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Numerically predicting rate constants of protein folding and other relevant biological events is still a

significant challenge. We show that the combination of partial path transition interface sampling with the

optimal interfaces and free-energy profiles provided by path collective variables makes the rate calculation

for practical biological applications feasible and efficient. This methodology can reproduce the experi-

mental rate constant of Trp-cage miniprotein folding with the same level of accuracy as transition path

sampling at a fraction of the cost.

DOI: 10.1103/PhysRevLett.110.108106 PACS numbers: 87.15.A�, 82.20.Pm, 87.15.hm

Proteins rely on events spanning several time scales to
perform their functions. Protein folding, conformational
changes, binding, and unbinding are all rare events when
compared to time scales of local fluctuations of protein
structure. For this reason, the modeling of protein dynam-
ics is a very demanding task. Even though a lot of progress
has recently been made with unbiased molecular dynamics
(MD) simulations [1,2], today’s fastest purpose-built
supercomputers reach at most 1013 MD steps [1], corre-
sponding to tens of milliseconds, while the biological time
scales can easily span 1019 time steps. In this work, we
introduce a new practical approach to compute the kinetics
of complex biological phenomena. We combine free-
energy methods, path sampling, and path collective varia-
bles (PCVs) in a single, efficient methodology. The
combined approach makes the calculation of protein fold-
ing, ligand binding, and other rare events feasible on
standard computer clusters.

For decades, the standard way of computing the kinetics
associated with rare events in simulations has been the
reactive flux (RF) approach [3]. First, the free energy as a
function of a single reaction coordinate (RC) is determined
using an importance sampling technique. The maximum of
the so-obtained free-energy profile is then used to define an
approximate transition state (TS). The transmission coeffi-
cient is calculated by releasing dynamical trajectories from
the top of the TS. Themain problem of this approach is that,
when the transmission coefficient is small or the diffusion to
the product or reactant state is slow, the method is very
inefficient. What is more, in protein folding, the RC is often
unknown. Transition path sampling (TPS) was introduced
as a valid alternative to the free-energy-based approach
[4–6]. TPS was further improved by formulations that
use the concept of interface crossing probabilities
[7–10] like the transition interface sampling (TIS) method.
Compared to RF, the advantage of TIS is that it is based on

an importance sampling of the dynamical factor, the overall
crossing probability, which is efficiently determined with-
out any approximation. The partial path TIS (PPTIS) [9]
approach is even faster, reducing the average path length in
the importance sampling based on a semi-Markovian ap-
proximation. In PPTIS, trajectories no longer have to start at
the first interface and end at the last but only have to span the
region that is enclosed by three consecutive interfaces. The
overall crossing probability is reconstructed from the short
range crossing probabilities that are determined in these
ensembles. Still, in the case of steep and deep free-energy
minima, even PPTIS can be very time consuming. What is
more, inmost events of biological relevance, the knowledge
of the free-energy landscape as a function of a set of relevant
collective variables (CVs) is as important as the calculation
of the kinetics. In these cases, combining PPTIS with a
method that calculates the free-energy profile along an
optimal CV is very beneficial. Here, we show how PPTIS
can be combined with pathlike CVs and metadynamics to
determine the kinetics and thermodynamics associatedwith
rare biological events without the need of prohibitively long
trajectories. We call our new approach transition state
PPTIS (TS-PPTIS). Our approach can be adapted to mile-
stoning [11] or boxed MD [12] that are similar to PPTIS.
The memory-loss assumption, however, is more critical for
these methods that describe the process using history-
independent crossing probabilities. The definition and opti-
mization of the reaction coordinate could be performed by
methods similar to PCV and in some cases it could be
substituted by geometry-optimization-based approaches.
Our specific choice, however, is particularly well suited to
complex multidimensional systems.
Like RF, TS-PPTIS expresses the rate as a reactive

flux through the TS (�0): k ¼ PAð�0Þ � Rð�0Þ. PAð�0Þ
relates to the free energy of the TS: PAð�0Þ ¼
e��Gð�0Þ=

