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This technology report describes the longitudinal registration approach that we intend to
incorporate into SPM12. It essentially describes a group-wise intra-subject modeling frame-
work, which combines diffeomorphic and rigid-body registration, incorporating a correction
for the intensity inhomogeneity artifact usually seen in MRI data. Emphasis is placed on
achieving internal consistency and accounting for many of the mathematical subtleties that
most implementations overlook. The implementation was evaluated using examples from
the OASIS Longitudinal MRI Data in Non-demented and Demented Older Adults.
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1. INTRODUCTION
Growth, plasticity, aging, and degeneration are inherently lon-
gitudinal processes; while much can be learned by studying a
cross-sectional sample of subjects at different stages of such
processes, longitudinal data have well-established advantages in
terms of increasing power and reducing confounds. To give
just one example, cross-sectional studies of aging are chal-
lenged by the relative subtlety of changes over time com-
pared to the large inter-individual variation, and they can never
fully separate true aging effects from confounding effects of
birth-year such as changes in nutrition. Longitudinal anatom-
ical MRI provides a framework for characterizing many of
the macroscopic brain changes in natural development and in
response to disease or injury. A MEDLINE search for key-
words “longitudinal,” “brain,” and “MRI” in the topic, gives over
1,500 hits.

Longitudinal data require appropriate statistical models, due to
the dependence of repeated measurements within-subject. Beyond
this, it is also recognized that there can be substantial gains in
power from using image processing and modeling algorithms that
are specifically designed for longitudinal data. For example, the
boundary shift integral (Freeborough and Fox, 1997; Leung et al.,
2012), which provides a direct measure of the difference between
two brain volumes, has proven to be substantially more power-
ful than simple subtraction of the two brain segmentations upon
which it is based. However, the reduction in measurement vari-
ability comes at a price of increased risk of various forms of bias.
In particular, any technique that is not symmetric1 with respect

1Following Tagare et al. (2009) we prefer the term“symmetric”to alternatives such as
“inverse-consistent” because of its formal mathematical definition, which includes
not only invariance to swapping a pair of images, but also invariance to permutations
of more than two images.

to the multiple time-points has the potential to introduce false
positive differences.

Concerns about asymmetry in pairwise image registration,
related to one image being chosen as a (fixed) reference and the
other as a (moving) source, first arose at the turn of the cen-
tury (Ashburner et al., 1999; Cachier and Rey, 2000; Christensen
and Johnson, 2001). In particular, Smith et al. (2001) discuss the
potential use of the matrix square root of an affine transformation
to derive a “half-way” space between two images2. This concept
has since been generalized to more than two images, as described
further below. Despite this early recognition of the potential
problem, many (probably most) studies employing image reg-
istration for longitudinal data over the past decade have used
methods with some form of asymmetry [usually registering the
later time-point(s) to the baseline].

More recently, it has been empirically demonstrated that these
theoretical concerns can indeed cause practical problems. Pair-
wise registration results have been shown to differ depending
on which image is chosen as the reference (Thomas et al., 2009;
Yushkevich et al., 2010). Results over three time-points appear
to exhibit an additive bias, such that the majority of change
occurs over the first interval, in a setting where such deceler-
ation is not biologically plausible (Hua et al., 2011; Thomp-
son et al., 2011). Intransitivity (where, for example, the sum of
changes from A to B and B to C differs from the change esti-
mated directly from A to C) can also be demonstrated (Leung
et al., 2012). The increasingly significant potential of longitudinal
MRI for clinical diagnosis, as a biomarker of disease progres-
sion and as an outcome measure in treatment trials, has led to
an increased focus on this issue (Fox et al., 2011; Reuter and

2See also the FSL SIENA tool, www.fmrib.ox.ac.uk/fsl/siena/index.html
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Ashburner and Ridgway Symmetric longitudinal registration

Fischl, 2011), along with on-going controversy (Holland et al.,
2012).

Many of the solutions proposed for avoiding bias from asym-
metry are restricted to two time-points, such as the formulation
of Tagare et al. (2009). There are three distinct approaches for
attempting to address asymmetry and intransitivity across more
than two time-points: all time-points of all subjects can be treated
independently, i.e., processed cross-sectionally (e.g., Giedd et al.,
1999); each time-point can be registered to every other time-point
within-subject, with appropriate adjustments to ensure consis-
tency (e.g., Leung et al., 2012); or all time-points can be registered
to some form of within-subject average image (e.g., Skrinjar et al.,
2008; Reuter et al., 2012a). The first of these results in low or zero
bias but very high variance, while the second is computationally
infeasible for high-dimensional diffeomorphic image registration.
We therefore propose a solution based on the third approach. Reg-
istration to an average is defined as an “indirect” approach by
Tagare et al. (2009), in contrast to “direct” approaches which sym-
metrize an individual pairwise registration; however, in this work,
we attempt to address some of the more subtle differential geo-
metric issues raised by Tagare et al. (2009) in their direct setting. A
further novelty of our approach is the unification of rigid registra-
tion, diffeomorphic registration, and correction of (differential)
intensity inhomogeneity in a single generative model (in the same
spirit as Ashburner and Friston, 2005). The algorithms described
in this Technology Report will be made available in the Statis-
tical Parametric Mapping (SPM)3 software with the next major
release, SPM12.

2. METHODS
Our proposed model involves combining rigid-body registration,
intensity inhomogeneity correction, and non-linear diffeomor-
phic registration. Because of all the conditional dependencies
among model parameters, naive approaches involving pipelines of
steps are likely to lead to less optimal solutions. For example, accu-
rate inhomogeneity correction requires the images to be aligned,
whereas more accurate alignment is only possible after inhomo-
geneity correction. Our solution involves performing all steps in
an interleaved fashion, such that model parameters are optimized
together. Rigid-body and diffeomorphic registration are combined
because the boundary conditions of the diffeomorphic registra-
tion do not permit rotations of the whole image. In addition,
the inclusion of translations in the rigid-body model allows the
diffeomorphic model to not penalize pure displacements.

In the remainder of this section, the individual components
will be introduced separately, before proceeding to describe the
combined model and some of the implementational details. First
though, we say something about how the within-subject template
space is defined.

2.1. TEMPLATE POSITION AND DIMENSIONS
The SPM software uses the concept of voxel-to-world mappings.
These are encoded in the image headers, and are used to determine
the real world locations (y) of voxel indices (x). Usually, they are

3Available from www.fil.ion.ucl.ac.uk/spm/

read from the “sform” fields of the NIfTI header4, and encode
affine transformation matrices (M), such that

y1

y2

y3

1

 =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1




x1

x2

x3

1

 . (1)

Each of the individual images is assumed to have such a voxel-
to-world mapping associated with it (Mn). The first step of the
algorithm involves computing suitable dimensions and a voxel-
to-world mapping (Mµ) for the within-subject template. The aim
is to have this template in some form of average position such that
bias introduced by interpolation is minimized.

