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Abstract

This thesis is about multi-period problems in which the decision-maker
or players cannot see far enough ahead to solve the problem completely.

The thesis considers why it might be that players reason forwards at all,
let alone reasoning forwards only finitely far. It shows, using finite automata,
that there is a class of problems for which forwards reasoning is more efficient
than backwards reasoning. It goes on to use these finite automata to solve
for an optimal foresight length.

It then discusses solution concepts, and applies its preferred solution con-
cept to two problems - one macro problem involving a central banker, and
one micro problem concerning the decision whether to smoke.
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Chapter O

Preface

This thesis is about limited foresight. Limited foresight arises in multi-period
problems in which the decision-maker or players cannot see far enough ahead
to solve the problem completely.

Some decision-problems and games can, of course, be solved completely.
Though laborious, it would be tractable in practice as well as possible in
theory to solve noughts and crosses completely - for example by backwards
induction from an exhaustive search through all legal terminating board po-
sitions. Classical game and decision theory treats all problems as if they
were like this. Where it is possible in principle to solve a game completely,
players are assumed to do so, and issues of tractability are not considered.
This is relatively easy to defend. If there is, indeed, some difficulty in search-
ing through possibilities, that could be incorporated into the game through
an explicit search cost function. Then, in a sense, we have a different game.
Game theory only pretends to offer solutions to the games specified, not to
other games not specified.

In this thesis we shall not be disagreeing with the classical position in this
sense. But it should be noted that what is proposed here is not straightfor-
ward, and it is not even transparent how one should go about dealing with
a problem which players do not solve completely. Given this, is it worth
doing? There are certain classical stylized problems which players do not
solve completely. For example, no-one decides what his opening move in
chess should be by solving the game through backwards induction on ter-
minating legal board positions. Neither does anyone solve chess totally in
any other way (even implicitly). But if limited foresight applied only to
chess problems, its study might best be restricted to books on chess theory.
However, as we shall see, limited foresight is unlikely to be restricted to such
stylized and fantastically complicated situations. One of the themes of this

7



8 CHAPTER 0. PREFACE

thesis will be that limited foresight is likely to be an extremely widespread
phenomenon. (But do not despair! For we shall also argue that it is a
phenomenon which can be modelled plausibly and tractably.)

Chapters 1 and 2 consider the issue of how relevant limited foresight
reasoning might be (thus whether it is worth the effort of modelling it) along
with the question of how to go about setting up the problem of costing the
reasoning process which leads to the limit. We first consider in Chapter
1 why foresight is a relevant notion (let alone limited foresight). Since we
teach our students to solve problems by backwards induction, why are limited
foresight agents looking forwards at all?! It is tempting to suppose that this
is because we are dealing with situations in which it is impossible to reason
backwards (perhaps an infinitely repeated sub-game). But is backwards
reasoning really denied to us in any setting? And is foresight employed only
in such settings? Chess does not involve an infinitely repeated sub-game.
So what is going on?

To address this question we consider an extremely simple two-stage prob-
lem with two possible actions per stage. The problem is encountered only
once (it isn’t a repeated setting). The problem is solved completely (so there
is no "bounded rationality” in that sense). We find that with two possible
stage payoffs which are the same in each round it is more efficient to solve
this problem by reasoning from the beginning of the problem to the end (i.e.
by forwards reasoning) than from the end of the problem to the beginning.
The way we go about showing this is by modelling the reasoning process as
a finite automaton.

Finite automata have been used in Game Theory before, for example in
modelling strategies played in repeated games?. It is important to note that
the finite automata employed here are performing a different sort of task.
Instead of carrying out play, they are solving for how to play. The efficiency
criterion we use is analogous to the standard complexity criterion - the fewer

the states of the finite automaton, the more efficient the reasoning process.
We show that for certain kinds of problem (though not all), the forwards

reasoning finite automaton with the fewest states has fewer states than the
backwards reasoning finite automaton with the fewest states.

Having shown that agents are likely to solve many even quite simple
problems by reasoning forwards, in Chapter 2 we move on to consider the

10r even, are they reasoning forwards at all? For example, certain Artificial Intelligence
"bounded lookahead” algorithms use backwards induction from the horizon of foresight
(see Jehiel (1998b)). So, if one believes that backwards reasoning is always more efficient,
one might assume that even limited foresight involves backwards reasoning of a sort. But,
as we shall see, that is not necessarily so...

2See, for example, Rubinstein (1998)



question of how to model how far forwards they will reason. Given the
previous discussion, the natural way to proceed seems to be to consider an
agent using a finite automaton where each state carries a cost3. The presence
of a reasoning cost means that in principle it might no longer be worth solving

the problem completely. The form of incompleteness we consider is that in
which the agent might not look ahead to the end of the problem. There are,

of course, other forms of "bounded” (or, perhaps better, “meta” ) rationality
one could consider at this point, but we leave those to other research.