R�0�1 e��Gð�Þ. Rð�0Þ is the (unnormalized)
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transmission coefficient of the TS which is normally
obtained by releasing many trajectories from the TS back-
ward and forward in time. According to the effective
positive flux expression [13], each trajectory is given a
value equal to its starting velocity _�; whenever this value
is positive, the backward trajectory ends up in the reactant
state without recrossing the TS, and the forward trajectory
ends up in the product state. In all other cases, the trajec-
tory is counted as zero. Problems arise whenever very few
trajectories have a nonzero contribution or when it takes a
relatively long time before the trajectories drop off the
barrier to reach the stable states. TS-PPTIS solves these
two issues by sampling standard PPTIS path ensembles at
the barrier region. Introducing the PPTIS memory-loss
assumption, the statistics of the long trajectories are then
obtained from a series of short trajectories that are confined
to certain overlapping regions. At sufficient distances from
the TS, the probability of recrossing will become negli-
gible so that the calculations can be stopped. As a result,
TS-PPTIS will be much more computationally efficient.

As shown in the Supplemental Material [14], Rð�0Þ can
be obtained using successive approximations (where TST
stands for transition state theory) R0 ¼ RTST, R1 ¼
1
2R

TSTðp�
0 p

�
0 þ pþ

0 p
�
0 Þ; . . . ,

Rm ¼
1
2R

TSTðp�
0 p

�
0 þ pþ

0 p
�
0 ÞAm

�Am

p�
0 Am þ p�

0
�Am þ ð1� p�

0 � p�
0 ÞAm

�Am

(1)

as a function of the PPTIS short distance crossing
probabilities (pþ; p�; p�; . . . ) of interfaces on top of
the barrier (��m; . . . ; �0; . . . ; �m). Am and �Am can be calcu-
lated from recursive relations (see the Supplemental
Material [14]), e.g.,

Amþ2 ¼ p¼
mp

�
mþ1AmAmþ1

ðp�
mp

¼
mþ1 þ p¼

mp
�
mþ1ÞAm � p�

mp
¼
mþ1Amþ1

:

RTST is calculated from the average crossing velocity of
the �0 interface (see the Supplemental Material [14]). pþ

0

and p�
0 are like the standard PPTIS conditional crossing

probability p�
0 and p�

0 without the history dependence.

The efficiency of our new method depends on how many
interfaces need to be sampled in order to calculate the Rm

factor, e.g., how largem is. To calculate the folding rates of
a miniprotein (Trp cage), m ¼ 4 was already sufficient.

The efficiency of PPTIS is determined by the selection
of the RC [�ðxÞ function] defining the PPTIS interfaces.
What is more, in the case of TS-PPTIS, the free-energy
profile along the chosen RC must be determined. An
optimal and natural choice is the PCV [15]. In short, the
transition between the initial state A and the final state B is
described in terms of intermediate microstates SðlÞ, with
Sð1Þ ¼ SA and SðPÞ ¼ SB. We assume that the transition
from A toB can be described by a set of collective variables
SðRÞ which are, in general, nonlinear functions of the
microscopic variables R. The PCVs sðRÞ and zðRÞ are
then defined as

sðRÞ ¼ 1

P� 1

P
P
l¼1ðl� 1Þe��kSðRÞ�SðlÞk2P

P
l¼1 e

��kSðRÞ�SðlÞk2 ; (2)

zðRÞ ¼ � 1

�
ln

 XP
l¼1

e��kSðRÞ�SðlÞk2
!
; (3)

where � is a constant and the information between
the double vertical bars stands for the metric that defines
the distance between configurations (e.g., root-mean-
square deviation or RMSD). Reference [15] presents an
efficient procedure improving the initially guessed SðtÞ
until it lies on a minimum free-energy path connecting A
with B.
The reaction rates, obtained by RF, TIS, and similar

methods, do not depend on which RC is chosen as long
as it distinguishes between the initial and final states.
However, a poorly chosen RC can cause severe problems
in RF due to hysteresis and a low transmission coefficient.
TIS has proven to be less sensitive to these issues [16], but
this cannot be generalized to the TIS variations like PPTIS
and forward flux sampling (FFS) [13]. PCV-based RCs are,
therefore, perfectly suited for these methods.
We tested our methodology on the folding of the