As mentioned above, some pairwise registration approaches
have suggested using square roots of transformation matrices for
determining the half-way position for approximately symmetriz-
ing the registration (Smith et al., 2001; Thomas et al., 2009;Yushke-
vich et al., 2010). Several forms of transformation are members of
matrix Lie groups (Woods, 2003), so it is illustrative to consider
one of the simplest Lie groups – the positive scalars under multi-
plication. As emphasized in Leung et al. (2012), the conventional
square root of a positive scalar can be seen as the geometric mean
of the scalar and unity (the identity for positive scalars). The sim-
ple geometric mean of a set of points can be shown to minimize
the sum squared distances from the mean to all points under a
logarithmic distance metric; this property defines a Fréchet mean,
sometimes known as a Karcher mean, where the latter is only
required to be at a local minimum (Woods, 2003). The geomet-
ric mean is also an exponential barycenter (Pennec and Arsigny,
2012), in the sense that the signed logarithmic discrepancies from
the mean to all other points sum to zero. Considering now the Lie
group of three-dimensional rotation matrices [known as SO(3),
the special orthogonal group], an appropriate Riemannian dis-
tance metric and Fréchet mean (also the exponential barycenter)
can be analogously defined (Moakher, 2002). Unfortunately, in
the more general groups of rigid-body or affine transformations,
it can be shown that no bi-invariant Riemannian metric exists5.

Three different compromises have been used in the litera-
ture to circumvent the lack of bi-invariant metric: Reuter et al.
(2012b) compute a simple Euclidean mean of rigid-body transfor-
mations before using the singular value decomposition to factor
out any resultant zooms and shears; (Leung et al., 2012) use
Arsigny’s log-Euclidean mean (Arsigny, 2006), which is a distance-
minimizing Fréchet mean under a sub-optimal metric that is not
bi-invariant; (Woods, 2003) use the exponential barycenter (Pen-
nec and Arsigny, 2012) which corresponds to a bi-invariant mean,
relaxing the manifold to a semi-Riemannian one without a true
metric (and hence without a Fréchet mean), but still having a set
of tangent space vectors from the mean that sum to zero.

4See http://nifti.nimh.nih.gov/nifti-1
5Bi-invariance requires that composing both transformations with a third should
not change their distance, and that inverting both should also preserve the distance;
in the simple positive scalar case, the logarithmic distance between 1/2 and 1/4 is
the same as that between 1/6 and 1/12, and the same as that between 2 and 4.
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Ashburner and Ridgway Symmetric longitudinal registration

Our implementation is also based on the exponential barycen-
ter, which in theory could be directly used to define the average
position template. Unfortunately, because voxel sizes are not nec-
essarily isotropic, there are some potential difficulties with using
this. In particular, it is possible for the exponential barycenter to
be a transform that can not be encoded by axis-aligned scaling (to
account for voxel sizes), rotating, and translating (i.e., nine para-
meters). It would not be possible to encode such a matrix in the
“qform” fields of a NIfTI header, and it would also make some
of the subsequent processing slightly more involved. Therefore,
the closest nine-parameter affine transform to the exponential
barycenter is estimated via a Gauss-Newton optimization strategy
that minimizes the Euclidean distance between the matrices.

Finally, the dimensions of the template are determined such
that it easily covers the field of view of the images. This is achieved
by projecting the locations of the corners of the images into the
template space and finding the maximum and minimum val-
ues. Corresponding adjustments are also needed for Mµ, which
involves changing the translations.

Once the dimensions, etc., of the template are defined, the algo-
rithm can proceed to fit the combined model. The next three
subsections outline the individual components, and how they
would be optimized in isolation. This will be followed by a subsec-
tion about combining the components together into the unified
model.

2.2. GROUP-WISE RIGID-BODY REGISTRATION
Each image is considered as a scalar function of space, such that
fn : �fn → R, where�fn ⊆ R3. A series of N images {fn}Nn=1 may
be modeled as a common template mean (µ : �µ → R), which
is rotated and translated by a rigid-body transformation. Additive
Gaussian noise (of variance 1/λn) is assumed to be constant over
each image and known, but may vary from image to image.

When dealing with rigid-body transforms, it is useful to con-
sider them in terms of their membership of the special Euclidean
group in three dimensions [SE(3)]. Within this framework, a
transformation matrix (Rq) is constructed via an exponential
mapping of the six parameters (q) that constitute the Lie algebra
of the group.

Rq = exp


0 q4 −q5 q1

−q4 0 q6 q2

q5 −q6 0 q3

0 0 0 0

 (2)

This involves a matrix exponential, rather than computing the
exponential of each element. Although there are many ways to
compute this (Moler and Van Loan, 2003), it is usually defined as

exp Q =
∞∑

n=0

1

n!
Qn . (3)

Rigid alignment among a set of images can be performed by
estimating the optimal mapping between the template and each
of the images. A mapping from voxel indices in the template, to
those in the nth image, is given by the following affine transform:

ξqn
(x) = I3,4M−1

n Rqn
Mµ

[
x

1

]
, where I3,4 =

 1 0 0 0

0 1 0 0

0 0 1 0

 .

(4)

This leads to the following objective function for group-wise
rigid-body alignment:

E =
N∑

n=1

λn

2

∥∥∥fn − µ
(
ξ−1

qn

)∥∥∥2
. (5)

Without constraints, this simple approach may lead to a vari-
ety of equivalent solutions in which the template is rotated and
translated by some arbitrary amount. The Lie algebra of the SE(3)
group is used to parameterize the transforms to make is easier
factor out the Fréchet mean of all the rigid-body transforms, thus
ensuring that the template remains in the average position. All that
is required to achieve this is to ensure that

∑ N
n=1 qn = 0, which

can be achieved simply by subtracting the mean after all the qn

have been re-estimated.
For reasons that should become apparent later, we formulate

the objective function as

E =
N∑

n=1

λn

2

∣∣∣Dξqn

∣∣∣ ∫
x∈�′n

(
fn
(
ξqn

(x)
)
− µ (x)

)2
dx,

such that
N∑

n=1

qn = 0. (6)

In the above equation, the D operator refers to computing the
Jacobian, the determinants of which are included to account for
a change of variables. The field of view common to both the nth
image and the template is denoted by�′n = ξ

−1
qn
(�fn ) ∩�µ.

The optimization strategy involves alternating between re-
estimating the mean (µ), and then sequentially using this to re-
estimate the registration parameters. The update of µ is achieved
by differentiating equation (6) with respect to µ and solving.

µ (x) =

∑ N
n=1 wn (x) fn

(
ξ qn

(x)
)

∑N
n=1 wn (x)

, where

wn (x) =

λn

∣∣∣Dξqn

∣∣∣ if x ∈ �′n

0 otherwise
. (7)

A Gauss-Newton optimization iteration is then done for each
of the N scans. Dropping the n subscripts for notational simplicity,
this involves the following:

q← q−

(
∂2E
∂q2

∣∣∣∣
q

)−1 (
∂E
∂q

∣∣∣∣
q

)
. (8)

It requires the vector of first derivatives, which are computed
by differentiating equation (5) with respect to q, and applying the
same change of variables as earlier (see Appendix A), giving:

∂E
∂qi
=

∫
x∈�′

a (x) g (x) · hi (x) dx (9)
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Ashburner and Ridgway Symmetric longitudinal registration

where a= λ|Dξq|(f(ξq)−µ), g=5µ and

hi (x) = I3,4M−1
µ R−1

q
∂Rq

∂qi
Mµ

[
x
1

]
. (10)

For a more stable algorithm, the matrix of second derivatives
(Hessian matrix) should be positive definite. A suitable positive
definite approximation to the Hessian (see Appendix A) is:

∂2E
∂qi∂qj

'

∫
x∈�′

w (x)
(

g (x) · hi (x)
) (

g (x) · hj (x)
)

dx. (11)

Our implementation makes use of
∂Rq

∂qi
, obtained by differenti-

ating equation (3), although this could also have been computed
numerically using finite differences or by more elegant methods
(Al-Mohy and Higham, 2009). The overall optimization scheme is
presented in Algorithm 1.

