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Abstract 
This thesis is about multi-period problems in which the decision-maker 

or players cannot see far enough ahead to solve the problem completely. 
The thesis considers why it might be that players reason forwards at all, 

let alone reasoning forwards only finitely far. It shows, using finite automata, 
that there is a class of problems for which forwards reasoning is more efficient 
than backwards reasoning. It goes on to use these finite automata to solve 
for an optimal foresight length. 

It then discusses solution concepts, and applies its preferred solution con- 
cept to two problems - one macro problem involving a central banker, and 
one micro problem concerning the decision whether to smoke. 
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Chapter 0 

Preface 

This thesis is about limited foresight. Limited foresight axises in multi-period 
problems in which the decision-maker or players cannot see far enough ahead 
to solve the problem completely. 

Some decision-problems and games can, of course, be solved completely. 
Though laborious, it would be tractable in practice as well as possible in 
theory to solve noughts and crosses completely - for example by backwards 
induction from an exhaustive seaxch through all legal terminating board po- 
sitions. Classical game and decision theory treats all problems as if they 
were like this. Where it is possible in principle to solve a game completely, 
players are assumed to do so, and issues of tractability are not considered. 
This is relatively easy to defend. If there is, indeed, some difficulty in search- 
ing through possibilities, that could be incorporated into the game through 
an explicit search cost function. Then, in a sense, we have a different game. 
Came theory only pretends to offer solutions to the games specified, not to 
other games not specified. 

In this thesis we shall not be disagreeing with the classical position in this 
sense. But it should be noted that what is proposed here is not straightfor- 
ward, and it is not even transparent how one should go about dealing with 
a problem which players do not solve completely. Given this, is it worth 
doing? There are certain classical stylized problems which players do not 
solve completely. For example, no-one decides what his opening move in 
chess should be by solving the game through backwards induction on ter- 
minating legal board positions. Neither does anyone solve chess totally in 
any other way (even implicitly). But if limited foresight applied only to 
chess problems, its study might best be restricted to books on chess theory. 
However, as we shall see, limited foresight is unlikely to be restricted to such 
stylized and fantastically complicated situations. One of the themes of this 
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thesis will be that limited foresight is likely to be an extremely widespread 
phenomenon. (But do not despair! For we shall also argue that it is a 
phenomenon which can be modelled plausibly and tractably. ) 

Chapters 1 and 2 consider the issue of how relevant limited foresight 
reasoning might be (thus whether it is worth the effort of modelling it) along 
with the question of how to go about setting up the problem of costing the 
reasoning process which leads to the limit. We first consider in Chapter 
1 why foresight is a relevant notion (let alone limited foresight). Since we 
teach our students to solve problems by backwards induction, why are limited 
foresight agents looking forwards at all? ' It is tempting to suppose that this 
is because we are dealing with situations in which it is impossible to reason 
backwards (perhaps an infinitely repeated sub-game). But is backwards 
reasoning really denied to us in any setting? And is foresight employed only 
in such settings? Chess does not involve an infinitely repeated sub-game. 
So what is going on? 

To address this question we consider an extremely simple two-stage prob- 
lem with two possible actions per stage. The problem is encountered only 
once (it isn't a repeated setting). The problem is solved completely (so there 
is no "bounded rationality" in that sense). We find that with two possible 
stage payoffs which are the same in each round it is more efficient to solve 
this problem by reasoning from the beginning of the problem to the end (i. e. 
by forwards reasoning) than from the end of the problem to the beginning. 
The way we go about showing this is by modelling the reasoning process as 
a finite automaton. 

Finite automata have been used in Game Theory before, for example in 
modelling strategies played in repeated games2. It is important to note that 
the finite automata employed here are performing a different sort of task. 
Instead of carrying out play, they are solving for how to play. The efficiency 
criterion we use is analogous to the standard complexity criterion - the fewer 
the states of the finite automaton, the more efficient the reasoning process. 
We show that for certain kinds of problem (though not all), the forwards 
reasoning finite automaton with the fewest states has fewer states than the 
backwards reasoning finite automaton with the fewest states. 

Having shown that agents are likely to solve many even quite simple 
problems by reasoning forwards, in Chapter 2 we move on to consider the 

'Or even, are they reasoning forwards at all? For example, certain Artificial Intelligence 
"bounded lookahead" algorithms use backwards induction from the horizon of foresight 
(see Jehiel (1998b)). So, if one believes that backwards reasoning is always more efficient, 
one might assume that even limited foresight involves backwards reasoning of a sort. But, 
as we shall see, that is not necessarily so... 

2 See, for example, Rubinstein (1998) 
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question of how to model how far forwards they will reason. Given the 
previous discussion, the natural way to proceed seems to be to consider an 
agent using a finite automaton where each state carries a CoSt3. The presence 
of a reasoning cost means that in principle it might no longer be worth solving 
the problem completely. The form of incompleteness we consider is that in 
which the agent might not look ahead to the end of the problem. There are, 
of course, other forms of "bounded" (or, perhaps better, "meta? ') rationality 
one could consider at this point, but we leave those to other research. 

What we find is that with a cost per state of only --L of the payoff 128 

possibly lost by not looking ahead, it ceases to be worth solving even a very 
simple two-stage/two-action/two-payoff problem completely. We have not 
offered any criterion to judge how much a "high" state cost for a reasoning 
process might be as opposed to a "low" state cost. However, given that our 
simple problem requires only a seven state automaton to solve completely, 
and that the number of states required to solve more complicated problems 
explodes exponentially, we think it reasonable to conjecture that for only 
slightly more complicated problems than those we consider, the state cost 
required to justify solving the problem completely (as opposed to looking only 
boundedly fax into it) would become so low that limited foresight reasoning 
might be expected to be very widespread. 

Thus the main contribution of these two chapters is an argument that 
limited foresight reasoning might be very widespread, because there are many 
relatively simple problems which are best solved by reasoning forwards and 
if agents are reasoning forwards, even with relatively low reasoning costs 
it is likely that an optimizing agent will not find it worth looking right to 
the end of a problem to solve it. Secondary contributions include the finite 
automaton approach to addressing the question of how to go about solving 
a decision-problem, and the offering of a method to endogenize an agent's 
foresight horizon. 

Having satisfied ourselves that limited foresight reasoning is likely to be 
a sufficiently widespread process that it is worth trying to model, the next 
question which arises is what solution concept to employ. One possibility is 
that an agent with limited foresight treats problems which go on for longer 
as if they continued only to the horizon of foresight. For example, if an agent 
looks ahead only to the next round, but the problem actually continues for 
ever, we could assume that, in each round, the decision-maker acts as if the 
problem finished next round. A solution concept along these lines (which we 

3Note that up to this point we have assumed that the agent wishes to use the most 
parsimonious reasoning process, but that the use of the reasoning process did not actually 
cost anything. 
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refer to as the "naive" concept) is often employed in the time consistency 
literature'. In contrast, Jehiel (1995) proposed a concept in which players 
understand that the game will continue beyond their horizon of foresight, 
but simply lack the ability to see beyond that point. Furthermore, they have 
learned what their play in such situations is likely to be in the future, and 
make their decision today based on a correct expectation about the strategy 
they (as well as other players) will employ in rounds out to the horizon of 
foresight. 

Rubinstein (1998) criticizes both these concepts, and suggests that there 
is as yet no promising solution concept for limited foresight problems and 
games. Chapter 3 considers to what extent he is right, and attempts to 
devise a solution concept which meets some of his concerns. 

Rubinstein's main objection to the naive concept is that in a multi-player 
setting, because of the possibility of time inconsistency, in equilibrium players 
are assumed to know what other players axe going to do in later rounds, but 
can be wrong about what they themselves will do. How, he asks, can other 
players know what someone is going to do in a later round if he doesn't 
even know that himself? We consider this objection well-made and argue 
that the best type of application for the naive concept is finite one-agent 
decision-problems in which the agent is unaware of his limited foresight. 

Rubinstein's main objection to the Jehiel concept is that players take 
their own future play as given, even though they must have some control 
over it. In this sense, the Jehiel concept seems to run against the standard 
tradition in Game Theory. This is the main issue Chapter 3 aims to address. 

First we argue that Rubinstein's objection is slightly misplaced, by prov- 
ing that there is a solution concept which is formally equivalent to the Jehiel 
concept in which players do control their actions out to the horizon of fore- 
sight, rather than simply taking future play as given. What is taken as given 
in this alternative but equivalent concept is that certain strategies will lead 
into time inconsistency, and those strategies are to be ignored. 

The idea that players know which strategies lead into time consistency 
and ignore all such strategies is somewhat problematic, however, as acquiring 
knowledge of time inconsistency may be demanding and, anyway, it is not 
always clear that using a time inconsistent strategy will be worse for players 
than employing a time consistent one. Thus we go on to use the idea of 
aiming to control one's future play to develop a refinement of the Jehiel 
concept in which players aim to control play as far ahead as possible, with 

'Note that the players' inability to look beyond the horizon of foresight can lead them 
to change their mind about what they intend to do in later rounds and to regret the 
decisions they have already made. Important references in this literature include Strotz 
(1956), Pollack (1968), Laibson (1997) and O'Donaghue and Rabin (1999) 
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as little knowledge of time inconsistency as possible, and take future play 
as given only from the point ahead beyond which time consistency problems 
would arise. 

The main contributions of Chapter 3 are the proof that the Jehiel concept 
is formally equivalent to a concept in which agents control their actions over 
the entire horizon of foresight (rather than just in the current round), and 
the devising of a refinement for Jehiel's concept. 

Having determined our favoured solution concept, the next two chapters 
offer examples of how to employ it. In the first of these we consider a central 
banker setting interest rates but possessed of only limited foresight (in the 
Jehiel sense), operating in an environment with persistence in employment. 
We argue that this is similar to the situation faced by the Bank of England 
in the era of inflation targeting where interest rate decisions are justified by 
appeal to a two-year-ahead rolling forecast for inflation. We solve the bank's 
decision-problem and find that there will be a lower inflation bias with limited 
foresight, and that this inflation bias will increase as the horizon of foresight 
increases. We contrast our limited foresight approach with one in which there 
is a central banker with a finite horizon. 

The other applications chapter is joint with Philippe Jehiel. There we 
consider the question of why some people smoke when young, then quit when 
older. We show that this result can be obtained simply by changing the hori- 
zon of foresight, without any need for tastes to change or for addiction issues 
to be involved or for new health information to be discovered. Employing 
both the standaxd Jehiel concept and the maximal-control refinement, we 
show that our result can be obtained with a variety of plausible payoffs from 
smoking or not smoking, and axgue that this approach offers a new insight 
which might be important for policy. 

The thesis then concludes. This research has benefitted from funding by 
the ESRC under grant number R00429834527. Special thanks are due to 
my supervisors Philippe Jehiel and Tilman Borgers. Thanks also to Marc- 
Etienne Schlumberger, Peter Postl, Jean Tirole, Nick Rau, Wendy Carlin 
and Edmund Cargill Thompson for useful comments. 

Andrew Lilico, UCL, October 2002. 

5In this joint work Jehiel provided the idea of studying a smoker problem, aiming to 
vary the horizon of foresight, and contrasting with time consistency. Lifico provided the 
contrast with rational addiction, the core example from which the examples in the chapter 
are derived, and the plausibility analysis of the payoffs. Both authors worked on proofs, 
structure, and concepts. 



12 CHAPTER 0. PREFACE 



Chapter 1 

Foundations of Limited 
Foresight 1: Foundations of 
Forwards Reasoning 

1.1 General Introduction for Chapters I&2 

In this chapter and the next we shall attempt to provide rational foundations 
for limited foresight modelling. We shall show that there are situations in 
which a rational agent would reason forwards, go on to show that there are 
situations in which a rational forwards-reasoning agent would not reason 
forwards to the end of the game, and show how to solve for just how far a 
rational agent should reason forwards. 

There are many situations in life where we seem only to look just so far 
ahead. Came theoreticians like examples such as chess games, but everyday 
life produces many less exotic cases. For example, many young people in 
their twenties will confess to not really having thought much about how they 
will live after they retire. Supposedly it is a common interview technique 
to ask people where they see themselves in, say, five years' time, and this is 
presumably precisely because relatively few of us have any concrete thoughts 
on such matters. 

One issue relating to such situations is how people will behave if they 
have such limited foresight. For example, Jehiel (1995) introduced a "limited 
foresight equilibrium" concept. What this means can be illustrated through 
a simple example' (Figure 1). 

'It should be noted immediately that our example illustrates the idea, not strictly the 
concept - the (nj, n2)-equilibrium concept was applied to repeated alternate-move games, 
not finite decision-problems like those we shall consider. 

13 
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Figure 1.1: A very simple decision-problem 

In Figure 1.1 we have a one-person decision problem. Each circle repre- 
sents a point at which an action is to be taken. The branches of the tree 
represent those actions, and at the first two decision-points the agent can 
choose to go up or down in the tree. Branches which have no sub-branches 
represent terminal nodes. The decision-maker receives payoffs after each ac- 
tion corresponding to the numbers. Suppose that he can see ahead one 
period. Then from period one he can see that if he goes down to start with 
he will receive a payoff of 1 and the game will end, while if he chooses to go 
up then he will be able to choose between a payoff of 2 if he goes up as his 
second action and 0 if he goes down. 

Under the Jehiel equilibrium concept we have in mind an agent who is 
awaxe of his limited foresight. He has perhaps played the game many times 
before, and is aware that, from this situation, if he were to choose to go up 
at the first decision-point, he would then choose to go down at the second. 
He is not sure why he would do this, i. e. he does have limited foresight. But 
he has learned that that would be his behaviour, and what he has learned 
is correct. So at the first decision point he believes (correctly) that he 
is choosing between going down and receiving a payoff of 1, or going up 
and receiving a payoff of 0. He goes down, and in the Jehiel concept the 
equilibrium strategy is (Down, Down, Up, Up). Note that this is different 
from the sub-game perfect strategy, which is (Up, Down, Up, Up). 

Jehiel has shown, in a two-player repeated alternate-move setting, that 
with such agents who make no guess beyond the forecast horizon, an equi- 
librium always exists 2; that such solutions are cyclical; that the equilibrium 
forecasts associated with such solutions do not depend on history and that 

2in Jehiel (1995), in a repeated alternate-move environment, with two players and 
limited recall. 
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the memory capacity of the players has no impact on the set of solutions as 
long as it is finite; that for generic repeated alternate-move 2x2 games a 
solution always exists which holds for all nj, n2 sufficiently large; that play- 
ers can sometimes do better with a shorter foresight length; and with agents 
who do make a guess beyond the horizon, he has shown that co-operation 
can sometimes be the only equilibrium in a repeated Prisoners Dilemma. He 
has shown that his concept arises out of a learning process with trembles 3. 

There is another school of models of limited foresight, in which the agents 
fall to understand that the game continues beyond the horizon they can see. 

So, there are models of how people behave given that they have limited 
foresight, and in Chapter 3 we shall investigate what is the best way to go 
about it. But first we must address a second, related issue - why people might 
have limited foresight in the first place - and that is what we shall examine 
in the following two chapters. In the current chapter we shall show that 
it is legitimate to consider agents who reason forwards, rather than agents 
who reason backwards. We shall show that even with players who solve 
problems completely (identifying the unboundedly Rational solution), it is 
reasonable to suppose that in certain situations agents will solve problems 
by looking forwards. Having convinced ourselves that foresight is a relevant 
component of reasoning, in the following chapter we shall unpack the notion 
of a limited hmizon, by showing that an agent with computation costs might 
find it optimal to adopt a limited foresight horizon, and solving for an optimal 
foresight horizon of a rational agent facing computation costs. 

1.2 Introduction 
As is well known, standard Game theoretic equilibrium concepts take Ratio- 
nality as an axiom (or set of axioms). In finite games we usually teach our 
students to find such equilibria through backwards induction. In contrast, as 
we have already mentioned, one class of bounded Rationality models involves 
players with limited foresight (e. g. Jehiel (1995)), or players who reason for- 
ward but face additional costs the further forward they reason (e. g. Gabaix 
and Laibson (2000b) - see also Gabaix and Laibson (2000a)). This seems a 
fairly intuitive way to think about Bounded Rationality. After all, no-one 
plays chess as white by, at the beginning of the game, deciding in which 
position the black king will be mated and then constructing a pathway of 
moves from the opening to the mating position4. 

3Jehiel (1998a) 
'Such reasoning may, however, be involved in solving chess problems of the "White to 

play and mate in three sort. The proof that any chess game could, in principle, be solved 
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In this chapter we shall consider models in which agents solve the prob- 
lems completely to find the Rational solution (there is no problem of bounded 
Rationality as such, in that sense). The question we shall address arises as 
follows: since standard ideas of how to find Rational solutions involve rea- 
soning backwards from the end of the game5, whilst in the Jehiel or Gabaix 
& Laibson models models the boundedness arises because we can only see so 
far forwards in the game, one may feel that there are missing steps between 
the Rational and boundedly Rational positions. Why are we ever reason- 
ing forwards in the first place, let alone only managing to reason forwards 
finitely far? It is easy to say "Because it's too hard to reason backwards", 
but why is it too hard? And if the answer to that question is that we have 
evolved that way, the question remains why we have evolved that way? Is 
there, for example, some advantage to forwards reasoning in reasonably sim- 
ple problems which then makes it seem natural to us to reason forwards in 
longer and more complicated problems (like chess games), or is backwards 
reasoning better for solving simple problems but at some point we switch to 
forwaxds reasoning for longer problems? Or is it possible that it is only best 
to reason forwards in infinitely-repeated games, where backwards reasoning 
is in some way denied to us? 

Camerer et al. (1994) and Johnson et al. (2001) have produced empirical 
evidence which may suggest that their subjects were reasoning forwards. For 
example, in Johnson et al. (2001) there are two players who bargain over a 
pie which shrinks in value over the three periods of the game. The pie is 
worth $5 in the first period, then halves in value each subsequent period. If 
no bargaining solution is reached in the three periods each player receives a 
zero payoff. Player 1 makes an offer in period 1, which Player 2 either accepts 
or rejects. Each period, if an offer is rejected the rejecting player makes a 
counter-offer in the next period. The perfect equilibrium is (approximately) 
that Player 1 offers $1.25 in period 1 and is accepted. 

In the baseline experiment, the average offer is $2.11, and offers below 
$1.80 are rejected half the time. The experiment is designed so that the ex- 
perimenters can tell which pie sizes the subjects examine (players are not told 
in advance what the payoffs are, but they can find them out trivially during 
the game by clicking computer-screen boxes). By identifying which payoffs 
players examine, and how long and often they spend considering them, the 
experimenters attempt to gain insight into whether the players are reasoning 
forwards or backwards in the game. According to the information-measures 

in this way is what is usually referred to as "Zermelo's Theorem" - see Schwalbe & Walker 
(2001). 

5For example, see Rosenthal (1981) and Binmore (1989) pp. 151-231. 
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Figure 1.2: A two-stage decision-problem 
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used in the experiment, players do not tend to look at future rounds then 
reason backwards, as one might assume. More than that, they often appear 
to make no use of payoffs in later rounds, not even finding out the value of 
second- and third-round payoffs in 19% and 10% of the trials respectively. 
Purthermore, classifying subjects by the degree to which the information cri- 
teria suggests they look ahead is strongly predictive of the offers they make. 

Though these empirical results are interesting, the fact (if it is a fact) 
that people do reason forwards is not an explanation of why people reason 
forwards'. In this section we argue that, at least in certain situations, fully 
Rational players should reason forwards. Our environment is very different 
from that discussed in the empirical studies mentioned (in particular we 
consider decision-problems rather than games). However, we believe that 
the insights axe instructive. 

1.3 Framework 
We shall attempt to compare the efficiency of forwards and backwards rea- 
soning for solving a very simple two-stage problem, represented by Figure 
1.2, and begin by considering the problem of what is the best move to take 
at the first decision-point. 

In the decision-problem in Figure 1.2 we have one player who has to 
choose between going up or down at the root node (i. e. he chooses an action 
aEA= JU, D}). Having made that choice, he will later be able to choose 

6Even the title of Johnson et al. (2001), "Detecting Failures of Backwards Induction", 
suggests that reasoning forwards involves a kind of error, an implication which we do not 
draw. 
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to go up or down at a second node. The payoffs he will receive depend on his 

choices, and are represented as stage payoffs xi EX for iEI= 61. For 

example, if he goes up, and then up again, he will receive -7r(UU) = X1 + X3) 
and so on for the other possible choices. Each of the possible stage payoffs 
is either 0 or 1, xi E 10,1}- 

We shall consider how efficient it is for him to solve this problem by rea- 
soning forwards as opposed to reasoning backwards. Our tool for comparing 
(and measuring) "efficiency" in this context will be a special sort of finite 
automaton, which we shall now define. 

Definition 1.1 A finite automaton (in this chapter7) will be defined as a 
7-tuple, FA = (Q, qo, F, E, -y, 5, A) where 

Q is a set of states (qO, ..., q,, ) for n finite 
qo is the initial state of the automaton 
(F C Q) 34 0 is a set of 'final states' 
E= 10,1} 
-y is a mapping from (Q\F) )I and is to be interpreted as the member 

of X to be examined at each non-final state 
6 is a mapping from (Q\F) xEiQ and is to be interpreted as a 

transition function taking the current state and the value of the examined 
member of X and determining which state to move to next (q' =6 (q, X-y(q)))- 

A is a mapping from F)A and is to be interpreted as the action to be 
performed if the automaton terminates at a given final state. 

Definition 1.2 XE E6 is a "realisation" of the values of the six variables. 

Definition 1.3 For a given x and a given FA, a "path" is the unique se- 
quence of states q-(x, FA) = qo, q, qn, etc. of FA which will be reached in 
order if payoffs are given by X. 

Definition 1.4 A finite automaton, FA, is "stopping" if and only if, for 
every xE E', q-(x, FA) ends with a final state. 

Note that it follows immediately from this definition that no stopping FA 
can have a "loop" whereby the same state is visited along a path more than 
once (since there are no non-deterministic transitions). 

Definition 1.5 The members of q-(x, FA) form the set ý(x, FA). 

'The automata we consider here are a very special case. For more information on 
finite automata see Hopcroft and Ullman (1979). 
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We shall later be counting the states of an FA and be interested primarily 
in FAs which are state-minimal. Two trivial ways in which an FA might have 
unnecessary additional states axe: if it contains states which are not reached 
for any realisation of the values of the six variables; or if it contains a state 
from which there is an input-independent transition. We shall by-pass these 
trivial cases and call such automata "redundant". 

Definition 1.6 A finite automaton, FA, is "redundant" if, either 

1. UXEF. 6; T(x, FA) : 54 Q, or 

2.3q E (Q\F), such that J(q, 1) = J(q, 0) 

Definition 1.7 If an FA is stopping and is not redundant, we shall call it a 
"regular" FA. 

Hereafter, we shall assume that an FA is regular unless otherwise specified. 

Definition 1.8 A non-final state q of a regular FA will be called a "question" 
or a "questioning" state. It fOllows immediately from the definition of a 
regular FA that all such states involve an input-dependent transition. We 
shall say that an FA which contains a state q, such that -I(q) = i, "examines" 
the value of xi. We shall call the variables xi "unknowns" at the initial 
state of the FA. We shall talk of the action produced by A as the action 
"recommended" by the FA. 

Definition 1.9 We shall call a regular FA "implementing" if it recommends 
optimal play for all xE E6 (where optimal play means an action at the first 
node which would be part of an optimal strategy for playing the whole game). 

It may not be immediately apparent why the process of examining the 
value of unknowns in this problem has relevance to the standard problem of 
finding the best action at the initial decision-point when we already know 
the values of the payoffs. To see the connection it might help to think of 
the process of "examinine' a variable's value as less a matter of discovering 
something not previously known than a matter of making use of the value 
of a variable. Then a "questioning" state would be an information-based 
decision within our algorithm for finding the optimal decision. However, we 
shall stick with our suggested terminology as it seems more natural to regard 
our finite automaton as a machine which asks questions. Note that our FA 
has no explicit means of storing information - it has no memory. 
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In the next few sections our finite automata are intended to solve the 
problem of identifying our player's optimal action at the root node. We 
shall interpret the number of states of an FA as a measure of efficiency or 
complexity. For example, if solving a problem one way could be done by an 
FA with 10 or more states, while a second way of solving the same problem 
requires only 5 or more states, we shall interpret this as meaning that the 
second way of solving the problem is more efficient. Clearly the relevance of 
our approach to the question of the efficiency of different reasoning methods 
is crucially dependent upon the plausibility of our claim that the number of 
states required is a good measure of efficiency. 

