion-Algorithm

Input: Cross-testing F1-measure matrices (L1, L2, . . . , Lm), α

Output: Cluster

L = L1 + L2 + · · ·+ Lm

V ertices = ∅

Edges = ∅

for i in (1, . . . , N) do

for j in (1, . . . , N) do

if (Li,j = Lj,i)&&(Lj,i ≥ α)&&(i 6= j) then

V ertices = V ertices ∪ {i} ∪ {j}

Edges = (i, j)

end if

end for

end for

X = ∅

R = ∅

P = V ertices

Cluster = Maximal − Cliques(R,P,X,Edges)

22

Algorithm 2 Maximal-Cliques

Input: R, P, X, Edges

Output: Cliques

if (P = ∅)&&(X = ∅) then

Cliques = R

end if

for each vertex v in P do

N(v) = Neighbor Set of v based on Edges

R = Maximal − Cliques(R ∪ {v}, P ∩N(v), X ∩N(v), Edges)

P = P \ v

X = X ∪ v

end for

5.2.2 Maximal Cliques Algorithm

The Algorithm 2 works as Bron-Kerbosch algorithm [18] which is used to find

the maximal cliques in an undirected graph. Based on the training and cross-testing

processes described in section 5.2.1, three cross-testing F1-measure matrices are gen-

erated through applying the three supervised machine learning algorithms. Tables 5.1

to 5.3 present the cross-testing F1-measure matrices of the three learning algorithms.

The rows of each matrix represent the hosts of which the network flows are used to

generate the learning models. The columns represent the hosts of which the network

flows are used to cross-test the learning model to gain the F1-measure values. An

undirected graph based on integrating the three F1-measure matrices is presented as

Figure 5.1. Through applying the data fusion and maximal cliques identifying algo-

rithms, hosts C, D, E, I and M are identified in the same cluster and hosts P, J, F, L,

N in another cluster. These two are the largest clusters within the selected 16 hosts.

Host A, B and H have no similarity with any of the other hosts and are outside the

clusters.

23

5.3 Merging the Clusters into One

The maximal clusters obtained are merged into one cluster using the detection

rate and false positive rate for the attack traffic. That means the tree structures

of the hosts in the two clusters are merged so that each of the cluster has its own

decision making model. The data of each cluster is tested on each others cluster

model. Since the merged model of each cluster detected the hosts of other clusters

with detection rate of 1 and very less false positive rate, they are merged into one

bigger cluster. Figure 5.1 shows the merged cluster. The goal of this chapter is to

provide an overview of the implementation, the exact results are tabulated in the

Results chapter.

Fig. 5.1. Merged Cluster Illustration

24

5.4 Merged Model and Instance Based Approach

The merged model explained in the above section works well for most of the hosts.

But it is possible that some of the hosts have very different traffic pattern that the

merged model is unable to detect the attack traffic. Such hosts have an instance

based KNN model to predict the oncoming traffic. This is explained by the flowchart

in the Figure 5.2.

Fig. 5.2. Model-Instance Based Approach

25

5.5 Experimental Results

5.5.1 Dataset I

Tables 5.1 to 5.3 present the cross-testing F1-measure matrices of the three learn-

ing algorithms. Based on the data fusion algorithm explained above, the following

maximal clusters are obtained (shown in Figure 5.3). Figure 5.3 shows the edges

that correspond to the similarity between hosts, the maximal clusters with maximum

number of hosts are CDEIM, FJLNP and JLMNP. However, for the ease of viewing

two of the three clusters are highlighted in this figure.

Table 5.1. Dataset I Cross-testing F1-measure of Decision Tree

Hosts A B C D E F G H I J K L M N O P

A 1 0.06 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B 0.5 1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.4 0.5 0.4 0.5

C 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

E 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G 0.1 0.4 0.6 0.6 0.6 1 1 1 0.6 1 0.9 1 0.9 1 0.9 0.9

H 0.4 0.5 0.6 0.8 0.8 0.6 0.7 1 0.7 0.6 0.8 0.6 0.8 0.8 0.7 0.8

I 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

J 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

K 0.1 0.4 0.6 0.6 0.5 1 1 1 0.6 1 1 1 0.9 1 0.9 0.8

L 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

M 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

N 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O 0.1 0.4 0.6 0.6 0.5 1 0.6 1 0.7 1 0.7 1 1 0.8 1 0.7

P 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

26

Table 5.2. Dataset I Cross-testing F1-measure of k-Nearest Neighbors

Hosts A B C D E F G H I J K L M N O P

A 1 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B 0.0 1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0

C 0.9 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D 0.9 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

E 0.9 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F 0.9 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G 0.9 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

H 0.9 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1

I 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

J 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

K 0.9 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L 0.9 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

M 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

N 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P 0.9 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

27

Table 5.3. Dataset I Cross-testing F1-measure of Support Vector Machines

Hosts A B C D E F G H I J K L M N O P

A 1 0.4 0.4 0.5 0.4 0.5 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.4

B 0.5 1 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.3

C 0.9 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1

E 0.9 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F 0.9 0.4 0.7 0.8 1 1 0.8 1 0.9 1 0.9 1 1 1 0.9 1

G 0.9 0.5 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1

H 0.9 0.4 0.7 0.8 1 1 1 1 1 1 1 1 1 1 1 1

I 0.9 0.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1

J 0.9 0.4 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1

K 0.9 0.4 0.8 1 1 1 1 1 1 1 1 0.8 1 1 1 1

L 0.5 0.5 0.7 1 1 1 1 1 1 1 1 1 1 1 1 1

M 0.9 0.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1

N 0.9 0.3 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1

O 0.9 0.3 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1

P 0.9 0.4 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1

28

Fig. 5.3. Host Clustering for Dataset I

29

5.5.2 Dataset II

The cross-testing matrices obtained by using Dataset II and Dataset III are shown

in the Appendix Tables A.4 to A.6 and A.7 to A.9 respectively. For Dataset II cross

testing matrices are obtained by training on 75 percent and testing on all of the data

which also includes the subset (remaining 25 percent). Since there are few hosts that

have only one instance of botnet, they are not considered while finding the similar

hosts from cross-testing matrices. Leaving such hosts, 11 hosts are selected from 21

of them. Since the cross testing matrices show good F1 scores, the threshold has been

taken as 1 for Dataset II as well.

The Figure 5.4 shows the maximal clusters using maximal cluster algorithm. There

are 4 maximal clusters with maximum hosts BDOSU, ENO, ENR and HNR.

Fig. 5.4. Host Clustering for Dataset II

30

5.5.3 Dataset III

18 hosts have been found. The cross testing matrices using decision tree, KNN

and SVM machine learning algorithms for this dataset are in the Appendix (Tables

A.7 to A.9). Figure 5.5 shows the host clustering.

