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ABSTRACT
We have compared numerical simulations to observations for the nearby (<40 Mpc) groups

of galaxies. The group identification is carried out using a group-finding algorithm developed

by Huchra & Geller. Using cosmological N-body simulation code with the �cold dark matter

(�CDM) cosmology, we show that the dynamical properties of groups of galaxies identified

from the simulation data are, in general, in a moderate, within 2σ , agreement with the observa-

tional catalogues of groups of galaxies. As simulations offer more dynamical information than

observations, we used the N-body simulation data to calculate whether the nearby groups of

galaxies are gravitationally bound objects by using their virial ratio. We show that in a �CDM

cosmology about 20 per cent of nearby groups of galaxies, identified by the same algorithm

as in the case of observations, are not bound, but merely groups in a visual sense. This is

quite significant, specifically because estimations of group masses in observations are often

based on an assumption that groups of galaxies found by the friends-of-friends algorithm are

gravitationally bound objects. Simulations with different resolutions show the same results.

We also show how the fraction of gravitationally unbound groups varies when the apparent

magnitude limit of the sample and the value of the cosmological constant � is changed. In

general, a larger value of the �� generates slightly more unbound groups.

Key words: methods: numerical – galaxies: clusters: general – galaxies: haloes – dark matter

– large-scale structure of Universe.

1 I N T RO D U C T I O N

Small groups of galaxies are the most common galaxy associa-

tions and contain ∼50 per cent of all galaxies in the Universe (e.g.

Holmberg 1950; Humason, Mayall & Sandage 1956; Huchra &

Geller 1982; Geller & Huchra 1983; Nolthenius & White 1987).

The study of galaxy groups is a very interesting area of research

because these density fluctuations lie between galaxies and clusters

of galaxies, and may provide important clues to galaxy formation.

Small groups of galaxies are also important cosmological indicators

of the distribution, and properties, of dark matter in the universe.

The dynamics of the nearby groups of galaxies and the Local

Group has provided a unique challenge to cosmological models

in the past. The quiescence of the local peculiar velocity field

(e.g. de Vaucouleurs 1958; Sandage & Tammann 1975; Sandage

1999; Ekholm et al. 2001) was a long-standing puzzle that presented

a challenge for the models of structure formation. The velocity field

within 5 h−1 Mpc of the Local Group is extremely ‘cold’, the disper-

sion is only ∼50–60 km s−1 (Teerikorpi, Chernin & Baryshev 2005,

and references therein). The �CDM cosmology and dark energy

have solved this problem and it has been shown by, for example,

�E-mail: saniem@utu.fi (SMN); pasnurmi@utu.fi (PN); pekheina@utu.fi

(PH); mvaltonen2001@yahoo.com (MV)

Klypin et al. (2003), Macció, Governato & Horellou (2005) and

Peirani & de Freitas Pacheco (2006) with constrained simulations

that the �CDM cosmology can produce the small values of the ve-

locity dispersion. Today, the question of the virialization of groups

of galaxies and the fraction of gravitationally bound systems pro-

vides a new challenge for the cosmological models and grouping

algorithms.

Over the last two decades, cosmological simulations have proven

to be an invaluable tool in testing theoretical models in the non-

linear regime. The standard approach is to assume a cosmological

model and to use the appropriate power spectrum of the primor-

dial perturbations to construct a random realization of the density

field within a given simulation volume. The evolution of the initial

density field is then followed by using an N-body simulation code,

and the results in the simulation box (viewed from outside) are com-

pared with observational data. A comparison of the simulations with

observational data is typically done in a statistical manner. The sta-

tistical approach works well if there is a statistically representative

sample of objects with well-understood selection effects for both

the observed universe and the simulations.

Given a set of observed galaxies with their positions in the sky and

their redshifts, the task of a group finder is to return sets of galax-

ies that most likely represent true gravitationally bound structures.

Some contamination is always expected due to selection effects in

observations. This study uses one of the most popular group finders:
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the friends-of-friends (FOF) algorithm. FOF has been used widely

for identifying groups of galaxies in the redshift surveys (Huchra &

Geller 1982; Geller & Huchra 1983; Nolthenius & White 1987;

Ramella, Geller & Huchra 1989; Moore, Frenk & White 1993;

Ramella, Pisani & Geller 1997; Giuricin et al. 2000; Tucker et al.

2000; Ramella et al. 2002) and is now a standard approach.

The identification of the group members has, in general, been

based on a subjective selection of data. In order to remove this diffi-

culty, Huchra & Geller (1982, hereafter HG82) developed a method

of identifying groups of galaxies from the observations. It has

been usually thought that the FOF based algorithms would produce

groupings which are mostly gravitationally bound when the num-

ber of galaxies in a group exceeds five members (see e.g. Ramella

et al. 2002). A few studies (e.g. Carlberg et al. 2001) have been

made where the free parameters of the FOF algorithm have been

optimized to avoid spurious groups with interlopers. Studies of the

FOF algorithms have concluded that the choice of the free parame-

ters depends on the case that is studied, and no singular best choice

of the parameters can be made. Unfortunately, none of the obser-

vational methods do truly answer the question whether groups of

galaxies are gravitationally bound objects. There are some estimates

for the fraction of how many groups found by the FOF algorithm

are spurious (see e.g. Ramella et al. 2002), but these estimates are

not based on the physical properties of the groups.

Cosmological N-body simulations include all the necessary in-

formation for finding out whether a given object is gravitationally

bound or not. Aceves & Velázquez (2002) studied small galaxy

groups with N-body simulations and made conclusions about the

virialization of the groups. Diaferio, Geller & Ramella (1994) stud-

ied compact groups of galaxies with N-body simulations and made

remarks about the fraction of bound groups and chance alignment

systems. Groups of galaxies, and their dynamical properties gener-

ated by the FOF algorithm, have been studied earlier with N-body

simulations (see e.g. Nolthenius, Klypin & Primack 1997; Diaferio

et al. 1999; Merchán & Zandivarez 2002; Casagrande & Diaferio

2006). Most of these earlier studies have taken advantage of the

constrained simulations and have used models which are different

from the currently popular �CDM cosmology. In these constrained,

or mock catalogue, simulations, the simulated space has been com-

pared directly with the observations of redshift space and the groups

have been categorized as spurious if the algorithm has failed to find

similar groups as in real space. Instead, we have studied the virial

ratio of the groups of galaxies produced by the FOF algorithm first

described in HG82. We will show that ∼20 per cent of the groups

of galaxies found by the FOF algorithm are not real gravitationally

bound groups, but spurious. Our results agree roughly with the pre-

vious results and estimates but do not confirm the claim by Ramella

et al. (1989) that groups with more than four members are gravita-

tionally bound.

For an ‘observer’ placed in a specific location, selecting a similar

environment between observational data and cosmological simu-

lations might be problematic. The simplest way is to choose an

‘observation’ point within a simulation box by certain criteria. It is

argued (e.g. Klypin et al. 2003, and references therein) that it is not

clear what ‘similar environment’ actually means and that simply

placing the observer at some specific point would resolve the issue.

In this paper, we show that this is a useful approach, as we are not

comparing simulations to observations directly but with statistics.

The main purpose of this work is to study if groups of galaxies

found by the HG82 algorithm are bound, and how the fraction of

bound groups depend on the chosen magnitude limit and cosmo-

logical model. We will show our findings with different apparent

magnitude limits and for different cosmological models. We also

show that there is no significant correlation between the crossing

time of a group and its virial ratio.

This paper is organized as follows. In Section 2, we review the

method used in the identification of the group members in the obser-

vations. A brief discussion of the differences between observations

and simulations is given in Section 2. In Section 3, we discuss briefly

the virial ratio, used for determining whether a group of galaxies

is gravitationally bound. Section 4 discusses the simulations, we

use for the analysis. In Sections 5 and 6, we present our results

and discuss the findings. Discussion of the probability functions of

gravitationally unbound groups is done in Section 7. Finally, we

summarize our results in Section 8.

2 A R E V I E W O F T H E G RO U P - F I N D I N G
A L G O R I T H M

In observations, there are generally three basic pieces of informa-

tion available for the study of the galaxy distribution: the position,

the magnitude and the redshift of each galaxy. Although the mag-

nitude is important as a measure of the object’s visibility, it is usu-

ally a poor criterion for group membership. The method used for

creating a group catalogue in HG82 can be summed up in two cri-

teria: the projected separation and the velocity difference. The FOF

algorithm is described in greater detail by the original authors in

HG82.

