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Corticobulbar tract changes as predictors
of dysarthria in childhood brain injury

ABSTRACT

Objectives: To identify corticobulbar tract changes that may predict chronic dysarthria in young peo-
ple who have sustained a traumatic brain injury (TBI) in childhood using diffusion MRI tractography.

Methods: We collected diffusion-weighted MRI data from 49 participants. We compared 17 young
people (mean age 17 years, 10 months; on average 8 years postinjury) with chronic dysarthria who
sustained a TBI in childhood (range 3–16 years) with 2 control groups matched for age and sex:
1 group of young people who sustained a traumatic injury but had no subsequent dysarthria (n5 15),
and 1 group of typically developing individuals (n 5 17). We performed tractography from spherical
seed regions within the precentral gyrus white matter to track: 1) the hand-related corticospinal
tract; 2) the dorsal corticobulbar tract, thought to correspond to the lips/larynxmotor representation;
and 3) the ventral corticobulbar tract, corresponding to the tongue representation.

Results: Despite widespread white matter damage, radial (perpendicular) diffusivity within the left dor-
sal corticobulbar tract was the best predictor of the presence of dysarthria after TBI. Diffusion metrics
in this tract also predicted speech and oromotor performance across the whole group of TBI partici-
pants, with additional significant contributions from ventral speech tract volume in the right hemisphere.

Conclusion: An intact left dorsal corticobulbar tract seems crucial to the normal execution of speech
long termafter acquired injury. Examining the speech-relatedmotor pathways using diffusion-weighted
MRI tractography offers a promising prognostic tool for peoplewith acquired, developmental, or degen-
erative neurologic conditions likely to affect speech. Neurology� 2013;80:926–932

GLOSSARY
DWI5 diffusion-weighted imaging; FA5 fractional anisotropy;MANCOVA5multivariate analysis of covariance; RD5 radial
diffusivity; SC 5 speech characteristics; TBI 5 traumatic brain injury; TD 5 typically developing; VMPAC 5 Verbal Motor
Production Assessment for Children.

Recent advances in diffusion-weighted MRI analyses now allow the in vivo reconstruction of
white matter pathways in the human brain using tractography.1 Although speech is vulnerable
to numerous neurologic conditions, the association between speech disorders and integrity of
the corticobulbar tracts is rarely examined.

Traumatic brain injury (TBI) is a major cause of death and disability in children2,3 and can
have devastating consequences on a wide range of cognitive domains.4 Focal as well as diffuse
brain changes have been observed after TBI, including long-term white matter alterations5,6 that
can be now be revealed using diffusion-weighted imaging (DWI).7–11 Among children with
moderate and severe TBI, approximately 20% may have chronic dysarthria,12 which can affect
speech across articulation, respiration, phonation, prosody, and resonance. Given the potential
for functional reorganization seen in the immature brain,6,13,14 studies in the chronic stage are
crucial to unravel the neural basis of those deficits that do persist long term after TBI in
childhood. Because a recent review indicated that damage along the corticobulbar/corticospinal
tracts was a common feature in children with dysarthria,15 we used tractography to test the
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hypothesis that chronic dysarthria after TBI is
associated with damage to the corticobulbar
tracts.

We recruited 3 carefully matched groups of
young people: 2 after childhood TBI (1 with
and 1 without subsequent dysarthria), and
1 of typically developing (TD) individuals. To
help inform prognosis, we investigated which
tractography-derived measures best predicted
both presence of dysarthria and speech/oromo-
tor performance long term after TBI.

METHODS Participants. We selected participants from medical

charts from the Royal Children’s Hospital, Melbourne, Australia, a

tertiary pediatric care center with specialist acute and rehabilitation

acquired brain injury teams. For each TBI participant with dysarthria

(TBI1 group), we recruited 2 control participants, selected to be

individually matched for sex and age (61 or 2 years). For the group

post-TBI without dysarthria (TBI2), a diagnosis of speech disorder at

any stage post-TBI was an additional exclusion criterion. The TBI2

participants were also matched to TBI1 participants based on injury

severity, type of injury, and handedness wherever possible (see

e-Methods for recruitment details and table e-1 on the Neurology®

Web site at www.neurology.org). We also recruited a control group

of TD participants. The final sample included 49 participants, 17

in each of the TBI1 and TD groups, and 15 in the TBI2 group.

