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Abstract

The cutaneous silent period is an inhibitory evoked response that demonstrates a wide vari-

ety of responses in muscles of the human upper limb. Classically, the cutaneous silent

period results in a characteristic muscle pattern of extensor inhibition and flexor facilitation

within the upper limb, in the presence of nociceptive input. The aims of the current study

were: 1) to primarily investigate the presence and characteristics of the cutaneous silent

period response across multiple extensor and flexor muscles of the upper limb, and 2) to

secondarily investigate the influence of stimulation site on this nociceptive reflex response.

It was hypothesized that the cutaneous silent period would be present in all muscles, regard-

less of role (flexion/extension) or the stimulation site. Twenty-two healthy, university-age

adults (14 males; 8 females; 23 ± 5 yrs) participated in the study. Testing consisted of three

different stimulation sites (Digit II, V, and II+III nociceptive stimulation) during a low intensity,

sustained muscle contraction, in which, 7 upper limb muscles were monitored via surface

EMG recording electrodes. Distal muscles of the upper limb presented with the earliest

reflex onset times, longest reflex duration, and lowest level of EMG suppression when com-

pared to the more proximal muscles, regardless of extensor/flexor role. Additionally, the

greatest overall inhibitory influence was expressed within the distal muscles. In conclusion,

the present study provides a new level of refinement within the current understanding of the

spinal organization associated with nociceptive input processing and the associated motor

control of the upper limb. Subsequently, these results have further implications on the

impact of nociception on supraspinal processing.

Introduction

The cutaneous silent period (CSP) serves as nociception triggered inhibition that provides

momentary inhibition of voluntary muscle activity, in response to nociceptive activity trans-

duced via Aδ and/or nociceptive C-afferent fibers to the spinal motorneuron pool through

direct or indirect synaptic connections [1–4]. This action presents a reciprocal action to the

nociceptive flexor withdrawal response (FWR) which serves as an ‘excitatory reflex’ increasing
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activity in primary flexor muscles [5]. When taken into context, the interplay between the CSP

and FWR can clearly be seen. For example, if nociceptive input is generated while reaching for-

ward with the upper limb, the CSP will momentarily halt the forward action through inhibi-

tion, while the FWR will activate the primary flexor muscles to remove the limb from potential

harm via facilitation [5–7]. Therefore, the CSP can be thought of as a protective spinal reflex

suppressing voluntary activity in muscles in an effort to reduce further activity resulting in an

increase of nociceptive activity [4].

When evoked by strong electrical stimulation of the digits, the inhibitory evoked CSP

response demonstrates a wide variety of responses in muscles of the human upper limb. For

example, stimulation of digit II provides a powerful silent period within the abductor pollicis

brevis (APB) muscle, nearly eliminating muscle activity for upwards of ~80ms [4]. Similar to

the effect observed in the hand, some proximal muscles of the stimulated limb also show peri-

ods of inhibition, albeit shorter in duration. However, certain muscles such as the biceps bra-

chii and deltoid muscles have been reported to show facilitation in response to stimulation, via

the FWR response [2, 3, 6, 8, 9]. Accordingly, two main conclusions can be taken from these

results: 1) the distal muscles of the hand show the most pronounced and longest duration of

the CSP; and 2) the recorded responses to noxious input in the proximal muscles of the upper

limb can be mixed. These two conclusions are consistent with studies that have shown that the

CSP is modulated in reaching and grasping to assist grasp release and initiate a halting action

on forward reaching movements [10, 11].

Early explanations of the CSP discussed a characteristic pattern of inhibition within exten-

sor muscles with this response followed by facilitation of flexor muscles of the upper limb, pre-

sumably through the FWR [2, 7, 12]. It has been speculated that this pattern of inhibition and

facilitation may serve to limit reaching away from the body and initiate the retraction of the

upper limb towards the body. Ideally, this pulls the limb away from a potential noxious stimu-

lus in the environment (e.g. touching a hot stove). This particular pattern of inhibition and

facilitation, however, may be more complex than previously thought, as inhibition can be dem-

onstrated within both flexor and extensor muscles, within various studies [3, 4, 7, 10, 11, 13].

