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ABSTRACT

Haas, Kyle D. M.S.E.C.E., Purdue University, December 2018. Transfer Learning for
Medication Adherence Prediction From Social Forums Self-Reported Data. Major
Professor: Zina Ben-Miled.

Medication non-adherence and non-compliance left unaddressed can compound

into severe medical problems for patients. Identifying patients that are likely to

become non-adherent can help reduce these problems. Despite these benefits, moni-

toring adherence at scale is cost-prohibitive. Social forums o↵er an easily accessible,

a↵ordable, and timely alternative to the traditional methods based on claims data.

This study investigates the potential of medication adherence prediction based on

social forum data for diabetes and fibromyalgia therapies by using transfer learning

from the Medical Expenditure Panel Survey (MEPS).

Predictive adherence models are developed by using both survey and social forums

data and di↵erent random forest (RF) techniques. The first of these implementations

uses binned inputs from k-means clustering. The second technique is based on ternary

trees instead of the widely used binary decision trees. These techniques are able to

handle missing data, a prevalent characteristic of social forums data.

The results of this study show that transfer learning between survey models and

social forum models is possible. Using MEPS survey data and the techniques listed

above to derive RF models, less than 5% di↵erence in accuracy was observed between

the MEPS test dataset and the social forum test dataset. Along with these RF

techniques, another RF implementation with imputed means for the missing values

was developed and shown to predict adherence for social forum patients with an

accuracy >70%.
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This thesis shows that a model trained with verified survey data can be used

to complement traditional medical adherence models by predicting adherence from

unverified, self-reported data in a dynamic and timely manner. Furthermore, this

model provides a method for discovering objective insights from subjective social

reports. Additional investigation is needed to improve the prediction accuracy of the

proposed model and to assess biases that may be inherent to self-reported adherence

measures in social health networks.
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1. INTRODUCTION

Non-adherence is one of the most costly medical expenditures. As of 2015, patients

non-adherence cost in the United States reached $290 billion dollars [1]. In addition

to being a substantial amount, this cost is a significant portion of healthcare spending

where a large proportion of the cost of non-adherence arises from prescriptions that

are never filled or not taken as prescribed [2]. While the financial losses are staggering,

the most prominent motivation for better patient adherence is saving many of the

patients whose conditions worsen due to poor compliance. Indeed, the US reported

close to 125,000 deaths related to inadequate patient adherence [3].

Predicting why and when a patient becomes non-adherent has been a topic of re-

search for decades [3, 4] and the costs and complications surrounding non-adherence

makes it a focal issue in healthcare. Traditional prediction methods often use claims

data aggregated from various health institutions. While claims data tend to be struc-

tured, they are often not accessible and may su↵er from a time lag due to the needed

pre-processing and de-identification. Social media data, on the other hand, are easily

accessible, available in real-time, and cost-e↵ective. Indeed, many studies have taken

advantage of these data to study health trends and to gain insight into large-scale

population health.

This thesis investigates multiple machine-learning models constructed from RF

classifiers. Using transfer learning, the thesis also explores the possibility of predicting

medication adherence using self-reported health information from publicly available

profiles on a social forum. In particular, we are targeting medication adherence for

two disease conditions: diabetes and fibromyalgia. These RF adherence models are

trained using survey data and shown to predict self-reported social forum adherence

measures. The contribution of this thesis consists of a model built upon accurate

survey data that can:
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• provide insights into patient adherence from unverified social forum data, and

• help define an objective measure for adherence from subjective social forum

reports.

The remainder of this thesis is organized as follows: Chapter 2 of the thesis

summarizes related work, Chapter 3 describes the methodology and the datasets

used in this study to develop the proposed models, Chapter 4 discusses the prediction

accuracy of these models, and Chapter 5 summarizes the main findings of the study

and outlines direction for future work.
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2. RELATED WORK

Identifying the patients at risk and the reasons for medication non-adherence can help

guide the development of remedial and preventive plans. For many years, researchers

have stipulated that many factors can influence non-adherence [3] including: poor

patient-doctor interactions and lack of overall health understanding. The multitude

of factors and their potential interdependence make profiling patients at risk for non-

adherence di�cult. Recently, the availability of large datasets from various sources

allowed the development of successful non-adherence prediction models. For instance,

Express Scripts developed a model that uses over 300 input parameters to predict

adherence [5]. These parameters include patients demographic, clinical, and genomic

features. A prediction accuracy of 98% was reported for this model with a lead-time of

6-12 months before patients stop taking their treatments [5]. Similarly, Allazo Health

[6] and FICO [7] developed data-driven medication adherence prediction models. The

latter assigns each patient a score representing the likelihood the patient will become

non-adherent. These models are based on di↵erent input features, but they all seek

to identify patients at risk of non-adherence. The focus of other research studies

related to medication adherence is on the type of data used to study adherence.

In [8], pharmaceutical retail data were compared to insurance claims data. While the

findings of [8] were inconclusive, the source and validity of the data remains to be a

topic of interest.

The use of advanced technology in predicting adherence or assisting non-adherent

patients has significantly improved. Within the past year, studies have been con-

ducted to better track and monitor non-adherent patients with the help of smart-

phones [9]. The result of these studies show that many patients better followed their

prescribed treatments when they were required to take a selfie of themselves con-
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suming their pills [9]. Improvements rates ranged from 50 to 67%. The smartphone

application used in this case relied on a machine-learning engine that analyzes the

image and validates whether or not the patient took the right treatment.

In this thesis, two prediction medication adherence models are developed for each

disease condition. Both models are based on RF [10] classifiers. RF has been success-

fully used for patient outcome related classifiers [11] primarily because of its ability

to process high dimensional feature spaces and to handle categorical features. For

instance, RF was used in [12] to predict the response of patients to various drugs.

This study showed that RF outperformed several other classification techniques over

a feature space ranging from as few as five features to as many as 1,000 features. In

another study [13], RF was used to classify patients with liver disease. This study

reports that RF outperformed other classifiers.

The methodology proposed in this thesis leverages publicly available data while

previous medication adherence models [5–7] primarily used insurance claims data.

The benefits of social media data for trend analysis in large population health have

been shown in several previous applications. For instance, twitter data have been used

to study allergen e↵ects across the United States [14] and were shown to produce a

high volume of information related to adverse event monitoring of pharmaceutical

products [15]. With regards to patient adherence, social media was used to engage

patients in order to improve their compliance [16, 17]. Predicting adherence using

social data was not previously addressed, however social media data were used to

build a machine-learning model that can correctly predict stress [18]. This study

also compared di↵erent machine learning techniques including neural networks, RF,

support vector machines, and Bayesian networks, all leading to an accuracy level

higher than 70%.

