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QUASI-PERIODIC SOLUTIONS USING TIME AVERAGES∗
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Abstract. We propose an a posteriori error estimation technique for the computation of average
functionals of solutions for nonlinear time dependent problems based on duality techniques. The exact
solution is assumed to have a periodic or quasi-periodic behavior favoring a fixed mesh strategy in
time. We show how to circumvent the need of solving time dependent dual problems. The estimator
consists of an averaged residual weighted by sensitivity factors coming from a stationary dual problem
and an additional averaging error term coming from nonlinearities of the operator considered. In order
to illustrate this technique the resulting adaptive algorithm is applied to several model problems: a
linear scalar parabolic problem with known exact solution, the nonsteady Navier–Stokes equations
with known exact solution, and finally to the well-known benchmark problem for Navier–Stokes (flow
behind a cylinder) in order to verify the modeling assumptions.
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1. Introduction. In this work we present an a posteriori error estimator and
an adaptive algorithm for transient problems with the focus on goal-oriented output
functionals based on time averages. Such functionals appear in many applications
with parabolic partial differential equations of quasi-periodic character. A typical
application is the determination of time averaged drag or lift coefficients of immersed
bodies in a fluid: Even under stable inflow conditions, the von Karman vortex street
behind an obstacle arises at higher Reynolds number and shows a quasi-periodic be-
havior. In such situations, drag and lift coefficients are time dependent. However,
from practical point of view the usual interest is often based on time averages. Due
to nonlinear effects in the underlying equation (e.g., for Navier–Stokes), the determi-
nation of those quantities require the computation of the full transient behavior for a
time horizon in dependence of the typical period. Hence, those simulations are usually
numerically expensive. The use of an adaptive algorithm starting with a relatively
coarse grid and followed by subsequent local grid refinement may reduce the numerical
effort substantially. However, such an adaptive algorithm needs reliable and efficient
a posteriori error estimates on the basis of computable quantities. Moreover, the error
estimation should take into account the quantity of interest.

The dual-weighted-residual method (DWR) of Becker and Rannacher [3] is the
basis of goal-oriented adaptivity in many published articles. This concept has entered
into various fields of continuum mechanics, as, for instance, fluid dynamics [6], solid
mechanics [5], reactive flows [7], and optimization (see, e.g., [2, 4]). For stationary
problems this method yields reliable a posteriori error bounds for output functionals.

∗Submitted to the journal’s Computational Methods in Science and Engineering section Septem-
ber 23, 2010; accepted for publication (in revised form) June 13, 2011; published electronically
September 6, 2011. This work is partially supported by the DFG Priority Program SPP 1276 (Met-
Ström). This support is gratefully acknowledged.

http://www.siam.org/journals/sisc/33-5/80951.html
†Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, 24098

Kiel, Germany (braack@math.uni-kiel.de, taschenberger@math.uni-kiel.de).
‡Department of Mathematics, University of Sussex, Falmer, Brighton, BN1 9RF, United Kingdom

(erik.burman@sussex.ac.uk).

2199



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2200 M. BRAACK, E. BURMAN, AND N. TASCHENBERGER

However, the transfer of this approximation theory to nonstationary problems is not
easy from the practical point of view. This is due to the fact that an additional
nonstationary adjoint problem has to be solved which includes the primal solution as
coefficient. This implies storing of the primal solution at each time step (or recompu-
tation or interpolation), the storage of locally refined meshes, and a severe restriction
of the adaptive algorithm: Each adaptation needs to solve the primal and the adjoint
problem for the whole time period. Performing adaptation steps while progressing
in time is not possible. In an earlier work [8], this methodology was presented for
the case of transient compressible flows. In particular, the information of the adjoint
solution was embedded into a global stabilization constant which was approximated
numerically. The use of local adjoint information is described and tested in [12].
For a posteriori error control of the error at end-time, there is no way around the
computation of such a transient dual problem. This approach is also used for accu-
rate computations of the drag in immersed bodies in three-dimensional Navier–Stokes
flows [9, 10]. However, due to the time-dependent adjoint problem, this method is
less attractive for output functionals of averaged quantities.

Therefore, we propose in this work an a posteriori error estimation technique for
the computation of functionals depending on averages of the solution for nonlinear
time dependent problems based on cheaper duality techniques. The exact solution
is assumed to have some periodic or quasi-periodic behavior favoring a fixed mesh
strategy in time. We show how to circumvent the need of solving time-dependent
dual problems. The estimator consists of an averaged residual weighted by sensitivity
factors coming from a stationary dual problem and an additional averaging error
term coming from nonlinearities of the considered operator. The resulting adaptive
algorithm is applied to a linear test problem with known exact solution and to the
nonsteady Navier–Stokes equations.

This work is structured as follows. We start in the following section with an
abstract formulation of the general setting by help of a variational formulation of a
parabolic partial differential equation. In section 3, we introduce the new concept of
a posteriori error control for time averaged quantities. In particular, we use an error
representation in order to derive a numerical strategy for a posterori error control and
mesh adaptivity. Numerical examples are presented in section 4.