The grouping method begins with a selection of an object, which

has not been previously assigned to any of the existing groups. After

choosing the object, the next step is to search for companions with

the projected separation D12 smaller or equal to the separation DL:

D12 = 2 sin

(
θ

2

)
V

H0

<= DL(V1, V2, m1, m2), (1)

where the mean cosmological expansion velocity is

V = V1 + V2

2
, (2)

and the velocity difference V12 is smaller or equal to the velocity

VL:

V12 = |V1 − V2| <= VL(V1, V2, m1, m2), (3)

where V1 and V2 refer to the velocities (redshifts) of the galaxy and its

companion, m1 and m2 are their magnitudes and θ is their angular

separation in the sky. If no companions are found, the galaxy is

entered in a list of isolated galaxies. All companions found are added

to the list of group members. The surroundings of each companion

are then searched by using the same method used in the first place to

find companions. This process is repeated until no further members

are found.

There are a variety of prescriptions for DL and VL. We adopt the

method used in HG82, and assume that the luminosity function is

independent of distance and position and that at larger distances

only the fainter galaxies are missing. For each pair we take

DL = D0

[ ∫ M12

−∞ �(M) dM∫ Mlim

−∞ �(M) dM

]−1/3

, (4)

where the integration limits can be calculated from equations:

Mlim = m lim − 25 − 5 log (DF) (5)

and

M12 = m lim − 25 − 5 log (V ), (6)
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and where �(M) is the differential galaxy luminosity function for

the sample and D0 is the projected separation in Mpc chosen at

some fiducial distance DF. In this paper, we adopt constants D0 =
0.63 Mpc and DF = 10 Mpc to be same as in HG82. The effect of

varying D0 has been studied, for example, by Ramella et al. (1989)

where the effects are also explained.

The limiting velocity difference is scaled in the same way as the

distance DL:

VL = V0

[ ∫ M12

−∞ �(M)dM∫ Mlim

−∞ �(M)dM

]−1/3

, (7)

where the fiducial value is V0 = 400 km s−1 and the integration

limits are as above (equations 5 and 6). Ramella et al. (1989) varied

V0 and concluded that the results are not sensitive to the choice

of V0. This is probably related to the geometry of the large-scale

structure. Frederic (1995a,b) argues that the optimal choice of D0

and V0 depends on the purpose for which groups are being identified.

Similar claims has been made in papers where the FOF algorithm

has been optimized (see e.g. Eke et al. 2004; Berlind et al. 2006).

Because of this, we also show some results when D0 = 0.37 Mpc

and V0 = 200 km s−1 are adopted.

Note that the scaling law in equations (4) and (7) has been ques-

tioned by many authors. Specifically, replacing the power −1/3

by −1/2 (see the argument in e.g. Nolthenius & White 1987;

Gourgoulhon, Chamaraux & Fouqué 1992) drastically reduces the

correlation between the redshift and the velocity dispersion observed

in the HG82 group catalogue. However, part of this correlation is

related to a selection effect rather than to the grouping algorithm, be-

cause groups with low-velocity dispersion usually have few bright

galaxies and so they can be seen only at low redshift. In this pa-

per, we use the equations mentioned above for consistency with the

HG82 catalogue.

For simplicity, we use the Schechter (1974) luminosity function:

�(M) = 2

5
�∗ ln 10

[
102/5(M∗−M)

]α+1
exp−102/5(M∗−M)

, (8)

where M is the absolute magnitude of the object. We adopt the

parameter values of α = −1.02, M∗ = −19.06 and �∗ = 0.0277

comparable to HG82. For comparison, we use the galaxy luminosity

function values ofα =−1.15, M∗ =−19.84 and�∗ =0.0172, which

were derived from the Millennium Galaxy Catalogue by Driver et al.

(2007).

Our chosen values of constants and parameters needed for the

FOF algorithm are exactly the same as in HG82 for consistency.

We do show selected results with more recent values of constants

and parameters if these results differ from the results produced with

the HG82 values. Throughout this paper, we adopt the parametrized

Hubble constant H0 = 100 h km s−1 Mpc−1 with h = 1.0 for com-

parison with HG82 when a definite value of the Hubble constant is

needed. We do not consider dust extinction in the analysis of the

simulations in this paper.

3 A R E V I E W O F T H E V I R I A L T H E O R E M

In the simplest case, when we have a two body system with total

mass M = m1 + m2 and V is the relative speed of the components, the

kinetic energy is T of the system (in the centre-of-mass coordinate

system) and its gravitational potential energy U (taken positive) are:

T = 1

2

m1m2

M
V 2, (9)

U = Gm1m2

R
, (10)

where R is the size of the system and G is the gravitational constant.

These equations are related by a simple relation:

U = 2T . (11)

However, the above relation holds only for isolated self-gravitating

systems when the system is in equilibrium.

In general, groups of galaxies (and dark matter haloes1) contain

more than two members. Therefore, a generalized method for cal-

culating the kinetic and the potential energies is needed. We adopt

a method described by Chernin & Mikkola (1991). In general, the

kinetic energy may be written as

T = 1

2M

∑
i< j

mi m j (V i − V j )
2, (12)

and the potential energy as

U = G
∑
i< j

mi m j

Ri, j
, (13)

where mi and mj are the masses of the two galaxies, Vi and V j are

their velocities and Ri,j is the distance between them.

We use these general equations to get the total kinetic energy of

a group of haloes and compare it to its total potential energy. If the

group of haloes does not fulfill the criterion:

T − U < 0, (14)

it is entered into a list of unbound groups. The above criterion is

equal to the virial ratio:

T

U
< 1.0, (15)

which we use throughout this paper as a criterion for discriminating

between bound and unbound groups.

4 D E S C R I P T I O N O F T H E C O S M O L O G I C A L
S I M U L AT I O N S

4.1 Background

We present results from four simulations, performed by the cos-

mological N-body simulation code Adaptive Mesh Investigations

of Galaxy Assembly (AMIGA). The former version of AMIGA was

known as MLAPM (for details see Knebe, Green & Binney 2001). For

the first two runs, we adopt the currently popular flat low-density

cosmological model �CDM with h = 1.0, �dm = 0.27, �� = 0.73

and σ 8 = 0.83, with two different resolutions. Both simulations

were made with 2563 dark matter particles. The high-resolution

simulation began at the initial redshift of zi = 47.96 while the low-

resolution simulation was initiated at redshift zi = 38.71. The vol-

ume employed in the high-resolution simulation was (40 h−1 Mpc)3

and (80 h−1 Mpc)3 in the low-resolution simulation corresponding

to the mass resolutions of 2.86 × 108 and 2.29 × 109 h−1 M�, re-

spectively. The force resolution for the high-resolution simulation

is 1.8 h−1 kpc and for the low resolution 7.3 h−1 kpc.

For the third and the fourth simulations, we adopt different cosmo-

logical models. These simulations were also performed with 2563

1 We will use the term ‘halo’ from now on to refer to virialized clumps of

dark matter in the simulation and reserve ‘galaxy’ for the real observational

data.
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Table 1. Details of the simulations analysed in this paper.

�� L Np zi mres Fres Nh

0.73 40 2563 47.9600 2.86 × 108 1.8 6700

0.73 80 2563 38.7099 2.29 × 109 7.3 9301

0.90 80 2563 31.7858 8.50 × 108 7.3 4937

0.00 80 2563 72.8767 8.47 × 109 3.7 7919

Note: �� specifies the value of the cosmological constant, L is the size

of the simulation box in one dimension in h−1 Mpc, Np is the number of

dark matter particles, zi is the initial redshift, mres is the mass resolution in

h−1 M�, Fres is the force resolution in h−1 kpc and Nh is the total number

of dark matter haloes identified from the simulation.
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Figure 1. The cumulative number density of velocity dispersion σv for

galaxy groups. Simulation data are from the �� = 0.73 simulations, and it

is averaged over the ensemble of 10 mock catalogues. The error bars are 1σ

errors and are only shown for the low-resolution �� = 0.73 simulation for

clarity. The error bars for other data have similar size.

dark matter particles but with different values of the cosmological

constant �. The total density of the universe was kept equal to the

critical density (� = 1.0). For the third simulation, we adopt h =
1.0, �dm = 0.1, �� = 0.9 and σ 8 = 0.83. For the fourth simula-

tion, we adopt h = 1.0, �dm = 1.0, �� = 0.0 and σ 8 = 0.84 (see

Table 1).