Algorithm 1 | Rigid-body registration.

for n = 1...N do
Initialize qn.

end for
repeat

Compute µ and ∇µ (equation 7).
for n = 1...N do
Compute 1st derivatives (equation 9).
Compute Hessian (equation 11).
Gauss-Newton update of qn (equation 8).

end for

q̄← 1
N

∑N
n=1 qn .

for n = 1...N do
qn ← qn − q̄.

end for
until convergence

2.3. GROUP-WISE INHOMOGENEITY CORRECTION
MRI scans are usually corrupted by a spatially smooth intensity
non-uniformity (also known as “inhomogeneity” and sometimes
referred to as “bias”), which is often corrected prior to image reg-
istration using a procedure such as N3 (Sled et al., 1998). Instead,
we propose that the additional internal consistency from incor-
porating the non-uniformity correction within the longitudinal
registration scheme should provide potentially more accurate
results. Studholme et al. (2004), Modersitzki (2006), and Modat
et al. (2010) previously used registration-based non-uniformity
corrections, although those approaches did not consider aspects
of inverse (or group-wise) consistency.

Here, we outline a general strategy for dealing with non-
uniformity fields in aligned images. This part of the model assumes
that a series of N aligned images (fn) may be modeled as a common
template mean (µ), scaled by non-uniformity fields. Because these
fields should be positive, they are modeled using an exponential of

a Gaussian process (ebn ), where bn : �fn → R. This model leads
to the following objective function.

E =
N∑

n=1

(
λn

2

∥∥∥fn − µebn

∥∥∥2
+

1

2

∥∥∥Lbbn

∥∥∥2
)

(12)

Note that Lb is a differential operator that penalizes the rough-
ness of the (logarithms of the) estimated non-uniformity fields.
A Laplacian is used in practice, although the optimal choice of
differential operator will depend on the nature of the artifacts in
the image data.

Regularized maximum likelihood (or maximum a posteriori)
optimization of the inhomogeneity fields may be achieved by
minimizing the above function. As in the rigid registration case,
we propose alternating between re-estimating the mean and then
using this to re-estimate the inhomogeneity fields.

The update of µ is achieved by differentiating equation (12)
with respect to µ, and solving.

µ =

∑N
n=1 λn fnebn∑N
n=1 λne2bn

(13)

Gradient descent could then be used to update the inhomo-
geneity fields, which requires the first derivatives of the objective
function. These are computed via their Gâteaux differential.

dE (bn ; h) =
d

dτ

1

2

(
λn

∥∥∥fn − µebn+τh
∥∥∥2
+ ‖Lb (bn + τh)‖

2)∣∣∣∣
τ=0

=

∫
x∈�µ
−an (x) µ (x) h (x) dx+

〈
L

†

b Lbbn , h
〉

(14)

where an = λnebn
(
fn − µebn

)
.

In our implementation, the fields are updated via a Gauss-
Newton step, which makes use of a positive definite approximation
to the second derivatives (derived using similar principles to those
in Appendix A).

d2E (bn ; h1, h2) =
d2

dτ1dτ2

1

2

(
λn

∥∥∥fn − µebn+τ1h1+τ2h2

∥∥∥2

+

∥∥∥Lb

(
bn + τ1h1 + τ2h2

)∥∥∥2
)∣∣∣∣
τ1=0,τ2=0

'

∫
x∈�µ

wn (x) µ(x)
2h1 (x) h2 (x) dx+

〈
L

†

b Lbh1, h2

〉
(15)

where wn = λne2bn .
The overall procedure is summarized in Algorithm 2, which has

a similar overall structure to Algorithm 1. The non-uniformity
fields are encoded by a parameter at each voxel, such that con-
tinuous representations [of b(x)] may be obtained via tri-linear
interpolation. This parameterization results in a diagonal matrix
for the first term in equation (15), making it relatively straight-
forward to solve the system of linear equations required for the
update via a full multi-grid (FMG) method.
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Ashburner and Ridgway Symmetric longitudinal registration

Algorithm 2 | Non-uniformity field estimation.

for n = 1...N do
Initialize bn.

end for
repeat

Compute µ (equation 13).
for n = 1...N do

Compute 1st derivatives (equation 14).
Compute Hessian (equation 15).
Gauss-Newton update of bn (via FMG).

end for

b̄← 1
N

∑N
n=1 bn .

for n = 1...N do
bn ← bn − b̄.

end for
until convergence

Although the model appears to incorporate a number of un-
necessary parameters (i.e., N non-uniformity fields plus a mean
image), it effectively involves only N − 1 fields. The mean image
is incorporated for convenience, and the geometric mean over
all the estimated non-uniformity fields converges to one (given
appropriate regularization). In practice, this constraint may be
incorporated in the optimization (as shown in Algorithm 2), which
enhances convergence. When there are two images, we may assume
b2=−b1, in which case the objective function reduces to

E =
λ1λ2

2

∫
x∈�

(
f1 (x) eb1(x) − f2 (x) e−b1(x)

)2(
λ1e2b1(x) + λ2e−2b1(x)

) dx+ ‖Lbb1‖
2.

(16)

This special case may have other applications, such as the compu-
tation of smooth ratios of MR scans for mapping of RF transmit
fields (Lutti et al., 2010).

2.4. GROUP-WISE DIFFEOMORPHIC REGISTRATION
From a generative modeling perspective, the objective function for
group-wise registration may be written as

E =
N∑

n=1

(
λn

2

∥∥fn − µ ◦ φ
−1
vn

∥∥)2

+
1

2

∥∥Lvn vn
∥∥2

(17)

where φvn
: �µ → �µ is a diffeomorphic mapping, constructed

from the initial velocity field vn : �µ → R3. Each image (fn) is
assumed to be a warped version of a template (µ), with added
noise. Smoothness of the diffeomorphisms are achieved via the
differential operator Lv, which may differ from image to image.

It is now reasonably well known that a diffeomorphism (φv)
may be computed from an initial velocity field (v) using a proce-
dure known as geodesic shooting (Miller et al., 2006). Essentially,
this procedure is based on integrating a particular form of dynam-
ical system over unit time, and relies upon the principle of con-
servation of momentum. The procedure begins by initializing φv

to the identity transform and computing the initial momentum
from the initial velocity via

u = L
†
v Lvv. (18)

Then the following dynamical system is integrated over unit
time.

φ̇v =

(
Kv

(∣∣Dφ−1
v

∣∣ (Dφ−1
v

)T (
u ◦ φ−1

v

)))
◦ φv (19)

Briefly, the initial momentum is re-sampled according to the
inverse of the current estimate of φv. Each point in the resulting
field is matrix-multiplied by the transpose of the Jacobian tensor at
that point of φ−1

v and rescaled by the determinant of the Jacobian.
Finally, the result is smoothed by applying the Kv operator, which

is the Green’s function of L
†
v Lv (see Bro-Nielsen and Gramkow,

1996), to give the velocity field that provides the next update for
φv. The Kv operator may be viewed as a low pass filter, which is the

(pseudo-) inverse of L
†
v Lv, such that KvL

†
v Lvv = v. In practice, we

use a slightly different integration scheme, which was described in
Ashburner and Friston (2011).

