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Summary  

Dynamin-related proteins (Drps) are involved in diverse processes such as organelle division and 

vesicle trafficking. The intracellular parasite Toxoplasma gondii possesses three distinct Drps. 

TgDrpC, whose function remains unresolved, is unusual in that it lacks a conserved GTPase Effector 

Domain, which is typically required for function. Here, we show that TgDrpC localizes to cytoplasmic 

puncta; however, in dividing parasites, TgDrpC redistributes to the growing edge of the daughter 

cells. By conditional knockdown, we determined that loss of TgDrpC stalls division and leads to rapid 

deterioration of multiple organelles and the IMC. We also show that TgDrpC interacts with proteins 

that exhibit homology to those involved in vesicle transport, including members of the adaptor 
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complex 2. Two of these proteins, a homolog of the adaptor protein 2 (AP-2) complex subunit alpha-

1 and a homolog of the ezrin–radixin–moesin (ERM) family proteins, localize to puncta and associate 

with the daughter cells. Consistent with the association with vesicle transport proteins, re-

distribution of TgDrpC to the IMC during division is dependent on post-Golgi trafficking. Together, 

these results support that TgDrpC contributes to vesicle trafficking and is critical for stability of 

parasite organelles and division. 

 

Keywords: Toxoplasma gondii, dynamin-related protein, DrpC, parasite, endodyogeny, Inner 

membrane complex.  

 

Introduction 

Toxoplasma gondii is an obligate intracellular protozoan parasite estimated to have infected one-

third of the world population (Alvarado-Esquivel et al., 2016; Hill & Dubey, 2016; Pappas, Roussos, & 

Falagas, 2009). Toxoplasma is mainly acquired through consumption of undercooked meat from 

infected animals or by ingestion of environmental oocysts that are shed in the feces of infected 

felines, the definitive host. Toxoplasma is responsible for a large proportion of domestically acquired 

foodborne illnesses in United States, being the fourth leading cause of hospitalizations and the 

second leading cause of deaths ("Centers for Disease Control and Prevention. Burden of Foodborne 

Illness: Findings," ; Scallan et al., 2011). While Toxoplasma infections are typically asymptomatic in 

healthy individuals, they can have devastating consequences in immunosuppressed individuals and 

those infected congenitally (Dalimi & Abdoli, 2012). While the host immune response can control 

and eliminate the acute form (tachyzoite), the parasite can convert into a latent encysted form 

(bradyzoite) that establishes a chronic infection. Newly acquired infection or reactivation of latent 

cysts in immunodeficient individuals can lead to devastating tissue destruction and organ failure 

(Derouin & Pelloux, 2008; Khurana & Batra, 2016).  

Toxoplasma employs a unique process of replication called endodyogeny, by which two daughter 

cells are formed inside a mature parasite (Blader, Coleman, Chen, & Gubbels, 2015). During 

endodyogeny, organelles must be segregated between the new daughter parasites (Nishi, Hu, 

Murray, & Roos, 2008; Radke et al., 2001). The cortical cytoskeleton complex, which includes a 

peripheral membrane system under the plasma membrane called the inner membrane complex 

(IMC), plays an important role during replication as it provides scaffold for the formation of the 

daughter parasites (B. Anderson-White et al., 2012; Blader et al., 2015). Early in division, de novo 

formation of the daughter IMC scaffold initiates, the apicoplast (a plastid-like organelle) and Golgi 

elongate, and the centrosome migrates from the apical to the posterior end of the nucleus. Next, 

Golgi division occurs, the centrosome duplicates, and karyokinesis and apicoplast division begins. 

Subsequently, the endoplasmatic reticulum (ER) enters the daugther scaffold and as the IMC 

elongates, the ER follows the nucleus and segregates into the daughter cells, a process that 

continues through the end of division. During this process, specialized secretory organelles (dense 

granules, micronemes, and rhoptries) are synthesized de novo from the Golgi within the forming 

daugther cells. Finally, the single mitochondrion from the mother enters each developing daughter 

parasite (Ovciarikova, Lemgruber, Stilger, Sullivan, & Sheiner, 2017).  
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In other eukaryotes, organelle division is often driven by self-assembling GTPases that form rings 

around the organelle and are involved in mechanically pinching membranes (Kuroiwa, 2010; 

McFadden & Ralph, 2003). Among these GTPases are classical mechanochemical dynamins and 

dynamin-related proteins (Drp) (Praefcke & McMahon, 2004). Drps have a GTPase effector domain 

(GED) that is required for the assembly of dynamin tetramers into the ring structure, and it is also 

involved in the stimulation of GTP hydrolysis after dynamin assembly (Fukushima, Brisch, Keegan, 

Bleazard, & Shaw, 2001; Muhlberg, Warnock, & Schmid, 1997). Drps are recruited by adaptor 

proteins associated with membrane organelles, which also participate in forming active fission 

complexes (Bui & Shaw, 2013). The formation of these complexes requires ATP, GTP, membrane 

lipids, actin, adaptor protein (AP) complexes or fission factors, among other components (Damke, 

1996; Ugarte-Uribe, Muller, Otsuki, Nickel, & Garcia-Saez, 2014). In Toxoplasma, key proteins 

involved in the anterograde pathway regulating secretory organelle biogenesis have been identified 

(Venugopal et al., 2017), including dynamin-related protein B (DrpB), which associates with 

MIC2/M2AP and the AP-1 complex (Venugopal et al., 2017).  

Eukaryotes possess a variable number of dynamin and dynamin-related proteins that are involved in 

organelle division. For example, the dynamin-related protein 1 (DRP1) in human cells (Smirnova, 

Griparic, Shurland, & van der Bliek, 2001) and the dynamin-related GTPase Dnm1p in yeast 

(Fukushima et al., 2001) mediate mitochondrial fission. The red algae, Cyanidioschyzon merolae, 

contains two dynamins (Dnm1 and Dnm2) that are involved in mitochondrial and plastid division, 

respectively (Kuroiwa, 2010). Toxoplasma possess three distinct Drp proteins: TgDrpA, TgDrpB, and 

TgDrpC (Breinich et al., 2009). Both TgDrpA and TgDrpB have all the conserved domains typical of 

Drps and have been shown to be required for apicoplast replication and secretory organelle 

biogenesis, respectively (Breinich et al., 2009; van Dooren et al., 2009). In contrast, TgDrpC 

(TGGT1_270690), whose function is not known, contains a GTPase domain but lacks the conserved 

GTPase Effector Domain (GED). The GED is typically required for efficient formation of dynamin 

oligomers and for stimulation of the GTPase domain activity (Chugh et al., 2006). As part of an effort 

to validate a novel strategy of gene silencing based on U1 snRNP, TgDrpC was shown to be essential, 

as parasites died following the induced gene disruption (Pieperhoff et al., 2015). The significant 

contribution of TgDrpC to parasite fitness was also confirmed in a genome-wide CRISPR screen (Sidik 

et al., 2016). While clearly essential for parasite viability, the biological function of TgDrpC remains 

unresolved.  