Fig. 5.5. Host Clustering for Dataset III

31

6. NETWORK INTRUSION DETECTION

6.1 Traditional Methods for Intrusion Detection

Considering intrusion detection as a crucial way of protecting network from mali-

cious activities, researchers have been trying to minimize the threat by various innova-

tive ways. These work include combining anomaly detection and misuse detection [6]

using genetic network programming which is a data mining technique. Research work

by [39] have enhanced K-Means [40] clustering algorithm to a more robust method

underlying the fact that if the clusters are empty in initial iterations over-splitting

may be avoided by merging the overlapping clusters, they called it as Y-Means al-

gorithm for intrusion detection. ML algorithms like Multilayer Perceptron, SVM,

Multinomial Logistic Regression, Naive Bayes, J.48, Bayesian network have proved

to give good detection results [5]. Probability based algorithm like Naive Bayes have

been implemented for intrusion detection [41–43]. The Naive Bayes Classifier tech-

nique is based on the Bayesian theorem [44] [45] and is believed to be good approach

for high dimension data. Known for its simplicity, Naive Bayes can often outperform

more sophisticated classification methods. Linear machine learning techniques like

logistic regression has also been used for detecting intrusions [46] [47]. Logistic re-

gression is an efficient way for binary classification and uses predictive analysis for

assigning observations to a discrete set of classes. Unlike linear regression which gives

continuous number values, logistic regression transforms its output using the sigmoid

function to return a probability value. This probability value can then be mapped to

two or more discrete classes [48] [49].

An extension of the bagged decision trees is Random Forests which aims to reduce

overfitting problem. Trees are constructed in a way intended to reduce the correlation

between various individual classifiers. These classifiers are constructed using the

32

samples of the training data with replacement. Intuitively, instead of greedily choosing

the best split point in the construction of each tree, for each split only a random

subset of features are considered. Random Forest has been used in past for obtaining

optimal model for intrusion detection [50]. Significant amount of work demonstrates

that Random Forest has been used for analyzing network traffic data.

Random forest has been used for feature selection and SVM has been trained on

the selected features for intrusion detection on the KDD dataset [9] [51].

Considering the significant amount of work in Intrusion detection using machine

learning techniques like Random Forest, we compared the results obtained from our

proposed model with the random forests. We have compared the results from our

model vs the results obtained by a retrained model using the random forest with 100

trees and split points chosen from a random selection of 3 features. Tables 6.1 to 6.3

show the results using this algorithm trained on Dataset I and tested on each host of

itself and Dataset II and III respectively.

Table 6.1. Random Forest Model of Dataset I Tested on Itself

Hosts A B C D E F G H I J K L M N O P Avg

DR 1 0.78 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.98

FPR 0 0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0012

Table 6.2. Random Forest Model of Dataset I Tested on each Host of Dataset II

Hosts A B C D E F G H I J K L M N O P Q R S T U Avg

DR 1 0.83 1 1 1 0.94 1 0.83 1 0.34 0.95 1 1 0.33 0.52 0.34 1 1 0.83 0.86 0.89 0.84

FPR 0

Similarly, the results using retrained random forest models for Datasets II and

III are shown in the Appendix section. Tables A.10 to A.12 show the results using

Dataset II and Tables A.13 to A.15 using Dataset III.

33

Table 6.3. Random Forest Model of Dataset I Tested on each Host of Dataset III

Hosts A B C D E F G H I J K L M N O P Q R Avg

DR 0.81 0.68 0.65 0 0.23 1 0 0.34 0 1 0 1 0 1 0 0 0 0 0.37

FPR 0.04 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0.03

6.2 Literature Review of Model Merging

Some work done in the past has been studied and implemented for merging the

decision trees. In this research work [52], split point selection approach has been used

instead of tree-growing approaches. They exploited the geometry of the attribute

space by representing each tree as a set of decision regions or iso-parallel boxes. The

merging of k decision trees calls for creating a box set for each of the k trees. As

mentioned in their work, computing the label for the two boxes after merging is easy

when both have the same labels, it is also assigned the same label. Figure 6.1 describes

the merging of decision boxes of two decision trees. One of the strategies used by

them to label the intersecting area is averaging the two class probability distributions

and selecting the class with the highest probability as the associated label.

Another work by [53] is a survey where they analyzed merging decision trees

by data mining approaches. Motivation behind the merging is to generalize the

knowledge contained in the models. A larger data set can be split into smaller parts

either naturally or artificially. Local models are created using local data sets which

provide training examples.

6.2.1 Model Merging Based on Data Mining Approaches

As referred in [52] learning and combining rules on disjoint subsets have been

implemented. An algorithm is used to generate the rules on each subset of the training

data which are used to construct the merged model. A combination of rules that is

34

Fig. 6.1. Merging of Decision Boxes Starting from Upper Left [52]

best for the dataset is used. The approach combines the rules into new rules and

convert the decision trees from two models into decision rules [52].

6.2.2 Ensemble Learning

Ensemble methods utilize multiple learning algorithms to achieve better predic-

tive performance. An ensemble can be described as a supervised learning algorithm,

because it can be trained and then used for making predictions. This method tend to

yield better results when the models are significantly diverse. This method consists in

combining the predictions of various models into one prediction. The ensembler imple-

ments techniques to combine the predictions such as bootstrap aggregating whereas

model merging combines the models.

35

6.3 Proposed Approach for Model Merging

6.3.1 Feature Selection

Feature selection is a process that selects those features from the dataset that

contribute most to the prediction [54]. Possessing irrelevant features may decrease

accuracy of models. The advantages of performing feature selection before modeling

include reduced overfitting, better accuracy and reduced training time. Generally

feature selection is used to select the features that will give expected good results after

training, but we used feature selection not for retraining the model but to see which of

the features have the best relation with the labels. Feature selection can be used for

selecting best features or for dimensionality reduction, either to improve estimators

accuracy scores or to boost their performance on datasets. Main approaches are

described below:

1. Univariate Selection: This selection utilizes statistical tests to select those

features that have the strongest relationship with the output variable. In our exper-

iments, we have used the chi-squared (chi2) statistical test for non-negative features

to select four of the best features. Chi2 feature selection [55] is an efficient way of

selecting best features in statistics, it is applied for testing the independence of two

events, where according to probability concepts, two events A and B are defined to

be independent if:

P (AB) = P (A)P (B) (6.1)

or,

P (A|B) = P (A)P (6.2)

and

P (B|A) = P (B) (6.3)

36

For using χ2 for feature selection, a value χ2 is calculated between each feature and

the target, and the desired number of features with the best χ2 scores are selected.

The idea behind this is that if a feature is independent to the target, it is uniformative

for classifying observations [56].

χ2 =
n∑

i=1

(Oi − Ei)
2

Ei

(6.4)

where, Ei is the expected observations in class i if there was no relationship between

the feature and target. Oi represents the number of observations in class i.

2. Recursive Feature Elimination: This technique as the name suggests recursively

removes attributes and builds a model on those attributes that remain. Model accu-

racy is the metrics used to identify which attributes and combination of attributes

contribute the most to predicting the target attribute.

3. Principal Component Analysis: Principal Component Analysis (PCA) uses

linear algebra for transforming the dataset into a compressed form. This technique is

termed as data reduction technique. One of the properties of PCA is that the number

of dimensions or principal components can be chosen in the transformed result. This

is a good technique if the dataset is highly dimensional.

In our research work, while experimenting with the dataset, we observed that the

attack traffic shows lower source port number and lesser duration than the normal

traffic. A recursive algorithm has been proposed that does the classification after

univariate selection of features. However, the generic algorithm can be applied to any

number of features to be merged based on their merging criterion which is explained

by The Algorithm 3.