We now re-write Equation (17) via integration by substitution.

E =
N∑

n=1

λn

2

∫
x∈�µ

∣∣Dφvn
(x)
∣∣ (fn ◦ φvn

(x)− µ (x)
)2

dx

+
1

2

N∑
n=1

∥∥Lvn vn
∥∥2

(20)

The template update equation is obtained by differentiating
equation (20) with respect to µ and solving.

µ =

∑N
n=1 λn

∣∣Dφvn

∣∣ (fn ◦ φvn

)∑N
n=1 λn

∣∣Dφvn

∣∣ (21)

Registration is treated as an optimization procedure, using
both first and second derivatives. The first Gâteaux differential
is computed via

dE (vn ; h) =

∫
x∈�µ

an (x) g (x) · h (x) dx+
〈
L

†
vn

Lvn vn , h
〉

(22)

where an = λn
∣∣Dφvn

∣∣ (fn ◦ φvn
− µ

)
. The template gradients (g)

used for the registration are computed (see Appendix B) as follows.

g =

∑N
n=1 λn

∣∣Dφvn

∣∣∇ (fn ◦ φvn

)∑N
n=1 λn

∣∣Dφvn

∣∣ (23)

A Gauss-Newton step is used to update the estimates of the ini-
tial velocity, which also requires a positive definite approximation
to the second derivatives.

d2E (vn ; h1, h2) '

∫
x∈�µ

wn (x)
(

g (x) · h1 (x)
) (

g (x) · h2 (x)
)

dx

+

〈
L

†
vn

Lvn h1, h2

〉
(24)

where wn = λn
∣∣Dφvn

∣∣ .
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Ashburner and Ridgway Symmetric longitudinal registration

Further practical details about the implementation may be
found in Ashburner and Friston (2011), with some explanation of
how the system of linear equations are solved via a full multi-grid
approach in Ashburner (2007).

Algorithm 3 | Diffeomorphic registration.

for n = 1...N do
Initialize vn.

end for
repeat

for n = 1...N do
Compute φvn

and Dφvn
from vn using

geodesic shooting.
end for
Compute mean and gradients

[equations (21) and (23)].
for n = 1...N do

Compute 1st derivatives (equation 22).
Compute Hessian (equation 24).
Gauss-Newton update of vn (via FMG).

end for

ū← 1
N

∑N
n=1

(
L†

vn Lvn

)
vn .

for n = 1...N do
vn ← vn − Kvn ū.

end for
until convergence

2.5. COMBINING THE COMPONENTS
The registration procedure combines group-wise rigid-body and
diffeomorphic registration with intensity non-uniformity correc-
tion. The model assumes that each image (fn) is a deformed version
of a template image (µ), scaled by the exponential of an inhomo-
geneity field (bn), with a known amount of additive i.i.d. Gaussian
noise (precision λn). Fitting this model (see Figure 1) involves
minimizing the following objective function:

E =
N∑

n=1

1

2

(∫
x∈�′n

λn
∣∣Dϕn (x)

∣∣ (f ′n (x)− µ (x) eb′n(x)
)2

dx

+
∥∥Lvn vn

∥∥2
+ ‖Lbbn‖

2
)

(25)

with the following definitions:

ϕn = ξqn
◦ φvn

f ′n = fn
(
ϕn

)
b′n = bn

(
ϕn

)
�′n = ϕ

−1
n (�fn ) ∩�µ

The images (f) and template (µ) are treated as continuous func-
tions, but are actually encoded via B-spline basis functions. This
is done to achieve continuous spatial gradients, which are needed
for the registration. Velocity (v) and logarithms of inhomogeneity
fields (b) are also treated as spatially continuous, and represented
using tri-linear interpolation.

v (x ) φ(x ) f (x ) b(x )

q ξ (x ) λ

L v

µ(x ) L b

N

FIGURE 1 | A graphical representation of the full model. Each of the N
images (f ) is assumed to be a deformed version of the template (µ) scaled
by a multiplicative inhomogeneity field [exp(b)] with additive Gaussian noise
(precision λ). Each deformation is modeled by the composition of a
rigid-body transform (ξ ) parameterized by a vector of six parameters (q),
and a diffeomorphic deformation (φ) parameterized by its initial velocity (v).

We now introduce a few more definitions that will be useful
later. The mean image is needed for all steps, and is computed by

µ =

∑N
n=1 wne−b′n f ′n∑N

n=1 wn

, (26)

where

wn (x) =

{
λn
∣∣Dϕn (x)

∣∣ e2b′n (x) if x ∈ �′n

0 otherwise
(27)

In addition, the following gradients are required for driving the
image registration

g =

∑N
n=1 wne−b′n

(
∇f ′n + f ′n∇b′n

)∑N
n=1 wn

−

2
(∑N

n=1 wne−b′n f ′n

) (∑N
n=1 wn∇b′n

)
(∑N

n=1 wn

)2 . (28)

One other definition is

an = wn

(
f ′ne−b′n − µ

)
. (29)

The derivatives used for updating the rigid-body and diffeo-
morphic transformations are computed by substituting the above
expressions. To compute the first derivatives, equations (28) and
(29) would be substituted into equations (9) and (22). For the
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Ashburner and Ridgway Symmetric longitudinal registration

approximate second derivatives, equations (27) and (28) would be
substituted into equations (11) and (24).

The main difficulty arises from combining the inhomogeneity
estimation with the registration. Others have used an elegant meta-
morphosis approach (Trouvé and Younes, 2005) for integrating
intensity variations with deformations, but this is not appropriate
here. In the current model, intensity variations are assumed to be a
function of the MR scanner rather than an intrinsic property of the
brain itself. Therefore, the inhomogeneity fields are estimated in
the space of the original images. Our registration scheme involves

Algorithm 4 | Combined model estimation.

for n = 1...N do
Initialize qn, bn and vn.

end for
repeat

for n = 1...N do
Compute φvn

and Dφvn
from vn

(see Ashburner and Friston (2011)).
end for
Re-compute µ and g

[equations (26) and (28)].
for n = 1...N do

Compute ∂ E
∂ q (equation 9,

using equation 29).

Compute ∂2E
∂q2 (equation 11,

using equation 27).

Gauss-Newton update of qn
(equation 8).

end for

q̄← 1
N

∑N
n=1 qn .

for n = 1...N do
qn ← qn − q̄.

end for
Re-compute µ (equation 26).
for n = 1...N do

Compute dE(bn ; h) (equation 30, using
equation 29).

Compute d2E(bn ; h1, h2) (equation 31,
using equation 27).

Gauss-Newton update of bn.
end for
Re-compute µ and g (equations 26 and 28).
for n = 1...N do

Compute dE(vn ; h) (equation 22,
using equation 27).

Compute d2E(vn ; h1, h2) (equation 24,
using equation 27).