Trp-cage (sequence NLYIQ WLKDG GPSSG RPPPS,
PDB ID 1L2Y) miniprotein [17]. Despite being rather
small, the Trp cage has a compact hydrophobic core and
secondary structure elements, making it similar to func-
tional proteins. It exhibits a fast, two-state folding kinetics
with a folding time of 4:1 �s [18].
The native structure of a Trp cage is presented in

Fig. 1 and consists of an � helix (residues 2–8), a 310
helix (residues 11–14), and a polyproline II helix (residues
17–19), forming a hydrophobic pocket for the tryptophan
side chain. The Trp cage has been extensively studied
in silico, both in implicit [2,19–23] and explicit solvents
[24–29]. Explicit solvent replica-exchange molecular dy-
namics studies and bias-exchange simulations [30]

FIG. 1. (a) Structure of the Trp-cage miniprotein (PDB ID
1L2Y). The tryptophan residue and surrounding amino acids
are plotted as sticks. (b) Conformational states of the Trp cage
(un)folding from Ref. [25]. The TS dividing surface is schemati-
cally shown as a dotted line to indicate that both intermediates L
and I are committed to the unfolded ensemble.
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confirmed the Trp cage as a fast two-state folder, with an an
intermediate state containing two hydrophobic cores. In a
TPS study [25] using the optimized potentials for liquid
simulations all-atom (OPLSAA) force field and explicit
solvation, two major (un)folding routes of the Trp cage
were identified (see Fig. 1). One route follows a diffusion-
collision-like channel (anN-I-U path); the other resembles
a nucleation-condensation mechanism (an N-L-U path).
The N-I-U route fully agrees with the recent experimental
elucidation of the transition state of the Trp cage [31]: The
TS contains a fully formed � helix, and the salt bridge may
be formed or broken. In another study [26], the TIS tech-
nique was employed to calculate the rates of the N-L path.
We performed TS-PPTIS and PPTIS calculations using
PCV-defined interfaces on a Trp-cage (un)folding route,
to which we refer to as the N-I route (see Fig. 1), where N
corresponds to the native state and I belongs to the basin of
attraction of the unfolded state. All MD simulations were
performed in GROMACS [32] using an OPLSAA force field
and simple point charge (SPC) water. The electrostatics
was treated with particle-mesh Ewald, and we used cubic
periodic boundary conditions. More details can be found in
the Supplemental Material [14]. To define the PCV for the
N-I transition, we steered the native structure along the C�

RMSD.
The resulting initial path first solvated the hydrophobic

core and then unfolded the � helix, and thus followed the
N-I route. From this trajectory, we selected 26 equidistant
frames such that the sum of RMSDs between them was
minimal (the first and last frames were kept fixed). This
path was then subject to free-energy minimization [15] and
resulted in the final PCVs.

The open-source plug-in for free-energy calculations
PLUMED [33] was used for metadynamics and PCV calcu-

lations. In Fig. 2, we show the free-energy projection on the
sðRÞ obtained using well-tempered metadynamics [34]. To
focus the reaction on the N-I-U route, we placed a wall on

the zðRÞ. The wall reduces the conformational freedom in
highly entropic I and U states. This needs to be corrected
for when calculating the true free energies, indicated in the
figure with Icorr and Ucorr. Thus, we compared the struc-
tures sampled during the metadynamics run to those
sampled by the unrestrained MD simulations and calcu-
lated the free-energy correction using cluster analysis as
�GcorrðIÞ ¼ kBT ln½Nclust

MD ðIunbiasedÞ=Nclust
METAðIbiasedÞ� (where

META stands for metadynamics). Since the value of the
correction might depend on the cutoff and on other details
of the clustering method of choice, we checked that, with
two different clustering methods, in the limit of cutoff!0,
it converged to the same value of about 2kBT (see the
Supplemental Material [14]).
We first calculated the rates with PPTIS with the PCV-

