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Abstract

The paper considers the problem of sloshing of incompressible fluid in a
moving 2-D rectangular tank under horizontal and vertical excitation. The
problem is solved in Lagrangian variables by applying two approaches. First,
a third-order asymptotic solution for resonant sloshing with a dominant mode
is derived using a recursive technique. Then, fully nonlinear set of equations
in the material coordinates is solved numerically by employing a finite dif-
ference method. Both methods are applied to a problem of high amplitude
resonant Faraday waves and the obtained results are compared with exper-
imental data known from the literature and a good agreement between the
results of the two methods and the empirical data is demonstrated.
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1. Introduction

Behaviour of fluid-containing structures is a challenging engineering prob-
lem essential for such diverse applications as liquid cargo transportation, dy-
namics of space vehicles, storage tanks or sloshing dampers. The unifying
feature of all these problems is the presence of moving fluid considerably
affecting dynamics of a coupled fluid-structure system. A crucial step in
understanding behaviour of such systems is efficient description of high am-
plitude sloshing of fluid inside a moving container. This problem has received
considerable attention for many years and numerous methods both analytical
and numerical had been developed to address it.

Numerical models for sloshing are generally the same as for other water
wave problems (Tsai and Yue, 1996; Scardovelli and Zaleski, 1999; Fenton,

Preprint submitted to Journal of Fluids and Structures November 18, 2013



1999). The main difficulty in computing the solution of a fluid flowing with a
free surface, is to devise a method to track efficiently the changing position of
the free surface. The natural way of modelling deformation of a fluid domain
is using equations of fluid motion in Lagrangian form, which to be solved
in a fixed domain of Lagrangian labels. First works using finite-difference
approximation of equations of fluid motion in Lagrangian formulation with
applications to water wave problems appeared in early 70’s. Brennen and
Whitney (1970) used kinematic conditions of mass and vorticity conserva-
tion for internal points of a domain occupied by ideal fluid. Flow dynamics
was determined by a free-surface dynamic condition. According to Fenton
(1999) this approach apparently had not been followed. It seems that there
are just a few works attempting using it (e.g. Nishimura and Takewaka,
1988). Hirt et al. (1970) used momentum equations in material coordinates
for describing dynamics of viscous fluid. This formulation received rela-
tively more attention from researchers. Later it was generalised for irregular
triangular meshes (Fritts and Boris, 1979) and used for development of fi-
nite element models (e.g. Ramaswamy et al., 1986). This method however
remains out of the mainstream and only occasionally appears in the liter-
ature (e.g. Radovitzky and Ortiz, 1998; Staroszczyk, 2009). Application of
fully Lagrangian mesh models to viscous problems brings to a sharp focus
their limitations. Boundary layers, wakes, vortices and other viscous effects
lead to complicated deformations of fluid elements and large variations of
physical coordinates over cells of a Lagrangian computational mesh. Re-
solving this problem led to development of Arbitrary Lagrangian-Eulerian
(ALE) formulation (Hirt et al., 1974). ALE formulation uses a computational
mesh moving arbitrarily within a computational domain to optimise shapes
of computational elements and a problem is formulated in moving coordi-
nates connected to the mesh. At certain regions of a computational domain
the formulation can be reduced either to Eulerian (fixed mesh) or to fully
Lagrangian (mesh moving with fluid) depending on problem requirements.
This sophisticated method is capable of solving complicated problems with
interfaces including surface waves and fluid-structure interaction. Detailed
description of the ALE method, examples of application and comprehensive
bibliography can be found in Souli and Benson (2013). ALE models are
however complicated in both formulation and numerical realisation and are
missing the main advantage expected from a Lagrangian method: simplic-
ity of representing computational domains with moving boundaries. Simpler
models can often give valuable results with less required resources. For ex-



ample, many important water wave problems can be solved using ideal fluid
model when deformation of elementary fluid volumes remains comparatively
simple. These problems can be efficiently approached by much simpler La-
grangian models like one of Brennen and Whitney (1970). In this paper
we introduce a fully Lagrangian numerical model which apart from keeping
other advantages of the Lagrangian approach is extremely simple and can be
optimised to achieve high computational efficiency.