Gauss-Newton update of vn.
end for
ū← 1

N

∑N
n=1

(
L†

vnLvn

)
vn.

for n = 1...N do
vn ← vn − Kvn ū.

end for
until convergence

estimating mappings from the mean template to the individual
scans. We can re-sample the original scans to bring them in align-
ment with the template, but sampling the template to align it with
the individual scans would require additionally computing the
inverse deformation, adding an additional level of computational
complexity. Our solution is to first compute derivatives of the data
term in the space of the template, making use of the Jacobians of
the deformations in a substitution of variables.

Equations (14) and (15) may be re-written to incorporate
equations (27) and (29).

dE (bn ; h) =

∫
x∈�fn

−
∣∣Dϕ−1

n (x)
∣∣ (anµ) ◦ ϕ

−1
n (x) h (x) dx

+

〈
L

†

b Lbbn , h
〉

(30)

d2E (bn ; h1, h2) '

∫
x∈�fn

∣∣Dϕ−1
n (x)

∣∣ (wnµ
2)
◦ ϕ−1

n (x)

h1 (x) h2 (x) dx+
〈
L

†

b Lbh1, h2

〉
(31)

This enables the derivatives to be first computed in the
space of the template, and subsequently pushed forward to the
space of the original images. The inhomogeneity fields are then
re-estimated by an iteration of Gauss-Newton, although they are
not mean-corrected.

The overall optimization scheme is shown in Algorithm 4.

2.6. IMPLEMENTATION DETAILS
Our implementation is written in a mixture of MATLAB and
C code (mex files for the computationally expensive parts). For
additional speed (and accuracy), the overall procedure is run over
multiple spatial scales, beginning at the lowest resolution. At each
scale, a solution is computed, which is prolonged to the next scale
where it serves as a starting estimate for the next set of iterations
at a higher resolution.

The implementation has large memory requirements, which
are likely to exceed the addressable memory of 32-bit comput-
ers. To save some memory, many of the computations are done
using single precision floating point. Briefly, the main memory
consumption comes from:

• Image data (fn). If each image contains J voxels, the memory
for all images will be 4JN bytes. For example, a 256× 256× 256
image (where J = 16777216) requires 64 MB to represent it as
single precision floating point.
• Inhomogeneity fields (bn) require 4JN bytes.
• Template (µ) and its spatial gradients (g) require 4Jµ+ 12Jµ

bytes, where Jµ is the number of voxels in the template.
• Velocity fields (vn) require 12JµN bytes.
• Deformation fields (φvn

) require 12JµN bytes.
• Jacobian fields (Dφvn

) require 36JµN bytes.

The geodesic shooting step consumes a lot of additional mem-
ory. This includes 36Jµ bytes for the Fourier transform of the
Green’s function (K), 12Jµ bytes for the initial momentum (un),
plus 96Jµ bytes for composing diffeomorphisms and their Jaco-
bians. The maximum requirement at any point is just over
144Jµ+N (8J + 60Jµ) bytes.

The algorithm requires a few user-defined settings, which will
now be outlined.
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Ashburner and Ridgway Symmetric longitudinal registration

2.6.1. Noise estimates
The model assumes that images can be closely aligned, such that
most of the residual variance is scanner noise. One of the settings
needed by the algorithm is an estimate of the noise variance of
each scan ( 1

λn
). This may be assigned by the user, although our

implementation defaults to using values estimated from the MR
scans themselves.

Because MR images usually encode the magnitude of complex
data, they have Rician noise. An estimate of the variance of this
noise can be made by fitting a mixture of two Rician distributions
to an intensity histogram from an image (see Figure 2). A reason-
able scanner noise estimate may then be obtained from the smaller
of the two estimated variances. The fitting procedure is similar to
the expectation maximization for fitting a mixture of Gaussians,
although the SNR fixed point formula (Koay and Basser, 2006) is
used to compute the Rician parameters from the sample means
and standard deviations.

Noise drawn from a Rician distribution deviates most from
Gaussian in regions of low signal intensity, where it is closer to
the Rayleigh distribution (Rician with zero signal). Although the
mean-squares difference noise model (which assumes residuals
are drawn from a Gaussian distribution) differs from the Rician
assumptions, it is probably close enough within the regions of the
image in which we are mostly interested. Even in the worst case, the
difference between noise drawn from two Rayleigh distributions
is close to Gaussian.

2.6.2. Differential operator for inhomogeneity
Without regularization, all the differences among the images
would be explained by the estimated inhomogeneity fields. There-
fore, their estimation needs to involve regularization, which will
depend on the nature of the artifacts present. If there is no
inhomogeneity, then very strong regularization may be used,
whereas less would be used in the presence of large artifacts. Our

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Image Intensity

P
ro

b
a
b
ili

ty

FIGURE 2 | A mixture of two Rician distributions fit to an MRI intensity
histogram (shown dotted). The fit is shown as a continuous line, whereas
dashed lines are used to show the two Rician distributions.

implementation regularizes by minimizing the bending energy of

the fields (‖Lbb‖2
= ω0

∫
x∈�

∥∥∇2b(x)
∥∥2

dx, where ω0 is a hyper-
parameter controlling the strength of the regularization), which
gives generally smooth estimates. Neumann boundary conditions
are imposed on b, such that the gradient is zero at the edge of the
field of view.

2.6.3. Differential operator for diffeomorphisms
The solution of any image registration problem is heavily depen-
dent on the choice of differential operator used to regularize it.
Although there are principled (Bayesian) ways to optimize the
operator (Simpson et al., 2011), such a strategy would be beyond
the scope of the current work. Instead, a relatively ad hoc choice
about the form of operator was made, although there were still
some principled aspects involved.

The differential operator involved no penalty against absolute
displacements, which has implications for the Green’s function
(Kv) used by the geodesic shooting procedure. Such forms of reg-
ularization operator can not be inverted exactly to obtain a unique
Kv. Our implementation of geodesic shooting used Fast Fourier
Transform (FFT) methods to obtain the Green’s function. Because
the DC coefficient of the FFT of the differential operator is zero,
its reciprocal is infinity. We therefore set the DC coefficient of
the Green’s function to zero, and let the rigid-body registration
account for global translations.

Many registration approaches use a Green’s function that is
simply a Gaussian. We chose to avoid this, as such functions privi-
lege certain spatial scales above others (and also penalize absolute
displacements). Some have instead used a Kv consisting of a mix-
ture of Gaussians to account for multiple spatial scales (Risser
et al., 2011). Our approach involves using a combination of the
linear-elasticity and bending energy (or thin-plate) models.

‖Lvv‖2
=

∫
x∈�

(
ω1

4

∥∥∥Dv (x)+ (Dv (x))T
∥∥∥2

F
+ ω2tr(Dv(x))2

+ω3
∥∥∇2v (x)

∥∥2
)

dx (32)

Three hyper-parameters are involved:

• ω1 controls the amount of stretching and shearing (but not
rotation).
• ω2 controls the divergence, which in turn determines the

amount of volumetric expansion and contraction.
• ω3 controls the bending energy. This ensures that the resulting

velocity fields have smooth spatial derivatives.

The Neumann boundary condition could not be used for the
velocity fields, so these are assumed to be circular (the same as for
a Fourier transform).