To address this knowledge gap, we conducted a series of experiments aimed at characterizing 

TgDrpC during the replicative phase of Toxoplasma. Our findings revealed a dynamic redistribution 

of TgDrpC during parasite division, moving from cytosolic puncta in G0 to the pellicle of the daughter 

parasites during division. Additionally, using a conditional knockdown approach, we determined that 

loss of TgDrpC leads to rapid deterioration of the parasite, which includes mitochondrial 

fragmentation, and disruption of the apicoplast, and Golgi. Through immunoprecipitation studies, 

we establish that TgDrpC interacts with homologs of proteins associated with vesicle trafficking. 

Collectively, our results support a model that TgDrpC contributes to vesicular transport and is critical 

for parasite organelle integrity and division.  
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Results  

TgDrpC exhibits a dynamic localization 

To determine the localization of TgDrpC, we used a homologous recombination approach to 

generate a parasite line in which the endogenous protein includes a carboxyl terminal hemagglutinin 

(HA) epitope tag (Fig. 1A). Western blot assays of the resulting strain revealed an HA tagged protein 

migrating close to the expected size of 130 kD (Fig. 1B). Immunofluorescence assays of intracellular 

parasites expressing the tagged protein showed that TgDrpC signal had a mottled or punctate 

appearance distributed throughout the cytoplasm (Fig. 1C). TgDrpC puncta varied in intensity with 

several bright foci in each parasite (Fig. 1C arrows). On occasion, we observed that TgDrpC formed 

ring structures that appeared to coincide with daughter cell formation, as determined by diffused 

nuclear staining typical of dividing parasites (Fig. 1D). Indeed, this ring structure appeared to be 

localized to the growing edge of the daughter parasite pellicles, which was detected with antibodies 

against IMC3, a component of the inner membrane complex (IMC) (Chen et al., 2015) (Fig. 1E).  

To further explore this localization pattern, we conducted immunofluorescence assays co-staining 

for TgDrpC and MORN1, a protein that is recruited to the apical complex of the nascent daughter 

cells early during parasite division and migrates with the growing daughter IMC through cytokinesis. 

During parasite division, MORN1 forms a ring structure located at the leading edge of the growing 

IMC, and this ring is required for constriction of the daughter IMC to complete cell division. TgDrpC 

co-localizes with MORN1-containing structures early during daughter cell formation and with the 

MORN1 ring during parasite division, remaining with this structure until the late stages of cytokinesis 

(Fig. 2). 

In higher eukaryotic organisms, the dynamin-related protein Drp1 plays a key role in mitochondrial 

fission. As neither of the two Drp1 homologs from Toxoplasma studied to date, TgDrpA and TgDrpB, 

appear to be involved in mitochondrial fission (Breinich et al., 2009; van Dooren et al., 2009), it is 

plausible that TgDrpC is the dynamin-related protein that drives mitochondrial fission in 

Toxoplasma. Notwithstanding the fact that TgDrpC lacks several of the functional domains present in 

all Drps (Fig. 3A), we investigated whether it associates with the mitochondrion of the parasite. IFA 

of intracellular parasites stained for TgDrpC-HA and the mitochondrial marker F1B ATPase showed 

that 58 ± 2% (Pearson’s coefficient: 0.84 ± 0.1) of the larger foci of TgDrpC-HA co-localized to the 

mitochondrion as quantified using FIJI. Additionally, some TgDrpC foci localize to regions of the 

mitochondrion that appear to be constricted (Fig. 3B top row, arrowheads). In dividing parasites, the 

rings of TgDrpC appear to encircle mitochondrial material that remain contiguous between daughter 

parasites (Fig. 3B bottom row, arrows). Notably, association with the mitochondrion was not 

exclusive, as TgDrpC signal was evident at various other organelles including the Golgi, IMC and 

apicoplast (Fig. 3C).   

 

Conditional knockdown of TgDrpC impairs parasite replication 

While previous studies have shown TgDrpC to be essential for parasite viability (Pieperhoff et al., 

2015), its function remains unresolved. We therefore generated a conditional knockdown of TgDrpC 

by fusing a destabilization domain (DD) to the C-terminus of the endogenous protein, along with an 

HA tag for tracking. The DD targets the fusion protein for degradation unless the stabilizing molecule 

Shield-1 (Shld1) is present in the growth medium (Banaszynski, Chen, Maynard-Smith, Ooi, & 
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Wandless, 2006; Herm-Gotz et al., 2007). When the TgDrpC-HA-DD expressing strain was maintained 

in the presence of Shld1, the fusion protein was expressed, albeit at lower levels than what is 

observed for the TgDrpC-HA strain (Fig. 4A). Residual TgDrpC-HA-DD protein was still detectable by 

Western blot 24 hours after Shld1 removal, but by 48 hours the protein levels were significantly 

reduced (89 ± 7% reduction, n=3, Fig. 4A). To more precisely determine the timeline of TgDrpC 

depletion, we grew parasites in the absence of Shld1 for 36, 42, and 48 hours (Fig. S1). No significant 

turnover of TgDrpC was detected until 42 hours (30 ± 2% reduction); 48 hours without Shld1 proved 

to be the time point among those tested showing maximum reduction of TgDrpC levels (Fig. S1). 

We then evaluated parasite growth of the TgDrpC-HA-DD expressing line in the presence or absence 

of Shld1 for five and eight days. During this time, parasites typically undergo several cycles of 

invasion, replication, and cell lysis, forming areas of host cell clearance referred to as plaques. 

TgDrpC-HA-DD parasites did not form visible plaques in the absence of Shld1, even after eight days 

(Fig. 4B). Thus, conditional knockdown of TgDrpC reveals an essential role for this protein in parasite 

viability, consistent with findings previously reported for genetic ablation of TgDrpC (Pieperhoff et 

al., 2015).  

To more closely examine this viability defect, we performed a parasite counting assay after 24 and 

48 hours of growth in the presence or absence of Shld1 (Fig. 4C). At 24 hours, the distribution of 

different vacuole sizes was the same with or without Shld1, with most vacuoles having 4 or more 

parasites per vacuole (Fig. 4C). By 48 hours in the presence of Shld1, most vacuoles had only 1 or 2 

parasites (Fig. 4C), indicating that between 24 and 48 hours, the parasites had undergone egress and 

re-invasion as expected. This is consistent with an increase in the number of vacuoles in the 

presence of Shld1 between 24 and 48 hours (Fig. 4D). By contrast, most vacuoles in TgDrpC-HA-DD 

cultures lacking Shld1 contained 32 or more parasites per vacuole (Fig. 4C), and no change in the 

number of vacuoles in culture between 24 and 48 hours (Fig. 4D). These results could be due to a 

subset of egressed vacuoles releasing parasites that are defective at reinvading new host cells. Thus, 

as levels of TgDrpC are reduced, parasites either stop dividing, no longer exit their host cell, or suffer 

an invasion defect upon egress. 

The decreased viability seen after the loss of TgDrpC is accompanied by unusual tachyzoite 

morphology within the vacuoles. After 24 hours without Shld1, TgDrpC-HA-DD parasites appeared 

normal, but after 48 hours, a significant number of tachyzoites were swollen or vacuolated (Fig. 4E). 