2. Setting of the nonlinear problem.

2.1. The continuous and the semidiscrete variational problem. Let Ω ∈
Rd be a Lipschitz domain and let I := [0, T ] with T > 0 the time interval. We consider
the abstract variational problem in the Bochner space W := H1(I, V ) with a Hilbert
space V . Hence, functions in W are weakly differentiable with image in V . For given
data f ∈ L2(I,W ′) we look for solutions,

u ∈W : (∂tu, ψ)Q +

∫
I

A(u, ψ) dt = (f, ψ)Q ∀ψ ∈W ,(2.1)

where (·, ·)Q stands for the L2-scalar product in the space-time slab Q := I × Ω, and
A : V × V → R is a semilinear form (linear in the second argument). This semilinear
form is supposed to be Frechét differentiable with respect to the first argument.

The discrete solution uh is sought in a (semi-)discrete subspace, uh ∈ H1(I, Vh),
with a conforming finite element space Vh ⊂ V . The corresponding semidiscretized
form (still continuous in time) of (2.1) reads

uh ∈Wh : (∂tuh, ψ)Q +

∫
I

A(uh, ψ) dt = (f, ψ)Q ∀ψ ∈ Wh ,(2.2)
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with Wh := H1(I, Vh). By an overline we denote time averages, i.e.,

u :=
1

T

∫ T

0

u(t) dt ∈ V .

We are interested in accurate determination of linear functional output

J : V → R

for the time average, i.e., for J(u). The aim is the development of an error estimator
η for the error in terms of this functional,

J(u− uh) ≈ η .

2.2. Time averaged equation. Integration of (2.1) in time (by taking a test
function constant in time), dividing by T and integration by parts yields the time-
averaged equation

u ∈ H1(I, V ) : σT (u, ϕ) +A(u, ϕ) = (f, ϕ) ∀ϕ ∈ V ,(2.3)

where we use the form A : W × V → R and the linear form σ : W × V → R defined
by the semilinear form

A(u, ϕ) :=
1

T

∫
I

A(u, ϕ)dt ,

σT (u, ϕ) :=
1

T
(u(T )− u(0), ϕ) .

Corresponding to (2.3) the time-averaged residual is denoted by

�(u, ϕ) := (f, ϕ)−A(u, ϕ)− σT (u, ϕ) .

The basic result of this work is based on fluctuations in time due to possible nonlin-
earities of A(u, ·), defined by

K(u, ϕ) := A(u, ϕ)−A(u, ϕ) .

Note that K vanishes if A(·, ·) is bilinear and all coefficients are constant in time. An
important equation is the Galerkin orthogonality for the averaged residual:

�(u, ϕ)− �(uh, ϕ) = 0 ∀ϕ ∈ Vh .(2.4)

3. A posteriori error representation. By A′(ξ) : V × V → R we denote the
Frechét derivative of A(·, ·) at ξ ∈ V :

A′(ξ)(v, ϕ) := lim
ε→0

1

ε
(A(ξ + εv, ϕ)−A(ξ, ϕ)) .

The a posteriori error representation we are going to present is based on a stationary
adjoint problem of the form

z ∈ V : A′(ξ)(ϕ, z) = J(ϕ) ∀ϕ ∈ V .(3.1)

If A(·, ·) is nonlinear in the first argument, z = z(ξ) depends on the choice of ξ ∈ V .
By ih : V → Vh we denote an arbitrary interpolation operator.
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Proposition 3.1. If A is continuously Frechét differentiable, the discretization
error with respect to the linear functional J can be represented by

J(u− uh) = �(uh, z − ihz) +K(uh)(z)−K(u)(z) + σT (uh − u, z) ,

where z = z(ξ) ∈ V is the dual solution of (3.1) to the linearization at ξ = λu+ (1−
λ)uh with an appropriate λ ∈ [0, 1].

Proof. We performed an averaging in time of the continuous problem (2.1) in
order to get (2.3). The same averaging can be carried out to the discrete equation
(2.2). Subtracting both results leads to the following perturbed Galerkin orthogonality
property for e := u− uh:

A(u, ϕ)−A(uh, ϕ) = −σT (e, ϕ) ∀ϕ ∈ Vh .(3.2)

The mean value theorem ensures the existence of at least one λ ∈ [0, 1], so that for
ξ := λu− (1 − λ)uh ∈ V it holds that

A′(ξ)(e, ϕ) = A(u, ϕ)−A(uh, ϕ) ∀ϕ ∈ V .

Let z = z(ξ) ∈ V be the associated dual solution of (3.1). Hence, for the discretization
error in terms of J it holds that

J(u)− J(uh) = A′(ξ)(e, z) = A(u, z)−A(uh, z) .

With the Galerkin orthogonality (3.2) for an arbitrary interpolation ihz ∈ Vh of z and
together with (2.3) we obtain

J(u)− J(uh)=A(u, z)−A(uh, z)−K(u, z) +K(uh, z)

=A(u, z − ihz)−A(uh, z − ihz)−K(u, z) +K(uh, z)− σT (e, ihz)

=(f, z − ihz)−A(uh, z − ihz)−K(u, z) +K(uh, z)

− σT (u, z) + σT (uh, ihz) .

Expressing this result in terms of the time-averaged residual we arrive at

J(u)− J(uh)=�(uh, z − ihz) + σT (uh, z − ihz)−K(u, z) +K(uh, z)

− σT (u, z) + σT (uh, ihz) .