Claims data are accurate and include detailed information for each patient, while

social health data often lack accuracy due to the subjectivity of the unverifiable,

self-reported information posted by social forum participants [19]. The growth and

abundance of social data make them a valuable source of knowledge. However, using
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this data is constrained by these accuracy and validity concerns. Indeed, models

trained using social data may be learning inaccurate reports. Transfer learning can be

used to address this issue. Transfer learning is able to transfer the learning acquired in

one environment to another environment [20] thereby relaxing accuracy requirements

which are often associated with traditional machine learning methods. This approach

was successfully used in many studies, including social media applications [21, 22].

For instance, transfer learning was used to help predictive modelling of degen-

erate biological systems [23]. These systems are defined as degenerate if they are

structurally di↵erent, but yield the same output or perform the same functionality.

These output and functionality consistencies were able to translate through transfer

learning and were found to help model new biological domains.

The objective of this thesis is to complement the above-mentioned e↵orts by using

a novel transfer learning approach that can leverage social forum data. Social health

forum data can enable adherence analysis at a very large scale and with a wide

spectrum of coverage extending beyond single institutions. However, this self-reported

data may su↵er from overestimation [24] and missing values. We explore the impact

of these characteristics as well as the predictive ability of various features in the

proposed models.
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3. METHODS

3.1 Data Sources

Two data sources are used to collect patient information for the proposed ad-

herence prediction models: the Medical Expenditure Panel Survey (MEPS) [25] and

PatientsLikeMe [26]. Patients from both data sources were filtered in order to ex-

tract only the patients that are taking the treatments associated with diabetes or

fibromyalgia. The list of treatments for each of these disease conditions is given in

Table 3.1. Treatments were selected if they were taken by at least a single patient on

PatientsLikeMe for the given condition.

Table 3.1: List of targeted treatments for each condition

Insulin Glargine Glimepirade Insulin Aspart

Diabetes Liraglutide Insulin Lispro Metformin

Glyburide

Fibromyalgia Zolpidem Duloxetine Pregabalin

Gabapentin Tramadol

PatientsLikeMe [26] is a public forum where patients post, discuss, and review

many of their current medications and conditions. The data collected from Patients-

LikeMe originated from the most current, publicly available treatment evaluations

and resulted in a total of 92 diabetic records and 357 fibromyalgia records. Pa-

tients provide evaluations for treatments in a structured format that includes their

self-reported adherence to the treatment. While this aspect forgoes the need for an

adherence metric, relying uniquely on the patients assessment makes the adherence
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classification subjective. This form of self-reporting from public sources has been

shown in previous studies to su↵er from overestimation [24]. This is a limitation of

the predictive models developed by using self-reported data and is the primary reason

for using transfer learning.

The second data source is the MEPS database which is provided by the Agency for

Healthcare Research and Quality (AHRQ) [25]. It is a collection of surveys assigned

to a national representing population of individuals. Participants are questioned in

a series of five rounds over a two-year interval. During each round, participants are

asked to answer a survey questionnaire that focuses on pertinent health information

consisting of health status, medical conditions, prescribed medications, insurance cov-

erage and more. Due to the span of the study, multiple panels of participants overlap.

Each year, a new panel of participants is enrolled in the study while previous year

panel finishes the second year. This panel overlap provides an insight into nationwide

dynamic changes.

The demographic breakdown mostly follows similar trends across the two disease

conditions (Table 3.2) with few di↵erences. For both diabetes and fibromyalgia, the

average social forum patient was about 5 to 10 years younger. In regards to the

region of residence, the largest variance occurs in the southern region population.

The patient population in this region was approximately 40% for both conditions

in MEPS, while no single population exceeded 30% in the social forum data set.

Females represent the majority population in all four cases (two MEPS data sets and

two forum data sets) with the fibromyalgia female population in the social forum data

set exceeding 90%.

3.2 Features

The features extracted for each patient from both data sources include:

• TOM: Type of Medication (Table 3.1)

• YTT: Years Taking Treatment
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Table 3.2: Demographic statistics for each condition

Diabetes Fibromyalgia

MEPS (3242 Samples) Social (92) MEPS (3044) Social (357)

Age 59.9 ± 14.0 54.5 ± 11.6 58.0 ± 14.9 49.1 ± 10.7

Gender

-Male 1450 (44.7%) 35 (38.0%) 995 (32.7%) 27 (7.6%)

-Female 1,703 (52.5%) 56 (60.9%) 1,944 (63.9%) 325 (91.0%)

-Not Listed 89 (2.7%) 1 (1.1%) 105 (3.4%) 5 (1.4%)

Region

-Northeast 479 (14.8%) 3 (3.3%) 400 (13.1%) 55 (13.6%)

-Midwest 668 (20.6%) 24 (26.1%) 652 (21.4%) 84 (20.8%)

-South 1,292 (39.9%) 26 (28.3%) 1,308 (43.0%) 110 (27.3%)

-West 693 (21.4%) 16 (17.4%) 561 (18.4%) 92 (22.8%)

-Not Listed 110 (3.4%) 23 (25.0%) 123 (4.0%) 16 (4.5%)

• AED: Amount Taken Each Day

• SOM: Strength of Medication (e.g., 500, 1000 mg etc.)

• OPP: Out-of-Pocket Payments (Table 3.3)

• REG: Region of Living (Northeast, Midwest, West, or South)

• AGE: Age at the end of the study, or last known age

• GEN: Gender
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One of the challenges of using multisource data is ensuring that each feature is

present in the same format in both sources. In particular, the Out-of-Pocket Payments

(OPP) feature is categorized according to Table 3.3. While MEPS gave the exact

amount paid for each prescription, the social forum data only listed ranges for OPP.

Similarly, patient records from the social forums were mapped in this study to the

appropriate US census region based on their state of residence. All MEPS records

directly list census regions.

Table 3.3: Categorization of out-of-pocket payments (OPP)

Out-of-pocket payments (per month) Quantized Value

<$25 0

$25-50 1

$50-100 2

$100 3

>$200 4

An additional data-preprocessing step was performed in the case of diabetic treat-

ments. Some diabetic medicines are in the form of injectable liquids (i.e., ml) while

others are in the form of pills (i.e., mg). Each of these types of dosage forms was

assigned its own Strength of Medication feature (i.e., SOM-mg, SOM-ml).

3.3 Target Value Assignment

The target outcome for the model is medication adherence. Patients are assigned

a value of 1 if they are adherent or 0 otherwise. As mentioned above, the social

forum dataset includes a self-reported adherence metric. Patients select one of four

adherence categories (i.e., always, usually, sometimes, or never taken as prescribed).
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For this study, the always category is mapped to the adherence class (i.e., adherence

= 1) while the other three categories are mapped to the non-adherent class (i.e.,

adherence = 0).