Quantification of this phenotype indicated that only 43 ± 7% of vacuoles appeared normal in the 

absence of Shld1 compared to 90 ± 2% of vacuoles in Shld1. Furthermore, after 48 hours without 

Shld1, 36 ± 6% appeared swollen and 21 ± 2% vacuolated (Fig. 4F). Together, these results indicate 

that depletion of TgDrpC grossly disrupts parasite morphology, likely leading to death and resulting 

in reduced plaques.   

 

Conditional knockdown of TgDrpC disrupts organelle maintenance and biogenesis 

As dynamin-related proteins are often involved in organelle division, we evaluated the effects of 

TgDrpC depletion on the mitochondrion, apicoplast, and Golgi (Fig. 5A-C). After 48 hours without 

Shld1, all three organelles were abnormal in the swollen and vacuolated parasites, but appeared 

normal in unaffected vacuoles (Fig. 5). Fragmentation of mitochondria was detected in 74 ± 4% of 

swollen parasites 48 hours without Shld1 (Fig. 5D). Additionally, 48 ± 7% of swollen vacuoles 
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contained at least one parasite with lacking or disrupted apicoplast (Fig. 5B circled area, Fig. 5C and 

Fig. 5D). This phenotype was absent in those vacuoles that had normal appearance and was 

observed in 75 ± 9% of those that appeared vacuolated (Fig. 5D). Immunofluorescence images 

showed that the ATrx1 signal is disrupted; moreover, no apicoplast DNA signal is detectable by DAPI 

in those parasites (Fig. 5C), a phenotype consistent with loss of the apicoplast as previously reported 

by Lévêque et al. (Leveque et al., 2015). A similar pattern is observed with the Golgi in TgDrpC-HA-

DD parasites grown without Shld1: 85 ± 7% of swollen vacuoles contained parasites in which the 

Golgi appeared as dispersed puncta in contrast to a solid structure typical of normal parasites (Fig. 

5D). Therefore, the loss of TgDrpC leads to a rapid deterioration of the parasite, with an increase in 

the proportion of vacuolated parasites, and a catastrophic loss of organelle integrity. 

As we observed a slight reduction in TgDrpC-HA-DD protein levels at 42 hours without Shld1, we 

looked for organelle and morphology alterations at this time point with the idea that we might 

observe partial phenotypes. Analysis of Golgi, apicoplast, and mitochondrion at 42 hours post Shld1 

removal revealed similar patterns to those observed at 48 hours, with a majority of vacuoles that 

appeared aberrant having organellar defects (data not shown). Nonetheless, we were able to detect 

parasites within the same vacuole that differentially expressed TgDrpC (Fig. 6). Remarkably, the 

presence of TgDrpC correlates with the integrity of the mitochondrion and the Golgi: parasites 

expressing TgDrpC have a normal mitochondrion and Golgi, while those in the same vacuole but 

lacking TgDrpC have fragmented mitochondrion and disrupted Golgi (Fig. 6A-B, circled area). Thus, 

presence or absence of TgDrpC is tightly correlated with mitochondrial and Golgi integrity. In 

addition, parasites no longer expressing TgDrpC contained two apicoplasts, indicating a failure in 

parasite division (Fig. 6C, circled area).  

IMC structure is altered in the absence of TgDrpC 

Based on our observation that TgDrpC localizes to the daughter cells during parasite division, we 

inquired whether loss of TgDrpC affected the inner membrane complex during endodyogeny. 

Accordingly, we grew TgDrpC-HA-DD parasites without Shld1 for 42 hours and then visualized the 

IMC of both the mother and daughter cells.  In the absence of Shld1, we consistently detected a 

larger proportion of parasites that exhibited aberrant IMC that was incomplete or disrupted 

compared to parasites grown in Shld1 (Fig. 7A, arrows). These alterations in IMC structure were 

detected in 32 ± 12% vacuoles grown without Shld1 for 42 hours (Fig. 7B). By contrast, this 

phenotype was detected in only 2 ± 1% of parasites in the presence of Shld1.  

Interestingly, during our analysis of the IMC in TgDrpC-HA-DD parasites grown without Shld1, we 

observed that many of the parasites that lacked TgDrpC seemed to be in the process of dividing 

based on the presence of daughter cells as observed by staining for IMC (Fig. 7C). To determine 

whether this was a statistically significant phenomenon, we enumerated vacuoles in which parasites 

had daughter cells among those that were either TgDrpC positive or TgDrpC negative within the 

same culture. Of the vacuoles that had TgDrpC expression, 20 ± 2% had parasites in division, which is 

the normal proportion of parasites that are dividing at any time in an asynchronous Toxoplasma 

population (Radke et al., 2001). By contrast, 57 ± 6% of vacuoles negative for TgDrpC expression had 

parasites undergoing division (Fig. 7D). This phenomenon suggests that lack of TgDrpC might halt 

parasite division or leads to an accumulation of parasites undergoing endodyogeny, suggesting an 

association between this protein and parasite division.   
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TgDrpC interacts with proteins involved in vesicle transport 

To provide more insight into the function of TgDrpC, we set out to identify the proteins with which it 

interacts. For this purpose, we performed three independent immunoprecipitation (IP) experiments 

from lysates of extracellular TgDrpC-HA parasites and used affinity purification and mass 

spectrometry to determine the identity of the interactors. As controls, we performed the same IP 

protocol with a non-specific mouse IgG and included a parasite strain that does not express an HA-

tagged protein. Data from three independent IP experiments was analyzed using Significance 

Analysis of Interactome (SAINT) to assign confidence scores to protein-protein interactions (Choi et 

al., 2011; Teo et al., 2014). To increase confidence in the interacting candidates identified in the pull 

downs, we filtered the candidates using the following criteria: i) proteins for which no peptides were 

detected in either the non-specific IgG or in the non-HA expressing parasite strain controls; ii) 

proteins with peptides in all 3 IP assays and with more than 3 peptides in at least 2 of the assays; iii) 

SAINT score > 0.75 and fold-change (FC-B) > 2 (supplemental table S1). Implementation of these 

criteria resulted in a list of 15 putative interactors (Table 1), five of which shared homology to 

proteins involved in vesicle trafficking, such as adaptor protein 2 (AP-2) complex members 

(TGGT1_221940, TGGT1_272600, TGGT1_313450), intersectin-1 (TGGT1_227800), and ERM family 

protein (TGGT1_262150).  

As Drps are known to be involved in vesicle transport, we focused our studies on TGGT1_272600 and 

TGGT1_262150, which show homology to the alpha subunit of the AP-2 complex and ERM family 

proteins, respectively. To determine the localization of these proteins, we used a homologous 

recombination approach to introduce a C-terminal myc epitope tag into the endogenous genes in 

the strain expressing TgDrpC-HA. Western blot assays of the resulting strains revealed myc-tagged 

proteins migrating close to the expected size of 183 kD for TGGT1_272600 and 89 kD for 

TGGT1_262150 (Fig. S2). For TGGT1_272600, we also detected additional bands of smaller size, 

which may be breakdown or cleavage products. 