This gives us the desired error representation.
In this proposition it was shown that the error can be represented in the form

J(u − uh) = e1 + e2 + e3 ,

with the contributions

e1 := �(uh)(z − ihz) , e2 := K(uh, z)−K(u, z) , e3 := σT (uh − u, z) .(3.3)

In the next section, we discuss how these terms can be numerically approximated.

3.1. Finite dimensional dual problem. We propose to solve a discrete ap-
proximation of the dual problem (3.1) for ξ = uh (i.e., λ = 0):

zh ∈ Vh : A′(uh)(ϕ, zh) = J(ϕ) ∀ϕ ∈ Vh .(3.4)

Building the Frechét derivative in (3.4) at uh instead of ξ is reasonable when uh is
close to u or when the nonlinearity of A is moderate. When A(u, ϕ) is linear in both
arguments the dual solution zh is the solution of

zh ∈ Vh : A(ϕ, zh) = J(ϕ) ∀ϕ ∈ Vh .
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3.2. Finite element approximation. In this section, we briefly describe the
finite elements we used for the numerical test cases presented later in this work. Fur-
thermore, the specific finite elements are used for a possible numerical approximation
of the error representation. However, for other finite element approximations, the
error representation in Proposition 3.1 is still valid but different strategies for the
numerical approximation have to be designed.

Let Th be a shape-regular, admissible decomposition of Ω into quadrilaterals for
d = 2 or hexahedrals for d = 3. The diameter of a cell K ∈ Th will be denoted
by hK . Let K̂ := (−1, 1)d denote the reference element and Qr(K̂) the space of all

polynomials on K̂ with maximal degree r ≥ 0 in each coordinate direction. We will
use the continuous H1-conforming finite element spaces

Qr(Th) := {vh ∈ H1(Ω) : vh|K ◦ FK ∈ Qr(K̂) ∀K ∈ Th} .

Hence, our finite element approximation of u is in the scalar case uh ∈ Vh := Qr(Th).
For vector-valued problems with s components it is Vh := Qr(Th)s. The Lagrange
nodal basis of Vh will be denoted by {φ1, . . . , φn}. Later we will make use of the nodal

basis of Q2r(T2h)s denoted by {φ(2r)1 , . . . , φ
(2r)
n }.

3.3. Numerical evaluation of the estimator. Now, we discuss how the terms
ek, k ∈ {1, 2, 3}, in (3.3) can be approximated numerically by computable quantities
ηk ≈ ek. The stopping criterion of the adaptive algorithm is

η := η1 + η2 + η3 < TOL ,(3.5)

for a given tolerance TOL. Furthermore, the estimator η must be localized in order
to use the information for mesh adaptation. For this, we will express the indicator
parts ηk by sums

ηk =

n∑
i=1

ηk,i ,

where i is the index of the ith basis function. This allows the use of the nonnegative
quantities

ζi := |η1,i + η2,i + η3,i| ≥ 0 ,(3.6)

as criterion for mesh refinement. A measure for the quality of such a localization is
that the quotient

n∑
i=1

ζi
/
|η|

should be close to one.
For the computation of the ηk and ζi it turns out to be very helpful if Th results

from a globally coarser mesh T2h. The reason is that we can perform a patchwise

recovery process of higher order. By i
(2r)
2h : Qr(Th) → Q2r(T2h) we denote the nodal

interpolation to elements of order 2r on the mesh T2h.
Approximation of e1. The underlying difficulty for approximating e1 is compa-

rable with the situation for stationary problems: We need a suitable approximation
of the interpolation error z − ihz. This can be done, for instance, by the patchwise
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higher-order recovery mentioned above. Now the quadratic recovery of zh gives the
following approximation of η1:

e1 ≈ η1 := �(uh, i
(2r)
2h zh − zh) .(3.7)

We introduce the nodal interpolation operator i2h : Vh → V2h and the filtering oper-
ator πh : Vh → Vh, defined by

πhφ := φ− i2hφ ,

giving the small-scale linear fluctuations. We denote the nodal vector of the filtered
dual solution πhzh by Zπ ∈ Rn, i.e.,

πhzh =

n∑
i=1

φiZ
π
i .(3.8)

The error estimator can be localized on the basis of the following proposition.
Proposition 3.2. The estimator η1 of (3.7) can be represented as the l2 scalar

product of the vector of the time-averaged residuals evaluated at the nodal basis of
Q2r(T2h)

Ψi = �(uh, φ
(2r)
i )

and the nodal vector of the filtered discrete dual solution: η1 = ΨTZπ .

Proof. The higher order interpolation operator i
(2r)
2h is obviously the identity on

V2h. This implies that

i
(2r)
2h i2hφ = i2hφ ∀φ ∈ Vh .

Therefore, it holds, for all φ ∈ Vh, that

i
(2r)
2h πhφ− πhφ = i

(2r)
2h φ− i

(2r)
2h i2hφ− (φ− i2hφ) = i

(2r)
2h φ− φ .

This implies for the functions of the nodal basis {φi} of Vh that

φ
(2r)
i − φi = i

(2r)
2h πhφi − πhφi .

Now, we use the following identities:

�(uh, i
(2r)
2h zh − zh) =

n∑
i=1

�(uh, φ
(2r)
i − φi) · Zi

=
n∑

i=1

�(uh, i
(2r)
2h πhφi − πhφi) · Zi

=

n∑
i=1

�(uh, i
(2r)
2h φi − φi) · Zπ

i .