The MEPS survey data does not include a quantitative metric for medication ad-

herence. Therefore, a medication adherence metric was developed based on previous

studies by other researchers. In [27], eleven di↵erent medication adherence metrics

were evaluated and the study recommended Medication Refill Adherence (MRA),

which is defined as: The total days supply divided by the number of days of study

participation, multiplied by 100. For example, a patient with a total of 200 days

supplied over a period of 365 days will have an MRA of 55%. This metric can easily

be derived from the MEPS dataset for all patients. However, one of its shortcomings

is that it does not account for scenarios where patients are proactive in refilling their

prescriptions or accidentally misplace medications. In these cases, the patients MRA

value would become skewed due to the irregularity of pills supplied. Since the number

of days supply was necessary to calculate MRA, MEPS records that did not include

this parameter for a given medication were omitted. Moreover, four di↵erent thresh-

old MRA values are considered since there is no predefined correspondence between

MRA ranges and adherence. These thresholds are: 80%, 65%, 45%, and 35%.

All records containing a therapy listed in Table 3.1 for each target disease were

retrieved from panels 17-19 (2012-2015) of the MEPS dataset. The above data ex-

traction and scrubbing steps resulted in 3,242 MEPS diabetic and 3,044 MEPS fi-

bromyalgia patient records.

3.4 Classifier

The classifier model proposed for medication adherence prediction is based on

Random Forest (RF). RF consists of an ensemble of decision trees [10]. In this case,

the number of decision trees is set to 100. Consensus among the decision trees is

developed by using a technique called Bagging or Bootstrap Aggregation. That is,
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for each tree a predefined number of records are selected randomly from the input

dataset with replacement. Based on this selection, a given record may be selected

more than once in a given tree while other records may not be selected entirely. During

the construction of each tree, a random subset of the input features is considered at

each node. In this thesis, the size of this subset was set to
p
n where n is the total

number of input features in the dataset. The randomized selection of both records

and features from the input dataset help generate unique decision trees in the RF

ensemble.

The best feature at each level of a given decision tree is determined by using the

greatest reduction in impurity [28]. The parent node in the tree always has a higher

impurity (less homogenous set of records) than all its children. A homogenous set

of records corresponds to the case were all the records belong to the same class (i.e.,

adherent class or non-adherent class). The impurity of a node [28] is defined by:

I = 1� (A+)
2 � (A�)

2 (3.1)

where, A+ and A- are the percentage of adherent and non-adherent patients pre-

sented to the node in a given tree, respectively. The change in impurity between the

parent node (p) and its left (l) and right (r) child nodes is given by:

4I = Ip � PlIl � PrIr (3.2)

where, P l and P r represent the percent of the total number of the parent records

that are mapped to the left and right branches, respectively.

In order to split the records into the appropriate right or left branches at each node,

the selected feature requires a reference value. All possible values for a given feature

are iteratively evaluated until the best split is found (i.e., branches with the lowest

impurity). In general, features can either be numeric or categorical. For instance, the

feature AGE is numeric. When AGE is used as a feature for a given node in the tree,

records that have an AGE value greater than the reference are assigned to the right

branch of the node and the remaining records are assigned to the left branch. For the
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categorical features, such as REG, patient records that have the same value as the

reference are assigned to the right branch while the remaining records are assigned

to the left branch.

One of the limitations of the above split classification is that it does not adequately

handle patient records with missing feature values. Approximately 40% and 55% of

the fibromyalgia and diabetes patients, respectively had at least one missing entry in

the social forum dataset. A default split can be adopted in this case, where the record

with missing value is arbitrarily assigned to the left branch. Alternatively, the record

can be eliminated. Because of the prevalence of missing values in social data, the

latter alternative was not viable. A default split also does not appropriately handle

missing values. Two RF models are therefore proposed in this thesis in an attempt

to address this shortcoming.

3.4.1 Random Forest - Binning (RFB)

In the first model, all numeric features are binned using k-means clustering [29].

An additional bin is then added to represent the case when the feature value is

missing. Once the features are distributed across the bins, each node can split the

records categorically.

K-means clustering is an iterative algorithm designed to find a given number of

cluster centroids. Its heuristic approach provides a versatile and e↵ective partitioning

of a dataset. The algorithm begins by randomly selecting a defined number of means,

and assigns each sample to the nearest mean. Following this assignment, the cen-

troid is calculated and becomes the new mean for this cluster. All samples are then

reassigned to the nearest cluster mean and the process continues until the algorithm

converges to a local minimum.

In this study, there were four numeric features:

• YTT: Years Taking Treatment

• AED: Amount Taken Each Day
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• SOM: Strength of Medication

• AGE: Age at the end of the study, or last known age

These four features were assigned five bins in order to stay consistent with the

approximate number of bins for other categorical features such as OPP and REG.

In the case of AED, no clustering algorithm was used as most patients administered

their therapies 1-4 times daily. Any patient with a frequency above four was assigned

to the 4-time daily cluster. For the other three features, the centroids determined by

the k-means clustering for each disease condition are given in Table 3.4. Since this

study covers multiple knowledge domains (social forums and MEPS survey), all data

from each domain were aggregated together by feature, ensuring all feature entries

would be represented before the partitioning began.

Table 3.4: Clustering centroids for three numeric features for patient records under

a given condition

Diabetes Fibromyalgia

Bin YTT SOM AGE YTT SOM AGE

0 Missing Missing Missing Missing Missing Missing

1 1.82 yr 9922.3 mg 79.1 yr 22.1 yr 13.64 mg 62.2 yr

2 36.3 yr 500.0 mg 35.5 yr 11.64 yr 121.6 mg 77.1 yr

3 17.7 yr 5.5 mg 52.8 yr 5.41 yr 444.5 mg 49.6 yr

4 8.9 yr 39.0 mg 65.6 yr 1.04 yr 54.0 mg 33.7 yr
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3.4.2 Random Forest - Ternary Tree (RFT)

In the second model, each node of the decision tree has three children: a left

child, a middle child, and a right child. Unlike the RFB implementation, records

with missing values are now assigned to the third child instead of being assigned to

a specific bin signifying a missing record. The advantage of the RFT model is that it

does not require additional data preprocessing as in the case of binning for the RFB

model. However, the underlying RF ensemble-learning algorithm has to be modified

in order to accommodate the additional child and to ensure that the missing value is

never selected as a reference in the split at any node. In particular, we modified the

change in impurity (Equation 3.2) to account for the addition of the third child node.

