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Abstract 
Latest research on biological systems is steadily shifting from isolated single cells to entire cell 
populations. The latter are inherently heterogeneous, and their modeling requires approaches that 
explicitly account for this property. A comprehensive such approach is the cell population 
balance (CPB), which, however, is computationally expensive and becomes intractable for multi-
variable models.  

In this work, we demonstrate the use of model-reduction to efficiently simulate cell population 
heterogeneity in a genetic network of a single gene with feedback. Starting from a 4-species 
model we use singular perturbation analysis to derive a single equation for the intracellular 
protein concentration. We subsequently incorporate this equation to a hybrid model consisting of 
a CPB for the cell volume, and a continuum equation for the protein concentration. We finally 
compare the results obtained with the hybrid model with those of the full CPB, demonstrating the 
accuracy and computational efficiency of the hybrid methodology. 
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Introduction 
Heterogeneity in cell populations is a ubiquitous phenomenon that is observed even in the case 
of clonal cells (Avery, 2006; Davidson and Surette, 2008). This inherent property of cell 
populations stems from numerous sources, in particular, the random occurrence of intracellular 
reactions, the differences in the cell growth rates, the temporal variability in the transitions 
through the different phases of the cell cycle as well as in the division times, and finally, the 
stochasticity in the partitioning of mother cell contents to the two daughters. As a result, studying 
the behavior of single cells is not enough to characterize the behavior of the population, thereby 
motivating the development of experimental and computational approaches that can capture cell 
population heterogeneity (Fernandes et al., 2011). 

Thus, from a modeling perspective, the aforementioned sources of heterogeneity, with the 
exception of the random reaction occurrence, were explicitly taken into account in the 
deterministic cell population balance (CPB) framework developed by Tsuchiya et al. (1966), and 
Fredrickson et al. (1967). These models describe the temporal evolution of the distribution of the 
population over a state variable. The latter can include the cell mass (Sinko and Streifer, 1971; 
Subramanian and Ramkrishna, 1971), the age and/or volume of the cell (Bell and Anderson, 
1967; Sinko and Streifer, 1967; Bell, 1968; Anderson et al., 1969; Sinko and Streifer, 1969), and 
also the molar contents of intracellular components (Ataai and Shuler, 1985; Mantzaris et al., 
2001a; Mantzaris et al., 2001b; Mantzaris et al., 2001c; Henson et al., 2002). More recently 
Fredrickson and Mantzaris (2002) and Fredrickson (2003) expanded the CPB formulation to 
account for the transitions between the different phases of the cell cycle. The CPB framework 
has been successfully used to model cell cycle dynamics (Faraday and Kirkby, 1992; Liu et al., 
2007), capture cell population heterogeneity (Mantzaris, 2005b; Mantzaris, 2005a), predict and 
control the dynamics of fermentation processes in batch or continuous bioreactors (Godin et al., 
1999; Mantzaris et al., 1999; Zhu et al., 2000; Mantzaris and Daoutidis, 2004; Sharifian and 
Fanaei, 2009), study aggregation dynamics in suspension cultures (Kolewe et al., 2012), as well 
as investigate in vitro cell proliferation patterns (Fadda et al., 2012b; Fadda et al., 2012a). 

The deterministic CPB framework just discussed does not include stochasticity in intracellular 
reaction occurrence. This source of randomness is however important in the spatial scales on the 
order of a cell, because of the small number of molecules involved in biochemical reactions. To 
account for such effects, Mantzaris (2007) proposed a computational algorithm that incorporates 
a Langevin-type description of stochastic reaction dynamics in a CPB. This description is 
applicable to the mesoscopic scale, in which the copy numbers of reacting molecules is on the 
order of thousands. More recently, Stamatakis and Zygourakis (2010) formulated a cell 
population master equation and a computational framework that take into account all the major 
sources of heterogeneity, including random reaction occurrence and DNA duplication events. 
Reaction events are treated as discrete point processes, making the framework generally 
applicable to any scale, including the microscopic one, in which the copy numbers of molecules 
are low. Stamatakis and Zygourakis (2011) subsequently used this approach to model cell 
population heterogeneity in an artificial lac operon genetic network.  

Though it is desirable to have a comprehensive CPB model that includes all sources of 
heterogeneity, the computational expense involved in the solution thereof becomes prohibitively 
high for multi-variable models. To tackle this challenge, methods such as proper orthogonal 
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decomposition have been used by Zhang et al. (2003) to construct reduced nonlinear models that 
capture the dynamics of full CPB simulations. Moreover, hierarchical two-tier approaches that 
decompose fast and slow processes have been proposed (Immanuel and Doyle III, 2003; Pinto et 
al., 2007). Moving-boundary approaches have also been developed (Kavousanakis et al., 2009) 
to overcome the issue that the state space boundaries in which the cell population distribution is 
confined are not known a priori. As an alternative to solving the actual CPB equations, 
computational methods that employ kinetic Monte Carlo (KMC) simulation have also been 
developed (Smith and Matsoukas, 1998; Mantzaris, 2006).  