Immunofluorescence assays of intracellular parasites encoding the myc-tagged protein showed that 

TGGT1_272600 is low-abundant and localizes to puncta throughout the cytoplasm, which appear to 

concentrate within the daughter parasites during division (data not shown). Consistent with the IP, 

TGGT1_272600 co-localizes with bright puncta of TgDrpC and is recruited to the daughter parasites 

during division as observed for TgDrpC (data not shown). TGGT1_262150 also localized as puncta in 

the cytoplasm, and expression levels observed for this protein are much higher during parasite 

division (Fig. 8A), consistent with a previous report that this gene is cell cycle-regulated at the 

transcript level (Behnke et al., 2010). Furthermore, TGGT1_262150 co-localizes with IMC3 in the 

daughter parasites (Fig. 8A and 8B, arrows). However, both of these putative interactors are present 

in puncta that does not correspond to TgDrpC. This might be due to the heterogeneity of vesicles or 

multifunctionality of these factors. Nonetheless, the association or accumulation of both these 

proteins with daughter parasites support the idea that they, at least partially or temporarily, 

associate with TgDrpC. Finally, we immunoprecipitated TgDrpC-HA from the dual tagged strains and 

probed for the myc-tagged proteins. While we could not detect co-immunoprecipitation of 

TGGT1_272600, possibly due to its low abundance, TGGT1_262150 was detected in the HA 

immunoprecipitated but not in the controls, providing independent validation of this interaction 

(Fig. 8C). 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

TgDrpC localization is dependent on post-Golgi vesicle trafficking 

Since our IP studies revealed a likely association between TgDrpC and proteins related to vesicle 

trafficking, we tested whether TgDrpC localization dynamics are dependent on post-Golgi trafficking. 

We treated intracellular parasites with 5µg/ml Brefeldin A (BFA), a Golgi-disrupting agent that 

inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus (Harper et al., 

2006). Incubating intracellular parasites with BFA for 30 minutes was sufficient to collapse the Golgi 

apparatus, which was detected by staining with the Golgi marker, TgSORTLR (Sloves et al., 2012) (Fig. 

9A). While BFA treatment did not affect the dispersed puncta of TgDrpC, it disrupted the formation 

of TgDrpC rings in dividing parasites, which were identified based on nuclear morphology (Fig. 9B). 

As the nascent IMC remains intact in BFA treated parasites, this effect is not likely due to disruption 

of the daughter cells (Fig. 9C). Importantly, of those parasites that were dividing based on IMC 

staining, 2 ± 2% of parasites treated with BFA show TgDrpC rings compared to 98 ± 2% under normal 

conditions (Fig. 9D). Therefore, the presence of TgDrpC at the basal ring of daughter cells depends 

on post-Golgi trafficking.  

 

Discussion  

The opportunistic pathogen Toxoplasma gondii encodes for three dynamin-related proteins: DrpA, 

DrpB, and DrpC. TgDrpA and TgDrpB possess the conserved domains typical of Drps (Breinich et al., 

2009; van Dooren et al., 2009). However, TgDrpC (TGGT1_270690) contains a GTPase domain but 

lacks the conserved GTPase Effector Domain (GED). Our studies using a conditional protein 

degradation system definitively establish the critical role of TgDrpC in parasite fitness. Parasites that 

express TgDrpC fused to a destabilization domain lose organellar integrity and likely die after 

stabilization compound Shield-1 (Shld1) is removed from the media. These parasites appear to divide 

and propagate normally in the absence of Shld1 for the first 36 hours but exhibit a significant 

disruption in growth at 48 hours. This timeline coincides with the protein degradation rate upon the 

removal of Shld1. The reason for the relative stability of the protein for the first 36 hours in the 

absence of Shld1 and the sudden reduction of protein levels between 36 and 48 hours is unclear. It is 

plausible that association of TgDrpC with stable protein complexes, vesicles or organellar 

membranes protects it from the proteasome. Regardless, the loss of TgDrpC elicits a rapid 

deterioration of the parasite integrity, with parasites becoming swollen and vacuolarized. In 

addition, all organelles examined, namely apicoplast, mitochondrion, IMC and Golgi, showed 

morphological disruptions. This catastrophic multiple organelle failure upon loss of TgDrpC is most 

evident in vacuoles that contain parasites differentially expressing TgDrpC (Fig. 7). Within these 

vacuoles, parasites still harboring TgDrpC possess normal organelle morphology while their 

intravacuolar neighbors lacking TgDrpC contain abnormal organelles. 

Dynamin-related proteins in other eukaryotic systems are the key drivers of mitochondrial fission. As 

the other two Drp homologs found in Toxoplasma do not appear involved in mitochondrial division 

(Breinich et al., 2009; van Dooren et al., 2009), it was expected that TgDrpC would be the protein 

driving mitochondrial division during endodyogeny. However, TgDrpC lacks the domains known to 

be essential for the ‘pinchase’ function of dynamin-related proteins. Furthermore, a yeast two-

hybrid screen using the Toxoplasma Fis1 as bait, which in other species recruits Drp to the 

mitochondria, did not reveal TgDrpC as a direct interactor (Jacobs and Arrizabalaga, unpublished 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

results); moreover, reciprocal immunoprecipitation of either TgDrpC or TgFis1 from a strain in which 

both proteins are epitope tagged did not reveal an interaction (data not shown). Interestingly, 

immunofluorescence assays showed that some of the large TgDrpC puncta are adjacent to areas 

where the mitochondrion appears constricted (Fig. 3B, top panels, arrowheads), but it remains 

unclear if this association has a functional consequence. We also see TgDrpC puncta associated with 

the Golgi and the IMC, suggesting the protein’s function is not limited to a single organelle (Fig. 3C). 

It is possible that the association of TgDrpC with the leading edge of the growing daughter IMC is 

reflective of the protein’s function. In dividing parasites, TgDrpC always relocated from cytoplasm to 

ring like structures at the growing ends of the daughter buds. This localization parallels that of 

MORN1, a scaffolding protein essential in assembling the basal complex (Lorestani et al., 2012). 

Besides MORN1, the basal complex includes the centrin protein TgCen2 and the alveolin motif 

containing proteins IMC5, IMC8, IMC9, and IMC 13 (B. R. Anderson-White et al., 2011; Hu, 2008; 

Lorestani et al., 2012). In dividing parasites, the complex is assembled with the rest of the new 

cytoskeleton, forming a ring-like structure at the growing edge of the daughter cells. Towards the 

end of division, this ring constricts to cap the basal end of the new formed parasites to close the IMC 

and complete cytokinesis (Hu, 2008). The cap forms the mature basal complex, which is maintained 

and may play a structural role in tachyzoites (Lorestani et al., 2012). Thus, it is plausible that TgDrpC 

has a function in parasite division or in the formation or regulation of the basal body. Indeed, we 

noted an interesting association between loss of TgDrpC and parasite division. In cultures in which 

some parasites still had TgDrpC and some did not, we noted that nearly 60% of those without were 

undergoing endodyogeny. This contrasted with 20% of those that still had TgDrpC, which is 

approximately the usual proportion of parasites dividing in a normal asynchronous Toxoplasma 

culture (Radke et al., 2001). Thus, parasites without TgDrpC are more likely to be stuck in division. 