In the TBI1 group, all participants showed signs of dysarthria in

the acute stage (8 severe, 3 moderate–severe, 3 moderate, 2 mild–

moderate, and 1 unknown) within the first 2 months postinjury.

Ethics approval and patients’ consent. We obtained Ethics

approval from the Royal Children’s Hospital Human Research

Ethics Committee, approval number 27083. All participants gave

informed consent and assent (if younger than 18 years). All

guardians of participants gave informed consent.

Descriptive measures. Speech diagnosis. All TBI participants

underwent a detailed speech assessment by an experienced speech-

language pathologist (A.M.). As in previous studies,16,17 we charac-

terized dysarthric speech using theMayo Clinic classification system,

which involves rating impairment across articulation (e.g., imprecise

consonants and vowels), prosody (e.g., reduced rate), resonance

(e.g., hypernasality), phonation (e.g., hoarse voice quality), and res-

piration (e.g., audible inspiration). Dysarthria severity ranged from

mild (n5 11), mild–moderate (n5 2), moderate (n5 3) to severe

(1 case). We also assessed speech and oromotor function using the

Verbal Motor Production Assessment for Children (VMPAC18,19;

see our previous study20 for assessment details), which examines

neuromuscular integrity of the speech system. This test provides

indices of impairment for 5 areas, but the domains of specific interest

here were 1) speech characteristics (SC), which requires a rating of

participants’ quality of speech production across domains of reso-

nance, articulation, pitch, and respiration, and therefore assesses sev-

eral aspects of speech production that may be affected by dysarthria,

and 2) focal oromotor control, which measures a participant’s ability

to perform oromotor and speech movements in sequence and isola-

tion. We also assessed IQ (see e-Methods).

Clinical variables. We extracted initial injury characteristics

frommedical charts. Brain abnormalities viewed mostly on CT scans

had been assessed by a clinical radiologist at the time of injury. TBI

severity in the acute stage was mainly moderate–severe (see table e-1).

MRI acquisition. We collected MRI data on a 3-tesla Tim Trio

MRI scanner (Siemens Medical Solutions, Erlangen, Germany).

We also collected high-resolution T1-weighted images with an

isotropic resolution of 0.9 mm (inversion time 5 900 millisec-

onds, repetition time 5 1,900 milliseconds, echo time 5 2.6

milliseconds, flip angle 5 9°, matrix size 256 3 256, 160 parti-

tions) for volumetric analyses.

In addition, we acquired a single diffusion-weighted dataset con-

sisting of 60 directions using a twice-refocused, spin-echo, echo pla-

nar imaging sequence with b value 5 3,000 s/mm2, echo time/

repetition time 5 110/8,300 milliseconds, field of view 5 240 3

240 mm, matrix size 5 96 3 96, slice thickness 5 2.5 mm (iso-

tropic voxel size5 2.53 2.53 2.5 mm), 60 contiguous axial slices

(total acquisition z9 minutes).

Preprocessing of MRI datasets.We segmented T1-weighted da-

tasets into gray matter, white matter, and CSF using the New Seg-

mentation toolbox implemented in SPM8 (http://www.fil.ion.ucl.

ac.uk/spm/software/spm8/) and smoothed using a full-width at half-

maximum 4-mmGaussian kernel. We extracted global white matter

volumes (in voxels) using the Easyvolume tool (developed by C.

Pernet; http://www.sbirc.ed.ac.uk/lcl/LCL_M1.html) implemented

in SPM8.

We processed DWI datasets using the MRtrix package21

(J.-D. Tournier, Brain Research Institute, Melbourne, Australia,

http://www.brain.org.au/software/).We extracted fractional anisotropy

(FA) and eigenvectormaps.We then used constrained spherical decon-

volution to estimate the distribution of fiber orientations.22,23 This

method is advantageous relative to the diffusion tensor model in areas

withmultiple crossing fibers.21,24 Given the possible differences in gross

anatomy among individuals after TBI and the presence of focal lesions

in some, tractography analyses were performed in each participant’s

native space. Global white matter volume was used as a covariate in the

subsequent track volume analyses.

