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Abstract 

Since the early 1990's, average bioequivalence studies have served as the international 
standard for demonstrating that two formulations of drug product will provide the same 
therapeutic benefit and safety profile when used in the marketplace. 

Population (PBE) and Individual (IBE) bioequivalence have been the subject of intense 
international debate since methods for their assessment were proposed in the late 1980's. 
Guidance has been proposed by the Food and Drug Administration of the United States 
government for the implementation of these techniques in the pioneer and generic phar- 
maceutical industries. As of the present time, no consensus among regulators, academia, 
and industry has been established. The need for more stringent population and individual 
bioequivalence has not been demonstrated, and it is known that the criteria proposed by 
FDA are actually less stringent under certain conditions. 

The properties of method-of-moments and restricted maximum likelihood modelling in 
replicate designs will be explored in Chapter 2, and the application of these techniques 
in the assessment of average bioequivalence will be considered. Individual and population 
bioequivalence criteria in replicate cross-over designs will be explored in Chapters 3 and 4, 
respectively, and retrospective data analysis will be used to characterise the properties and 
behaviour of the metrics. 

Simulation experiments will be conducted in Chapter 5 to address questions arising from 
the retrospective data analyses in Chapters 2 through 4. Additionally, simulation will be 
used to explore of a potential phenomenon known as 'bio-creep' - that is the transitivity of 
individual bioequivalence in practice. 

Another bioequivalence problem is then considered to conclude the thesis; that of com- 
paxing rate and extent of exposure between differing ethnic groups as described in ICH-E5 
(1998). The properties of the population bioequivalence metric and an alternative metric 
will be characterised in small and large samples from parallel group studies. Inference will 
be illustrated using data from a recent submission and simulation studies. 
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1 Introduction 

The materials of this chapter were presented at the University College, London Journal Club 

(Patterson, 2000c), at the Barlett International Conference on Bioavailability and Bioequivalence 

(Patterson, 2001a), at the American Statistical Association, Philadelphia Chapter Meeting (Pat- 

terson, 2001b), and at the Drug Information Association meeting (Jones and Patterson, 2002). 

The materials were published at the request of the editor of the Indian Journal of Pharmaceutical 

Sciences (Patterson, 2001c-d). 

1.1 Definition of Bioequivalence studies 

Bioequivalence studies are performed to demonstrate that drug products are similar to each 

other in terms of their therapeutic benefit (efficacy) and non-therapeutic side effects (safety) 

and as such play a key and pivotal role in the drug development process. They are primarily 

utilized in the study of solid oral dosage forms (i. e. drugs administered as a tablet or capsule 

when ingested), and this thesis will confine itself to discussion of these type of drug products. 

The study of what happens to such a dose of drug substance when it is released into the 

human body is known as pharmacokinetics (PK). Following oral administration, the drug is 

held to undergo four 'stages' prior to being completely eliminated from the body, known as 

ADME: Absorption (uptake by the body through the mouth, throat, stomach, and small/large 

intestine), Distribution (how the drug substance is carried by the body through the blood to 

its site of action), Metabolism (how the body breaks the drug substance into by-products), and 

Elimination (how the body disperses the drug product). The study of PK is typically referred 

to as 'what the body does to the drug'. 

Once a drug is ingested, the substance (or active metabolite) passes through the blood and 

reaches its site of action; thereby provoking what is termed a pharmacodynamic (PD) response in 

the body. This PD response is regarded as a surrogate marker, which is indicative of subsequent 

therapeutic benefit, e. g. consider an insulin sensitiser in the treatment of diabetes. By causing 

the body to use its own insulin more effectively, the body is able to better regulate glucose 

levels (the surrogate marker), thereby improving the symptoms associated with the disease. It 

should be noted however that, at the same time, the drug (or again a metabolic by-product) may 

attach itself to a different site of action thereby provoking unwanted response or side effects, e. g. 
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weight gain in the treatment of diabetes. The study of pharmacodynamics is usually referred to 

as 'what the drug does to the body. In combination, the study of dose, PK, and PD are held 

to determine the behaviour of a drug product (see Figure 1). These properties are characterized 

across a drug's clinical development. 