By using the identity i
(2r)
2h φi = φ

(2r)
i and Galerkin orthogonality �(uh, i

(2r)
2h φi) = 0, we

arrive at the assertion

�(uh, i
(2r)
2h φi − φi) · Zπ

i = �(uh, φ
(2r)
i ) = Ψi .
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Local error indicators η1,i for each node Ni of the mesh can be obtained by

η1,i := ΨiZ
π
i ,(3.9)

since the sum over all η1,i is obviously equal to η1.
We aim to reduce the necessary numerical costs as far as possible. Therefore,

storing the solution uh at each time step is not very attractive. The presentation of
η1 in the previous proposition leads us directly to a cheap rule to evaluate η1 where
only one additional vector, namely Ψ, has to be stored for the whole computation.
This vector of averaged residuals can be successively updated after each time step. If
Ψj is the vector of these residuals up to time t = tj , i.e.,

Ψj
i =

1

tj

(
(uh(0), φ

(2r)
i ) +

∫ tj

0

[(f, φ
(2r)
i )−A(uh(t), φ

(2r)
i )] dt

)
,

we obtain the update by

Ψn+1
i =

1

tn+1

(
tnΨ

n
i +

∫ tn+1

tn

[(f, φ
(2r)
i )−A(uh(t), φ

(2r)
i )] dt

)
.

Here, φ
(2r)
i := ϕ

(2r)
i − ϕi is the difference of the Q2r and Qr Lagrange finite element

basis functions for the node Ni in the triangulation.
Approximation of e2. The term e2 vanishes for linear problems, i.e., when A(·, ·)

is bilinear. For the more interesting case of nonlinear problems it holds

e2 = K(uh, z)−K(u, z)

= [A(uh, z)−A(u, z)] + [A(uh, z)−A(u, z)] .

For e1 it was argued that i
(2r)
2h uh is a better approximation to u than it is uh. The

same argument here leads to

e2 ≈ η2 := K(uh, zh)−K(i
(2r)
2h uh, zh) .(3.10)

The interpolant i
(2r)
2h uh is a better approximation than uh if h is small enough, the

solution u is sufficiently regular and the mesh has certain symmetry properties. How-

ever, we do not really need i
(2r)
2h uh to be closer to u than uh, but only that the averages

improve. This seems reasonable if there is some scale similarity in the discrete solu-
tion.

For (3.10) the localization is given by

η2,i := (K(uh)(ϕi)−K(i
(2)
2h uh)(ϕi))Zi .(3.11)

As illustrated later by a numerical example, the summation of cellwise absolute values
may somewhat overestimate the sum, i.e., the quotient

η−1
2

N∑
i=1

|η2,i|

may become considerably large. However, since the localization is used only for adap-
tivity and not for error control, a certain overestimation due to localization is main-
tainable as long as the quotient remains bounded.
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Table 3.1

Adaptive algorithm.

Adaptive algorithm

1. Start with initial mesh T0, k := 0.
2. Solve nonstationary primal problem (2.2) obtaining uk ∈ Wk.

3. Solve stationary dual problem (3.4) obtaining zk ∈ Vk.

3. Evaluate error estimator η according to (3.7),(3.10), and (3.13).

4. If (3.5) is fulfilled, then STOP.

5. Localize error indicators by determining ηk,i and ζi according to

(3.9),(3.11),(3.13), and (3.6).

6. Order K1, K2, . . . , Kn such that ζK1
≥ ζK2

≥ . . . .
7. Determine cellwise error indicators {ζKj

}, e.g., by (3.13).

8. Refine cells Ki, with 1 ≤ i ≤ R ≤ nr.

9. Increase k + 1 → k and go to 2.

Due to the patch structure of the mesh for the higher order recovery, it is also

attractive for a validation to compute the Q2r-solution u
(2r)
2h of the problem. This

allows the approximation

e2 ≈ η′2 := K(uh, zh)−K(u
(2r)
2h , zh) .(3.12)

The numerical results presented later will show that both strategies give relatively
good efficiency indices, i.e., a ratio of the estimator and the error close to one. How-

ever, the latter choice is not useful in practice, because with the help of u
(2r)
2h one may

approximate the error J(u− uh) directly without dual problem by J(u
(2r)
2h − uh).

Approximation of e3. If the error is bounded, |u(T )−uh(T )| ≤ C, with a constant
C independent of T , the error part e3 becomes arbitrarily small for T → ∞. Hence,
for periodic or quasi-periodic solutions, the term e3 can often be neglected. However,
for small T this part should be taken into account, for instance, by using a higher
order interpolation as well:

η3 :=
1

T
(i

(2r)
2h uh(T )− uh(T )− i

(2r)
2h uh(0) + uh(0), zh) ,

η3,i :=
1

T
(i

(2r)
2h uh(T )− uh(T )− i

(2r)
2h uh(0) + uh(0), ϕi)Zi .

Similarly as for η′2, the use of higher order computation instead of higher order inter-
polation lead to η′3.