defined interfaces and then compared the results with the
full TS-PPTIS approach. We used 16 interfaces. For s 2
ð2:5; 4Þ the interfaces were set closer to one another due to
the steepness of the free-energy profile. The PPTIS ensem-
bles were sampled on average for 45 ns with the acceptance
ratio 50%–60%. We calculated the flux factors by running
a 100 ns MD in the initial and final states and counted
positive effective recrossings as in Ref. [26]. For more
details, see the Supplemental Material [14]. We obtained
f ¼ 1:5 ns�1 for the unfolding flux through the interface
s ¼ 1:85. The folding flux through s ¼ 15 is f ¼
0:17 ns�1. Crossing probabilities for folding and unfolding
transitions converge after crossing the TS (s ’ 7, Fig. 3).
The rate constants are calculated by multiplying the flux
factor by the crossing probability, yielding kPPTISIN ¼
ð0:2 �sÞ�1 for folding and kPPTISNI ¼ ð5:4 �sÞ�1 for unfold-
ing (see Table I). The memory-loss assumption was veri-
fied in two ways. First, we monitored the overlap of the end
point velocity distribution of different path ensembles as

FIG. 2. Free-energy landscape of the Trp-cage N-I transition
as a function of the s path collective variable. SampleN, I, andU
structures are indicated in the plot as in Fig. 1. The approximate
TS used for the TS-PPTIS is indicated with a dotted line. Icorr
and Ucorr are the corrected free-energy minima.
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FIG. 3. Top: Rm as a function of m. Bottom: crossing proba-
bilities in a function of the sðRÞ for N-I (left) and I-N (right)
transitions.
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proposed in Ref. [9]. Then, we repeated the calculations
with a larger spacing for the interfaces. In both cases,
the assumption was verified (see the Supplemental
Material [14]).

We then repeated the calculation with TS-PPTIS. From
the free-energy profile, the TS appears to be around s ¼ 7.
Therefore, we only used the interfaces closest to s ¼ 7 to
calculate the rates (7 out of 16). The unfolding rate hardly
depends on the free energy of the I state, and we obtain
kTS PPTIS
NI � kTS PPTIS

NU ¼ ð3:3 �sÞ�1. To obtain the folding

rate, we increased the folding barrier by the calculated
correction of 2kBT. This gave us kTS PPTIS

IN ¼ ð0:3 �sÞ�1.

The convergence of TS-PPTIS is depicted in Fig. 3. Rm

flattens out around m ¼ 4. Adding further interfaces does
not influence the resulting rate constants. The results are
summarized in Table I and compared to the values calcu-
lated using TIS [26] and FFS [35] and to the experimental
results [18]. The folding time �corrUN for the PPTIS and TS-

PPTIS simulations were calculated from the formula
�corrUN ¼ �IN=e

��GIU with �GIU ¼ 3kBT. Both PPTIS and

TS-PPTIS are in agreement with our previous TIS calcu-
lations, albeit using only a fraction of the computing cost.
The expected slight disagreement with the experimental
unfolding times is known to be due to the OPLSAA force
field [26]. The folding times �UN (see Table I) are in near-
total agreement with the experimentally measured values.
Path collective variables are an important addition to the
PPTIS methodology, allowing one to channel the pathways
toward the right transition. By employing PCVs, which by
construction follow an optimal free-energy path, we solve
the problem of PPTIS related to the choice of RC. The
advantage of the combination of PPTIS with PCVover TIS
is a significant gain in efficiency. In the TIS study [26], the
aggregate CPU time necessary to calculate the (un)folding
rate constants was 26 �s. PPTIS only required a total
sampling time of less than 1 �s. Since we estimate their
respective accuracies to be the same, this suggests about a
20-fold improvement in terms of CPU time. The TS-PPTIS
rate constant calculation is even more efficient. In the case
of the Trp cage, whose free-energy landscape is rather flat,
representing a worse-case scenario for the approach, the
gain in the total computing time (including the free-energy
calculation) is of only 20% between PPTIS and TS-PPTIS.

In more complex biological systems, however, whenever
deep free-energy minima are present in the landscape (as in
the case of ligands binding with a long residence time),
very significant efficiency gains are expected. A typical
example of the kinetics of a drug binding to a pharmaceuti-
cally relevant target (the heat shock protein 90) is reported
in the Supplemental Material [14]. The deterioration of the
efficiency in steep regions of the free energy with the
consequent need for many closely spaced interfaces and
the risk of violating the memory-loss assumption makes
use of PPTIS and similar approaches that are impractical or
even impossible. Thus, when deep minima are found in the
free-energy landscape, TS-PPTIS PCV has clear advan-
tages over similar approaches.
We acknowledge the PRACE Research Infrastructure
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