What we find is that with a cost per state of only 2= of the payoff
possibly lost by not looking ahead, it ceases to be worth solving even a very
simple two-stage/two-action/two-payoff problem completely. We have not
offered any criterion to judge how much a "high” state cost for a reasoning
process might be as opposed to a ”low” state cost. However, given that our
simple problem requires only a seven state automaton to solve completely,
and that the number of states required to solve more complicated problems
explodes exponentially, we think it reasonable to conjecture that for only
slightly more complicated problems than those we consider, the state cost
required to justify solving the problem completely (as opposed to looking only
boundedly far into it) would become so low that limited foresight reasoning

might be expected to be very widespread.

Thus the main contribution of these two chapters is an argument that
limited foresight reasoning might be very widespread, because there are many
relatively simple problems which are best solved by reasoning forwards and
if agents are reasoning forwards, even with relatively low reasoning costs
it is likely that an optimizing agent will not find it worth looking right to
the end of a problem to solve it. Secondary contributions include the finite
automaton approach to addressing the question of how to go about solving
a decision-problem, and the offering of a method to endogenize an agent’s
foresight horizon.

Having satisfied ourselves that limited foresight reasoning is likely to be
a sufficiently widespread process that it is worth trying to model, the next
question which arises is what solution concept to employ. One possibility is
that an agent with limited foresight treats problems which go on for longer
as if they continued only to the horizon of foresight. For example, if an agent
looks ahead only to the next round, but the problem actually continues for
ever, we could assume that, in each round, the decision-maker acts as if the
problem finished next round. A solution concept along these lines (which we

3Note that up to this point we have assumed that the agent wishes to use the most
parsimonious reasoning process, but that the use of the reasoning process did not actually
cost anything.
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refer to as the "naive” concept) is often employed in the time consistency
literature®. In contrast, Jehiel (1995) proposed a concept in which players
understand that the game will continue beyond their horizon of foresight,
but simply lack the ability to see beyond that point. Furthermore, they have
learned what their play in such situations is likely to be in the future, and
make their decision today based on a correct expectation about the strategy
they (as well as other players) will employ in rounds out to the horizon of
foresight.

Rubinstein (1998) criticizes both these concepts, and suggests that there
is as yet no promising solution concept for limited foresight problems and
games. Chapter 3 considers to what extent he is right, and attempts to
devise a solution concept which meets some of his concerns.

Rubinstein’s main objection to the naive concept is that in a multi-player
setting, because of the possibility of time inconsistency, in equilibrium players
are assumed to know what other players are going to do in later rounds, but
can be wrong about what they themselves will do. How, he asks, can other
players know what someone is going to do in a later round if he doesn’t
even know that himself? We consider this objection well-made and argue
that the best type of application for the naive concept is finite one-agent
decision-problems in which the agent is unaware of his limited foresight.

Rubinstein’s main objection to the Jehiel concept is that players take
their own future play as given, even though they must have some control
over it. In this sense, the Jehiel concept seems to run against the standard
tradition in Game Theory. This is the main issue Chapter 3 aims to address.

First we argue that Rubinstein’s objection is slightly misplaced, by prov-
ing that there is a solution concept which is formally equivalent to the Jehiel
concept in which players do control their actions out to the horizon of fore-
sight, rather than simply taking future play as given. What is taken as given
in this alternative but equivalent concept is that certain strategies will lead

into time inconsistency, and those strategies are to be ignored.
The idea that players know which strategies lead into time consistency

and ignore all such strategies is somewhat problematic, however, as acquiring
knowledge of time inconsistency may be demanding and, anyway, 1t is not
always clear that using a time inconsistent strategy will be worse for players
than employing a time consistent one. Thus we go on to use the idea of
aiming to control one’s future play to develop a refinement of the Jehiel
concept in which players aim to control play as far ahead as possible, with

“Note that the players’ inability to look beyond the horizon of foresight can lead them
to change their mind about what they intend to do in later rounds and to regret the
decisions they have already made. Important references in this literature include Strotz

(1956), Pollack (1968), Laibson (1997) and O’Donaghue and Rabin (1999)
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as little knowledge of time inconsistency as possible, and take tuture play
as given only from the point ahead beyond which time consistency problems
would arise.

The main contributions of Chapter 3 are the proof that the Jehiel concept
is formally equivalent to a concept in which agents control their actions over
the entire horizon of foresight (rather than just in the current round), and
the devising of a refinement for Jehiel’s concept.

Having determined our favoured solution concept, the next two chapters
offer examples of how to employ it. In the first of these we consider a central

banker setting interest rates but possessed of only limited foresight (in the
Jehiel sense), operating in an environment with persistence in employment.
We argue that this is similar to the situation faced by the Bank of England
in the era of inflation targeting where interest rate decisions are justified by
appeal to a two-year-ahead rolling forecast for inflation. We solve the bank’s
decision-problem and find that there will be a lower inflation bias with limited
foresight, and that this inflation bias will increase as the horizon of foresight
increases. We contrast our limited foresight approach with one in which there
is a central banker with a finite horizon.

The other applications chapter is joint with Philippe Jehiel. There we
consider the question of why some people smoke when young, then quit when

older. We show that this result can be obtained simply by changing the hori-
zon of foresight, without any need for tastes to change or for addiction issues
to be involved or for new health information to be discovered. Employing
both the standard Jehiel concept and the maximal-control refinement, we

show that our result can be obtained with a variety of plausible payofts from
smoking or not smoking, and argue that this approach offers a new insight
which might be important for policy®.