3.4. Adaptive algorithm. Now, we collect the adaptive algorithm for obtain-
ing a hierarchy of meshes Thk

with mesh size function hk. For abbreviation, the finite
element space Whk

and the corresponding finite element solutions uhk
, zhk

are simply
denoted byWk, uk, and zk, respectively. In each cycle of the adaptive loop we have to
decide which cell K ∈ Thk

should be refined. This is done by shifting the information
of the ζi to cellwise quantities ζK . This is usually done by building the sum of those
contributions ηi, so that the support of the corresponding basis function, supp(ϕi)
intersects with K:

ζK :=
∑

supp(ϕi)∩K �=∅
ζi .(3.13)

The adaptive step consists of refining those nr cells K with the largest values of ζK .
The overall algorithm looks as shown in Table 3.1.
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4. Numerical tests. In this section we present the results of the adaptive al-
gorithm to several test problems. As a first proof of concept, we consider a linear
problem with known exact solution. This test case is chosen in order to validate the
case where the fluctuation term e2 due to nonlinearities vanishes. The second test
case is nonlinear and consists of the Navier–Stokes flow with exact solution. Finally,
we apply the adaptive algorithm to the well-known benchmark problem “Flow around
a cylinder”; see [11]. All simulations are done by bilinear elements, i.e., r = 1.

4.1. Heat equation with known exact solution. As a first example, we take
the linear heat equation in the unit square Ω = (0, 1)2 with known exact solution:

∂tu−Δu = f in Ω ,

u = u∂Ω on ∂Ω ,

and initial condition u(x, 0) = u0(x). The right-hand side is chosen in such a way
that the solution becomes the rotating cone

u(x, t) =
1

1 + a||x− x∗(t)||2 ,

with ψ(x) := ||x − x∗(t)||2, x∗ = (12 + 1
4 cos(2πt),

1
2 + 1

4 sin(2πt)) and a = 50. The
right-hand side is determined by f = ∂tu − Δu. The corresponding bilinear form
reads

A(u, ϕ) = (∇u,∇ϕ) .

We used the second order Crank–Nicholson scheme with a timestep of size Δt =
0.00125. A complete turn of the rotating cone takes, therefore, 800 timesteps. The
functional considered is the mean flux along Γ = (0, 1)× {0} defined by

J(u) :=
1

c

∫ 1

0

∫
Γ

∂u

∂x2
dx dt .

The constant c is chosen in order to normalize the flux to 1:

c :=

∫ 1

0

∫
Γ

∂u

∂x2
dx dt = 2a

∫ 1

0

(∫ 1

0

u(x1, 0, t)
2 dx1

)
x∗2(t) dt = 0.249702115724673 .

This value is computed by numerical integration using the exact solution. The value c
is accurate up to at least eight digits. However, in the numerical computation of uh we
have two sources of errors, one due to time discretization and one due to discretization
in space. The error in time is of order 10−4. Since we compute in this example only
an estimator for the error with respect to space, we limit our computations to meshes
where the spatial error dominates the error in time.

In Table 4.1 we list the results. We compare the computed estimator η = η1 + η3
and the error J(u− uh). Its ratio, the efficiency index

Ieff =
η

J(u − uh)
,

is listed in the last column. The error is underpredicted by a nearly constant factor
which indicates that the asymptotic behavior of η is correct. This behavior is also
very nicely visible in the error plot in Figure 4.1. The solution is shown in Figure 4.2
and the obtained meshes are shown in Figure 4.3.
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Table 4.1

Comparison of the error in the flux J(u− uh) and the estimator η for subsection 4.1. The last
column shows the efficiency index Ieff which is the quotient of both quantities.

# nodes J(ūh) J(ū− ūh) η = η1 + η3 Ieff
25 1.37871 3.7871e-01 1.8643e-01 0.492
81 1.07471 7.4712e-02 5.8384e-02 0.781

189 1.02588 2.5875e-02 2.0858e-02 0.806
401 1.01212 1.2127e-02 8.8753e-03 0.732

1055 1.00578 5.7755e-03 4.0934e-03 0.709
2003 1.00298 2.9796e-03 2.0060e-03 0.673
3685 1.00142 1.4195e-03 9.7644e-04 0.688
6029 1.00073 7.2975e-04 4.8437e-04 0.664

12609 1.00035 3.4561e-04 2.4156e-04 0.699
19361 1.00017 1.6748e-04 1.1934e-04 0.713
43465 1.00009 8.9616e-05 6.0744e-05 0.678
62643 1.00004 3.9643e-05 2.9259e-05 0.738

146257 1.00002 2.1785e-05 1.5417e-05 0.708
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Fig. 4.1. Comparison of the error in the flux J(u− uh) (continuous line) and the estimator η
(dashed line) for the rotating cone problem (subsection 4.1).

Fig. 4.2. Solution with mesh for roting cone problem (subsection 4.1).
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Fig. 4.3. Obtained meshes for rotating cone (subsection 4.1).

4.2. Navier–Stokes with known exact solution. We solve the nonsteady
incompressible Navier–Stokes equations on the unit square Ω := (0, 1)2,

∂tv + (v · ∇)v − νΔv +∇p = f ,

div v = 0 ,

with Dirichlet conditions on ∂Ω. The right-hand side f is defined in such a way that
the exact solution is given by

v1(x, y, t) = g(t)ψ(y) , v2(x, y, t) = g(t)ψ(x) , p(x, y, t) ≡ 0 ,

with time dependent function g(t) = 1 + sin(−π
2 + 2πt), t ∈ [0, 1], and

ψ(x) := x− e
x
ν − 1

e
1
ν − 1

.