The high-resolution �� = 0.73 simulation was used to under-

stand the effects of limited resolution in N-body simulations. Dur-

ing this work, we found some differences between results of the

high- and the low-resolution �� = 0.73 simulations. These differ-

ences are clearly visible when the group abundances are studied (see

Figs 1–4).

4.2 Halo finder and identification of the dark matter haloes

Our simulations only follow the evolution of the dark matter par-

ticles via gravitational interaction. It is expected that baryons con-

dense and form galaxies at the centres of dark matter haloes. AMIGA

N-body simulation code comes with a halo-finding algorithm called

MHF (MLAPM’s Halo Finder, Gill, Knebe & Gibson 2004). For our

purpose of analysing the nearby groups of haloes we used MHF.

The general goal of a halo finder, such as MHF, is to identify

gravitationally bound objects. MHF essentially uses the adaptive

grids of the AMIGA to locate the haloes and the satellites of the host

haloes, namely subhaloes. The advantage of reconstructing the

grids to locate haloes is that they follow the density field with the ex-

act accuracy of the simulation code and therefore no scaling length is
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Figure 2. Group abundance by ‘observable’ mass of the groups. Simulation

data are from the �� = 0.73 simulations, and it is averaged over the ensemble

of 10 mock catalogues. The error bars are 1σ errors and are only shown for

the low-resolution �� = 0.73 simulation for clarity. The error bars for other

data have similar size.
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Figure 3. The cumulative distribution of mean pairwise separation Rp for

galaxy groups. Simulation data are from the �� = 0.73 simulations, and it

is averaged over the ensemble of 10 mock catalogues. The error bars are 1σ

errors and are only shown for the low-resolution �� = 0.73 simulation for

clarity. The error bars for other data have similar size.
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Figure 4. The cumulative distribution of crossing time tc (in unit of the

Hubble time) for galaxy groups. Simulation data are from the �� = 0.73

simulations, and it is averaged over the ensemble of 10 mock catalogues.

The error bars are 1σ errors and are only shown for the low-resolution

�� = 0.73 simulation for clarity. The error bars for other data have similar

size.
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required [for more detailed description of the MHF see Gill et al.

(2004)].

The minimum number of particles in a halo was set to 10. This

corresponds to a halo mass ∼3 × 109 and ∼2 × 1010 h−1 M� for the

high- and the low-resolution simulation, respectively. A low value

of the minimum number of particles in a halo ensures that even

with a limited resolution, large and massive haloes are split into

lighter subhaloes. For large and massive (∼1014 h−1 M�) haloes,

subhaloes represent visual galaxies, masses ∼1012 h−1 M�. In a

typical case, the total mass fraction in subhaloes is ∼10 per cent,

and only these are visible in our ‘mock’ catalogue. In our ‘mock’

catalogue, the median of individual dark matter haloes mass is

∼1.6 × 1012 h−1 M� when the �� = 0.73 model and the low reso-

lution is adopted. The first and the third quartiles are: ∼7.2 × 1011

and ∼5.0 × 1012 h−1 M�, respectively.

The AMIGA and its halo finder calculate automatically certain

properties (e.g. position, mass, velocity, etc.) of the dark matter

haloes. These properties were used when the FOF algorithm was

applied to generate the catalogues of groups of dark matter haloes.

Subhaloes were included in our data as our purpose is to study if

the groups of galaxies (dark matter haloes) are gravitationally bound

objects. The results did not change substantially when the subhaloes

of the more massive haloes were excluded from the analysis. This

result is due to the small number of subhaloes in our low-resolution

simulation. The results of the high-resolution simulation show no

significant difference if subhaloes were excluded because subhaloes

have a relatively small mass. Due to their small masses, subhaloes

are not visible at the observation point, when the apparent magnitude

limit of 13.2 is adopted.

5 S TAT I S T I C A L P RO P E RT I E S O F T H E
N E A R B Y G RO U P S O F G A L A X I E S :
C O M PA R I N G S I M U L AT I O N S W I T H
O B S E RVAT I O N S

5.1 Selection of the nearby groups of haloes

A Total of 10 catalogues were generated, corresponding to 10 dif-

ferent ‘observers’, for each simulation, with different apparent mag-

nitude limits. 10 observers are used to produce enough groups to

give good statistics. Note, however, that since all 10 catalogues are

constructed from the same parent simulation, the scatter between

statistics estimated from them might underestimate the true sam-

pling variance.

All observation points were chosen with the following criteria:

(i) observation point is >15 h−1 Mpc from the edge of the simu-

lation box.

(ii) a massive (∼5 × 1014 h−1 M�) Virgo-type halo is located

within a distance of ∼20 h−1 Mpc.

We did not restrict the local <10 h−1 Mpc environment of the ob-

servation points by any criteria. Although it is not clear if choosing

an observation point simply by the two former criteria resolves the

environment issue, we believe this to be strict enough for the statis-

tical study of the virial ratio of groups. These criteria are justified for

the statistical study, as we did not perceive a significant difference

between the observation points in the low-resolution simulation.

Small differences between observation points were observed when

the high-resolution simulation was studied, as it only includes two

Virgo-type haloes. When the low-resolution simulation was stud-

ied, the location of a massive (Virgo-type) halo did not have any

significant effect to our results.

The simulation data do not directly give the luminosity or the

absolute magnitude of the dark matter haloes, which are needed

when we are mimicking observational conditions. We use haloes’

virial mass Mvir to obtain its luminosity. To obtain the luminosity of

an object in the blue band, we use the relation proposed by Vale &

Ostriker (2004):

L(Mvir) = 5.7 × 109 h−2 L�
M p

11[
q + Ms(p−r )

11

]1/s , (16)

where M11 is defined:

M11 = Mvir

1011 h−1 M�
. (17)

For the free parameters of the mass-luminosity function, values of

p = 4.0, q = 0.57, r = 0.28 and s = 0.23 were adopted (Oguri 2006).

It has been shown by Cooray & Milosavljević (2005) that the rela-

tion between the mass of a dark matter halo and its luminosity is not

as straightforward as presented above. For our purposes, as the lumi-

nosity of a dark matter halo is used only to determine whether a halo

is visible from the observation point, the above relation should be

satisfactory. For this work, we do not adopt more complex methods

such as actual distributions for the mass–luminosity relation.

After the luminosity L of the halo is known, we obtain the apparent

magnitude of the halo in the blue band from the equation:

m B = M�B
− 2.5 log10

(
L

L�

)
+ 5 log10

(
d

1 Mpc

)
+ 25, (18)

where d is the distance from the observation point and the magnitude

of the sun in blue band M�B
= 5.47 (Cox 2000). As seen from

equation (18), we do not include dust extinction in our study, as its

effect in a statistical study like ours would be negligible.

The method described above allows us to use the apparent magni-

tude limit mlim = 13.2 as adopted in HG82. Group catalogues of this

study are also generated with different magnitude limits in order to

understand the effects of the magnitude limit in magnitude-limited

samples. Unless explicitly noted, all haloes and groups referred to

are from the simulations; real groups of galaxies from HG82 and

UZC-SSRS2 (Ramella et al. 2002) are denoted as such.

5.2 Comparison parameters

We begin by calculating the velocity dispersion σv of a group. In

general, the velocity dispersion of a group is defined as

σv =

√√√√ 1

NH − 1

NH∑
i=1

(vi − 〈vR〉)2, (19)

where NH is the number of haloes (or galaxies) in a group, vi is the

radial velocity of the ith halo (or galaxy) and 〈vR〉 is the mean group

radial velocity.

The second comparison parameter is the mean pairwise separation

Rp which is a measure of the size of a group. It can be defined as

Rp = 8〈vR〉
π H0

sin

[
1

NH(NH − 1)

NH∑
j<i

NH∑
i=1

θi j

]
, (20)

where 〈vR〉 is the mean group radial velocity, H0 is the Hubble

constant and θi j is the angular separation of the ith and jth group

members. Other two comparison parameters are the total group mass

and the virial crossing time (in units of the Hubble time H−1
0 ) which

can be defined as

tc = 3RH

53/2σv

, (21)
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where σv is the velocity dispersion and RH is the mean harmonic

radius:

RH = π〈vR〉
H0

sin

⎧⎨
⎩1

2

⎡
⎣ NH(NH − 1)

2

(
NH∑
i=1

NH∑
j>i

θi j

)−1
⎤
⎦

⎫⎬
⎭ , (22)

where all the variables are defined as above.