While it is possible that this is due to the particular timing of turnover, a likely explanation is that 

TgDrpC is needed for completion of the division cycle.  

Functional insight about TgDrpC can also be ascertained from the protein composition of its 

interactome. After filtering for those interactors not seen in any of the controls and that have high 

statistical value we generated a list of 15 putative interactors, some of which are probably non-

specific, like ribosomal proteins (TGGT1_216435, TGGT1_239330, and TGGT1_312960) and those 

predicted to be in the nucleus and involved in transcription (TGGT1_226240, TGGT1_227850, 

TGGT1_257070, and TGGT1_308890). One of the co-immunoprecipitated proteins is in rhoptries 

(TGGT1_294560). We focused on the five interactors that appeared to be involved in vesicle 

transport (TGGT1_272600, TGGT1_221940, TGGT1_227800, TGGT1_313450, and TGGT1_262150). 

We based this selection of the following: (i) TgDrpC localizes to puncta thorough the cytoplasm, 

which is reminiscent of vesicles; (ii) dynamins are involved in vesicle formation and transport; (iii) the 

TgDrpC relocalizes to the IMC during division, which is formed de novo early during parasite division 

(Agop-Nersesian et al., 2010; Tonkin, Beck, Bradley, & Boulanger, 2014) and involves clathrin-coated 

vesicles derived from the ER-Golgi secretory pathway (Harding & Meissner, 2014; Pieperhoff, 

Schmitt, Ferguson, & Meissner, 2013); and (iv), several factors that are involved in endocytosis and 

endosomal recycling, including  Rab11A and Rab11B (Agop-Nersesian et al., 2010; Agop-Nersesian et 

al., 2009), contribute to the biogenesis of the IMC. Additionally, the link between TgDrpC and vesicle 

transport is supported by the results obtained from treating parasites with Brefeldin A (BFA), which 

prevents its redistribution to the ring structure associated with the IMC. 
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TgDrpC-interacting proteins TGGT_272600 and TGGT_221940 show homology to the alpha-subunit 

of the adaptor protein complex (AP-2). Toxoplasma has two adaptor complexes associated with 

clathrin, AP-1 and AP-2, that are specifically associated with the trans-Golgi network and the plasma 

membrane, respectively (Venugopal et al., 2017). Adaptor protein 2 (AP-2) complex is a 

heterotetramer consisting of two large adaptin subunits (α and β), a medium subunit (μ), and a small 

subunit (σ). This complex is involved in the formation of clathrin-coated vesicles during endocytosis. 

TGGT1_313450 showed homology to the clathrin adaptor complex small subunit and it is also 

expected to be involved in vesicle transport. TGGT1_227800 contains an EF domain that is found in 

proteins implicated in vesicle transport, and it also shows homology to intersectin-1 and dynamin 

associated protein 160. Related to intersectin-1, this is a Eps15 Homology (EH) domain-containing 

protein, which are known to play a role in clathrin-mediated endocytosis, and might also function in 

regulating signaling pathways by interacting with their EH domains. Furthermore, this protein binds 

to components of the endocytic complex, including dynamins (Adams, Thorn, Yamabhai, Kay, & 

O'Bryan, 2000). Finally, TGGT1_262150 showed homology to ERM family proteins, which are 

involved in linking the plasma membrane to the actin cytoskeleton. However, they are also involved 

in other functions such as endo/exocytosis, vesicle trafficking, or vesicle maturation (Chirivino et al., 

2011; Jiang et al., 2014; Kvalvaag et al., 2013). 

Among these five interactors, we tagged TGGT1_272600 (homolog of the adaptor protein 2 (AP-2) 

complex subunit alpha-1) and TGGT1_262150 (homolog of the ezrin–radixin–moesin (ERM) family 

proteins) and showed that both localize as cytoplasmic puncta like TgDrpC. Importantly, we 

observed that these putative TgDrpC interactors accumulate in the daughter cells during parasite 

division, as observed for TgDrpC. Nonetheless, we were not able to detect the interaction between 

TgDrpC and TGGT1_272600 in co-immunoprecipitation assays. It is possible that this is due to the 

low levels of TGGT1_272600 expression; alternatively, the majority of the protein may not coincide 

with the locale of TgDrpC. However, co-immunoprecipitation assays were able to confirm the 

interaction between TgDrpC and TGGT1_262150. The similar localization dynamics of TgDrpC and 

TGGT1_262150 during division support the idea that TgDrpC associates with vesicles that congregate 

at nascent daughter cells. We did not, however, observe a ring-like structure, indicating that they 

might be involved in general vesicle transport, while TgDrpC might either be associated in a subset of 

vesicles or be part of cargo delivered to the growing edge of the IMC. Furthermore, we confirmed 

that TGGT1_262150 co-localizes closely to the IMC in daughter parasites. 

IMC formation initiates early and elongates through the end of division, forming a scaffold structure 

of flattened vesicles, intermediate filaments, and microtubules for new organelle assembly and 

segregation (Hu, 2008; Hu et al., 2002; Striepen, Jordan, Reiff, & van Dooren, 2007). The IMC of 

Toxoplasma is known to be constructed in part from clathrin-coated vesicles derived from the ER-

Golgi secretory pathway (Harding & Meissner, 2014; Pieperhoff et al., 2013) and trafficking of 

vesicles to the daughter cell IMC is dependent on the small GTPase TgRab11b (Agop-Nersesian et al., 

2010), TgALP1 (Harding & Meissner, 2014), TgStx6 (Harding & Meissner, 2014), and CHC1 (Pieperhoff 

et al., 2013). Studies performed with these proteins showed that their disruption led to a number of 

defects, including a block in IMC biogenesis, organellar defects, and replication arrest. Based on the 

current understanding of IMC formation and on our results, we hypothesize that TgDrpC may be part 

of this crucial process that plays an essential role in the structural integrity of the parasite. Whether 

TgDrpC is a driver of vesicle formation or fusion, or cargo with a different function, is a key question 

for future studies to address. It is tempting to speculate that TgDrpC plays a general role in vesicular 
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trafficking, as this could explain why its depletion leads to the rapid degeneration of multiple 

organelles as well as an inability to complete division. Whether all of the phenotypes are related or 

are the result of varied and independent roles is an exciting question to resolve.  

 

Experimental procedures 

Parasites culture and reagents 

Parasites were maintained in culture by continuous passage through human foreskin fibroblasts 

(HFFs) grown to confluence in a humidified incubator at 37°C and 5% CO2 concentration. The 

medium used was Dulbecco’s Modified Eagle Medium supplemented with 10% fetal bovine serum 

(FBS), 50 µM penicillin-streptomycin and 2 mM L-glutamine. For selection of parasites expressing 

hypoxanthine-xanthine-guanine phosphoribosyl transferase (HXGPRT), medium was supplemented 

with 50 µg/ml mycophenolic acid and 50 µg/ml xanthine. For selection of dihydrofolate reductase 

(DHFR) expressing parasites, media contained 1 μM pyrimethamine. Shld1 was purchased from 

CheminPharma and dissolved in ethanol for a 500 mM stock solution. Brefeldin A was purchased 

from Fisher and dissolved in ethanol for a 5 mg/ml stock solution.   