The thesis then concludes. This research has benefitted from funding by
the ESRC under grant number R00429834527. Special thanks are due to
my supervisors Philippe Jehiel and Tilman Borgers. Thanks also to Marc-
Etienne Schlumberger, Peter Postl, Jean Tirole, Nick Rau, Wendy Carlin
and Edmund Cargill Thompson for useful comments.

Andrew Lilico, UCL, October 2002.

°In this joint work Jehiel provided the idea of studying a smoker problem, aiming to
vary the horizon of foresight, and contrasting with time consistency. Lilico provided the
contrast with rational addiction, the core example from which the examples in the chapter
are derived, and the plausibility analysis of the payoffs. Both authors worked on proofs,
structure, and concepts.
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Chapter 1

Foundations of Limited
Foresight 1: Foundations of
Forwards Reasoning

1.1 General Introduction for Chapters 1 & 2

In this chapter and the next we shall attempt to provide rational foundations
for limited foresight modelling. We shall show that there are situations in
which a rational agent would reason forwards, go on to show that there are

situations in which a rational forwards-reasoning agent would not reason
forwards to the end of the game, and show how to solve for just how far a

rational agent should reason forwards.

There are many situations in life where we seem only to look just so far
ahead. Game theoreticians like examples such as chess games, but everyday
life produces many less exotic cases. For example, many young people in
their twenties will confess to not really having thought much about how they
will live after they retire. Supposedly it is a common interview technique
to ask people where they see themselves in, say, five years’ time, and this is
presumably precisely because relatively few of us have any concrete thoughts
on such matters.

One issue relating to such situations is how people will behave if they
have such limited foresight. For example, Jehiel (1995) introduced a ”limited
foresight equilibrium” concept. What this means can be illustrated through
a simple example! (Figure 1).

11t should be noted immediately that our example illustrates the idea, not strictly the
concept - the (n;,n,)-equilibrium concept was applied to repeated alternate-move games,
not finite decision-problems like those we shall consider.

13
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Figure 1.1: A very simple decision-problem

In Figure 1.1 we have a one-person decision problem. Each circle repre-
sents a point at which an action is to be taken. The branches of the tree
represent those actions, and at the first two decision-points the agent can
choose to go up or down in the tree. Branches which have no sub-branches
represent terminal nodes. The decision-maker receives payoffs after each ac-
tion corresponding to the numbers. Suppose that he can see ahead one
period. Then from period one he can see that if he goes down to start with
he will receive a payoff of 1 and the game will end, while if he chooses to go
up then he will be able to choose between a payoff of 2 if he goes up as his
second action and 0 if he goes down.

Under the Jehiel equilibrium concept we have in mind an agent who is
aware of his limited foresight. He has perhaps played the game many times
before, and is aware that, from this situation, if he were to choose to go up
at the first decision-point, he would then choose to go down at the second.
He is not sure why he would do this, i.e. he does have limited foresight. But
he has learned that that would be his behaviour, and what he has learned
1s correct. So at the first decision point he believes (correctly) that he
is choosing between going down and receiving a payoff of 1, or going up
and receiving a payoff of 0. He goes down, and in the Jehiel concept the
equilibrium strategy is (Down, Down, Up, Up). Note that this is different
from the sub-game perfect strategy, which is (Up, Down, Up, Up).

Jehiel has shown, in a two-player repeated alternate-move setting, that
with such agents who make no guess beyond the forecast horizon, an equi-
librium always exists?; that such solutions are cyclical; that the equilibrium
forecasts associated with such solutions do not depend on history and that

%in Jehiel (1995), in a repeated alternate-move environment, with two players and
limited recall.
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the memory capacity of the players has no impact on the set of solutions as
long as it is finite; that for generic repeated alternate-move 2 X 2 games a
solution always exists which holds for all n;,ny sufliciently large; that play-
ers can sometimes do better with a shorter foresight length; and with agents

who do make a guess beyond the horizon, he has shown that co-operation
can sometimes be the only equilibrium in a repeated Prisoners Dilemma. He

has shown that his concept arises out of a learning process with trembles®.
There is another school of models of limited foresight, in which the agents
fail to understand that the game continues beyond the horizon they can see.

So, there are models of how people behave given that they have limited
foresight, and in Chapter 3 we shall investigate what is the best way to go
about it. But first we must address a second, related issue - why people might
have limited foresight in the first place - and that is what we shall examine
in the following two chapters. In the current chapter we shall show that
it is legitimate to consider agents who reason forwards, rather than agents
who reason backwards. We shall show that even with players who solve
problems completely (identifying the unboundedly Rational solution), it is
reasonable to suppose that in certain situations agents will solve problems
by looking forwards. Having convinced ourselves that foresight is a relevant
component of reasoning, in the following chapter we shall unpack the notion
of a limited horizon, by showing that an agent with computation costs might
find it optimal to adopt a limited foresight horizon, and solving for an optimal
foresight horizon of a rational agent facing computation costs.