In observations, the group masses can be estimated in various

methods. In the HG82 and the UZC-SSRS2 catalogues, the total

mass of a group is estimated with a simple relation:

Mobs = 6.96 × 108σ 2
v RH M�, (23)

where σv is the velocity dispersion and RH is the mean harmonic

radius of the group as defined above. We use this simple relation to

determine the ‘observable’ mass of a group when we are comparing

the masses of the simulated groups to the real observed groups such

as HG82 and UZC-SSRS2. However, when the total mass of a group

is used to scale the properties of groups (in Section 6), we calculate

the total mass of a group of dark matter haloes as a sum of the

member halo masses, namely the ‘true’ mass of the group. In case of

the subhaloes, the diffuse dark matter is included in the main halo’s

mass. In general, we do not include the diffuse dark matter within a

given distance from the group centre, as it would be troublesome to

choose an appropriate distance. We do not consider this error to be

meaningful, as the diffuse dark matter does not substantially give

rise to the mean density of a simulation.

5.3 Comparison with observations

Comparison between simulations and observations is done using a

Kolmogorov–Smirnov (K–S) test. The null hypothesis Hnull of the

K–S test is that the two distributions are alike and are drawn from

the same population distribution function. Results of the K–S tests

are presented as significance levels (value of the Q function) for the

null hypothesis. Correlation between two variables is proved or dis-

proved with the use of the linear correlation coefficient r. In general,

the significance level of 0.001 is adopted when the correlation be-

tween two variables is determined. For correlations, we also present

a probability P(r) of observing a value of the correlation coefficient

greater than r for a sample of N observations with N − 2 degrees of

freedom.

We begin the comparison of our simulations to observations by

using the parameters presented in the previous subsection. A direct

comparison between HG82 and simulations is possible as the mag-

nitude limit (13.2) and the depth of the catalogues (cz < 4000 km

s−1) are comparable. Comparisons with the more recent group cat-

alogue UZC-SSRS2 are also done. The UZC-SSRS2 catalogue has

the magnitude limit of 15.5 and only galaxies with cz < 15 000 km

s−1 has been considered. These differences make the direct compar-

ison of the UZC-SSRS2 with the simulations less conclusive. We

also compare our 10 observation points with each other but do not

find significant difference between them. This justifies our method

of choosing the observational points as stated before.

In Figs 1–5, the abundance of groups is scaled to the volume of a

sample as the distributions depend strongly on selection and volume

effects. However, as there is no ‘total’ volume of a galaxy sample

in magnitude-limited group catalogues, we weight each group ac-

cording to its distance (Moore et al. 1993; Diaferio et al. 1999).

As we only consider groups with three or more members, we can

identify a group only when its third-brightest galaxy has an absolute
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Figure 5. The cumulative distribution of velocity dispersion σv for galaxy

groups from two different simulations with two different values of the cos-

mological constant �� when the apparent magnitude limit of 13.2 has been

adopted. The simulation data are averaged over the ensemble of 10 mock

catalogues. For comparison also the observational data from the HG82 and

the UZC-SSRS2 catalogue have been plotted. The standard �� = 0.73 sim-

ulations are shown in Fig. 1.

magnitude

Mi � m lim − 25 − 5 log

( 〈cz〉
H0

)
, (24)

where 〈cz〉 is the mean velocity of the group. Mi determines the

radius czi of a sphere within which we could have identified this

group.

We calculate the comoving volume sampled by a group with the

following equation:


i = ω

3

(
czi

H0

)3 [
1 − 3zi

2

(
1 + �

2

)]
, (25)

where ω is the solid angle of the catalogue, zi is the redshift of the

group, c is the speed of light and � is the cosmological density

parameter, taken as 1.0. Each group of galaxies (or dark matter

haloes) contributes with a weight of 
−1
i to the total abundance

of groups. We include all galaxies with cz > 500 km s−1. This

lower cut-off avoids including faint objects that are close to the

observation point as these groups could contain galaxies fainter than

real magnitude-limited surveys. Therefore, we consider only groups

with 〈cz〉 larger than 500 km s−1 in mock, HG82 and UZC-SSRS2

catalogues.

Figs 1–4 show that the �CDM simulations are, in general, in a

moderate agreement with observations when the resolution effects

of the N-body simulations are taken into account. Our �CDM sim-

ulations are within 2σ from the UZC-SSRS2 catalogue and within

3σ from the HG82 catalogue. Figs 1–4 are all from the �� = 0.73

simulations when the apparent magnitude limit has been set to 13.2,

comparable to HG82. The error bars in Figs 1–4 are the standard

deviation between 10 observation points. Unless explicitly noted,

the simulations referred to are �� = 0.73 simulations, other models

are denoted as such.

5.3.1 Velocity dispersion

Fig. 1 shows that the cosmological �� = 0.73 model can produce

velocity dispersions similar to observations (see also Klypin et al.

2003; Macció et al. 2005; Peirani & de Freitas Pacheco 2006). Fig. 1

agrees with results by Casagrande & Diaferio (2006) (their fig. 14)

even though Casagrande & Diaferio (2006) considered only groups
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with >5 members. Our low-resolution simulation produces roughly

the right number density of groups when the high (>100 km s−1)

velocity dispersions are considered and the comparison is carried

out against more recent observations (UZC-SSRS2). However, due

to the limited mass resolution, the low-resolution simulation lacks

a significant number of groups when the abundance of groups with

velocity dispersions <100 km s−1 is studied. Because of this dis-

crepancy, the applied K–S test fails: Q ∼ 10−6 (against the HG82)

and Q ∼ 10−6 (against the UZC-SSRS2). Even though the K–S test

fails, the low-resolution simulation is within 3σ from the HG82.

When the high-resolution simulation is considered, we get roughly

the same number density of groups as in observations. However, the

high-resolution simulation lacks groups with velocity dispersions

>500 km s−1. This can be explained by the small volume of the

high-resolution simulation. Even with this discrepancy, the applied

K–S tests are approved with the significance levels of 0.02. When

observations (HG82 and UZC-SSRS2) are compared against each

other, the applied K–S test is approved at level of 0.34. For detailed

significance levels of the K–S tests, see Table 3.

5.3.2 Mass

Fig. 2 shows that the cosmological �CDM model can produce ‘ob-

servable’ masses (equation 23) similar to observations when the res-

olution effects of the simulations are considered. The low-resolution

simulation can produce the same number density of groups as in the

UZC-SSRS2 catalogue when massive [log (Group Mass M−1� ) >

13.5] groups are considered. Both the UZC-SSRS2 catalogue and

the low-resolution mock catalogue has an excess of massive groups

if comparison is carried out against the HG82 catalogue. When less

massive groups [log (Group Mass M−1� ) < 13.0] are studied, the

low-resolution simulation has a number density of groups which is

over 3σ lower than in the UZC-SSRS2 catalogue. The resolution

effect is clearly visible in Fig. 2 when the high-resolution simu-

lation is studied, as it can produce about the right number den-

sity of groups when less massive [log (Group Mass M−1� ) < 13.0]

groups are considered. The high-resolution simulation is less than

1σ away from the HG82 and within 2σ from the UZC-SSRS2 even

when groups with log (Group Mass M−1� ) < 11.0 are considered.

The applied K–S test is approved (Q ∼ 0.58) only when the high-

resolution simulation is compared to the HG82 catalogue. In all other

cases, the K–S test fails. For numerical details of the K–S test, see

Table 3.

As the ‘observable’ mass of a group depends strongly on the

groups’ velocity dispersion (see equation 23), we made another

comparison between group abundances by mass. If we use the ‘true’

mass of a group instead of an ‘observable’ mass, other differences

arise. There is no substantial difference between the plots of ‘ob-

servable’ and ‘true’ mass when comparing the abundances of lighter

[log (Group Mass M−1� ) < 14.0] groups. However, our simulations

do not produce a single group with a ‘true’ mass >5 × 1014 h−1 M�.