Figure 1: Dose - Blood Concentration - Response Relationships; Sheiner et al. (1989) 

Clinical development of a drug product, with the exception of only the most toxic prod- 

ucts targeted for the treatment of cancer, initiates with the study of the drug product in 

normal healthy male volunteers (Phase 1). These studies are typically small, well-controlled, 

data-intensive, dose escalating, and placeb o- controlled. In this stage of development, the pri- 

mary objective of a clinical study is to determine a safe range of doses and dosing regimens 

(e. g. once-a-day or twice-a-day) for later dosing in studies involving patients with the disease 

state under study. Dose and dosing regimen are examined with respect to their impact on the 

PK of the drug product, and additionally, should biomarker or surrogate markers be present 

to characterize the pharmacodynamic activity of the drug in normal healthy volunteers, these 

data are characterized relative to dose and/or PK levels. It is unlikely to be the case at this 

stage of development (again with the notable exception of those drug products being studied 

for oncology indications) that PD or therapeutic response can be examined. 

14 

Image removed due to third party copyright



Clinical studies in Phase 11 establish the minimum starting and maximum effective dose as 

well as the maximum tolerated dose in patients with the disease state using pharmacodynamic 

surrogate or markers of therapeutic response. Dose titration and the length of time needed to see 

an effect (desirable or undesirable) are also established. In these studies, models relating dose to 

PK and to PD are developed to understand the mechanism of the drug's action and to search for 

relevant covariates (e. g. age or gender) to control later Phase II or Phase III confirmatory trial 

designs (International Conference on Harmonization Guidance ICHE4,1994). Study designs 

and analysis procedures for dose finding trials are described in more detail in Patterson et al. 

(2000d) and fall beyond the scope of this thesis. 

Once a dose or set of efficacious doses are chosen from Phase II trials, confirmatory trials 

are subsequently performed to support regulatory acceptance of the risk relative to benefit in 

clinical use of the compound in large numbers of patients with the disease under study. 

In parallel with Phase II studies in patients, clinical pharmacology studies are conducted in 

normal healthy volunteers to refine knowledge of the PK and PD of the compound. A list of 

potential studies is provided in Table 1. 

Table 1: Studies during Phases II and III Typically Performed in a Clinical Pharmacology 
Package for Submission to Regulatory Authorities 

Phase 11 Phase III 

Relative Bioavailability of Confirmatory Bioequivalence of Confirmatory 
TYials to Phase I Formulation Trials to Commercial Formulation 

Effect of Age and Gender on PK Effect of Food on PK 

of Confirmatory Týials Formulation of Commercial Formulation 

Effect of Food on PK Effect of Renal Disease on PK 

of Confirmatory 1ýials Formulation of Commercial Formulation 

IV Dose Finding Study Dose-proportionality 
of Commercial Formulation 

Drug Interactions on PK ADME using IV and 
of Confirmatory Týials Formulation Oral radiolabelled drug 

Liver Disease on PK 
of Commercial Formulation 

Drug Interactions on PK 

of Commercial Formulation 

One such study in Phase II, known as a relative bioavailability study, is performed to facilitate 
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formulation selection. These studies are primarily used by pharmaceutical sponsors of new 

drug entities to ensure that the formulation to be used in Phase II or in confirmatory trials is 

sufficiently similar to that used in Phase I drug development. Many clinical pharmacology studies 

are also performed in parallel with confirmatory trials in Phase III; however, the most important 

study for discussion in this thesis is the bioequivalence study to demonstrate that the formulation 

used in Phase III clinical trials is sufficiently similar to the final commercial formulation to be 

marketed following approval. These studies are primarily used by pharmaceutical sponsors of 

new drug entities who have conducted pivotal efficacy trials with a specific formulation of a 

drug therapy but need or want market access for a more commercially suitable formulation. 

These studies can be viewed as providing reassurance to regulators that the formulation to be 

marketed is the same as that used in the clinical confirmatory trials without the need to repeat 

the development programme or to perform a therapeutic equivalence study in patients with 

clinical endpoints (Huque et al., 1989). 