The viscosity is set to ν = 0.01 and results in a relatively strong boundary layer. As
before, the discrete solutions uh and zh consist of Q1 finite elements. The considered
functional is the boundary integral along the upper boundary Γ:

J(ū) :=

∫ T

0

∫
Γ

(
∂v

∂x1
− pn

)
ds dt.

In the case of Navier–Stokes, the part e2 of the error takes the form of the Reynolds
stresses

e2 =
(
(vh · ∇)vh − (vh · ∇)vh − (v · ∇)v + (v · ∇)v, z

)
=

(
(vh · ∇)vh − (v · ∇)v, z

)
+ ((v · ∇)v − (vh · ∇)vh, z)

=
(
(v′ · ∇)vh + (vh · ∇)v′ + (v′ · ∇)v′ − (v′ · ∇)vh + (vh · ∇)v′ + (v′ · ∇)v′, z

)
,

with the notation v′ := v − vh. We know from turbulence modeling that at high
Reynolds number an accurate approximation of such terms is anything else than triv-
ial. However, the use of this approach for solely mesh adaptation (instead of error
estimation) does not require an accurate estimator but rather qualitatively informa-
tion on the error in terms of error localization. Moreover, even the (original) DWR
method with nonsteady dual problem provides only reliable estimation of the linear
part of the equation. To the best of the author’s knowledge, up to now there is no
published work beyond the treatment of the linear parts of the underlying operator.

For this specific example, we list the corresponding error parts and the efficiency
index for global mesh refinement in Table 4.2 for T = 1 and for T = 10. In the
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Table 4.2

Navier–Stokes (subsection 4.2) with global mesh refinement for T = 1 and T = 10.

# nodes J(ū− ūh)s η1 η2 η3 η Ieff

T = 1
289 4.73e-02 2.08e-03 −1.08e-03 −5.82e-04 4.19e-04 0.01

1089 8.96e-03 2.30e-03 3.44e-04 −3.49e-05 2.61e-03 0.29
4225 1.77e-03 6.64e-04 1.35e-04 −1.93e-06 7.98e-04 0.45

16641 3.67e-04 1.12e-04 3.56e-05 −1.17e-07 1.48e-04 0.40
66049 8.52e-05 2.09e-05 9.08e-06 −7.22e-09 3.00e-05 0.35

263169 2.09e-05 4.83e-06 2.32e-06 −4.51e-10 7.15e-06 0.34
T = 10

25 2.09e-01 −1.16e-02 −1.53e-02 −5.93e-03 −3.28e-02 −0.16
81 1.32e-01 −1.44e-02 −8.40e-03 −7.30e-04 −2.36e-02 −0.18

289 3.41e-02 1.94e-03 −1.58e-03 −5.86e-05 3.02e-04 0.01
1089 5.42e-03 2.30e-03 3.13e-04 −3.46e-06 2.61e-03 0.48
4225 8.08e-04 6.62e-04 1.33e-04 −1.93e-07 7.95e-04 0.98

16641 1.22e-04 1.12e-04 3.54e-05 −1.17e-08 1.48e-04 1.21
66049 2.38e-05 2.12e-05 9.08e-06 −7.25e-10 3.03e-05 1.27

Table 4.3

Relation of the local error indicators and the parts of the estimator for subsection 4.2.

#nodes ζ1/|η1| ζ2/|η2| ζ3/|η3|
289 28.2 81.4 2.3
557 11.3 1659.7 23.1

1085 15.2 257.4 3.8
2069 334.1 138.1 58.2
4709 17.1 111.4 71.2

12465 8.6 60.2 13.0
37987 5.1 50.8 2.2

simulation of only one period (T = 1), the estimator underestimates the exact error
by a factor between 0.3 and 0.45, except on the coarsest mesh. These values are
acceptable because it is a nonlinear problem. For ten periods of simulation (T = 10),
the estimator is even better leading to an efficiency index close to one on finer meshes.

Obviously, the contribution η3 is estimated by nearly zero. The efficiency index
remains bounded but the error is systematically underestimated.

Now, we use the estimator for local mesh refinement. In Table 4.3 we list the
relation of the local error indicators ζk and the indicators ηk. The relation does not
increase under mesh refinement so that the localization works quite well. However,
for the nonlinear error part η2, the localization leads to a quite large factor between ζ2
and |η2|. In order to address the question if ζ2 can be used as an efficient refinement
criterion anyhow, we apply two types of local refinement strategies: (i) based on
η1 and η3, (ii) based on η1, η2, and η3. The obtained error curves are depicted in
Figure 4.4. Both strategies are much more efficient than global refinement. The use
of all error parts η1, η2, and η3 (dotted curve in Figure 4.4) is even better than the
use of η1 and η3 only (dashed curve). The errors and indicators are also listed in
Table 4.4. For obtaining an error of about 1.5 · 10−5 only 12,465 nodes are needed in
comparison to 263,169 nodes on a regular mesh with an error of about 2 · 10−5.