Tractography. A single rater (F.L.), blinded to participants’ speech

status, performed tractography of the motor tracts using the MRtrix

software package.21 Fiber orientations were estimated using con-

strained spherical deconvolution.23 We performed tracking (using

a probabilistic streamlines algorithm21) from spherical seed regions

(7-mm radius) located at 3 axial levels of the precentral gyrus white

matter between the hand representation (hand omega) and the most

ventral part of the precentral gyrus. The 2 regions ventral to the hand

representation are reported to correspond to the lips/larynx and

tongue representations in the motor cortex (termed “face” and

“tongue,” respectively, in the study by Pan et al.,25 2012). A pons

region of interest was delineated from the axial slice where the cor-

ticobulbar/corticospinal tract lies, between the transverse pontine

fibers and the middle cerebellar peduncle, and was used as inclusion

region (see e-Methods and figure e-1 for details). We set the max-

imum number of streamlines generated at 10,000 and retained a

maximum of 1,000 streamlines passing through both the seed and

inclusion regions. We extracted mean FA and mean radial diffusivity

(RD) from all 3 tracks within each hemisphere using MRtrix.

Statistical analysis of MRI-derived data. We analyzed all indi-

vidual numerical data using the statistical package SPSS 16.0 forWin-

dows (SPSS Inc., Chicago, IL). To reduce the risk of type I error, we

entered track-derived measures into multivariate analyses of covari-

ance (MANCOVAs), with age and total white matter volumes as co-

variates. We did not use track volume as a covariate (see e-Methods).

We explored significant effects further using univariate analy-

ses. The a level was set at 0.05 (2-tailed) and adjusted (Bonferroni)

to correct for multiple comparisons when performing post hoc

analyses. Nonparametric methods (Mann-Whitney tests) were used

for confirmation when appropriate.
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We identified MRI predictors of the presence of dysarthria after

TBI using binary logistic regressions. We examined MRI predictors

of speech performance (VMPAC subtest scores) using exploratory

linear regressions. Given the high negative correlation between RD

and FA, and the relationship between RD/FA and volume, we exam-

ined these in separate regressions. We examined multicollinearity

(calculated using the tolerance index and variance inflation factor)

and linearity of the logit to ensure no assumptions were violated.

RESULTS Sample characteristics. The 3 groups were
adequately matched for demographic characteristics
(table 1). In addition, the 2 groups post-TBI did
not differ on any injury-related measures. There was
only a trend for differences in intelligence, with all
scores within the normal range. The group with dys-
arthria scored lower than both comparison groups on
both subtests of the VMPAC (table 1). There was also
a trend for reduced global white matter in the TBI1
group relative to the TD group.

Tractography. Tractography successfully delineated all
tracts in all participants (see figure 1 for illustrative
examples), apart from 8 instances in which no stream-
lines were generated. In those cases, we treated tractog-
raphy-derived measures as missing values. We included
the other 286 track values in the analyses.

Tractography analyses. Track volumes. Track volumes dif-
fered only slightly between groups (trend in multivari-
ate analyses: F 5 1.78, p 5 0.067) with differences in
the left hand–related track only (F5 4.69, p5 0.014),
because of a reduction in the TBI1 group relative to
the TD group (Bonferroni-corrected p5 0.012) (figure
e-2). No other group differences were found.

Mean FA. MANCOVA revealed an effect of group
(F 5 2.03, p 5 0.035), with significant effects in the
left hand–related tracks bilaterally and in the left dorsal
speech track (table 2 and figure 2, top row). The TBI1
group had reduced FA relative to TD peers bilaterally in

the hand-related tracks. Relative to the TBI2 group,
FA was reduced in the right hand–related and left dorsal
speech tracks. The TBI2 group showed no differences
relative to the TD group.