Considerable contribution to understanding of behaviour of sloshing waves
in tanks is due to analytical asymptotic models. These methods are based
on an assumption that wave steepness is small and unknown functions are
expanded into asymptotic series with respect to a small steepness parame-
ter. In Eulerian description free surface boundary conditions are satisfied on
a mean water level, which removes the complication of a moving boundary.
Solution is usually looked for in the form of a Fourier series with respect to
linear sloshing modes and higher modes usually contribute to higher terms
of an asymptotic expansion. It is important to consider at least 3 terms of
an asymptotic expansion to take into account cubic nonlinearity responsi-
ble for nonlinear corrections to a dispersion relation and crucially important
for adequate description of long-term dynamics of a sloshing wave. For a
comprehensive review of methods and results of asymptotic sloshing anal-
ysis readers are referred to Ibrahim (2005). We however should mention
a notable contribution to development of modal sloshing theory made by
Faltinsen and his colleagues presented in a series of papers on sloshing in
2-D rectangular tanks (Faltinsen et al., 2000), which was extended to three
dimensions (Faltinsen et al., 2003) and later to circular (Faltinsen and Tim-
okha, 2010) and spherical (Faltinsen and Timokha, 2013) basins. Recent
developments of this approach include sloshing in tanks of complex geom-
etry (Love and Tait, 2013) and tanks with perforated screens (Molin and
Remy, 2013) with applications to tuned liquid dampers. Eulerian asymp-
totic models have significant limitations and application of an asymptotic
technique in Lagrangian description can improve model behaviour for steep
waves. There is an increasing interest to Lagrangian asymptotic wave models
with applications to various problems including standing and sloshing waves
(Shingareva and Celaya, 2007; Chen et al., 2009; Yang-Yih and Hung-Chu,
2009; Abrashkin and Bodunova, 2012). The general approach to Lagrangian
asymptotic models is similar to the one for Eulerian ones. Asymptotic ex-
pansions are applied either directly to Lagrangian equations of fluid motion
(Yang-Yih and Hung-Chu, 2009) or Eulerian expansions are transformed to
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Lagrangian ones (Chen et al., 2009). Modal representation is also a common
feature of Lagrangian and Eulerian asymptotic approaches. However, unlike
Eulerian models in Lagrangian asymptotic formulation free surface condition
is satisfied on an exact free surface, which results in considerably better repre-
sentation of surface shape. In this paper we present a third-order asymptotic
model for resonant sloshing in a rectangular tank applying a recursive tech-
nique introduced in Buldakov et al. (2006). This approach leads to solutions
exactly satisfying Lagrangian nonlinear continuity equation, which gives the
new model some advantages compared to models using standard asymptotic
expansions.

As a test case for models developed in this paper we use high amplitude
standing waves in a rectangular tank generated by a parametric resonance
due to vertical tank oscillations— the so called Faraday waves. Faraday waves
received considerable interest through many years (e.g. Miles and Henderson,
1990) and are often used to test numerical and analytical models. Numer-
ous experimental studies of the phenomenon are available in the published
literature and in this work we use Jiang et al. (1998) and Bredmose et al.
(2003) for qualitative and quantitative validation of the models. It should
be emphasised that in the cases considered in the paper the tank moves with
a prescribed frequency and amplitude, that is the tank and fluid are not a
dynamically coupled system and the motion of each entity does not depend
on the other.

The paper is structured as follows. Section 2 gives the mathematical for-
mulation of the problem including equations of fluid motion in Lagrangian
coordinates and boundary conditions. A recursive asymptotic solution for
resonant sloshing with a dominant mode is derived in Section 3. A finite-
difference scheme is introduced in Section 4, details of its numerical realisa-
tion and its accuracy are discussed. Section 5 defines computational cases and
presents comparison of experimental and numerical results. Finally, Section 6
summarises paper achievements and discusses advantages and drawbacks of
the presented methods.

2. Problem formulation

Let us consider a 2-D rectangular tank of length b filled by an ideal
incompressible fluid of depth h. The tank exhibits transitional motion in a
laboratory coordinate system (X, Z). A coordinate system (z,z) is moving
together with the tank with the horizontal axis x pointing along the mean



water level and the vertical axis z pointing up along the left wall of the tank
(Figure 1). We describe fluid motion in the tank using Lagrangian method
by tracing marked fluid particles

r=uzxz(a,ct); z=z(a,ct),

where (x, z) are coordinates of a particle marked by Lagrangian labels (a, ¢)
at time ¢. Lagrangian labels (a, ¢) are used as a set of independent coordinates
and (x,y) are considered as unknown functions. Due to volume conservation
for incompressible fluid the Jacobian J of a mapping (a,c) — (z,2) is a
motion invariant: d.J/0t = 0. This leads to the following Lagrangian form
of the continuity equation

Oz, 2)

J = 3(a,0) = Jo(a,c), (1)

where Jy(a, c) is a given function of Lagrangian coordinates defined by initial
positions of fluid particles associated with labels (a, c).

Equations of motion of inviscid incompressible fluid in Lagrangian co-
ordinates (a,c) can be obtained using Hamilton’s variational principle (e.g.
Herivel, 1955). Let us represent the density of the Lagrangian in the following
form

L=T—-U+ pP(a,c,t)(J— Jy(a,c)),

where the kinematic continuity condition (1) is enforced by the Lagrange
multiplier P, and p is fluid density. The densities of the kinetic and potential
energies of the fluid are

T=p(i+2)/2 U=pg(+2"(t)z+pawiX"(t)x,

where X”(t) and Z"(t) are Cartesian components of acceleration of a moving
physical coordinate frame (z,z). The vertical acceleration is scaled by the
gravity acceleration g, and the horizontal one by a characteristic acceleration
of fluid particles aw?, where « is a characteristic scale of particle displacement
and w, is a characteristic frequency of wave motion. A practical choice of
characteristic parameters depends on a particular problem. For a sloshing
problem a typical wave amplitude can be chosen as a and a natural sloshing
frequency as w.. According to Hamilton’s principle the variation of the action

integral
to
[:/ dt/ L dadc (2)
t1 D
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is zero, where the integration takes place in the Lagrangian space over a
domain D occupied by the fluid. Taking the variation of (2) leads to the
following equations describing dynamics of fluid inside D

I(P, z)
J(a,c)
O(P, x)
d(a,c)
The Lagrange multiplier P can be recognised as the ratio of pressure over
density and the boundary condition on the free surface ¢ = 0is P = 0. These

equations can be resolved with respect to the spatial pressure derivatives and
rewritten in the following form

Ty + +aw?X"(t)=0;

+g(1+2'(t)=0.