Finally, Stamatakis (2010) investigated a set of assumptions that allowed for the transformation 
of a CPB to hybrid models involving ensemble or continuum equations. These assumptions call 
for equal partitioning of the contents of the mother cell to the two daughters, an (intensive) 
reaction rate that does not depend on the volume of the cell, growth and division rates that 
depend on the volume of the cell but not on the intracellular contents, and a partitioning 
probability density function in which intensive variables do not appear (in essence the 
concentrations of the mother and daughter cell species are assumed to be the same). Under 
vegetative growth of bacterial populations these conditions are expected to hold true to a 
reasonably good approximation. The transformation of the CPB to hybrid models essentially 
unifies the aforementioned three modeling approaches (CPB, ensemble and continuum models) 
and can be the starting point in the development of novel and highly efficient computational 
methods for the solution of multi-variable CPBs. 

In the current work, we compare a CPB and a hybrid model capturing population heterogeneity 
for a genetic network consisting of a single gene with feedback. We begin our investigations by 
considering two variants of a 4-species model, the first variant written for extensive quantities 
(species contents) and the second for intensive quantities (concentrations). We use singular 
perturbation analysis (SPA) to derive reduced 2-variable systems of equations for the cell 
volume and intracellular protein levels. We subsequently incorporate the single cell equations 
into two different cell population frameworks: (i) a 2-variable CPB equation, and (ii) a hybrid 
model consisting of an ensemble equation and a single-variable CPB. We finally compare the 
cell population distributions obtained by the two frameworks and analyze the accuracy and 
efficiency of the hybrid approach.  

Model Development 

Reaction Network and Single Cell Models 
We investigate the dynamics of a single gene that exerts feedback on its own expression by 
employing a reaction network developed by Mantzaris (2006). According to this model, the 
protein expressed by the gene can dimerize and bind to the operator controlling the expression. 
The model incorporates protein production from the bare as well as the bound state of the 
operator. Thus, the reactions expressing the interactions for this genetic network are formulated 
as follows: 

The bare operator can initiate the transcription of the protein Y: 

0O O Y→ +k  (1) 
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Two protein molecules can associate, giving rise to dimer species Z: 

β
Y Y Z

⋅
→+ ←

d

d

k

k
 (2) 

The dimer can subsequently bind to the operator: 

α
O Z OZ

⋅
→+ ←

r

r

k

k
 (3) 

The bound state can initiate transcription of Y with a different rate: 

1OZ OZ Y→ +k  (4) 

Note that for k1 > k0 the feedback is positive since the production and dimerization of Y 
facilitates further production thereof; in other words the network exhibits autocatalytic 
architecture. For k1 < k0 the protein acts as a repressor, thereby exerting negative feedback on its 
own production. We assume that the monomeric form of the protein is subject to degradation 
whereas the dimer is a stable species; hence, we only take into account the degradation of Y. 

λY → ∅  (5) 

We further assume the total DNA concentration to be constant: 

[ ] ⋅ = +
T

O V o oz  (6) 

This assumption means that operator DNA has to be produced continuously as the cell volume 
increases during growth. This is a major assumption of the deterministic model, since, in reality, 
DNA is produced at a specific point of the cell cycle. The issue stems from the very nature of the 
deterministic model itself, which is valid in the thermodynamic limit of large numbers of 
molecules. 

Consequently, the extensive model (pertaining to molecular contents) with the single cell growth 
model is written as: 

d α
dt

= − ⋅ ⋅ + ⋅ ⋅ + ⋅r
r

ko o z k oz g o
V

 (7) 

2
0 1

d 2 2 β λ
dt

= ⋅ + ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅d
d

ky k o k oz y k z y
V

 (8) 

2d β α
dt

= ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅d r
d r

k kz y k z o z k oz
V V

 (9) 

d
dt

= ⋅
V g V  (10) 

The last equation expresses volume increase due to cell growth and is only valid up to the point 
that the cell divides. A reduced version of this extensive model will be later incorporated into the 
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CPB equation. On the other hand, a hybrid model utilizes equations written for intensive 
quantities, namely concentrations (7-9) (this is a key point for the derivation of the hybrid model, 
as discussed in Stamatakis, 2010). Thus, the intensive model accounting for the dilution due to 
cell growth will be written as: 

[ ] [ ] [ ] [ ]d
α

dt
= − ⋅ ⋅ + ⋅ ⋅r r

O
k O Z k OZ  (11) 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]2
0 1

d
2 2 β λ

dt
= ⋅ + ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ − ⋅d d

Y
k O k OZ k Y k Z Y g Y  (12) 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]2d
β α

dt
= ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ − ⋅d d r r

Z
k Y k Z k O Z k OZ g Z  (13) 

d
dt

= ⋅
V g V  (14) 

In the following, we will use SPA to reduce these models, thereby deriving one equation for the 
intracellular contents and a second equation for the cell volume. This single cell model will 
subsequently be incorporated into the CPB framework. 

Reduction of Single Cell Models  
The reduction procedure we are about to apply is based on SPA using the techniques established 
by Schauer and Heinrich (1983). As part of this methodology, we introduce asymptotic 
expansions for the variables expressing the contents (extensive) or concentrations (intensive) of 
the participating species. By assuming that certain reactions in our system are fast, we derive a 
set of quasi-equilibrium equations for the species participating therein ( ( )1ε−  equations). 