Generation of endogenously tagged parasite strains 

To generate a strain in which the endogenous TgDrpC gene encoded a hemagglutinin (HA) epitope at 

the C terminus, a 1,549 base pair fragment of genomic DNA was amplified by PCR with primer set A 

(see Table S2 for sequence of all primers used in this study). This fragment was directionally cloned 

into the PacI site of the 3xHA-Lic-DHFR-TS plasmid (Huynh & Carruthers, 2009; LaFavers, Marquez-

Nogueras, Coppens, Moreno, & Arrizabalaga, 2017) using In-Fusion Cloning (Clontech). The resulting 

vector was confirmed by restriction digestion and sequencing. Plasmid was linearized with EcoRV 

and transfected by electroporation into RHΔhxgprtΔku80 tachyzoites (Soldati & Boothroyd, 1993). 

To select for stable transfectants, parasites were maintained in the presence of 1 μM pyrimethamine 

and independent clones were established by limiting dilution.  

A similar approach was used to introduce a Myc epitope tag at the carboxyl terminus of the putative 

TgDrpC interactors TGGT1_262150 and TGGT1_272600. To generate the tagging vectors for 

TGGT1_262150 and TGGT1_272600, we used primer sets B and C respectively and the resulting 

fragments were cloned into the PacI site of pLic-3xMYC-HXGPRT plasmids. The resulting vectors 

were transfected into either the RHΔhxgprtΔku80 parasite line (Huynh & Carruthers, 2009) or the 

TgDrpC HA expressing strain and selected for with 50 µg/ml mycophenolic acid with 50 µg/ml 

xanthine.  

Generation of TgDrpC-HA-DD line 

To generate a conditional knockdown strain, we employed a similar cloning strategy utilized to 

introduce the 3xHA epitope tag at the endogenous TgDrpC locus, but included a destabilization 

domain (DD) tag in the tagging construct cloned into the PacI site of the 2xHA-Lic-DHFR-TS. 100 µg of 

this tagging plasmid were linearized with EcoRV and transfected by electroporation into 

RHΔhxgprtΔku80 tachyzoites. Parasites were maintained in the presence of 1 μM pyrimethamine 

and independent clones were established by limiting dilution.  
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Immunofluorescence assays 

For immunofluorescence assays (IFA), parasites were inoculated into HFF cells grown on 1.5 mm 

coverslips at a multiplicity of infection (MOI) of approximately 0.5 and incubated for 2 hours. 

Cultures were then washed to remove uninvaded parasites and incubated for 24 to 48 hours in 

absence or presence of 200 nM Shld1 prior to fixation with 4% paraformaldehyde in PBS for 15 

minutes. Cultures were washed three times with PBS, blocked in PBS with 3% bovine serum albumin 

(BSA) for 30 minutes, and permeabilized with 3% BSA/PBS with 0.2% Triton X-100 (Thermo Scientific) 

for 30 minutes. Primary antibodies were incubated in 3% BSA/PBS + 0.2% Triton X-100 overnight at 

4°C or for 90 minutes at room temperature. Then, coverslips were washed three times in PBS for 10 

minutes and incubated with 3% BSA/PBS containing fluorophore conjugated secondary antibodies 

for 45 minutes at room temperature. Coverslips were then washed in PBS and mounted onto slides 

using DAPI containing Vectashield mounting media (Vector laboratories) (Varberg, LaFavers, 

Arrizabalaga, & Sullivan, 2018). Primary antibodies used were rabbit anti-HA (Cell Signalling 

Technology) at a 1:1,000 dilution, mouse anti-MYC (Cell Signalling Technology) at 1:1,000 dilution, 

rabbit anti-MORN1 (Gubbels, Vaishnava, Boot, Dubremetz, & Striepen, 2006), mouse anti-F1B- 

ATPase (Dr. Peter Bradley, unpublished) at a 1:2,000 dilution, mouse anti-ATrx1 (DeRocher et al., 

2008) at a 1:2,000 dilution, rat anti-TgSORTLR (Sloves et al., 2012) at a 1:2,000 dilution, rat anti-IMC3 

at a 1:2,000 dilution (Gubbels, Wieffer, & Striepen, 2004). Secondary antibodies used included goat 

anti‐mouse and rabbit Alexa fluor 488/594 conjugated (Cell Signalling Technology) and were all used 

at a 1:2,000 dilution. Inspection of all samples was performed using a Nikon Eclipse E100080i 

microscope. Images were captured with a Hamamatsu C4742‐95 charge‐coupled device camera 

using NIS elements software. 

 

Western blotting 

Parasites were grown for 24 to 48 hours in HFFs, released from host cells by passage through a 

27-gauge needle, and pelleted by centrifugation for 10 minutes at 1,000 x g. Pelleted parasites 

were washed once with cold PBS and then lysed in radio immunoprecipitation assay (RIPA) buffer 

plus protease and phosphatase inhibitors (Cell Signaling Technology) for 1 hour on ice. Lysate was 

sonicated twice for 10 seconds and centrifuged for 10 minutes at 13,000 RCF at 4°C and the 

supernatant was recovered. For time course experiments, protein concentration was determined by 

BCA Protein Assay (Pierce) and 20 μg of protein were run in 4%–20% gradient SDS‐PAGE gel 

(Bio‐Rad) and transferred into a nitrocellulose membrane using standard methodologies. 

Membranes were blocked in 5% milk in TBST for 20 minutes at room temperature, incubated 

overnight at 4°C with primary antibody in blocking buffer solution and with secondary antibody for 

45 minutes at room temperature. Finally, blots were processed for imaging with SuperSignal™ West 

Femto Maximum Sensitivity Substrate (Thermo Fisher) and visualized with a FluorChem R imager 

(Bio-Techne) (Varberg et al., 2018). Primary antibodies used for western blots included rabbit 

anti‐HA at a dilution of 1:1,000 (Cell Signaling Technologies), rabbit anti‐MYC at a dilution of 1:1,000 

(Cell Signaling Technologies), and mouse anti‐SAG1 at a dilution of 1:2,000 (Genway). Secondary 

antibodies used include peroxidase-conjugated goat anti‐mouse and anti-rabbit and were used at a 

1:10,000 dilution. 
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Parasite growth assays 

Growth was assessed by determining plaquing efficiency and growth rate (LaFavers et al., 2017). For 

doubling assays, 100,000 parasites were used to infect confluent HFF monolayers grown in 12-well 

tissue culture plates. Two-hours after infection, cultures were washed three times to remove 

parasites that did not attach or invade and the media was replaced with normal growth medium. At 

either 24 or 48 hours post infection, cells were fixed with methanol for 1 minute, dried, and stained 

using Differential Quik Stain kit (Polysciences, Inc). Number of parasites per vacuole was scored for 

at least 100 vacuoles for each well. For plaque assays, 500 parasites were used to infect a confluent 

HFF monolayer in 12-well plates. Infected cultures were incubated for 5 days and stained with 

Crystal Violet (Sigma Aldrich) to visualize plaques via imaging with a FluorChem R imager (Bio-

Techne).  