1.3.1 Is the state-counting efficiency criterion a com- 
pelling one? 

The idea of measuring the complexity of a Finite Automaton by counting 
its number of states is not an innovation of this theSiS8 , and the idea that 
efficiency should be regaxded as simply the inverse of complexity seems plain. 
However, in the past Finite Automata have usually been used in Game The- 
ory to model finite strategies in infinitely-repeated games9, so that the com- 
plexity criterion is a measure of the complexity of a strategy. Here the 
compexity-measure (or, viewed from the opposite direction, the efficiency- 
measure) is intended to capture the difficulty of solving the problem of opti- 
mal play, not of implementing that solution in a strategy. 

Though one should be aware of this difference, we do not believe that it 
alters the appropriateness of the state-counting efficiency criterion. Counting 
the states of a finite automaton is a concrete way to measure the number of 
steps in a reasoning process. It is not, of course, the only way to do this. If 
other measures (e. g. the complexity of the transition function) give different 
results that will be important information about what costs are relevant in 
assessing how best to go about solving a problemio. 

'Tor example, see Rubinstein (1998) p. 150ff. 
9This has not, of course, been the only use - see, for example, the "learning automate 

considered in Fudenberg & Levine (1998). 
"There is, however, no guarantee that a different measure will give a different result. 

For example, a plausible alternative measure of efficiency, capturing some of the spirit of 
complexity of the transition function, might be the average path-length to a recommen- 
dation (giving an idea of how long, on average, it takes to come up with a result). For 
the state-minimal forwards reasoning FA we shall later in Figure 1.2 the average path 
length is 2.75. For the state-minimal backwards reasoning FA in Figure 1.3 the average 
path-length is 3.25. Whether either of these values could be improved upon by some 
"length-minimal" FA remains an open question. 
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The finite automata we discuss in this chapter solve the problem to find 
the Rational solution. Armed with concrete measures of complexity, we 
could modify our problem, attaching costs to our complexity-measures (for 
example, some cost to each state) and work towards endogenising the degree 
of Rationality boundedness - for example solving for some optimal foresight 
horizon". We believe that this might prove a fruitful way to close the gap 
between the Rational and Boundedly Rational models. 

1.4 Solving for what to do at the first decision- 

point 

1.4.1 A preliminary result 

Main Lemma A state-minimal implementing FA to solve the problem in 
Figure 1.2 has at least seven states. 

Proof. This proposition is proved in Appendix A. m 
The general method of this proof is as follows. It follows immediately 

from the definition of an FA that if it is capable of examining five or more 
variables and of recommending two actions then it must have at least seven 
states, so we need only consider cases in which fewer than five variables are 
considered. We show that the fewest variables an implementing FA must be 
capable of examining is all the vaxiables in one branch (e. g. all of x, , X31 X4) 
and the first variable in the other branch (e. g. X2) - i. e. four variables in 
total, immediately implying at least six states. Then we prove that any 
implementing FA examining only this set of variables must be capable of 
examining all of them in turn, and that there must be at least two paths 
along which all of these variables are examined in turn. 12 Any six-state FA 
could have only one path along which all the vaxiables are examined in turn, 
so six states will not be enough. 

"See the next chapter 
"These correspond to the two cases in which xi " X2 - where they are both 0 or both 

1, and at least on Of X3, X4 is 0; or alternatively (depending on the FA involved) they 
correspond to the cases in which X3 =-- X4 =-- X1 =0 or one Of X3, X4 is 1 and x, = 1. 
In such cases we may need to examine all four variables to discover whether U or D is 
(weakly) optimal. 
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x, =l X-i=o 

U 

D 

Figure 1.3: A finite automaton 

1.5 Forwards Reasoning 

Definition 1.10 A Forwards Reasoning Finite Automaton (FRFA) for the 
problem in Figure 1.2 is a Finite Automaton such that, along any path to a 
final state, 

1. if the value Of X3 or X4 is examined, then the value of x, has already 
been examined earlier along that path; 

2. if the value of x5 or X6 is examined, then the value Of X2 has already 
been examined earlier along that path. 

Figure 1.3 represents an implementing finite automaton to solve the prob- 
lem in Figure 1.2. In Figure 1.3 the states axe maxked qO ... q6, with final states 
taking a double-circle. Thin arrows show the direction of transition, and axe 
followed if the vaxiable values next to them are realised (so, for example, in 
the initial state qO the FA examines xj, and if x, =0 we move on to q3, 
while if x, =1 we move on to qj. Fat arrows represent the actions taken at 
final states, i. e. A(q2) =U and A(q6) =D (so, if the FA terminates at state 
q2 the automaton is telling our player to go up at the first decisions point, 
while if the FA terminates at state q6 the automaton is telling our player to 
go down). 
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The FA in Figure 1.3 works as follows. It examines the values of x, and 
X2- If one of these is more than the other, the best action is clear and the 
FA procedes immediately to a final state. If X1 --": X2 the FA checks X3 and 
X4, and if either of these takes value 1, going Up is at least as good as going 
Down, but if they are both 0, going Down is at least as good as going Up. 

Inspection suffices to show that this FA is, indeed, implementing. Note 
that the FA in Figure 1.3 involves forwards reasoning, since the values of x, 
and X2 are considered first, before moving on to consider X3 and X4. 
Proposition 1.1 A state-minimal implementing FRFA for the problem in 
Figure 1.2 has seven states and is generally state-minimal among FAs. 

Proof. We can construct an implementing FRFA with 7 states, as illus- 
trated in Figure 1.3. By our Main Lemma this FA must be state-minimal. 
E 

1.6 Backwards Reasoning 
Definition 1.11 A Backwards Reasoning Finite Automaton (BRFA) for the 
problem in Figure 1.2 is a Finite Automaton such that, along any path to a 
final state, 

1. if the value of x, is examined, then either the values Of X3 and X4 have 
already been examined earlier along that path, or the value Of X3 has 
been examined earlier along that path and found to take value 1; 

2. if the value Of X2 is examined, then either the values Of X5 and X6 have 

already been examined earlier along that path, or the value of x5 has 
been examined earlier along that path and found to take value 1; 

One might have supposed that the definition of a BRFA would be stricter 
and simpler, insisting that the values of all of X3 9 X4 , x, 5 and X6 always be 
examined before x, or X2- We have chosen not to define backwards reasoning 
in this way, because we wanted to allow our BRFA to exploit the same logical 
shortcuts available to the general state-minimal FA - for example recognising 
that if X3 ý1 then it is not necessary also to examine X4. This presents a 
more generous and more general test of the relative efficiency of backwards 
reasoning. 

We shall prove that a state-minimal backwards reasoning automaton must 
have more states than a general state-minimal automaton such as Figure 1.3, 
and hence that, by our state-counting criterion, backwaxds-reasoning is not 
an optimal way to solve the problem in Figure 1.2. It should be noted that 
this proof does not depend on the result that Figure 1.3 is state-minimal. 
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Proposition 1.2 Any implementing state-minimal backwards-reasoning au- 
tomaton must have at least one more state than a general implementing state- 
minimal automaton. 

Proof. This is proved in Appendix B. m 
The intuition of this proof is as follows. It follows immediately from the 

definition of backwards reasoning that any backwards reasoning FA solving 
the problem in Figure 1.2 must be capable of examining all Of X3, X4, X5, X6, 
along with at least one Of 11tX2- If it is tohave seven states it must exam- 
ine only one of these, say xj. But the general state-minimal FA examines 
'E1, X3, X4 and X2, and we can discover the same amount of relevant infor- 
mation by examining X2 in one question as by examining X5 and X6 in two 
questions. Hence the minimal backwards reasoning FA must use at least 
one more state than the general state-minimal FA. 

Figure 1.4 is an example of a state-minimal BRFA for the problem in 
Figure 1.2. It works as follows. It checks to see what the best available 
payoff is at the second stage of the upper branch (i. e. whether the maximum 
Of X3, X4 is 1 or 0). If either of these is 1 and x, is also 1, then the payoff 
from the upper branch is 2 and we can safely go Up. If both of them are 
0 and x, is also 0, then the payoff from the upper branch is 0 and we can 
safely go Down. If, however, either x, =1 while maxIX3, X4} = 0, or x, =0 
while maxjx3, x4j = 1, then we need to check the second-stage payoffs from 
the lower branch. If either of these is 1 we know we get at least 1 by going 
Down, but definitely 1 by going Up, so we can safely go Down. In contrast, 
if both the second-stage payoffs from the lower branch axe 0 we know we get 
at most 1 by going Down, but definitely 1 by going Up, so we can safely go 
UP. 

By Proposition 1.2 backwards reasoning is not the most efficient way of 
solving the problem in Figure 1.2. But Proposition 1.1 showed that the 
forwards reasoning automaton was indeed state-minimal, and so, by this 
state-counting criterion, that forwards reasoning is optimaI13 for solving this 
problem. Hence we have the following corollary, summarising the results of 
this section. 

Corollary 1.1 By a state-counting criterion, Forwards Reasoning is more 
efficient than Backwards Reasoning for solving the problem in Figure 1.2. 

13jt is very important to note that it is being claimed here that forwards reasoning can 
be optimal, but not that all optimal reasoning is forwards reasoning. For example, there 
do exist 7-state FAs to solve the problem in Figure 1.2 which examine the value Of X3 at 
the initial node. Since such FAs use the variables (XI 

i X2v X3t X4) as proved above, they 
are not backwards reasoning, but they are not forwards reasoning either! 
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Figure 1.4: A state-minimal BRFA to solve the problem in Figure 1.2 

1.7 Discussion: What is it about this prob- 
lem or about backwards reasoning which 
leads to the general state-minimal automa- 
ton being forwards-reasoning in this case? 

What drives our result? Why isn't backwards reasoning the most efficient 
method in this case? The reason is that backwaxds reasoning forces us, in 
this case, to consider more variables than we need to. Since we can find 
out as much information as we need by looking at the (single) first-stage 
payoff for the lower branch, it is inefficient to have to consider the (two) 
second-stage payoffs 14 

. 
Is the advantage of forwaxds reasoning here dependent on the fact that 

we are only trying to find out what to do at the beginning of the game? One 
might guess that if we were trying to work out all the best decisions we would 
need to make (i. e. work out what we would do at the first node and also 
what we would do at the decision-point we would reach following our initial 
choice) then backwards reasoning would do rather better, since backwards 

"'It should be clear that if there had been only one second-stage payoff (e. g. if there had 
been only X5 but no x6) then forwards and backwards reasoning would have been equally 
efficient. 
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reasoning includes some consideration of what it is best to do at the second 
node in forming a view as to what it is best to do at the first node. 

It may be that this idea drives the popular connection made between 
memory and limited foresight". The idea is that perhaps backwards rea- 
soning does better than forwards reasoning if we need only work out once how 
to play the whole game, then at later decision-points can remember what we 
worked out was best? But in long games it might be difficult to remember 
everything that was supposed to be done, so that physical constraints on 
the available memory-capacity mean we need to go through the process of 
working out what the best actions are more than once in a game - in which 
case we might be able to support some kind of limited horizon model with 
finite memory. 

However, as it happens this is not the situation here. Backwards reason- 
ing remains inferior to forwards reasoning when the initial decision is how to 
play at all reached decision-points, as we now show. 

1.8 Solving for all necessary decisions 

We shall prove that forward reasoning is more efficient, by the state-counting 
criterion, than backwards-reasoning in solving the problem of what to do at 
all reached nodes of the decision-problem illustrated in Figure 1.2. This is 
not quite the same thing as solving the problem altogether in the traditional 
sense, since we shall not be solving for what to do at unreached nodes of the 
problem. 

Our proof will proceed as follows. First we shall exhibit an 1 1-state FRFA 
which solves this new probleM16 . Next we shall modify our definition of a 
BRFA to fit this new problem. Then we shall prove that no BRFA satisfying 
this definition could have fewer than 12 states". This suffices to prove that 
the state-minimal FRFA will have fewer states than the state-minimal BRFA. 

Ise. g. See Jehiel (1995) 
16 We shall leave open the question of whether this is a state-minimal general FA for 

solving this problem, or even whether it is state-minimal among FRFAs which solve this 
problem. 

"Similarly, we shall not investigate the question of whether the state-minimal imple- 
menting BRFA has only 12 states or more than that. 0 
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1.9 An implementing FRFA to solve for play 
at all reached nodes 

Figure 1.5 exhibits an 11-state FRIA solving for the problem of what to 
play at all reached nodes of the decision-problem in Figure 1.2. Final state 
output of " UU" means the FA is recommending playing Up at the first node, 
and then Up again at the second node. Recommendations from other final 
states are to be interpreted similarly. Inspection suffices to show that this 
FA is, indeed, forwards reasoning, and is, indeed, implementing. Note that 
this FA is built upon the FA in Figure 1.3. Once we know what it is best to 
do at the first node, we check what is best to do at the node we would then 
reach -a paradigm of forwards reasoning. The other thing to note is that 
this FRIA uses information about one more variable (namely X5) than the 
FA in Figure 1.3.18 

1.10 The definition of Backwards Reasoning 
in the new problem 

Figure 1.6 exhibits a 12-state FA which solves the problem of this section. 
Inspection shows that it satisfies Definition 1.11. However, note that it works 
in the same way as the FA in Figure 1.5. First we solve for what to do at 
the first node, then we reason forwards from there to what to do at the 
reached node. In particular, in this case we may examine first X3, then 
examine xj, then go back to examining X3 again. This does not conform to 
our intutions of what backwards reasoning is about. We should not need 
to reason backwards, then forwards again. Hence, for the purposes of this 
section, we replace Definition 1.11 with the following: 

"A by-product here is that it involves fewer states to solve for unreached play from 
the beginning than to solve for optimal play at the first node, then wait until the next 
node is reached before deciding what to do there. To do this successfully, we would need 
to employ the seven-state FA identified in Figure 1.3, then have available two three-state 
FAs to question ýr3 or X5 for the upper or lower nodes respectively. Seven plus three plus 
three equals thirteen, which is more than the eleven states required in Figure 1.5. 

It is worth noting that waiting until a later round might, however, be more efficient than 
solving for play at all nodes, including unreached nodes. These issues are investigated 
further in Appendix C. 
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Figure 1.5: A finite automaton to solve the whole game 
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Figure 1.6: A backwards-reasoning finite automaton to solve the whole game 
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Definition 1.12 A Backwards Reasoning Finite Automaton (BRFA) for the 
problem in this section is a Finite Automaton such that, along any path to a 
final state, 

1. if the value of x, (or12) is examined, then either the values Of X3 and 
X4 have already been examined earlier along that path, or the value of 
X3 has been examined earlier along that path and found to take value 1; 

2. if the value Of x3 or X4 is examined, then the value of x, has not been 
examined earlier along that path; 

3. if the value Of X2 (or xi) is examined, then either the values Of X5 and 
X6 have already been examined earlier along that path, or the value of 
x5 has been examined earlier along that path and found to take value 1; 

if the value of x5 or x6 is examined, then the value Of X2 has not been 
examined earlier along that path. 

The bracketed terms in parts 1 and 3 of this definition are merely there 
to simplify our proof. We conjecture that they can be discarded and the 
main result still hold. Alternatively, one might feel that this was a better 
definition of backwards reasoning anyway - namely that no branch of the first 
node should be examined until optimal play at later branches of the tree has 
been determined. 

Proof that no implementing BRFA can 
have as few states as Figure 1.5. 

Proposition 1.3 No BRFA satisfying Definition 1.12 can have fewer than 
12 states. 

Proof. Since we need questions at least about the set III 
i X3 i X4 i X5 i X61 

(or a trivially equivalent set, or about all six variables) to identify best play 
at the first node, we certainly need at least this set to solve for play at 
all reached nodes. By Definition 1.12, by the point in any path at which 
a question is asked about I, we must already have the information nec- 
essary to recommend play at the (X3, X4) node and the (X5, X6) node. In 
some cases (e. g. if X3 `1 and X5 -= X6 = 0) we can exit to a final state 
straight from information about IX3, X4, X5, X6}. However, in cases where 
max{X3, X4} = maxfx5, X61 we will need to use information about I, with- 
out losing information about what to play at the later nodes (i. e. a state 
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questioning x, is required). There are four possibile combinations of optimal 
play at the later nodes when maxIX3, X4} = maxjx5, X6}, all of which might 
be required for some combination of the six variables, namely that 

1. We should play Up at the upper node and Up at the lower node; 

2. We should play Up at the upper node and Down at the lower node; 

3. We should play Down at the upper node and Up at the lower node; 

4. We should play Down at the upper node and Down at the lower node. 

For each of these possible combinations, we will need a separate question- 
ing state on x, (or, trivially equivalently, on X2). This makes four states. 

When maxjX3, X4} = maxjx5, X6}, to resolve which of the four combina- 
tions of optimal play of later nodes we are in requires up to four questioning 
states (checking the values of each Of jX3, X4, X5, X6j)- Since none of these 
states is examining the value of xj, none of them can be any of the four states 
previously identified questioning xi. 

There are four final states: UU, UD, DU, DD. No final state can question 
the value of a variable, so all of them must be additional states to the eight 
previously identified. 

Four plus four plus four equals twelve, so the minimum number of states 
of a BRFA satisfying Definition 1.12 is twelve. n 

Since we can exhibit an 11-state FRFA, while the previous proposition 
shows that the state-minimal BRFA must have 12 or more states, a corollary 
follows automatically, namely 

Corollary 1.2 Forwards reasoning is more efficient than backwards Mason- 
ing, by the state-counting criterion, for solving the problem of optimal play 
at all reached nodes Of the game. 

1.12 Discussion 
Why is forwards reasoning still better? The main reason appears to be 
that the FRFA is able to "forget" irrelevant information (in the sense of the 
information not being recoverable from which state the FRFA is in)" which 

"We note, once again, that our FA has no memory, and so, strictly speaking, is not 
capable of either remembering or forgetting anything. 
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the BRFA is forced to retain. Since it doesn't really matter which Of X5 
and X6 is better if we are going to go Up at the first node anyway, having 
separate states to tell us which of these is better is inefficient. The BRFA 
is forced to do this. The FRIA is not. 

It is in the nature of the problems studied here that backwards reasoning 
is more susceptible to the irrelevance trap than forwards reasoning. When 
there are problems in which there is more danger of irrelevance when rea- 
soning forwards, we should expect that backwards reasoning would prove 
superior. One very straightforward (and trivial) class of such problems are 
those in which there is no need to examine the values of the first-stage payoffs 
at all. For example, suppose we modify our definition of an FA such that 

X1 i X2 i X3 i -X4 E 10,1 } 
X5) X6 E 1-1000, +10001 

E= to, 1, -1000, +10001 Then it is clear that we need only examine the values of x5 and X6, and 
thus do not need to reason forwards. We do not, of course, need to reason 
backwards as such, either! 

A less trivial class of cases can be illustrated by Figure 1.7. In this 
figure we consider a case in which there axe three stages, at each of which 
the decision-maker decides whether to go up or down and thereby receives 
a stage-payoff. At the first stage the stage payoff is either 1 or 0. At the 
second stage either 2 or 0. And at the third stage either 4 or 0. It seems 
clear that, if we axe trying to solve for optimal play at the first decision- 
point, an algorithm along the following (backwards-reasoning) lines must be 
superior to any forwards-reasoning algorithm: 

1. Examine all third-stage payoffs. If all the stage-payoffs of value 4 lie 
in the upper half of the figure, go Up at the first stage. If all the 
stage-payoffs of value 4 lie in the lower half of the figure, go Down at 
the first stage. Otherwise proceed to step 2. 

2. Examine all second-stage payoffs of branches leading to the maximum- 
valued payoffs identified in step 1. If all the stage-payoffs of value 2 
lie in the upper half of the figure, go Up at the first stage. If all the 
stage-payoffs of value 2 lie in the lower half of the figure, go Down at 
the first stage. Otherwise proceed to step 3. 

3. Examine the first-stage payoffs, and choose the branch containing the 
higher payoff. 

The reason why forwaxds-reasoning might prove inferior in this case is 
that it contains an irrelevance trap. If only one of the final-stage payoffs is 
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(0,4) 

Figure 1.7: 

4 there is nothing to be gained by knowing any of the earlier-stage payoffs, 
just as in Figure 1.2, if x, .4 X2 there is nothing to be gained by knowing 
the value of later payoffs. In general, in such two-branch two-possible-payoff 
trees, we conjecture that a sufficient condition for backwards reasoning to 
prove superior to forwards reasoning is that the higher stage payoff from any 
round be greater than the sum of the higher stage payoffs from all previous 
rounds. Where the irrelevance lies is crucial to what represents efficient 
reasoning. 

We noted earlier that, for the problem of what to do at the first node, 
there were 7-state implementing FAs which were neither FRFAs nor BRFAs- 
It seems plausible that in certain situations neither forwards reasoning nor 
backwards reasoning might be optimal, but instead some reasoning process 
in which, perhaps, we reason forwards then backwards then forwards again 
(say). 

However, the point of this section is that there is probably a large class of 
cases in which backwards reasoning will prove inferior to forwards reasoning 
because it leads us to solve sub-problems we don't need to solve. 
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We have considered the question of whether it is ever best to solve a problem 
by reasoning forwards as opposed to backwards. We have developed a tool 
for studying this question -a decision-problem-solving Finite Automaton - 
and displayed that, at least for certain simple special cases and on the basis 
of a state-counting criterion of efficiency, forwards reasoning can be more 
efficient than backwards reasoning. 

This would appear to offer a partial explanation of the empirical results 
of Camerer et al. (1994) and Johnson et al. (2001) that subjects do rea- 
son forwards in certain situations (albeit different situations from ours), and 
some justification for having restrictions on our ability to reason forwards as 
an element of bounded rationality, thereby closing the explanatory gap iden- 
tified in the introduction to this section. If some problems are best solved 
by reasoning forwards, it may be that forwards reasoning would be quite 
widespread even in the absence of bounds on rationality. However, it should 
be noted that our interpretation of our second result - namely that it is driven 
by the need for backwards reasoning to retain more irrelevant information 

- makes our results here more plausibly applied to decision-problems than 
to strategic settings. In a decision-problem it seems reasonable to consider 
only reached nodes (assuming we face no trembling-hand problems). In a 
multiple-player game this seems less reasonable. Then I would want to know 
what you might do if I did something different. In a strategic environment 
there may be much less irrelevance, and a separate proof of the efficacy of 
forwards reasoning might be required. 
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Chapter 2 

Foundations of Limited 
Foresight 2: Foundations of a 
Foresight Horizon 

2.1 Introduction 

In Chapters 1&2 we are investigating the question of why an agent might 
have limited foresight. In Chapter 1 we have seen that even a Rational agent 
may reason forwards. In the current chapter we shall move on to investigate 
the meta-Rationality problem further, and solve for just how fax forwards 
such an agent will reason. We will continue to use the Finite Automata we 
have examined in the first section. We shall restrict attention to a case in 
which an agent has a uniform foresight length - he looks the same distance 
down every path. This is clearly a modelling abstraction. In chess, for 
example, players do not typically examine every possible move they might 
play to a length of, say, two moves ahead. Instead they examine only a few 
plausible first-moves, and perhaps examine some of these two moves ahead, 
others three, others four - even in these cases only down what appear to be 
the most likely paths. 

We would defend this abstraction in two ways. First of all, it makes 
our task as modellers; simpler and more concrete, and we consider it to be 
the most obvious first step. Second, it is the same abstraction adopted in 
the Jehiel environment which is the best developed of the limited foresight 
models. Nonetheless, we acknowledge that it is a strong assumption. 

35 
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2.1.1 Thinking about thinking 
One might think that, if we are to incorporate cognition costs into our models, 
we will be inconsistent if we do not also include costs of thinking about 
thinking, thinking about thinking about thinking, etc. '. That approach is 
not followed here. 