1.2 Introduction

As is well known, standard Game theoretic equilibrium concepts take Ratio-
nality as an axiom (or set of axioms). In finite games we usually teach our
students to find such equilibria through backwards induction. In contrast, as
we have already mentioned, one class of bounded Rationality models involves
players with limited foresight (e.g. Jehiel (1995)), or players who reason for-
ward but face additional costs the further forward they reason (e.g. Gabaix
and Laibson (2000b) - see also Gabaix and Laibson (2000a)). This seems a
fairly intuitive way to think about Bounded Rationality. After all, no-one
plays chess as white by, at the beginning of the game, deciding in which
position the black king will be mated and then constructing a pathway of
moves from the opening to the mating position?.

3Jehiel (1998a)
4Such reasoning may, however, be involved in solving chess problems of the ” White to
play and mate in three” sort. The proof that any chess game could, in principle, be solved
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In this chapter we shall consider models in which agents solve the prob-
lems completely to find the Rational solution (there is no problem of bounded
Rationality as such, in that sense). The question we shall address arises as
follows: since standard ideas of how to find Rational solutions involve rea-

soning backwards from the end of the game®, whilst in the Jehiel or Gabaix
& Laibson models models the boundedness arises because we can only see so
far forwards in the game, one may feel that there are missing steps between
the Rational and boundedly Rational positions. Why are we ever reason-
ing forwards in the first place, let alone only managing to reason forwards
finitely far? It is easy to say ”Because it’s too hard to reason backwards”,
but why is it too hard? And if the answer to that question is that we have
evolved that way, the question remains why we have evolved that way? Is
there, for example, some advantage to forwards reasoning in reasonably sim-
ple problems which then makes it seem natural to us to reason forwards in
longer and more complicated problems (like chess games), or is backwards
reasoning better for solving simple problems but at some point we switch to
forwards reasoning for longer problems? Or is it possible that it is only best
to reason forwards in infinitely-repeated games, where backwards reasoning
is In some way denied to us?

Camerer et al. (1994) and Johnson et al. (2001) have produced empirical
evidence which may suggest that their subjects were reasoning forwards. For
example, in Johnson et al. (2001) there are two players who bargain over a
pie which shrinks in value over the three periods of the game. The pie is
worth $5 in the first period, then halves in value each subsequent period. If
no bargaining solution is reached in the three periods each player receives a
zero payofl. Player 1 makes an offer in period 1, which Player 2 either accepts
or rejects. Each period, if an offer is rejected the rejecting player makes a
counter-offer in the next period. The perfect equilibrium is (approximately)
that Player 1 offers $1.25 in period 1 and is accepted.

In the baseline experiment, the average offer is $2.11, and offers below
$1.80 are rejected half the time. The experiment is designed so that the ex-

perimenters can tell which pie sizes the subjects examine (players are not told
in advance what the payoffs are, but they can find them out trivially during
the game by clicking computer-screen boxes). By identifying which payofis
players examine, and how long and often they spend considering them, the
experimenters attempt to gain insight into whether the players are reasoning
forwards or backwards in the game. According to the information-measures

in this way is what is usually referred to as ” Zermelo’s Theorem” - see Schwalbe & Walker
(2001).
°For example, see Rosenthal (1981) and Binmore (1989) pp.151-231.
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Figure 1.2: A two-stage decision-problem

used in the experiment, players do not tend to look at future rounds then
reason backwards, as one might assume. More than that, they often appear
to make no use of payoffs in later rounds, not even finding out the value of
second- and third-round payoffs in 19% and 10% of the trials respectively.
Furthermore, classifying subjects by the degree to which the information cri-
teria suggests they look ahead is strongly predictive of the offers they make.

Though these empirical results are interesting, the fact (if it is a fact)
that people do reason forwards is not an explanation of why people reason
forwards®. In this section we argue that, at least in certain situations, fully
Rational players should reason forwards. Our environment is very different
from that discussed in the empirical studies mentioned (in particular we
consider decision-problems rather than games). However, we believe that
the insights are instructive.

1.3 Framework

We shall attempt to compare the efficiency of forwards and backwards rea-
soning for solving a very simple two-stage problem, represented by Figure
1.2, and begin by considering the problem of what is the best move to take
at the first decision-point.

In the decision-problem in Figure 1.2 we have one player who has to
choose between going up or down at the root node (i.e. he chooses an action

a € A= {U,D}). Having made that choice, he will later be able to choose

SEven the title of Johnson et al. (2001), ”Detecting Failures of Backwards Induction”,
suggests that reasoning forwards involves a kind of error, an implication which we do not
draw.
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to go up or down at a second node. The payofis he will receive depend on his
choices, and are represented as stage payoffsz; € X fort € I = {1,...,6}. For
example, if he goes up, and then up again, he will receive 7(UU) = z, + =3,
and so on for the other possible choices. Each of the possible stage payofis
is either O or 1, z; € {0,1}.

We shall consider how efficient it is for him to solve this problem by rea-
soning forwards as opposed to reasoning backwards. Our tool for comparing
(and measuring) "efficiency” in this context will be a special sort of finite

automaton, which we shall now define.

Definition 1.1 A finite automaton (in this chapter’) will be defined as a
7-tuple, FA = (Q, qo, F, X, 7,0, \) where

Q is a set of states (qo, ..., qn) for n finite

o 1S the initial state of the automaton

(F C Q) # 0 is a set of ‘final states’

Y ={0,1}

v is a mapping from (Q\F) — I and is to be interpreted as the member
of X to be examined at each non-final state

0 is a mapping from (Q\F) X ¥ — @ and is to be interpreted as a
transition function taking the current state and the value of the examined
member of X and determining which state to move to next (g =6 (q, x7(q))).