From a movement perspective, the ability to produce inhibition within both extensor and

flexor muscles becomes critical as, inhibition of both the flexor and extensor muscles could be

required to remove the upper limb from potentially harmful environments, as seen in reaching

and grasping. Therefore, it seems that the complexity of the CSP may include different patterns

of extensor and flexor inhibition within, and across, the upper limb.

The current study sought to improve upon the current understanding of the CSP response

in the upper limb by addressing two aims: 1) primarily investigate the presence and character-

istics of the CSP response across multiple extensor muscles and flexor muscles of the upper

limb, and 2) secondarily investigate the influence of multiple stimulation sites on the reflex

response. The examination of the CSP response across the muscles of the upper limb will pro-

vide evidence to support or potentially refute previously accepted beliefs on the CSP while pro-

viding a more in-depth analysis on the organization of the CSP response across the upper limb

in humans. It was hypothesized that the CSP would be present in all muscles, regardless of the

role of the muscle (flexion/extension) or the stimulation site, which would demonstrate a dif-

ferent level of spinal organization than previously described.

Materials and methods

Participants

Twenty-two healthy, university-age adults (14 males/ 8 females; 23 ± 5 yrs) participated in the

study. Subjects were self-reportedly free from any neurological disorders or other upper limb
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musculoskeletal impairments. Each subject provided written informed consent prior to partic-

ipating. The protocol was approved by the Indiana University Institutional Review Board and

was performed in accordance with the Declaration of Helsinki.

Experimental protocol

Apparatus and testing environment. Electrical stimuli were delivered using a computer-

controlled Digitimer DS7AH constant current electrical stimulator (Digitimer LTD, England,

UK). Electromyography (EMG), or muscle activity, was recorded on a 16-channel Bagnoli

EMG system (Delsys Inc, MA, USA) using a bipolar montage of rectangular single differential

bar electrodes (1cm x 1cm x 1mm). EMG activity was recorded from the abductor pollicis bre-

vis (APB), flexor carpi radialis (FCR), extensor carpi radialis (ECR), biceps brachii long head

(BIC), triceps brachii lateral head (TRI), anterior deltoid (AD), and posterior deltoid (PD)

muscles of the right arm (Fig 1C:1–7). Electrodes were placed in accordance with previously

established site standards and prepped with the skin overlying each muscle cleaned prior to

affixing the electrode over the individual muscle belly, parallel with the orientation of the

respective muscle’s fibers [14]. A single common ground electrode was placed over the spinous

process of C7. Each subjects right arm was positioned, unrestricted, in a custom arm apparatus

Fig 1. Representation of the data collection process using the custom made arm setup (A-B) along with EMG placement (C) and a representative trace of the identified

specific reflex response variables (E).

https://doi.org/10.1371/journal.pone.0196129.g001

Nociception within upper limb muscles

PLOS ONE | https://doi.org/10.1371/journal.pone.0196129 April 25, 2018 3 / 12

https://doi.org/10.1371/journal.pone.0196129.g001
https://doi.org/10.1371/journal.pone.0196129


with the elbow flexed at 90˚, while maintaining ~45˚ abduction of the shoulder from the torso,

and the hand grasping a handle, fully grasped, thumb wrapped around, or through “cupping

the hand” depending on the muscle action necessary, attached to a tri-axial force transducer

(JR3 Inc., CA, USA) (Fig 1A and 1B). All testing was conducted with the subject seated

upright, the upper extremity supported but not restricted, and with visual feedback provided

on a computer monitor in front the subject. All data was processed and stored using Spike2

software (CED, Cambridge, UK).