Subsequently, we write a set of equations expressing the slow dynamics ( ( )1  equations). By 

taking linear combinations of these equations and making use of the quasi-equilibrium 
conditions, we end up with a closed system of equations for the content (or concentration) of a 
single species and the volume of the cell. The linear combinations just noted essentially express a 
coordinate transformation, in line with equations (22)-(25) of Schauer and Heinrich (1983). A 
slightly different methodology also invoking SPA, but without relying on asymptotic expansions, 
has been developed by Gerdtzen et al. (2004). In this methodology, a set of algebraic quasi-
equilibrium conditions is derived for the fast timescale, which is coupled with a set of ordinary 
differential equations (ODEs) for the slow dynamics, thereby obtaining a system of differential 
algebraic equations (DAEs). By differentiating the algebraic equations, the DAE system is 
converted into an ODE system, and the latter is subsequently reduced to a lower-order 
description by means of a coordinate transformation. In both methodologies, the transformation 
is based on identifying the nullspace of the stoichiometric matrix of the fast reactions. 
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Extensive 2-Variable Model 
To construct the reduced models we assume that the kinetics of protein dimerization and 
operator-protein association are fast, and therefore reactions (2) and (3) are in quasi-equilibrium. 
Thus, we make the following scaling assumptions: 

κ
ε

= d
dk  (15) 

κ
ε

= r
rk  (16) 

The first step in our analysis is to introduce the following expansions: 

( ) ( ) ( )0 1 22ε ε ...= + ⋅ + ⋅ +y y y y  (17) 

( ) ( ) ( )0 1 22ε ε ...= + ⋅ + ⋅ +o o o o  (18) 

( ) ( ) ( )0 1 22ε ε ...= + ⋅ + ⋅ +z z z z  (19) 

The equation for V does not contain ε so we do not have to introduce an expansion for V. Using 
the standard perturbation procedure we separate terms of the same order with respect to ε and we 
obtain the following expressions: 

( )1ε−
 

From equations (6), (7) and (15-18): 

( ) [ ]
( )

2
0

0

α
α

⋅ ⋅
=

+ ⋅
T

O V
o

z V
 (20) 

Moreover, from equations (6), (9), (15-17) and (19): 

( ) ( )( )20 01
β

= ⋅
⋅

z y
V

 (21) 

Thus, from the above two equations we have an expression for the operator contents with respect 
to the protein contents and the volume: 

( ) [ ]
( )( )

3
0

20 2

α β

α β

⋅ ⋅ ⋅
=

+ ⋅ ⋅
T

O V
o

y V
 (22) 

Furthermore: 

( )1  

From equations (7-9), and (15-19): 
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( )
( ) ( ) ( ) ( )( ) ( ) ( )

0
0 1 1 0 1 0κd α κ

dt
= − ⋅ ⋅ + ⋅ − ⋅ ⋅ + ⋅r

r
o o z o z o g o

V
 (23) 

( )
( ) [ ] ( )( ) ( ) ( ) ( ) ( )

0
0 0 0 1 1 0

0 1
κd 2 2 2 β κ λ

dt
= ⋅ + ⋅ ⋅ − − ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅d

dT

y k o k O V o y y z y
V

 (24) 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

0
0 1 1 0 1 1 0 1κ κd 2 β κ α κ

dt
= ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ − ⋅ ⋅d r

d r
z y y z o z o z o

V V
 (25) 

We need to eliminate the ephemeral (fast) species O and Z. In the resulting equation, terms 
containing only y(0) must appear. Thus, by subtracting (23) from (25): 

( ) ( )
( ) ( ) ( ) ( )

0 0
0 1 1 0κd d 2 β κ

dt dt
− = ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅d

d
z o y y z g o

V
 (26) 

The y(1) and z(1) terms of the above equation can be eliminated with the use of equation (24). 
Thus, from (24) + 2∙(26): 

( ) ( ) ( )
( ) [ ] ( )( ) ( ) ( )

0 0 0
0 0 0 0

0 1
d d d2 2 2 λ

dt dt dt
+ ⋅ − ⋅ = ⋅ + ⋅ ⋅ − − ⋅ ⋅ − ⋅

T

y z o k o k O V o g o y  (27) 

In the above equation, o(0) can be substituted by an expression of y(0) and V (equation 22). 
Furthermore, the derivatives do(0)/dt and dz(0)/dt can be calculated in terms of dy(0)/dt from (20) 
and (21): 

( ) [ ]
( )( )( )

( )
( )

( )( )( )
30 0 20 0 2

220 2

α βd d2 3 α β
dt dtα β

 ⋅ ⋅ ⋅
= − ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅  

 + ⋅ ⋅

T
O Vo yy y V g

y V
 (28) 

( ) ( ) ( )0 0 00d 2 d
dt β dt 2
z y y y g

V
 ⋅

= ⋅ − ⋅  ⋅  
 (29) 

To simplify notation, let us define the following functions: 

( )( )
( ) [ ]