We introduce costs of thinking into our models because the presence of 
non-negligible thinking costs appears to be a good way to motivate and 
calculate a limited foresight horizon. There seems no reason why the costs 
of thinking about thinking should be the same as the costs of thinking, and 
it is not at all obvious why costs of thinking about thinking, though perhaps 
non-zero, should not be negligible. For example, one reason why it might be 
costly to solve a problem is that the agent may not have faced this particular 
problem before (or only rarely), and hence may need to engage in costly 
analysis to solve it2. In contrast, the process of solving new problems per se 
has presumably been engaged in all the agent's life, and by his ancestors and 
members of his society since the dawn of time. Hence we can reasonably 
regard the agent as having had forever to work out how best to go about 
solving new problems, and he may not need to analyse how to do this at 
all, but rather "just do it" optimally. Hence in the models presented in this 
section, we shall assume that looking ahead is costly, but that thinking about 
how far to look ahead bears no relevant costs. 

2.2 Endogenising Foresight Length in a Decision- 
Problem 

We shall use the FAs introduced in Chapter 1 to solve for the optimal fore- 
sight horizon of an agent who has to employ FAs to solve the decision- 
problem in Figure 1.2. 

What constitutes foresight in this problem is how far ahead our decision- 
maker forms expectations over his own play and/or takes account of payoffs 
he will receive. We shall assume that our players are deciding, each round, 
what to do that round. For example, if they simply guess what to do at the 
first node, taking no account of available payoffs at all, we shall call that a 
foresight horizon of 0. If they decide what to do on the basis of the payoffs 
consequent only on the decision at the first node - i. e. on x, and X2 - we shall 

'See, for example, Gabaix & Laibson (2000b) 
2Presumably a great deal of skill and analysis was employed by Pythagaros in formu- 

lating his famous theorem. Rather less is involved in learning it for the first time today, 
and almost no skill is involved in employing it once it is learnt. 
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call that a foresight horizon of 1. If their decisions at based on the payoffs 
available at both stages of the problem, we shall call that a foresight horizon 
of 2. 

2.2.1 State-counting 

We shall assume that each state of an FA costs qE R+- We shall need to 
make a further assumption about how players evaluate the worthwhileness 
of looking ahead. We compare two such assumptions - first, that players 
aim to minimize their net potential lost payoff; second that players aim to 
maximise a form of expected utility. 

Minimising net potential lost payoff 

We shall assume in this subsection that players choose a foresight length so as 
to minimise their net potential lost payoff. Such a player's main concern in 
choosing his foresight length is that he does not make a mistake in play which 
leads to his not obtaining a high payoff when there was one available. For 
example, if a player guesses what to do at the opening round without using 
information about any of the variables involved (i. e. if he has a foresight 
horizon of 0) he risks ending up with a payoff of 0 from the decision-problem 
when, by making the optimal choices at each node, he might, if the realisation 
of the variables were favourable and he made the best choices, have gained 
a payoff of 2 instead. So the potential lost payoff from a foresight horizon 
of 0 is 2, and since it costs him nothing to guess at the start, this is also the 
net potential lost payoff. 

If the player wants to base his decision of which action to take at the 
initial node (i. e. simply whether to go Up or Down) on the payoffs at the 
first stage (i. e. on a comparison of x, and X2) he will require at least a 
three-state automaton, as shown in Figure 2.0 

This will guarantee he will forego no more than 1 of payoff (since the 
worst he could do would be to choose to go Up when X3 == X4 =0 but X2 = 

max(x, 5, X6) = 1, or go Down when max(X3 , X4) =1 but X2 = max(X5, X6) = 

0), but it will cost him 3q to use it. So his net potential lost payoff is 1+ 3q. 
If he wants to use information about payoffs at both stages of the game, 

as shown in our Main Lemma, he will require a seven-state FA such as that 

3 This first assumption is offered merely to illustrate the endogenising concept very 
simply. We do not pretend it represents a plausible form of rational motivation, and offer 
no arguments in favour of it. 

4 This is clearly state-minimal because there is one question (the minimum positive 
information-gathering possible) and two actions between which to recommend. 
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Figure 2.1: 

shown again in Figure 2.2. 
If he uses this automaton, he will guarantee that he makes no mistake in 

play, and hence will forego no payoff, but it costs him 7q to employ this FA. 
The discussion of this section so far is summarised in the following table. 
Foresight (Rounds) Potential lost payoff Cost Net potential lost payoff 
0202 
11 3q 1+ 3q 
20 7q 7q 

Proposition 2.1 If players are net potential loss minimizers, and q< j' 40 
the optimal foresight horizon is 2 or more, covering the whole game. If 
I <q< . 1, the optimal foresight horizon is 1. If q>1, the optimal horizon 33 
is 0 and the player should guess at the opening node. 

Proof. This follows immediately from the information in the table above. 
0 

Maximising expected net payoff 

An alternative assumption is that players choose a foresight length so as to 
maximise expected net payoff. This is more complicated but still reasonably 
tractable. 

First we need an assumption about the distribution of the xi. We shall 
assume there is a 50/50 chance of each of the payoffs being either 1 or 0, 
and that our decision-maker knows this. He also knows that the payoffs axe 
independently distributed. 

We must establish what, in equilibrium, players will do at the second 
reached node. We shall prove by contradiction that players adopting a 
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Figure 2.2: 

foresight length of 0 assume that they will also adopt a foresight length of 
0 at the second node (i. e. if someone is going to guess at the start he is 
assuming he will guess later as well), except in the special case of q= -L 12 
We shall proceed to show that this leaves the boundary between choosing a 
foresight length of 1 and a foresight length of 0 unaffected. 

Remark 2.1 It follows immediately from the fact that all Of (X31 X41 X5v X6) 
are drawn ft-orn 10,1} that the expected net payoff from adopting a foresight 
horizon of 0 at either the upper or lower second-stage nodes is ý' 2' 

Proposition 2.2 The expected net payoff from adopting a foresight horizon 
of 1 at either the upper or lower second-stage nodes is 3- 3q. 4 

Proof. A player with a foresight horizon of 1 must use a three-state FA 
like Figure 2.2 (questioning X3 at the upper node or X5 at the lower node), 
thereby incurring a cost of 3q. Use of this FA is sufficient to guarantee playing 
optimally, thereby securing maxIX3, X4} at the lower node, or MaxIX5, X6} at 
the upper node. The expected value of maxjX3, X4} is 1, hence the expected 4 
net payoff is 3q. m 4 

Corollary 2.1 It follows from Remark 2.1 and Proposition 2.2 that players 
will choose a foresight length of 1 at the second stage only if 3q :5 . 1, i. e. only 4 
if q 112- 12 
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Remark 2.2 A player guessing at both nodes (i. e. adopting a foresight hori- 
zon of 0 at each node) will have an expected payoff of 1+ .1=1. 22 

Proposition 2.3 Assuming that players believe they will choose what is best 

at the second stage (i. e. they will adopt a foresight length of 1 and hence 

choose maxj-'r3, X4} (or, at the upper node, maxf x5, X6}) at the second stage), 
the expected net payoff from adopting a foresight horizon of 0 at the outset is 
1.25 - 3q. 

Proof. Consider the expected value of 7r(U) = x, + maxIX3, X4}. This 
gives the following: 

E(7r(U)) = E(xi + max{X3, X4}) + E(max{X3, X4}) 1.25 2 
By the symmetry of the problem, E(7r(D)) = E(7r(U)) 1.25 
At the second stage there will be a cost of 3q, so the expected net payoff 

of a foresight horizon of 0 is 1.25 - 3q. m 

Proposition 2.4 A player who believes that he will adopt a foresight horizon 
of 1 at the second stage has an expected net payoff from adopting a foresight 
horizon of 1 at the first stage of 1.5 - 6q. 

Proof. E(maxfxl, X2D = E(maxfX3, X4}) = E(maxjx5, X61) = 
24 

3+2=1.5 
4 

Each stage of using the three-state FA costs 3q, so the expected net payoff 
from a foresight horizon of 1 in this scenaxio is 1.5 - 6q. m 

Proposition 2.5 A player who believes that he will adopt a foresight horizon 
of 0 at the second stage has an expected net payoff from adopting a foresight 
horizon of 1 at the first stage of 1.25 - 3q. 

Proof. Since the expected payoff from his guess at the second stage is .1 21 

as in Remark 2.1, this scenario gives him an expected payoff of E(max{xl, X2})+ 
1=3+1=1.25 :i2 

Using the three-state FA at the first stage costs 3q, so the expected net 
payoff from a foresight horizon of 1 in this scenaxio is 1.25 - 3q. m 

Proposition 2.6 A player who believes that he will adopt a foresight horizon 
of 1 at the second stage has an expected net payoff from adopting a foresight 
horizon of 2 at the first stage of 1-L9 - 10q. 32 

Proof. Using the seven-state FA of Figure 2.2 to base the decision on 
both stage I and stage II payoffs delivers an ex ante expected payoff of 
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E(max{xl + maxjX3 , 
X4} i X2 + max {x5, x6}}) =1 

19 
. To see this, note that, 

for independent xi E 10,1} with probabilities (1,1j, 
22 

Pr (xi )= 1 = X2 = X3 X4 = X5 = X6 =0 64 
Pr (MaX{X3 

, X4} 1) =2, and Pr (xi = 1) =1 42 

=* Pr (xi + maxjX3, X4} = 2) =3 
=>. Pr (xi + maxIX3, X41 : 34 2) = g5 

Pr (max{xl + maxIX3, X4}, X2 + MaX{X5, X6}} 2) = 2-5 
64 

Pr (max{xl + maxIX3, X4}, X2 + MaX{X5, X6}} 2) = L9 
64 

==>E(max{xl+maxIX3, X4}, X2+max{x5, X6}})= 1(0)+39(2)+ (64-1-39) (1) 

119 
64 64 64 

32 
This costs 7q, with an additional cost of 3q to use the three-state FA at 

the second stage, so the expected net payoff from a foresight horizon of 2 is 
119 - 10q. 32 

Proposition 2.7 Optimal foresight lengths at the first stage are as follows: 

For q> -L we should choose a foresight length of 0 12 

2. For q< -2- we should choose a foresight length of 2 128 

3. For -L >q> -L we should choose a foresight length of 1. 12 128 

ProoE Corollary 2.1 shows that for q< -1, players will adopt a fore- 12 

sight length of 1 at the second stage, hence Proposition 2.7.2 and the lower 
boundaxy of Proposition 2.7.3 follow from Propositions 2.4 and 2.6, since 
those imply that players will choose a foresight length of 2 over 1 at the 
first stage when foresight length is 1 at the second stage and 4q < -2-, i. e. 32 
when q<< -L. The upper boundary of Proposition 2.7.3 follows from 128 12 
Propositions 2.3 and 2.4, since those imply that agents will choose a foresight 
length of 1 over 0 at the first stage when 3q < . 1, i. e. when q< -L. It remains 4 12 
to prove Proposition 2.7.1, because, Corollary 2.1 and Propositions 2.3 and 
2.4 also imply that when players believe they will choose a foresight length 

of 1 at the second stage they will never choose a foresight length of 0 at the 
first node except in the special case of q= T12. For q> f12-, i. e. when the 12 12 
foresight horizon will be 0 at the second stage, Remark 2.2 and Proposition 
2.5 imply that we should choose a foresight horizon of 0 at the first stage if 
1>1.25 - 3q, i. e. if q> -L, so Proposition 2.7.1 follows. m 12 
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2.3 Discussion 

Our main purpose is to illustrate a method and build theoretical foundations, 

rather than to make predictions. However, it is striking quite how low 
the state-costs, q, have to be (compared with the available payoffs) for an 
expected-payoff maximiser to justify having a foresight length encompassing 
the whole game, even in this very simple scenario. If an expected-payoff 
maximising player facing a potential loss of 1 will prefer this (i. e. a limited 
foresight length) to guaranteed optimising (i. e. a complete foresight length) 
for a cost of only --L per state, even in a case where the highest number 128 
of states under consideration is only 7, it seems very plausible to us that 
in only slightly more complicated problems with much higher total-state 
requirements, foresight horizons which do not encompass the whole game 
may be very widespread. If this insight is correct, it illustrates the benefits 
of seeking foundations. 

2.3.1 Alternative forms of cognition cost 
Costing states of our automaton may not be the best way to measure the 
cost of using an automaton. For example, we might prefer to cost the FA's 

paths rather than its states. Three alternative measures of the cost of the 
paths of the FA here seem plausible: 

1. We could count the total number of paths in the automaton. Since 
the state-minimal automaton has seven states, of which two are final 
and the rest questioning, and since every questioning state must have 
two exiting paths, the ten paths of Figure 2.2 are obviously also path- 
minimal by this measure. Costing the FA is then trivially analagous 
to the method shown above. 

2. We could use the average path-length between the initial state and the 
final state reached, averaging over realisations of the variables. The 
average path length for the FA in Figure 2.2 is 2.75. Whether this is 
minimal remains an open question. 

3. If our agent is an expected payoff maximiser, he could cost only the 
paths he would actually use for any realisation of the variables, and 
thereby calculate the net payoff in that way. Quite what criterion one 
should use for determining which FA the player employs in this case is 
slightly obscure. 
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While plausible, it appears to us that, in the absence of any compelling 
grounds for believing that 'true' cognition costs axe more accurately reflected 
by paths than states, state-counting is sufficient to deliver the insight neces- 
sary in this axea. 

2.4 Conclusion 

In this chapter we have used our Finite Automata to determine an optimal 
foresight length for a decision-maker. We have considered two evaluation- 
rules for player deciding how fax ahead they should look - minimising the net 
potential lost payoff and maximising the expected net payoff - and illustrated 
how adopting a limited foresight length can be the fully rational thing to do 
when solving problems is costly. For our preferred concept (expected net 
payoff maximisation) the state-cost required to justify an unlimited foresight 
horizon is so low compared with the potentially available payoffs that we 
believe it is reasonable to expect that rational players might routinely adopt 
limited horizons even in relatively simple finite-horizon problems, and that 
limited-foresight reasoning might be much more wide-spread that is usually 
thought. Rational players might often be well-advised not to look too fax 
ahead. 

2.5 General Conclusion for Chapters 1&2 
In Chapters 1&2 we have been attempting to construct rational foundations 
for Limited Foresight modelling. We have shown that rational players may 
want to reason forwards in certain situations, and hence that models involving 
Foresight axe well-justified. We have gone on to show how a forwards- 
reasoning agent might rationally choose a limited foresight horizon. The 
insights in both cases could be interpreted as suggesting that limited foresight 
reasoning might be very widespread, and not merely constrained to special 
complicated situations like a chess game. 

Further useful reseach in this area would include devising more efficient 
and elegant ways of identifying the state-minimal FA for solving a given 
problem; proving that forwards reasoning can be more efficient in strategic 
settings; showing how to solve for an optimal limited horizon in a strategic 
setting; extending the results to settings with chance variables and mixed 
strategies; and investigating decision-problems with richer strategy and pay- 
off spaces. 

If limited foresight reasoning is as widespread as we suggest, going to 
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the trouble of modelling may be worthwhile, provided we can come up with 
solution-concepts which offer a plausible account of what limited foresight in- 
volves and which offer the possibility of modelling limited foresight problems 
tractably. How to do that is the subject of the next chapter. 



Chapter 3 

Do we need a new approach to 
limited foresight? 

3.1 Introduction 
In our first two chapters we have looked at why people might have limited 
foresight and argued that limited foresight reasoning is likely to be quite 
widespread, applying to many different sorts of problem, and hence worth 
attempting to model. But how should we do it? How effective are the ap- 
proaches already available in the Came Theoretic literature? Do we, perhaps, 
need some entirely different approach? ' 

In Chapter 7 of Rubinstein (1998), the author compares two models of 
limited foresight. In both models agents can look ahead a certain number 
of periods but not right to the end of the game, and in neither case do 
agents form any guess as to what will happen beyond the foresight horizon. 
The models differ in that in one case agents only determine their action in 
the current period and guess what they will do in later periods up to the 
horizon (with a feature of equilibrium being that these guesses will prove 
correct) while in the other agents form a plan about their actions across the 
foresight horizon (which can fall victim to time inconsistency). Rubinstein 
says that "the two approaches fall short of capturing the spirit of limited- 
foresight reasoning. "'. In this chapter we shall consider what he means by 
this, whether he is right to think these approaches unsatisfactory, and what 
a different approach might look like. 

Our key expression of the first of these notions will be a version of Je- 

'e. g. Perhaps something like the "bounded lookahead" found in the Artificial Intelli- 
gence literature? - see Jehiel (1998b) 

2 Rubinstein (1998), p. 134. 

45 
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Figure 3.1: A simple decision problem with limited foresight. 

hiel's (1995) (ni, n2)-equilibrium concept. For the purposes of this chapter, 
we shall call this the 'Jehiel' concept. Our key expression of the second 
notion will be an equilibrium concept in the tradition of the time consistency 
literature following Strotz (1956) and Pollack (1968). We shall call this the 
7naive' concept. To illustrate the distinction immediately, consider Figure 
3.1. 

In Figure 3.1 we have a one-person decision problem. Each circle repre- 
sents a point at which an action is to be taken. The branches of the tree 
represent those actions, and at the first two decision-points the agent can 
choose to go up or down in the tree. Branches which have no sub-branches 
represent terminal nodes. The decision-maker receives payoffs after each ac- 
tion corresponding to the numbers. Suppose that he can see ahead one 
period. Then from period one he can see that if he goes down to start with 
he will receive a payoff of 1 and the game will end, while if he chooses to go 
up then he will be able to choose between a payoff of 2 if he goes up as his 
second action and 0 if he goes down. 

It is convenient to consider our concepts in reverse order. Under the naive 
concept, in which he forms a plan across his horizon and acts according to 
that, he will choose to go up at the first decision-point, anticipating that he 
would then choose to go up again at the second decision-point. However, 
having reached the second decision-point, he will then be able to see to the 
end of the game, and realise that if he goes up at the second decision-point, 
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he will then have no choice but to go up again at the third action-point and 
receive an additional payoff of -3. Thus going up will deliver a net payoff 
of -1, and he will instead opt for going down at the second action-point, 
receiving the superior payoff of 0. So the naive equilibrium of this game is 
for the agent to adopt the overall strategy (specifying what he would do at 
each action point in turn) (Up, Down, Up). In a sense this agent makes a 
mistake because he fails to take account of his limited foresight. 

In contrast, under the Jehiel concept we have in mind an agent who is 
aware of his limited foresight. He has perhaps played the game many times 
before, and is aware that, from this situation, if he were to choose to go up 
at the first decision-point, he would then choose to go down at the second. 
He is not sure why he would do this, i. e. he does have limited foresight. But 
he has learned that that would be his behaviour, and what he has learned 
is correct. So at the first decision point he believes (correctly) that he 
is choosing between going down and receiving a payoff of 1, or going up 
and receiving a payoff of 0. He goes down, and in the Jehiel concept the 
equilibrium strategy is (Down, Down, Up). 

There is a great deal more that could be said about these concepts, but 
this example illustrates the key distinction. What Rubinstein says he dislikes 
about them is that by "the first approach [i. e. the Jehiel concept], a player 
treats his future behaviour as given, though he can influence it. By the 
second approach [i. e. the naive concept], he treats the other players' plans 
as known, though he does not know his own moves. " The main question 
we shall address is whether there is anything fundamentally unsatisfactory 
about these two approaches which would not be addressed by refining them 
(for example, by granting players the ability to guess - perhaps incorrectly - 
what would happen beyond the horizon). 

If these two concepts axe flawed or insufficient, that would be a significant 
conclusion, because a great deal has been done with them. There is an ex- 
tensive time consistency literature, in which the virtues of pre-commitment3, 
sophistication and naivete about one's time consistency 4, and many other is- 
sues have been investigated. Jehiel, on the other hand, has shown that with 
agents who, like here, make no guess beyond the forecast horizon, an (ni, n2)- 
solution always exists 5; that such solutions are cyclical; that the equilibrium 
forecasts associated with such solutions do not depend on history and that 
the memory capacity of the players has no impact on the set of solutions as 
long as it is finite; that for generic repeated alternate-move 2x2 games a 

3Strotz (1956) 
4 O'Donaghue & Rabin (1999) 
5in Jehiel (1995), in a repeated alternate-move environment, with two players and 

limited recall. 



48 CHAPTER 3. DO WE NEED A NEW APPROACH ? 

solution always exists which holds for all nj, n2 sufficiently large; that play- 
ers can sometimes do better with a shorter foresight length; and with agents 
who do make a guess beyond the horizon, he has shown that co-operation 
can sometimes be the only equilibrium in a repeated Prisoners Dilemma. He 
has shown that his concept arises out of a learning process with trembles 6. 

Thus it seems worth investigating whether Rubinstein is right, and seeing 
what he might mean by suggesting that the current approaches are unsatis- 
factory. We shall start off by formalizing these concepts for our purposes, 
and see in what ways they are similar and in what ways they differ. We 
shall go on to suggest a reason why they might, at first seem unsatisfactory, 
but then address this worry in certain cases, offer a refinement of the Jehiel 
concept which responds to Rubinstein's critique, and identify the residual 
class of games for which Rubinstein's suggestion is most convincing. 

3.2 Defining the concepts 

3.2.1 Notation 
Our points will be largely conceptual, and hence for ease of exposition we 
shall use a restricted class of games. Our results can be generalised quite 
straightforwardly. We shall consider a maximum of two playerS7 engaged 
in a game of perfect information with simultaneous moves, chance players 
and stage payoffs. Player 0 is defined as the chance player. In the first 

stage of the game players iEI= 11,2} choose actions from finite choice 
sets Aj(ho) where history h' =0 and some choice sets may be the singleton 
" do nothing". At the end of each stage all players observe the stage's 
action profile a' = (a', a', a'), and receive a payoff ui (at, ht), where history 012 
ht =- (ao,..., at-1). Denote the set of all histories as H. Denote by Aj(ht) 
player i's feasible actions in stage t when the history is ht. When chance 
does not do nothing, its action is selected from a probability measure, f, (-I ht) 
on chance's feasible action set, AO(ht). Each player's payoff at a terminal 
history is the sum of the payoffs he collected along the history. In a one- 
player game player 2 does nothing at every stage and receives zero stage 
payoffs at every stage 8. 

6 Jehiel (1998a) 
71 shall refer to the player whose choices we are considering as 'he' and the other player 

as 'she', even when we switch which player's choices we are considering. 
8 We shall refer the one-payer game as a "limited-foresight decision-problem". A game 

which finishes in finitely many rounds, T, will be referred to as a "finite game and the 
one-player variant as a "finite limited-foresight decision-problem". 
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Let A (Ai (hl)) denote the probability distributions on Ai (W). A be- 
haviour strategy for player i, denoted qj is an element of the Cartesian prod- 
UCt XWEHA (Ai (ht)). This specifies a probability distribution over actions 
at each ht and probabilities for different histories are independent. A profile 
of behavioural strategies is given by q= (qj, q2) 

Players have perfect recall, and know the decisions they are going to make 
in the current round. Looking ahead, each player has a foresight horizon ni, 
over which he is seeking to maximise the sum of his expected payoffs, where 
these expected payoffs arise out of the expected outcomes of chance moves 
and behavioural strategies, and obey the von Neumann and Morgenstern 
expected utility axioms. He takes no account of what happens beyond his 
foresight horizon, and forms no guess about it. 

Denote by qi, t the behavioural strategy of player i in stage t. Define 
qi, t,,, = (qj, t+j,..., qi,,, ), and q-i, t,,, = (q_j, t+j,..., q-i,, ), so that qi, t,, v and q-i, t,, v 
become player i and other player's behavioural strategies between rounds 
t and v. Denote by (qi, v)t the belief player i has in round t about the 
behavioural strategy he will follow in round v. Similarly define (q_j, V), as 
the belief player i has about what the other player will do. Then (qi,,,,, )t 
and (q-i,,,,, )t as expected denote player i's beliefs at round t about what he 
and the other player will use as their behavioural strategies between rounds 
v and w. Define zi =t+ ni - 1. Define iý, t _= 

(qi, t+,,,, i)t and ý_j, t =_ (q-i, t,,, )t. 
Then denote by 5Fi, t (qj, t,; Rti; T_j, t, ht) player i's belief at round t about the 
expected sum of (possibly discounted) payoffs from the current round to his 
foresight horizon, if he uses the behavioural strategy (qi, t, ; ý,, t) (which we shall 
term player i's " --strategy") over the next ni rounds and the other player 
uses the behavioural strategy ý_j, t (which we shall term the other player's 
"-strategy") over the same period. If there is only one player then ý_j, t = 0. 
If the game finishes before round zi then superfluous elements of ; ý,, t and ý_j, t 
are set empty. 