4I = Ip � PlIl � PrIr � PmIm (3.3)

3.4.3 Training/Testing using Random Forest

Classifier models are built using a training set, while their performance is evaluated

using a testing set. The training set is comprised of samples the model uses to learn

the factors that help assign these samples to their target classes. In this study, each

sample represents a unique patient record for a given treatment (Table 3.1), while

the target classes are adherent/non-adherent. Moreover, training classes are balanced

(i.e., an equal number of sample records in both classes), which ensures any knowledge

the model learns is not an artifact of a bias towards the larger represented class.

Each tree in the RF algorithm is trained using a bag of samples from the training

set. Additionally, the depth of the tree grows until the leaf nodes map to a single class

(i.e., the only samples remaining in the node are a homogeneous set of adherent/non-

adherent patients) or the leaf node can no longer split further. In most cases, the

former is true. However, there are select cases where all the remaining samples may
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have the same features characteristics in a leaf node. If this infrequent event happens,

the tree no longer grows down this branch and is treated di↵erently for the purposes

of testing.

Once the model is trained, a testing set of patient records which are independent

of the training set is used to evaluate the classifier model. This is a fundamental

component of machine-learning as this can now assess whether the model actually

learned patient adherence or whether the model may have overfit to the training

data. A good prediction accuracy for the testing set is an indication that the model

generalizes well.

Fig. 3.1: Traditional RF implementation

Testing is performed in RF by taking each sample in the testing set and traversing

each tree. Once the sample reaches to a leaf, the tree provides a single vote for

the class represented by the leaf node. After all trees have voted for a given test

sample, a collective democratic decision from the forest is made by selecting the class

with the most votes. If the leaf node of a tree is not a homogeneous set, the tree
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provides a partial vote for each class which is representative of the distribution of the

heterogeneous node. For instance, if the leaf node has one non-adherent sample and

three adherent samples, the trees provides a quarter vote for the non-adherent class

and a three-quarter vote for the adherent class.
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4. RESULTS

4.1 MRA Threshold and Class Breakdown

Transfer learning between the MEPS data and the social data is used towards

adherence prediction. Using this approach, models are trained on MEPS survey data

and then tested by using the social forum data. As previously mentioned, the MEPS

dataset does not contain a quantitative adherence measure. Therefore, adherence was

varied according to four di↵erent MRA thresholds (80%, 65%, 45%, and 35%). The

breakdown of the number of adherent/non-adherent records in the MEPS dataset for

di↵erent MRA thresholds is shown in Table 4.1. The last row of Table 4.1 also shows

the breakdown of social forum patients.

Table 4.1: Breakdown of records according to adherence/non-adherence for varying

MRA thresholds for the MEPS dataset

Diabetes Fibromyalgia

MRA Adherent Non-Adherent Percent Adherent Non-Adherent Percent

Threshold Split Split

80% 1,374 1,868 42/58 714 2,330 23/77

65% 1,698 1,544 52/48 906 2,138 30/70

45% 2,321 921 72/28 1,314 1,730 43/57

35% 2,577 665 79/21 1,571 1,473 52/48

PatientsLikeMe 70 22 76/24 281 76 79/21
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This thesis relied upon publicly available patient self reports from a health social

forum. From Table 4.1, the adherence splits for both disease conditions in the social

forum data are highly skewed towards adherent patients compared to other high

MRA threshold splits in the MEPS data. While each model tested in this study was

trained on balanced datasets, it is of note that most patients on the social forum

classify themselves as adherent, however most patient records from the MEPS survey

indicate a much more balanced adherent/non-adherent distribution.

This di↵erence may be attributed to two causes, either the social forum patients

are overestimating their adherence, or these patients who are active participants in

social health forums may be more engaged in their health which may be indicative of

a greater potential for being adherent compared to the average patient. Both of these

potential di↵erences between social forum and MEPS survey patients are considered

throughout this thesis.

4.2 Diabetes Adherence Prediction

Diabetes was selected as the first disease condition of interest. Two models were

trained at each MRA threshold listed in Table 4.1 using the two RF algorithms

described above (i.e., RFT and RFB). Samples were randomly removed from the

higher represented class in each case until a 50/50 balance between adherent and

non-adherent classes was obtained in the training dataset. For instance, 494 random

non-adherent samples were removed for the models at the MRA 80% threshold. This

process was repeated for both the 45% and 35% thresholds. The MRA 65% threshold

was close enough to an even split that no samples were removed for this training

dataset. Table 4.2 shows the number of samples used for training and testing.

Table 4.2 also shows the accuracy of the models (i.e., the number of correctly

classified test samples against the total number of samples) along with the F 1 score

which is a composite metric that represents a weighted balance between the recall

and the precision of the models. Recall accounts for the number of correctly classified
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adherent samples against the total number of actual adherent samples in the test set.

Precision is the total number of correctly classified adherent samples against the total

number of samples classified as adherent. These performance metrics are reported in

Table 4.2 for the more accurate of the two RF implementations at each threshold.

Table 4.2: MEPS diabetes test results from MEPS trained models

MRA Threshold Best Model Training Size Testing Size Accuracy F1 Score

80% RFT 2,198 550 58.9% 60.6

65% RFB 2,603 650 62.3% 66.9

45% RFB 1,424 356 61.6% 62.7

35% RFT 1,064 266 64.3% 67.6

We then selected the best performing model (RFT - 35% MRA) and tested the

model against the 92 public diabetic patient records from PatientsLikeMe. The pre-

diction accuracy for this test is 41.3% with an F 1 score of 40.6. These results show a

large di↵erence in prediction accuracy between the social forum records (41.3%) and

the MEPS records (64.3%) and appear to imply that transfer learning is not a valid

approach for social medication adherence prediction. However, this di↵erence may

be due to the small size of the social forum testing dataset.

4.3 Fibromyalgia Adherence Prediction

In order to investigate the root cause of this di↵erence, we performed the same

analysis for records with fibromyalgia therapies. As in the case of diabetes, MRA

thresholds were also varied and random samples were removed from the larger class

until the training datasets for MRA thresholds 80%, 65%, and 45% were balanced

between adherent and non-adherent classes. For the 35% MRA threshold, the distri-
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bution between the adherent and non-adherent classes was approximately balanced

in the fibromyalgia dataset. Therefore, no samples were removed from this training

dataset. The results for the fibromyalgia models are shown in Table 4.3.

Table 4.3: MEPS fibromyalgia test results from MEPS trained models

MRA Threshold Best Model Training Size Testing Size Accuracy F1 Score

80% RFT 1,143 285 70.2% 72.5

65% RFT 1,450 362 69.9% 70.0

45% RFT 2,103 525 73.0% 74.6

35% RFB 2,436 609 77.3% 79.3

The best performing model (i.e., RFB - MRA threshold 35%) in Table 4.3 was

selected and its aptitude for transfer learning was tested by using the 357 fibromyalgia

records retrieved from PatientsLikeMe. The prediction accuracy for this test is 54.9%

with an F 1 score of 65.5. As in the case of diabetes (Table 4.2), there is a large

di↵erence in prediction accuracy between the social forum test set (54.9%) and the

survey test set (77.3%).