2 —

oP
- t9 (1 + Z”(t)) Zq + ozsz”(t) Tg = —TLq — Zttla;
da (3)

oP
e T 14+ Z"(t) ze + a2 X" (t) Te = —TyTe — 2 2e.
c

The terms on the left hand sides of (3) are gradient components of a certain
scalar function in the label space. Taking the curl of both sides of (3) we
find that the value

Q0 =V, X (024 + 2120, T1Tc + 212¢)

is a motion invariant: 0€2/0t = 0, where V,x is the curl operator in (a, c)-
space. This gives the second kinematic condition in addition to (1)

Oz, ) Oz, 2)
o(a,c)  o(a,0)

where y(a, c) is a given function. This is the Lagrangian form of vorticity
conservation and for irrotational flow 2 = 0. Further detail on the La-
grangian form of the vorticity can be found in Casey and Naghdi (1991).

The Lagrangian formulation does not require a kinematic free-surface
condition which is satisfied by specifying a fixed curve in Lagrangian coordi-
nates corresponding to a free surface, e.g. ¢ = 0. The dynamics of the flow
is described by a dynamic free-surface condition which can be obtained from
the first equation in (3). For a case of constant pressure on the free surface
¢ = 0 we have

Q:

= Qo(a, o), (4)

TuTa+ 2120 + 9 (1+ Z"(1) 20 + a w2 X" (t) 2, | 0. (5)

c=0 -
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The general formulation of the problem consists therefore of the continuity
equation (1), the vorticity conservation equation (4), the free-surface condi-
tion (5) with suitable conditions on the bottom and side boundaries. Posi-
tions and velocities of fluid particles must be supplied as initial conditions.

One of the advantages of Lagrangian formulation is that a Lagrangian
domain and an original correspondence between physical and Lagrangian
coordinates is arbitrary and can be chosen from consideration of convenience
of numerical or analytical analysis. It is convenient to use a rectangular
Lagrangian domain which coincides with a physical domain occupied by still
water

0<a<b;, —h<c<O0.

The bottom and side boundary conditions can now be written as
z(a,—h,t) =—h; x(0,¢c,t) =0; x(bc,t)=0b. (6)

As initial condition we use stationary fluid with an initial surface perturba-
tion
Z|c:0;t:0 = 77(1')7

where n(z) defines an initial shape of the free surface in the physical do-
main. An initial horizontal coordinate of a fluid particle is used as the first
Lagrangian label a = z|—¢ and the second Lagrangian label is uniformly
distributed between fluid particles in a vertical column from the bed to the
free surface: ¢ = h(z —n)/(h+mn). The initial condition can now be written

as

z(a,c,0) =a; z(a,c,0)= Ch+—77(a)

zi(a,c,0) =0; z(a,c,0)=0.

+n(a); (7)

The fist line of (7) can be used for calculating Jy in (1). For the cases with
horizontal excitation a surface perturbation is not required to initiate fluid
motion and still water at equilibrium can be used as an initial condition. In
this case (7) reduces to

z(a,c,0) = a; xi(a,c,0)=0; z(a,c,0) =c¢; z(a,c,0)=0,

and the Jacobian J = 1.



3. Asymptotic model

Let us represent physical positions of fluid particles as
I(G,C,t) :CL+06£(CL, C,t); Z(CL,C,t) :C+OCC<CE,C, t)? (8>

where dimensionless functions ¢ and (¢ describe particle displacement from
the initial position (a,c) and « is a characteristic scale of this displacement.
We assume a to be small compared to the scale of a wave with a charac-
teristic wave number £ and consider an asymptotic solution with ka — 0.
Substitution to the continuity equation (1) gives in the leading approxima-
tion the classical Eulerian continuity equation for components of particle
displacement

o oc_

da  Oc
In the second approximation the continuity can be satisfied by applying de-
formation of coordinates of the form

0. (9)

a; =a+af(a,c)/2; ¢ =c+al(a,c)/2.

Further application of this deformation allows satisfying (1) at any order.
Buldakov et al. (2006) demonstrated that the recursive representation

z(a,c,t) = a+ allan, cn,t);  z(a,c,t) =c+ al(ay,cy,t);
ap =a; ¢y =¢ (10)
ap, =a+ af(an—h Cn—1, t)/2, Cn =C+ ag(an—la Cn—17t)/27

satisfies the Lagrangian continuity equation (1) exactly if the recursion con-
verges as n — oo and asymptotically to the order O(ka)™"*? for a finite num-
ber of recursion steps. Functions & and ( satisfy (9) and can be represented
using a single function ¥ analogous to an Eulerian stream function

19¥(a,c,t)
ko 0c

10Y(a,c,t)

((a,c,t) = —————=. (11)

fla,et) = - k Oa

To satisfy vorticity conservation (4) we represent function ¥ as an asymptotic
expansion for small ko

U(a,c,t) = Yo(a,c t) + ka¥(a,c,t) + (ka)* Uy(a,c, t) +--- . (12)



In Buldakov et al. (2006) it is shown that function ¥, satisfies the Laplace
equation
VQ‘IJO =0 y

and higher-order terms satisfy equations of the form

%VZ\IJH = R,(a,c,t)

with right-hand sides depending on previous approximations. It is important
to note that in spite of using asymptotic representation (12) for function
U the Lagrangian continuity equation is satisfied exactly if the recursion
converges since the recursive approximation is independent of a particular
form of W.