3.2.2 Formalising the two approaches 
Armed with our notation, we shall now give formal definitions of the two 
approaches. 

The "Limited Foresight Equilibrium - Jehiel Version" (LFE-J) con- 
ditions 

The definition given here will be a slight reformulation of Jehiel's 1995 
(ni, n2)-equilibrium concept, because there his concept was applied to re- 

(,!; ý 
T- 
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peated alternate-move games with players with limited recall. For our pur- 
poses here, we shall call a strategy profile, q, an LFE-J if, and only if, for all 
players, all histories, all actions, and all time periods, 

1. The behavioural strategy of each player in the current period is justi- 
fied, given the other player's --strategy, and an expectation as to what 
each player himself will do in later periods out to the horizon. More 
precisely 

qi, t = arg maxq,,, Fi, t (qi, 
t, ýi't, i, t, ht) , Vi, t, ht 

2. The strategies are consistent, in the sense that the expectations players 
form of their own and the other player's behavioural strategies out to 
the horizon of foresight prove correct. More precisely, 

ý_i, t =- (q_i, t, ýi)t = q-i, t,, i, and 
; Ti, t _= 

(qi, t+,,,., )t = qi, t+,,, i, Vi, t, ht 

The "Limited Foresight Equilibrium - Naive Version" (LFE-N) con- 
dition 

A strategy proffle, q, is an LFE-N if, and only if, for all players, all histories, 
all actions, and all time periods, 

i. The --strategy of each player is justified, given the other player's --strategy. 
More precisely, controlling qi, t and iý,, t, 

5Fi, t (qi, t, iý,, t, ý-j, t, ht) ý: Fi, t (qil, t, i7i, t, ý-i, t, ht) , Vi, t, ht 

ii. The expectations players form of the other player's behavioural strategy 
prove correct, up to the horizon of foresight. More precisely, 

ý-j, t -= 
(q-i, t,,, )t = q_i, t,,,, Vi, t, h' 

3.2.3 Initial Results 
Our aim in this chapter is to identify a preferred solution concept for limited 
foresight problems. Two important aspects of this include how the different 
concepts available in the present literature compare with one another and 
when these concepts exist and/or are unique. Appendix D exhibits various 
existence and uniqueness results for the naive and Jehiel concept. Here we 
focus on comparing them. 
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Results comparing the naive and Jehiel concepts 

Proposition 3.1 Them is no inclusion between the naive and Jehiel con- 
cepts. 

Proof. As the game in Figure 3.1 illustrated, the concepts lead to dif- 
ferent equilibrium outcomes, not every LFE-N is an LFE-J, and not every 
LFE-J is an LFE-N. n 

Next we shall prove that if a naive equilibrium happens to be consistent, 
then it is always also a Jehiel equilibrium. 

Definition 3.1 A "time- consistent" LFE-M has the following property, in 
addition to (i. ) and (ii. ) above: 

iia. (qi, 
t+l, t+k)t ý (qi, 

t+l, t+k)t+m, Vi, t, Vm, k< ni - 1, Vl <k 

Proposition 3.2 Every time-consistent LFE-N is an LFE-J. 

Proof. In Condition (i. ) set iý, t such that qi, t will be maximal. Then 
Condition (1) is satisfied. In Condition (iia. ) set 1=1, set m=k= 
ni -1 =* t+m=t+k= zi, and note that (qi, t+,,,, ),., = qi, t+,,,, (since players 
cannot be mistaken about what they are going to do in the present round). 
Then Condition (2) is satisfied. m 

However, it is not true that every LFE-J will be a time-consistent LFE-N, 
as Figure 3.1 illustrates. There the solitary LFFJ is not an LFE-N at all. 

3.2.4 Comparing the two approaches 
What Jehiel has in mind in his concept is players who have played the game 
many times before, and have learned how it works. They recognize that 
they have only limited foresight, and understand that in later rounds actions 
that look likely to be what they themselves will do may not turn out that 
way. The expectations they have about their own play out to the horizon 
are correct, and they correctly anticipate that they cannot correctly deduce 
what they will do in later rounds from the information currently available 
- hence they control only their action in the present round. In Jehiel's 
formulation an issue arises as to what happens in the long-run if players are 
never testing their guesses about what would happen if they picked some 
attractive option which they remember leads to time-inconsistency. Jehiel 

9We shall refer to this below as a* "Limited Foresight Equilibrium - Strategic Control 
Version", for reasons which will become apparent in Section 3.4.1. 
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gets around this problem by assuming that the learning process has trembles, 
so that all possibilities are investigatedlo. 

Rubinstein criticizes this concept because "a player treats his future be- 
haviour as given, though he can influence it". Below we shall prove that, 
though this is one way of interpreting the Jehiel concept, there is a formally 
equivalent set of equilibrium conditions which can naturally be interpreted 
as involving players who form a plan out to the horizon. 

The naive concept is fairly straightforward. We have a player who can 
only see ahead a certain number of periods, and has no means to judge what 
might happen beyond his horizon. We might think that the best he can do is 
try to maximise his payoffs and hope that he doesn't fall into traps like that 
illustrated in Figure 3.1. However, Rubinstein is right to note something 
slightly awry in the concept, when he says that each player "treats the other 
players'plans as known, though he does not know his own moves". For some 
reason not explained, in this form of equilibrium in a two-player game each 
player will always be correct in his assessment of what the other player will 
do, even though he may be incorrect about what he himself will do, and even 
though the other player may be incorrect about what she herself will do! We 
shall examine this problem further in the next section. 

3.3 Problems with the approaches 

3.3.1 Problems with the naive concept? 
The naive concept seems to have most force when we are thinking of a one- 
player decision problem. Then we can think of the naive concept as modelling 
a player who doesn't really understand that the game will continue after 
his horizon of foresight. Once we move to the two-player game the naive 
concept seems flawed in many ways. As we have already mentioned, for 
some reason not explained, in equilibrium players can be incorrect in their 
assessment of their own strategy out to the horizon, even though they are 
perfectly correct in their guesses about the other player's strategy. If they 
are possibly incorrect, why do the players imagine themselves as being able 
to determine what they do out to the horizon? Why isn't it that they pick 
a strategy for the current round, guessing what they might do later? But if 
that were the case, where would such guesses come from? The naive concept 
isn't, supposedly, motivated by the sort of learning considerations present in 
the Jehiel model. 

"Jehiel (1998a) 
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Why should players be correct about the other player's strategy? She 
isn't even necessarily correct about it herself! Where does the information 
come from that makes players more informed about other players that about 
themselves? 

Furthermore, are we really content to call something an 'equilibrium' if 
players change their minds and are likely to feel later that they made mistakes 
even given the information they had at the time? Certainly not changing 
one's mind and not regretting one's play axe not fundamental features of an 
equilibrium, and if the concept were otherwise robust their lack might be 
irrelevant, but mind-changing and regret do make less attractive an equilib- 
rium notion which has already been shown to have fundamental weaknesses. 

3.3.2 Problems with the Jehiel concept? 
We have already mentioned that Rubinstein criticized the Jehiel approach 
because it takes future behaviour as given, even though players can influence 
it. In standard game theoretic models we usually conceive of players forming 
a plan of play which optimizes over the entire game, specifying what it is best 
to do at every decision-point. In Rubinstein's interpretation of the Jehiel 
concept (which is certainly the usual interpretation) players seem unawaxe of 
their influence over their own play in later rounds. It is almost as the Jehiel 
approach involved multiple selves, each regarding moves in later rounds as 
being done by someone else over whose decisions the current self has no 
control. This seems unsatisfactory and contrary to the usual spirit of Game 
Theory. 

However, we can construct a formally equivalent limited-foresight equilib- 
rium concept in which players do control their actions out to the horizon of 
foresight". In this concept players optimize over time consistent strategies. 
That is, once again we could imagine that we have players who have learned 
how the game works. They know that certain strategies lead to time incon- 
sistency for reasons they aren't quite sure of (this uncertainty representing 
the essence of their limited foresight). Thus they know that apparent pay- 
offs from strategies which lead to time-inconsistency axe incorrect, and they 
ignore them. Rom the other possible strategies they form a plan across the 
entire horizon so as to maximise the sum of their expected payoffs. For- 
mally, this concept, which we shall call a "Limited Foresight Equilibrium - 

11The distinction between, in the one case, deciding what to do today based on a correct 
expectation of what I shall do tomorrow, and, in the second case, deciding what to do both 
today and tomorrow, may not be entirely obvious. We investigate this question further 
in Appendix C. 
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Constrained Maximisation Version" (LFE-CM) can be captured by the fol- 
lowing condition: 

A strategy profile, q, is an LFE-CM if, and only if, for all players, all 
histories, all actions, and all time periods, 

a. The --strategy of each player is justified, given the other player's 
strategy. More precisely 

ii�t) = arg max. �tj�t 
ý:, i, t 

(qi, 
t, ji, t, 7-i, t, ht) 

, 
Vi, t, ht 

S. t. 

q-i, t = (q-i, t, Jt = q-i, t,,,, and 

(qi, 
t+l, t+k)t -: -- 

(qi, 
t+l, t+k)t+m , Vm, k< ni -19 Vl <k 

Vi, t, ht 

Remark 3.1 Every LFE-CM is a time-consistent LFE-N 

Corollary 3.1 Every LFE-CM is an LFE-J (by Proposition 3.2) 

Proposition 3.3 Every LFE-J is an LFE-CM 

Proof. Suppose that Condition (2) holds. Consider t+1<s< zi. 
Then (qi, t+,,,, )t -= 

((qi, t+, )t,..., (qj,, )t,..., (qi,,, )t), which, with Condition (2), 
implies (qi,, ), = qi,,, Vs, Vt. Refer to this as condition (*). Now consider 

< s' < k, so that, by (*), (qi,,,, )t = qi,.,, and 
(qi, t+l, t+k)t = 

((qi, 
t+l)t , ..., 

(qi,.,, )t 
, ..., 

(qi, t+k)t 
Hence, (qi, t+,, t+k)t = qi, t+l, t+k. Then consider y=t+m, so that 
(qi, 

t+l, t+k)t+, m -= 
(qi, 

t+l, t+k)y -= 
((qi, 

t+l)y, (qi,., ) 
Y 

(qi, 
t+k)y 

)- 

By (*), (qi,,, )y = qi,.,,, so, (qi, t+l, t+k)t+m qi, t+l, t+k = (qi, t+l, t+k)t. This 
holds for all m, k 

-< ni - 1, and all I <- k. Additionally, by Condition (2) 

we have iT Thus whenever Condition (2) holds, the 
constraints of Condition (a) are satisfied. 

When the constraints are satisfied, in particular the second constraint is 
satisfied for I=1 and k= ni - 1. Then (qi, t+,,, i)t = iý, t = (qi, t+,, zi)t+ = zn 
qi, t+,,.,, and the second constraint fixes iy,, t. Thus the maximisation in Con- 
dition (a) reduces to Condition (1) and hence whenever both Condition (1) 
and Condition (2) are satisfied, then Condition (a) holds. m 
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Corollary 3.2 Since every LFE-CM is an LFE-J and every LFE-J is an 
LFE-CM, it follows that LFE-CM and LFE-J are formally equivalent. 

Thus Rubinstein's criticism of the Jehiel concept seems slightly misplaced, 
in that it is not necessary to interpret it in the multiple-selves way. Instead 
of own future play being taken as given, in this alternative but equivalent 
concept what is taken as given is that certain strategies will lead into time 
inconsistency - and those strategies axe to be ignored. The idea that players 
know which strategies lead into time consistency and ignore all such strategies 
is somewhat problematic, however, as acquiring knowledge of time inconsis- 
tency may be demanding and, anyway, it is not always clear that using a 
time inconsistent strategy will be worse for players than employing a time 
consistent one (as we shall see below in Section 3.4.1. ). " 

There are also further criticisms which one might make of the Jehiel 
concept. For example, it seems rather ad hoc to suppose that players can 
learn perfectly correctly what they have done in the past in periods out to the 
horizon in situations like the current one, and yet not be able to remember 
what payoffs followed from the end of the horizon. Jehiel has modelled 
situations in which players form a guess as to what will follow from the 
end of the horizon13, but it is not clear why the guess at that stage should 
be imperfectly accurate and yet the guesses as to play over the horizon be 
perfectly accurate 14 

. Furthermore, in finite games like that in Figure 3.1, the learning concept 
implies that we should conceive of this game as being repeated as a stage- 
game, perhaps infinitely. Why, then, does the horizon of foresight ever 
reach the end of the game, rather than encompassing the first few rounds of 
the next repetition of the stage game? Suppose that the horizon length is 
three, and that we have some five-round stage game that we are repeating 
indefinitely and learning about over time. The choices that we make in 
rounds 4 and 5 of the stage game will impact on the decisions made next 
time in rounds 2 onwards, and hence may make a difference to play in round 
1. But why, if the foresight length is three rounds, can't we see round 1 
of the next repetition of the stage game from round 4 of the previous stage 
game? If the counter to this is that the Jehiel concept is really only to be 

121n Section 3.4.2 we shall use this idea of controlling future play to develop a refinement 
of the Jehiel concept in which players aim to control play as far ahead as possible, with as 
little knowledge of time consistency as possible, and take future play as given only from 
the point beyond which time consistency problems would arise. 

13jehiel (2001) 
140f course, if the guess about payoffs at the horizon is perfectly accurate then we no 

longer have a limited foresight game. 
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applied to infinitely repeated stage games anyway, then perhaps we do need 
an entirely new approach for finite games with limited foresight? 

3.4 Refining the Jehiel Concept 
For the games in which the Jehiel concept does represent a convincing general 
approach (infinitely repeated stage games), there are a number of potentially 
constructive refinements. As mentioned, Jehiel has already refined his con- 
cept by considering players who form a guess at the foresight horizon. In 
this section we shall investigate a different refinement which responds to 
Rubinstein's critique. 

3.4.1 Motivating time consistency: The "Limited Fore- 
sight Equilibrium - Strategic Control Version" 
(LFE-SC) 

Eaxlier we introduced the concept of a "time-consistent" LFE-N. We now 
offer a different motivation for such an equilibrium concept, which we shall 
hereafter refer to as an LFE-SC and treat as a separate equilibrium concept 
from an LFE-N. We shall see that although this concept meets Rubinstein's 
concern that agents should recognise their ability to control their own future 
play, it faces an existence problem. 

We want to define a limited foresight equilibrium concept in which we have 
agents who are otherwise rational, and like any conventional game-player, ex- 
cept that they can only see a certain distance ahead. Like any conventional 
rational players, they are expected utility maximisers, and choose their strat- 
egy across the horizon so as to maximise their expected payoff. Now to find 
a situation where we axe in equilibrium, we look at the set of strategies and 
expectations that our players have, and choose from among them. 

First, to cut down the set, we choose the subset for which each player's 
expectations about the other player's expectations are correct. This is moti- 
vated by the usual Nash equilibrium considerations. 

Then, to cut down the set even further (and finally) we choose the subset, 
from the subset left after the first cut-down, for which players do not change 
their minds. This is motivated by a certain interpretation of the meaning 
of a strategy in an extended-form game. If, in round t, an agent forms a 
strategy including what he is going to do in round t+k, we contend that this 
amounts to the claim that, in round t, he is able to define his behavioural 
strategy in round t+k. If, when he gets to round t+k, or in any intervening 
round, he changes what he is going to do in round t+k, then he had never 
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truly defined it in the first place. 15 If he cannot define his strategy more 
than in the current round, we are reduced to the LFE-J concept, in which 
he guesses what he will do in later rounds without claiming to be able to 
control them from the current round. " 

Definition 3.2 We shall call a strategy profile, q, an LFE-SC if, and only 
if, for all players, all histories, all actions, and all time periods, it satisfies 
conditions (i. ), (ii. ), and (iia. ) above. 

That is to say that, formally, an "LFE-SC" is just another name for a 
"time-consistent" LFE-N. 

It is important to see how an LFE-SC differs from an LFE-CM. In both 
concept players choose what they shall do across their horizon of foresight. 
The difference is that in an LFE-CM players choose only from among those 
available strategies which do not lead to time-inconsistent play, while in an 
LFE-SC players choose from among all their strategies but axe only in an 
equilibHum in cases where the strategies they adopt are not time-inconsistent. 

Does it make sense to imagine a player who might choose a strategy he 
knows to be time-inconsistent? Consider the decision-problem in Figure 3.2. 

Moves are given by letters. Stage payoffs are given by numbers in bold. 

Proposition 3.4 Suppose that n=2 (i. e. the player can see one round 
ahead). Then the decision-problem in Figure 3.2 has no LFE-SC. 

Proof. Rom the root node, the player will be choosing between playing 
a, yielding a payoff of 2 and ending the game, or b, yielding a payoff of 1 but 
permitting the game to continue into the next round, in which he will plan 
to play a, yielding 2 and a total payoff of 3. So the dominant strategy in 
the opening round is (ba). No other strategy can be optimal. But once the 
second round is reached, he will once again prefer (ba), which is inconsistent 
with his previous plan to play a in the second round. Thus the only optimal 
strategy is not time-consistent, and no LFE-SC can exist. " m 

"We can conceive of the process of defining what a player will do in a later round as 
being analogous to solving the problem solved by the FA in Figure 1.5 (see Appendix C). 

16We can conceive of this as a situation analogous to solving the problem solved by the 
FA in Figure 2.2 (see Appendix C). 

17 Note that if a decision-problem-horizon is such that the player does not have to play 
again, then existence of LFE-SC is guaranteed (since no consistency problem can arise), 
and LFE-SC is in that case equivalent to LFE-J (since both are concerned only with 
optimizing over the current action). 
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a/ 

2 a/\b 
I 

2 

Figure 3.2: 

There is, however, an LFE-CM. In that the player chooses (ab) in the 
opening round and (ba) in the second round. The strategy (ba) in the 
opening round is time-inconsistent and hence not available in an LFE-CM. 
This means that the player forced to adopt time-consistent play will finish 
with a payoff of 2, compared with the payoff of 4 obtained via the (time- 
inconsistent) dominant strategy (ba) at the opening node. Hence it is not 
at all clear that the best strategies to adopt will be found among the time- 
consistent ones, and the LFE-SC concept seems plausible. Nonetheless, it is 
a potentially serious weakness of the LFE-SC concept that the existence of 
an equilibrium is not guaranteed. Hence, although we have gone some way 
to addressing Rubinstein's concerns, we do not yet have a robust equilibrium 
concept. That is the topic of the next section. 

3.4.2 The refinement. The "Limited Foresight Equi- 
librium - Refined Jehiel Version" (LFE-RJ) 

We are now ready to offer a refinement of the Jehiel concept. Our refinement 
involves cutting down the set of Jehiel equilibria (i. e. producing a rule to 
select from that set) by assuming that when players have available time- 
consistent plans they choose these. We assume that players' foresight horizon 
ni is broken down into the period over which they plan what to do, pi (which 

we shall refer to as the "planning horizon7% and the period over which they 
merely have exogenous expectations of what they will do, ni - pi. For the 
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special case of pi =1 LFE-RJ and LFE-J will be equivalent, and, again, for 
the special case of pi = ni LFE-RJ and LFE-SC are equivalent. We shall 
refer to the strategy the player adopts out to his planning horizon as his 
"p-strategy". The precise equilibrium conditions will be as follows: 

We shall call a strategy profile, q, an LFE-RJ if, and only if, for all players, 
all histories, all actions, and all time periods, 

A. The p-strategy of each player in the current period is justified, given 
the other player's --strategy, and an expectation as to what each player 
himself will do in later periods out to the foresight horizon. More 
precisely, controlling (qi, t, t+p, -, 

)t, 

iFi, t 
((qi, 

t, t+p, -, 
)t 

, 
(qj, t+p,, ý, 

jt i, t, ht) > ifi, t ((qi, t, t+p, -, 
)' 

, 
(qj, t+p,, ý, 

jt 
, 
ý-j, t, h') Vi, t, ht 

t 

B. The strategies are consistent, in the sense that the expectations players 
form of their own and the other player's behavioural strategies out to 
the horizon of foresight prove correct. More precisely, 

ý-j't =- (q-i, t, ýjt = q-j, t, ý,, and 
(qj, t+p,,, ý, 

)t = qi, t+p,, 4, Vi, t 

C. Players do not change their minds over the planning horizon about what 
they intend to do. More precisely, 

(qi, t+l, t+k) t= 
(qi, t+l, t+k)t+m , 

Vi, t, Vm, k <- pi - 1, V1 
-< 

k 

D. pi takes the maximum value sufficient to fulfill conditions A. to C. 
above, Vi, t 

Since LFE-RJ is equivalent to LFE-J in the case that pi = 1, Condition 
D. is sufficient to guaxantee existence of an LFE-RJ whenever an LFE-J 
exists". Note also that, when an LFE-RJ includes pi > 1, these will also be 
LFE-Js, as shown in Proposition 3.2. 

Players in an LFE-RJ are trying to control the future as far ahead as they 
can19, and trying to form some guess as to what they will do beyond that 
point, out to some horizon beyond which they cannot see at all. This seems 
a very intuitive way to think about what players facing limited foresight 
actually do. We accept that we are really guessing even what we ourselves 

18Compare this with the case of LFE-SC, for which existence is not always guaranteed, 
as, for example, in the case of the game in Figure 3.2 above. 

"Appendix C argues that it is in their interests to do this. 
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are likely to do beyond some point ahead, but for at least some period ahead 
we expect to be able to decide now what we will do. 

This refinement seems to respond fully to Rubinstein's criticism of the 
Jehiel concept. Players recognise their capacity to control their future play, 
face no artificial restrictions on their strategy space (the restrictions are all 
in the equilibrium conditions) and existence is assured. 

Chapter 5 Ooint with Philippe Jehiel) provides and investigates an ex- 
ample LFE-RJ. 

3.5 Conclusion 

We have investigated two approaches to modelling limited foresight. In one 
approach, players form an optimal plan of play over the foresight horizon, 
but can fall victim to time inconsistency. This seems most attractive as an 
equilibrium notion in one-player decision problems with players who are un- 
aware that their foresight is limited. In multiple-player contexts it produces 
the serious problem that, for no obvious reason, players appear to know more 
about the future actions of other players than about their own future actions. 

In the other approach, players form a guess about what they will do out 
to the foresight horizon, and optimize over their current round behaviour 
only. The suggestion that this runs contrary to the spirit of standard game 
theoretic models in which players think of themselves as controlling their 
play in later periods has been shown to be misguided, as this approach is 
shown to be formally equivalent to an approach in which players optimise 
plans over time-consistent strategies. The concept seems most convincing 
if applied to infinitely repeated stage games with learning. In finite games 
it raises problems of interpretation of the learning claim. In either context 
the concept raises problems of why play should be remembered perfectly but 
subsequent payoffs imperfectly. However, in general the Jehiel concept seems 
to raise fewer problems than the naive concept when applied to multiple- 
player infinite games. We have offered a refinement of the concept in which 
players attempt to control their actions over a planning horizon and thereafter 
form an expectation of what they will do out to a later foresight horizon. 

This leaves finite multiple-player games for which neither approach really 
seems satisfactory. As Rubinstein says, modelling limited foresight in these 
games remains a significant challenge. 20 

20 Perhaps, at least in contexts where learning might be incomplete, the bounded looka- 
Cý head approach of the Artificial Intelligence literature might be fruitful in such cases? - see 

Jehiel (1998b) 
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Nonetheless, given that many practical problems involve essentially infinitely- 
repeated stage games in which the players are aware that the game will con- 
tinue indefinitely beyond the horizon of foresight, the Jehiel concept and 
our refinement offer us an approach will may be fruitful for many important 
problems. In the next two chapters we apply these concepts to two such 
problems. 
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Chapter 4 

Applications 1: Limited 
Foresight Monetary Policy 
Games 

4.1 Introduction 

In the first three chapters we have established that modelling limited fore- 
sight is worthwhile and identified for ourselves usable solution concepts. In 
the next two chapters we shall apply our concepts to solve economically inter- 
esting problems. Chapter 5 uses both the Jehiel and Refined Jehiel concepts 
to address the question of why some people take up smoking when young 
then give up when older. But first, in the current chapter we shall apply a 
variant of the Jehiel concept to the case of a Central Banker carrying out 
monetary policy. The main contribution of this chapter will be to apply the 
Jehiel concept in a monetary policy setting and show what difference the 
foresight of the central banker might make to the effectiveness of monetary 
policy. 