2.6.4. Acquisition timing adjustments
When there are only two scans to align, it is natural to encode the
template at the point half-way between them. However, when the
number of scans is greater than two, the choice of what time-point
the template corresponds to is more arbitrary. If the regulariza-
tion is the same for aligning all scans with the template, then
the natural point is the average time of all scans. Generally, we
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Ashburner and Ridgway Symmetric longitudinal registration

expect larger deformations for situations where the time interval
between the template and scan is greater. Therefore, the regu-
larization is adjusted for each scan so that it is (approximately)
inversely proportional to the absolute time difference between the
template and scan acquisition time. We also assume that the time
for the template corresponds to the median of the acquisition
times. Accounting for this requires the warping regularization to
be adjusted, such that the penalty is in terms of an energy measure
per unit of time. If the interval between template and scan is tn

units (e.g., years), the penalty for the deformation is defined as
1
2

∥∥Lvn vn
∥∥2
=

1
2|tn |
‖Lvvn‖

2, where Lv encodes the penalty for one

unit of time difference.

2.6.5. Integrations
The equations within the Methods section describe a continuous
setting, whereas our actual implementation replaces the integra-
tions over space with summations sampling the voxel centers.
This sort of approximation is widely used for image registra-
tion, although it probably accounts for much of the findings in
Yushkevich et al. (2010).

The integrations over time, which are used by the geodesic
shooting procedure, also need to be discretized. These are cur-
rently done using an Euler integration scheme, which uses three
steps per unit of time difference, plus an additional two steps to
account for some of the larger distortions usually found in the soft
tissue outside the skull. Faster registration could be achieved using
fewer time steps, although this may lead to decreased accuracy.

3. RESULTS
It is difficult to evaluate models when there is no ground truth
available. Although in theory, Bayesian model comparisons could
be performed, these would require computations that are not cur-
rently feasible for very large models. Therefore, the evaluations are
mostly anecdotal.

3.1. EFFECTS OF REGULARIZATION
The effects of regularizing diffeomorphisms using different
choices of penalty is demonstrated using simulated 2D data. This
involves the two images shown in Figure 3, which have dimensions
of 256× 128 pixels, and intensities ranging from 0 to 1. The areas
of the circles and ellipses in the simulation were all approximately
the same. These were registered together using the diffeomorphic
framework – but without intensity inhomogeneity correction –
using a variety of different forms of regularization. Results are
shown in Figures 4 and 5. The first thing to notice is that the
warped images all look relatively similar to each other, but the
deformations (and their Jacobian determinants) differ markedly.
The choice of regularization will play a significant role in any study
where the aim is to localize volumetric differences.

1. The first form of regularization (ω1= 0.001, ω2= 0.001, and
ω3= 0.1, with an additional penalty on the square of absolute
displacements of 0.0001) is intended to demonstrate the effect
of using a Green’s function that is approximately Gaussian. The
behavior of such a kernel is such that the Jacobians of the result-
ing deformations are more extreme. For real longitudinal data
in Alzheimer’s disease, where ventricles expand over time, it

FIGURE 3 |The two simulated images.

will give the impression that brain atrophy is localized to the
regions close to the ventricles.

2. The second form (ω1= 0.001, ω2= 0.001, and ω3= 2.0) is
dominated by a penalty against the bending energy of the defor-
mations. For expanding ventricles, it may give the impression
that brain tissue around the ventricles also expands. In gen-
eral though, this form of regularization has a number of nice
properties, which include scale invariance.

3. The third form is dominated by the penalty against length
changes. Unfortunately, within a continuous framework, the
Green’s function for this one is sharply peaked, such that the
value at the center is infinity.

4. The fourth form predominantly penalizes the divergence of the
velocity fields, which tends to push the Jacobian determinants
toward a value of one. In the bottom right of Figures 4 and 5,
we see that the estimated volumetric differences are very small.
The pure form of this regularization also has a Green’s function
with a singularity.

The optimal form of regularization is likely to involve a com-
bination of the above. Although liable to have a large impact on
the accuracy of image registration algorithms, the neuroimaging
literature contains little on the subject.

3.2. REAL LONGITUDINAL MRI
The algorithm was evaluated using data downloaded from Part
1 of the OASIS Longitudinal MRI Data in Non-demented and
Demented Older Adults6 dataset (Marcus et al., 2010). This con-
tained longitudinal scans from 82 subjects (from OAS2_0001 to

6Freely available from http://www.oasis-brains.org/
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Ashburner and Ridgway Symmetric longitudinal registration

FIGURE 4 | Warped simulated images. First column: upper image warped to
match lower image (from Figure 3). Second column: deformation fields. Third
column: logarithms of Jacobian determinants (color-scales are the same for all
examples, and in the range of −3 to 3). First row: results from ω1 =0.001,

ω2 =0.001, and ω3 =0.1, with an additional penalty on the square of absolute
displacements of 0.0001. Second row: results from ω1 =0.001, ω2 =0.001,
and ω3 =2.0. Third row: results from ω1 =0.05, ω2 =0.0001, and ω3 =0.0001.
Fourth row: results from ω1 =0.001, ω2 =0.5, and ω3 =0.001.

OAS2_0099), each with data from between two and five time-
points. Data from each time-point consisted of between two and
five MRI scans, permitting improved signal to noise ratios via aver-
aging. Further demographic information about the subjects may
be obtained from the OASIS web site.

The first step of the processing was to create averages of the
scans from each time-point. Because subjects may move slightly,
these averages were computed after a group-wise rigid-body align-
ment. This was achieved using the estimated template from
the group-wise registration – but with non-linear deformations
disabled.

The evaluations were based on averages over a number of
scans, where the noise is no longer Rician. To simulate typical user
behavior (default settings), they were done using noise estimates
obtained by fitting Rician distributions to non-Rician noise.

3.2.1. Pairwise symmetry
The first test was to assess whether the procedure is actually inverse
consistent if run pairwise. This simply involved aligning the first
and second time-points of a pair of longitudinal images, and

assessing whether the results were compatible with those from
aligning the second and first. They were found to be exactly
consistent.

3.2.2. Anecdotal example 1
The first illustration uses data from a 75-year-old (at first scan)
right handed male with mild cognitive impairment (OAS2_0002,
MMSE= 22, CDR= 0.5). Although there were three images for
this subject, we just ran the algorithm using the first and last,
which were collected 1869 days apart. The primary aim was to
show the decrease in residual difference, after both inhomogene-
ity correction and registration. This provides an indication of
how well the registration works, but does not give the full story
(Rohlfing, 2012) because some very implausible deformations may
also greatly reduce the residuals. Jacobian determinant maps are
also shown, which tell us about the plausibility of the volumetric
changes involved. These results are shown in Figure 6, with more
detail around the right hippocampus shown in Figure 7.

The first thing to note is that the registration greatly reduced
the residual difference. After registration, there is little remaining
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Ashburner and Ridgway Symmetric longitudinal registration

FIGURE 5 | Warped simulated images. First column: lower image warped to
match upper image. Second column: deformation fields. Third column:
logarithms of Jacobian determinants (color-scales are the same for all
examples, and in the range of −3 to 3). First row: results from ω1 =0.001,

ω2 =0.001, and ω3 =0.1, with an additional penalty on the square of absolute
displacements of 0.0001. Second row: results from ω1 =0.001, ω2 =0.001,
and ω3 =2.0. Third row: results from ω1 =0.05, ω2 =0.0001, and ω3 =0.0001.
Fourth row: results from ω1 =0.001, ω2 =0.5, and ω3 =0.001.

structure to be seen in the residuals – particularly within the brain.
We note also that the estimated Jacobian determinants seem to
be plausible. A comparison between the residuals depicted in the
bottom center and bottom left of the Figures shows the effect
of the inhomogeneity correction, which also reduces the residual
difference for these data.