For a rectangular domain the leading-order solution can be expressed in
the form of a Fourier expansion with respect to individual sloshing modes
satisfying the Laplace equation in a rectangular domain and boundary con-
ditions on the walls and bottom of the tank

— 1 sinh(k,(c+ h))
— n sinh(k, h)

Uy = sin(k, a)F,(t),

where k, = wn/b is the wave number corresponding to the n-th sloshing
mode. Substitution to the free-surface condition (5) gives in the first approx-
imation the following equations for functions F;, describing time evolution of
individual modes

2(1—(=1)") w2X"(t)

Fl'+W02(1+2"t) F, = - — (13)

where w, are natural frequencies satisfying linear dispersion relation w? =
gk, tanh(k,h), and B, = 1/tanh(k,h). Equations (13) describing dynam-
ics of linear modes are the same as the corresponding modal equations in
Eulerian approach (e.g. Frandsen, 2004). Nevertheless, due to the essential
nonlinearity of the recursive coordinates transformation certain nonlinear
features can be captured even by a first-order solution. These, for example,
are higher peaks and shallower troughs of a wave and existence of limiting
wave amplitude when the recursive procedure starts diverging, which can be
associated with wave breaking.

Right hand sides of equations for higher approximations include prod-
ucts of lower order solutions, which has to be expanded to Fourier series
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with respect to linear sloshing modes in order to obtain higher-order modal
equations. This makes the analysis for high orders extremely difficult. To
simplify the solution we consider sloshing with a single dominating mode,
which generates only a limited number of modes at higher orders. Such an
approach was used by Faltinsen et al. (2000) in their classical Eulerian analy-
sis of nonlinear sloshing. Sloshing with a single dominating mode takes place
when frequency of tank oscillations is close to a resonant frequency for this
mode. For such oscillations a small amplitude of the horizontal excitation
leads to high amplitude of a resonant mode, while amplitudes of all other
modes remain small and are of the same order as excitation itself. Due to
nonlinear mode-to-mode interaction the dominating mode generates modes
with wave numbers which are integer multiples of a wave number of this
mode. If amplitude of the dominating mode is small (but still much higher
than the excitation amplitude) these nonlinear modes contribute to higher
orders of approximation. Another way to generate a single dominating mode
is trough mode instability due to a parametric resonance caused by vertical
tank oscillations. Such oscillations with finite amplitude can lead to growing
of a selected mode from a multimodal small initial surface perturbation.

Let us consider sloshing motion with a single dominating mode m. The
corresponding wave number k,, = mm/b is the natural choice for a charac-
teristic wave number, and a steepness parameter k,,« is small k,,a — 0. We
are looking for a third-order asymptotic solution O(k,,a)?, which includes
cubical nonlinearity essential for capturing such a crucial effect as nonlinear
detuning, which restricts amplitude growth during nonlinear resonance. A
dominating mode is generated by small horizontal tank oscillations of order
O(k,,«)? at resonant or near-resonant frequency. Amplitude of vertical os-
cillations can be finite. We rewrite accelerations of the tank in the following
form

X'(t) = (kma)* Au(t);  Z"(t) = A.(t),

where functions A,(t) and A.(t) remain finite as k,a — 0. The dominat-
ing mode is the only mode contributing to the leading term of expansion
(12). Due to nonlinear modal interaction it generates a mode 2m contribut-
ing to the second term (O(k,,«)) and a mode 3m contributing to the third
term (O(k,,)?) of an expansion. Horizontal tank oscillations generate other
modes, but being far from resonance they have amplitudes of the same or-
der as oscillations (O(k,,«)?) and contribute to the third term of (12). The

10



solution can now be represented in the form

3

U= Z(kma)"ls;nn}l(;ljg((; ;m’%) St @) Fom (£)

n=1

5 Sin(3 kpa) sinh(ky, (¢ + h)) + sin(k,a) sinh(3 &y, (¢ + h))

+ (kma) 4 sinh(k,,h) sinh(2 k;,,h) Fnam (1)
5 sin(3 kp,a) sinh (k.. (¢ + h)) + sin(kpa) sinh(3 &, (¢ + h))
+ (kma) 32 sinh (kph)3 Fnnm(®)
inh(k,(c+h)) .
+ (kpo)? S _ sin(k,a) F,(t) + O(kma)?,
( )n#l%am n sinh(k,h) (kna) Fu(?) ( )
(14)

where the first sum represents three nonlinearly interacting modes. Two
following terms are used to satisfy the irrotationality condition (4). These
terms modify the fluid kinematics and are not directly affected by the dy-
namic boundary condition. Their behaviour is defined by nonlinear modes
through the following differential relations

F/

m,2m

The final term in (14) represents non-interacting linear modes.