We should emphasize immediately the difference between a central banker 
with limited foresight in an infinite horizon problem and a central banker 
facing a finite horizon decision. A central banker facing a finite horizon 
knows (or at least believes) that the world will not continue after the end of 
the horizon, and that what he will do tomorrow will not incorporate vision 
into periods further ahead than we can see today. In contrast, our central 
banker and economic agents in the economy in general recognize that the 
world will continue after the end of the central banker's foresight horizon. 
They also understand that, next period, the central banker will be able to see 
further into our current future than we can today, and that this may affect his 

63 



64 CHAPTER 4. LIMITED FORESIGHT MONETARY POLICY 

decision-making. What difference this makes to the central banker's decision 
will be illustrated below. It is worth noting that if a central banker believes 
his horizon is finite (e. g. if he believes that he will retire next period and 
doesn't care what will happen after that) but is mistaken, the finite horizon 
solution we shall illustrate here will be like the "naive" limited foresight 
solutions we investigated in Chapter 3. Rom our previous discussion we 
should expect that the Jehiel solution will be different - and it is. We note 
also from our previous argument that our prior is that the Jehiel solution is 
probably to be preferred. 

The Bank of England targets inflation on a rolling two-year-ahead basis. 
This structure offers many of the apparent features of a Jehiel setting with an 
asymmetry in horizon whereby the private sector may have Rational Expec- 
tations but the Bank has a two-year limited foresight horizon. If we take the 
Svensson (1997c) interpretation of inflation targeting, whereby the (limited 
horizon) inflation forecast is what is targeted, the Jehiel setting appears an 
even stronger candidate. 

The current two-year Bank of England horizon appears to arise largely 
out of a technical judgement as to how fax ahead it is feasible to forecast 
with any pretence to accuracy. An interesting question is whether, in the 
future, if forecasting techniques improve and a longer horizon is possible, we 
should expect the Bank's decision-making to improve or deteriorate. 

For our macroeconomic setting, we shall use an environment with persis- 
tence in employment, as introduced in Lockwood & Philippopoulos (1994), 
and explored in Svensson (1997a). We shall start by considering the Lock- 
wood & Philippopoulos (1994) game, and show that even when both the 
Union and the Bank have limited foresight, the strategy of the Union player in 
this game is fully characterized by his expectation of inflation, with such ex- 
pectations being Rational in equilibrium. This will allow us to treat the prob- 
lem as a decision-problem for a limited-foresight central bank, and we move 
on to reproduce Svensson's basic inflation-targeting-without-commitment re- 
sult, then show how the result changes when the central banker's foresight is 
limited. 

As we shall see, the inflation-bias is less under limited foresight than under 
infinite foresight (perhaps partially explaining the apparent absence of an 
inflation-bias in what Svensson (1999) calls "real world monetary policy"). 
We shall examine how the result changes if the central banker's foresight 
length is increased. We shall find that, perhaps unexpectedly, the inflation- 
bias increases with an increase in foresight length. 

We shall then contrast a limited foresight banker in an infinite setting with 
a finite horizon banker (which we interpret as modelling a central banker on 
a fixed-term contract). We shall see that a limited foresight banker exhibits 
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a higher inflation bias than a finite horizon banker. 

4.2 The Game 
In the Lockwood & Philippopoulos (1994) game, there are two players, a 
Union and a Bank, who interact over an infinite number of periods t=1,2 . .... The Union sets nominal wage TVt in any time period t. The central bank 
picks the price-level Pt in any time period t. The level of employment in 
period t depends on the real wage as Lt = (11-VI)" or, in logs, Pt 

lt = a(pt - wt) 

where 
It ln(Lt) 
pt In(Ft) 
wt 1n(TVt) 
Persistence in employment arises because of the insider-outsider nature of 

Union preferences - in particular its favouring of those already in employment. 
The Union has an employment target, L' which is the geometric mean of 
those insiders who have been recently employed, Lt-1, and the total labour 
force N. So Lu = L*t* < t -, 

N'-, O where 0-p: 5 1, or, in logs, 

pit-, + (1 - p)n (4.2) 

for t=1,... and initial employment, 10, predetermined. 
The Union aims to get as close as possible to its employment target each 

period, so its preferences can be described by 

1 00 2 

2 
Ept-l Cit. 

- it) (4.3) 
t=l 

where 0<6<1 is the discount factor. 
The central Bank has an employment target P and an inflation target of 

, 7r*. Its payoffs are given by 

1 00 

-ýEfl 'o 
+ (7rt 

- 7r*)2 (4.4) 
t=l 

( 
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where 7rt ý pt - pt-1 is the inflation rate, and A>0 is the relative weight 
that the Bank ascribes to the employment target. 

The order of events is: the Union chooses a nominal wage level, wt, then 
the Bank chooses a price-level, pt. Thus policy is discretionary. 

Lockwood & Phillipopoulos (1994) derive the linear Markov-perfect equi- 
libria of this game'. Our purpose in constructing this game is to display 
that in a Jehiel limited foresight equilibrium of this game, the Union will 
exhibit Rational Expectations, and to show that a limited foresight version 
of the game can be represented as a decision-problem for a limited foresight 
banker facing a Phillips curve with persistence in employment and a Rational 
Expectations condition. 

Jehiel's (1995) (nj, n2)-equilibrium concept was applied to repeated alternate- 
move 2x2 games. However, Chapter 3 has generalised the Jehiel concept, 
and we shall use the "LFE-J" conditions as specified there. Call the foresight 
length zi for players i= (Union, Barik). Assume that ZUnion = ZBank = Z. 2 
For our purposes, in a Jehiel equilibrium, each player makes a decision in 
period t based on his expectations about his own play from periods t+1 out 
to the horizon of foresight, period t+z-1, and on the other players' play 
between periods t and t+z-1. In equilibrium, this decision will be optimal 
for each player within his available action-set, and all expectations of future 
play will prove correct. 

Now consider the Union's play in the infinite-horizon setting. It aims to 
minimize the deviance of actual employment from the target. Since actual 
employment is given by It =a (pt - wt), this will be achieved by setting wt 
such that I' =a (pt' - wt), where p, ' is the Union's expectation of the price 
level in period t-i. e. its expectation of the play of the Bank player. In 
equilibrium this must be correct, so that pte = pt and hence 7re = 7rt (where 7rte, t 
as expected, represents the Union's expectation of the inflation rate). Since 
the Union player always achieves his global maximum utility, his expectation 
of inflation fully characterises his play and defines for us an employment level. 

Next consider the limited foresight game. Since, for any period t, in a 
Jehiel equilibrium the expectations of play between t and t+z-1 must be 
correct, it must again be the case that pt' = pt and hence 7rte = 7rt for all 
t. Once again, the Union player achieves a global maximum utility, and his 
expectation of inflation fully (Jharacterises his play. 

Since It =a (pt - wt) and lu (pte - wt) we have t 
'i. e. a sub-game perfect equilibrium in which punishment strategies are excluded by 

restricting the agents' actions to depend on the past only through the state variable, It- 1- 'We could perhaps interpret this as meaning that the Union gets its forecast of future 
inflation rates from the same, bank-independent, government agency that supplies the 
bank. 
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lt - lu =a Ort 
- 7r') tt 

Hence 

lt -n= 
Clt 

- 
ft") + c1t, 

- n) =a (7rt - 7rt ') p 

Since It = ln(Lt) and n= ln(N), It -n= In(R), i. e. the proportion N 

of actual employment in full employment. Call this It. Then we have a 
Phillips curve with persistence in employment, 

It = pIt-j +a (7rt 
- 7rte) (4.5) 

Hence the problem can be reduced, in the limited foresight as in the in- 
finite foresight case, to a decision-problem for the Bank where it maximises 
its payoffs subject to a Phillips curve with persistence and a Rational Ex- 
pectations condition. 

Before solving this, we shall use Svensson's framework to incorporate a 
stochastic element. 

4.3 The Stochastic Version 
Our stochastic treatment of inflation targeting under persistence follows 
Svensson (1997a) - and we shall re-parameterize. The short-run Phillips 
curve becomes 

It = plt-I + a(7rt - 7rtlt-l) + ft (4.6) 

where lt is now the (log of) the share of actual employment in full em- 
ployment (the "employment rate") in period t, a and p are constants (a >0 
and 0<p< 1), 7rt = pt - pt-I is the (log of the gross) inflation rate, pt is 
the (log) price level, 7rtIt-I denotes inflation expectations in period t-1 of 
the inflation rate in period t, and et is an fid. temporary supply shock with 
mean zero and variance a'. 

From our conclusions above, we can assume that the Union has Rational 
expectations: 

7rtit-I = Et-17rt (4.7) 
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where Et-, denotes expectations conditional upon information available 
in period t-1, which includes the realisation of all variables up to and 
including period t-1, as well as the constant parameters of the model. 

These two equations represent the constraints facing the Bank. Its ob- 
jectives are given by an intertemporal loss function 

Et 
1 

10 r-tBl 

with the period loss function 

Bt =1 [(7rt 
_ 7r*)2 +A (It _ *)2] 

2 

where A>0 is the relative weight on employment stabilization. 7r* is the 
inflation target (say, the Bank of England's 2.5%) and 1* is some socially- 
desirable employment rate. Since inflation-targeting authorities like the 
Bank of England usually have some target band (e. g. the ±1% band around 
the Bank of England's 2.5% target), or some (perhaps implicit) timescale over 
which to achieve the inflation target, it seems reasonable to regard the Central 
Bank has having dual objectives (as reflected in our period loss function) so 
long as it remains within the target band, and this also fits within the spirit 
of regarding inflation targeting as a framework of constrained discretion 3. 

For simplicity, we assume that the Central Bank has perfect control over 
the inflation rate 7rt. It sets the inflation rate in each period after having 

observed the current supply shock ct. Although the current supply shock 
is observed both by the Central Bank and the Union, the assumption be- 
hind our Phillips curve (that some prices or wages are set in advance and 
predetermined by previous expectations) makes monetary policy effective. 

4.4 The infinite horizon, infinite foresight case 
Still following Svensson (1997a), we write the decision-problem of the central 
bank as 

V (It-, ) = Et-, min 
I ! 

[(7rt 
- 7r *)2 + *)2] + (4.8) 

Irt 2 

where the minimisation in period t is subject to the Phillips curve and 
takes inflationary expectations 7rtIt-, as given. The central bank does not 

3See Bernanke et al. (1999) 
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internalize the effect of its decisions on inflation expectations, but it does 
take into account that changes in the current employment rate will affect 
current Union expectations of future inflation (which are incorporated in 
V (It)). The indirect loss function can be written as 

12 
V (It-1) -` 70 + 714-1 +2 721t-I 

Svensson (1997a) derives the following equilibrium4 decision-rule in the 
case of discretion: 

7rt= a- bet - clt-l 
where the constants are given by 

7r* + Aal* - fla-yl = 7r* + 
Aal* 

1 -, Op -, Oac 

+. O'Y2) a \a +, OaC2 
2C2 (, \ + ý7, 

Y2)a2 + \Ct2 - pp2 + fla 

1 [1 

_ &2 flp2)2 p2 C= 2aflp - 4Aa2T 
I>0 

Both lt-I and ct here are state-dependent variables. Under an unlimited 
foresight there will be a non-state dependent inflation bias5 of 

a- 7r* 
Aal* (4.9) 
flp - flac 

4.5 The limited foresight case 
To explore the limited foresight case, we shall initially assume that the Cen- 
tral Banker can look ahead only two periods. He has an expectation of his 
own play (which he takes as given) in the following period, and uses that 
and the expected loss from the two periods within the foresight horizon in 
deciding what to do each period. In a Jehiel equilibrium the Central Bank's 
expectation of his own play out to the foresight horizon win prove to be 
correct. The Union still has Rational expectations, as shown above. 

4That is to say, a Nfarkov-perfect equilibrium where trigger strategies are not allowed 
and actions depend on history only via the lagý state variable, It-1. 

5referred to by Svensson (1997a) as an "average inflation bias" 
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Thus, in any period t the Central Bank decision problem is given by 

(7rtB+ 
1- 7r 

T+A (It+, 
_ 1*)2 min t 

[(7rt 
- 7r* )2 +A (It _ 1*)2] +, 3Et 

7rt 2 

(4.10) 

(where 7rt'+, is the Central Bank's expectation of its own play in period 
t+1, and arises out of a decision-rule for period t+1 which is taken as given 
in period t) 

subject to the Phillips curve and the Rational expectations conditions. 
The decision-rule used in t+1 is taken as given in period t. As in 

the infinite-horizon case, we shall take it that the optimal decision-rule will 
depend on past history only through lt-1. Thus we postulate a form 

B -ý, B - Bt 
7ri =a -b e 

BB 7rt+, 197r t+1 
= -, 

B Ci -- -= -Z' ==* (from the Phillips curve) c alt a7rt 
This problem has the first-order condition 

alt L, r tB-+-, 
) 

('7rt - 7r*) +A (lt - 1*) ý7-- + 3Et A (lt+l - 1*) 
ý-t+l 

+ (7ri+l 
- 7r* 

i 

rt 197t art 
7rt - 7r*+ Aa (plt-l +a (7rt 

- '7rtlt-l) + Et - 1*) 

+, a (ApCe (p2lt_l + pa (rt 
_7 lt_l) + pEt _ *) _- -aB T rt CB Ce ZBlt -7 

7rt - 7r* + Aa (plt-l +a (7rt 
- 7rtlt-l) + Et - 

+, 3A pa (p2lt_l + pa (7rt 
- 7rtlt-l) + p6t - 1*) 

-O-cBa 
(-aB 

- ýB (plt-l + a(7rt - 7rtlt-, ) + ct) - 7r*) 
= 

Taking expectations over the first-order condition, and adding our Ratio- 
nal expectations condition, so as to derive 7rtlt-,, we obtain 

7rtlt-l = Et-, ('7rt) = (1-fl-C-BCe)7r* 
_(ACep+, 8Aap3+, 3 (CB)2 

Cep)lt-, +Ace (1 + Op) 1* 

Putting this back into our first-order condition, we obtain 
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2 (1 +&2) +, a (- (7rt 
- 7rtlt-l 1+ Aa CB) 

2a 2) + (Aa(l + pp 2) +p (CB)2 a)Et 

Hence 

7rt #-C--BCI)7r* + flC-BaaB + ACe (1 + pp) 1* - 
(ACVP (1 + pp2) +, 8 (e) 2 

Cep) It_ I 

AC, (l +, 8 p 2) +0 (ZB)2 Ce 
Et 

1+ ACk2(1 + flp2) +3 (aB)2 a2 

This leaves the unknowns V and ZI. However, we know that 7rt takes 
the form 

-B 7rt = aB 
-b -t -c lt-I 

Hence 

B+ fl^B B 
a= (1 - flc-, Ba)7r4, c ad + Aa (1 +, 8p) 1* 

whence 

-B *+ +J8P) 1* a 7r fla-&B 

(cf. a above. ) 
Similarly, 

'EB = 
(Aap (1 +, 8p2) +, a (e)2 ap) 

Whence 

-B 
1 

c=- 
(1 

- , 
/l - 

4,3Aa2p2 (1 +, 8p2 

2a, 3p 

(taking the negative root for consistency with Svensson. cf. c above. ) 

Finally, 
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Aa(l +, ap 2) +, 6a (FB)2 

1 +, \a2(l +, 3p2) +, 8a2 (ýFB)2 

(cL b above. ) 
Now the average inflation-bias is given by 

Aa (1 + flp) 
1* 

1 -fla-C-B 
To complete the characterisation of equilibrium, we need to state the 

Central Bank's expectations of its own play. 

b -B TB -C- B (aB 
_ 

ýBet 
7rt+ a-b Et+l - 

(plt-l +a_ CBlt_l _ 7rtlt_, ) + ft 

This then completes the Jehiel equilibrium. 

In Appendix E it is proved that, whenever the Rational inflation bias is 
positive, the average inflation bias is less in the limited foresight case, i. e. 

Rational 7r-bias > 7r-bias under limited foresight 

4.5.1 Simulations 

We have seen the effect of limited foresight on the average inflation bias, but 
it may not be clear what is the effect on the pattern. To illustrate that effect, 
simulations were performed over a hundred periods with shocks of standard 
deviation 0.1. Figures 4.1 to 4.4 illustrate the effect for the case in which 
variables values are as in the following table 6 

a1 
A1 
7r *0 

P 0.1 

10 0 

Figures 4.1 and 4.2 take the case of 8=p=0.5. 

Note that inflation is always lower in the limited foresight case. Un- 
employment is almost unaffected by the limited foresight. As one would 

6 Note that these numbers have been chosen arbitrarily for illustrative purposes, and 
involve no claim of empirical relevance. 
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expect, this results in limited foresight improving welfare (the aggregate loss 
is reduced). 

Figures 4.3 and 4.4 illustrate the case where 0.25 and p=0.8 (i. e. 
greater persistence in output, and rather higher discounting). In this case 
again inflation is always lower in the case of limited foresight. Unemploy- 
ment is slightly more affected this time - with greater fluctuation between 
peaks and troughs for the limited foresight case. However, even though im- 
employment fluctuates slightly more in the limited foresight case, aggregate 
welfare is still greater. 

One interesting message of these figures is that, if the limited foresight 
interpretation of inflation targeting (or other monetary policy) is correct, we 
should expect models which use unlimited foresight to predict unemployment 
and output fairly accurately, but inflation poorly. 

4.5.2 Effect of extending the foresight length 

Now we shall consider how inflation varies with foresight length. This has a 
fairly clear economic interpretation. If forecasting models were to improve 
so that, for example, the Bank of England started to base its interest-rate 
policy on a three-year projection for inflation rather than merely a two-year 
projection, what effect would that have on inflation. 

For a foresight length of three (i. e. adding one round) we obtain an 
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2 
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Both the inflation bias and 'FnB=k tend towards the infinite horizon case as 
k tends towards infinity. 

As expected, 'Eý--3 > -c-B. Hence 

Aa (I + Op + Olpl) P> Aa(l +op+o 2p2) 1* 

-0 (Fý-j Ce (1 + OP) 1- OaFB (1 + op) 

But 

Aa (1 + Op + O'p') 1* 
> 

Aa (1 + op) 1* 

I- OaFB (1 +, 3p) I-0 oz'FB 
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Hence, perhaps paradoxically, increasing the foresight length tends to 
lead to a greater average inflation bias. The implication of this result is 
that an increased horizon length for the inflation forecast (e. g. the Bank 
of England models improving and policy, instead, considering inflation on a 
three-year-ahead basis) may lead to a higher rate. 

4.5.3 Discussion - Why does a longer foresight length 
lead to a greater inflation bias? 

Inflation bias in this model is generated by the employment gain the central 
banker can create through setting inflation higher than expected. The per- 
sistence in employment in this model means that an inflationary shock today 
creates higher employment, not only today, but also out into the future. The 
two-period limited foresight banker can only see the extra employment in the 
current period and the next period. If we extend his horizon, he can see 
more of the employment gain from an inflation shock, so creating an inflation 
shock would give him a greater gain, hence the expectations equilibrium level 
of inflation is higher. 

4.6 The Finite Horizon Case 
Next we shall illustrate that a central banker with limited foresight is im- 
portantly different 

-from a central banker with a finite horizon. We shall 
model a central banker with a horizon one period ahead. Perhaps we could 
interpret this as a central banker who will retire after two periods, and who 
does not care what happens to the economy after that. 

Now our Central Bank faces the decision-problem in any period t given 
by: 

2] +, aEt min t 7rt _ 7r*)2 +A (It _ I* 
[(7rt+l 

- 7r* 
)2 +A (lt+l 

Irt, lrt+l 22 

(4.11) 

Solve this problem by backwards induction. First consider the Central 
Bank's problem in round t+1. This will be 

=1 
[(7rt+l 

_ 7r*)2 +\ (lt+l 
_ 1*)21 min Vt+l - (4.12) 

7rt+l 2 
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subject to the Phillips Curve and the Rational Expectations conditions. 
Fýom the first-order condition of this problem we obtain 

alt+ , 7r*) +A (lt+l 
- l* ä- --2 

t Irf 

whence we derive 

-7rt+l = 7r* - Aaplt + Aal* 
AaEt+l 

2 1+ Aa 

= 7r* - Aap (plt-l + a(7rt - 7rtlt-l) + ct) + Aal* - 
AaEt+l 
1+ Aa2 

This then generates 7rt+l as a function of 7rt for our round t decision- 

problem. That then becomes 

ff, 11 

t=_ 
[( 

_ 7r*)2 +A (It _ *)2] +#Et _ 
[( 

+1 _ 7r*)2 +A (lt+l 
_ 1*)2 min 7rt 7rt 

lrt 2 
(2 1) 

subject to the Phillips Curve, the Rational Expectations condition, and 
the 7rt+l condition. 

This problem has the first-order condition 

I a7rt+l 
+A (7rt 

- 7r*) +A (it 
- 1*) ýLt + OEt (Irt+l - 7r*) 

2-l-t+, 

a7rt a7rt a7rt 

7rt - 7r* + Aa (plt-l +a (7rt 
- 7rtlt-, ) + Et - 1*) 

(-Aap (plt-l +a (7rt 
- 7rtlt-l )+ et) + ACel*) (_Aa2p) 

+A (P (Plt-l + a(, 7rt - 7rtIt-1) + ft) (pa) 

7rt 7r * 

+ (Aap (1 +&2 (1 + ke2))) It_, 

- (AC, (1 +, 8p (1 + ACe2))) 1* 

" (Aa 2 (1 +&2 (1 + Aa 2) )) (7rt 
_ 7rtlt_, ) 

" (AC, (1 + 
'8ý2 

(1 + AC, 2))) ,t 

0 

Hence 

*7rtlt-l = Et-, (7rt) = 7r*-(AC(p (1 +, 8p2 (1 + AC, 2))) lt_, +(AC, (1 + 
'8ý2 

(1 + Aa 2))) 1* 
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and 

(7rt 
_ 7rtlt_, )(1 + AC, 2 (1 + #P2 (1 + AC, 2))) + (ACe (1 + op2 (I + AC, 2))) et =0 

so 

Irt = 7r* - (Aap (1 + pp' (1 + Aa'))) 1, 
-, + (Aa (1 + Op (1 + Aa'))) 1* 

Aa (1 +, 6p 2 (1 + Aa2)) 

1+ Aa2 (1 +, ap2 (1 + Aa2)) 

so in this case, the non-state dependent inflation bias in round t is given 
by 

Aa (1 +, 8p (1 + Aa2)) 1* 

and in round t+1 by 

Aal* 

4.6.1 Comparing the inflation bias in the limited fore- 
sight and finite horizon cases 

In Appendix E it is proved that the inflation bias in the limited foresight 
case is greater than that in the finite horizon case, i. e. 

Limited Foresight Bias > Finite Horizon Bias 

Notice that the limited foresight banker problem is stationary (up to the 
state variable), whereas the finite horizon Banker problem evolves through 
time. 

We should also note that increasing the central banker's term of office 
leads to an increase in inflation in period t. If we could hire a new central 
banker every round, then in this model the inflation bias would be stable at 
Aa1*- By extending the term to two periods, the period t bias increases to 
Aa (1 +, 8p (1 + Aa2)) 1* > Aal* (since 0, p, A, a> 0). 

Since a finite horizon banker has a lower inflation bias than a limited 
foresight banker, and a limited foresight banker a lower bias than an infinite 
horizon banker, we can conclude that a finite horizon banker will also exhibit 
a lower inflation bias (in this setting with persistence in employment) than 
an infinite-horizon banker. 



4.7. CONCL USION 

4.7 Conclusion 
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In this chapter we have compared the Lockwod & Philippopoulos (1994) 
and Svensson (1997a) results for a central banker setting inflation, under an 
environment of persistence in employment, those which arise when a central 
banker has limited foresight in an infinite setting and those arising for a 
central banker with a finite horizon. Our main purpose has been to show 
how to use the Jehiel limited foresight concept in a monetary policy setting. 