These results for both diabetes and fibromyalgia seem to indicate that transfer

learning between survey data and social forum data is not possible. In order to under-

stand the reasons behind the failure of the above transfer learning approach, we con-

ducted an experiment to analyze the di↵erences between the models for fibromyalgia.

Diabetes was not chosen because of the limited number of PatientsLikeMe records.

4.4 Feature Investigation

In this second experiment, a model was trained on the fibromyalgia social forum

dataset. As in the case of the previous experiment, we randomly removed adherent

samples until there was a balanced distribution of 152 records in the training dataset.
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Next, we tested the model using the MEPS survey data at the 35% MRA threshold

as this threshold had the best accuracy (Table 4.3). The predictive accuracy in this

case was 55.9% with an F 1 score of 51.2. Based on the previous experiment, these low

accuracy levels were expected. However, the resulting RF model, which was trained

by using the social forum dataset, can be compared to the RF model derived from

the MEPS dataset.

The comparison between the two models was based on the number of times a

feature was traversed in the underlying RF. A percentage for each feature (PFT) was

obtained by dividing this number by the total number of nodes traversed in the RF

for all features. As described in Chapter 3, RFs are built by selecting features that

provide the greatest reduction in impurity. While there are measures that ensure that

the same feature is not selected repeatedly at each branch, the total times a feature

is selected is indicative of its relative entropy compared to other features. In an ideal

scenario, for transfer learning to be e↵ective between these domains, we expect to

see similar PFT values for each feature in the social forum model and in the survey

model. For some features this was true. However for others, the models had di↵erent

PFT values. The result of this analysis is shown in Table 4.4.

In Table 4.4, four features had less than 5% di↵erence in PFT across all four mod-

els. These features are TOM, YTT, REG and GEN. The type of medication (TOM)

being the most important feature in predicting adherence, while gender (GEN) is

the least predictive feature. The small di↵erence in PFT between these four features

indicates each model weighted these features consistently. Two additional features

(i.e., SOM and AGE) had a larger PFT di↵erence between the RFT and RFB models.

This di↵erence may be due to the binning applied to these numeric features in the

case of the RFB model. Indeed, each numeric entry is generalized during the binning.

However, the di↵erence does not explain the low performance of transfer learning

across the social forum and the survey datasets since the RFT (i.e., models 1 and 3)

models, on the one hand, and the RFB (i.e., models 2 and 4) models, on the other

hand, di↵er in accuracy by less than 5% in Table 4.4.
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Table 4.4: PFT for each feature in the fibromyalgia model. Model 1: RFT with

MRA threshold 35% using MEPS. Model 2: RFB with MRA threshold 35% using

MEPS. Model 3: RFT using social forum data. Model 4: RFB using social forum

data

Model 1 Model 2 Model 3 Model 4

TOM 24.6 26.8 24.6 26.9

YTT 12.6 11.7 12.7 10.0

AED 11.0 12.5 4.6 9.1

SOM 14.9 11.6 18.0 12.0

OPP 10.0 11.8 13.6 13.9

REG 8.2 10.2 10.2 12.3

AGE 14.5 9.6 13.8 10.5

GEN 4.5 5.8 2.4 5.4

The remaining two features (i.e., OPP and AED) in Table 4.4 were the only two

features where either both the social models had less PFT values than their survey

counterparts or vice-a-versa. This indicated a potential di↵erence between the social

forum and survey datasets. Based on this finding, we retrained the RFB and RFT

models at the 35% MRA thresholds and tested against both the survey data and

the social forum data without the OPP and AED features. The results are shown in

Table 4.5.

In the case of the new RFT model, the prediction accuracy for the social forum

test data is 68.6% compared to the 54.9% accuracy that was obtained earlier with the

RFT model trained by using all the features. Moreover, the di↵erence in prediction

accuracy between the survey test set and the social forum test set is less than 5%.

This result shows that transfer learning between adherence models developed by using

survey data and social forum is possible. However, careful consideration must be given
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Table 4.5: MEPS fibromyalgia trained models without OPP and AED

Model Testing Set Training Size Testing Size Accuracy F1 Score

RFT MRA 35 MEPS 2,436 609 73.5% 74.4

RFT MRA 35 Social Forum 2,436 357 68.6% 80.4

RFB MRA 35 MEPS 2,436 609 73.5% 76.0

RFB MRA 35 Social Forum 2,436 357 63.9% 75.3

to the features that are used to construct the model. Indeed, removing OPP and AED

improved the prediction accuracy of the transfer learning for the social forum models.

However, as evident by Table 4.3 and Table 4.5, the prediction accuracy decreased

for the MEPS test set (77.3% to 73.5%). This result illustrates the benefit of a larger

feature space, but also demonstrates that some features may not share a one-to-one

relationship between the social and survey domains.

Additional investigation is needed in order to determine why removing these fea-

tures improved the performance of the social forum models. We speculate that this

may be due to over/under estimation by the patients [18] and to di↵erences in the

socio-demographic distribution of the patients. For instance, 80% of the MEPS pa-

tients had an OPP <$25 each month, whereas less than 40% of the social forum

patients had an OPP <$25. Now that the AED and OPP features were removed, we

updated the PFT values for the new models in in Table 4.6. All models that shared

the same domain illustrated consistent PFT values (<5%).

As discussed earlier, the di↵erence between the adherent distributions (Table 4.1)

of the social forum and MEPS data are due to social forum patients either providing

false adherence reports or being naturally more engaged in their healthcare. From

the results of this study, it appears the latter is more indicative of the truth than the

former. If patients were providing false self-reports there would be a stark di↵erence

between the results from the survey and social forums testing sets. For the RF model,
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Table 4.6: PFT for each feature in the fibromyalgia model following the removal of

AED and OPP. Model 1: RFT with MRA threshold 35% using MEPS. Model 2:

RFB with MRA threshold 35% using MEPS. Model 3: RFT using social forum

data. Model 4: RFB using social forum data

Model 1 Model 2 Model 3 Model 4

TOM 29.3 33.2 25.2 29.5

YTT 16.2 16.0 17.4 14.4

SOM 18.5 15.0 20.2 17.2

REG 10.7 14.1 13.2 16.7

AGE 20.1 13.6 20.4 14.2

GEN 5.2 7.9 3.4 7.9

the di↵erence between the survey and social forum test sets was 5%. This small error

may be attributed to minor over-estimations and in general, the model identified most

of these self-identified adherent patients on the social platform as adherent.