Study procedures. Subjects were first asked to complete three maximal isometric volun-

tary contractions (MVCs) separated by 3 minutes, for each recorded muscle, by isometrically

contracting that muscle in its direction of force (i.e. flexion or extension) against an immov-

able vertical handle grasped by the hand, fully grasped, thumb wrapped around, or through

“cupping the hand” depending on the muscle action necessary. The MVC with the highest

unrectified peak EMG value was then used to set a horizontal line, representing 5% of the

MVC EMG for that respective muscle, on a monitor in front of the subject to serve as visual

feedback. The 5% MVC value was utilized in order to reduce the potential fatiguing effect of a

sustained contraction. In order to make the visual feedback display easier to follow, the sub-

jects’ active, real time EMG activity level for the tested muscle was rectified and smoothed over

a 100ms window. During the experimental testing, subjects were instructed to match the 5%

MVC line with their EMG activity for a given target muscle by contracting that specific muscle

against the vertical handle. Care was taken to ensure that the subjects produced an isolated

muscle contraction with minimal activation through investigators discretion, from the sup-

porting musculature. This was ensured through proper placement of the subject’s arm and

careful monitoring of the associated EMG. If the subject was found to have trouble isolating a

given muscle contraction and have large amount of synergistic muscle activation, the subject

was asked to relax and try again with a better focus on muscle contraction isolation. As the

subject maintained this muscle contraction, they were stimulated (Digit II, V, and II+III stim-

ulation) (Fig 1D) as described below, to evoke the CSP response within that muscle.

Each subject was tested under three different stimulation conditions that were performed

in random order. The conditions consisted of stimulating the intermediate phalanges of: 1)

Digit II (innervated by median and radial nerves) (Fig 1D:1), 2) Digit V (innervated by ulnar

nerve) (Fig 1D:3), and 3) Digit II with a conditioning, pre-pulse stimulation of Digit III (inner-

vated by median and radial nerves) (Fig 1D:2) during the low intensity voluntary contractions.

Independent stimulation of Digits II and V allowed the investigation of the reflex response to

noxious stimulation arising from different nerve pathways. Additionally, the possibility exists

that sensory input in conjunction with noxious stimulation may result in different reflex

response profiles, as seen in other pre-pulse inhibition studies [15]. Therefore, the additional

conditioning stimulation condition was also investigated. The combining of these different

stimulation parameters allowed for a more robust investigation of the CSP response within the

muscles of the upper limb. All stimulation conditions were tested for each muscle during their

individual contractions resulting in data for all muscles and stimulation conditions Each sub-

ject performed the three conditions in the same testing session with 90 seconds of rest pro-

vided between conditions. At the conclusion of the testing, the distance (cm) from the spinous

process C7 to the center of each single differential EMG electrode at its individual site of place-

ment was taken using cloth measuring tape contouring around the upper limb to each elec-

trode (Fig 1C:1–7). This measurement allowed for a general distance indicator for each

electrode, representing the muscle location, from the spinous process C7 to generally test

potential differences within reflex response as a measure of general distance from the spinal

cord.
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Stimulation parameters. Noxious electrical stimulation (square-wave pulses, 0.5ms dura-

tion) was delivered to digits II, V, and II+III using ring electrodes (distal ring–anode; proximal

ring–cathode) secured around the intermediate phalanges of the right hand (Fig 1D). Sensory

(perceptual) threshold was determined by slowly increasing the electrical current used for

stimulation until perceivable by the subject. Perceptual threshold was determined as the lowest

stimulation intensity in which the subject could correctly identify 5 out of 10 randomly deliv-

ered stimuli. The level of stimulus intensity utilized during the experiment was set at 10x per-

ceptual threshold. This resulted in a stimulus intensity typically between 30–50 mA for most

subjects, which is consistent with other studies in the upper limb [2–4, 12, 16, 17]. For the con-

ditioned stimulation, subjects received a stimulation set at perceptual threshold on digit III fol-

lowed by a noxious stimulation of digit II 100ms later. Subjects were stimulated

(0.5Hz ± 0.2Hz stimulation rate) for a total of 20 stimuli within 3 digit stimulation parameters

for each of the 7 muscles leading to a total of 420 stimuli (7 muscles x 3 conditions x 20

stimuli).