The efficiency index of the estimator behaves on locally refined meshes much
worse compared to structured meshes. On finer meshes, not even the sign of the error
is correct. However, as discussed previously, the estimator works fine for detecting
appropriate cells for local mesh refinement.
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Fig. 4.4. Comparison of the discretization error in dependence of the number of nodes for global
(continuous curve) and local refinement (dashed curve) on the basis of η1, η3, and on the basis of
η1, η2, η3 (dotted curve) for the Navier–Stokes problem in subsection 4.2 with T = 1.

Table 4.4

Navier–Stokes (subsection 4.2) with local mesh refinement and T = 1.

# nodes J(ū− ūh) η1 η2 η3 η Ieff

289 4.73e-02 2.08e-03 −1.08e-03 −5.82e-04 4.19e-04 0.01
557 9.14e-03 2.09e-03 −3.61e-05 −7.04e-06 2.04e-03 0.22

1085 1.78e-03 4.78e-04 −1.25e-04 9.90e-06 3.63e-04 0.20
2069 3.11e-04 5.83e-06 −9.55e-05 −2.63e-07 −9.00e-05 −0.29
4709 7.28e-05 −3.11e-05 −4.17e-05 5.68e-08 −7.28e-05 −1.00

12465 1.50e-05 −1.87e-05 −2.64e-05 8.40e-08 −4.51e-05 −3.01
37987 8.47e-07 −9.78e-06 −1.08e-05 1.26e-07 −2.04e-05 −24.14

In order to understand the unsatisfactory efficiency index for this example, we use
another way of approximation of ek, k = 1, 2, 3. Instead of patchwise quadratic recov-

ery i
(2)
2h uh for approximating e2 and e3, we compute a higher order solution according

to (3.12) for e2. The obtained results are listed in Table 4.5. For quadratic approxi-
mation in the estimator and globally refined meshes the efficiency index converges to
one even for small numbers of periods (T = 1). This means that the estimator seems
to be (in this nonlinear example) asymptotically exact. On locally refined meshes the
efficiency index Ieff is slightly worse but still close to one and therefore acceptable.
Hence, the accuracy of the estimator benefits from higher order computation but the
adaptivity itself does not. The reason for the poor efficiency index in Table 4.4 is
the underestimated value for e3 which becomes large due to the short period T = 1.
However, for local mesh refinement the higher order interpolation works well even for
a single period.

4.3. Flow around a cylinder. As the last numerical example, we choose a
configuration of a more realistic flow problem but without an analytical exact solution.
We consider a flow around an obstacles which was defined by Schäfer and Turek [11] as
benchmark problems within the DFG high-priority research program Flow simulation
with high-performance computers. The configuration of the problem is presented in
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Table 4.5

Navier–Stokes (subsection 4.2) with T = 1 and global and local mesh refinement. The error
estimation is based on higher order computations for η′2, η

′
3.

# nodes J(ū− ūh) η1 η′2 η′3 η Ieff

Global mesh refinement
289 4.73e-02 2.08e-03 −3.25e-03 4.17e-03 3.00e-03 0.06

1089 8.96e-03 2.30e-03 −8.00e-04 2.80e-03 4.30e-03 0.48
4225 1.77e-03 6.64e-04 −1.56e-04 8.67e-04 1.38e-03 0.78

16641 3.67e-04 1.12e-04 −1.89e-05 2.49e-04 3.42e-04 0.93
66049 8.52e-05 2.09e-05 −3.56e-06 6.57e-05 8.33e-05 0.98

Local mesh refinement
289 4.73e-02 2.08e-03 −3.25e-03 4.17e-03 3.00e-03 0.06
759 8.21e-03 3.20e-04 1.40e-04 3.92e-03 4.38e-03 0.53

1675 1.74e-03 5.33e-05 6.84e-05 1.37e-03 1.49e-03 0.86
3085 2.40e-04 1.91e-04 −2.45e-05 1.92e-04 3.59e-04 1.50
7147 2.66e-05 −5.07e-05 −6.74e-05 1.75e-04 5.65e-05 2.12

14583 8.03e-06 1.77e-05 1.71e-06 −4.07e-06 1.53e-05 1.91
30231 −4.75e-06 −1.14e-04 −4.91e-05 1.58e-04 −4.79e-06 1.01

Fig. 4.5. Configuration of the benchmark problem “Flow around a cylinder”.

Figure 4.5. The viscosity is set to ν = 10−3, the characteristic inflow velocity to
Um = 1.5m/s as defined in [11] . We measure the drag coefficient cdrag in the time
interval I = [5 s, 15 s], where the solution has a periodic behavior. This time span
corresponds to approximately 60 periods.

We computed a reference value solving the problem on fine grids with 40,000
and 160,000 nodes using Q2 elements and extrapolating these values, leading to the
reference mean drag cdrag(ū) ≈ 3.19613266. The following computations were made
using the Fractional-Step-θ scheme with an adequate small timestep of Δt = 4.e−3 s.

The velocity components of the stationary dual solution are shown in Figure 4.6.
Some of the obtained locally refined meshes are shown in Figure 4.7. The refinement
is basically nearby the cylinder. In Figure 4.8 we have a look on the several contri-
butions of the localized error contributions of η1, η2, and η3. The linear part η1 of
the estimator measures mostly the error close to the cylinder and the nonlinear part
η2 is large behind the cylinder where the nonlinearities of the solution is apparently
comparatively large. The third part η3 can be neglected for this example as a result
of the large timespan I considered.