( )( )( )
( )

30
0 0

220 2

α β2Φ 1 2 2 2
β α β

⋅ ⋅ ⋅⋅
= + ⋅ + ⋅ ⋅ ⋅

⋅
+ ⋅ ⋅

T
O Vyy y

V y V
 (30) 

( )( )
( )( )

[ ]
( )( )

( )( )( )
2 20 0 2

0 2
220 2

3 α β
Θ 2 2 α β

β α β

⋅ + ⋅ ⋅
= − ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅
+ ⋅ ⋅

T

y y V
y g O V g V

V y V
 (31) 

Subsequently, the reduced extensive model takes the form (using equations 27, 30): 
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( )( )
( )

( )( ) ( ) [ ]
( )( )

[ ] ( )
30

0 0 0
0 1 120 2

α βdΦ Θ 2 λ
dt α β

T
T

O Vyy y k k g k O V y
y V

⋅ ⋅ ⋅
⋅ + = − − ⋅ ⋅ + ⋅ ⋅ − ⋅

+ ⋅ ⋅
 (32) 

Intensive 2-Variable Model 
The procedure just used can also be applied to derive the reduced intensive model from 
equations (11-14). We assume that (15, 16) hold. Let us then introduce the expansions: 

[ ] [ ]( ) [ ]( ) [ ]( )0 1 22ε ε ...= + ⋅ + ⋅ +Y Y Y Y  (33) 

[ ] [ ]( ) [ ]( ) [ ]( )0 1 22ε ε ...= + ⋅ + ⋅ +O O O O  (34) 

[ ] [ ]( ) [ ]( ) [ ]( )0 1 22ε ε ...= + ⋅ + ⋅ +Z Z Z Z  (35) 

Therefore, the equations we obtain for the different orders of ε are as follows: 

( )1ε−  

From equations (6), (7), (34), (35) we derive the expression for the operator concentration in 
quasi-equilibrium: 

[ ]( ) [ ]
[ ]( )

0

0

α

α

⋅
=

+
T

O
O

Z
 (36) 

Moreover, from equations (6), (9), (33), (35), (36) the dimer concentration is expressed as: 

[ ]( ) [ ]( )( )20 01
β

= ⋅Z Y  (37) 

The equations on the zeroth order of ε are as follows: 

( )1  

[ ]( )

[ ]( ) [ ]( ) [ ]( ) [ ]( )( ) [ ]( )
0

0 1 1 0 1d
κ α κ

dt r r

O
O Z O Z O= − ⋅ ⋅ + ⋅ − ⋅ ⋅  (38) 

[ ]( )

[ ]( ) [ ] [ ]( )( ) [ ]( ) [ ]( ) [ ]( )

[ ]( ) [ ]( )

0
0 0 0 1 1

0 1

0 0

d
2 κ 2 2 β κ

dt
λ

d dT

Y
k O k O O Y Y Z

Y g Y

= ⋅ + ⋅ − − ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

− ⋅ − ⋅

 (39) 
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[ ]( )

[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )( )
[ ]( ) [ ]( )

0
0 1 1 0 1 1 0

1 0

d
κ 2 β κ κ

dt
α κ

d d r

r

Z
Y Y Z O Z O Z

O g Z

= ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅

− ⋅ ⋅ − ⋅

 (40) 

In a similar way as previously done for the reduction of the extensive model, we take the 
difference between equations (40) − (38): 

[ ]( ) [ ]( )

[ ]( ) [ ]( ) [ ]( ) [ ]( )
0 0

0 1 1 0d d
κ 2 β κ

dt dt d d

Z O
Y Y Z g Z− = ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅  (41) 

Moreover, from (39) + 2∙(41): 

[ ]( ) [ ]( ) [ ]( )

[ ]( ) [ ] [ ]( )( ) [ ]( )

[ ]( ) [ ]( )

0 0 0
0 0 0

0 1

0 0

d d d
2 2 λ

dt dt dt
2

T

Y Z O
k O k O O Y

g Y g Z

+ ⋅ − ⋅ = ⋅ + ⋅ − − ⋅

− ⋅ − ⋅ ⋅

 (42) 

Then, the derivatives of the concentrations [O](0) and [Z](0) are expressed with respect to [Y](0) 
and the temporal derivative thereof: 

[ ]( ) [ ]

[ ]( )( )
[ ]( ) [ ]( )0 0

0
220

α βd d
2

dt dt
α β

T
OO Y

Y
Y

⋅ ⋅
= − ⋅ ⋅ ⋅

 + ⋅ 
 

 (43) 

[ ]( ) [ ]( ) [ ]( )0 0 0d 2 d
dt β dt
Z Y Y⋅

= ⋅  (44) 

By defining: 

[ ]( ) [ ]( ) [ ]

[ ]( )( )
[ ]( )

0
0 0

220

α β2
Ψ 1 2 2 2

β
α β

⋅ ⋅⋅
= + ⋅ + ⋅ ⋅ ⋅

 + ⋅ 
 

T
OY

Y Y
Y

 (45) 

the reduced intensive model is written as: 

[ ]( )( ) [ ]( )

( ) [ ]
[ ]( )( )

[ ] ( ) [ ]( ) [ ]( )( )
0

20 0 0
0 1 120

α βd 2Ψ λ
dt βα β

T
T

OY gY k k k O g Y Y
Y

⋅ ⋅ ⋅
⋅ = − ⋅ + ⋅ − + ⋅ − ⋅

+ ⋅
 (46) 

The above equation is equivalent to the reduced extensive model (equation 32) as shown in the 
Appendix. 