4.5 Additional Features

While refining the feature space improved the social adherence prediction from

transfer learning, there was a reduction in performance in the survey test sets (77.3%

to 73.5%) merely by removing two features. This result prompted the question of

whether other features exist that can aid in improving adherence prediction. Cur-

rently, social forums do not typically ask questions beyond the feature space presented

in this work, but if other features have a substantial impact on adherence prediction,

social forums may be more inclined to request this information from participants.
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The MEPS survey data provides a greater depth of patient information compared

to the social forum data. Altogether, five more patient features were added to the

model which were not present in any public patient treatment evaluation on the social

forum. For this reason, only the MEPS test sets were evaluated in this experiment.

The features are:

• RACE: Patient Race/Ethnicity

• DVS: Number of Dental Visits through all Rounds

• CND: Number of Documented Conditions

• EVS: Number of Emergency Room Visits Through all Rounds

• RET: Has a Retirement Plan

Furthermore, only the diabetic records were considered as these models did not

perform as well as the fibromyalgia models and the hope was for these new features

to provide additional insight into adherence prediction for diabetic patients. All the

features were binned using the same k-means clustering procedure detailed in Section

3.4.1. These bins are shown in Table 4.7.

Table 4.7: Clustering centroids for six numeric features in MEPS Diabetes Model

with additional features

Bin YTT SOM AGE DVS EVS CND

0 Missing Missing Missing Missing Missing Missing

1 23.69 yr 37.13 mg 78.3 yr 20.2 4.8 6.4

2 11.34 yr 500.0 mg 64.9 yr 5.95 20 13.8

3 4.65 yr 975.8 mg 52.1 yr 10.6 1.5 35.8

4 0.9 yr 5.52 mg 34.7 yr 2.1 9.7 22.7
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The experiment produced mixed results. Indeed, as seen from Table 4.8, while the

accuracy increased at the 35% and 45% thresholds, in the case of the 80% threshold

the performance is nearly identical and for the 65% threshold the performance actually

decreased. These results appear to indicate that the five new features (RACE, DVS,

EVS, CND, and RET) have little impact on adherence prediction, or that these

features provide no new insight beyond what the model is able to learn from the

original features.

Table 4.8: Comparison between the performance of the original MEPS model

against the new MEPS model with additional features

Original Diabetes Model with

Diabetes Model Five New Features

MRA Best Model Accuracy F1 Score Best Model Accuracy F1 Score

80 RFT 58.9% 60.6 RFT 59.3% 60.4

65 RFB 62.3% 66.9 RFB 57.3% 62.3

45 RFB 61.6% 62.7 RFT 67.1% 69.4

35 RFT 64.3% 67.6 RFT 69.2% 70.3

4.6 Multi-Class Analysis

While a binary prediction for adherence provides substantial insight into patient

compliance, many patients are not strictly adherent/non-adherent but represent vary-

ing degrees of compliance. For this reason, the model responsible for illustrating the

potential for transfer learning (Table 4.5) was altered to accommodate additional

classes. Indeed, these new classes provide a more refined prediction into patient

medication adherence compliance.
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As discussed in Chapter 2, the social forums allowed participants to self report

which of the four varying degrees of adherence they believed described their adherence

level (always, usually, sometimes, never taken as prescribed). Having used four vary-

ing MRA thresholds (80%, 65%, 45%, 35) for the MEPS data, each MEPS patient

was assigned a level of adherence similar to that of the social patient. The mapping

between the threshold and the new adherence target is given below:

• MRA thresholds >80: Always

• MRA thresholds <80 and >65: Usually

• MRA thresholds <65 and >45: Sometimes

• MRA thresholds <45: Never Taken as Prescribed

The class breakdown for each new adherence level is shown in Table 4.9.

Table 4.9: MEPS fibromyalgia breakdown for each of the four classes

Class Breakdown for Fibromyalgia Records

Threshold MRA 80% MRA 65% MRA 45% MRA 35%

Level Always Usually Sometimes Never Taken as Prescribed

Patients 714 192 408 1730

After class balancing, new models were trained using multi-class targets. Since a

better performance for MEPS data was found with features AED and OPP (Table

4.5), two di↵erent models were created, one with these features and one without. The

results for the MEPS test sets are given in Table 4.10. Even against a randomly guess-

ing model (expected accuracy is 25%) the best of the four-class models only learned

approximately 8% more information regarding adherence. This low performance may

be attributed to the availability of a limited number of training samples as a result

of class balancing and the reduced number of samples per class.
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Table 4.10: MEPS fibromyalgia trained models with four class targets

Best Model Training Size Testing Size Accuracy

Without AED & OPP RFT 616 152 28.9%

With AED & OPP RFB 616 152 32.9%

In order to further investigate if poor performance is due to the limited number

of samples in the training set, both the middle classes (usually, and sometimes) were

combined resulting in a model with three classes. These two classes had the lowest

number of samples (Table 4.9). The same training and testing procedure was then

applied and the corresponding results are shown in Table 4.11.

Table 4.11: MEPS fibromyalgia trained models with three class targets

Best Model Training Size Testing Size Accuracy

Without AED & OPP RFT 1440 360 49.2%

With AED & OPP RFT 1440 360 50.0%

The three-class models (Table 4.11) have a better performance than their four-

class model (Table 4.10) counterparts. Compared against a randomly guessing model

( 33%), the best model learned approximately 17% more information related to patient

adherence. While this result is not significantly larger, it illustrates the potential for

a more refined patient adherence multi-class model. The accuracy of each class in the

multi-class model is shown in Table 4.12. The results indicate the middle class has

the worst predictive accuracy of the three classes. The model is better at identifying

patients on di↵erent ends of the adherence spectrum, namely very compliant patients

and patients who never take their medications as prescribed.



29

Table 4.12: Accuracy distribution across each of the three classes

Model ”Always” Class ”Sometimes/Usually” ”Never Taken as

Accuracy Accuracy Class Accuracy Prescribed” Class Accuracy

Without AED & OPP 49.2% 70.0% 29.7% 51.9%

With AED & OPP 50.0% 66.0% 32.0% 55.0%

Table 4.13: PFT value comparison between the three class model and the binary

target class model counterpart

With AED & OPP Without AED & OPP

RFT 3 Class RFT 3 Class

TOM 24.6 25.1 29.3 28.8

YTT 12.6 13.9 16.2 17.1

SOM 14.9 13.9 18.5 18.1

REG 8.2 8.8 10.7 10.7

AGE 14.5 14.7 20.1 20.5

GEN 4.5 4.5 5.2 4.8

AED 11.0 10.4

OPP 10.0 8.7

With respect to the predictive features, the three class model PFT values com-

pared to the RFT binary class model is shown in Table 4.13. The largest di↵erence

between the PFT of the two models was for the YTT feature for the models with

AED and OPP, and the di↵erence was only 1.3%.