 

Co-immunoprecipitation (co-IP) assays  

Naturally egressed parasites were collected by centrifugation, washed once with 1X PBS, suspended 

in 150 μl of IP Pierce buffer (Thermo Scientific) with protease and phosphatase inhibitor cocktail 

100X (Cell Signaling Technology), and incubated for 1 hour on ice. After sonication, the lysate was 

centrifuged at 14,000 RPM for 10 minutes at 4°C. Supernatant was incubated with mouse IgG-

conjugated magnetic beads (Cell Signaling Technology) for 1 hour at 4°C with slight rotation as a 

blocking step. Beads were spun down and kept for analysis and supernatant was incubated with 

either Pierce anti-HA or anti-MYC magnetic beads (Thermo Scientific). Beads were washed three 

times in 150 μl of IP Pierce buffer, twice in PBS, and once in dd-H2O.  Finally, beads were suspended 

in 40 μl of PBS. For detection of immunoprecipitated proteins by immunoblotting, the precipitated 

proteins were eluted off the magnetic beads by the addition of 40 μL 2x SDS-PAGE buffer containing 

5% β-mercaptoethanol, boiled for 5 minutes at 95°C and analyzed by Western blot as described 

above.  

For mass spectrometry analysis, samples were submitted to the Indiana University School of 

Medicine Proteomics Core facility for protein identification by mass spectrometry. The on-bead 

samples were first denatured in 8 M urea, reduced with 5 mM tris(2-carboxyethyl)phosphine, and 

alkylated with 10 mM chloroacetamide. Alkylated samples were then digested with 0.3 μg 

endoproteinase LysC (sequencing grade, Roche Diagnostics) overnight at 37°C. The samples were 

then diluted to a final concentration of 2M urea using 100 mM Tris-HCl, pH 8.5, and digested with 

0.5 μg trypsin (Promega Gold) overnight at 37°C. Digested peptides were injected onto a 15 cm C18 

column (PepMap, 3μm) on a Thermo Dionex UltiMate 3000 RSLCnano chromatography system, and 

eluted with a linear gradient from 3 to 40% acetonitrile (in water with 0.1% formic acid) over 120 

min room temperature at a flow rate of 700 nL/min. Effluent was electrosprayed into a Orbitrap 

Velos Pro (Thermo-Fisher Scientific) mass spectrometer for analysis. Data analysis was performed 

using SEQUEST HT within Proteome Discoverer 2.1 (Thermo) and searched against the Toxoplasma 

gondii database (www.toxodb.org, TgondiiGT1_AnnotatedProteins version 29) with common 

contaminants using SEQUEST HT with an FDR of ≤1%. Results were imported into Scaffold 4 Q+ 

(Proteome Software) for additional analysis. 
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Statistical Analyses 

All statistical analysis performed in this study were conducted using Prism (GraphPad v 7.0a). 

Statistical analysis of mass spectrometry results for the TgDrpC interactome was conducted using 

SAINTexpress (Choi et al., 2011; Teo et al., 2014).Co-localization analysis (coloc2 analysis) was 

performed with Fiji/ImageJ software to calculate Pearson’s coefficient (Schindelin et al., 2012).  
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Table  1.  List  of  putative  TgDrpC  interactors.  Highlighted in   yellow are those involved in vesicle 

transport. DrpC is highlighted in orange. 

     
ID number Annotation Potential functional domains Putative function 

TGGT1_216435 hypothetical protein  Nop25 superfamily domain Ribosome biogenesis 

TGGT1_221940 adaptin n terminal region 
domain-containing protein  

Adaptin N-terminal region 
domain (part of Adaptor protein 
complex AP-2, alpha) 

Vesicle transport 
 
 
 

TGGT1_226240 putative bud site selection 
protein  

U1 like zinc finger domain Nucleotide binding 
 

TGGT1_227800 EF hand domain-containing 
protein  

Eps15 homology (EH) domain 
(pair of EF hands found in 
proteins implicated in 
endocytosis, vesicle transport, 
and signaling); SMC domain 
Homology to Intersectin 1 and 
dynamin associated protein 160 

Vesicle transport 
 
 
 
 
 

TGGT1_227850 peptidyl-prolyl cis-trans 
isomerase, cyclophilin-type 
domain-containing protein  

Cyclophilin with RRM domain Chaperone, nucleotide 
binding 
 

TGGT1_239330 ribosomal protein RPL37   Ribosome 
 

TGGT1_257070 hypothetical protein  Med15 domain  Transcription 
 

TGGT1_261450 hypothetical protein    

TGGT1_262150 kelch repeat containing 
protein  

Kelch repeat domain (adaptor 
for ubiquitin ligases); ERM 
family protein (intermediates 
between actin cytoskeleton and 
plasma membrane); BTB 
domain (mediates dimerization) 

Vesicle transport 
 
 
 
 
 

TGGT1_270690 DrpC    

TGGT1_272600 adaptin c-terminal domain-
containing protein  

Adaptin C-terminal region 
domain (part of Adaptor protein 
complex AP-2, alpha); SMC 
domain 

Vesicle transport 

TGGT1_294560 rhoptry kinase family 
protein ROP37 (incomplete 
catalytic triad)  

 Signaling 

TGGT1_305940 peptidyl-prolyl cis-trans 
isomerase, cyclophilin-type 
domain-containing protein  

Cyclophilin with U-box domain Chaperone, protein 
transport 
 

TGGT1_308890 transcription elongation 
factor SPT6  

 Transcription 

TGGT1_312960 hypothetical protein  Nop16 superfamily domain Ribosome 

TGGT1_313450 putative AP-2 complex 
subunit sigma-1  

Clathrin adaptor complex small 
subunit 

Vesicle transport 
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Figure legends 

Figure 1. TgDrpC localization. A) Diagram of scheme used to introduce a triple hemagglutinin (3xHA) 

epitope tag into the endogenous TgDrpC gene. DHFR represents modified allele that confers 

resistance to pyrimethamine. B) Protein extracts from the parental or TgDrpC-HA expressing strain 

were analyzed by Western blot using anti-HA antibody. SAG1 was used as loading control. C-E) 

Intracellular TgDrpC-HA expressing parasites were stained with antibodies against HA. To detect 

dividing parasites, cultures were co-stained with either DAPI (blue in D) or IMC3 antibodies (green in 

E). The outlines in C delineates two individual parasites within the vacuole and arrows point at 

examples of bright puncta. Arrow in E point at the growing edge of daughter parasites. Scale bars = 3 

µm.  

Figure 2. Redistribution of TgDrpC during parasite division. Intracellular TgDrpC-HA expressing 

parasites were stained with anti-HA antibodies to detect TgDrpC (red) and with anti-MORN1 

antibodies (green) to monitor parasites at different stages of division. Scale bar = 3 µm.  