The low- and the high-resolution �� = 0.73 simulations show the

same cut-off, thus the lack of massive groups is not a resolution

effect. However, the small volume of our simulation boxes explains

the lack of massive groups in simulations and the existence of groups

with large ‘observed’ mass is due to projection effects, which are

not reliably taken into account in equation (23).

5.3.3 Size

The cosmological �� = 0.73 model can produce groups of haloes

which are similar in size to observed groups. Note, however, that

we do not compare our simulations to the UZC-SSRS2 catalogue,

as it does not contain the information about the pairwise separation

of groups. Our high-resolution simulation produces about the right

number density of groups when small [log (Rp) < −0.4] groups

are considered and the error is well within 1σ . The high-resolution

simulation seems to produce an excess of groups, when intermediate

size (log (Rp) ∈ [−0.3, 0.4]) groups are considered. However, as

the only comparison observation is the HG82 catalogue this excess

might not be as large as in Fig. 3, as other comparisons (Figs 1 and

2) show that the HG82 and the UZC-SSRS2 catalogues differ quite

significantly from each other.

When the low-resolution simulation is studied, we observe this

same excess when larger [log (Rp) > 0.1] groups are considered.

Because of these discrepancies, the applied K–S test fails in both

cases, with Q ∼ 10−3 and Q ∼ 10−5 for the high- and the low-

resolution simulations, respectively. Even though the K–S test fails,

the simulated mock catalogues of group abundances by mean pair-

wise separation are mostly within 2σ .

5.3.4 Crossing time

Fig. 4 shows that the cosmological �� = 0.73 model can produce

groups with crossing times similar to the HG82 observations. The

low-resolution simulation produces the number density of groups

with small crossing times, which is a lot lower than observed.

However, this discrepancy is due to limited resolution, as the high-

resolution simulation produces a lot more groups with small crossing

times. The high-resolution simulation produces roughly the right

number density of groups when the crossing time of the group

is studied. Some differences are observed when larger [log (tc) >

−0.6] crossing times are studied. Both simulations produce a higher

number density than observed. For low-resolution simulation, this

excess is not large as the number density is within 2σ . Because of

the discrepancies visible in Fig. 4, the applied K–S test fails in both

cases. For numerical details, see Table 3. When more recent values

of the Schechter luminosity function are adopted, somewhat lower

crossing times are observed in general. However, more recent values

of the Schechter luminosity function do not give a better agreement,

and the K–S test fails. The significance levels of the K–S tests are

∼10−4 and ∼10−5, respectively.

Our simulations with the FOF algorithm do not (with a few ex-

ceptions) contain groups with crossing time larger than one Hubble

time. For the high-resolution simulation, the median value of the

crossing time is 0.14H−1
0 . The median value of the crossing time

for the HG82 catalogue and for the low-resolution simulation is

0.19H−1
0 . Small crossing times suggest that groups of galaxies have

had time to virialize and these groups should be gravitationally

bound (see e.g. Gott & Turner 1977; Tucker et al. 2000; Aceves &

Velázquez 2002; Plionis, Basilakos & Ragone-Figueroa 2006). We

studied the correlation between crossing time and virial ratio, and

did not find any significant relation between these two variables. The

linear correlation coefficient of −0.01 suggests that there is no cor-

relation between crossing time and virial ratio, in the low-resolution

simulation when the apparent magnitude limit of 13.2 is adopted.

This correlation is not significant at level of 0.05 and P(r) ∼ 0.29.

There is no significant correlation between these two variables when

different values of ��, resolutions or the apparent magnitude limits

are adopted (see Table 2). The lack of correlation between virial ratio

and crossing time (see similar results in Diaferio et al. 1993) calls

into question the crossing time as an estimator of gravitationally

bound systems which is widely accepted in observations.
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Table 2. The correlation between crossing time and virial ratio when dif-

ferent values of �� and the apparent magnitude limits are adopted.

�� mlim r α P(r)

0.00 13.2 −0.009 >0.05 0.33

0.00 20.0 0.005 >0.05 0.36

0.73H 13.2 −0.016 >0.05 0.26

0.73L 13.2 −0.016 >0.05 0.29

0.73L 20.0 −0.016 >0.05 0.09

0.90 13.2 −0.012 >0.05 0.42

0.90 20.0 −0.022 >0.05 0.09

Note: �� specifies the value of the cosmological constant (H = high-

resolution stimulation and L= low-resolution simulation), mlim is the ap-

parent magnitude limit of the search, r is the value of the linear correlation

coefficient, α is the significance level and P(r) is the probability of observing

a value of the correlation coefficient greater than r.

5.3.5 Richness

The �� = 0.73 model can produce groups comparable to obser-

vations when the number of members in a group is studied. The

abundance of ‘rich’ groups is roughly the same in the low-resolution

simulation as in the observations. However, the low-resolution simu-

lation cannot produce as many ‘poor’ groups as is observed. The lack

of ‘poor’ (<4) and the excess of ‘intermediate’ (∈ [6, 40]) groups are

the reason why the K–S test fails (Q ∼ 10−5). The agreement is even

worse (Q ∼ 10−7) when more recent values of Schechter luminosity

function are adopted. These values (α = −1.15, M∗ = −19.84, and

�∗ = 0.0172) produce a large number of ‘poor’ groups and a lack of

‘rich’ groups. The difference between the low-resolution simulation

and observations is due to the limited resolution in the simulations.

When the high-resolution simulation is used, the agreement to ob-

servations, especially to UZC-SSRS2, is better (Q ∼ 10−3).

5.3.6 Influence of dark energy

There are big differences between different cosmological models

when dynamical properties of groups of dark matter haloes are stud-

ied. Fig. 5 shows the impact of dark energy on the formation of

galaxy groups. It is clear that the �� = 0.0 simulation over pro-

duces groups with high-velocity dispersions. The excess is over 3σ

if the comparison is carried out to the HG82 catalogue. A smaller

discrepancy is observed when the comparison is carried out to the

UZC-SSRS2 catalogue. The small number density of small velocity

dispersion groups can be explained by the resolution effect which is

also visible in Fig. 1. Because of these discrepancies the K–S tests

fails. When the �� = 0.90 simulation is studied, a qualitatively

better agreement is observed, especially when the comparison is

carried out to the HG82 catalogue. The great difference in the num-

ber density of small velocity dispersion groups can be explained

by the resolution effect and the fact that the �� = 0.90 simulation

has relatively small number of groups. Because of the great discrep-

ancy in the number density of small velocity dispersion groups, the

applied K–S test fails in both cases.

The �� = 0.0 cosmology produces more massive groups with

greater velocity dispersion than the �CDM cosmology. Larger num-

ber of massive groups can partially be explained by the somewhat

lower mass resolution in the �� = 0.0 simulation. However, the

excess of massive groups is most likely due to equation (23), which

we use to obtain the ‘observable’ mass of a group, which depends

strongly on the velocity dispersion of the group. For numerical de-

tails of K–S tests, see Table 3.

Table 3. Comparison of HG82, UZC-SSRS2 and simulations when the ap-

parent magnitude limit of 13.2 is adopted.

�� HG82 UZC-SSRS2 HG82 versus UZC-SSRS2

0.00 σv 10−5 10−6 0.34

0.73H σv 0.02 0.02 0.34

0.73L σv 10−6 10−6 0.34

0.90 σv 10−6 10−7 0.01

0.00 MG 10−5 10−6 10−3

0.73H MG 0.58 10−5 10−3

0.73L MG 10−6 10−6 10−3

0.90 MG 10−6 10−7 10−3

0.73H Rp 10−3 − −
0.73L Rp 10−5 − −
0.73H tc 10−4 − −
0.73L tc 10−5 − −
Note: Significance levels of the K–S test for the null hypothesis that obser-

vations and the simulations (H = high resolution and L = low resolution)

are alike and are drawn from the same parent population (HG82 and UZC-

SSRS2 columns). Significance levels of the K–S test for the null hypothesis

that the HG82 and the UZC-SSRS2 group catalogue are alike and are

drawn from the same parent population (HG82 versus UZC-SSRS2 column).

5.3.7 Median values and other properties

The median values of the group properties are presented in Table 4.

In general, our simulations seem to produce groups which median

value of the velocity dispersion and the group mass is greater than

in observations. In simulations, groups have also a greater median

value for the mean pairwise separation than in the HG82 sample. The

�� = 0.73 simulations have the median value of velocity dispersions

which are close to observations, even though they are somewhat

higher. In general, median values of the group properties are in a

moderate agreement with the results of similar studies (e.g. Diaferio

et al. 1999; Casagrande & Diaferio 2006). Casagrande & Diaferio

(2006) found larger values for the median velocity dispersions and

group masses, but they considered only groups with >5 members,

which most likely makes the median values of groups somewhat

higher.