Mean RD. MANCOVA revealed a borderline effect
of group (F5 1.61, p5 0.081). The TBI1 group had
higher RD than TD peers in both hand-related tracks,
as well as in the left dorsal speech track (trend). In
addition, the TBI1 participants had higher RD than
TBI2 peers in the left dorsal speech track (table 3 and
figure 2, bottom row). Overall, these results are con-
sistent with the FA findings. The TBI2 group showed
no differences relative to the TD group.

Additional analyses of covariance (age and global
whitematter as covariates) with group as between-subject
factor and hemisphere as a within-subject factor revealed
a group by hemisphere interaction for FA only, and only
in the dorsal speech track (F 5 3.75, p 5 0.032).

Predictors of presence of dysarthria within the TBI group.

We conducted 2 stepwise logistic regressions (1 for FA,
1 for RD) using DWI-derived measures from the 6
tracks as predictors. A test of the full model against a
constant-only model revealed that RD and FA within
the left dorsal speech track were both the best and unique
predictors of dysarthria post-TBI, consistent with analy-
sis of covariance results described earlier. Both models
were statistically significant (x2 5 6.72, p 5 0.01 for
FA; x2 5 8.28, p , 0.005 for RD). The best model,
with RD as predictor, correctly classified 81% of the
sample (sensitivity 83%, specificity 79%;22 log like-
lihood 5 27.6; Wald statistic 5 5.64, p 5 0.018;
Nagelkerke R2 5 0.36; Hosmer-Lemeshow goodness-
of-fit test statistic 5 0.48). When RD is increased by
1 unit (13 1024 mm2/s) in the left dorsal speech track,
patients with TBI are 8 more times likely to have
dysarthria.

Table 1 Sample demographics and injury characteristics

Group Group comparisonsa

TBI1 (n 5 17) TBI2 (n 5 15) TD (n 5 17) Group effect TBI1 vs TD TBI2 vs TD TBI1 vs TBI2

Mean age: y; mo (SD) 17; 10 (4; 0) 18; 8 (4; 3) 18; 3 (4; 10) NS — — —

Sex, F:M 9:8 9:6 9:8 NS — — —

Severity of injuryb: mild, moderate–severe 1, 16 1, 14 — — — — NS

Mean age at injury: y; mo (range) 9; 4 (3–16) 10; 10 (4–16) — — — — NS

Type of injury: MVA, fall, blunt trauma 10, 6, 1 11, 3, 1 — — — — NS

Mean time since injury: y; mo (SD) 8 (4; 10) 7; 9 (2; 1) — — — — NS

Mean IQ (SD) 90.7 (12) 99.6 (13) 103.7 (13) F 5 4.80, p 5 0.013 p 5 0.012 NS NS

Mean FOC score (SD) 84.1 (9.2) 95 (4.0) 96.5 (4.3) F 5 19.06, p , 0.001 p , 0.001 NS p , 0.001

Mean SC score (SD) 73.0 (26.7) 96.1 (10.2) 98.3 (7.0) F 5 10.78, p , 0.001 p , 0.001 NS p 5 0.002

Abbreviations: FOC 5 focal oromotor control; MVA 5 motor vehicle accident; NS 5 not significant (p . 0.10); SC 5 speech characteristics;
TBI1 5 post–traumatic brain injury with dysarthria; TBI2 5 post–traumatic brain injury without dysarthria; TD 5 typically developing.
a Post hoc Bonferroni-corrected values.
bAs assessed using the Mayo Clinic TBI classification system.
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Predictors of speech performance in the whole TBI sample.

Speech characteristics. Three stepwise linear regression
analyses using metrics (FA, RD, and volume) from
the 4 speech tracks as independent variables revealed
3 significant models, the first with FA within the left
dorsal speech track as predictor (R2

adjusted 5 0.12,
F 5 4.47, p 5 0.045), the second with RD within
the left dorsal speech track as a unique predictor
(R2

adjusted 5 0.17, F5 6.30, p5 0.02), and the third
with volume of the right ventral speech track as a unique
predictor (R2

adjusted 5 0.19, F 5 8.30, p 5 0.007).
Because these 2 latter measures were not corre-

lated, they were entered into a final regression. This
final model was significant and explained a higher
proportion of the variance in SC scores (R2

adjusted 5

0.32, F 5 8.38, p 5 0.001).