Our main results have been that under limited foresight private-sector 
agents will still exhibit Rational Expectations, and that the equilibrium 
inflation-bias for a limited foresight central banker will be lower than that 
for a banker with infinite-foresight. This may partially explain the lack of 
observed inflation bias. We have shown that increasing the foresight length 
(perhaps by extending inflation forecasts) would be expected to lead to a 
higher inflation bias. The intuition here is as follows: inflation bias arises 
in this model because of the potential gain in employment through creating 
surprise inflation. The persistence in the model means that this potential 
gain in employment decays gradually away forever. But a limited foresight 
banker can only see a truncated section of this infinite series. Hence the po- 
tential gain for the limited foresight agent is higher, the longer his foresight 
horizon, and hence so is his exhibited inflation bias in equilibrium. 

We have also illustrated how a limited foresight banker differs from a 
central banker with a finite horizon, and that the inflation bias for the limited 
foresight banker will be higher. 

Possible extensions of this work would consider volatility in inflation 
and extend the analysis to price-level targeting authorities (as in Svensson 
(1997b) & (1999)). 
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Chapter 5 

Applications 2: Smoking today 
and stopping tomorrow -a 
limited foresight perspective 

Philippe Jehiel & Andrew Lilico 

5.1 Introduction 

In this final chapter we shall consider why some people decide to take up 
smoking when young, despite knowing the dangers, then, when older, give 
up - often at considerable effort and after several attempts. In our model the 
central issue will relate to a change in horizon of foresight. We shall imagine 
that when people axe young they foresee the consequences of their acts only a 
few years ahead, and form no view of what might happen after that. Then, 
as they grow older (although they still do not have perfect foresight) they 
start to foresee a little further ahead than before. 

This change in horizon of foresight alone, without any need to assume 
that preferences change, is sufficient to generate a change in behaviour. 

The chapter is organized as follows: First we detail the setting, and then 
define for the purposes of this chapter what precisely we mean by "limited 
foresight". Next we use our setup to generate examples in which the decision 
of whether to smoke or not to smoke is sensitive to the horizon of foresight. 
Then we discuss the implications and relevance of these examples. 

81 
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5.2 Setup 

A decision-maker faces infinitely-many stages, with a decision to make at 
each stage. His decision in each period t consists in a choice of action at EA 
where A is a finite choice set. His preferences are captured by 

00 E b'U (at, wt) 
t=O 

where wt EQ is a state variable, U (at, wt) is the flow of payoff derived by 
the agent in period t, and 5 is the discount factor between periods. 

The state evolves according to a deterministic process mapping the pe- 
riod t profile of state wt and action at onto the period t+1 state wt (i. e., 
(wt, at) --* wt+, ). Thus, the state at period t+k can be written as a function 
Wt+k (w, aO, a',..., a-') where wt =w denotes the period t state and at+1 = al 
the period t+1 action. 

We note that in a standard paradigm with perfect foresight there is no 
"time inconsistency" problem - that is to say, once a plan of what to do in 
the future is formed, when the decision-maker gets there he doesn't change 
his mind. What he thought would be the best thing to do in the future 
continues to be the best thing to do once the future becomes the present. 
This is due to the fact that discounting takes an exponential form so that 
the maxginal rate of substitution (in terms of overall preference) between an 
increase of utility in period t and an increase of utility in period t+k does 
not change with the time period t. This is a generalization of a result first 
noted by Strotz (1956). 

5.3 The limited foresight approach 
We turn now to describing the decision making of an agent with limited 
foresight. We first review the basic concepts and then offer some preliminary 
results. It will be convenient for us to use slightly different notation in 
this chapter from previously, so we shall re-state definitions and some basic 
results. 

5.3.1 Concepts 

In a limited foresight problem, the decision-maker can see ahead only n 
periods (including the current period), and forms no view as to what happens 
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beyond the horizon of foresight. The following definition (in the spirit of 
Jehiel 1995) describes how an agent with limited foresight behavesl. 

Definition 5.1 A stream of actions fat (w)}t,,, is a "limited foresight n- 
equilibrium" (or "LFE-n ") if and only iP, Vt, w, 

n-1 

at (w) = arg max U (a, w) +E 6k U (ak, Wk) 

I 

k=l 

I 

where Vk <n-l, ' 

k a= at+k (Wk) 

wk= Wt+k (w, a, a',..., a 
k-1 

The LFE-n solution concept is, of course, simply a one-player version 
of the LFE-J of Chapter 3 with a state variable and the foresight horizon 
identified explicitly. This will be convenient in this chapter as our focus here 
is to consider what happens as the foresight horizon is changed in one-player 
decision-problems for which the state is important. 

Definition 5.2 A stream of actions fat (w)}t,,, is a "p-controlledn-equilibrium" 
(or "LFE-(p, n)") if and only if, Vt, w 

A. (at,..., at+p- 1) arg MaXaO,..., aP- I 
[EP-' 6' U (a k, w k) + En-1 6kU (-ak Wk) k=O k=p tI 

B. iik = at+k (Wk) forp-1 <k<n-1 and 

ak= at+k 
(Wk) for k<p-1 where for all k, 

wk 14Jt+k (w, bo, ..., b k-') 
and 

bk ak fork <p I 
'ak for k>p 

'Jehiel (2001) extends the treatment to consider problems in which a guess - modelled 
as a source of randomness - is formed at the horizon. Such problems will not concern us 
here. 

2 We restrict attention to deterministic action schemes that may only depend on the 
time period t and the current state w, hence at (w). Following Jehiel (1995), it can be shown 
that this is without loss of generality, as long as the agent's choice of action is deterministic 
and cannot (directly) depend on actions that took place more than N periods earlier (i. e., 
as long as the agent has a bounded memory). 

3Note that w' depends on a for k>1, So jjk depends on a too. 
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In this case we divide the foresight horizon into a period over which the 
decision-maker plans what to do, p (which we shall refer to as his "planning 
horizon"), and the period over which he merely has exogenous expectations 
of what he will do, n-p. 

The interpretation of Definition 5.2 is as follows. Condition A means 
that in every period t and in all states w, the agent chooses an optimal plan 
ao, ..., aP-1 over his planning horizon given his expectations ap, ..., 

an-1 about 
what will happen next within his horizon of foresight. Condition B expresses 
the idea that expectations HP,..., an-' are correct, while condition C expresses 
the idea that within his planning horizon the agent does not change his mind. 
That is, when the agent reaches period t+k, he finds it optimal to do what 
he had planned to do at this period k periods earlier, i. e. at period t4. 

When the agent has perfect foresight (n = +oo), it is readily verified 
that an LFE-(p, +oo) exists and that it coincides with the standard perfect 
foresight optimal plan. This is a simple adaptation/generalization of Strotz 
(1956)'s result (it is due to the exponential chaxacter of the discounting). It is 
also immediate to see that a limited foresight equilibrium LFE-n corresponds 
to a p-controlled n-equilibrium or LFE-(p, n) with a planning horizon of p=1 
and that any LFE-(p, n) is also a LFE-n. 

The next definition considers those LFE-(p, n) which have a maximal 
planning horizon p. 5 

Deflnition 5.3 A stream of actions fat (w)}t,,, is a "best- controlled n-equilibrium" 
(or "LFEB-n") if and only if it is an LFE-(p, n) and there is no LFE-(p', n) 
with p' > p. 

The motivation for a best-controlled n-equilibrium is that an agent may 
find it desirable to feel he has as much control over his planning scheme as 
possible subject to the constraint that he does not change his mind (relative 
to plans made earlier)'. 

4 Rubinstein (1998) suggests as an alternative to Jehiel (1995)'s approach a concept in 
which the planning horizon p coincides with the horizon of foresight n and condition C is 
dropped. But, this in general would result in the decision maker adopting decisions based 
on plans that are not followed afterwards, which sounds undesirable (see also Jehiel (1998) 
and Chapter 3 of this thesis for further discussion of this point). 

5See Chapter 3 for the first proposing of this definition. A "best-controlled n- 
equilibrium" is simply a one-player variant of what we have referred to in Chapter 3 
as an "LFE-RJ", with a state variable and the foresight horizon identified explicitly. 

6 Clearly, a best-controlled n-equilibrium is an LFE-n equilibrium and it can thus be 
viewed as a refinement of it. 
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5.3.2 Preliminary Results 

Proposition 5.1 There always exists an LFE-n. All LFE-n are cyclical - 
i. e. 

3k s. t. Vw, t, at+k (w) = at (w) 

Proof. (Sketch) Start from any profile of n-expectations, i. e. fo (W, a) E 
An. For any w, aý. (w) is a best-action given f. Construct f-1 as follows: 

For any w, if a is chosen, w' arises next. Take the sequence of actions 
generated by a* (w') and fo (w', aý. (w')). Take the truncation of these to the fo 
first n ones. Define this to be f-1 (w, a). Define recursively f-k (w, a). At 
some point, because everything is finite, f-k will correspond to f-kl, k: 34 V. 
This allows us to show existence and the cyclical nature of limited foresight 
plans. N. B. this is analagous to Jehiel (1995). m 

It is instructive to observe that LFE-(p, n) need not exist when n>2 and 
p>2. For example, in the decision tree of Figure 1 there is no LFE-(2,2). 
At the first node, the optimal 2-plan is (Up, Up), but upon reaching the next 
node, the agent would choose Down and not Up violating the constraint that 
he should not change his mind within his planning horizon (Constraint C of 
Definition 2). Despite the possible inexistence of LFE-(p, n), we can infer 
from Proposition 1 that an LFEB-n always exists. This is because LFE-1 
and LFE-(1,1) are equivalent concepts. 

5.4 To smoke, or not to smoke? That is the 
question... 

Now we shall employ the concepts we have introduced to address the question 
of why some people might smoke when young, then give up when older. In 
so doing we shall interpret a younger (resp. older) person as one with shorter 
(resp. longer) horizon of foresight. 

We shall make the following simplifying assumptions: 
Al) A= ID, S} : there are two actions, which we shall interpret as Don't 

Smoke and Smoke. 
A2) wt = (at-lat-2 

... at-,,, ) : the state variable is defined to be the m 
previous period actions. 

A3) 33 such that, for all 6>3, there is one perfect foresight optimal plan, 
which is at (w) = D, Vw, t. 

In the sequel we shall analyze how the plan of an agent who has limited 
foresight varies with his horizon of foresight. A3 tells us that an agent with 
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perfect foresight chooses D in all states w and in all periods. In light of the 
smoker's problem, A3 sounds plausible to us. 

Let us focus on the sustainability or otherwise of the following two sta- 
tionary plans. 

Plan D at (w) D, Vw, t 
Plan S at (w) S, Vw, t 
We are interested in whether or not there exists 3 such that for all S> 

plan a, a=D or S, is sustainable as LFE-n. This is equivalent7 to checking 
the sustainability of these plans as LFE-n in the special case 8=1. Rom 
here on we shall assume that 6=1. 

5.4.1 When the horizon of foresight is long enough 
We first show that when the horizon of foresight n is strictly greater than 
the hindsight dependence m, the only possible plan is D. 

Proposition 5.2 For all n>m+1, Plan D (but not S) is an LFE-n. 

This result follows from the observation that LFE-n are not affected by 
the horizon of foresight n as long as n>m+1: 

Lemma 1 For all n>m+1, Plan a is an LFE-n if and only if it is an 
LFE-(m + 1). 

And only plan D can be an LFE- (m + 1) : 

Lemma 2 Plan D (but not S) is an LFE-(m + 1). 

5.4.2 When the horizon of foresight is short 
It remains to analyze what happens when the horizon of foresight is smaller 
than m+1. We shall focus attention on proving that, if the horizon of 
foresight is not too long, there are a number of scenarios in which Plan S 
would be optimal, and some in which Plan D would not be optimal. We 
offer the interpretation that those who smoke may face decision-problems 
like those below. 

In the sequel, we shall specialize to the case of m=2. 

7 up to indifferences (that we assume are not here) in the limit as 6 goes to 1. 
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When Plan S (but not D) is a limited foresight equilibrium: 
Consider the following payoffs (reading states horizontally and this-period 

actions vertically): 

U(a, w) DD DS SD SS 
s 0 8 11 4 
D 10 4 3 0 

Table 1 

This system of payoffs guarantees that if the agent is patient enough (5 
close to 1), the optimal perfect foresight plan is to never smoke, i. e. Plan 
D. ' Hence, Assumption A3 is satisfied. 

We next observe that Plan D is not an LFE-2- This is because, for 
example, 9 

U(D, SD) + U(D, DS) < U(S, SD) + U(D, SS). 

Thus, anticipating he will not smoke in the next period, the agent would 
be better off smoking today if yesterday he smoked and the day before he 
did not. Thus plan D is not an LFE-2. 

Finally, Plan S is an LFE-2. This is because the following system of in- 
equalities is satisfied (checking all possible states): 10 

1) 2U(S, SS) > U(D, SS) + U(S, DS) 
2) U(S, DS) + U(S, SD) > U(D, DS) + U(S, DD) 
3) U(S, DD) + U(S, SD) > U(D, DD) + U(S, DD) 
4) U(S, SD) + U(S, SS) > U(D, SD) + U(S, DS) 

Hence, whatever the state, the agent finds it optimal to choose S today 
if he anticipates he will choose S tomorrow. 

Remark: In the above exarnple, Plan D is an LFE-3, but Plan S is not 
(see Proposition 2). Additionally, Plan S is an LFE-2, but Plan D is not (see 

8To see this, observe that obtaining the highest payoff U(S, SD) = 11 would require a 
bad experience associated with U(S, SS) =9 or U(S, DS) = 8. It is thus not worthwhile. 

93 +4=7< 11 = 11 +0 
101) 2*9= 18 >8=0+8 
2) 8+ 11 = 19 >4=4+0 
3) 0+ 11 = 11 > 10 = 10 +0 
4) 11 +9= 20 > 11 =3+8 
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above calculations). Thus if decision-makers faced such preferences at a time 
when their foresight horizon was relatively short (2) they would smoke. If 
subsequently (and unexpectedly) their foresight horizon later became longer 
they would switch to not smoking. We shall discuss this further below. 

When Plan S is a better-controlled plan than Plan D: 
Another type of scenario in which people might smoke is one in which, 

although both Plans would be equilibria if we took our future behaviour as 
exogenous, if we aim to control what we do in the future as far ahead as 
possible (as in the LFEB-n concept), there are advantages to smoking. 

Consider the following payoffs: 

U(a, w) DD DS SD SS 
s 4 5 14 7 
D 8 10 6 0 

Table 2 

Again, it can be checked that Plan D is the only optimal perfect foresight 
plan. 

Also, both Plans D and S are LFE-2- 
For Plan S this is because" 

1) 2U(D, DD) ý! U(S, DD) + U(D, SD) 
2) U(D, SD) + U(D, DS) U(S, SD) + U(D, SS) 
3) U(D, SS) + U(D, DS) U(S, SS) + U(D, SS) 
4) U(D, DS) + U(D, DD) U(S, DS) + U(D, SD) 

For Plan D this is because 12 

5) 2U(S, SS) > U(D, SS) + U(S, DS) 
6) U(S, DS) + U(S, SD) > U(D, DS) + U(S, DD) 

111) 2*7= 14 > 5=0+5 
2) 5+14= 19> 12= 10+2 
3) 2+14= 16> 10=8+2 
4) 14+7=21 > ll=6+5 
12 5) 2*8= 16>8=2+6 
6) 6+lO= M> M= M+ 0 
7) 0+lO= 10>7=7+0 
8) lo+8=l8>ll =5+6 
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7) U(S, DD) + U(S, SD) > U(D, DD) + U(S, DD) 
8) U(S, SD) + U(S, SS) > U(D, SD) + U(S, DS) 

Although both Plans D and S are LFE-2s, only Plan S is an LFEB-2. 
We know that with p=1 both Plans axe LFE-(1,2)s, since an LFE-(1,2) is 
formally equivalent to an LFE-2. Thus for Plan S to be an LFEB-2 but Plan 
D not, Plan S must be an LFE-(2,2) but Plan D not. For Plan S to be an 
LFE-(2,2) it should be that for all states the best 2-plan is to Smoke in the 
current and next period. This requires the following inequalities in addition 
to those required for LFE-2: 

9) 2U(S, SS) ý! U(D, SS) + U(D, DS) 
10) 2U(S, SS) ý! U(S, SS) + U(D, SS) 
11) U(S, DS) + U(S, SD) ý! U(D, DS) + U(D, DD) 
12) U(S, DS) + U(S, SD) > U(S, DS) + U(D, SD) 
13) U(S, DD) + U(S, SD) U(D, DD) + U(D, DD) 
14) U(S, DD) + U(S, SD) U(S, DD) + U(D, SD) 
15) U(S, SD) + U(S, SS) U(D, SD) + U(D, DS) 
16) U(S, SD) + U(S, SS) U(S, SD) + U(D, SS) 

It is easily verified that these all hold. 
In contrast, the equivalent inequalities for Plan D do not all hold. In 

particular, we have 13 : 

U(D, SD) + U(D, DS) < U(S, SD) + U(S, SS) 

Thus, when the state is w= SD, the best 2-plan is not DD, since it 
is dominated by SS. So Plan is not an LFE-(2,2) and Plan S is the sole 
LFEB-2. 

Once again, if decision-makers faced such preferences at a time when 
their foresight horizon was relatively short (2) they might smoke, then if 
their foresight horizon later became longer they might again switch to not 
smoking. 

5.5 A tale about the smoker's problem 
In Section 5.4 we have seen that it is possible to switch the decision of whether 
to smoke or not smoke simply by changing the horizon of foresight. We 
propose to interpret this in terms of an (unanticipated) change in foresight 

136+10= 16 <21 = 14+7 
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over the life-cycle. We suggest that younger people may have less ability 
to look ahead into the future than older people, and that this offers some 
insight into why significant numbers of young people take up smoking, only 
to give it up in middle-life. 

Let us think for a moment how relevant our examples are to the problem 
of why people smoke. How plausible are our payoffs - does our result depend 
on some very particular arrangement of payoffs which is unlikely to exist in 
reality? 

Think first of the payoffs shown in Table 1. There the least desirable 
things to be doing in any period are either to start smoking having had 
a history of not smoking, or to stop smoking having smoked (U(S, DD) = 
U(D, SS) = 0). Anyone who has turned green after smoking his first cigarette 
or struggled to stop smoking will attest to the plausibility of this. 

The highest payoff comes from smoking having just recently started (U (S, SD) 
11). Presumably, since many people go on to be smokers after enduring the 
unpleasantness of the first cigarette, there is probably a period between just 
starting and when smoking becomes routine in which smoking is very enjoy- 
able. 

Not smoking in any one period having not smoked previously (U(D, DD) 
10) is not so attractive as the period just after one has begun smoking (which. 
presumably must be right otherwise who would smoke? ), but it is preferable 
to smoking once smoking has become routine (U(S, DS) = 8; U(S, SS) = 9). 
As non-smokers ourselves, the authors have little difficulty in believing this. 

Taking up smoking again after one has only recently stopped (U(S, DS) = 
8) is more attractive than sticking to not smoking (U(D, DS) = 4). Perhaps 
this is why it is hard to give up? 

Similarly, having started smoking, even though it was very unpleasant, 
it is pretty unattractive to go back to being a non-smoker (U(D, SD) = 3), 
while smoking is very enjoyable at this point (U(S, SD) = 11) 

In the view of these authors, this set of payoffs seems highly intuitive - 
indeed compelling. And payoffs of this sort lead to the result that people 
with a shorter foresight horizon will smoke, while those with a longer foresight 
horizon (perhaps those who axe older and wiser? ) will not. 

However, we note that the result is not dependent on the ordering of 
the payoffs so far discussed. In the payoffs shown in Table 2 the ordering 
is importantly different. In that case, for example, sticking to not smoking 
having recently given up (U(D, DS) = 10) is more attractive than going 
back to smoking (U(S, DS) = 5). Similarly, not continuing with smoking 
having started (U(D, SD) = 6) is higher up the ranking and closer to being 
a regular smoker (U(S, SS) = 7) than in the previous example. An agent 
with these preferences would appear to find it easier to give up when he 
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wants to. It should hardly be surprising that an agent of this sort might 
be swayed between smoking and not smoking by the added perspective of a 
longer foresight horizon. 

5.6 Conclusion 
In this chapter we have offered one interpretation of why people start smok- 
ing only to give it up later: as people grow older they gain a longer-term 
perspective which changes the balance of advantage away from smoking and 
towards not smoking. We contend that the preferences required to obtain 
this result are interpreted plausibly in terms of scenarios in which people 
start smoking only to give it up later. 

We note that in our model there is no change in information (about, say 
the real impact of smoking). It isn't that as they grow older people discover 
that smoking really is unhealthy - it's not just a lie old people tell you. In 
our model, as people grow older they get to understand better how they will 
react in the future and this in turn induces a change in behavior. 

Note also that our model does not rely on any change in tastes (nor in 
terms of the perception of an end 14). One important alternative approach to 
these questions is to regard the decision about whether to smoke as involving 
a time inconsistency problem. Perhaps when young people want, like the 
rock star, to "live fast and die young", but once they have done the living 
fast the dying young seems less attractive (see Laibson (1997) and more re- 
cently Harris and Laibson (2001) for an analysis of the life cycle consumption 
generated by such preferences). 

A third approach which is, again, different from ours, follows in the Stigler 
and Becker (1977) tradition on "rational addictioiP, whereby people employ 
"appreciation capital" which is affected by consuming. 

We do not suggest that time-consistency or appreciation capital are not 
important elements of an explanation about smoking. But we do suggest 
that our approach offers a different insight which might also be important. 
For example, if a longer-term perspective is likely to result in people switching 
away from smoking, that may make a difference to the focus and value of 
government information programmes about smoking. Perhaps it isn't that 
young people lack information that smoking will damage health. Perhaps, 
rather, it is that young people lack wisdom, in some sense. 

O'Donoghue and Rabin (1999) also make distinctions between sophisti- 
cated and naive agents in the context of preferences with non-exponential 

14 That might be a relevant issue too: when a cancer beomes likely, one sees the end 
approaching and the smoking attitude may be affected. 
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discounting. In their approach, a sophisticated agent is one who is aware 
of his limited control capabilities and of the nature of his preferences. A 
naive agent is one who behaves as if he could stick to his plan afterwards, 
which in reality he cannot. O'Donoghue and Rabin (2001) also consider the 
idea of partial sophistication modelled as a convex combination between the 
two extreme modes of behavior outlined above. But, the O'Donoghue and 
Rabin approach to partial sophistication and the limited foresight approach 
are very different and have very different policy implications in terms of how 
to improve the well-being of agents. 15 

5.7 Proofs appendix 
5.7.1 Proof of Lemma 1: 
Proof. Assume, without loss of generality, that a=D (we could simply 
reverse symbols if a= S). 

If Plan D is an LFE-(m + 1) then the following 21n inequalities must hold 
(2' because there is one inequality for each possible state at time t, and 
there are 21 different possible states): 

1) (m+l)U(D, D ... D) ý! U(S, D ... D)+U(D, SD ... D) +... +U (D, D ... DS) 
2) U(D, SD 

... D) +... +U (D, D ... D) ý! U(S, SD 
... D) +... + U(Do D ... DS) 

214) U(D, S ... S) +... + U(D, D... D) ý! U(S, S .. S) + ... + U(D, D ... DS) 
These inequalities state that, for every possible state at t, it is better to 

play D this period than to play S, on the assumption that D will be played 
thereafter. 

If Plan D is an LFE-n there will again be 2' inequalities (only 21 be- 
cause there are still only 2' possible states, even though there is now greater 
foresight). Now the sum of the payoffs from playing D this period (the left- 
hand side) for any state at t would differ from the inequalities above by the 
presence of an additional n-m-1 added terms of U (D, D ... D). But the sum 
of payoffs from playing S this period (the right hand side) would, likewise, 
differ only by the presence of the same additional n-m-1 added terms of 
U(D, D ... D). 