Bioequivalence studies are conducted to meet pre-set regulatory standards and are the focus 

of this thesis. Relative bioavailability studies in contrast are conducted by companies developing 

new chemical entities for internal company reassurance that formulation changes during Phases 

I and 11 have not impacted the rate and extent of bioavailability of the compound and are not 

held to a strict acceptance standard. While methods of analysis (see Sections 1.3-1.5) may be 

applied in these studies, often small changes in PK are acceptable to sponsors provided negligible 

impact is expected in the PD response in clinic. Attention in this thesis will now be confined 

to bioequivalence studies (i. e. studies required for regulatory acceptance of a drug product as 

equivalent to that shown as efficacious and safe in the clinical development programme. ) 

One might ask, 'If the new and old formulations use exactly the same substance, i. e. are 

pharmaceutically equivalent (Benet, 1999), why do we do these studies at allT Rate and extent 

of bioavailability in vivo can be drastically affected by very small changes in the constituent 

content of the formula, by small changes to the lining of the formula, and by compaction into 

tablet (versus administration as a capsule), for example. Further discussion on this topic may 

be found in Levy (1995) and Balthasar (1999). 

Cross-over study designs (Jones and Kenward, 1989; Senn, 1993; Senn, 2002) are typically 

used to study bioequivalence. These studies will be discussed at length in Section 1.2 but 
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are discussed briefly here. Such designs are typically conducted in normal healthy volunteer 

subjects. Each subject is administered formulations (Test or Reference formulations in the 

example) in a sequence of treatments with each administration separated by a washout period 

appropriate to the drug under study, see Table 2. In these studies, subjects provide data on 

multiple separate sessions separated by adequate washout to avoid residual drug concentrations 

from the previous occasion. These studies are usually performed at the maximum tolerated, 

single oral dose as regulators have deemed a single oral dose to be most sensitive to changes in 

bioavailability (el-Tahtawy et al., 1998; FDA Guidance 1992-2002). In general, subjects receive 

each drug formulation at least once over the duration of the study, and plasma samples are 

collected following each administration to derive a concentration versus time profile, see Figure 

2. 

Table 2: A Two Period Cross-over Study Design with Test and Reference Formulations 

Subject I Period 11 Wash-out Period of 5 half-lives I Period 2 
001 T ..... 

R 
002 R ..... 

T 
003 R ..... 

T 

Summary measures (Rowland and Tozer, 1980) for the plasma concentration versus time 

cur-ve are derived as: 

* AUC(O-t) (Area under the curve from time zero to t where t is the time of last quantifiable 

concentration), 

* Cmax (maximal concentration) 

* Tmax (time of maximal concentration), 

* T1/2 (half-life of drug substance ), and 

AUC(O - inf) = AUC(O - t) + 
ct 
A (1) 

where Ct is the concentration at time t and A is -2.303 times the slope of the terminal phase 

of the log, -concentration time curve. See Steinijans et al. (1995) for other summary measures. 

More details of techniques used in derivation of AUC may be found in Yeh and Kwan (1978). 
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Figure 2: Example - Plasma Concentration (ng/mL) versus Time (h) 

To demonstrate equivalence in plasma concentration profiles, rate and extent of bioavailabil- 

ity of the drug substance in plasma must be sufficiently similar so as to remove all doubt that 

exposure of the body to the drug substance is the same between formulations (Benet, 1999). 

For this purpose, Cmax (rate) and AUC (extent) are typically used as summary measures for 

the plasma concentration curves and are required to be demonstrated as equivalent under pre- 

set decision rules to compel regulatory approval. The other pharmacokinetic endpoints provide 

supporting information but do not directly impact approvability of the new formulation. Some 

papers would appear to indicate that AUC and Cmax are not sufficient to prove bioequivalence 

(Resigno and Powers, 1998; Steinijans et al., 1995; Lacey et al., 1995); however, international 

regulatory authorities have depended on these endpoints since the early 1990s. Pharmacody- 

namic data or safety data may be required for some drug products (for example, see Marzo et 

al., 2000). 

Statistical moment theory denotes AUC as the first moment of the concentration time curve 

(Yamaoka, Nakagawa, Uno, 1978). This measure is held by international regulators (Cartwright, 

1991; Herchuelz, 1996; el-Tahtawy et al., 1998) to be a standard measure for extent of bioavail- 

ability. 

18 

0 



Cmax as a measure of rate of bioavailability has been found to be confounded with extent 

of bioavailability in studies (Basson et al., 1998) and is known to not characterize the rate of 

bioavailability particularly well (Cartwright, 1991). Given its dependence on the a priori choice 

of sampling scheme, it is known to be more variable than AUC and is sometimes problematic 

in the assessment of bioequivalence (Tsang et al., 1996; Buice et al., 1996). Regardless of 

this however, Cmax has been held to be more reliable in the eyes of regulators than several 

alternatives (Bois et al., 1994). 