Functions F;, describing time evolution of modes can be found from the
free surface boundary condition (5). Substituting (14) back to (12), (10)
and (5) we expand the resulting expression into a Taylor series for small
kma up to the third order and collect terms proportional to sin(nka) with
the same n. Terms due to horizontal forcing are proportional to A, (¢) and
include coefficients cos(mka), m = 0, 1,2..., which should be expanded into
a Fourier series with respect to sin(nka), n = 1,2... on the interval a €
[0,0]. Finally we obtain the following system of three nonlinear differential
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equations describing time evolution of modal functions F,(t), n = m, 2m,3m

4 WA, (t
F%—Fw%(1+u4A®)F%ﬁ:(kmay-—gg——sl
T

13+ B2
— (kp 2<__m
N iy

m B,,

1 1+3B2
1 1
+3 (9—B2)E,F? + T (19 -3 B2)F2F!
1
5wk (L A(0) (5+T7BL) Fy + (143 B2) Funan) )
1 - B? 1
F2/;71+W§m(1+AZ(t))F2m:_—m(FaFm"i‘_Fr/nQ);
Bom 2
4 WrAL(t)
Fyo 4 Wi (14 AL(t) Fypy = — 25—
3m+w3m( + ()) 3 7T3mBgm
1 - B?
—%&mﬂ%ﬁﬂ%ﬁ%%)
1 1 - B2
= g Wim(L+ A=(6) =5 (FinFom — 3 F o)
3 0 1-B2
_Bm m F//F2 F/2Fm

+ 3% wi (1+ A1) (1= B2) (F2 4+ 3 Frmm) -

(16)
Behaviour of linear modes for n # m, 2m, 3m is described by equations (13).
To construct a solution we first solve an initial value problem including
three nonlinear equations (16) for interacting modes, two equations (15) en-
forcing vorticity conservation to the required order and linear equations (13)
for a desired number of non-interacting modes. Initial conditions for modal
functions can be derived from initial shape and velocity of the free surface
and for still water conditions all modal functions are zero together with their
derivatives at ¢ = 0. Then, function ¥ to be constructed using (14) and func-
tions £ and ¢ found using (11). Finally, physical positions of fluid particles
(x,2) can be calculated using the recursive procedure (10). A continuous
solution is possible when recursion converges and regions of the Lagrangian

domain where recursion diverges can be associated with wave breaking.
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4. Finite difference numerical model

We apply a finite difference technique for direct numerical solution of the
problem (1, 4-7). Since equations (1, 4) for internal points of a computational
domain include only first order spatial derivatives a compact four-point Keller
box scheme (Keller, 1971) can be used for finite-difference approximation of
these equations. For our selection of the Lagrangian computational domain
the stencil box can be chosen with sides parallel to the axes of the Lagrangian
coordinate system, which significantly simplifies the final numerical scheme.
Values of unknown functions x and z on the sides of the stencil box are calcu-
lated as averages of values at adjacent points and then used to approximate
derivatives across the box by first-order differences. The scheme provides
the second-order approximation for the box central point. Time derivatives
in (4) are approximated by second-order backward differences. It should be
noted that the same scheme can be constructed by applying conservation of
volume and circulation to elementary rectangular volumes (contours) with
linear approximation of unknown functions on boundaries of elementary vol-
umes.

Spatial derivatives in the free-surface boundary condition (5) are approxi-
mated by second-order central differences and special attention must be paid
to approximation of second time derivatives which is crucial for the stability
of the numerical scheme. In Buldakov (2013) it is demonstrated that using
first-order backwards difference introduces numerical viscosity O(7), where
7 = /gk 7 is the ratio of time step to a typical problem period. This leads to
fast non-physical decay of perturbations. Third and higher-order approxima-
tions include terms with negative numerical viscosity leading to instability.
We therefore use a second-order scheme which incorporates a numerical er-
ror to dispersion at the second order O(72) and weak dissipation at the third
order O(73). The overall numerical scheme is of the second order in both
time and space.

A fully-implicit time marching is applied, and Newton method is used on
each time step to solve nonlinear algebraic difference equations. It is impor-
tant to note that the scheme uses only 4 mesh points in the corners of the
box for internal points of the fluid domain. Therefore, the resulting Jacobi
matrix used by nonlinear Newton iterations has a sparse 4-diagonal structure
and can be effectively inverted using specific algorithms, which are consider-
ably faster and much less demanding for computational memory than general
algorithms of matrix inversion. The current version of the solver is using a
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standard NAG routine for inversion of general sparse matrices. To reduce
calculation time inversion of a Jacobi matrix is performed at a first step of
Newton iterations and if iterations start to diverge. Otherwise a previously
calculated inverse Jacobi matrix is used. Usually only one matrix inversion
per time step is required. An adaptive mesh is used in the horizontal direc-
tion with an algorithm based on the shape of the free surface in Lagrangian
coordinates z(a,0,t) to refine the mesh at each time step in regions of high
surface gradients and curvatures. A fixed non-uniform mesh is used in the
vertical direction with higher mesh resolution near the free surface.

Convergence of the numerical scheme was studied on a problem of wave
sloshing in a stationary tank. We use a square tank, which has the length of
b= 0.7778 m and is filled with water of the same depth. The linear sloshing
period of the first sloshing mode for this tank is 1s. A freely oscillating wave
is exited using the initial surface perturbation n(x,0) = Ay cos(k; x), where
k1 = m/b is the wavenumber of the first sloshing mode and Ay = 0.05m is the
initial amplitude. The solution for 10 seconds of sloshing is calculated using
different numbers of uniformly distributed mesh points and different time
steps. The calculated shape of the free surface is expanded into a Fourier
series with respect to sloshing modes and the behaviour of the first mode
is analysed. Results of this analysis are presented in Figures 2 and 3. A
linearised solution to the problem is the oscillation of the first mode with the
period of 1s and constant amplitude of 5cm. For the selected value of the
initial amplitude the solution is weakly nonlinear. Nonlinear effects include
generation of higher modes, energy exchange between modes and nonlinear
corrections to sloshing frequencies. As can be seen from Figure 2 numerical
errors include numerical dissipation and numerical corrections to the disper-
sion relation, which affects sloshing frequency. Figure 3 demonstrates that
both these effects reduce and the solution converges with increasing number
of mesh points and decreasing time step. For the main set of calculations
presented in the paper a typical size of an adaptive computational mesh is
151 x 31 and a time step is 0.001s. About 8 seconds of computational time of
a standard PC for each time step is required for these conditions. It should
be mentioned that speed of calculations was not a priority and no solver
optimisation was performed to increase it.
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5. Results