Data analysis. Surface EMG signals were amplified, conditioned with high- and low-pass

cut-off frequencies of 30Hz and 500Hz, recorded at 2,000Hz, and stored at a final gain of

1,000x. Each of the EMG signals were rectified and processed through a custom algorithm

written in MATLAB (Mathworks, MA, USA). The custom MATLAB program allowed for the

CSP response, for each of the individual stimuli to be identified, individual reflex response

phases quantified (i.e. any preceding (E1) or following (E2) excitatory responses to the CSP

inhibitory response), and subsequently averaged for analysis. Additionally, the custom algo-

rithm was written within MATLAB to determine the average level of background EMG activ-

ity from a 100ms pre-stimulus baseline period (-100ms—stimulation), from which a

superimposed horizontal line representing an 80% decrease of this mean EMG activity was

placed to determine a suppression of EMG activity from baseline [4]. This process ensured

reproducibility across trials for both visual identification and quantification of the individual

phases (Fig 1E) within the reflex response (Fig 2). Individual inhibitory and excitatory (E2)

phases were identified within each trials reflex response for each stimulation condition and

muscle allowing for clear identification of the inhibitory period. This became necessary as pre-

vious investigations have reported responses to cutaneous stimulation with periods of fluctuat-

ing excitatory (i.e. E1, E2) and inhibitory responses (CSP) [18]. The inhibitory period was

identified as the point where EMG activity dropped below the 80% baseline EMG activity

(onset) and then returned back to 80% baseline (offset) [4]. This suppressed period of EMG

was considered the inhibitory period as long as the duration of the suppressed EMG was

greater than 5ms. The time points for the onsets and offsets for each phase of the reflex

response were visually identified, by investigators, as the intersection of the superimposed hor-

izontal line of the mean EMG activity recorded with the raw EMG trace. From the onset and

offset data, the individual phase durations were calculated by subtracting the onset time from

the offset time. In addition, the percentage of inhibition or excitation was calculated by divid-

ing the level of EMG activity during the individual phase (inhibition or E2) by the baseline

EMG amplitude calculated from the 100ms pre-stimulus window[4, 5, 12, 15]. The individual

trial EMG rebound (E2) was identified as the point in which the mean level of EMG activity

returned and subsequently increased above the 80% baseline previously calculated. This mean

level rebound activity was quantified over a 100ms period of EMG activity starting at the point

of EMG return to baseline [15]. All unquantifiable phases within the CSP response were elimi-

nated from analysis.

Statistical analysis. Statistical analyses were performed utilizing the statistics toolbox in

MATLAB (Mathworks, MA, USA). Initial analysis identified two violations within the data

(normality and sphericity). Analysis of kurtosis determined the deviation from normality to be
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within acceptable range (i.e. less than -1 or greater than 2), and Greenhouse-Geisser correction

was used to correct the sphericity violation. A period of background EMG for each muscle was

initially analyzed via one-way ANOVA to determine EMG consistency across data collection.

Three-way ANOVAs were used to compare the onsets, offsets, duration of inhibition, suppres-

sion level of EMG, and EMG rebound across the three stimulation conditions (Digit II, V, and

III+II) (Fig 1D: 1–3) within each muscle. Post-Hoc tests utilizing the Bonferroni model were

conducted in order to determine the direction of any individual differences that occurred. Lin-

ear regressions were used to determine any significant relationships that may have occurred

between within the CSP response with the distance of the muscle from the spinal cord. All

results were considered significant at p< 0.05.