Other measures of rate of absorption have been proposed in the literature such as Direct 

Curve Metrics (Marston and Polli, 1997) and Cmax/AUC (Endrenyi et al., 1991), and 'indirect' 

metrics (Ring et al., 2000). However, simulation based assessment of alternatives has demon- 

strated such measures to be less desirable than the use of Cmax to date (Tozer et al., 1996, 

Tozer and Hauck, 1997). Recent work in alternative measures of absorption rate such as Partial 

AUCs (Endrenyi et al., 1998a) is ongoing in response to workshop and regulatory considerations 

(Patnaik et al., 1997; Shah et al., 1996) but have yet to be accepted as useful measures in 

bioequivalence assessment (Barrett et al., 2000). Cmax thus seems to be held as the 'least evil' 

measure available at present for rate of bioavailability (el-Tahtawy et al., 1998). 

Endpoints are typically subjected to analysis separately. Multiplicity adjustment in analysis 

is not required for regulatory approval under preset 'joint decision rules' (Hauck et al., 1995). 

Pharmacokinetic endpoints AUC and Cmax are generally held to be log-normally distributed 

(Westlake, 1979; Midha et al., 1993; Lacey et al., 1997; Julious and Debarnot, 2000). If X is 

log-normally distributed with mean exp(p + (112)o, 2) and variance exp(2ti + or 2) (exp (0,2)_I), 

then Y=(Iog, (X)) is known to be normally distributed with mean IL and variance 0' 2 (Crow and 

Shimizu, Section 1.1,1988; Crowder et al., Ch 2.5,1991). Thus, typically, in the analysis of PK 

studies, AUC and Cmax are simply log, -transformed and subjected to analysis on the normal 

scale. Differences constructed on the normal scale are exponentiated and expressed as the ratio 

of two geometric means. Analysis will be discussed in detail in Sections 1.2 and 1.3 and is 

typically implemented based on the use of mixed models (Patterson and Thompson, 1971; Laird 

and Ware, 1982; Jones and Kenward, 1989; Milliken and Johnson, 1992; Senn, 1993; Vonesh 

and Chinchilli7 1997; Senn, 2002). 

Bioequivalence studies must also be performed following substantial post-marketing formu- 
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lation alteration. They are also used by the generic pharmaceutical industry to gain market 

access for generic formulations of established drug therapies when the patent of the sponsor's 

formulation expires or when the original sponsors themselves perform a formulation change (for 

instance, change the site of manufacture) following approval. 

Multiple companies may produce and market similar formulations to the original marketed 

product following patent expiration, provided they can demonstrate bioequivalence to the orig- 

inal product. Generic substitution has thus provided a means of providing the market with 

inexpensive, efficacious, and safe drug products without the need to repeat an entire clinical and 

clinical pharmacology development package following patent expiration. 

The history of bioequivalence testing and generation of decision rules for regulatory approval 

are now examined in greater detail. 

1.2 History of Bioequivalence in the 1970's to Early 1980's 

Idiosyncratic reports of therapeutic failure and/or undesirable side effects are to be expected 

when a drug is administered to a large human population in the marketplace. Clinical trials 

used to register a drug for admittance to the marketplace can, in general, sample only a small 

subset of those people who will eventually use the product in their therapy, and not all Patients 

in the market will derive benefit and have a completely safe experience while taking any given 

product. Patient risk of such an occurrence, however, should be minimised, or held at acceptable 

levels, as a matter of public policy. 

In the late 1960s and 1970s, advances in chemical engineering increased the capabilities of the 

pharmaceutical industry to create inexpensive copies of patented drug products (since termed 

'generics'). Following patent expiration, such new formulations could potentially be marketed 

with substantial profits for the producing company (Strom, 1987). Coupled with this possibility 

of increasing supply of the products in demand in the marketplace, this offered substantive 

benefit to public health (lower costs), and an explosive growth in the generic pharmaceutical 

industry was potentially to follow. 

However, reports of failure of some generic drug products received a great deal of public 

attention in the United States following their documentation earlier in this time period (see 

Table 3), and it was concluded that development of a process and set of standards for market 
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access was necessary (Rheinstein, 1990) especially for those drugs with a narrow therapeutic 

index (drugs for which a small change in dose or rate/extent of bioavailability can result in large 

changes in response, see Ansbacher, 1990). 