The fractions of isolated galaxies, binary galaxies and groups of

galaxies were also studied. If we compare our results with HG82,

a significant difference in the fraction of isolated galaxies is noted.

Comparison to the Lyon-Meudon Extragalactic Database (LEDA)

(Giudice 1999) catalogue shows a better fit (for more details, see

Table 5). Tucker et al. (2000) listed a large fraction of galaxies in

groups from different group catalogues. These results and compar-

isons are not shown in this paper due to the different magnitude

limits and grouping algorithms adopted in those observations. We

may state that, in general, simulations show similar results to obser-

vations (excluding HG82), with regard to the fractions of groups,

binaries and isolated galaxies.

We also made an attempt to study discordant redshifts in compact

groups observed, for example, by Sulentic (1984) and Girardi et al.

(1992). This effect has been studied by several authors (see e.g. Byrd

& Valtonen 1985; Valtonen & Byrd 1986; Iovino & Hickson 1997)

who have come up with different explanations. According to these

authors, apparent discordant redshifts arise when groups are not

virialized and their central galaxies are incorrectly identified. Our

findings are not conclusive as we did not have any exact method to

identify which dark matter haloes might represent observable spiral

galaxies. We did not observe any significant asymmetry in the radial

velocities of the groups and neither this asymmetry was seen in the
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Table 4. Weighted quartiles of the group properties.

�� = 0.00 �� = 0.73H �� = 0.73L �� = 0.90 HG82 UZC-SSRS2

σv 178/307/403 135/180/295 103/160/298 124/209/271 60/135/155 60/130/178

log MG 13.6/14.0/14.4 12.7/13.2/13.5 12.8/13.6/14.0 12.7/13.1/13.5 12.0/12.4/13.2 12.1/12.8/13.3

Rp 0.85/1.38/1.57 0.81/1.21/1.47 0.80/0.99/1.24 0.72/1.01/1.20 0.44/0.54/1.00 –

tc 0.09/0.14/0.25 0.07/0.14/0.19 0.10/0.19/0.27 0.09/0.17/0.23 0.10/0.19/0.27 –

Note: Quantities σv , log MG, Rp and tc are in units of km s−1, h−1 M�, h−1 Mpc and Hubbles, respectively.

Table 5. Fractions of isolated galaxies, binary galaxies and groups.

Source mlim Groups (per cent) Binaries (per cent) Isolated (per cent)

Simu 13.2 38.1 ± 0.5 19.7 ± 0.1 42.2 ± 0.5

Simu 20.0 41.2 ± 0.2 17.6 ± 0.1 41.2 ± 0.2

HG82 13.2 60.0 14.0 26.0

LEDA 14.0 33.3 ± 0.5 17.1 ± 0.3 49.6 ± 0.4

Note: Source refers to the sample (Simu = the low-resolution �� = 0.73

simulation), mlim is the apparent magnitude limit [in mB(0) except for LEDA

in B0
T ], Groups (per cent) is the fraction of galaxies in the groups, Binaries

(per cent) is the fraction of galaxies forming double systems and Isolated

(per cent) is the fraction of galaxies which are not classified into any group

or double system. Poisson error limits have been calculated for the samples.

groups, which were misidentified (so that the brightest member is

not the dominant member). No significant difference for the radial

velocity asymmetry was discovered between bound and unbound

groups.

6 G R AV I TAT I O NA L LY B O U N D G RO U P S

Gravitationally bound groups are determined by using the criterion

(virial ratio, equation 15) presented in Section 3. This method of

computing the gravitational potential well of a group does assume

that the group is isolated. This is not strictly true as each group is

embedded in the large-scale matter distribution, which might have

an effect to the threshold 1.0 of the virial ration T/U. However, we

believe this effect to be negligible in a statistical study like ours.

Our study shows that∼20 per cent of groups generated by the FOF

algorithm are not gravitationally bound when the �� = 0.73 model

is adopted. This result is in agreement with Diaferio et al. (1994),

who derived a similar result for the compact groups of galaxies. If

we vary the apparent magnitude limit of the search from the original

13.2–20.0, even more groups (∼37 per cent) are unbound. This is

not a negligible fraction considering that one widely accepted and

applied method of calculating a group mass, from observations, is

based on the assumption that groups found by the FOF algorithm

are, in general, gravitationally bound systems.

If we vary the value of the cosmological constant from the original

0.73–0.90, a slightly larger fraction of groups seems to be unbound

when the apparent magnitude limit of 13.2 is adopted. This result is

intuitively reasonable. If the negative vacuum pressure of space is

larger, gravitational force becomes ‘weaker’ and a smaller number

of dark matter haloes are formed and fewer groups are gravitation-

ally bound objects. How does the fraction of gravitationally unbound

groups change, when the negative vacuum pressure of space is low-

ered? If the value of the cosmological constant is put to 0.0, about

the same fraction of groups (with mlim = 13.2) are spurious as in

the �� = 0.90 cosmology. When the apparent magnitude limit is

Table 6. Fractions of gravitationally bound groups of dark matter haloes

when different cosmological models and apparent magnitude limits have

been adopted.

�� mlim Ngroups fbound (per cent) Nisolated (per cent)

0.00 13.2 2675 79.2 20.9

0.00 20.0 6213 64.5 41.8

0.73H 13.2 1570 70.1 32.8

0.73L 13.2 1168 81.1 42.2

0.73L 20.0 6807 62.7 41.2

0.90 13.2 238 77.3 53.1

0.90 20.0 3678 62.0 36.5

Note: �� specifies the value of the cosmological constant (H = high-

resolution stimulation and L= low-resolution simulation), mlim is the

apparent magnitude limit of the search, Ngroups is the number of groups

found from 10 observation points, fbound is the fraction of gravitationally

bound groups and Nisolated is the percentage of the isolated haloes which do

not belong to any group or binary system.

changed to 20.0, ∼37 per cent of the groups are spurious (for details,

see Table 6).

In the low-resolution �� = 0.73 simulation, the fraction of gravi-

tationally bound groups rises from 81.1 to 81.7 per cent, when more

recent values of the Schechter luminosity function are adopted.

Meanwhile the total number of groups decreases ∼10.0 per cent.

The fraction of gravitationally bound groups rises from 81.1 to 82.8

per cent, when the values of the free parameters of D0 = 0.37 Mpc

and V0 = 200 km s−1 are adopted. This result agrees with Frederic

(1995a,b) who obtained similar result while studying group accu-

racy as a function of D0 and V0. Frederic (1995a,b) showed that

smaller values of D0 and V0 produce groups with greater accuracy

and these groups should be gravitationally bound.

Adopting the values of D0 = 0.37 Mpc and V0 = 200 km s−1

have a significant effect to the total number of groups found from

the simulations. The low-resolution �� = 0.73 simulation produces,

in all, 1168 groups of dark matter haloes, when the original values

(D0 = 0.63 Mpc and V0 = 400 km s−1) of the free parameters are

adopted. When D0 = 0.37 Mpc and V0 = 200 km s−1 are adopted,

the total number of groups found from the low-resolution simulation

drops to 661 while the fraction of isolated haloes rises from ∼42.2

to ∼64.9 per cent. Also, the group abundances change significantly

as the richest group found from the low-resolution simulation with

D0 = 0.37 Mpc and V0 = 200 km s−1 has only 15 members. These

results are due to the fact that the limiting density enhancement of

the search is inversely proportional to D3
0.

Our study shows that the�� =0.0 model produces about the same

fraction of bound groups as the �� = 0.90 model, when the apparent

magnitude limit is 13.2. However, the �� = 0.73 model produces

more gravitationally bound systems than the two other models we

study when the original apparent magnitude limit is adopted. If the

apparent magnitude limit is changed to 20.0, the �� = 0.0 model
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Figure 6. Virial ratio (TU−1) versus the number of members in a group

(Richness). Groups with more than 10 members are more often bound

than ‘poor’ groups with three to five members. The data are from the low-

resolution �� = 0.73 simulation when the apparent magnitude limit of 13.2

has been adopted.