30

4.7 RF with Imputed Means

As stated in Chapter 3, at least 40% of all the patients in the social forum for both

disease conditions had at least one missing value. In order to properly predict patient

adherence from a data source with a high prevalence of missing data, two modified

approaches(RFB and RFT) using an RF classifier were presented. RFB required a

pre-processing step where all features were binned using k-means clustering, and the

missing values were placed in a separate bin. RFT did not require any pre-processing

but did require a modification to the core algorithm where all missing values split

into a separate third child. Indeed, both of these methods provided a process for

handling missing values, without making an assumption about their values, while

still di↵erentiating them from known entries values.

An alternative to the above two approaches, considers imputing the missing values

with the mean of the given feature. The results of the imputed means RF (IMRF)

against the results presented in Tables 4.2 and 4.3 for RFT and RFB are shown in

Table 4.14.

Table 4.14: The performance of IMRF compared to the previous RFT/RFB models.

All models are trained using MEPS diabetes and fibromyalgia patients

Diabetes Fibromyalgia

MRA IMRF RFT/RFB IMRF RFT/RFB

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

80% 57.4% 61.9 58.9% 60.6 74.0% 75.5 70.2% 72.5

65% 56.4% 57.4 62.3% 66.9 76.8% 77.4 69.9% 70.0

45% 59.8% 59.8 61.6% 62.7 75.0% 75.1 73.0% 74.6

35% 65.8% 69.2 64.3% 67.6 75.0% 75.4 77.3% 79.3
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Table 4.14, shows that IMRF is another viable RF implementation for adherence

prediction. Moreover, the accuracy of IMRF is comparable to that of the RFT and

RFB models. As in the previous procedure, both the AED and OPP features were

removed from the best performing fibromyalgia model (MRA-65%) and the model was

retrained and tested against a MEPS test and a social forum test set. The results are

shown in Table 4.15.

Table 4.15: Comparison between MEPS IMRF and RFT fibromyalgia trained

models without OPP and AED

Model Testing Set Training Size Testing Size Accuracy F1 Score

RFT MRA 35 MEPS 2,436 609 73.5% 74.4

RFT MRA 35 Social Forum 2,436 357 68.6% 80.4

IMRF MRA 65 MEPS 1,450 352 77.9% 77.8

IMRF MRA 65 Social Forum 1,450 357 73.7% 79.4

The IMRF implementation is a better model for transfer learning than the RFT

models. However, compared to RFT and RFB models, the IMRF is more sensitive

to missing values as imputation cannot be used for a large number of records.

The PFT values of the IMRF models remained consistent between survey and

social trained models as well as consistent with the RFT and RFB models. Table

4.16 shows the PFT values for all three models (RFT, RFB, and IMRF) in each

domain for fibromyalgia.

The benefit of the RFB and RFT models is that they do not change the distribu-

tion of the data. Therefore, a mixed-mode model should be considered for features

with a limited number of missing values. For features with a larger number of miss-

ing features either RFT or RFB should be used. This mixed-mode model will be

investigated as part of future work.
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Table 4.16: PFT for each feature in the fibromyalgia model following the removal of

AED and OPP. Model 1: RFT with MRA threshold 35% using MEPS. Model 2:

RFB with MRA threshold 35% using MEPS. Model 3: RFT using social forum

data. Model 4: RFB using social forum data. Model 5: IMRF with MRA threshold

65%. Model 6: IMRF using social forum data.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

TOM 29.3 33.2 25.2 29.5 30.8 26.0

YTT 16.2 16.0 17.4 14.4 15.7 16.9

SOM 18.5 15.0 20.2 17.2 19.0 19.7

REG 10.7 14.1 13.2 16.7 10.4 11.0

AGE 20.1 13.6 20.4 14.2 19.3 22.5

GEN 5.2 7.9 3.4 7.9 4.8 3.8
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5. CONCLUSION

A medication adherence prediction model was developed using MEPS survey data.

This model was then tested on patients from the social forum PatientsLikeMe. While

there were no clear demographic di↵erences, we did not have access to other features

such as race, education, or social status in the social forum dataset. Moreover, all

the social forum records came from public profiles originating from only one source,

PatientsLikeMe. A more comprehensive investigation will cover data aggregated from

multiple public institutions. Moreover, while modified implementations and numerical

methods were used to account for missing entries, many patients from the social form

site contained at least one unknown entry.

Despite possible inconsistency in the social and demographic distribution of the

two patient populations, the results show that using transfer learning between these

two environments is possible. That is, a model trained using accurate but limited

survey data can then be used to predict adherence from social forum data, which is

available at scale and in a timely manner. Also, due to the large amount of adher-

ent responses on the social platform, and the model identifying them as adherent,

these results infer that many of these patients are not providing false reports and are

actually more engaged in their healthcare than the average patient.

One of the reasons for successful transfer learning between these two domains

can be attributed to the feature space used to predict adherence. Indeed, many of

the patient features provided to the models were features that many social forum

patients responded to accurately. For example, with features such as: AGE, GEN,

REG, TOM, etc..., unless the patient is blatantly providing false information, the

responses to these features are unambiguous. Whereas with OPP, one of the features

that did not transfer between the two domains, many patients are taking multiple

therapies and unless each patient is carefully documenting the average cost of each
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specific therapy, false responses towards OPP is highly likely. This result also indicates

that transfer learning may not be possible for all the features. In addition to OPP

for the above reasons, AED also did not transfer between the two domains. Omitting

these features improved the adherence prediction accuracy for social forum patients

with models that are trained by using survey data.

This study did not find a single MRA threshold that proved to universally provide

the best adherence prediction. For both diabetes and fibromyalgia models under the

RFB and RFT implementations, the best performance in accuracy was observed at

the 35% MRA threshold, while the IMRF implementation produced the best model

for fibromyalgia at the 65% MRA threshold. A higher predictive performance at lower

thresholds indicate models are better at di↵erentiating between patients who rarely

take their treatments, against all other patients. The inverse is true for all the models

that are more accurate at higher MRA threshold predictions.

Finally, of all the RF implementations, the IMRF model produced the best results

for social forum adherence prediction using transfer learning. However, the disadvan-

tage for using imputed means is that it changes the entropy of the data. While it may

have been e↵ective in this case, this implementation may not be as scalable as the

other RF implementations since social data is prone to missing data. One of the core

objectives for this thesis is to develop a scalable and cost-e↵ective approach to adher-

ence prediction. The IMRF models may not comply with the very reason social data

was selected. Based on the results of this thesis, RFT and RFB are recommended for

social adherence prediction applications. A hybrid approach that combines imputed

means and either RFT or RFB will be considered in future work.