Note that instead of performing detailed SPA we could have casually set the derivatives of [O] 
and [Y] equal to zero in equations (11) and (13), thereby obtaining: 
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[ ] [ ]
[ ]
α

α
⋅

=
+

T
O

O
Z

 (47) 

[ ] [ ]21

β
= ⋅

 
+ 

 d

Z Y
g
k

 (48) 

Equation (36) previously obtained through SPA is similar to (47). However, equation (37) is 
different than its counterpart (48), since the different orders of magnitude are not separated in the 
latter analysis. Finally, the intensive model would be derived from equation (12) as: 

[ ] ( )
[ ]

[ ]
[ ] ( ) [ ] [ ]2

0 1 1
2

α β
d 2λ

dt
α β β

T
d

T

d d

g O
Y k gk k k O g Y Y

g gY
k k

 
⋅ + ⋅ 

⋅ = − ⋅ + ⋅ − + ⋅ − ⋅
   

+ ⋅ + +   
   

 (49) 

Note that the latter equation (49) does not have the time modulation term [ ]( )( )0Ψ Y  appearing in 

equation (46). In the results section we will compare and contrast the two reduced intensive 
models (46) and (49), demonstrating that SPA is essential for a faithful and accurate 
representation of the original dynamics. 

Cell Population Balance and Hybrid Model 
The population balance equation describes the temporal evolution of the distribution of cells over 
the possible states. The latter comprise the pairs (y, V) where y is the number of moles (or 
molecules) of Y and V the volume of the cell. The CPB is formulated for the normalized number 
density function n(y,V,t): the quantity n(y,V,t)⋅dy⋅dV represents the fraction of cells that exist 
between states [y, y+dy)×[V, V+dV). Thus, the population balance is written as (Stamatakis, 
2010): 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
0 0

, ,
, , , , , Γ , ,

2 Γ | , , , , Γ , ,

n y V t
r y V n y V t g V n y V t V n y V t

t y V

W p V W n y W t dW n y V t W n x W t dW
∞ ∞

∂ ∂ ∂
+ ⋅ + ⋅ ⋅ + ⋅      ∂ ∂ ∂

= ⋅ ⋅ ⋅ − ⋅ ⋅∫ ∫
 (50) 

where the advective terms correspond to intracellular reaction and cell growth, the last term on 
the left hand side describes loss of cells from state (y,V) due to division, the first term on the 
right hand side denotes influx to state (y,V) from the division of cells with higher volumes and 
intracellular contents, and the last term of the right hand side takes care of the normalization of 
n(y,V,t) so that the latter always integrates to unity. 

In the above equation (50) the reaction rate is obtained from the reduced extensive model: 
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( )
( ) ( ) [ ] [ ] ( )

3

0 1 12 2

α βd 1, 2 λ Θ
dt Φ α β

T
T

O Vyr y V k k g k O V y y
y y V

 ⋅ ⋅ ⋅
= = ⋅ − − ⋅ ⋅ + ⋅ ⋅ − ⋅ − 

+ ⋅ ⋅ 
 (51) 

and the division rate and partitioning probability density function are respectively: 

( )Γ
 

=  
 

divn

div

VV
V

 (52) 

( ) ( )
( )( )

1 1

2

21| 1
− −⋅    = ⋅ ⋅ ⋅ −   

   

q qq V Vp V W
W W Wq

Γ
Γ

 (53) 

where Γ  denotes the gamma function and thus, p is a symmetric beta distribution. 

Stamatakis (2010) showed that under certain assumptions, which are satisfied by equations (50-
53) the CPB model is equivalent to the following hybrid model: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
0 0

,
, Γ ,

2 Γ | , , Γ ,
∞ ∞

∂ ∂
+ ⋅ + ⋅  ∂ ∂

= ⋅ ⋅ − ⋅ ⋅∫ ∫

V
V

V V V

n V t
g n V t V n V t

t V

W p V W n W t dW n V t W n W t dW
 (54) 

( ) ( ) ( ),
ˆ , 0

∂ ∂
+ ⋅ =  ∂ ∂

C
C

n C t
r C n V t

t C
 (55) 

where the concentration is C = y / V, function r̂  denotes the intensive reaction rate: 

( ) ( ) ( ) [ ] [ ] ( ) 2
0 1 12

α β1 2ˆ λ
Ψ α β β

 ⋅ ⋅ ⋅
= ⋅ − ⋅ + ⋅ − + ⋅ − ⋅ + ⋅ 

T
T

O gr C k k k O g C C
C C

 (56) 

and the number density appearing in equation (50) is: 