Table 7. Fractions of gravitationally bound ‘poor’ and ‘rich’ groups of dark

matter haloes generated from the low-resolution �� = 0.73 simulation.

mlim Nhaloes Ngroups fbound (per cent)

13.2 3 448 77.0

13.2 ∈ [3, 4] 697 78.5

13.2 >4 471 84.9

20.0 3 2786 55.6

20.0 ∈ [3, 4] 4147 56.3

20.0 >4 2660 72.6

Note: mlim is the apparent magnitude limit of a sample, Nhaloes is the

number of haloes in a group, Ngroups is the number of groups found from

10 observation points with appropriate number of haloes and fbound is the

fraction of gravitationally bound groups.

produces a slightly larger fraction of gravitationally bound groups

than the �� = 0.73 or the 0.90 simulations (for details, see Table 6).

The use of the apparent magnitude limit of 20.0 means simply that

every single dark matter halo in a simulation box is visible at the

observation point. This result is not without bias as the simulation

box is of finite size and the edge effects might become significant,

even using the periodic boundary conditions in the simulations.

The calculation that determines whether a group is bound is based

on three parameters: the total mass of the group, the relative velocity

of the group members and the physical size of the group. In the

following, we will study how sensitive the result is on the values

of these parameters. But first we will study the virial ratio as a

function of the number of members in the group. Fig. 6 shows the

virial ratio T/U as a function of the number of haloes in the group,

namely richness. The data come from the low-resolution �� = 0.73

simulation with mlim = 13.2. There are, in all, 1168 groups of haloes

seen from 10 different observation points. The fractions of bound

‘poor’ and ‘rich’ groups are shown in Table 7.

From Fig. 6, we see that groups with more than 10 members

are most likely gravitationally bound and groups with three to five

members are quite often unbound. Ramella et al. (1997) argues that

among groups with three members, 50–75 per cent of groups are

spurious. They also conclude that for groups with more than three

members the fraction of spurious groups is less than 30 per cent

and may be as small as 10 per cent. Our findings are similar, and
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Figure 7. Virial ratio (TU−1) versus the velocity dispersion (σv) of a group

(in km s−1). The rms straight line has been fitted to the data. The data are

from the low-resolution �� = 0.73 simulation when the apparent magnitude

limit of 13.2 has been adopted.

the fraction of bound groups with four or more members is about

as high as Ramella et al. (1997) suggested. Ramella et al. (2002)

find that for groups with five or more members at least 80 per cent

of the groups are probably physical systems, but that 40–

80 per cent of the groups with five or more members are bound

groups. Our findings confirm the latter result. However, these re-

sults cannot be directly compared with ours, as slightly different

values of the free parameters are adopted for the FOF algorithm.

Even though the free parameters of the FOF seem to have only a

small effect to the fraction of spurious groups in our study.

Our findings for the �� = 0.73 cosmology are similar to Ramella

et al. (1997) for ‘poor’ (three or four members) groups, as can be seen

in Fig. 6 and Table 7. However, our findings do not confirm the claim

by Ramella et al. (1997) that among groups with three members,

50–75 per cent of groups are spurious as we find only ∼23 per cent

of groups with three members to be gravitationally unbound with

mlim =13.2. For the apparent magnitude-limited sample (mlim =13.2

comparable to HG82), we found ∼21 per cent of the groups with

three or four haloes to be spurious. ‘Rich’ groups with five or more

members are more often gravitationally bound than ‘poor’ groups,

but the difference is relatively small at the apparent magnitude limit

of 13.2 as for ‘rich’ groups, we found∼15 per cent of the groups to be

spurious. This is close to the upper limit proposed by Ramella et al.

(1997, 2002). More details of our findings with different abundances

and apparent magnitude limits are listed in Table 7.

In Fig. 7, the virial ratio is plotted as a function of the velocity

dispersion σv of the group. The plot shows a weak correlation in

the sense that groups with large velocity dispersion are more often

gravitationally unbound than groups with small velocity dispersion.

The linear correlation coefficient of 0.17 suggests that the correlation

in Fig. 7 is weak. However, the correlation is significant at level of

0.001 and P(r) ∼ 10−8. The rms line plotted in Figs 7–11 is of the

form T
U ∝ σ b

v or T
U ∝ N (haloes)b. The value of the parameter b of

the rms line in Fig. 7 is b = 0.10 ± 0.04.

The weak trends are clearer if we scale the abscissa in both Figs 6

and 7 with the total mass of the group. Note that we use here the

‘true’ mass of a group rather than the ‘observable’ mass. Results

are shown in Figs 8 and 9. More significant trends are now seen

in both figures, even though the data are still scattered. The linear

correlation coefficient of 0.32 suggests that a significant correlation

exists between the number of haloes and the virial ratio when the

first is scaled with the total mass of the group. The correlation in

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 382, 1864–1876



1874 S.-M. Niemi et al.

10
-2

10
-1

10
0

10
1

10
2

10
-14

10
-13

10
-12

10
-11

T
 U

-1

Richness M
-1

group

Figure 8. Virial ratio (TU−1) versus the number of members (Richness) in

a group when the latter has been scaled with the total mass of the group

(M−1
group in h−1 M�). The rms straight line has been fitted to the data. The

data are from the low-resolution �� = 0.73 simulation when the apparent

magnitude limit of 13.2 has been adopted.
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Figure 9. Virial ratio (TU−1) versus the velocity dispersion (σv) of a group

(in km s−1) when the latter has been scaled with the total mass of the group

(M−1
group in h−1 M�). The rms straight line has been fitted to the data. The

data are from the low-resolution �� = 0.73 simulation, when the apparent

magnitude limit of 13.2 has been adopted.

Fig. 8 is significant at level of 0.001 and P(r) < 10−25. The slope of

the rms line in Fig. 8 is b = 0.82 ± 0.03.

Fig. 9 shows a strong trend, even though the data are still quite

scattered. The linear correlation coefficient of 0.40 suggests that the

correlation between the velocity dispersion of a group and the virial

ratio of a group is quite strong. The correlation in Fig. 9 is significant

at level of 0.001 and P(r) < 10−25. The slope with standard errors

of the rms line is now b = 0.90 ± 0.03.

When the apparent magnitude limit is changed to 20.0, the trends

of Figs 8 and 9 become stronger and the asymptotic standard er-

rors for the rms lines become much smaller. The linear correlation

coefficient of 0.62 shows that the correlation between the velocity

dispersion of a group, and the virial ratio, is strong when the appar-

ent magnitude limit of 20.0 is adopted. This correlation is significant

at level of 0.001 and P(r) < 10−25. What might be surprising is that

changing the cosmological model, i.e. the value of the cosmological

constant ��, does not have a substantial influence on Figs 9 and 10.

The number of groups found from different simulations varies a lot

as a function of �� but the fraction of gravitationally bound groups

do not (see Table 6). For comparison with Figs 8 and 9, we show

results from the �� = 0.0 simulation in Figs 10 and 11. In these

figures, the apparent magnitude limit of 20.0 has been adopted. Oth-
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Figure 10. Virial ratio (TU−1) versus the number of members in a group

(Richness) when the latter has been scaled with the total mass of a group

(M−1
group in h−1 M�), and �� = 0.0 and mlim = 20.0 has been adopted. The

rms straight line has been fitted to the data.
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Figure 11. Virial ratio (TU−1) versus the velocity dispersion (σv) of a group

(in km s−1) when the latter has been scaled with the total mass of a group

(M−1
group in h−1 M�), and �� = 0.0 and mlim = 20.0 has been adopted.

Straight line is a rms fit to the data.

erwise, Figs 10 and 11 are comparable to Figs 8 and 9. The linear

correlation coefficient in Figs 10 and 11 is: 0.32 and 0.65, respec-

tively. Both of the correlations are significant at a level of 0.001

and P(r) < 10−25 for both samples. The asymptotic standard errors

for the rms lines in Figs 10 and 11 are small: b = 0.83 ± 0.02 and

0.91 ± 0.01, respectively.

7 D I S C U S S I O N

7.1 Probability functions of unbound groups

In this section, we briefly discuss a method, which gives a theoretical

probability of a group being gravitationally unbound. The mass of

the groups is assumed to be known. In observations, estimations of

group masses are less than precise at best, therefore the applicability

of this method to observational data is merely hypothetical. The

observable quantities we study are the velocity dispersion divided by

the group mass σvM−1
group and the mean pairwise separation divided

by the group mass RP M−1
group.