Future work will also consider aggregating public data from other social sites and

investigating temporal adherence prediction. This thesis appropriately identifies ”if”

patients will become adherent. An extension to this work could identify time to non-

adherence. This can help support preventative measures for patients that are at risk

for becoming non-adherent.



REFERENCES



35

REFERENCES

[1] T. Philipson, “Non-adherence in health care: Are patients or policy
makers ill-informed?” May 2015, [Accessed: 2018-9-20]. [Online]. Available:
https://www.forbes.com/sites/tomasphilipson/2015/05/08/non-adherence-in-
health-care-are-patients-or-policy-makers-ill-informed/#1a0db3f44c4a

[2] A. O. Iuga and M. J. McGuire, “Adherence and health care costs,” Risk Man-
agement and Healthcare Policy, vol. 7, pp. 35–44, 2014.

[3] L. R. Martin, S. L. Williams, K. B. Haskard, and M. R. Dimatteo, “The challenge
of patient adherence,” Therapeutics and Clinical Risk Management, vol. 1, pp.
189–199, 2005, 3.

[4] R. H. Friedman, L. E. Kazis, A. Jette, M. B. Smith, J. Stollerman, J. Torgerson,
and K. Carey, “A telecommunications system for monitoring and counseling
patients with hypertension: impact on medication adherence and blood pressure
control,” American Journal of Hypertension, vol. 4, pp. 285–292, 1996, 9.

[5] Express Scripts, “Predicting adherence,” http://lab.express-scripts.com/lab
/insights/adherence/infographic-predicting-rx-nonadherence, [Accessed: 2018-9-
20].

[6] Allazo Health, https://allazohealth.com, [Accessed: 2018-9-20].

[7] FICO, “Fico medication adherence score,” https://www.fico.com/en/products/fico-
medication-adherence-score, [Accessed: 2018-9-20].

[8] A. A. Krumme, G. Sanfelix-Gimeno, J. M. Franklin, D. L. Isaman, M. Mahesri,
O. S. Matlin, W. H. Shrank, T. A. Brennan, G. Brill, and N. K. Choudhry,
“Can purchasing information be used to predict adherence to cardiovascular
medications? an analysis of linked retail pharmacy and insurance claims data,”
BMJ Open, 2016.

[9] D. L. Labovitz, L. Shafner, M. Reyes Gil, D. Virmani, and A. Hanina, “Using
artificial intelligence to reduce the risk of nonadherence in patients on anticoag-
ulation therapy,” Stroke, vol. 48, pp. 1416–1419, 2017, 5.

[10] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, 2001, 1.

[11] A. L. Boulesteix, S. Janitza, J. Kruppa, and I. R. Knig, “Overview of random
forest methodology and practical guidance with emphasis on computational biol-
ogy and bioinformatics,” WIREs Data Mining and Knowledge Discovery, vol. 2,
pp. 493–507, 2001, 6.

[12] D. Dittman, T. M. Khoshgoftaar, R. Wald, and A. Napolitano, “Random forest:
a reliable tool for patient response prediction,” in The 2011 IEEE Conference
on Bioinformatics and Biomedicine, 2011.



36

[13] A. Gulia, R. Vohra, and P. Rani, “Liver patient classification using intelligent
techniques,” Journal of Computer Science and Information Technologies, vol. 5,
pp. 5110–5115, 2014, 4.

[14] M. J. Paul and M. Dredze, “You are what you tweet: analyzing twitter for public
health,” in The Fifth AAAI Conference on Weblogs and Social Media, 2011.

[15] C. C. Freifeld, J. S. Brownstein, C. M. Menone, W. Bao, R. Filice, T. Kass-Hout,
and N. Dasgupta, “Digital drug safety surveillance: monitoring pharmaceutical
products in twitter,” Drug Safety, vol. 37, pp. 343–350, 2014.

[16] C. L. Ventola, “Social media and health care professionals: benefits, risks, and
best practices,” Pharmacy and Therapeutics, vol. 39, pp. 491–499, 520, 2014, 7.

[17] E. Knight, R. J. Werstine, D. M. Rasmussen-Pennington, D. Fitzsimmons, and
R. J. Petrella, “Physical therapy 2.0: leveraging social media to engage patients
in rehabilitation and health promotion,” Physical Therapy, vol. 3, pp. 389–396,
2015, 95.

[18] H. Lin, J. Jia, Q. Guo, Y. Xue, Q. Li, J. Huang, L. Cai, and L. Feng, “User-level
psychological stress detection from social media using deep neural network,” in
22nd ACM International Conference on Multimedia, 2014.

[19] M. W. Newman, D. Lauterbach, S. A. Munson, P. Resnick, and M. E. Morris, “Its
not that i dont have problems, im just not putting them on facebook: challenges
and opportunities in using online social networks for health,” in Proceedings of
the ACM 2011 conference on Computer supported cooperative work, 2011.

[20] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, pp. 1345–1359, 2010, 10.

[21] J. Sun, S. Staab, and J. Kunegis, “Understanding social networks using transfer
learning,” Computer, pp. 52–60, 2018.

[22] S. D. Roy, T. Mei, W. Zeng, and S. Li, “Socialtransfer: cross-domain transfer
learning from social streams for media applications,” in The 2012 ACM Confer-
ence on Multimedia, 2012, pp. 649–658.

[23] R. Zou, M. Baydogan, Y. Zhu, W. Wang, and J. Li, “A transfer learning approach
for predictive modeling of degenerate biological systems,” Technometrics, vol. 57,
pp. 362–373, 2015, 3.

[24] K. Pursey, T. L. Burrows, P. Stanwell, and C. E. Collins, “How accurate is
web-based self-reported height, weight, and body mass index in young adults,”
Journal of Medical Internet Research, vol. 16, 2014, 1.

[25] Agency for Healthcare Research and Quality, “Medical expenditure panel sur-
vey,” https://meps.ahrq.gov/mepsweb/, [Accessed: 2018-9-20].

[26] PatientsLikeMe, https://www.patientslikeme.com, [Accessed: 2018-9-20].

[27] L. M. Hess, M. A. Raebel, D. A. Conner, and D. C. Malone, “Measurement
of adherence of pharmacy administrative databases: a proposal for standard
definitions and preferred measures,” Annals of Pharmacotherapy, vol. 40, pp.
1280–1288, 2006.



37

[28] L. E. Raileanu and K. Sto↵el, “Theoretical comparison between the gini index
and information gain criteria,” Annals of Mathematics and Artificial Intelligence,
vol. 41, pp. 77–93, 2006.

[29] M. J. B., “Some methods for classification and analysis of multivariate observa-
tions,” in Proceedings of the 5th Berkley Symposium on Mathematical Statistics
and Probability, 1967.