In Table 4.6 the results for global and local mesh refinements are listed and a
comparison of the error evolution is shown in Figure 4.9. Even for local mesh refine-
ment we get a quadratic convergence order. The error for local refined meshes has for
18,344 nodes the same magnitude as for more than 164,000 nodes with global refine-
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Fig. 4.6. Horizontal (left) and vertical (right) velocity components of the stationary dual solu-
tion in the vicinity of the cylinder.

Fig. 4.7. Local refined meshes after 1, 2, and 3 refinements for “Flow around a cylinder”.

Fig. 4.8. The mesh (upper left) and nodal error indicators η1,i (upper right), η2,i (lower left),
and η3,i (lower right) after two refinements for “Flow around a cylinder”. The scaling and colors
scale identical for the three error contributions.
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Table 4.6

Results for global and local mesh refinement for “Flow around a cylinder”.

# nodes J(ū− ūh) η1 η2 η3 η Ieff

Global mesh refinement
708 2.99e-01 −3.62e-01 1.14e-02 1.75e-03 −3.49e-01 −1.16
2696 1.55e-01 −2.53e-02 4.04e-03 3.19e-04 −2.09e-02 −0.13
10512 3.21e-02 1.50e-02 9.95e-04 4.53e-05 1.60e-02 0.50
41504 7.58e-03 4.50e-03 3.20e-04 1.17e-05 4.83e-03 0.64
164928 1.86e-03 1.14e-03 9.90e-05 2.90e-06 1.24e-03 0.67

Local mesh refinement
708 2.99e-01 −3.62e-01 1.14e-02 1.75e-03 −3.49e-01 −1.16
1282 1.46e-01 −3.66e-02 1.13e-02 6.72e-04 −2.46e-02 −0.17
2610 3.27e-02 1.08e-02 5.36e-03 2.34e-04 1.64e-02 0.50
6698 8.32e-03 4.19e-03 1.54e-03 9.01e-05 5.82e-03 0.70
18344 1.66e-03 1.10e-03 5.11e-04 3.23e-05 1.64e-03 0.99
60448 4.61e-04 2.87e-04 1.63e-04 1.10e-05 4.60e-04 1.00
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Fig. 4.9. Comparison of global and local refinement for “Flow around a cylinder”.

ments, which is a huge reduction of computational costs. Furthermore, we get a pretty
good efficiency index of approximately 0.7 for global mesh refinement. Moreover, the
efficiency index for local mesh refinement is extremely close to 1. We do not claim
that our error estimator is asymptotically exact. Rather, such a good estimation is
by concurrence.

4.4. Stationary dual solution at high Reynolds number. For higher Rey-
nolds number it is not clear whether it is reasonable to solve stationary dual problems.
The linear system probably become ill-conditioned or even singular. In order to
address this aspect, we finally consider the 2D lit-driven cavity problem. The maximal
Reynolds number is chosen as Re = 40.000. The configuration is the standard 2D lit
driven cavity problem with a time-depending but smooth overflow for the horizontal
velocity component v1 at y = 1:

v1(t, x) = (1 + sin(−0.5π + 2πt))(1 + sin(−0.5π + 2πx)) .

The functional under consideration is the mean drag force on the lower boundary. It
is well known from stationary adaptive processes [1] that such a functional leads to a
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Fig. 4.10. Left: Streamlines of the mean velocity field vh. Right: Streamlines of the sta-
tionary dual velocity field zvh. The colors represent the particular norm, i.e., ||vh(x)|| and ||zvh(x)||,
respectively.

Table 4.7

Number of GMRES iterations for the stationary dual problem for different levels of refinement
and different Re numbers.

Re
# nodes 400 4.000 40.000

289 8 15 20
1089 10 20 28
4225 10 27 37
16641 11 26 40
66049 11 27 40

dual problem with zero right-hand side and nonhomogeneous boundary values (on the
lower boundary). In Figure 4.10 we show streamlines of the averaged primal velocity
field and of the stationary adjoint velocity field. Actually, vh shows small vortices
close to the upper corners.

In Table 4.7 we list the number of GMRES iterations, preconditioned with multi-
grid and incomplete LU (ILU) smoother, in dependency of the number of nodes and
the Reynolds number. The relative tolerance is set to 10−6. Due to the multigrid
preconditioner, the number of linear iterations is independent of the mesh size. With
respect to the Reynolds number, we observe a moderate increase of necessary iter-
ations. However, even for the highest Re number (corresponding to a viscosity of
μ = 5 · 10−5), the stationary dual problem was easily solvable with 40 linear itera-
tions. This corresponds to a notable convergence rate of 0.7. Taking in mind that
in practice a much larger tolerance is reasonable, this test supports the feasibility of
our approach. In the worst case, when the linear solver did not converge it would
always be possible to perform a pseudotime stepping scheme (e.g., backward Euler)
for the dual problem. Since we have averaged coefficients, this is straightforward and
the time relaxed problem can always be solved.

5. Conclusion. We presented an error estimator and an adaptive algorithm
for accurate determination of functional output of the mean value. The underlying
equation is a general time-dependent (system of) partial differential equation. We
avoid computations of time-dependent adjoint problems and storing of the primal
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solution even for nonlinear equations. By several numerical examples we illustrate
the accuracy of the estimator and the performance of the adaptive algorithm.
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