A is a mapping from FF — A and is to be interpreted as the action to be
performed if the automaton terminates at a given final state.

Definition 1.2 z € X° is a "realisation” of the values of the siz variables.

Definition 1.3 For a given £ and a given F'A, a ”path” is the unique se-
quence of states q(x, FA) = qo, Gm, qn,etc. of FA which will be reached in
order if payoffs are given by X.

Definition 1.4 A finite automaton, F'A, is "stopping” if and only if, for
every € X°, q(z, FA) ends with a final state.

Note that it follows immediately from this definition that no stopping FA
can have a "loop” whereby the same state is visited along a path more than
once (since there are no non-deterministic transitions).

Definition 1.5 The members of q(z, FA) form the set q(z, FA).

"The automata we consider here are a very special case. For more information on
finite automata see Hopcroft and Ullman (1979).
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We shall later be counting the states of an FA and be interested primarily
in FAs which are state-minimal. Two trivial ways in which an FA might have
unnecessary additional states are: if it contains states which are not reached
for any realisation of the values of the six variables; or if it contains a state
from which there is an input-independent transition. We shall by-pass these
trivial cases and call such automata "redundant”.

Definition 1.6 A finite automaton, FA, is "redundant” if, either

1. Uxezﬁa(xa FA) 7'&‘ Q, or
2. 3q € (Q\F), such that §(q,1) = (g, 0)

Definition 1.7 If an FA is stopping and is not redundant, we shall call it a
"reqular” FA.

Hereafter, we shall assume that an FA is regular unless otherwise specified.

Definition 1.8 A non-final state q of a reqular FA will be called a "question”
or a "questioning” state. It follows immediately from the definition of a
reqular FA that all such states involve an input-dependent transition. We
shall say that an FA which contains a state q, such that v(q) = i, "ezamines”

the value of =;. We shall call the variables x; “unknowns” at the initial
state of the FA. We shall talk of the action produced by A as the action
“recommended” by the FA.

Definition 1.9 We shall call a reqular FA “implementing” if it recommends
optimal play for all z € T°® (where optimal play means an action at the first
node which would be part of an optimal strategy for playing the whole game).

It may not be immediately apparent why the process of examining the
value of unknowns in this problem has relevance to the standard problem of
finding the best action at the initial decision-point when we already know
the values of the payoffs. To see the connection it might help to think of
the process of ”examining” a variable’s value as less a matter of discovering
something not previously known than a matter of making use of the value
of a variable. Then a "questioning” state would be an information-based
decision within our algorithm for finding the optimal decision. However, we
shall stick with our suggested terminology as it seems more natural to regard
our finite automaton as a machine which asks questions. Note that our FA
has no explicit means of storing information - it has no memory.
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In the next few sections our finite automata are intended to solve the

problem of identifying our player’s optimal action at the root node. We
shall interpret the number of states of an FA as a measure of efficiency or
complexity. For example, if solving a problem one way could be done by an
FA with 10 or more states, while a second way of solving the same problem
requires only 5 or more states, we shall interpret this as meaning that the
second way of solving the problem is more efficient. Clearly the relevance of
our approach to the question of the efficiency of different reasoning methods
is crucially dependent upon the plausibility of our claim that the number of

states required is a good measure of efficiency.

1.3.1 Is the state-counting efficiency criterion a com-
pelling one?

The idea of measuring the complexity of a Finite Automaton by counting
its number of states is not an innovation of this thesis®, and the idea that
efficiency should be regarded as simply the inverse of complexity seems plain.
However, in the past Finite Automata have usually been used in Game The-

ory to model finite strategies in infinitely-repeated games®, so that the com-
plexity criterion is a measure of the complexity of a strategy. Here the
compexity-measure (or, viewed from the opposite direction, the efficiency-
measure) is intended to capture the difficulty of solving the problem of opti-
mal play, not of implementing that solution in a strategy.

Though one should be aware of this difference, we do not believe that it

alters the appropriateness of the state-counting efficiency criterion. Counting
the states of a finite automaton is a concrete way to measure the number of

steps in a reasoning process. It is not, of course, the only way to do this. If
other measures (e.g. the complexity of the transition function) give different
results that will be important information about what costs are relevant in
assessing how best to go about solving a problem!?°.

SFor example, see Rubinstein (1998) p.150f.
9This has not, of course, been the only use - see, for example, the ”learning automata”
considered in Fudenberg & Levine (1998).

‘0There is, however, no guarantee that a different measure will give a different result.
For example, a plausible alternative measure of efficiency, capturing some of the spirit of
complexity of the transition function, might be the average path-length to a recommen-
dation (giving an idea of how long, on average, it takes to come up with a result). For
the state-minimal forwards reasoning FA we shall later in Figure 1.2 the average path
length is 2.75. For the state-minimal backwards reasoning FA in Figure 1.3 the average
path-length is 3.25. Whether either of these values could be improved upon by some
"length-minimal” FA remains an open question.
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The finite automata we discuss in this chapter solve the problem to find
the Rational solution. Armed with concrete measures of complexity, we
could modify our problem, attaching costs to our complexity-measures (for

example, some cost to each state) and work towards endogenising the degree
of Rationality boundedness - for example solving for some optimal foresight
horizon!!. We believe that this might prove a fruitful way to close the gap
between the Rational and Boundedly Rational models.