( ) ( ) ( ) 1, , , ,= ⋅ ⋅V Cn y V t n V t n C t
V

 (57) 

provided that the initial condition n(y,V,0) factorizes into a volume-dependent and a 
concentration-dependent part. This means that instead of simulating the full CPB (50) for y and 
V, one can simulate (i) the CPB for the volume (54) and (ii) an ensemble of realizations of the 
intensive model with random initial conditions, which would capture the dynamics of the 
advection equation (55). 
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Results 

Validation and Characterization of the Reduced Intensive Models 
When reducing the intensive model, we noted that instead of performing detailed SPA we can 
casually set the derivatives of the ephemeral species to zero, thereby deriving equation (49) for 
d[Y]/dt. A comparison of the two reduced intensive models (46) and (49) with the full model 
(equations 11-13) is shown in Figure 1a for the parameter set of Table 1. Evidently, the “casually 
derived” equation (49) does not correctly capture the timescale of the course toward the steady 
state. The model derived through SPA, however, (equation 46) exhibits a satisfactory agreement 
with the full model. More importantly, the results of the two latter models become identical for ε 
→ 0, as shown in Figure 1b, which portrays the error norm between the transients obtained by 
each of the approximate models and the full model. This error norm was computed as:  

( ) ( )( )2
= −∫

fin

ini

t

Reduced approx full
Intensive model modelt

Error y t y t dt  (58) 

Figure 1b shows that the error of the “casually derived” equation (49) stays fixed at high values, 
whereas the error of the singular perturbation-derived model drops linearly with ε as expected, 
since we carried out the analysis up to order 1. These results demonstrate that in order to perform 
a meaningful reduction that faithfully captures the kinetics of the original multi-dimensional 
model, one has to properly separate terms of the same order of magnitude through a perturbation-
type analysis. Arbitrarily setting the derivatives of the fast (ephemeral) species equal to zero will 
yield a reduced model that exhibits the same steady states as the original model, but may have a 
completely different temporal behavior. 

Having validated the SPA-derived model we proceed to investigate its behavior by computing 
the bifurcation diagram of equation (46), with respect to the dimer-operator dissociation constant 
α for the parameters of Table 1, for which the protein exerts positive feedback on its own 
production (Figure 2a). This parameter was chosen since it quantifies the strength of the 
feedback that protein Y exerts on its own production. Thus, Figure 2a portrays the steady state 
solutions of equation (46) with respect to this dissociation constant, and it is observed that the 
positive feedback generates a sigmoidal response: for strong dimer-operator association (low 
values of the dissociation constant α) the positive feedback exerted by the dimer results in the 
gene being expressed at a maximal rate. On the other hand, for weak dimer-operator association 
(high values of α) only leak expression is observed. For intermediate values of α, bistability is 
observed. In this region, two stable steady states coexist and a sufficiently large perturbation 
from the low state of leak protein expression can bring the system to the higher state of strong 
expression. 

Contrary to what was just discussed, Figure 2b portrays the case where the protein acts as a 
repressor (k0 > k1 in reactions 1 and 4), thereby exerting a negative feedback on its own 
production. In this case, higher values of the dimer-operator dissociation constant (α) result in 
weaker repression, and thus, higher steady state concentrations of the protein Y. No bistability is 
observed in this case: the steady state concentration [Y] is a monotonically increasing function of 
the dissociation constant α. 
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Cell Population Simulations 
For the interesting case in which the system exhibits bistability, we simulate the dynamics of a 
cell population, using the two frameworks discussed in section “Cell Population Balance and 
Hybrid Model”. These simulations are performed for positive feedback architecture with a value 
of the dissociation constant α for which two stable steady states coexist. For the simulation of the 
full CPB model (equation 50) and the CPB part of the hybrid model (equation 54) KMC 
algorithms were used (Smith and Matsoukas, 1998; Mantzaris, 2006; Stamatakis and Zygourakis, 
2010; Stamatakis and Zygourakis, 2011).  

We first discuss a simple calculation that demonstrates the principle of the hybrid methodology. 
Figure 3 shows the trajectories of each cell in the population, obtained by a KMC simulation 
thereof (the stochastic analogue of equation 50) for the parameter values of Table 1. The 
simulation is initialized with two cells, having molecular contents and volumes such that one’s 
concentration lies above the unstable branch of the bifurcation diagram (Figure 2) and the other’s 
lies below. Figure 3a shows the evolution of the contents, revealing that all offspring of the first 
cell approach a high state and all offspring of the second approach a low state (discontinuities 
correspond to division events). There is a significant amount of heterogeneity and the trajectories 
seem rather random; however, after calculating the concentrations of the species of interest 
(Figure 3b), one makes the startling observation that the concentrations follow simple trends. In 
fact, the graph shown in Figure 3b, could have been calculated exactly just by solving the 
reduced intensive model (46). 

Now let us treat a more complicated case, in which we initiate the simulation with a large 
population of cells having a distribution of sizes and protein contents. For this simulation, we use 
the following initial condition, which factorizes with respect to volume and concentration: 

( ) ( )μ ,σ μ ,σ
1, ,0  = ⋅ ⋅ 

 V V C C

yn y V V
V V

G G  (59) 

where μ,σG  is a Gaussian distribution with mean µ and standard deviation σ, truncated within the 
interval [0, ∞). The functional form of this distribution is: 

( ) ( )

( )
( )μ,σ

μ,σ

μ,σ
0

∞ ⋅

∫

t
t H t

t dt
=

G
G

G
 (60) 

where μ,σG  is the Gaussian distribution and H the Heaviside function. 