As a test case for the models presented above we use results of Bred-
mose et al. (2003) who performed an extensive experimental and numerical
study of forced sloshing in a rectangular tank. In a series of experimental
tests a 1.48 m long and 0.75m high rectangular tank covered with a lid was
oscillated horizontally and vertically and waves were observed for a range
of water depth. A typical case includes horizontal oscillations at a linear
resonant frequency of a third mode wy, = ws3. After approximately three pe-
riods, when the wave grows high enough, horizontal motion stops and the
tank starts vertical oscillations with doubled frequency w, = 2ws. At this
frequency the third mode is unstable and keeps growing due to paramet-
ric resonance resulting in steep breaking Faraday waves. Bredmose et al.
(2003) also perform calculations by a Boussinesq model and a fully nonlin-
ear boundary-integral solver and compare results with experiments. Further
details of tank motion, experimental procedures and numerical methods can
be found in the cited paper. In this study cases V05 and V21 are used with
water depths 0.4m and 0.302 m, amplitudes of horizontal oscillations 0.5 cm
and 1cm, amplitudes of vertical oscillations 3cm and 1 cm and third linear
sloshing frequencies ws = 7.856s™! and 7.737s™! respectively.

First, we apply the fully nonlinear Lagrangian numerical model to a sup-
plementary case of purely vertical oscillations with initial sinusoidal pertur-
bation of the free surface, which was used by Bredmose et al. (2003) for
testing the ability of the boundary integral solver to reproduce a ‘table-top’
waves observed in the experimental case V05. Figure 4 shows the result of
the Lagrangian fully nonlinear model for lower (top) and higher (bottom)
amplitude cases. The results of both methods are identical for the smaller
amplitude case, which includes approximately one wave period. For the
higher amplitude case the results coincide until £ = 0.52s when computa-
tion by the boundary integral solver breaks down. The Lagrangian solver is
able to continue computations until ¢ = 0.7s to complete the wave period,
but also breaks down shortly after. As can be observed in Figure 4, when
the falling ‘table-top’ wave approaching the trough its extended edges are
about to collide with the surface beneath. This process is characterised by
extremely fast local deformations which cannot be modelled with reasonable
number of mesh points and time step. Moreover, the collision itself is out
of the scope of the current version of the Lagrangian solver and expected
solution would include non-physical self-intersections of the free surface.
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There is no record of the exact tank motion available for the case V05,
which differs in some details from the nominal motion described above. In
addition, waves in this case touch the top of the tank, which cannot be
simulated by the models. We therefore give only qualitative comparison of
computational and experimental results for this case. A characteristic feature
of wave motion observed in this experiment is a sharp-crested waves followed
by a flat-topped one. Figure 5 demonstrates this feature in computational
results by the Lagrangian fully nonlinear solver. The top figure shows wave
evolution over half a period from ¢t = 4.06s to ¢t = 4.50s (Figure 5, top).
The downward motion starts with a sharp-crested wave which moves down
forming a crushing crest. It creates a local distortion at the wave trough,
which causes formation of a flat-topped wave on the following half-period
(Figure 5, bottom). Miniature plunging breakers are forming on the sides of
one of the rising flat-topped waves. This leads to solver breakdown shortly
after t = 4.64s due to excessively small temporal and spacial scales of the
process. Similar to the previous case, calculations can continue after signif-
icant increasing of spatial mesh resolution and decreasing of time step, but
the resulting solution will be non-physical because of self-intersection of the
free surface. An occurrence of a flat-topped crest preceded by a sharp crest
was observed experimentally by Jiang et al. (1998) who classified them as
mode A and mode B waves respectively. Figure 5 accurately illustrates the
process of wave transition from mode A to mode B presented in Jiang et al.
(1998).