37

Algorithm 3 Algorithm-for-Decision-Area

Input: Features

Output: Decision Regions

Feature Ranking(Features) ← Univariate(chi2)

i ← 1

F ← FeatureRanking(Features)

while (F ! = ∅)&&i ≤ count(F) do

Des Reg = Create Decision Regions for feature Fi of all datasets

F = F \ Fi

i = i+ 1

Algorithm-for-Decision-Area(F)

return Des Reg

end while

6.3.2 Decision Region Analysis

Maximal cluster algorithm gave us the hosts that are clustered in a group. We have

analyzed the tree regions of these hosts. Decision tree region analysis is important

for the merging of model into one. The decision tree structures of the hosts that are

found in a cluster are converted into decision regions. The best feature that is selected

based on information gain is at the root of the tree. For example, for Dataset I four

tree structures corresponding to hosts C, D, E and I have source port number as root

node. The tree structure of Host M has duration as root node. Although the root

node of Host M is different than the others, the cross-testing matrices demonstrate

that it can also be used to detect the botnets from the normal for all five hosts. That

means the botnets traffic that hit to these five hosts share the same characteristics:

lower source port numbers and short duration.

38

After observing that botnet traffic demonstrates a lower source port number and

shorter duration, algorithm 3 has been implemented for merging. The primary idea

behind this to obtain the lower bound for the source port and duration in our case.

6.4 Merged Model with Instance Based Approach

The maximal clusters obtained from Bron Kerbosch algorithm are merged into

one final cluster on the basis of the high detection rate and low false positive rate

for attack traffic which is given by the formula of merged model of bigger maximal

clusters, tested on each other.

DR =
NumberofDetectedAttacks

TotalNumberofAttackConnections
(6.5)

FPR =
NormalDetectedasAttacks

TotalNumberofNormalConnections
(6.6)

This technique merges the merged models of these clusters into one model. Maxi-

mal cluster identification can help identify the anomaly behaviors and obtain a generic

model which can detect anomalies without retraining. After the tree structure anal-

ysis of the hosts identified in the cluster, their trees have been converted to decision

regions and merged using the Algorithm 3 Recursive-Algorithm defined in Section

6.3.1. The merged model detects the attack and normal traffic from the similar hosts

well and most of the other hosts as well. The hosts whose traffic goes undetected

by this merged model use the instance based learning approach to have their attack

traffic detected. This eliminates the need of refreshing and retraining all of the data.

Instance based learning is also called as memory based learning where instead of ex-

plicit generalization, new problem instances are compared with the instances seen in

training. Hypotheses is constructed directly from the training instances themselves.

So, it has the ability to adapt its model to previously unseen data. They may use

a new instance and not the old instance. K-nearest neighbor algorithm is one of

the instance based learning algorithm. The subset of or the training set is stored.

39

When predicting the class of the new instance, decision is made based on the com-

puted distance or similarities between this instance and the training instance. The

Algorithm 4 proposed combines both the merged model and instance based for de-

tecting the attack. The hosts outside the cluster have a KNN. However, there are few

hosts which are not in the cluster but their attack traffic is detected by the model.

Since, they are outside the cluster, they should be tested with the KNN of the hosts

outside the cluster. For testing with other datasets which is new a new set of data

for the model, either the model or instance based detects an attack, that instance is

considered attack. This is described in the Algorithm 4 below:

Algorithm 4 Attack Traffic Detecting Algorithm

Input: Merged Model of Cluster, Instance Based method of outside Cluster hosts,

Test Dataset

Output: Optimum DR and FPR

for each host h in Dataset do

DR = DR using Merged Model

FPR = FPR using Merged Model

end for

for each host h in Dataset do

DR = DR using Instance Based Approach

FPR = FPR using Instance Based Approach

end for

Consider the best results

40

6.5 Results

6.5.1 Dataset I

We tested the algorithm on three datasets where all experiments are done on the

hosts for obtaining the model and host data is used for testing. Using the algorithm

and experiments described in above sections, Dataset I which has 16 hosts, it is found

that there are 11 clusters with 3 maximal cliques with maximum number of hosts.

These clusters have their models obtained by merging the models of their hosts. That

means if hosts C, D, E, I and M are in a cluster, the clusters model will be obtained by

merging the model of its hosts. These clusters models are tested on every other cluster

based on the detection rate and false positive rate for attack traffic as criterion. The

hosts of clusters that give high detection rate and low false positive rate are merged

again to obtain a final cluster. Tables 6.4 and 6.5 show the detection rate and false

positive rate of merged model of clusters when tested on other maximal clusters.

Table 6.4. Detection Rate when Maximal Clusters Tested on each Other

Clusters CDEIM FJLNP JLMNP

CDEIM 1 1 1

FJLNP 1 1 1

JLMNP 1 1 1

Table 6.5. False Positive Rate Maximal Clusters Tested on each Other

Clusters CDEIM FJLNP JLMNP

CDEIM 0.1 0.03 0.04

FJLNP 0.1 0.004 0.005

JLMNP 0.1 0.004 0.005

41

Fig. 6.2. Merged Cluster for Dataset I

Based on high detection rate and low false positive rate for attack traffic, it can

be inferred that their performance is good with respect to detecting attack traffic.

As seen from these tables, the hosts C, D, E, I, M, F, L, P, J, N can be put into one

cluster which is shown in Figure 6.2. The most effective way to integrate the decision

tree models of these hosts have been found to be converting the decision trees of

each host to decision region and merging recursively. According to Algorithm 4, the

hosts outside the cluster will utilize the instance based learning, in our case we used

KNN. The average detection rate and false positive rate of all hosts obtained using

the model are shown in the column Average which is the macro average. They are

calculated using the Formula 6.7 and 6.8. Results are tabulated in Table 6.6. Here n

is the number of hosts of the respective dataset. As expected the method performs

well on itself.

42

AvgDR =
∑n

n=1 DRn

n
(6.7)

AvgFPR =
∑n

n=1 FPRn

n
(6.8)

Table 6.6. Model of Dataset I Tested on Itself

Model Based Approach

Hosts C D E I M F J L N P

DR 1 1 1 1 1 1 1 1 1 1

FPR 0 0 0 0 0 0 0 0 0 0

Instance Based Approach

A B O K G H

1 1 1 1 1 1

0 0 0 0 0 0

Average

All

1

0

Inter-Dataset Testing using Model of Dataset I

In this section, the proposed method for Dataset I has been tested on the other

datasets considered. They are Datasets II and III which belong to Neris and Virut

bot category respectively. For Dataset II all the hosts were detected by the merged

cluster model of Dataset I which shows that our method performed well with the

unseen data. For Dataset III, few hosts were not detected by merged model of Dataset

I, so according to our Algorithm 4, they are should ideally be detected by the KNN

model of Dataset I. The results are shown in Table 6.8.

Table 6.7. Model of Dataset I Tested on Dataset II

Merged Model Based

Hosts A B C D E F G H I J K L M N O P Q R S T U Avg

DR 1

FPR 0

43

Table 6.8. Model of Dataset I Tested on Dataset III

Model Based Approach

Hosts A B D G H I J L M N P Q R

DR 1 0.85 0.6 1 1 1 1 1 1 1 1 1 1

FPR 0.04 0 0 0 0 0 0 0 0 0 0 0 0

Instance Based Approach

C E F K O

1 0.79 1 1 1

0 0 0.5 0 0

Average

All

0.95

0.03

Comparison with Traditional Methods

Comparing the results achieved on unseen data using the proposed method with

respect to the traditional methods including Naive Bayes, Logistic Regression and

Random Forest demonstrate that our method is more robust. Working with our

subsets, a Gaussian distribution [57] is assumed because the probabilities for input

variables using the Gaussian Probability Density Function can be estimated easily.

NB and LR performance is low as compared to Random Forest. Our approach has

results that are comparable to RF. Figures 6.3 and 6.4 show the comparison of our

model with NB and LR respectively.