Snapshots of the evolution of the normalized number density are shown in Figure 4. The first 
column of plots corresponds to simulating the hybrid system that consists of the ensemble model 
for the concentrations and the CPB for the volume (equations 54-57). The second column 
corresponds to the cell population Monte Carlo simulation where a maximum number of 100000 
cells were used in a constant number simulation scheme, (see Smith and Matsoukas, 1998). The 
perfect agreement between the two simulations demonstrates computationally the equivalence of 
the two models, as theoretically predicted by Stamatakis (2010). 
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It is interesting to observe the dynamical behavior of the number density as revealed by the 
simulation. For the parameter set of this simulation, the intensive single cell model exhibits two 
stable steady states and one unstable. The dashed line in each of the panels of Figure 4 
corresponds to a separatrix created by the unstable steady state which separates the two stable 
ones. Thus, the evolution of the initial distribution is a composition of two components. The first 
component is dictated by the growth and division dynamics, as shown in panel (b), in which 
some cells have already divided and some are still growing, thereby generating two distinct 
modes in the number density. The second component is dictated by the reaction dynamics which 
tend to drive the number density away from the separatrix into two elongated delta peaks as 
shown in panels (e, g). Note that finally the number density reaches a stationary distribution of 
the form: 

( ) ( ) ( ), , , ω δ 1 ω δ    ∞ = ∞ ⋅ ⋅ − + − ⋅ −        
V low high

y yn y V n V C C
V V

 (61) 

where ω is the integral of the initial number density over the region below the separatrix, and 
Clow and Chigh are the low and high steady states of the intensive model for the concentration (see 
Figure 2). 

Accuracy and Computational Efficiency of Hybrid Model 
To demonstrate the accuracy and efficiency of the hybrid model, we compare the results 
obtained by explicitly simulating the full CPB (equation 50) with those of the hybrid model 
(equations 54-57) for the parameters and initial conditions of Figure 4. For solving the CPB 
equations (50) and (54) the constant-number KMC framework was used (Smith and Matsoukas, 
1998; Mantzaris, 2006; Stamatakis and Zygourakis, 2010; Stamatakis and Zygourakis, 2011). 
Moreover, the solution of the ensemble equation (55) was evaluated by simulating the dynamics 
of each one of the cells of an ensemble. For the hybrid model, a highly accurate solution-of-
reference was obtained by solving each of the components of the model (equations 54 and 55) 
for 8⋅105 cells. Subsequently, simulations of the full CPB model were carried out for variable 
population sizes, in order to perform error analysis and evaluate the computational efficiency of 
the hybrid model. The error was calculated as follows: 

( ) ( )( )2

0
, , Δ , , Δ

=

= ⋅ − ⋅∑ ∫ ∫
tN

FullCPB accurate
i

Error n y V i t n y V i t dy dV  (62) 

The results of these studies are shown in Figure 5a, in which the error of the full CPB model is 
plotted against the population size. The observed trend is in agreement with the inverse square 
root law, which is typically encountered in Monte Carlo algorithms. In addition, Figure 5b shows 
the ratio between the computational times of the full CPB model for the various population sizes, 
versus the time required to obtain the most accurate solution from the hybrid model. Note that it 
takes about the same time to solve the hybrid model for Npopulation = 8⋅105, and the full CPB 
model for 5⋅104 cells. The error of the latter, however is still high (above unity), as highlighted in 
Figure 5a. By extrapolating the power-law fits of Figure 5 we deduce that a simulation of the full 
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CPB model with Npopulation = 8⋅105, would take about 100 times more CPU time than the hybrid 
model, and would reduce the error to approximately 0.3. These results underscore the high 
accuracy and computational efficiency of the hybrid modeling methodology introduced by 
Stamatakis (2010). 

Conclusions 
The ever-increasing interest in investigating cell population heterogeneity necessitates the 
development of novel and efficient approaches for simulating the dynamics of entire cell 
populations. CPB models are among the most comprehensive and accurate approaches for this 
task. However, they can quickly become intractable if multiple species participate in several 
reactions that need to be explicitly taken into account.  

In this work, we demonstrated how one can use reduction techniques to efficiently simulate cell 
population heterogeneity. Thus, we showed how singular perturbation can be used to reduce the 
dimensionality of a system of equations pertaining to multiple species, thereby deriving a single 
cell model that faithfully captures the original dynamics. We contrasted this detailed approach 
with an ad hoc technique which entails setting the temporal derivatives of the fast species to 
zero. This latter approach was shown to incur large errors in the prediction of the dynamics of 
the system. 