1.4 Solving for what to do at the first decision-
point

1.4.1 A preliminary result

Main Lemma A state-minimal implementing FA to solve the problem in
Figure 1.2 has at least seven states.

Proof. This proposition is proved in Appendix A. =

The general method of this proof is as follows. It follows immediately
from the definition of an FA that if it is capable of examining five or more
variables and of recommending two actions then it must have at least seven
states, so we need only consider cases in which fewer than five variables are
considered. We show that the fewest variables an implementing FA must be
capable of examining is all the variables in one branch (e.g. all of z;, z3, z4)
and the first variable in the other branch (e.g. x3) - i.e. four variables in
total, immediately implying at least six states. Then we prove that any
implementing FA examining only this set of variables must be capable of
examining all of them in turn, and that there must be at least two paths
along which all of these variables are examined in turn.!* Any six-state FA
could have only one path along which all the variables are examined in turn,
so six states will not be enough.

11Gee the next chapter

12These correspond to the two cases in which z; = 5 - where they are both 0 or both
1, and at least on of xz3,x4 is 0; or alternatively (depending on the FA involved) they
correspond to the cases in which z3 = 4 = z; = 0 or one of z3,z4 is 1 and z; = 1.
In such cases we may need to examine all four variables to discover whether U or D is
(weakly) optimal.



22 CHAPTER 1. FOUNDATIONS OF FORWARDS REASONING

Figure 1.3: A finite automaton

1.5 Forwards Reasoning

Definition 1.10 A Forwards Reasoning Finite Automaton (FRFA) for the
problem in Figure 1.2 is a Finite Automaton such that, along any path to a
final state,

1. if the value of x3 or x4 is examined, then the value of x, has already
been examined earlier along that path;

2. if the value of x5 or x¢ is examined, then the value of xo has already
been examined earlier along that path.

Figure 1.3 represents an implementing finite automaton to solve the prob-
lem in Figure 1.2. In Figure 1.3 the states are marked gy...gs, with final states
taking a double-circle. Thin arrows show the direction of transition, and are
followed if the variable values next to them are realised (so, for example, in
the initial state go the FA examines z;, and if z; = 0 we move on to gs,
while if z; = 1 we move on to g;. Fat arrows represent the actions taken at
final states, i.e. A(g2) = U and A(gs) = D (so, if the FA terminates at state
g2 the automaton is telling our player to go up at the first decisions point,

while if the FA terminates at state g the automaton is telling our player to
go down).
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The FA in Figure 1.3 works as follows. It examines the values of z; and
z,. If one of these is more than the other, the best action is clear and the
FA procedes immediately to a final state. If £; = x5 the FA checks 3 and
x4, and if either of these takes value 1, going Up is at least as good as going
Down, but if they are both 0, going Down is at least as good as going Up.

Inspection suffices to show that this FA is, indeed, implementing. Note
that the FA in Figure 1.3 involves forwards reasoning, since the values of x;
and zo are considered first, before moving on to consider z3 and z;4.

Proposition 1.1 A state-minimal implementing FRFA for the problem in
Figure 1.2 has seven states and is generally state-minimal among FAs.

Proof. We can construct an implementing FRFA with 7 states, as illus-
trated in Figure 1.3. By our Main Lemma this FA must be state-minimal.
=

1.6 Backwards Reasoning

Definition 1.11 A Backwards Reasoning Finite Automaton (BRFA) for the
problem in Figure 1.2 is a Finite Automaton such that, along any path to a

final state,

1. if the value of £, is examined, then either the values of x3 and x4 have
already been examined earlier along that path, or the value of x3 has
been examined earlier along that path and found to take value 1,

2. if the value of x5 is examined, then either the values of x5 and x¢ have
already been examined earlier along that path, or the value of x5 has
been examined earlier along that path and found to take value 1;

One might have supposed that the definition of a BRFA would be stricter
and simpler, insisting that the values of all of z3,z4,75 and zg always be
examined before z, or z,. We have chosen not to define backwards reasoning
in this way, because we wanted to allow our BRFA to exploit the same logical
shortcuts available to the general state-minimal FA - for example recognising
that if z3 = 1 then it is not necessary also to examine 4. This presents a
more generous and more general test of the relative efficiency of backwards
reasoning.

We shall prove that a state-minimal backwards reasoning automaton must
have more states than a general state-minimal automaton such as Figure 1.3,
and hence that, by our state-counting criterion, backwards-reasoning is not
an optimal way to solve the problem in Figure 1.2. It should be noted that
this proof does not depend on the result that Figure 1.3 is state-minimal.
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Proposition 1.2 Any implementing state-minimal backwards-reasoning au-
tomaton must have at least one more state than a general implementing state-
minimal automaton.