Figure 6.5 shows the comparison with RF. Although the FPR is lower in both the

cases, the detection rate using our technique is much better than using the random

forest. The random forest model of Dataset III (Figure 6.9, Section 6.5.3) on itself

shows good results but it appears to be overfitting the data, that’s why the retrained

model of Dataset I didn’t give acceptable detection rate here. Thus, our method

solves the overfitting problem in addition to reducing the retraining efforts.

44

Fig. 6.3. Macro Average Comparison for Dataset I with NB

Fig. 6.4. Macro Average Comparison for Dataset I with LR

45

Fig. 6.5. Macro Average Comparison for Dataset I with RF

46

6.5.2 Dataset II

Similar approach has been tested on Dataset II. From the previous results section

for Dataset II, there are four maximal clusters with maximum hosts, BDOSU, ENO,

HNR and RNE. Each of these clusters have a merged model that is tested on each

other for detection rate and false positive rate. The Tables 6.9 and 6.10 demonstrate

these results.

Table 6.9. Dataset II - DR when Maximal Clusters Tested on each Other

Clusters BDOSU ENO HNR ENR

BDOSU 1 1 1 1

ENO 1 1 1 1

HNR 1 1 1 1

ENT 1 1 1 1

Table 6.10. Dataset II - FPR when Maximal Clusters Tested on each Other

Clusters BDOSU ENO HNR ENR

BDOSU 0 0.9 0.9 0.9

ENO 0 0 0 0

HNR 0 0 0 0

ENR 0 0 0 0

Based on the results tabulated these tables, the big cluster obtained is by merging

ENO, HNR and ENR. The final cluster E, N, O, H, R is highlighted in Figure 6.6.

As described by our method, the hosts E, N, O, H, R have an integrated model.

However, the hosts outside have instance based learning methods. The results are

tabulated in Table 6.11. The point to be noted down here is that although the

integrated model of cluster could detect all the traffic for its own hosts (even outside

47

Fig. 6.6. Merged Cluster for Dataset II

the cluster) but according to our proposed algorithm, the hosts outside the cluster

should have an KNN towards detecting the attack.

Table 6.11. Model of Dataset II Tested on Itself

Merged Model Based

Hosts E N O H R

DR 1 1 1 1 1

FPR 0 0 0 0 0

Instance Based Approach

A B C D F G I J K L M P Q S T U

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Average

All

1

0

48

Inter-Dataset Testing using Model of Dataset II

The merged model of Dataset II is tested on each host of other datasets. This is

demonstrated in Table 6.12 when tested on Dataset I.

Table 6.12. Model of Dataset II Tested on Dataset I

Merged Model Based Approach

Hosts A C D E F G H I J K L M N O P

DR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instance Based Approach

B

0.7

0.9

Average

All

0.97

0.05

The merged model of Dataset II couldn’t detect the attack traffic in one of the

hosts of Dataset I. This host when tested with the instance based of Dataset I gave a

little higher DR of 0.7 but unfortunately the false positive rate is still high. During

analysis of this host, it is shown that this host data has a different pattern for its

features. It might be possible that Host B of Dataset I is under an attack that belongs

to a different category than the hosts whose attack traffic are detected. It is inferred

that, if a more robust merging criterion is applied, our method may become more

efficient and detect attacks from such eccentric data. Interesting point to note down

here is as shown in the Appendix Table A.11 even the retrained random forest model

of Dataset II couldn’t detect the attack traffic of Dataset I Host B.

Similarly, the merged model of Dataset II is tested on the Dataset III. Table 6.13

shows the result using the model based and instance based approach.

Comparison with Traditional Methods

Results comparisons between our proposed model and three aforementioned ap-

proaches for Dataset II are done. Since the results are pretty much comparable to

RF technique, comparison with other two are shown in Figures A.1 and A.2 in the

49

Table 6.13. Model of Dataset II Tested on Dataset III

Merged Model Based Approach

Hosts A B G H I J L M N P Q R

DR 1 0.89 1 1 1 1 1 1 1 1 1 1

FPR 0.004 0 0 0 0 0 0 0 0 0 0 0

Instance Based Approach

C D E F K O

0.74 1 0.92 1 0 0.5

0.1 0 0 0.5 0 0

Average

All

0.89

0.03

Appendix. Our model performed better on the unseen Dataset III giving DR of 0.89

as compared to 0.81 using traditional method of random forest.

Fig. 6.7. Macro Average Comparison for Dataset II with RF

50

6.5.3 Dataset III

Biggest maximal clusters are merged to obtain models for them. They are tested

for detection rate and false positive rate as described in above section.

Table 6.14. Dataset III - DR when Maximal Clusters Tested on each Other

Clusters GHIMPQ GIMOP

GHIMPQ 1 1

GIMOP 1 1

Table 6.15. Dataset III - FPR when Maximal Clusters Tested on each Other

Clusters GHIMPQ GIMOP

GHIMPQ 0 0

GIMOP 0 0

The Tables 6.14 and 6.15 show the detection rate and false positive rates respec-

tively with two clusters, GHIMPQ and GIMOP. Based on the results, the merged

cluster is using hosts G, H, I, M, P, O, Q which is circled in Figure 6.8. The merged

model is tested on each of the host of Dataset III shown in Table 6.16.

Table 6.16. Model of Dataset III Tested on Itself

Model Based Approach

Hosts G H I M O P Q

DR 1 1 1 1 1 1 1

FPR 0 0 0 0 0 0 0

Instance Based Approach

A B C D E F J K L N R

1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0

Average

All

1

0

51

Fig. 6.8. Merged Cluster for Dataset III

Inter-Dataset Testing using Model of Dataset III

Table 6.17 shows the model of Dataset III tested on each host of Dataset I using

the aforementioned techniques. The explanations given in subsection Inter-Dataset

Testing using model of Dataset II is applicable here contributing to the high false

positive rate for Host B of Dataset I.

Table 6.17. Model of Dataset III Tested on Dataset I

Merged Model Approach

Hosts A C D E F G H I J K L M N O P

DR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instance Based Approach

B

0.6

0.9

Average

All

0.97

0.05

52

Table 6.18 shows the results when the merged model of Dataset III is tested on

the hosts of Dataset II.

Table 6.18. Model of Dataset III Tested on Dataset II

Merged Model Based Approach

Hosts A B C D E F G H I J K L M N O P Q R S T U

DR 1

FPR 0

Average

All

1

0

Comparison with Traditional Methods

The results achieved for both the techniques i.e our method and random forests

are pretty much comparable, shown in Figure 6.9. Results comparison with Naive

Bayes and Logistic Regression are shown in Figures A.3 and A.4 in the Appendix.

Fig. 6.9. Macro Average Comparison for Dataset III with RF

53

6.5.4 Results Analysis

The macro average comparison among various models for the three datasets have

been shown in above sections. Although the macro average results are acceptable,

if considered on individual hosts level there are few hosts where attack traffic is not

detected by any of the inter-dataset models. These are the special cases discussed

here.

Dataset I: Host B

The attack pattern of Dataset I Host B appears to be different than the other

detected attacks. The attack traffic of this host is not detected by most of the inter-

dataset models except the Naive Bayes model of Dataset II but with lower detection

rate. The performance of various models is shown in Figure 6.10. As seen in this

figure, the FPR is very high in most of the cases.