We further showed how a hybrid model can be used to simulate the dynamics of a cell 
population. This class of models was introduced in previous work (Stamatakis, 2010), in which it 
was shown that under certain biologically plausible assumptions, the behavior of the hybrid 
models are identical to those of the full CPB. This theoretical prediction was confirmed 
computationally for the single gene with feedback, for which the temporal behavior of the hybrid 
model was found to be identical to that of the CPB. In addition, by analyzing the error and 
computational times of the two models, the high accuracy and efficiency of the hybrid model 
was demonstrated. 

Even in the case that the assumptions discussed in (Stamatakis, 2010) do not hold true, hybrid 
models can still be used to obtain approximate solutions of the full CPB, rather than the exact 
solution thereof. Such investigations open opportunities for further research on improving the 
accuracy and expanding the applicability of hybrid models in simulating cell population 
heterogeneity. 
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Appendix 

Equivalence of Reduced Intensive and Extensive Single Cell Models 
To validate the reductions we have to check whether the models are identical under the 
transformation y(0) = V⋅[Y](0). To this end, we will subtract equation (46) from (32)/V. First, note 
that: 

( ) [ ]( )00y Y V= ⋅  (63) 

and thus: 

( )( ) [ ]( )00Φ Ψy Y=  (64) 

Furthermore: 

( )( )
( )

( )( ) ( )( ) [ ]( )
[ ]( ) ( )( )

00
00 0 0 0d dΦ Θ Φ Θ

dt dt
y Yy y y V g V Y y

 
⋅ + = ⋅ ⋅ + ⋅ ⋅ + 

 
 (65) 

Thus, equation (46) subtracted from (32)/V and with the use of equations (64, 65) becomes: 
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 (66) 

The above equation simplifies to: 

( )( ) [ ]( ) ( )( ) [ ]
[ ]( )( )

[ ]( ) [ ]( )( )20 000 0
20

α β1 2Φ Θ 2
βα β

T
O gy g Y y g g Y Y

V Y

⋅ ⋅ ⋅
− ⋅ ⋅ − ⋅ = ⋅ ⋅ − ⋅ − ⋅

+ ⋅
 (67) 

From the definitions of Θ and Ψ (equations 30, 31) it is easy to show that the above equation is 
an identity. Thus, the intensive and extensive reduced models are equivalent. 
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Tables 
 

Table 1: Parameter values for the reduced single cell models and the cell population models 

Parameter Value Units Description 
α 200 nM Dimer-operator dissociation constant 
β 0.8 – Dimerization constant 
k0 0.1 min−1 Protein expression kinetic constant from bare operator 
k1 16 min−1 Protein expression kinetic constant from bound operator 
λ 0.5 min−1 Protein degradation kinetic constant 

[O]T 2 nM Total operator concentration 
g 0.0231 min−1 Cell growth rate constant 

Vdiv 1.1∙10−15 L Parameter quantifying critical cell size for division 
ndiv 25 – Parameter quantifying sharpness of division 
q 80 – Parameter quantifying symmetry of cell fission 
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Figure Captions 
Figure 1: Panel (a): comparison of transients obtained from the reduced intensive models 
(equations 46 and (49) with that of the full model (11-13) using the parameters of Table 1 and ε 
= 1. Panel (b): difference between the results of each reduced model and that of the full model as 
a function of ε. For equation (46) derived through SPA, the error drops linearly with ε, whereas 
for equation (49) the error remains high. 

Figure 2: Bifurcation diagram for the reduced intensive model in the case of positive feedback 
(panel a: k0 = 0.1 min−1 and k1 = 16 min−1) and negative feedback (panel b: k0 = 16 min−1 and k1 
= 0.1 min−1). Solid and dashed lines correspond to stable and unstable steady states, respectively. 
Bistability is observed when positive feedback exists. Parameters not mentioned have the values 
of Table 1. 

Figure 3: Panel (a): cell contents for all cells in the population as a function of time. Panel (b): 
cell concentrations for all cells in the population. Parameter values as in Table 1. 

Figure 4: Temporal evolution of the normalized number density of a cell population. Panels (a, c, 
e, g) correspond to a hybrid ensemble/volume CPB simulation, whereas panels (b, d, f, h) 
correspond to the full cell population Monte Carlo simulation. Parameter values as in Table 1 
and for the IC: µV = 0.6 fL (where 1 fL = 10−15 L), σV = 0.05∙µV, µC = 3.763 nM, σC = 0.05∙µC. 
For an animation of these results see Supplementary Material. 

Figure 5: Panel (a): error of the full CPB model as a function of the population size in the 
constant-number KMC scheme. Population sizes: 6250, 1.25⋅104, 2.5⋅104, 5⋅104. The error was 
calculated from equation (62) with ∆t = 55 min, and Nt = 5. For the discretization of the number 
density functions: ∆V = 0.01 fL (where 1 fL = 10−15 L), ∆y = 0.05 nM. The most accurate 
solution was the one obtained by solving each component of the hybrid model for 8⋅105 cells. 
The dashed line shows the inverse square root convergence rate (294.6/√Npopulation). Panel (b): 
Ratio of computational times for the full CPB model and the hybrid model. The solid horizontal 
line marks a value of this ratio equal to 1. The dashed line is a power law fit of the data for the 
computational times (4.97⋅10−9⋅Npopulation

1.75). 
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