Results

All voluntarily activated muscles demonstrated the CSP response (see Fig 3). Preliminary anal-

ysis of the background EMG (100 – 50ms pre-stimulus) resulted in no significant differences

across muscles (F(6,147) = 0.53, p = 0.79). Three-way ANOVA’s for each of the dependent vari-

able across stimulation conditions within each muscle tested, resulted in no significant

Fig 2. Representative data from one subject averaged across 20 stimulations for all the recorded muscles in the

right upper limb. The dashed line represents 80% of the background EMG averaged over 100ms pre-stimulus. The

time window is from 50ms prior-to 250ms after digit stimulation.

https://doi.org/10.1371/journal.pone.0196129.g002
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differences (see Table 1). Therefore, all comparisons were made on the collapsed data for the

stimulation conditions to determine potential differences across the muscles tested. Descrip-

tive data on the 22 subjects for onset times, reflex durations, reflex suppression, and post-

inhibitory rebound for all conditions can be found in Table 2.

Inhibitory reflex analysis

Collapsing across stimulations and looking across muscles resulted in significant main effects

(p< 0.001) for onset time (F(6,372) = 16.1), offset time (F(6,372) = 44.47), reflex duration (F(6,372) =

66.96), reflex suppression (F(6,372) = 92.53), and post-inhibitory rebound (F(6,372) = 15.02) (Fig

4). Descriptive data on the 22 subjects for background EMG, onset times, reflex durations, reflex

suppression, and post-inhibitory rebound for all muscles can be found in Table 3. On average

Fig 3. Results (mean ± std) collapsed across stimulation conditions for all muscles for A) reflex onset time, B) reflex offset time, C) reflex duration, D) level of

suppression, and E) post-inhibitory rebound. Results were considered significant if p< 0.05. � Denotes significance.

https://doi.org/10.1371/journal.pone.0196129.g003

Table 1. Statistical results comparing each dependent variable across stimulations within each muscle tested.

Onset

(ms)

Offset

(ms)

Duration

(ms)

Suppression

(% Baseline)

EMG Rebound

(% Baseline)

APB F(2,61) = 1.21,

p = 0.31

F(2,61) = 0.14,

p = 0.87

F(2,61) = 0.16,

p = 0.86

F(2,61) = 1.41,

p = 0.25

F(2,61) = 0.26,

p = 0.78

FCR F(2,60) = 1.35,

p = 0.27

F(2,58) = 0.22,

p = 0.80

F(2,58) = 0.51,

p = 0.60

F(2,58) = 0.46,

p = 0.64

F(2,58) = 1.07,

p = 0.35

ECR F(2,63) = 0.60,

p = 0.55

F(2,63) = 1.05,

p = 0.35

F(2,63) = 1.76,

p = 0.18

F(2,63) = 0.79,

p = 0.46

F(2,63) = 2.39,

p = 0.10

BIC F(2,54) = 0.77,

p = 0.47

F(2,54) = 0.45,

p = 0.64

F(2,54) = 0.06,

p = 0.94

F(2,54) = 0.86,

p = 0.43

F(2,54) = 0.24,

p = 0.79

TRI F(2,57) = 0.07,

p = 0.93

F(2,57) = 0.55,

p = 0.58

F(2,57) = 0.07,

p = 0.94

F(2,57) = 0.05,

p = 0.96

F(2,57) = 0.85,

p = 0.43

AD F(2,31) = 0.63,

p = 0.54

F(2,31) = 0.18,

p = 0.84

F(2,31) = 0.40,

p = 0.67

F(2,31) = 1.93,

p = 0.16

F(2,31) = 0.05,

p = 0.96

PD F(2,34) = 0.04,

p = 0.96

F(2,34) = 0.47,

p = 0.63

F(2,34) = 0.99,

p = 0.38

F(2,34) = 0.31,

p = 0.73

F(2,34) = 0.97,

p = 0.39

https://doi.org/10.1371/journal.pone.0196129.t001
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the APB muscle demonstrated the earliest onset time, latest offset times and therefore longest

duration, smallest level of reflex suppression, and largest post-inhibitory rebound compared

with the other muscles. In contrast, the proximal muscles of the shoulder demonstrated the lat-

est onset time (Fig 3A), shortest reflex durations (Fig 3C), and one of the largest reflex suppres-

sions (Fig 3D). Comparison of the dependent variables across muscles can be found in Fig 3.