Fig. 6.10. Various Inter-Dataset Models Tested on Host B of Dataset I

54

The scatter plots for this host has been drawn which shows the relationship be-

tween two variables in two dimensions. The plots show the pairwise relationships

from different perspectives and can help in analyzing and visualizing the bot pattern.

Here diagonal represents histogram of each attribute.

Fig. 6.11. Scatter Plot of Host B Dataset I

Dataset II: Host N

Various models give varying results for Host N of Dataset II. This is shown in

Figure 6.12 where using the proposed approaches of Datasets I and III give high DR

and low FPR, whereas traditional retrained inter-dataset models give very low DR.

This host has higher number of normal and botnet instances, the inter-dataset models

using our approach is robust enough to detect attack traffic of unseen data.

55

Fig. 6.12. Various Inter-Dataset Models Tested on Host N of Dataset II

The scatter plot matrix for this host is pretty similar to that of Host A of Dataset

III discussed in below section.

56

Dataset III: Host A

Similar to Host N of Dataset II, there are few inter-dataset traditional models

that didn’t perform well for this host of Dataset III. These models are of Dataset I

as shown in Figure 6.13. The scatter plot matrix of this host and Host N of Dataset

II discussed in above section are pretty similar. They are shown in Figures 6.14 and

6.15.

Fig. 6.13. Various Inter-Dataset Models Tested on Host A of Dataset III

Pattern of Dataset I Host B appears to be different than the others. So it is

concluded that majority learning is from Botnet behavior of II III. It is possible

that the undetected attack patterns are for DDOS or US bot category. The attack

data detected for Dataset I appears to be of IRC bot category which is the bot

category covered in Dataset I and II. Table 6.19 shows the botnets covered in our

experiments. However, there are hosts like Host C and D of Dataset III where our

approach outperformed traditional way of random forests as shown in Figures 6.16

(a) and (b).

57

Fig. 6.14. Scatter Plot of Host N Dataset II

Table 6.19. Botnets Included in Datasets

Dataset I Dataset II Dataset III

IRC, DDOS, US IRC, SPAM, CF SPAM, PS, HTTP

58

Fig. 6.15. Scatter Plot of Host A Dataset III

(a) (b)

Fig. 6.16. Detection Rate for Host C and D of Dataset III

59

7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this research, we proposed and implemented an innovative way to cluster hosts

utilizing machine learning models and data fusion algorithms with regards to intru-

sion detection. In a network with massive network flow data, clustering hosts that

have similar behavior with regards to normal and attack behaviors will be very ben-

eficial for detecting unusual or anomalous behavior. It can cluster a group of hosts

with anomalous behavior and identify the spread of the attacking in fast manner.

If the network flow behaviors are different among the host clusters in a network,

the generated models of different host clusters can be integrated to become a more

robust learning model that can detect different anomalous behaviors. The different

generated models from different host clusters have been integrated to test whether

the integrated model is robust compared to generating a new learning model based

on the massive network flows over the whole network.

We have proposed a method to merge the decision regions of the similar hosts

in a recursive way for the best features based on the information gain ranking. The

intuition behind merging the decision regions of features selected after chi2 feature

selection is to avoid retraining. In addition to retraining, it proves to avoid overfitting

when tested on new data.

The results obtained while testing the data with the integrated model are com-

pared with the results obtained by traditional way of training a machine learning

algorithm on network testing. It is observed that our proposed method gives much

better detection rate and lower false positive rates when tested on unseen data. Our

work has emphasized on the importance of finding similar hosts, so that they can be

put into a cluster and the model of the individual hosts in a particular cluster can be

60

integrated with hosts outside the cluster following an instance based learning. The

integrated method considers both the merged and instance based, the one which gives

the better detection rate and false positive rate for the host is considered.

7.2 Future Work

7.2.1 More Robust Method

In our research, we have tested the results with both the merged and instance

based methods, the considered result is the one with optimum DR and FPR. By

optimum we mean if the DR is good, FPR shouldn’t be too high. DR with a lower

value can be preferred but the FPR shouldn’t be too high.

In order to make our proposed model more robust, a better approach could be if

either the merged model or the instance based KNN detects an instance as attack, it

will be considered attack. It would be better if instead of selecting the optimum DR

and FPR for the hosts, each instance is tested with both the approaches and if either

of them detects it as attack, it is considered attack.

7.2.2 Integrating the Models of Hosts in Cluster

A lot of more ways can be explored for merging the models of cluster hosts. We

integrated the decision regions based on our observation that attack traffic possess

lower Source Port numbers and shorter duration in our case. Probability measures

may be deployed to integrate the decision regions. That means if decision region for a

feature of model A shows attack traffic has value less than a value ’a’ (let’s suppose)

and the decision region for the same feature for model B has attack traffic below a

value ’b’, the decision making node has the value either ’a’ or ’b’, the one having more

probability. Different machine learning approaches other than decision trees may be

explored for integrating

61

7.2.3 Dynamic Approach Towards Intrusion Detection

In our research, the proposed method is considered as misuse detection because

the attacks are known. In future, if anomaly detection techniques are applied, new

attack traffic can also be detected. K means clustering algorithm may be explored

for clustering the normal traffic using some distance measure.

REFERENCES

62

REFERENCES

[1] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison of
botnet detection methods,” computers & security, vol. 45, pp. 100–123, 2014.

[2] C. H. Rowland, “Intrusion detection system,” in US Patent 6, 405, 318. Google
Patents, June 11, 2002.

[3] M. Sheikhan, Z. Jadidi, and A. Farrokhi, “Intrusion detection using reduced-size
rnn based on feature grouping,” Neural Computing and Applications, vol. 21,
no. 6, pp. 1185–1190, 2012.

[4] H. Akramifard, L. M. Khanli, M. Balafar, and R. Davtalab, “Intrusion detection
in the cloud environment using multi-level fuzzy neural networks,” in Proceedings
of the International Conference on Security and Management (SAM). The
Steering Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), 2015, p. 75.

[5] “https://securityintelligence.com/applying-machine-learning-to-improve-your-
intrusion-detection-system/,” Applying Machine Learning to Improve Your
Intrusion Detection System, [Online]. Last Date Accessed: 12/1/2018.

[6] Y. Gong, S. Mabu, C. Chen, Y. Wang, and K. Hirasawa, “Intrusion detection
system combining misuse detection and anomaly detection using genetic network
programming,” in ICCAS-SICE, 2009. IEEE, 2009, pp. 3463–3467.

[7] A. Tajbakhsh, M. Rahmati, and A. Mirzaei, “Intrusion detection using fuzzy
association rules,” Applied Soft Computing, vol. 9, no. 2, pp. 462–469, 2009.

[8] T. Mehmood and H. B. M. Rais, “Machine learning algorithms in context of
intrusion detection,” in Computer and Information Sciences (ICCOINS), 2016
3rd International Conference. IEEE, 2016, pp. 369–373.

[9] “http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,” KDD Cup 1999
Data, [Online]. Last Date Accessed: 12/1/2018.

[10] K. Park, Y. Song, and Y.-G. Cheong, “Classification of attack types for intru-
sion detection systems using a machine learning algorithm,” in 2018 IEEE Fourth
International Conference on Big Data Computing Service and Applications (Big-
DataService). IEEE, 2018, pp. 282–286.

[11] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K. Nakao, “Statistical
analysis of honeypot data and building of kyoto 2006+ dataset for nids evalua-
tion,” in Proceedings of the First Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security. ACM, 2011, pp. 29–36.