To calculate the probability functions for the groups, the first

step is to choose an appropriate bin length (generally between 0.15

and 0.30) in the logarithm of the observable quantity. Then, one

calculates the number of groups and the number of gravitationally
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of 20.0, and a bin length of 0.2 are adopted. σvM−1
group is in units of km s−1
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Figure 13. Unbound probability [P(TU−1 > 1.0)] versus mean pairwise

separation (Rp) when the �� = 0.73 model, the apparent magnitude limit

of 20.0, and a bin length of 0.25 are adopted. RpM−1
group is in units of Mpc

(1015 h−1 M�)−1.

bound groups in each bin and divides the number of unbound groups

with the total number of groups in the bin. The logarithmic scale is

chosen in order to lower the dispersion of the data and to assure a

large enough number of groups in every bin.

The probability functions for the velocity dispersion σv and the

mean pairwise separation Rp, normalized to the group mass, are

shown in Figs 12 and 13. Fig. 12 shows that at values larger than

1.8 (the horizontal dotted line in Fig. 12) it is more probable that the

groups are gravitationally unbound when the �� = 0.73 model is

adopted. The same result can also be inferred from Fig. 9, but with

lower confidence.

The �� = 0.0 simulation gives a probability function which is

comparable to the probability function of the �� = 0.73 model.

It shows a similar linear growth as the probability function of the

�� = 0.73 model. However, the function is shifted along the hori-

zontal axis. This shifting originates from the variation of the group

masses and velocity dispersions (see Fig. 5). The change of the

apparent magnitude limit does not have any significant effect on

Fig. 12. When the apparent magnitude limit of 13.2 is adopted, a

smaller number of haloes and groups are observed, which enlarges

the variations between bins and gives a worse fit to a straight line.

The quantity σvM−1
group, studied in Fig. 12, has a loose connection

to the kinetic energy T. This connection explains the fact that the

lower normalized values of the quantity σvM−1
group give gravitation-

ally bound groups with a higher probability, and larger normalized

values, loosely meaning the larger kinetic energies, give unbound

groups with a higher probability.

The probability function of the mean pairwise separation (Fig. 13)

shows a similar linear growth as the probability function of the veloc-

ity dispersion in Fig. 12. The variation from bin to bin is somewhat

larger in the probability function of the mean pairwise separation

due to the fact that the mean pairwise separation is not strictly the

size of the group but it includes projection effects. The quantity

Rp M−1
group, studied in Fig. 13, is inversely proportional to the po-

tential energy U if the mean pairwise separation is identified as

the real size of a group. The difference between Figs 12 and 13 is

understandable, as the velocity dispersion and the mean pairwise

separation are not strictly connected to each other, although some

loose relation exists as the equation of the mean pairwise separation

includes the mean group radial velocity.

The �� = 0.90 simulation shows similar probability functions as

the �� = 0.0 and 0.73 simulations. Figs 12 and 13 show that the ��

does not have any significant effect for the fraction of gravitation-

ally unbound groups. This result can also be inferred from Table 6.

The small effect is hardly surprising as the theoretical studies (see

e.g. Lahav et al. 1991) have predicted that the �� has little effect

on the dynamics at the present epoch.

8 C O N C L U S I O N S

We have shown that the �CDM cosmology can produce groups of

dark matter haloes comparable to observations of groups of galaxies

when the FOF algorithm based on that of Huchra & Geller (1982)

is adopted and the dynamical properties of groups are studied. Our

groups from cosmological simulations are, in general, in a moderate

agreement with observations, although a straight K–S test fails in

most cases. Our �� = 0.73 simulations are in satisfactory agree-

ment with observations as the number densities of group properties

are usually within 2σ errors, or less, from the HG82 and the UZC-

SSRS2 group abundances. The agreement between simulations and

observations is good when the velocity dispersion and the ‘observ-

able’ mass of groups are considered. In these cases, the applied K–S

test is approved when the high-resolution �� = 0.73 simulation is

considered. The moderate agreement between simulations and ob-

servational data suggests that gravitational force alone is sufficient

in order to explain the dynamical properties of groups of galaxies.

We have also shown that, in general, about 20 per cent of the

groups of haloes generated with the algorithm presented in the HG82

are not gravitationally bound objects. The fraction of gravitation-

ally bound groups of dark matter haloes varies with different values

of the apparent magnitude limits. When the apparent magnitude

limit is raised from the original 13.2–20.0, a larger number of spu-

rious groups are found. The larger fraction of unbound groups with

mlim = 20.0 could be explained by the fact that more interlopers

are included into groups, when the apparent magnitude limit is in-

creased. However, this analysis is beyond the scope of this study.

In general, a larger number of ‘rich’ groups are found when the ap-

parent magnitude limit is lowered. This originates from the fact that

more light haloes at close proximity to more massive haloes become

visible and those light haloes are included into the groups. When

the magnitude limit is raised from the original value of 13.2–12.0, a

slightly larger fraction of the groups are found to be gravitationally

bound. In general, fewer groups (in absolutely number) are found

and these groups are ‘poorer’.
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Small differences are found when the fractions of gravitation-

ally bound ‘poor’ and ‘rich’ groups are studied. ‘Rich’ groups with

more than four members are more often gravitationally bound than

‘poorer’ groups. This result agrees with previous ones (e.g. Ramella

et al. 2002). Our results do not confirm the claim by Ramella et al.

(1997) who argued that 50–75 per cent of groups with three mem-

bers are spurious. Our results show that ∼77 per cent of groups

containing only three members are gravitationally bound when the

apparent magnitude limit of 13.2 is adopted.

When the value of the cosmological constant �� is varied, the

fractions of unbound groups change only slightly. This is somewhat

surprising as it would be intuitively expected that a larger value

of the dark energy would lead to a greater number of groups that

are not gravitationally bound. Some variation is observed when the

fraction of gravitationally bound groups is studied as a function of

the cosmological constant, but, in general, a significant number of

groups remains unbound in all cases of ��.

When the values of the free parameters of the FOF algorithm are

varied, the fraction of gravitationally bound groups can be raised

from ∼81 to ∼83 per cent. A greater difference is observed when

the fraction of isolated haloes is studied. Varying the values of D0 and

V0 makes a great difference, raising the fraction of isolated haloes

from ∼42 to ∼65 per cent. In general, we do not find any significant

difference in the fractions of gravitationally bound groups when dif-

ferent values of D0 and V0 or parameters of the Schechter luminosity

function are adopted.

In observations, the crossing time of a group is often taken as

an indicator of the virialization. We do not find any correlation

between the virial ratio and the crossing time of a group. This result

does not depend on the chosen value of the apparent magnitude

limit of the search, or the cosmological model adopted. The lack of

the correlation between these two variables calls into question the

crossing time as an estimator of the virialization.
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Macció A. V., Governato F., Horellou C., 2005, MNRAS, 359, 941

Merchán M., Zandivarez A., 2002, MNRAS, 335, 216

Moore B., Frenk C. S., White S. D. M., 1993, MNRAS, 261, 827

Nolthenius R. A., White S. D. M., 1987, MNRAS, 235, 505

Nolthenius R., Klypin A. A., Primack J. R., 1997, ApJ, 480, 43

Oguri M., 2006, MNRAS, 367, 1241

Peirani S., de Freitas Pacheco J. A., 2006, New Astron., 11, 325

Plionis M., Basilakos S., Ragone-Figueroa C., 2006, ApJ, 650, 770

Ramella M., Geller M. J., Huchra J. P., 1989, ApJ, 344, 57

Ramella M., Pisani A., Geller M. J., 1997, AJ, 113, 483

Ramella M., Geller M. J., Pisani A., da Costa L. N., 2002, AJ, 123, 2976

Sandage A., 1999, ApJ, 527, 479

Sandage A., Tammann G. A., 1975, ApJ, 196, 313

Schechter P., 1974, ApJ, 203, 557

Sulentic J., 1984, ApJ, 286, 542

Teerikorpi P., Chernin A. D., Baryshev Yu.V., 2005, A&A, 440, 791

Tucker D. L. et al., 2000, ApJS, 130, 237

Vale A., Ostriker J. P., 2004, MNRAS, 353, 189

Valtonen M. J., Byrd G. G., 1986, ApJ, 303, 523

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 382, 1864–1876