Figure 3. TgDrpC association with parasite organelles. A) Schematic diagram comparing the domain 

architecture of the three dynamin related proteins from Toxoplasma (TgDrpA, TgDrpB, and TgDrpC) 

with mammalian dynamin-1 and dynamin-1-like proteins. Domains indicated are GTPase, Central 

domain, Pleckstrin homology domain (PH), GTPase Effector Domain (GED), and WW-domain ligand 

protein domain (WWbp). B) Intracellular TgDrpC-HA expressing parasites were stained with anti-F1B 

ATPase to visualize the mitochondrion (red) and anti-HA antibodies to detect TgDrpC (green). 

Arrowheads point at the brightest dots that co-localize to the mitochondrion (top row) and arrows 

point at TgDrpC puncta enriched at constricted points along mitochondrion (bottom row). Scale bars 

= 2 µm. C) Parasites were stained for TgDrpC with anti-HA antibodies (red) and for the Golgi with 

anti-Sortilin (green, top row), the IMC with anti-IMC3 (green, middle row) or the apicoplast with 

anti-Atrx1 (green, bottom row). Circled areas show bright TgDrpC puncta that associate to the 

organelles analyzed. Scale bars = 6 µm.  

Figure 4. Establishment and growth of parasite strain with conditional expression of TgDrpC. A) 

Western blots of extracts from parasites in which the endogenous TgDrpC was tagged with either HA 

or HA-DD grown for 24 or 48 hours in presence (+) or absence (-) of Shld1.  Blots were probed with 

antibodies against HA to detect TgDrpC or against the surface antigen SAG1 as a loading control. B) 

Parasites expressing TgDrpC-HA-DD were allowed to grow for 5 and 8 days in the presence and 

absence of Shld1. Cultures were stained with Crystal Violet, which allows visualization of plaques 

(white areas) arising from parasites lysing their host cells (dark areas). C) Doubling assays quantifying 

the number of TgDrpC-HA-DD parasites per vacuole following 24 and 48 hours of growth in the 

presence or absence of Shld1 (n=3, ±SD). D) The total number of vacuoles of TgDrpC-HA-DD 

parasites at 24 and 48 hours with and without Shld1 was determined for 10 randomly selected fields 

of view. (n=3, ±SD) (***p<0.001). E) Phase image of TgDrpC-HA-DD parasites grown without Shld1 

for 48 hours reveals aberrant vacuole structures. F) The distribution of vacuoles that appear normal, 

swollen, or vacuolated when parasites are grown with or without Shld1 for 48 hours (n=3, ±SD).  

Figure 5. Organellar morphology in parasites lacking TgDrpC. A-C) Intracellular TgDrpC-HA-DD 

parasites were grown for 48 hours without Shld1 and stained with anti-F1B-ATPase to detect 

mitochondria (A), with anti-ATrX1 to detect apicoplast (B), or with antibodies against the Sortilin-like 
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receptor (SORTLR) to detect Golgi (D). In A and B both normal (left) and abnormal right) vacuoles 

within the same culture are shown.  In B, DNA is visualized with DAPI and circled area shows 

parasites that do not have an apicoplast based on lack of DAPI staining and diffuse ATrX1 staining. In 

A, B, and D, the left panels show vacuoles with normal morphology and the right panels show 

vacuoles that appear swollen, both within the same culture. C) Enlarged images of the areas circled 

in B. In parasites highlighted by arrows, there is no signal for DAPI staining and a diffused pattern of 

ATrX1. E) Graph shows the percentage of vacuoles within each category (i.e. normal, swollen, and 

vacuolated vacuoles) that have altered mitochondria (m), apicoplast (a), or Golgi (g), (n=3, ±SD). 

Scale bars = 6 µm.   

Figure 6. TgDrpC and organellar morphology. A-C) Intracellular TgDrpC-HA-DD parasites grown 

without Shld1 for 42 hours were stained with HA to detect TgDrpC and with anti-F1B-ATPase to 

detect mitochondria (A), with antibodies against the Sortilin-like receptor (SORTLR) to detect Golgi 

(B) or with anti-ATrX1 to detect apicoplast (C). In A, circles highlight areas within a single vacuole in 

which parasites with and without TgDrpC are detected, in B circles highlight areas with TDrpC and 

normal Golgi, and in D circles highlight areas without TgDrpC. Arrows indicate normal mitochondria. 

Scale bar = 6 µm.    

Figure 7. Inner membrane complex formation and parasite division in absence of TgDrpC. A) 

Immunofluorescence analysis of DrpC-HA-DD parasites grown for 42 hours in absence of Shld1. Anti-

IMC3 antibody was used to detect the inner membrane complex. Images of parasites with either 

normal or altered IMC are shown. Arrows indicate IMC alterations. Scale bar = 3 µm. B) Percentage 

of vacuoles with altered IMC structure at 42 hours with or without Shld1. (n=3, ±SD) (*p<0.001). C) 

Intracellular DrpC-HA-DD expressing parasites grown for 42 hours without Shld1 were stained with 

antibodies against HA to detect TgDrpC (red). To detect dividing parasites, samples were co-stained 

with either DAPI (blue) and IMC3 antibodies (green). Circled area indicates dividing parasites. Scale 

bar = 6 µm. D) Percentage of vacuoles with or without DrpC signal in which parasites were dividing at 

42 hours without Shld1. (n=3, ±SD) (*p<0.001). 

Figure 8. Probing interaction between TgDrpC and homolog of ERM family proteins. A myc epitope 

tag was added to the endogenous gene TGGT1_262150 in the parasite strain expressing TgDrpC-HA. 

A) Dually tagged strain stained with anti-myc (green) and IMC3 (red) antibodies to detect 

TGGT1_262150 and TgDrpC. Bottom row shows dividing parasites. Boxed area was enlarged to show 

co-localization in the overlay on the left. Arrows indicate co-localization of TGGT1_262150 and IMC3. 

Scale bar = 3 µm (top row), 6 µm (bottom row). B) Dually tagged strain stained with anti-myc (green) 

and anti-HA (red) antibodies to detect TGGT1_262150 and TgDrpC. Bottom row shows dividing 

parasites. Arrows indicate co-localization of TGGT1_262150 and TgDrpC. Circled area shows 

localization to the TgDrpC-containing ring structure and protein recruitment to the daughter 

parasites (arrow point to the TgDrpC ring structure). Scale bar = 3 µm. C) Immunoblot showing 

reciprocal co-immunoprecipitation of TgDrpC-HA and TGGT1_262150-MYC using HA magnetic beads 

and IgG as a negative control.  

Figure 9. Localization of TgDrpC in Brefeldin A treated parasites. A) Disruption of the Golgi 

apparatus in intracellular tachyzoites after 5µg/ml Brefeldin A (BFA) treatment for 30 minutes was 

confirmed by staining with antibodies against sortilin-like receptor (SORTLR). Control tachyzoites 

were incubated with ethanol (EtOH), which was used as vehicle. Scale bar = 3 µm B) Intracellular 
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parasites were treated with EtOH (control) or 5µg/ml BFA for 30 min and stained IMC3 (green) to 

detect dividing parasites and with HA to detect TgDrpC (red). Both dividing and non-dividing 

parasites are shown. Scale bar = 3 µm C) Graph shows the percentage of vacuoles with TgDrpC ring 

structures among those that are dividing in cultures treated with BFA or ethanol as control. (n=3, 

±SD) (*p < 0.0001).  
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