63

[12] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan, “A sur-
vey of intrusion detection techniques in cloud,” Journal of network and computer
applications, vol. 36, no. 1, pp. 42–57, 2013.

[13] A. Patel, M. Taghavi, K. Bakhtiyari, and J. C. JúNior, “An intrusion detection
and prevention system in cloud computing: A systematic review,” Journal of
network and computer applications, vol. 36, no. 1, pp. 25–41, 2013.

[14] M. Shafiq, X. Yu, A. A. Laghari, L. Yao, N. K. Karn, and F. Abdessamia,
“Network traffic classification techniques and comparative analysis using machine
learning algorithms,” in Computer and Communications (ICCC), 2016 2nd IEEE
International Conference. IEEE, 2016, pp. 2451–2455.

[15] S. Zanero and G. Serazzi, “Unsupervised learning algorithms for intrusion detec-
tion,” in Network Operations and Management Symposium, 2008. NOMS 2008.
IEEE. IEEE, 2008, pp. 1043–1048.

[16] “Model-based machine learning christopher m. bishop microsoft research,” Cam-
bridge CB3 0FB, UK, [Online]. Last Date Accessed: 12/1/2018.

[17] C. Gao, H. Sun, T. Wang, M. Tang, N. I. Bohnen, M. L. Müller, T. Herman,
N. Giladi, A. Kalinin, C. Spino et al., “Model-based and model-free machine
learning techniques for diagnostic prediction and classification of clinical out-
comes in parkinsons disease,” Scientific reports, vol. 8, no. 1, p. 7129, 2018.

[18] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected
graph,” Communications of the ACM, vol. 16, no. 9, pp. 575–577, 1973.

[19] “https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-
have-to-use-it-e3c6186d008f,” One Hot Encode, [Online]. Last Date Accessed:
12/1/2018.

[20] N. B. Amor, S. Benferhat, and Z. Elouedi, “Naive bayes vs decision trees in
intrusion detection systems,” in Proceedings of the 2004 ACM symposium on
Applied computing. ACM, 2004, pp. 420–424.

[21] J. Kevric, S. Jukic, and A. Subasi, “An effective combining classifier approach
using tree algorithms for network intrusion detection,” Neural Computing and
Applications, vol. 28, no. 1, pp. 1051–1058, 2017.

[22] S. Drazin and M. Montag, “Decision tree analysis using weka,” Machine
Learning-Project II, University of Miami, pp. 1–3, 2012.

[23] A. I. Saleh, F. M. Talaat, and L. M. Labib, “A hybrid intrusion detection system
(hids) based on prioritized k-nearest neighbors and optimized svm classifiers,”
Artificial Intelligence Review, pp. 1–41, 2017.

[24] W.-C. Lin, S.-W. Ke, and C.-F. Tsai, “Cann: An intrusion detection system
based on combining cluster centers and nearest neighbors,” Knowledge-based
systems, vol. 78, pp. 13–21, 2015.

[25] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using neural net-
works and support vector machines,” in Neural Networks, 2002. IJCNN’02. Pro-
ceedings of the 2002 International Joint Conference, vol. 2. IEEE, 2002, pp.
1702–1707.

64

[26] L. Khan, M. Awad, and B. Thuraisingham, “A new intrusion detection system
using support vector machines and hierarchical clustering,” The VLDB journal,
vol. 16, no. 4, pp. 507–521, 2007.

[27] L. Wu, S. Li, X. Gan et al., “Network anomaly intrusion detection cvm model
based on pls feature extraction,” Control and Decision. China, vol. 32, pp. 755–
758, 2017.

[28] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,”
ACM transactions on intelligent systems and technology (TIST), vol. 2, no. 3,
p. 27, 2011.

[29] S. Garcia, “http://mcfp.weebly.com/the-ctu-13-dataseta-labeled-dataset-with-
botnet-normal-and-background-traffic.html.” The CTU-13 dataset. a labeled
dataset with botnet, normal and background traffic, [Online]. Last Date Ac-
cessed: 12/1/2018.

[30] “https://en.wikipedia.org/wiki/irc bot,” IRC Bot, [Online]. Last Date Accessed:
12/1/2018.

[31] S. Wei, J. Mirkovic, and E. Kissel, “Profiling and clustering internet hosts.”
DMIN, vol. 6, pp. 269–75, 2006.

[32] K. Xu, F. Wang, and L. Gu, “Network-aware behavior clustering of internet end
hosts,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp. 2078–2086.

[33] B. Li, M. H. Gunes, G. Bebis, and J. Springer, “A supervised machine learning
approach to classify host roles on line using sflow,” in Proceedings of the first
edition workshop on High performance and programmable networking. ACM,
2013, pp. 53–60.

[34] N. C. S. Iyengar, A. Banerjee, and G. Ganapathy, “A fuzzy logic based de-
fense mechanism against distributed denial of services attack in cloud environ-
ment,” International Journal of Communication Networks and Information Se-
curity (IJCNIS), vol. 6, no. 3, 2014.

[35] M. Sheikhan and Z. Jadidi, “Flow-based anomaly detection in high-speed links
using modified gsa-optimized neural network,” Neural Computing and Applica-
tions, vol. 24, no. 3-4, pp. 599–611, 2014.

[36] S. Mukkamala, A. Sung, and B. Ribeiro, “Model selection for kernel based
intrusion detection systems,” in Adaptive and Natural Computing Algorithms.
Springer, 2005, pp. 458–461.

[37] P. Casas, J. Mazel, and P. Owezarski, “Unsupervised network intrusion detection
systems: Detecting the unknown without knowledge,” Computer Communica-
tions, vol. 35, no. 7, pp. 772–783, 2012.

[38] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, “On the capability of
an som based intrusion detection system,” in Neural Networks, 2003. Proceedings
of the International Joint Conference, vol. 3. IEEE, 2003, pp. 1808–1813.

[39] Y. Guan, A. A. Ghorbani, and N. Belacel, “Y-means: A clustering method
for intrusion detection,” in Electrical and Computer Engineering, 2003. IEEE
CCECE 2003. Canadian Conference, vol. 2. IEEE, 2003, pp. 1083–1086.

65

[40] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering al-
gorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics),
vol. 28, no. 1, pp. 100–108, 1979.

[41] J. Yang, Z. Ye, L. Yan, W. Gu, and R. Wang, “Modified naive bayes algorithm
for network intrusion detection based on artificial bee colony algorithm,” in 2018
IEEE 4th International Symposium on Wireless Systems within the International
Conferences on Intelligent Data Acquisition and Advanced Computing Systems
(IDAACS-SWS). IEEE, 2018, pp. 35–40.

[42] M. Panda and M. R. Patra, “Network intrusion detection using naive bayes,”
International journal of computer science and network security, vol. 7, no. 12,
pp. 258–263, 2007.

[43] S. Mukherjee and N. Sharma, “Intrusion detection using naive bayes classifier
with feature reduction,” Procedia Technology, vol. 4, pp. 119–128, 2012.

[44] “https://en.wikipedia.org/wiki/bayes theorem,” Bayes Theorem, [Online]. Last
Date Accessed: 12/1/2018.

[45] G. D’Agostini, “A multidimensional unfolding method based on bayes’ theorem,”
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 362, no. 2-3, pp. 487–
498, 1995.

[46] Y. Wang, “A multinomial logistic regression modeling approach for anomaly
intrusion detection,” Computers & Security, vol. 24, no. 8, pp. 662–674, 2005.