Focal oromotor control. Stepwise linear regressions using
the same independent variables as above again showed
3 significant models, the first with RD within the left
dorsal speech track as predictor (R2

adjusted 5 0.20,

F 5 7.34, p 5 0.012), the second with FA within the
same track (R2

adjusted5 0.15, F5 5.54, p5 0.027), the
third with volume of the right ventral and left dorsal
speech track (R2

adjusted 5 0.29, F 5 7.21, p 5 0.003).
Because volume of right ventral track and RD of the left
dorsal track were not correlated, they were entered into a
final regression. This final model was significant and
explained a higher proportion of the variance in SC
scores (R2

adjusted 5 0.30, F 5 7.61, p 5 0.002).
Although these results have to be interpreted with

caution given the modest sample size and small spread
of scores, they converge to indicate that diffusion met-
rics from the left dorsal speech track have an association
with 1) the presence of dysarthria, and 2) the degree of
speech and oromotor impairment after TBI. Volumet-
ric measures from the contralateral ventral speech track,
however, also contributed to the latter variance, with
higher volumes associated with better performance.

Effect of age at injury on diffusion metrics. In the TBI2
group, FA in the left hand–related track increased

Figure 1 Illustrative examples of corticospinal and corticobulbar tracks

Coronal projections of hand-related (yellow), dorsal speech (blue), and ventral speech (pink) tracks for 9 randomly selected
participants across the age range, and (for the traumatic brain injury [TBI]1 participants) across dysarthria severity. Note
the variability of track thickness and volume irrespective of group. Left hemisphere is on the right. The age of the 3 partic-
ipants in each row is indicated on the right.
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with age at injury (r 5 0.57, p 5 0.027), whereas
RD decreased marginally (r 5 20.49, p 5 0.063).
In contrast, in the TBI1 group, RD increased with
age at injury in both the left hand–related (r 5 0.67,

p 5 0.003) and in the left dorsal speech track (r 5
0.50, p 5 0.04), whereas FA decreased in the left
hand–related track only (r 5 20.64, p 5 0.006).
Relationships between age and diffusion metrics are
reported in e-Results.

DISCUSSION Our tractography approach revealed that
diffusion metrics from the left dorsal speech track were
the best predictors of both presence of dysarthria and
speech and oromotor outcome. This study provides con-
verging evidence suggesting that the left dorsal corticobul-
bar tract is crucial to the normal execution of speech long
term after brain injury acquired in childhood.

Our findings suggest that the changes reflected in
diffusion parameters in the left corticobulbar tract
may be at the root of acquired dysarthria, beyond
global white matter reductions after TBI. These results
mirror those found for hand movements after TBI,
where FA reductions in the corticospinal tract are asso-
ciated with motor26,27 or visuomotor28 impairment.
Our findings are also consistent with the few reports
of acquired dysarthria in children who have had in-
farcts, whereby lesions mostly encompass the left puta-
men/internal capsule region,15 through which this tract
runs.25 Finally, the association between left hemisphere
speech-related tracts and speech function after TBI is
in agreement with the association between left hemi-
sphere infarct and acute dysarthria in adults.29,30

Figure 2 Diffusion metrics within the 6 tracks for each group

Mean track fractional anisotropy (FA, top row) and radial diffusivity (RD,31024 mm2/s, bottom row) in each group. Circles5 left hemisphere; triangles5 right
hemisphere. CI 5 confidence interval; TBI 5 traumatic brain injury; TD 5 typically developing.