Proof. This is proved in Appendix B. m
The intuition of this proof is as follows. It follows immediately from the

definition of backwards reasoning that any backwards reasoning FA solving
the problem in Figure 1.2 must be capable of examining all of 3, x4, T5, T,
along with at least one of z,,z,. If it is to have seven states it must exam-
ine only one of these, say ;. But the general state-minimal FA examines
T1,T3,Z4 and x5, and we can discover the same amount of relevant infor-
mation by examining z, in one question as by examining x5 and zg in two
questions. Hence the minimal backwards reasoning FA must use at least
one more state than the general state-minimal FA.

Figure 1.4 is an example of a state-minimal BRFA for the problem in
Figure 1.2. It works as follows. It checks to see what the best available
payoff is at the second stage of the upper branch (i.e. whether the maximum
of z3,x4 is 1 or 0). If either of these is 1 and z, is also 1, then the payoff
from the upper branch is 2 and we can safely go Up. If both of them are
0 and z; is also 0, then the payoft from the upper branch is 0 and we can
safely go Down. If, however, either z; = 1 while max{z;,z4} =0,0rz; =0
while max{z3, 24} = 1, then we need to check the second-stage payoffs from
the lower branch. If either of these is 1 we know we get at least 1 by going
Down, but definitely 1 by going Up, so we can safely go Down. In contrast,
if both the second-stage payoffs from the lower branch are 0 we know we get
at most 1 by going Down, but definitely 1 by going Up, so we can safely go

Up.

By Proposition 1.2 backwards reasoning is not the most efficient way of
solving the problem in Figure 1.2. But Proposition 1.1 showed that the
forwards reasoning automaton was indeed state-minimal, and so, by this
state-counting criterion, that forwards reasoning is optimal!® for solving this
problem. Hence we have the following corollary, summarising the results of

this section.

Corollary 1.1 By a state-counting criterion, Forwards Reasoning is more
efficient than Backwards Reasoning for solving the problem in Figure 1.2.

131t is very important to note that it is being claimed here that forwards reasoning can
be optimal, but not that all optimal reasoning is forwards reasoning. For example, there
do exist 7-state FAs to solve the problem in Figure 1.2 which examine the value of z3 at
the initial node. Since such FAs use the variables (x;,z2,23,24) as proved above, they
are not backwards reasoning, but they are not forwards reasoning either!
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Figure 1.4: A state-minimal BRFA to solve the problem in Figure 1.2

1.7 Discussion: What is it about this prob-

lem or about backwards reasoning which
leads to the general state-minimal automa-
ton being forwards-reasoning in this case?

What drives our result? Why isn’t backwards reasoning the most efficient
method in this case? The reason is that backwards reasoning forces us, in
this case, to consider more variables than we need to. Since we can find
out as much information as we need by looking at the (single) first-stage
payoff for the lower branch, it is inefficient to have to consider the (two)
second-stage payoffs!4.

Is the advantage of forwards reasoning here dependent on the fact that
we are only trying to find out what to do at the beginning of the game? One
might guess that if we were trying to work out all the best decisions we would
need to make (i.e. work out what we would do at the first node and also
what we would do at the decision-point we would reach following our initial
choice) then backwards reasoning would do rather better, since backwards

141t should be clear that if there had been only one second-stage payoff (e.g. if there had

been only x5 but no zg) then forwards and backwards reasoning would have been equally
efficient.
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reasoning includes some consideration of what it is best to do at the second
node in forming a view as to what it is best to do at the first node.

It may be that this idea drives the popular connection made between
memory and limited foresight!®>. The idea is that perhaps backwards rea-
soning does better than forwards reasoning if we need only work out once how
to play the whole game, then at later decision-points can remember what we
worked out was best? But in long games it might be difficult to remember
everything that was supposed to be done, so that physical constraints on
the available memory-capacity mean we need to go through the process of
working out what the best actions are more than once in a game - in which
case we might be able to support some kind of limited horizon model with
finite memory.

However, as it happens this is not the situation here. Backwards reason-
ing remains inferior to forwards reasoning when the initial decision is how to
play at all reached decision-points, as we now show.

1.8 Solving for all necessary decisions

We shall prove that forward reasoning is more efficient, by the state-counting
criterion, than backwards-reasoning in solving the problem of what to do at
all reached nodes of the decision-problem illustrated in Figure 1.2. This is
not quite the same thing as solving the problem altogether in the traditional
sense, since we shall not be solving for what to do at unreached nodes of the
problem.

Our proof will proceed as follows. First we shall exhibit an 11-state FRFA
which solves this new problem!®. Next we shall modify our definition of a
BRFA to fit this new problem. Then we shall prove that no BRFA satisfying
this definition could have fewer than 12 states'’. This suffices to prove that
the state-minimal FRFA will have fewer states than the state-minimal BRFA.

5e.g. See Jehiel (1995)
16We shall leave open the question of whether this is a state-minimal general FA for

solving this problem, or even whether it is state-minimal among FRFAs which solve this
problem.