[47] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion detection by ma-
chine learning: A review,” Expert Systems with Applications, vol. 36, no. 10, pp.
11 994–12 000, 2009.

[48] “https://ml-cheatsheet.readthedocs.io/en/latest/logistic regression.html,” Lo-
gistic Regression, [Online]. Last Date Accessed: 12/1/2018.

[49] J. Friedman, T. Hastie, R. Tibshirani et al., “Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors),”
The annals of statistics, vol. 28, no. 2, pp. 337–407, 2000.

[50] N. Farnaaz and M. Jabbar, “Random forest modeling for network intrusion de-
tection system,” Procedia Computer Science, vol. 89, pp. 213–217, 2016.

[51] Y. Chang, W. Li, and Z. Yang, “Network intrusion detection based on random
forest and support vector machine,” in Computational Science and Engineering
(CSE) and Embedded and Ubiquitous Computing (EUC), 2017 IEEE Interna-
tional Conference, vol. 1. IEEE, 2017, pp. 635–638.

[52] A. Andrzejak, F. Langner, and S. Zabala, “Interpretable models from distributed
data via merging of decision trees,” in Computational Intelligence and Data Min-
ing (CIDM), 2013 IEEE Symposium. IEEE, 2013, pp. 1–9.

[53] P. Strecht, “A survey of merging decision trees data mining approaches,” in Proc.
10th Doctoral Symposium in Informatics Engineering, 2015, pp. 36–47.

66

[54] J. Brownlee, “Machine learning mastery with python,” Machine Learning Mas-
tery Pty Ltd, pp. 100–120, 2016.

[55] “https://nlp.stanford.edu/ir-book/html/htmledition/feature-selectionchi2-
feature-selection-1.html,” Chi Square Feature Selection, [Online]. Last Date
Accessed: 12/1/2018.

[56] “https://chrisalbon.com/machine learning/feature selection/chi-squared-for-
feature-selection,” Chi Square Fearure Selection, [Online]. Last Date Accessed:
12/1/2018.

[57] G. H. John and P. Langley, “Estimating continuous distributions in bayesian
classifiers,” in Proceedings of the Eleventh conference on Uncertainty in artificial
intelligence. Morgan Kaufmann Publishers Inc., 1995, pp. 338–345.

APPENDIX

67

A. APPENDIX

Table A.1. Instances Count for Dataset I

Hosts A B C D E F G H I J K L M N O P Total

Normal 9045 471 43 42 44 55 33 26 30 48 43 31 35 44 46 41 10077

Botnet 153 9848 1 1 1 1 1 4 3 2 6 1 3 2 4 2 10033

Total 9198 10319 44 43 45 56 34 30 33 50 49 32 38 46 50 43 20110

Table A.2. Instances Count for Dataset II

Hosts A B C D E F G H I J K L M N O P Q R S T U Total

Normal 1 10 1 3 243 1 15 12 1 23 1 5 295 5893 9 3 1 8 3 6 8 6300

Botnet 5 2 5 3 2 30 2 8 1 1 15 1 1 785 3 1 1 8 4 5 3 886

Total 6 12 6 6 245 31 17 20 2 24 16 6 296 6678 12 4 2 16 7 11 11 7186

Table A.3. Instances Count for Dataset III

Hosts A B C D E F G H I J K L M N O P Q R Total

Normal 20376 18 18 3 1 2 5 30 39 21 16 50 19 26 14 52 58 6 20991

Botnet 7518 35 23 10 71 5 1 3 1 1 1 1 2 1 2 1 1 1 7678

Total 27894 53 41 13 72 7 6 33 40 22 17 51 21 27 16 53 59 7 28669

68

Table A.4. Dataset II Cross-testing F1-Measure of Decision Tree

Hosts B D E G H N O R S T U

B 1 1 0.01 1 0.37 0.17 1 0.42 1 0.4 1

D 1 1 0.01 1 0.37 0.17 1 0.42 1 0.4 1

E 1 1 1 1 1 1 1 1 1 1 1

G 0.4 0 1 0.42 0.28 0.45 0.4 0.2 0 0.25 0.34

H 1 1 1 1 1 1 1 1 1 1 1

N 1 1 1 1 1 1 1 1 1 1 1

O 1 1 1 1 1 1 1 1 1 1 1

R 1 1 1 1 1 1 1 1 1 1 1

S 1 1 0.01 1 0.37 0.17 1 0.73 1 0.4 1

T 0.25 1 1 0.2 1 0.45 0.25 0.42 1 1 0.34

U 1 1 0.01 1 0.37 0.17 1 0.73 1 0.4 1

Fig. A.1. Macro Average Comparison for Dataset II with NB

69

Table A.5. Dataset II Cross-testing F1-Measure of KNN

Hosts B D E G H N O R S T U

B 1 1 1 1 1 1 1 1 1 1 1

D 1 1 1 1 1 1 1 1 1 1 1

E 1 1 1 1 1 1 1 1 1 1 1

G 1 1 1 1 1 1 1 1 1 1 1

H 1 1 1 1 1 1 1 1 1 1 1

N 1 1 1 1 1 1 1 1 1 1 1

O 1 1 1 1 1 1 1 1 1 1 1

R 1 1 1 1 1 1 1 1 1 1 1

S 1 1 1 1 1 1 1 1 1 1 1

T 1 1 1 1 1 1 1 1 1 1 1

U 1 1 1 1 1 1 1 1 1 1 1

Fig. A.2. Macro Average Comparison for Dataset II with LR

70

Table A.6. Dataset II Cross-testing F1-Measure of SVM

Hosts B D E G H N O R S T U

B 1 1 1 1 1 0.54 1 1 1 1 1

D 1 1 1 1 1 1 1 1 1 1 1

E 1 1 1 1 0.8 1 1 1 1 0.67 1

G 1 0 1 1 0.8 0.6 1 1 0 0.67 1

H 0.25 1 1 0.5 1 1 0.25 1 1 1 1

N 1 1 1 1 1 1 1 1 1 1 1

O 1 1 1 1 1 1 1 1 1 1 1

R 0.67 1 1 0.73 1 1 0.67 1 1 1 1

S 1 1 1 1 1 1 1 1 1 1 1

T 0.25 1 1 0.2 1 1 0.25 1 1 1 0.34

U 1 1 1 1 1 1 1 1 1 1 1

Fig. A.3. Macro Average Comparison for Dataset III with NB

71

Table A.7. Dataset III Cross-testing F1-Measure of Decision Trees

Hosts A B C D E F G H I J K L M N O P Q R

A 1 0.5 0.5 0.3 0.2 0.5 0.4 0.8 1 1 0.4 1 0.8 1 0.4 1 1 1

B 0.9 1 1 1 1 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.8 0.8 0.8 0.6 0.6 1

C 0.9 1 1 1 1 0.7 1 1 1 1 1 1 1 1 1 1 1 1

D 0.4 0.2 0.2 1 0.4 0.2 0.4 0.2 0.4 0.3 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.3