Figures 6 and 7 give comparison of results obtained by the Lagrangian
asymptotic and fully nonlinear models. The solution of the asymptotic model
includes 6 modes: three non-linearly interacting modes n = 3, 6, 9 and three
linear non-interacting modes n = 1, 5, 7. The solution does not include linear
modes with even n-s since they are not generated by horizontal excitation of
the tank. One can hardly hope that a model using only a few first modes
can capture small scale phenomena like those shown in Figure 5. However,
Figure 6 demonstrates that predictions of the asymptotic model are in good
agreement with the fully nonlinear one until the moment when local highly
nonlinear phenomena start being important. As can be seen from Figure 7,
the asymptotic model accurately predicts the entire wave profile for the case
of a moderately steep wave. For a wave of high steepness it still gives the
accurate profile shape for the considerable part of the free surface but makes
a considerable error near the wave crest in the region of high deformation of
fluid volume, where original model assumptions are far from being satisfied.
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Comparison of free-surface profiles calculated by both fully nonlinear and
asymptotic Lagrangian methods with experimental results for the case V21
is presented in Figure 8.! There is an excellent agreement between fully non-
linear Lagrangian solution and experiment until the finite-difference compu-
tations break down at t = 6.89s. The difference between experimental and
computational profiles is practically withing line thickness. It is important to
note the snapshots at ¢t = 4.68s and ¢ = 5.12s, when the free surface is close
to the mean water level. The shape of the surface at these times changes
very fast and perfect agreement with the experiment here implies practically
ideal representation of nonlinear dispersion by the numerical model. Bred-
mose et al. (2003) were unable to continue calculations by the boundary
integral solver beyond time t = 6.83s with high spatial resolution. Only a
low resolution solution with local features being removed was obtained for
larger times. The Lagrangian solver is also unable continue calculations far
beyond this time. Figure 9 shows evolution of the free surface calculated by
the Lagrangian solver over the last half of the wave period before the solver
breaks down. A very thin falling jet can be observed on the right-hand wall of
the tank. This is a process with considerably smaller time and length scales
than typical scales of the entire wave, which requires unreasonable decrease
of time step and increase of spatial mesh resolution to continue computa-
tions. It should be noted that this jet is not observed in the experiment.
Moreover, no such jets ever appear at the tank walls for this experimental
case and they exist only at internal crest positions /b = 1/3 and z/b = 2/3.
A feasible reason for suppressing wall jets in experiment is wall friction and
effect of surface tension at a contact line between the free surface and the
wall.

Figures 10 and 11 demonstrate that the Lagrangian asymptotic model
gives very accurate predictions practically identical to predictions of the fully
nonlinear solver for small and moderate wave amplitudes. After ¢t = 4.5s the
asymptotic solution starts overpredicting surface elevation near wave crests.
This error grows with increasing wave amplitude and eventually recursion
stops converging at highest crests. However, apart from small regions around
crests of highest waves, prediction of wave profiles is very good. Calculations

'The author is grateful to Dr Bredmose who kindly provided a routine calculating the
exact tank motion for the case V21, which made detailed comparison of calculations with
experiment possible.
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by the asymptotic model can be continued for times after the fully nonlinear
solver breaks down and Figure 11 compares results of these calculations with
experiment. The model does not resolve local features observed in the exper-
iment such as falling jets. However, it is able to capture principal features of
wave behaviour including both phase and general shape with high accuracy.

6. Concluding remarks

Conclusions are fairly obvious from the discussion above. In this sec-
tion we are going to emphasise some strengths of the models, discuss their
weaknesses and suggest possible ways of addressing them.

A considerable advantage of the fully nonlinear solver presented in the
paper is its simplicity. Application of a finite-difference technique to ap-
proximate the problem (1, 4-7) is straightforward. Choice of a rectangular
Lagrangian domain with lines of computational mesh parallel to axes of the
Lagrangian coordinate system leads to a very compact numerical scheme.
In most of the modern numerical water wave models using Lagrangian for-
mulation this simplicity is overlooked. Applying complicated unstructured
triangular meshes, like in Radovitzky and Ortiz (1998) significantly compli-
cates a discrete formulation and reduces computational efficiency. This is
justified for flows in complicated physical domains which cannot be continu-
ously mapped to a rectangle or for flows with complicated vortical structure,
but seems an unnecessary overcomplication for many water wave problems.
Another advantage of the numerical model demonstrated in the paper is
its exceptional accuracy in modelling of high amplitude non-breaking and
near-breaking standing waves. The model is able to capture such features of
nonlinear Faraday waves as falling jets and forming of flat topped waves. A
crashing crest and a forming flat topped wave in calculated profiles (Figure 5)
closely resemble similar features observed in experiments (Jiang et al., 1998;
Bredmose et al., 2003). A falling jet (Figure 9) is qualitatively identical to
those analysed by Longuet-Higgins and Dommermuth (2001) in their careful
numerical study. Development of small-scale features of the free surface as-
sociated with high surface curvature and high acceleration eventually leads
to calculations breakdown. Bredmose et al. (2003) use 5-point smoothing of
the free surface which allows them to continue calculations of their bound-
ary element solver to high amplitude breaking wave. All small-scale local
features disappear from their solution, but the overall behaviour of the wave
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is represented with good accuracy. No smoothing was applied to results of
calculations presented in this paper.

An essential step in constructing the Lagrangian asymptotic solution de-
scribed in the paper is using a recursive procedure (10) to satisfy the continu-
ity equation (1). This step allows to reduce the nonlinear Lagrangian conti-
nuity equation to a linear Eulerian form (9) and to express final solution via a
single function similar to an Eulerian stream function. Vorticity conservation
(4) and the free surface dynamic condition (5) are satisfied asymptotically,
expanding the Lagrangian ”stream function” into a conventional asymptotic
series with respect to powers of a small wave steepness parameter. We would
like to emphasise that in the case of recursion convergence the resulting solu-
tion satisfies the nonlinear Lagrangian continuity equation exactly regardless
the order of the asymptotic expansion. This is a distinctive feature which
differs this method from all other Lagrangian asymptotic solutions available
in the literature. Direct numerical integration of the free surface gives con-
servation of fluid volume in the tank with the accuracy within the rounding
error of computations. Stopping recursion after a few steps leads to a solu-
tion satisfying continuity asymptotically. For example, using two first steps
of (10) leads to a solution similar to a standard expansion solution (e.g.
Yang-Yih and Hung-Chu, 2009), which is formally of the same third order of
approximation as a solution with converged recursion. However, such solu-
tion includes small time varying volume error which changes the total mass
of fluid in the tank and can have negative effect when applying the model to
simulate dynamics of coupled tank-structure systems.