Linear regression analysis

Linear regression analysis resulted in a low-to-moderate relationship between the muscle dis-

tance from the spinal cord with both CSP duration and suppression level (Fig 4). This result

was present across all stimulation conditions. Therefore, the general anatomical distance of a

muscle from the spinal cord (cm) may serve as an indicator for CSP duration (ms) and level of

suppression (% of baseline EMG). Specifically, the further the distance, the longer and shal-

lower the evoked CSP will be regardless which digit was stimulated (p< 0.001).

Discussion

The current study sought to investigate potential alterations in the CSP nociceptive reflex by

addressing 2 aims: 1) primarily investigate the CSP response across multiple extensor and

flexor muscles of the upper limb, and 2) secondarily investigate the influence of stimulation

site on the reflex response. The current study demonstrated a clear presence of the CSP

response within both flexor and extensor muscles of the upper limb, directly addressing aim

#1. Additionally, the study suggests that stimulation site (i.e. Digit II, V, and II/III stimulation)

Table 2. Average values ± standard deviations for the inhibitory reflex onsets, durations, suppressions, and post-inhibitory rebounds for each stimulation condition

across all muscles.

Onset

(ms)

Duration

(ms)

Suppression

(% Baseline)

EMG Rebound

(% Baseline)

Digit II 66.7 ± 11.4 51.9 ± 13.3 55.9 ± 10.9 148.9 ± 20.1

Digit V 69.9 ± 12.4 50.3 ± 14.2 58.6 ± 11.4 147.6 ± 20.7

Digit II+III 67.3 ± 13.6 52.5 ± 16.5 56.5 ± 10.5 142.9 ± 18.4

https://doi.org/10.1371/journal.pone.0196129.t002

Fig 4. Regression results comparing the inhibitory reflex durations (ms) and level of suppression (% of baseline) with the distance of each muscle from the spinal

cord.

https://doi.org/10.1371/journal.pone.0196129.g004
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does not play a role in influencing the reflex response, addressing aim #2. Such results provide

a rational for further investigations on the intricacies of peripheral nociception processing.

Aim 1: CSP and extensor and flexor muscles

The primary aim of this study sought to investigate the CSP across multiple extensor and flexor

muscles of the upper limb. Early investigations provided direct evidence of the CSP serving as

a protective reflex and suggested an interplay between inhibitory and excitatory reflex

responses such as inhibition within extensor muscles (i.e. CSP response) and excitation of

flexor muscles (i.e. withdrawal reflex) [4, 10, 13, 19, 20]. As data on the hand and forearm

became available, this classical activation pattern came into question as inhibition of the hand

muscles was present for both flexor and extensor muscles [3, 10, 11]. These reports, however,

only provided isolated instances of the CSP response within a few individual muscles rather

than across the multiple muscles of the upper limb. The present study, however, was able to

demonstrate the existence of the inhibitory CSP response within both flexor and extensor mus-

cles of the upper limb, confirming previous isolated hand muscle recordings while also

expanding the CSP response across multiple muscles of the upper limb regardless of their spe-

cific task (i.e. flexion or extensor). As a result, the current study suggests that the CSP inhibits

voluntarily activated muscle regardless of their immediate function. This blanket inhibition

may be the “first line of defense” during the navigation and exploration of potentially hazard-

ous environments (i.e. reaching) by halting the immediate action that may introduce harm to

the limb.

Aim 2: Stimulation site

The secondary aim of the current study was to investigate the influence of multiple stimulation

sites on the reflex response. Through stimulation of various digits of the hand supplied by dif-

ferent afferents, the current study was able to demonstrate that different stimulation sites

played no role in altering the CSP response within the muscles of the upper limb. This result

strengthens the previous assertion that the CSP inhibits voluntarily activated muscle, in this

case, regardless of the stimulation.