Thus, for example, inequality (2) would be modified to read 
21) U(D, SD ... D) +... + U(D, D ... D) + (n -m- 1)U(D, D... D) 2: 

"One simple reason is that in our approach the underlying preferences are standard 
preferences with exponential discounting. 
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U(S, SD... D) +... + U(D, D ... DS) + (n -m- 1)U(D, D ... D) 
but this simplifies back to equation (2). Hence the required inequalities 

are equivalent, and whenever they are satisfied Plan D will be both an LFE- 
(m + 1) and an LFE-n, and whenever they are not all satisfied, Plan D will 
be neither an LFE-(m + 1) nor a LFE-n. m 

5.7.2 Proof of Lemma 2: 
Proof. If Plan D is optimal with perfect foresight, then the infinite stream 
of payoffs received from playing D every period must be greater than that 
from playing S this period then playing D thereafter, for any state. But after 
period t+m, if D is being played from period t+1, all subsequent payoffs 
will be U(D, D ... D), regardless of whether D or S is played in period t since 
there are only m elements in the state variable. That means that when Plan 
D is optimal with perfect foresight, the 2m inequalities of the proof of Lemma 
1 must hold, which is a sufficient condition for Plan D to be an LFE- (m + 1). 
N 

5.7.3 Remark on Proposition 5.2 
Note that since (by assumption) Plan S is not optimal with perfect foresight, 
it cannot be true that a set of 2' inequalities equivalent to those in the proof 
of Lemma 1 hold. Hence Plan S is not an LFE-(m + 1). By Lemma 1 this 
implies that Plan S is not an LFE-n for any n>m+1 either. This should 
help to verify Proposition 5.2. 



94 CHAPTER 5. SMOKING TODAY AND STOPPING TOMORROW 



Chapter 6 

Conclusion 

In this thesis we have considered various problems in limited foresight. We 
have considered why people might reason forwards, and how to go about 
modelling how far forwards they might look. We have investigated what is 
an appropriate solution concept for agents with limited foresight, and we have 
looked at two examples of how to employ our limited foresight equilibrium 
concepts to address real-world problems. 

A number of points emerge from this research. Limited foresight reason- 
ing may be applicable to a wide number and variety of even relatively simple 
decision problems and games. It may be employed both in individual be- 
havioural settings usually considered in microeconomics (such as our smoker 
problem) and in macroeconomic settings (for which, in general, bounded 
rationality models have not so far achieved any great penetration). 

We have argued that we do have the tools to model limited foresight 
in many settings. Jehiel's limited foresight concept, as we have refined it 
here, can be employed to provide tractable equilibrium solutions to many 
problems, providing interesting and sometimes unexpected new insights into 
problems. It is very important in bounded (or meta-) rationality modelling 
that the solutions offered should provide the possibility of modelling problems 
tractably. Otherwise one runs the risk of seeking spurious "realisrný' at the 
expense of losing the ability to gain insights through abstraction. Bounded 
rationality models which claim to represent "true" human behaviour but 
which cannot provide tractable solutions to problems are of little practical 
value. We have illustrated that this is not the case with Jehiel's limited 
foresight equilibrium concept. We can use it. 

Clearly there are other possible limited foresight approaches which may 
also be tractable and which may ultimately prove more accurate than that 
we have pursued here. Though we have mentioned chess often in this thesis 

95 



96 CHAPTER 6. CONCLUSION 

to drive the intuition of what limited foresight means, chess players do not, 
of course, use our sort of limited foresight at all. Chess players look different 
depths along different pathways in the game, using some kind of analogy- 
based reasoning to determine which pathways are worth exploring in more 
detail and which should be largely ignored. There is research in this area 
which may yet prove fruitful'. However, it seems to this author that any 
equilibrium concept arising out of this line of thought will inevitably be much 
more complicated than the Jehiel concept employed here, and that it will be 

many years before this area will yield an approach which is of practical value. 
Deviating less from the approach here, Jehiel (2001) modifies the Je- 

hiel concept here by assuming that agents make a guess at the horizon of 
foresight (rather than simply being utterly ignorant, as here). This line of 
thought may be promising, but it seems that the main insights from limited 
foresight reasoning can be delivered in the simpler setting employed here, 

with considerably less modelling complexity. 
The issue of how far ahead the agents in our models should look is still 

moot. Our first two chapters offered the nucleus of an approach which might 
ultimately form the basis of deriving a model of how far ahead agents look. 
Alternatively, perhaps experimental research might be useful here. In the 
meantime, calibration may be the appropriate method to employ for practical 
predictive models with limited foresight. 

There is much other research into other forms of bounded rationality. 
Though this thesis has been about limited foresight, this author would like 
to note in closing that he does not believe in bounded rationality as such 
- usually conceived as the claim that decision-makers are not fully rational. 
The rational agent provides an important modelling discipline which guides 
research along productive pathways and forces researchers to come up with 
rational answers where behaviour is not as our initial intuitions might predict. 
If we assume too easily that agents axe not rational we may fail to learn 
important lessons and our reseaxch may become woolly - rather as if bounded 
rationality became Game Theory's version of a conspiracy theory whereby 
everything is "explained" by some grand cover-up2. 

That said, the idea that agents may face reasoning costs which they re- 
spond to (rationally) by not solving problems completely seems completely 
in keeping with orthodox, disciplined research. Given the complexity of mod- 

'Consider, for example, Jehiel (2002), Gabaix and Laibson (2000a, 2000b) 
2 For example, economists might have responded to observations that demand for pota- 

toes increased as the price rose by just saying " Ah, well. Agents aren't fully rational. " But 
then we would have been robbed of important insights into the drivers of demand. And 
so on with many other cases. The danger is that answers In terms of bounded rational 
can be too easy to come up with, and consequently unproductive... 
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elling a reasoning cost problem explicitly, this (rational) incomplete solution 
of problems may be best absorbed through models in which reasoning costs 
are ignored but agents behave as if they were less than fully rational. The 
challenge is to provide models of this sort which are tractable and which offer 
improved insight into practical problems. Limited foresight does just that. 

Andrew Lilico, UCL October 2002 
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Appendix A 

Proof of Main Lemma 

It follows from the definition of an implementing FA that any implement- 
ing FA capable of examining five or more variables and recommending two 
actions must have at least seven states. Hence it will suffice to prove our 
result to consider cases in which an implementing FA examines fewer than 
five variables. 

Proposition A. 1 Any implementing FA examines the values of at leastfour 
of the six variables, i. e. #-y(Q\F) > 4. 

Proof. The cases where only one or two variables are examined are triv- 
ial. Consider the case where -y can take a maximum of three different values, 
and assume, for convenience, that the FA examines all three of these variables 
along any path to any recommendation (this is the maximal information case 
so proof here will apply a fortiori to cases when this assumption is not met). 
Write the expected payoffs as 

-7r (U) 
..: -T1 + MaXJX3, X4} 

7r (D) " X2 + max{x5, X6} 
Then at the point of making the recommendation the three examined 

variables (call them 1, m, n) can be arranged in two different ways (only two 
by symmetry): All of them could be in one of 7r(U), 7r(D); or two in one 
and one in the other. By symmetry, without loss of generality we can use 
7r (U) as the fully identified payoff in the first case, so 7r (U) =1 +max {m, n 1. 
Then consider 7r(U) = 1. Use k(7r(a)) to denote the set of possible values of 
7r when the FA recommends action a. Here we have k (7r (D)) = {O, 1,2} and 
this is not enough to identify the optimal action (choosing U will be worse 
than choosing D if 7r (D) = 2, and better than D if 7r (D) = 0). 

In the second case, by symmetry, without loss of generality we can put 
the single identified variable (which we shall denote 1) in 7r (U) and the two 
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identified variables in7r (D) 
(only two by symmetry): 

7r (U) = I+ maxf-'r3 , X4 

APPENDIX A. PROOF OF MAIN LEMMA 

For 7r (U) we then have two different sub-cases 

or 
, 7r (U) = x, + max{1, X4} 

Similarly, for 7r (D) we have two different sub-cases: 

7r (D) =m+ maxfn, X6} 

or 
7r (D) = X2 + maxim, n} 
Now consider 1=m=n=0. Then k (7r(D)) = 10,1}, and k (7r(D)) 

10,1} for the first 7r(U) sub-case or k (7r(D)) = 10,1,21 for the second ir(U) 
sub-case. In either case this is not enough to identify optimal play. 

Since an FA cannot recommend optimal play for all circumstances with 
only three variables examined, a fortiori no FA can recommend optimal play 
for all circumstances with only the possibility of examining three variables - 
i. e. if #-y(Q\F) < 3. m 

Proposition A. 2 In an implementing FA, if only four of xj,..., x6 can be 

examined two of these variables must be x, and X2, and the others must be 

either the pair X3, X4 or the pair X5, X6- 

Proof. By symmetry, there are four types of case where this condition 
is not met: when X1, X3s X41 X5 can be examined, when X1, X31 X59 X6 can be 

examined, when X1, X2t X31 X5 can be examined, and when X3, X41 X51 X6 can be 
examined. In all cases consider fully-examining FAs. For this first case con- 
sider 7r(U) -= 1, x5 =0 ==: >, k(7r(D)) = 10,1,2}. For the second case consider 
X1 = X3 = X5 = X6= 0 =* 

k(7r (U)) =10,1}, k(7r(D)) = 10,1}. For the 
third case consider x, = X2 = X3 = x5 =0 ==ý, k(7r(U)) = 10,1}, k(7r (D)) = 
10,11. For the fourth case considerX3 = X4 = X5 = x6= 0 ==: > k(7r(U)) = 

10,11, k(7r(D)) = 10,1}. m 

Corollary A. 1 It follows from Proposition A. 2 that an implementing FA 
for the problem in Figure 1.2, for which only, at most, four of the variables 
can be examined will recommend one of the actions for 10 of the sixteen 
possible combinations of the four variables, and the other action for 6 of 
those combinations, as illustrated in the following table for the case where 
XI, X2, X3, X4 are examined: 
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XI -T2 Z3 X4 k(7r(U)) k(7r(D)) Optimal Action 
0 0 0 0 fo} {O, l} D 
0 0 0 1 ll} {O, 11 u 
0 1 0 fl} {O, l} u 

0 0 lo} {l, 2} D 
1 0 0 {l} {O, 11 

{l} 10,11 
{I, 2} 

1 {21 {O, 11 
0 1 1 0 {il {I, 21 
1 0 {21 {O, 11 
1 1 0 0 fil {l, 2} D 

{l, 2} D 
1 {21 {O, l} 

0 1 {21 {I, 2} U 
1 0 {21 {I, 21 U 
1 1 {2} {l, 2} U 

We have shown that any six-state implementing FA would have to be 
capable of examining four variables. However, it is not yet clear whether 
some of these variables are examined for some realisations of X and others 
for different realisations without there being any realisation of the variables 
for which all the variables are examined in turn (e. g. sometimes only x, and 
X2, and sometimes xj, x3, x4, but never all Of X1, X2, X3, X4). We now show 
that, if the FA is to be implementing, for some realisation of the variables all 
four variables will have to be examined in turn. 

Definition A. 1 An N-path through a finite automaton FA is a sequence 
q(x, FA) containing N members which are not final states. 

Proposition A. 3 Any 6-state FA which is implementing for the problem in 
Fig- 2 must contain at least one 4 -path. 

Proof. We shall prove that -t(qo) V {1,2,3,41 (i. e. that there is no first 
question) for an implementing FA if it has at most 3- paths. Without a 
first question there cannot exist an implementing FA. 

We have already proved that any implementing 6-state automaton would 
need to be a 4-question automaton, investigating the values of (XI, X2 t X3 i X4) 
(or equivalently (XI, X2, -T5, X6)). Thus the first question could be about the 
value of xj, X2v X3. or X4- We shall consider these possibilities in turn. 
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1. Consider the case in which -y(qo) =1 (i. e. in which the first question 
asked is about xj). Then there must be two exit branches from qO, one 
for xj =1 and one for x, = 0. We shall focus attention on the x, =0 
branch. 

(a) Suppose that the x, =0 branch leads to a final state F. Suppose 
that A(F) = D. Then the FA will recommend a non-optimal 
action for (XIX2, X3, X4, X5, -T6) = (0AIA0, O), and hence be 
non-implementing, which would be a contradiction. Next suppose 
that A(F) = U. Then the FA will recommend a non-optimal 
action for (-TIi-T2, X3, -T4tX5iX6) = (0,1,0,0,1,1), and hence be 
non-implementing, which would be a contradiction. Hence x, =0 
branch cannot lead to any final state F. 

(b) Now suppose, instead, that on x, = 0, a state q for which -y(q) =2 
is reached (i. e. the X2 investigation is reached). Then consider 
the X2 =0 branch out of this state. If this leads to a final state 
F for which A(F) = D, the FA will recommend a non-optimal 
action for (X1, X2, X3, X4, -T5, X6) = (0,0,1,0,0,0), and hence be 
non-implementing, which would be a contradiction. If this leads 
to a final state F for which A(F) = U, the FA will recommend 
a non-optimaI action for (XI 

i X2 7 X3 9 X4 v X5 v X6) = (07 01 OP Ov 11 1) 7 
and hence be non-implementing, which would be a contradiction. 
Thus the X2 =0 branch could not lead to a final state. 
Since we have already asked an x, question and an X2 question, 
and only have one question available for each variable, if the X2 =0 

branch does not lead to a final state it must lead to a state in- 
vestigating one Of X3 or x4. Suppose that the X2 =0 branch 
leads to a state q for which -y(q) =3 (i. e. we ask the X3 ques- 
tion). This, in turn, must have two exiting branches, one for 
X3 =0 and one for X3 =L Since the maximum path-length is 
three, and we have now asked three questions, neither of these 
exiting branches can lead to the state q for which -y(q) = 4. Since 
loops are also forbidden, it must be the case that each of these 
exiting branches leads to a final state. Consider the final state 
F reached on x3 = 0. If A(F) = U, the FA will recommend 
a non-optimal action for (XI, X2v X39 X4v X57 X6) = (0,0,0,0,1,1), 

and hence be non-implementing, which would be a contradic- 
tion. If A(F) = D, the FA will recommend a non-optimal ac- 
tion for (X1vX22X3iX4vX5vX6) 

= (OA0.1,0A, 
and hence be non- 

implementing, which would be a contradiction. Since every case 
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for which the x2 =0 branch leads to a state q for which -y(q) 3 
leads to a contradiction, it cannot be the case that the X2 0 
branch leads to a state q for which -y(q) = 3. By symmetry, this 
applies also to the case in which the X2 =0 branch leads to a state 
q for which -y(q) = 4. But this means that for all possible terminii 
of the X2 =0 branch, where the X2 question is reached from the 
Xi =0 branch when -y(qo) = 1, there is a contradiction. Hence 
there cannot be an X2 =0 branch, where the X2 question is reached 
from the x, =0 branch when -y(qo) = 1. Hence the X2 question 
cannot be reached from the x, =0 branch when -y(qo) = 1. 

(c) Next suppose that the x, =0 branch leads to state q for which 
-I(q) =3 (i. e. that we reach the x3 question second if x, = 0). 
Now consider the x3 =0 branch exiting state q. Suppose this 
leads to some final state F. Suppose that A(F) = D, the FA 
will recommend a non-optimal action for (X1, X2v X3v X47 X5v X6) = 
(0,0,0,1,0,0), and hence be non-implementing, which would be a 
contradiction. If this leads to a final state F for which A(F) = U, 
the FA will recommend a non-optimal action for (X1, X2v X3v X47 X57 X6) 
(0,1,0,0,0,0), and hence be non-implementing, which would be a 
contradiction. Thus the x3 =0 branch could not lead to a final 
state. 
Suppose that the x3 =0 branch leads to some state q for which 
-I(q) =4 (i. e. that we reach the x4 question third if x, =0 and 
x3 = 0). Since the longest path is a 3-path, each branch out of 
this q must lead to a final state. Consider the X4 1 branch, 
and call the final state it reaches state F. If A(F) D, the FA 
will recommend a non-optimal action for (X1, X2, X3, X4, X5, X6) = 
(0,0,0,1,0,0), and hence be non-implementing, which would be a 
contradiction. If A(F) = U, the FA will recommend a non-optimal 
action for (X1. 

-T2, X3, X4, X5, X6) = (0,1,0,1,1,1), and hence be 
non-implementing, which would be a contradiction. Thus the 
x4 =1 branch could not lead to a final state, but it must, so we 
have a contradiction. Hence the X3 =0 branch cannot lead to 
some state q for which -y(q) = 4, given that -I(qo) =I and the 
xi =0 branch leads to state q2 for which -y(q2) = 3. 
Suppose, instead, that the X3 =0 branch leads to some state q for 
which -y(q) =2 (i. e. that we reach the x2 question third if x, =0 
and X3 = 0)- Since the longest path is a 3-path, each branch out 
of this q must lead to a final state. Now consider the X2 =0 
branch, and call the final state it reaches F. If A(F) = D, the FA 



104 APPENDIX A. PROOF OF MAIN LEMMA 

will recommend a non-optimal action for (-'rl 
v X2 i X3 t X4 i X5 i X6) "" 

(0,0,0,1,0,0), and hence be non-implementing, which would be a 
contradiction. If A (F) = U, the FA will recommend a lion-optimal 
action for (XlX2, X3, X4, X5, X6) = (0,0,0,0,1,1), and hence be 

non-implementing, which would be a contradiction. Hence X3 =0 
cannot lead to the X2 question. But since it cannot lead to a final 

state or the X4 question either, and since looping back on itself or 
to x, is not possible for an implementing FA, there cannot be any 
13 =0 branch following xi =0 in a 6-state automaton with at 
most 3-paths. 

(d) By symmetry, we could reverse the labels on X3 and x4 without 
loss of generality. Hence, since x, =0 cannot lead to the X3 
question, it cannot lead to the X4 question either. 
But since the x, =0 branch cannot lead to a final state, and can- 
not lead back onto itself by the no-looping condition, and cannot 
lead to any Of X2, X3, X4 it cannot lead anywhere. Hence there 
cannot be any x, =0 branch leading out of qo in such an FA, 
hence -y(qo) 0 1. 

This completes case 1. 

2. Consider the case in which -y(qo) =2 (i. e. in which the first question 
asked is about X2). Then there must be two exit branches from qO, one 
for X2 =1 and one for X2 = 0- We shall focus attention on the X2 =0 
branch. 

(a) Suppose that the X2 =0 branch leads to a final state F. Suppose 
that A(F) = D. Then the FA will recommend a non-optimal 
action for (XI 

v X2) X3 7 X4 i X5 i X6) = (1,0,1,1,0,0), and hence be 

non-implementing, which would be a contradiction. Next suppose 
that A(F) = U. Then the FA will recommend a non-optimal 
action for (X1, X2, X3, X4, X5, X6) = (0,0,0,0,1,1), and hence be 

non-implementing, which would be a contradiction. Hence X2 =0 
branch cannot lead to any final state F. 

(b) Now suppose, instead, that on X2 = 0, a state q for which -y(q) =1 
is reached (i. e. the x, investigation is reached). Then, if we focus 
attention on the sub-case in which x, =0 we have exactly the 
same case as in (Lb. ) above, in which the first two questions 
have shown that x, = X2 = 0, and exactly the same arguments 
show that this leads to a contradiction. 
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(c) Next suppose that the X2 =0 branch leads to state q for which 
-y(q) =3 (i. e. that we reach the X3 question second if X2 = 0)- 
Now consider the X3 =0 branch exiting state q. Suppose this 
leads to some final state F. Suppose that A(F) = D, the FA 
will recommend a non-optimal action for (XI, X21 X31 X49 X5t X6) = 
(0,0,0,1,0,0), and hence be non-implementing, which would be a 
contradiction. If this leads to a final state F for which A(F) = U, 
the FA will recommend a non-optimal action for (XI, X2 7 X3 7 X4 7 X5 i X6) 
(0,0,0,0,1,1), and hence be non-implementing, which would be a 
contradiction. Thus the X3 =0 branch could not lead to a final 

state. 
Suppose that the -13 =0 branch leads to some state q for which 
-y(q) =4 (i. e. that we reach the X4 question third if 

-12 =0 and 
X3 = 0)- Since the longest path is a 3-path, each branch out of 
this q must lead to a final state. Consider the X4 0 branch, 

and call the final state it reaches state F. If A(F) D, the FA 

will recommend a non-optimal action for (X1, X2 i X3? X4 i X5 i X6) = 
(1,0,0,0,0,0), and hence be non-implementing, which would be a 
contradiction. If A (F) = U, the FA will recommend a non-optimal 
action for (X1, X2) X31 X4) X5t X6) = (0,0,0,0,1,1), and hence be 

non-implementing, which would be a contradiction. Thus the 

X4 =0 branch could not lead to a final state, but it must, so we 
have a contradiction. Hence the X3 =0 branch cannot lead to 

some state q for which -y(q) = 4, given that -y(qo) =1 and the 

X2 =0 branch leads to state q2 for which -y(q2) = 3. 

Suppose, instead, that the X3 =0 branch leads to some state q for 
which -y(q) =1 (i. e. that we reach the xi question third if X2 =0 
and X3 = 0)- Since the longest path is a 3-path, each branch out 
of this q must lead to a final state. Now consider the x, =0 
branch, and call the final state it reaches F. If A(F) = D, the FA 
will recommend a non-optimal action for (XI, X21 X3t X49 X5o X6) = 
(0,0,0,1,0,0), and hence be non-implementing, which would be a 
contradiction. If A(F) = U, the FA will recommend a non-optimal 
action for (XbX2, X3, X4, X5, X6) = (0,0,0,0,1,1), and hence be 
non-implementing, which would be a contradiction. Hence X3 =0 
cannot lead to the x, question. But since it cannot lead to a final 

state or the X4 question either, and since looping back on itself or 
to X2 is not possible for an implementing FA, there cannot be any 
X3 =0 branch following X2 =0 in a 6-state automaton with at 
most 3-paths. 
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(d) By symmetry, we could reverse the labels on X3 and X4 without 
loss of generality. Hence, since X2 =0 cannot lead to the X3 
question, it cannot lead to the X4 question either. 
But since the X2 =0 branch cannot lead to a final state, and can- 
not lead back onto itself by the no-looping condition, and cannot 
lead to any Of Xl, X31X4 it cannot lead anywhere. Hence there 
cannot be any X2 =0 branch leading out of q0 in such an FA, 
hence -y(qo) =ý 2. 

This completes case 2. 

I Consider the case in which -y(qo) =3 (Le. in which the first question 
asked is about X3). Then there must be two exit branches from qO, one 
for X3 =1 and one for X3 = 0- We shall focus attention on the X3 =0 
branch. 

(a) Suppose that the X3 =0 branch leads to a final state F. Suppose 
that A(F) = D. Then the FA will recommend a non-optimal 
action for (X1 

i X2 i X3 t X4) X5 t X6) = (1,0,0,1,0,0), 
and hence be 

non-implementing, which would be a contradiction. Next suppose 
that A(F) = U. Then the FA will recommend a non-optimal 
action for (XI 

9 X2 i X3 7 X4 i X5, X6) = (0,0,0,0,1,1), 
and hence be 

non-implementing, which would be a contradiction. Hence X3 =0 

branch cannot lead to any final state F. 
(b) Suppose that the -13 =0 branch leads to state q for which -y(q) =1 

(i. e. that we reach the x, question second if X3 = 0). Then if we 
consider the x, =0 branch exiting q we have the same situation as 
in (I. c. ) above, and the same axguments lead to a contradiction. 
Hence the X3 =0 branch cannot lead to the x, question second. 

(c) Suppose that the X3 =0 branch leads to state q for which -y(q) =2 
(i. e. that we reach the X2 question second if X3 = 0). Then if we 
consider the X2 =0 branch exiting q we have the same situation as 
in (2-c. ) above, and the same arguments lead to a contradiction. 
Hence the X3 =0 branch cannot lead to the X2 question second. 

(d) Suppose that the X3 =0 branch leads to state q for which -y(q) = 4. 
Suppose that the X4 =0 branch exiting q leads to some state q2 
for which -y(q2) = 2. Then if we consider the case X2 =0 we have 
a sub-case considered in (2. c. ) above, and the same arguments 
lead to a contradiction. Suppose instead that the X4 =0 branch 
exiting q leads to some state q2 for which 7(q2) = 1- Then, 
since the longest path is a 3-path, both branches exiting from q2 
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must lead to final states. Call the state that x, =1 leads to 
F. Suppose that A(F) = D. Then the FA will recommend 
a non-optimal action for (X1, X21 X31 X4) X59 X6) = (1,0,0,0,0,0)1 

and hence be non-implementing, which would be a contradiction. 
Next suppose that A(F) = U. Then the FA will recommend 
a non-optimal action for (X1 

7 X2) X3 i X4 i X5 i X6) = (1,1,0,07 1,1) 
1 

and hence be non-implementing, which would be a contradiction. 
Hence x, =1 branch cannot lead to any final state F, but it must, 
so we have a contradiction. Hence it cannot be that the X4 =0 

branch exiting q leads to some state q2 for which -y(q2) = 1. 