E 0.2 0.8 0.7 0.7 1 0.4 0.7 0.7 0.2 0.4 0.5 0.3 0.6 0.4 0.8 0.1 0 0.1

F 0.2 0.4 0.3 0.4 0.5 1 0.1 0 0 0 0 0 0 0 0.1 0 0 0.1

G 0.9 0.9 0.9 1 0.6 0.7 1 1 1 1 1 1 1 1 1 1 1 1

H 0.9 0.9 0.8 0.6 0.5 0.7 1 1 1 1 0.4 1 1 1 0.8 1 1 1

I 0.9 0.9 0.8 0.6 0.5 0.7 1 1 1 1 0.4 1 1 1 0.8 1 1 1

J 0.2 0.2 0.3 0.1 0 0.4 0.4 0.7 0.5 1 0.4 1 0.4 0.6 0.4 0.1 0 0.4

K 0.2 0.8 0.7 0 0.3 0.6 0.4 0.4 0.2 0.5 1 0.3 0.4 0.4 0.4 0 0 1

L 0.2 0.2 0.3 0.1 0 0.4 0.4 0.7 0.5 0.8 0.4 1 0.4 0.4 0.4 0.1 0 0.4

M 0.9 0.9 0.9 1 0.6 0.7 1 1 1 1 1 1 1 1 1 1 1 1

N 0.2 0.2 0.3 0.1 0 0.4 0.4 0.7 0.5 1 0.4 1 0.4 1 0.4 0.1 0 0.4

O 0.9 1 1 1 1 0.7 1 1 1 1 1 1 1 1 1 1 1 1

P 0.9 0.9 0.8 0.8 0.6 0.7 1 1 1 1 0.4 1 1 1 1 1 1 1

Q 0.9 0.9 0.8 0.6 0.5 0.7 1 1 1 1 0.4 1 1 1 0.8 1 1 1

R 0.2 0.7 0.7 0 0.2 0.4 0.3 0.5 0.1 0.3 0.3 0.1 0.5 0.3 0.2 0 0 1

72

Table A.8. Dataset III Cross-testing F1-Measure of KNN

Hosts A B C D E F G H I J K L M N O P Q R

A 1 0.6 0.5 0.7 0.3 0.5 0.4 1 1 1 0.4 1 0.8 1 0.4 1 1 1

B 0.9 1 0.9 1 0.4 0.7 0.7 0.9 0.8 0.7 1 0.8 0.7 0.8 0.8 0.6 0.6 1

C 0.9 0.8 1 0.3 0.4 0.7 1 1 1 1 1 1 1 1 1 1 1 1

D 0.9 0.6 0.6 1 0.5 0.6 1 0.3 0.6 0.5 0.4 0.5 0.7 0.4 0.7 1 0.8 0.7

E 0.9 0.8 0.9 1 1 0.7 1 0.3 0.5 0.4 0.6 0.5 0.6 0.3 0.7 0.6 0.6 0.6

F 0.9 0.8 1 0.3 0.3 1 1 0.9 0.5 1 1 1 0.8 0.5 1 1 0.5 1

G 0.9 0.8 0.9 0.3 1 0.7 1 1 1 1 1 1 1 1 1 1 1 1

H 0.9 0.8 0.8 0.3 0.6 0.7 1 1 1 1 0.4 1 1 1 0.8 1 1 1

I 0.9 0.8 0.8 0.1 0.5 0.7 1 1 1 1 0.4 1 1 1 0.8 1 1 1

J 0.9 0.8 0.8 0.1 0.2 0.7 1 0.9 1 1 0.4 1 1 1 0.8 1 1 1

K 0.9 0.8 1 0.3 0.3 0.7 1 1 1 1 1 1 1 1 1 1 1 1

L 0.9 0.8 0.8 0.1 0.4 0.7 1 1 1 1 0.4 1 1 1 0.8 1 1 1

M 0.9 0.8 0.9 0.1 0.4 0.7 1 1 1 1 1 1 1 1 1 1 1 1

N 0.9 0.7 0.8 0.1 0.4 0.7 1 1 1 1 0.4 1 1 1 0.8 1 1 1

O 0.9 0.8 1 0.3 1 0.7 1 1 1 1 1 1 1 1 1 1 1 1

P 0.9 0.8 0.8 0.3 0.6 0.7 1 1 1 1 0.4 1 1 1 1 1 1 1

Q 0.9 0.8 0.8 0.3 0.5 0.7 1 1 1 1 0.4 1 1 1 0.8 1 1 1

R 0.9 0.8 1 0.3 0.5 0.7 1 1 1 1 1 1 1 1 1 1 1 1

73

Table A.9. Dataset III Cross-testing F1-Measure of SVM

Hosts A B C D E F G H I J K L M N O P Q R

A 1 0.2 0.3 0.1 0 0.2 1 1 1 1 1 1 1 1 1 1 1 1

B 0.2 1 0.3 1 1 1 0.1 0 0 0 0 0 0 0 0.1 0 0 0.1

C 0.2 0.4 1 1 1 1 0.1 0 0 0 0 0 0 0 0.1 0 0 0.1

D 0.2 0.4 0.3 1 1 1 0.1 0 0 0 0 0 0 0 0.1 0 0 0.1

E 0.2 0.4 0.3 1 1 1 0.1 0 0 0 0 0 0 0 0.1 0 0 0.1

F 0.2 0.4 0.3 1 1 1 0.1 0 0 0 0 0 0 0 0.1 0 0 0.1

G 1 0.2 0.3 0.1 0 0.2 1 1 1 1 1 1 1 1 1 1 1 1

H 1 0.2 0.3 0.1 0 0.2 1 1 1 1 1 1 1 1 1 1 1 1

I 1 0.2 0.3 0.1 0 0.2 1 1 1 1 1 1 1 1 1 1 1 1

J 1 0.2 0.3 0.1 0 0.2 1 1 1 1 1 1 1 1 1 1 1 1

K 1 0.2 0.3 0.1 0 0.2 1 1 1 1 1 1 1 1 1 1 1 1

L 1 0.2 0.3 0.1 0 0.2 1 1 1 1 1 1 1 1 1 1 1 1

M 1 0.2 0.3 0.1 0 0.2 1 1 1 1 1 1 1 1 1 1 1 1

N 1 0.2 0.3 0.1 0 0.2 1 1 1 1 1 1 1 1 1 1 1 1

O 1 0.2 0.3 0.1 0 0.2 1 1 1 1 1 1 1 1 1 1 1 1

P 1 0.2 0.3 0.1 0 0.2 1 1 1 1 1 1 1 1 1 1 1 1

Q 1 0.2 0.3 0.1 0 0.2 1 1 1 1 1 1 1 1 1 1 1 1

R 1 0.2 0.3 0.1 0 0.2 1 1 1 1 1 1 1 1 1 1 1 1

Table A.10. Random Forest Model of Dataset II Tested on Itself

Hosts A B C D E F G H I J K L M N O P Q R S T U Avg

DR 1

FPR 0

74

Table A.11. Random Forest Model of Dataset II Tested on Dataset I

Hosts A B C D E F G H I J K L M N O P Avg

DR 1 0.69 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.98

FPR 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05

Table A.12. Random Forest Model of Dataset II Tested on Dataset III

Hosts A B C D E F G H I J K L M N O P Q R Avg

DR 1 0.91 0.73 0.6 0.85 1 1 1 1 1 0 1 1 1 0.5 1 1 1 0.81

FPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.13. Random Forest Model of Dataset III Tested on Itself

Hosts A B C D E F G H I J K L M N O P Q R Avg

DR 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

FPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.14. Random Forest Model of Dataset III Tested on Dataset I

Hosts A B C D E F G H I J K L M N O P Avg

DR 1 0.78 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.98

FPR 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05

Table A.15. Random Forest Model of Dataset III Tested on Dataset II

Hosts A B C D E F G H I J K L M N O P Q R S T U Avg

DR 1

FPR 0

75

Fig. A.4. Macro Average Comparison for Dataset III with LR