Table 2 Group differences in mean fractional anisotropy as assessed by
analyses of covariance (age as covariate) for each tracka

Track F p Value Group comparisons p Valueb

Left hand–relatedc 6.50 0.003 TD . TBI1 0.003d

TBI2 . TBI1 0.07d

Right hand–relatedc 4.14 0.023 TD . TBI1 0.04d

TBI2 . TBI1 0.08d

Left dorsal speech 4.25 0.020 TD . TBI1 NS

TBI2 . TBI1 0.02

Right dorsal speech 0.20 NS TD . TBI1 NS

TBI2 . TBI1 NS

Left ventral speech 1.98 NS TD . TBI1 NS

TBI2 . TBI1 NS

Right ventral speech 0.47 NS TBI1 . TD NS

TBI2 . TBI1 NS

Abbreviations: NS 5 not significant (p . 0.10); TBI1 5 post–traumatic brain injury with dys-
arthria; TBI2 5 post–traumatic brain injury without dysarthria; TD 5 typically developing.
aNote that only statistically significant (p , 0.05) or borderline (0.05 , p , 0.10) effects
are reported.
bBonferroni corrected.
c Variable violated equality of variance error assumption.
dSignificant difference using nonparametric test (Mann-Whitney).
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The range of impairment and speech performance
in our sample was additionally related to the diffusion
metrics of the right hemisphere tracks, indicating that
additional right hemisphere damage results in the
most severe impairments. These preliminary findings
indicate that the contralateral hemisphere has an
important role in functional compensation, possibly
similar to the right hemisphere reorganization of lan-
guage function after early brain injury.31

The seed regions used for tracking the dorsal speech
pathways were located immediately ventral to the hand
representation in the motor cortex. In adults, lesions
encompassing this cortical region are associated with
severe dysarthria,32,33 corroborating its potential crucial
role for articulatory function. Importantly, the damage
to the dorsal corticobulbar tract was not present at the
macroscopic level, grossly measured here using track
volume, because we have little evidence of frank inter-
ruption or thinning of tracks in participants with dys-
arthria. Instead, crucial measures were FA and RD
changes, which can only be measured using diffusion
MRI. It has been suggested that chronic changes in FA
and RD indicate both axonal and myelin damage.34

Having no direct measure of microstructural changes
within the speech tracts examined here, we can only
speculate that the diffusion changes observed are a
result of post-TBI axonal injury or degeneration.7

Age at injury is hypothesized to have an important
role in outcome post-TBI, as some authors argue that
normal maturation and growth may be arrested as a
result of injury.4,35 This arrested development effectively

results in early vulnerability, where greater long-term
deficits occur in children injured at a younger age, espe-
cially if the injury is severe.6,14 Our present findings were
consistent with this hypothesis in the group without
dysarthria, whereby later age at injury resulted in
“healthier” track metrics in the left hand–related cortico-
spinal tract. In contrast, however, the opposite trend was
found in the TBI group with dysarthria. In the latter
group, injury occurring later was associated with higher
RD in the left dorsal speech tracks, suggesting instead
that later injuries are a disadvantage. In the domain of
motor speech, an early plasticity theory may therefore
better account for our findings. Of note, diffusion met-
rics in the TBI participants with dysarthria did not
change with chronological age as they did in the control
group, suggesting that developmental trajectories of
both hand- and speech-related tracts may indeed be
significantly altered, even possibly “arrested,” after TBI.

This study is not without the limitations that are
inherent to any DWI-based study, such as the influence
of crossing fibers on diffusion metrics, the difficulty in
interpreting diffusion changes, and the large number of
non-independent measurements. We believe that we
have minimized these issues by 1) using a tractography
algorithm proven to be robust to crossing fibers,21

2) recruiting 2 carefully matched groups of control par-
ticipants, and 3) analyzing white matter changes both
between and within groups. The retrospective nature
of the study did not allow us to establish the time at
which dysarthria or corticobulbar tract changes occur
after injury. Our chronic findings reveal the need for a
prospective longitudinal design to uncover how early
white matter changes can inform prognosis, therefore
enabling prompt intervention. Finally, our results will
need replication in a larger sample and a wider range
of dysarthria severity.

Clinically, the present findings suggest that damage to
the left dorsal corticobulbar tract may be a predictive
marker of subsequent dysarthria in individuals with
acquired brain injury. Tractography of the left corticobul-
bar tract therefore offers a promising way to provide accu-
rate brain-based prognosis of speech deficits, independent
of other motor deficits, in both children and adults.
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