The brain is enclosed within the skull, so there is relatively little
external influence on its shape. This may be contrasted with the
soft tissue outside the skull, which shows extensive shape changes
due to the subject’s head positioning within the scanner. The Jaco-
bian images (Figure 6) also show some artifacts along the right
hand edge. These result from the image data wrapping around
(see close to the right hand edge on the coronal view of the second
time-point image).

3.2.3. Anecdotal example 2
The second illustration uses data from a 66-year-old male with
dementia (OAS2_0048, MMSE= 19, CDR= 1). There were five
scans for this subject, collected over a period of 1233 days. Rigidly
aligned versions of the images are shown along the top of Figure 8,

with the corresponding maps of expansion (divergence of initial
velocity) shown below. Note that the expansion map of the mid-
dle time-point is almost zero, as that point served as the reference
time for the group-wise alignment. Careful examination of the
divergence maps also reveals what appear to be artifactual volume
changes for the more prominent blood vessels. This effect was
found in many of the subjects.

3.2.4. Principal components
Group-wise longitudinal registration was run for all 82 subjects’
data. The region within the cranium of each subject was identified
by running the“new segment”algorithm of SPM8 (Ashburner and
Friston, 2005) on their aligned mean images (µ), and summing
the estimated gray matter, white matter and CSF maps together.
Divergence values from inside the cranium of each subject were
collected, from which N ×N Gram matrices were computed
and normalized by the number of voxels. The Gram matrices
were decomposed via an eigen-decomposition and the largest
eigenvalues identified. The corresponding eigenvectors, scaled by
the square root of the eigenvalues, are plotted in Figure 9.
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Ashburner and Ridgway Symmetric longitudinal registration

FIGURE 6 | Illustration of the results obtained from matching a pair of
images of a subject with mild cognitive impairment, which were
collected 1895 days apart (OAS2_0002). The three images of the residual

difference shown along the bottom are all windowed the same. Black
indicates a value of −500 or less, whereas white indicates values of 500 or
above.

In general, the plots for multiple time-points appeared fairly
linear, although we do notice a steeper gradient between the first
two points for some of the subjects. Although it appears to be some
form of artifact, we do not yet have a good explanation for it.

3.3. MEAN IMAGES
Images of mean expansion rate were computed for each subject,
by fitting voxel-wise linear models through the divergence maps.

A mapping between each subject’s gray matter, white matter,
and CSF and the population mean of these tissues was estimated
using Dartel (Ashburner, 2007; Ashburner and Friston, 2009). In
addition, an affine mapping between the population mean and
MNI space was also estimated. The compositions of these map-
pings were then used to warp each subject’s mean (µ) and their
expansion rate images to MNI space7.

7We note that this is the approach typically adopted within the SPM software, and
that parallel transport (Younes et al., 2008) should instead have been used to warp
the velocity fields to MNI space, prior to computing their divergences.

A simple average (not weighted by Jacobian determinants) of all
the warped mean images was computed. Similarly, simple averages
of the warped expansion rate maps for the control subjects and
subjects with dementia were also computed. These averages are
shown in Figure 10, and clearly show the pattern of atrophy typ-
ically found in aging and dementia. Outside the brain, age associ-
ated skin thickness decreases can also be seen (Shuster et al., 2006).

4. DISCUSSION
Research in biology is about much more than collecting p-values.
Ultimately, we want to understand the mechanisms behind brain
growth, development, aging, and various disease processes. Mech-
anistic models require internal consistency and plausible under-
lying assumptions. When internal consistency is not achieved,
it is an indication that something is wrong. We demonstrated
that for pairwise registration, our approach gives consistent
solutions – irrespective of the order of the images.

Mechanistic models should be based ideally on well accepted
underlying assumptions, which for image registration are that
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FIGURE 7 | Detail of the results obtained from matching a pair of images of a subject with mild cognitive impairment, which were collected 1895 days
apart (OAS2_0002).

FIGURE 8 | Data from the time-points of a subject with dementia (OAS2_0048). The top row shows the original scans after rigid alignment, whereas the
bottom row shows the divergence of the estimated velocity fields.

lengths, areas, and volumes should never fall below zero.
Relative volumes are computed from deformations via the
Jacobian determinants, so a necessary condition for a valid

growth model is that these Jacobian determinants must be
positive. Achieving this requires a diffeomorphic deformation
framework.
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FIGURE 9 | Plots of main eigenvector from each subject’s
divergence maps within the cranium. The columns show plots from
those control subjects who were scanned only twice, plots from
control subjects who were scanned more than twice, plots from
subjects with dementia who were scanned twice, and plots from

subjects with dementia who were scanned more than twice. Dotted
lines show the best linear fit. Note that the plots are sorted according
to their average slope, which was done for easier visualization. Some of
the eigenvectors were also rescaled by −1, such that all the gradients
are positive.

Some readers may object to the use of large deformation dif-
feomorphic registration8 approaches for modeling the relatively
small longitudinal changes seen in aging. In principle though, a
related framework would also be applicable to modeling growth
and development of the brain – or indeed any other organ –
from fetus through to adult. Small-deformation approximations
would fail for these more extreme changes, whereas a diffeomor-
phic approach could potentially model volumes and lengths that
change by orders of magnitude.

Further modifications to the current approach would be
required to account for intensity changes that are intrinsic to the
brain. For example, the brains of young infants have changing
appearances throughout myelogenesis. Similarly, white matter

8The alternative is to use small deformation assumptions, which suppose that devi-
ations from the identity transform can constructed by addition of displacements,
rather than composing a series of tiny deformations.

hypo-intensities, stroke, etc., may be more properly explained
by intensity changes rather than shape changes, although it is
not always entirely clear what solution is more appropriate. Oth-
ers are beginning to develop models for simultaneous shape and
appearance changes (Trouvé and Younes, 2005; Hong et al., 2012),
although there is still much more to be done. Alternatively, greater
robustness may be achieved by using a matching term other than
the L2 norm, for which residual differences ideally follow a Gauss-
ian distribution. A distribution with fatter tails, such as a mixture
of Gaussians, may be more appropriate for modeling outliers
(Penny et al., 2007).

The effects of changing the form and magnitude of the reg-
ularization are still relatively unexplored. It is likely that the
optimal amount will depend on the ultimate objectives of a
study. More regularization will decrease the noise in the estimated
deformations – at the expense of introducing bias. Less regular-
ization will decrease the bias, at the expense of fitting noise. If the
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FIGURE 10 | Mean images. Left: average of all subjects’ warped mean
images. Center: average of the warped expansion rate maps of the control
subjects. Right: average of the warped expansion rate maps of the

subjects with dementia. Mean expansion rates are shown such that values
of −0.04 or below are shown as black and values of 0.04 or above are
shown as white.

aim is to compute volume changes of brain structures – or even
whole brains – it may be better to use less regularization because
the noise will be averaged out over multiple voxels. However, if
the aim is to make use of values in individual voxels, the optimal
bias-variance tradeoff will be achieved with heavier regularization.