CSP response alterations

Further investigation into the individual components of the CSP response (i.e. onset, offset,

duration, etc.) revealed altered response patterns based on the associated muscles approximate

location within the upper limb. Specifically, the distal muscles of the upper limb presented

with the earliest reflex onset times, latest offset times, longest reflex duration, and lowest level

Table 3. Average values ± standard deviations for the background EMG, inhibitory reflex onsets, durations, suppressions, and post-inhibitory rebounds across all

muscles.

Background

EMG (mV)

Onset (ms) Offset (ms) Durations (ms) Suppression (%baseline) EMG Rebound (%baseline)

APB 0.0041±2.79e-06 57.2±1.7 146.5±2.1 89.3±2.1 31.3±1.4 170.7±3.1

FCR 0.0064±5.39e-06 66.4±1.7 115.9±2.1 49.5±2.1 55.4±1.4 141.2±3.2

ECR 0.0026±2.15e-06 70.2±1.6 125.7±2.0 55.5±2.0 43.5±1.4 149.0±3.0

BIC 0.0031±1.89e-06 71.3±1.8 116.7±2.2 45.4±2.2 65.4±1.5 137.4±3.3

TRI 0.0043±2.52e-06 65.5±1.7 113.4±2.1 47.9±2.1 60.6±1.5 153.5±3.2

AD 0.0080±5.03e-06 62.2±2.3 95.0±2.8 32.8±2.8 70.1±1.9 140.7±4.2

PD 0.0175±0.00e-06 82.1±2.2 123.5±2.7 41.4±2.7 72.0±1.9 132.7±4.0

https://doi.org/10.1371/journal.pone.0196129.t003
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of EMG suppression when compared to the more proximal muscles of the shoulder. Theoreti-

cally, the pronounced CSP within these distal muscles would allow for increased opportunity

for movement adjustment within those muscles, when exposed to noxious stimulation. The

results of the current study support this contention and are in accord with distal muscle data

and kinematic reports presented by previous investigations [4, 11, 21, 22]. The pathways associ-

ated with such adjustments are well known as sensory inputs from the hand are known to exert

effects on a large proportion of motor cortex neurons related to hand movement [23, 24], by

converging on common spinal interneurons with corticospinal tract fibers [25–27]. These

results give greater validity to the concept that strong inhibitory control of distal muscles is

needed to allow for complex manipulative and exploratory tasks, especially within a potentially

hazardous environment where injury may occur [4, 8, 28, 29]. This concept is anatomically sup-

ported by distinctly different and direct cortico-motoneuronal projections to the hand, forearm,

and upper arm muscles [30–32]. The longer inhibitory periods occurring within the APB of the

hand may be a product of these direct cortico-motoneuronal projections allowing for a greater

period of time for manipulative corrections in the presence of noxious stimuli. Along these lines

the differences occurring within the CSP response across the upper limb muscles may be a

product of the differing cortico-motoneuronal projections, as greater time periods for corrective

movements in response to noxious stimulation may not be as greatly needed. As it stands, the

current study results, when paired with previous investigations, suggest the potential for a distal

to proximal relationship for the CSP response. Therefore, it may be suggested that the current

understanding of nociceptive input processing needs revision.

Conclusions

The results presented within the current study suggest that the classical pattern associated with

the inhibitory CSP response (i.e. pure inhibition of extensors only) during voluntary muscle

contraction within the upper limb requires revision. The main findings of the current study

point to a potential differential level of spinal nociceptive processing existing between the distal

and proximal muscles of the upper limb. Therefore, the level of spinal processing of nocicep-

tive input appear more complex than once believed and requires further investigation. While

the precise mechanisms of the inhibitory CSP response remain unclear, the present study pro-

vides a refinement within the current understanding of the spinal organization associated with

nociception input processing and the associated motor control of the upper limb.
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