An important question is the physical meaning of a solution when recur-
sion diverges for some parts of the fluid domain. For free-surface flows physi-
cally meaningful solutions with surface discontinuities are possible, which are
usually referred to as breaking waves. In Buldakov et al. (2006) it is shown
that if recursion converges at some point of a fluid domain then a continuous
solution exists in a vicinity of this point. This is a sufficient condition and
recursion divergence does not mean that a continuous solution does not exist.
One however could expect that solutions with diverging recursion are close to
actual flow discontinuities and can be used for anticipation of possible wave
breaking. For solutions considered in this paper recursion divergence is pre-
ceded by a cusp singularity at the crest of a wave. A cusp on a free surface is
a natural feature of low order expansions in Lagrangian coordinates. It, for
example, occurs at crests of a limiting Gerstner wave, which is the first term
of an Lagrangian asymptotic expansion for a regular travelling wave. Such
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singularities can also be observed in both experimental (Jiang et al., 1998;
Bredmose et al., 2003) and numerical (Longuet-Higgins and Dommermuth,
2001) studies of breaking standing waves. However, a following thin falling
jet cannot be captured by a few terms of a Fourier expansion of a low-order
Lagrangian asymptotic solution. Flat topped waves and micro breakers are
also out of the scope of the model. Moreover, breaking predicted by recursion
divergence does not coincide with real breaking events observed in the ex-
periment. This is not surprising if we remember that the asymptotic model
produces largest error near crests of high waves, where original assumptions
of the model are far from being satisfied. Better modelling of these highly
nonlinear features— if possible at all- requires constructing a higher-order
asymptotic solution. Nevertheless, apart from considerable errors near crests
of highest waves and inability to model small-scale features, the overall shape
of the wave is represented by this simple model very well even for high ampli-
tude breaking waves Another important advantage of the asymptotic model is
its high speed of computations. For cases considered in this paper faster than
real time modelling can be easily achieved using a standard PC. Together
with fairly accurate results this makes the Lagrangian asymptotic model a
good candidate for application to active sloshing control.

In general we can safely conclude that both the Lagrangian recursive
asymptotic model and Lagrangian fully nonlinear solver demonstrated great
potential in modelling high amplitude standing waves.

The author would like to thank Dr Bredmose and Cambridge University
Press for their kind permission to use data from Bredmose et al. (2003) for
models validation.
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Figure 1: Coordinate systems and a fluid domain, an example with initial surface pertur-
bation: (X, Z)— a laboratory coordinate system; A physical coordinate system (x, z)— is
connected to a tank moving with accelerations X" and Z" and (a, ¢) is a Lagrangian coor-
dinate system. Left— initial conditions; right— developing flow. Top— a deforming physical
fluid domain; bottom— a non-deforming Lagrangian fluid domain.
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Figure 2: Convergence study. Behaviour of the first sloshing mode for different mesh sizes
and time steps. Solid line: 51 x 51, 6t = 0.001s. Dashed line: 11 x 11, 6t = 0.02s. Thin
lines: mode oscillation. Thick lines: slow change of mode amplitude. Time is scaled by
the fist linear sloshing period.
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Figure 3: Convergence study. Period and numerical dissipation of the first sloshing mode

for different mesh sizes N, x N, and time steps dt. Top: period of the first mode. Bottom:
relative change of first mode amplitude between periods one (A;) and ten (A1g).
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Figure 4: Evolution of the surface profile for the case V05 with vertical excitation only
and initial sinusoidal surface perturbation calculated by the Lagrangian fully nonlinear
solver. Left— upward motion; right— downward motion. Top— smaller excitation amplitude
with smaller initial perturbation; bottom— larger excitation amplitude with larger initial
perturbation.
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Figure 5: Evolution of the surface profile for the case V05 calculated by the Lagrangian
fully nonlinear solver during a period when calculations break down. Top— downward
motion; bottom— the initial stage of the upward motion.
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Figure 6: Time history of surface elevation at tank walls for the case V05. Solid line— La-
grangian fully nonlinear solver. Dashed line— Lagrangian recursive asymptotic model. The
break of the dashed line represents recursion divergence. The thin vertical line corresponds
to the time of starting vertical oscillations.
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Figure 7: Surface profiles at selected times for the case V05. Solid line— Lagrangian fully
nonlinear solver; dashed line— Lagrangian recursive asymptotic model.
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Figure 8: Comparison of surface profiles calculated by the Lagrangian fully nonlinear solver
(solid) and Lagrangian recursive asymptotic model (dashed) with experimental results of
Bredmose et al. (2003) (Case V21, represented by kind permission of the authors).
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Figure 9: Evolution of the surface profile for case V21 calculated by the Lagrangian fully
nonlinear solver before calculations break down. Right frame magnifies falling jet at the
wall.
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Figure 10: Time history of surface elevation at tank walls for the case V21. Solid line— La-
grangian fully nonlinear solver. Dashed line— Lagrangian recursive asymptotic model. The
break of the dashed line represents recursion divergence. The thin vertical line corresponds
to the time of starting vertical oscillations.
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Figure 11: Comparison of surface profiles calculated by the Lagrangian recursive asymp-
totic model (dashed line) with experimental results of Bredmose et al. (2003) for large
amplitude waves (Case V21, represented by kind permission of the authors).
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