We have presented a generative modeling framework for lon-
gitudinal MRI, which combines rigid alignment, diffeomorphic
warping and differential intensity non-uniformity correction with
respect to a within-subject template that evolves to be an average
with regard to all three of these aspects. The approach is symmetric
and transitive by construction. In the pairwise case, it is not only
inverse consistent, but the path (on the manifold of diffeomor-
phisms) from one image to the other via the template is consistent
with the direct geodesic path between the images. However, there
is scope for further refinement of the model when dealing with
images collected at more than two time-points. Such extensions
would require ideas about variable rates of growth to be incorpo-
rated (Fishbaugh et al., 2011; Niethammer et al., 2011; Trouvé and
Vialard, 2012) and will be investigated in future work.
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APPENDIX
A. DERIVATIVES FOR RIGID-BODY REGISTRATION
To differentiate equation (5), we consider a single image and drop the n subscripts.
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2
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∂
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))2

∂qi
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Then a change of variables is incorporated to obtain the following:
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Computing the above requires
∂ξ−1

q

∂qi
◦ ξq. Inverting equation (4) gives:
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Using the identity
∂(R−1)
∂q = −R−1 ∂R

∂q R−1 to differentiate this, results in:
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This is combined with equation (4) to generate:
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Gauss-Newton optimization requires a positive definite approximation to the matrix of second derivatives equation (11). The actual
Hessian matrix is given by the following, but it is not guaranteed to be positive definite:
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On average,µ
(
ξ−1

q

)
−f should be zero at the solution, so the second term can be omitted to obtain a positive definite approximation:
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Finally, a change of variables gives:
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B. TEMPLATE GRADIENTS
The gradient in equation (23) is not the same as the spatial gradient of the template image (µ), which would be computed via

∇µ =
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The above expression incorporates the gradient of the Jacobian determinants, which would have a detrimental effect on the
registration (see Appendix C). The Gâteaux variation of the matching term, with respect to variations in the initial velocity, is

d
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where µ and g are computed as in equations (21) and (23). A similar scheme may be used to derive the positive definite approximation
to the second Gâteaux variation.

For the software implementation, the gradients of the warped images are computed by sampling the image and its gradients according
to the transformation, and multiplying the gradients by the transpose of the Jacobian tensor at each point.

∇
(
fn ◦ φvn

)
=
(

Dφvn

)T ((
∇fn

)
◦ φvn

)
(A11)

C. PAIRWISE SYMMETRY
Pairwise symmetric registration is a special case of the group-wise formulation, and is of interest to many. We note that for pairwise
registration (i.e., N = 2), where we define v= v1=−v2 (and the regularization term has been halved for convenience), the objective
function reduces to

E =
1

2

∫
x∈�µ

λ1λ2
∣∣Dφv (x)

∣∣ ∣∣Dφ−v (x)
∣∣

λ1
∣∣Dφv (x)

∣∣+ λ2
∣∣Dφ−v (x)

∣∣ (f1 ◦ φv (x)− f2 ◦ φ−v (x)
)2

dx+
1

2
‖Lvv‖2. (A12)

The solution, where derivatives of the objective function with respect to variations in v are zero, satisfies the following:

λ1λ2
∣∣Dφv

∣∣ ∣∣Dφ−v

∣∣ (λ1
∣∣Dφv

∣∣∇ (f1 ◦ φv

)
+ λ2

∣∣Dφ−v

∣∣∇ (f2 ◦ φ−v

)) (
f2 ◦ φ−v − f1 ◦ φv

)(
λ1
∣∣Dφv

∣∣+ λ2
∣∣Dφ−v

∣∣)2 = L
†
v Lvv. (A13)

For the geodesic shooting in approach to work, we need to consider the solution along the entire trajectory of the diffeomorphism.
To do this, we introduce another diffeomorphic mapping, ζ , which is used to assess the effect of determining the initial velocities at
some point other than the mid-point. For the geodesic shooting in equation (19) to work properly, the left-hand side of equation
(45) (which we here refer to as momentum, u) must become |Dζ (Dζ )T(u ◦ ζ )| if we replace φv and φ−v with φv ◦ ζ and φ−v ◦ ζ

respectively. For typesetting reasons, we decompose the left-hand side of equation (45) into two factors and consider what happens to
each of them if we make those substitutions.

For the first factor [corresponding to an(x) in equation 22], using the identity |D(φ ◦ ζ )|= |Dζ |(|Dφ| ◦ ζ ) we obtain

λ1λ2
∣∣D (φv ◦ ζ

)∣∣ ∣∣D (φ−v ◦ ζ
)∣∣ (f1 ◦ φv ◦ ζ − f2 ◦ φ−v ◦ ζ

)
λ1
∣∣D (φv ◦ ζ

)∣∣+ λ2
∣∣D (φ−v ◦ ζ

)∣∣ = |Dζ |

(
λ1λ2

∣∣Dφv

∣∣ ∣∣Dφ−v

∣∣ (f1 ◦ φv − f2 ◦ φ−v

)
λ1
∣∣Dφv

∣∣+ λ2
∣∣Dφ−v

∣∣
)
◦ ζ . (A14)

For the second factor [corresponding to g(x) in equation 22], we in addition use the element-wise matrix multiplication
∇
(
f ◦ ζ

)
= (Dζ )T

(
∇f
)
◦ ζ to obtain

λ1
∣∣D (φv ◦ ζ

)∣∣∇ (f1 ◦ φv ◦ ζ
)
+ λ2

∣∣D (φ−v ◦ ζ
)∣∣∇ (f2 ◦ φ−v ◦ ζ

)
λ1
∣∣D (φv ◦ ζ

)∣∣+ λ2
∣∣D (φ−v ◦ ζ

)∣∣ = (Dζ )T
(
λ1
∣∣Dφv

∣∣∇ (f1 ◦ φv

)
+ λ2

∣∣Dφ−v

∣∣∇ (f2 ◦ φ−v

)
λ1
∣∣Dφv

∣∣+ λ2
∣∣Dφ−v

∣∣
)
◦ ζ .

(A15)

By recombining the factors, we see that symmetry is achieved, while still satisfying the requirements of a geodesic shooting approach
based on the EPdiff equation (Euler-Poincaré equation on diffeomorphisms).

This symmetric registration approach is very similar to that of Hart et al. (2009), Niethammer et al. (2009), although others have
proposed different strategies for achieving inverse consistency. Previously Beg and Khan (2007) presented two adjustments to enforce
inverse consistency in the large deformation diffeomorphic metric mapping (LDDMM) approach. The first of these was based on align-
ing an image pair to their simple half-way average. It is similar to the approach of Avants et al. (2008), as well as one of the approaches
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proposed in Younes (2007). Unfortunately, it introduces a discontinuity in the evolution equations at the mid-point (Bruveris et al.,
2011). The second approach of Beg and Khan (2007) does not introduce this discontinuity, but leads to more complicated evolution
equations that do not strictly obey EPdiff. Similarly, the other strategy for achieving inverse consistency proposed in Younes (2007) also
does not obey these equations.

We note that our matching term in equation (A12) does not satisfy all the desiderata set out by Tagare et al. (2009). In particular, we
see that for aligning two constant images, this term will depend on the deformations. However, it is worth noting that the derivatives of
the matching term with respect to velocity (see equation A13) are zero for constant images, so there should not be any tendency toward
favoring any particular solution.
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