We have considered x, and X2, and by the no-looping condition 
the X4 =0 branch could not lead onto the X4 or X3 questions, 
so the only remaining options are final states. Suppose that 
the X4 0 branch leads to some final state F. Suppose that 
A(F) D. Then the FA will recommend a non-optimal ac- 
tion for (X1, X2 7 X3 i X4 i X5 i X6) = (1,0,0,0,0,0), and hence be non- 
implementing, which would be a contradiction. Next suppose 
that A(F) = U. Then the FA will recommend a non-optimal ac- 
tion for (XI, X2, X3, X4, X5, X6) = (11 11 01 01 11 1), and hence be non- 
implementing, which would be a contradiction. Hence X4 =0 
branch cannot lead to any final state F, but it must, so we have 

a contradiction. Hence we cannot have an X4 =0 branch exiting 
q. Hence, if the X3 =0 branch exiting the initial state leads to 

state q, -y(q) =, 34 4. 
But if the X3 =0 branch exiting the initial state cannot lead to 

any final state, or to any Of XhX2, X4 it cannot lead anywhere. 
Hence there cannot be any X3 =0 branch. Hence 7(qo) =34 3. 

This completes case 3. 

4. By symmetry, we could swap the labels Of X3 and X4 without loss of 
generality. Hence, since -y(qo) :ý3, we know also that -I(qo) =/ 4. 

This completes case 4. 

But if -y (qo) 0 11,2,3,4}, since these are the only possible values of -Y (qo), 
and since the initial state of an implementing FA cannot be a final state, that 
means that there is no initial state. Hence there is no such implementing 
FA with at most 3- paths. m 

We now show that no six-state implementing FA could have more than one 
path along which all four variables are examined, but that no implementing 
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FA could have an odd number of such paths. Since a six-state implementing 
FA would have to have exactly one such path and yet not an odd number 
of such paths, we conclude by contradiction that a six-state FA cannot be 
implementing. 

Proposition A. 4 There is no implementing FA for the problem in Figure 
1.2 which has an odd number of 4- paths, and hence no implementing FA 
with only 6 states. 

Proof. The problem in Figure 1.2 involves two possible actions. By 
the definitions of an FA and a question, any six-state automaton capable of 
recommending either of two actions can ask at most four questions. Let 
us assume there exists such a FA. It must take a form like that in Figure 
A. 1, where the circles marked Q, to Q4 represent non-terminal states, the 
double circles marked F, and F2 represent final states and R, to R3 represent 
dummy states, by which we mean that we allow R, to R3 to be any of the 
six states and do not specify which (so each of Rk E Mi 

... I Q4) F1 i F2}) - 
By Proposition A. 3, if the FA has only six states and is implementing then 
having at most 3- Paths is not enough. Since the maximum path-length 
with only six variables is 4, if an implementing 6-state FA exists, it must 
contain at least one pathway leading through all four variables. Since we 
axe considering regular FAs, loops are not allowed so the branches from Q 
cannot lead to prior states in this path, and hence must lead to the two final 
states. Hence any six-state automaton asking four questions is captured by 
this stylised representation. 

Now consider R1. We cannot have R, = Q1, by the stopping condi- 
tion, and we cannot have R, = Q2, or else the move to state Q2 is input- 
independent, and the first question has not truly been asked (which is ex- 
cluded by non-redundancy). Hence we have R1 E IQ3t Q41 Fli F2}- Sim- 
ilarly, by the stopping and non-redundancy conditions, R2 E IQ42 F1 I F2} 
and R3 E IF, 

7 
F2}. This means that, apart from the single path from the 

initial state to final states along four branches (thus asking four questions), 
the longest other path is of length three or fewer (and hence asks at most 
three questions). 

There are sixteen possible combinations of the values of the four vari- 
ables. A four-questions path identifies one of these sixteen combinations 
exactly. An n-question path reduces the combination space to one of -L' 2n 

combinations. So for n<3 the combination space is reduced to an even 
number of combinations at a final state. Since the total number of combi- 
nations reaching each final state is one odd number plus some even numbers, 
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Figure A. 1: A stylized representation of a FA which asks four questions 

the total number of combinations at each final state of such an automaton 
must be odd. 

However, by Corollaxy A. 1 we know that the number of combinations at 
each final state is even, which generates a contradiction. m 

Since it follows from Proposition A. 1 and the definition of an FA that 
any implementing FA must have at least six states, and from Proposition 
AA that six states cannot be enough, the Main Lemma follows immediately. 
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Appendix B 

Proof of Proposition 1.2 

Proposition B. 1 Any implementing BRFA must contain states examining 
the values of either (XbX31X4iX57X6), or (X2, X3, X4, X5, X6), or (Xl, X2, X3, X4, X5, X6)- 

Proof. It follows from the definition of a BRFA that if x, is examined, 
then so must be x3 and X4, and similarly that if X2 is examined, then so must 
be x5 and X6. This means that the proposition identifies all possible BRFA 
five-variable combinations and the single six-variable combination. We know 
from Proposition A. 1 that no three-or-fewer-variables combination can be 
implementing. It remains only to exclude all four-variable combinations 
which do not include both x, and X2, which is done in Proposition A. 2. n 

Proposition B. 2 A state-mininmal FA for solving the problem in Figure 
1.2, asking questions only about the set of variables j_, r1i-r37X47X5)X6} must 
contain at least one more state than a state-minimal FA for solving the prob- 
lem in Figure 1.2, asking questions only about the set of variables IXI, X2, X3, X4}- 

ProoL Each state q can be associated with a set of tuples of possible 
values of 7r(U) and 7r(D). Where there is only one path leading to a state 
there is only one tuple of possible values of each of 7r(U) and 7r(D). Where 
there is more than one path there may be more than one tuple. For example, 
the initial state qO can be associated with sets of possible values of 7r(U) and 
7r(D) (where we shall term the tuple of sets K(qo)) as follows: 

k (7r (U), qo) = 10,1,2} 
k(7r(D), qo) = {O, 1,2} 
K(qo) = (k(7r(U), qo), k(7r(D), qo)) = (10,1,2}, 10,1,2}) 
As another example, consider state q4 of Figure 1.3. Here we would have 

'NB. The proposition applies to general FAs, and makes no mention of either BRFAs 
or FRFAs. 

ill 
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K(q4) Ei 1({1,2}, {l, 21), (10,11,10, l}» 

At a final state F of an implementing automaton, we are able to recom- 
mend an action a because 

min iý(a) E k(7r(a), F) ý: max ýý(-a) E k(7r(-a), F) 
For example, following the path q0, qj, q2 in Figure 1.3, on reaching q2 we 

have 
k(7r(U), q2) = 11,2} 
k(-7r(D), q2) = 10,1} 

so that 
min F(U) E k(7T (U), q2) = 1> max'-7r(D) Ek (7r (D), q2) 

On the other hand, if we had followed the path qo, qj, q4, q5, q2we would 
have had 

k(7r(U), q2) = 11} 

k (7r (D), q2) = 11,2} 
so that 
min ýý (D) Ek (7r (D), q2) = 1> maxF(U) E k(7r (U), q2) 

Now consider a path between two states q- and ý along which there is a 
transition from 

k (7r (D), q-) = 10,1,2} 
to 
k(7r(D), q-) = 10,11 
or 
k(7r (D), q-) = 11,2} 
It is clear than the presence of such a transition is necessary for an au- 

tomaton to be implementing (consider any situation in which 7r(U) = 1). 

Next note that this transition can be made with one question aboutX2but 
requires two questions about x5 and x6, and that no other information rel- 
evant to a decision between U and D at the first node can be provided 
by any question about any0f X2, 

-, r5, x6. Thus however many states, say 
S, is required for the state-minimal automaton using questions only about 
(X1, X2, X3, X4), an automaton using questions only about 

(X1, X3, X4, X5, X6) 

will require at least one more state. m 

Now we are ready to prove Proposition 1.2, as follows. 
Proof. Proposition B. 1 shows that any implementing backwards-reasoning 

automaton must contain states examining the values of either 
(XI, X3t X4t X51 X6)t 

or (X2, X3, X4, X5, X6), or (X1, X2, X3, X4, X5, X6). Proposition B. 2 shows that 
automata asking about only (Xl, X3, X4, X5, X6) cannot be state-minimal. By 
symmetry, this proof also applies to automata asking about only 

(XI) X3 t X4 7 X5 t X6) 

The set of questions JXI, X21 X3) X4) X51 X6} can idenfity 7r(U) exactly for us 
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(i. e. we can reach some state q for which k(7r(D), q) is a singleton). Hence 
Proposition B. 2 does not show that a state-minimal automaton asking ques- 
tions about (xj, 

... I X6) will have more states than a state-minimal automaton 
asking questions only about (XI, X2, -T3, X4). However, Figure 1.3 exhibits an 
implementing automaton with only seven states, whilst the definition of reg- 
ularity guarantees that any implementing automaton asking questions about 
all of (xl 

, ... I TO must have at least eight states. Hence a state-minimal 
backwards-reasoning automaton must have at least one more state than a 
general implementing state-minimal automaton. N 
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Appendix C 

Deciding and anticipating 

In this appendix we shall investigate further the distinction between deciding 
what to do today on the basis of a correct expectation about tomorrow and 
deciding what to do both today and tomorrow. 

Our Main Lemma shows that Figure 1.3 is a state-minimal FA for solving 
the problem of optimal play at the opening node of Figure 1.2. 

Note that this FA tells our decision-maker what to do at the opening node 
based on the expectation that he will play optimally at the second reached 
node. It does not, however, tell him what to play at that node. He is taking 
his play at the second node as given, even though he will be able to control it 

- just as in the standard formulation of the Jehiel Limited Foresight concept. 
Now consider a FA which tells us what to do at both the first and second 

reached nodes. It follows immediately from our Main Lemma that such a FA 
must have at least nine states (since it requires four final states rather than 
the two of Figure 1.3) - and, although it is not contended that nine states 
is enough, that is sufficient to show that a structurally different FA will be 

required for this problem than for the one solved in Figure 1.3 (an example 
of a FA which solves this problem is exhibited in Figure 1-3). That is to say, 
the problem of deciding what it is best to do at the opening node based on a 
correct expectation of what will be done at later nodes (the problem solved in 
Figure 1.3) is a conceptually different problem from that of deciding what it 
is best to do throughout the foresight horizon (the problem solved in Figure 
1.5). 

The other thing to notice is that there may be efficiency advantages to 
determining play from the beginning of the problem rather than waiting 
until a decision is necessary. Consider a player who decides what to do at 
the initial node of the problem in Figure 1.2, and waits until he reaches a 
subsequent node to decide what to do there. At the initial node his state- 
minimal FA is Figure 1.3 - seven states. Suppose optimal play at the opening 
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- -4 

U 

D 

Figure CA: 

node is Up. Then at the second node he will have to choose the better of 
IX3, X4}, a task for which a state-minimal FA clearly has three states and 
looks like Figure C. 1. 

If Down had been best at the initial node, then he would have reached 
the lower right node, and had to use another three-state FA like Figure C. 1, 
except questioning x5 (say). Therefore, a player deciding optimal play for 
the game in two steps will need to have available three automata totalling 
thirteen states (7 +3+ 3). If he decides optimal play at the beginning using 
Figure 1.5 he will need only eleven (or possibly fewer) states - more efficient'. 
Hence it seems reasonable to suppose that players will try to control what 
they do in the future as far ahead as they can achieve with certainty. 

'Of course, there may be advantages to waiting until later rounds if "complexity" is 
measured by the highest number of states of any single required FA - here seven for the 
step-by-step solution compared with eleven for the whole-game solution. 



Appendix D 

Existence and uniqueness 
proofs for the LFE-N and 
LFE-J concepts 

Remark D. 1 There is no existence issue for LFE-N as all such problems are 
simply overlaying finite horizon games, for which existence is well- established. 

Jehiel (1995) has provided an existence proof of wide application for the 
(ni, n2)-equilibrium concept. Here is it convenient to exhibit a few results 
for the slightly broader LFE-J concept. 

Proposition D. 1 An LFE-J exists in all finite limited-foresight decision- 

problems without a chance player and in which payoffs do not depend on 
history (i. e. u, is independent of h'). 

Proof. Denote n =- nj. Cases n=0 or n=1 are trivial (since there 
is no foresight in the n=0 case everything is an equilibrium, while in the 

n=1 case the equilibrium consists simply of adopting the optimal one-shot 
action in any period). Assume n>1. Prove by construction. Consider a 
problem with T periods to go. Construct an LFE-J by induction on periods 
from period T. For the base step, in period T set qi*, T = arg max. ul (J). 
Then for T+1-n<t<T set (q, 1, T. For the induction step, for T) = q* 
ýI, t already constructed, set ql*, t = arg maxql,, 5fi, t (qi, t, i7j, t). Denote by qj* the 
profile ql*, t, Vt. qj* is an LFE-J by construction, hence an LFE-J exists. 0 

Proposition D. 2 An LFE-J exists in all infinitely-repeated limited-foresight 
decision-problems in which stage payoffs are independent of history. 

117 
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Proof. Consider the following strategy/expectations pair. In each round 
play the behaviour-strategy maximising the one-shot stage payoff, expecting 
that in all subsequent rounds out to the horizon of foresight play will again 
be that maximising the one-shot stage payoff. This is clearly an LFE-J. m 

Having illustrated that an LFE-J exists for many interesting problems', 
we shall now illustrate that (unsurprisingly, but comfortingly) sometimes 
there is only one LFE-J, but on other occasions there are many. The possi- 
bility of multiple LFE-Js will be important later when we use Rubinstein's 
critique to construct a solution-concept which is a refinement of LFE-J. 

An important class of solutions to infinitely-repeated decision-problems 

are those in which players always perform the same action in each sub-game 
- stationary equilibria. We shall now prove that in pure strategies, under 
certain conditions, there will be no more than one stationary LF&J2. 

Proposition D. 3 With only one player, no chance player, two actions (a E 
JX, Y}), only pure strategies permitted, no discounting, no history- dependence 

of strategies in equilibrium (so q is independent of ht), and u dependent on 
history only as far back as the horizon of foresight, n, there is no more than 
one LFE-J except in special cases where the payoffs to playing X every period 
and playing Y every period are the same. In particular, the following two 
strategies cannot both be equilibria: 

Strategy X: Play X every round, expecting play of X in all future rounds 

Strategy Y: Play Y every round, expecting play of Y in all future rounds 

Proof. State payoffs in the form U(b, V, ... V,, 
-, 

), where b is the action 
this period, V, is the action last period, V2 is the action two period ago, etc., 
and b, Va E JX, Y}, Vs. 

Call the reference period at which the decision must be take period t. 
Assume first that the payoffs to playing X every period are not equal to 

those of playing Y every period (i. e. rule out the trivial case): 
0) U(X, X ... X) =A U(Y, Y .. Y) 

'We exhibit a sketch of a more general existence proof for decision-problems in Chapter 
5. 

2Note that the LFE-J concept violates the Vieille & Weibull (2002) "weakly increas- 
ing patience" sufficiency condition for uniqueness in decision problems, since here at the 
horizon of foresight patience suddenly decreases (the decision-maker becomes, as it were, 
infinitely impatient). 
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For Strategy X to be a Jehiel equilibrium, we require that the combined 
payoffs over the foresight horizon must be greater from playing X today than 
from playing Y, and this must be true for every history. In particular it must 
be true for the history where Y has been played in every period up to t: 3 

1) U(X' Y .. Y) + U(X' XY .. Y) + ... + U(X' X ... Y) + U(X' X ... X) 
ý: U(Y' Y .. Y) + U(X' Y .. Y) + U(X' XY .. Y) +... + U(X' X ... Y) 
Similarly, for Strategy Y to be a Jehiel equilibrium we require that the 

combined payoffs over the foresight horizon must be greater from playing X 
today than from playing Y for the history where X has been played in every 
period up to t: 

2)U(Y, X 
... 

X) + U(Y' YX... X) + ... + U(Y' Y 
.. 

X) + U(Y' Y .. Y) 
> U(X' X 

... 
X) + U(Y' X 

... 
X) + U(Y' YX 

... 
X) +... + U(Y' Y 

.. X) 
Simplifying (1) gives 
3)U(X, X 

.. 
X) >= U(Y' Y .. Y) 

Simplifying (2) gives 
4)U(Y, Y .. Y) >= U(X'X ... X) 
(3) & (4) together imply 
5)U(Y, Y .. Y) = U(X' X .. 

X) 
But (5) is a flat contradiction of inequality (0) 
Hence we reject the assumption. Strategy X& Strategy Y cannot both 

be Jehiel equilibria. Since the only strategies under consideration are those 
in which play is the same every period and expectations of future play are 
history-independent, these are the only possible equilibria. Hence there 
cannot be more than one such LFE-J in this case. m 

Remark D. 2 It should be noted that the Proposition D. 3 does not show that 
an LFE-J of this forrn exists. It memly shows that if there is such an LFE-J, 
there is no more than one. 

Remark D. 3 In Proposition D. 3 the requirement that stage payoffs depend 
only on history of length no greater than the ho7izon of foresight is vital. For 
example, consider the following: 

Take a foresight length of n=2, and a hindsight dependence of 3 (i. e. 
U= U(b, VIV2)). 

Now consider the following payoffs. 
'Note that even for the case when history up to t had consisted of a continuous sequence 

of X, for the consistency condition of the LFE-J to be fulfilled, Condition (1) would still 
be necessary, since Strategy X requires that X is played in future rounds out to the horizon 
of foresight, whatever is done today. In particular, off the equilibrium path it could not 
be best for a play of Y today followed by a future continuous stream of Y to be superior 
to playing X at any point. 
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U(Y, YX) 12 
U(X, XY) 10 
U(Y, YY) 9 
U(X, XX) 7 

U(X, YX) =6 
U(Y, XY) =5 
U(X, YY) =3 
U(Y, XX) =2 
For Strategy X (i. e. play X every time, expecting X to be played in the 

future regardless of what is played today and regardless of history) to be an 
LFE-J, the following need to be true (checking all rrIevant histories): 

1) 2U(X, XX) ý: U(Y, XX) + U(X, YX) 
2) U(X, YX) + U(X, XY) ', ý! U(Y, YX) + U(X, Yy) 
3) U(X, YY)+U(X, XY), -E! U(YYY)+U(X, YY) 
4) U(X, XY)+U(X, XX)ý! U(YXY)+U(X, YX) 
In this case these inequalities imply 
1) 2*7=14>2+6=8 
2) 6+10=16>12+3=15 
3) 3+10=13>9+3=12 
4) 10+7=17>5+6=11 
Similarly, for Strategy Y to be an LFE-J, we need the following to be true: 
5) 2U(Y, YY) ý! U(X, YY) + U(Y, XY) 
6) U(Y, XY) + U(Y, YX) U(X, XY) + U(Y, XX) 
7) U(Y, XX) + U(Y, YX) U(X, XX) + U(Y, XX) 
8) U(Y, YX) + U(Y, YY) U(X, YX) + U(Y, XY) 
which implies here 
5) 2*9=18>3+5=8 
6) 5+12=17>10+2=12 
7) 2+12=14>7+2=9 
8) 12+9=21>6+5=11 
Hence both Strategy X and Strategy Y are LFE-Js in this case. This 

suffices to prove that the previous restriction we imposed (namely that the 
hindsight length was no greater than the foresight length) was vital. 



Appendix E 

Proofs about rankings of 
inflation biases 

E-1 Proof that the average inflation bias is 
less in the limited foresight case than the 
infinite horizon case 

First prove that c> Z'. Resolve: 

c <=> 

flp2 2 2flp2 
2aflp 

[- J(j 
-, ap2) - 4Aa 

I 
<=> 

Vll-- 4,3ACj2p2 (1 + flp2) <=> 

1-4,8AC, 2ý2 
-4 

32, \C, 2p4 <=> 

2,8ý2(1 _ 
pp 2-2,3A 

a 2p) <=> 

pp2)2 + 402, \2 a 
4ý2 

- 
4ACt2&2 + 4p2 Aa 2p3 <=> 

ý&o 

v 
Ul- 4,3, \a2p2 (1 + ßp2 

Y. -ß_p ( j) 
ßý2 + 

ý(1 
pP2)2 

- 4, \a2ßý2 

ß2p4 + (1 ßp2)2 
- 4ß, \a2p2 

-2 
+2pý2 

ý(1 
- 

-ß; ý) 
- 4, \a2ßp2 

2ßp2ý(1 - ßp2)2 
- 4, \a2ßp2 

(1 _ ßý 2)2 
- 4, \a 2ßp2 

But 4 32, \2 a 
4P2 

+4 32, \a2p3 > 

since aH coefficients axe positive 

Therefore 

c> ZB 
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Now 
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c> 

and hence, since 1 -, 8p -, 8ac > 
Aal* 

1 -, 8p -, 8ac 
but 

cB op 
-, 3ac <1-, Op -flab 

B 

07 

Aal* 
pp -, 8CeFB 

Aal* 
> 

Aa (1 +, 8p) 1* 
flp -, 86F i -, aazB 

Hence, whenever the Rational inflation bias is positive, 

Rational 7r-bias > 7r-bias under limited foresight 

E. 2 Proof that the average inflation bias is 
greater in the limited foresight case than 
the finite horizon case 

Remember that the limited foresight non-state dependent inflation bias is 
given by ; P. Clearly the round t+1 inflation bias will be lower for 

1-0--c 
the finite horizon Central Banker, since 8p >0 and 0< fla-EB <1 implies 
(1+0P) 
j_'6c, &B > 1. In the final round before he retires the finite horizon Banker is 
like a limited foresight Banker with a foresight length of 1 (caring only about 
today). Thus he will have a lower inflation bias than a limited foresight 
Banker with a foresight length of 2, for the same reasons as above. 

In round t the limited horizon inflation bias is once again lower, as follows: 
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Limited Foresight Bias <=> 
Aa (1 +, 3p) P 

<=> 1- #aFB 
1+ op <=> 

+, 8 p+ pp ACe2) <=> 

1- Vl - 4,3ACe2p2 (1 +, ap2) <=> 

2&2Aa2 
<=> (1 + flp +, 8pAa2) 

-4 
3p2 Aa 2 (1 +, 8p +, 8pAa 2) +4 '82p4A2 a4 <=> 

- (1 + Op +, BpAa 2) + #p2Aa2 <=> 

-1 -, 8p - #pAa2 +&2Aa2 <=> 

-1 -, 8p -, OpAa 2+ pp 2AC, 2 <=> 

, 
ap2. \a 2 

0> 

Finite Horizon Bias 

Aa (1 +, 8p (1 + Aal)) P 

1 +, 8p +, 8pAa' -, 6aa' _ p2paýB -)32pAa3ZB 

pAa 
2)3,, 2, \, 2 

('+#P+op, \Qll) 

4,8Aa2p2 (1 +, ap2) 

-4, OAa2p2 (1 +, 8p2) (1 + Op +, 6pACe2)2 

_ (1 +, 8 p 2) (1 +, 8p +, ap, \Ct2)2 

-flp 
2(1+, o p +, 8 p ACe2)2 _ (1 +, ap +, 8pAa2)2 

-, 3p2 (1 +, a p+ #pAC, 2)2 

1+2,3p +, 82p2 

+2 (1 + flp), 8pACe2 + p2ý2A2Ce4 

-, ap2 (1 + pp +, a p AC, 2)2 

flp + p2p2 
Xa2 +, 62ý2A2a4 + (1 + 2,8p) Op, 

-p (1 +, 8p +, 8pAa2)2 
(1 +, 8p + Aa2 + 2,8pAa2 + pp. \2c, 4) 

-pACt2 
(since all coefficients are positive) 

Therefore 
Limited Foresight Bias > Finite Horizon Bias 
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