17Similarly, we shall not investigate the question of whether the state-minimal imple-
menting BRFA has only 12 states or more than that.
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1.9 An implementing FRFA to solve for play
at all reached nodes

Figure 1.5 exhibits an 11-state FRFA solving for the problem of what to
play at all reached nodes of the decision-problem in Figure 1.2. Final state
output of "UU” means the FA is recommending playing Up at the first node,
and then Up again at the second node. Recommendations from other final
states are to be interpreted similarly. Inspection suffices to show that this
FA is, indeed, forwards reasoning, and is, indeed, implementing. Note that
this FA is built upon the FA in Figure 1.3. Once we know what it is best to
do at the first node, we check what is best to do at the node we would then
reach - a paradigm of forwards reasoning. The other thing to note is that
this FRFA uses information about one more variable (namely zs) than the

FA in Figure 1.3.18

1.10 The definition of Backwards Reasoning
in the new problem

Figure 1.6 exhibits a 12-state FA which solves the problem of this section.
Inspection shows that it satisfies Definition 1.11. However, note that it works
in the same way as the FA in Figure 1.5. First we solve for what to do at
the first node, then we reason forwards from there to what to do at the
reached node. In particular, in this case we may examine first z3, then
examine x;, then go back to examining z3 again. This does not conform to
our intutions of what backwards reasoning is about. We should not need
to reason backwards, then forwards again. Hence, for the purposes of this
section, we replace Definition 1.11 with the following:

18A by-product here is that it involves fewer states to solve for unreached play from
the beginning than to solve for optimal play at the first node, then wait until the next
node is reached before deciding what to do there. To do this successfully, we would need
to employ the seven-state FA identified in Figure 1.3, then have available two three-state
FAs to question z3 or z5 for the upper or lower nodes respectively. Seven plus three plus
three equals thirteen, which is more than the eleven states required in Figure 1.5.

It is worth noting that waiting until a later round might, however, be more efficient than
solving for play at all nodes, including unreached nodes. These issues are investigated
further in Appendix C.
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Figure 1.5: A finite automaton to solve the whole game
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Figure 1.6: A backwards-reasoning finite automaton to solve the whole game
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Definition 1.12 A Backwards Reasoning Finite Automaton (BRFA) for the
problem in this section is a Finite Automaton such that, along any path to a

final state,

1. if the value of z; (or x) is examined, then either the values of T3 and
x4 have already been examined earlier along that path, or the value of
x3 has been examined earlier along that path and found to take value 1;

2. if the value of 3 or x4 is examined, then the value of £, has not been
ezamined earlier along that path,

3. if the value of o (or x,) is examined, then either the values of x5 and
Te have already been examined earlier along that path, or the value of
z5 has been examined earlier along that path and found to take value 1;

4. if the value of x5 or xg is examined, then the value of x5 has not been
exzamined earlier along that path.

The bracketed terms in parts 1 and 3 of this definition are merely there
to simplify our proof. We conjecture that they can be discarded and the
main result still hold. Alternatively, one might feel that this was a better
definition of backwards reasoning anyway - namely that no branch of the first
node should be examined until optimal play at later branches of the tree has

been determined.

1.11 Proof that no implementing BRFA can
have as few states as Figure 1.5.

Proposition 1.3 No BRFA satisfying Definition 1.12 can have fewer than
12 states.

Proof. Since we need questions at least about the set {z;, x3, x4, Ts, ¢}
(or a trivially equivalent set, or about all six variables) to identify best play
at the first node, we certainly need at least this set to solve for play at
all reached nodes. By Definition 1.12, by the point in any path at which
a question is asked about z; we must already have the information nec-
essary to recommend play at the (z3,z;) node and the (z5,z¢) node. In
some cases (e.g. if 3 = 1 and z5 = z¢ = 0) we can exit to a final state
straight from information about {z3,z4,zs5,2¢}. However, in cases where
max{z3, 4} = max{zs,zs} we will need to use information about z; with-
out losing information about what to play at the later nodes (i.e. a state
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questioning z; is required). There are four possibile combinations of optimal
play at the later nodes when max{z3, z4} = max{zs, z¢}, all of which might
be required for some combination of the six variables, namely that

1. We should play Up at the upper node and Up at the lower node;
2. We should play Up at the upper node and Down at the lower node;

3. We should play Down at the upper node and Up at the lower node;

4. We should play Down at the upper node and Down at the lower node.

For each of these possible combinations, we will need a separate question-
ing state on z; (or, trivially equivalently, on ;). This makes four states.

When max{z3, 4} = max{zs, 26}, to resolve which of the four combina-
tions of optimal play of later nodes we are in requires up to four questioning
states (checking the values of each of {z3,z,,75,7¢}). Since none of these
states is examining the value of z;, none of them can be any of the four states
previously identified questioning z;.

There are four final states: UU,UD, DU, DD. No final state can question
the value of a variable, so all of them must be additional states to the eight
previously identified.

Four plus four plus four equals twelve, so the minimum number of states
of a BRFA satisfying Definition 1.12 is twelve. =

Since we can exhibit an 11-state FRFA, while the previous proposition
shows that the state-minimal BRFA must have 12 or more states, a corollary
follows automatically, namely

Corollary 1.2 Forwards reasoning is more efficient than backwards reason-
ing, by the state-counting criterion, for solving the problem of optimal play
at all reached nodes of the game.

1.12 Discussion

Why is forwards reasoning still better? The main reason appears to be
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