Table 3: Examples of Bioinequivalence (Calvert, 1996) 

F'urther examples of bioinequivalence for carbarnazepine (indicated for seizure control) may 

be found in Welty (1992). 

Generic substitution was thus encouraged as part of the 1984 Drug Price Competition and 

Patent Term Restoration Act passed by the US Congress, since codified as 21 Code of Federal 

Regulations, Passage 320. FDA was authorised under this act to create an approval process for 

generic drug products, and subsequent to the act's passage, in 1985, FDA approved the market- 

ing of one-hundred twenty-two generic equivalent formulations for products in the marketplace 

with expired patents (Strom, 1987). 

The year following revealed increasing trends in market access for generic products (Strom, 

1987). Approved drug products with therapeutic equivalence evaluations are listed by the US 

Food and Drug Administration in the Orange Book (Hare and Foster, 1990). For approval to 

market, FDA required a bioequivalence study for market access with prespecified decision rules 

for acceptability based on the data collected. Such studies were also required for extension of 

patent protection for innovators seeking to maintain market exclusivity (Hunt, 2000). 

Study design and analysis procedures for such bioequivalence studies had been under consid- 

eration for some time by the time the act was passed among the statistical community (Metzler, 

1974). Although statistical approaches to study design have historically concentrated on concise 

definition of the questions of interest to facilitate precise definition of sample size, randomisation, 

and control requirements (I-Iinkelmann and Kempthorne, 1994), the hypothesis of interest for 

the question of bioequivalence have proved to be elusive. However, in response to the practical 
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requirement for market access, a standard design has evolved. 

In the 1960s through the 1980s, cross-over designs were a general topic of interest in clinical 

research (see Grizzle, 1965; Federer and Raghavarao, 1975; Hills and Armitage, 1979; Kershner 

and Federer, 1981; Freeman, 1989), and their statistical properties received much discussion 

and development. Cross-over designs are experiments where each experimental unit (the unit to 

which a treatment is administered) receive sequences of treatments (Jones and Kenward, 1989). 

Their use in the area of clinical research was deemed to be most appropriate (i. e. straightforward) 

when disease state was the same for any given patient (or subject) through the course of the 

study and when it could be assumed that carryover effects from treatment in the preceding 

period were negligible (Fleiss, 1986 and 1989). The use of such a design can save resources 

under certain conditions (Brown, 1980). 

Comprehensive discussion of the design and analysis of cross-over trials may be found in 

Jones and Kenward (1989) and Senn (1993,2002), and recent developments are reviewed in 

Jones and Deppe (2000). Discussion in this thesis will be confined to those cross-over studies 

typically used in the assessment of bioequivalence. 

Randomized cross-over designs in normal healthy volunteers (of standard age and weight) 

have evolved as the design of choice for assessment of bioequivalence. Each normal healthy vol- 

unteer (hence termed subject) is administered each formulation in a predetermined, randomized 

sequence. Different formulations are thus administered to different subjects in each period, as 

in the design presented in Table 2. Administration of each formulation in each period is sep- 

arated by a washout period sufficiently long to ensure non-quantifiable plasma concentrations 

at the beginning of the following period. Carryover effects in pharmacokinetic assessment are 

thus held to be negligible (confirmed by collection of a plasma sample prior to dosing in each 

period). Statistical testing procedures described in Jones and Kenward (1989) for the presence 

of first-order carryover (though sometimes the subject of intense debate; Senn, 1996,1997) gen- 

erally find carryover to be negligible (Zariffa et al., 2000; D'Angelo et al., 2001) allowing for 

straightforward implementation of the use the cross-over design and interpretation of the data 

in the assessment of bioequivalence. Such a study is said to be balanced if equal numbers of 

subjects receive each sequence. 

Summary measurements such as AUC from a two-by-two cross-over trial may be modeled 
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using a random- intercept mixed modelling procedure accounting for each subject as their own 

control (Jones and Kenward, Ch 7,1989; Milliken and Johnson, Ch 32,1992). In bioequivalence 

studies, the following model for observations is commonly accepted for a randomized, two period, 

cross-over trial in normal healthy volunteers, under the assumption that carryover effects are 

negligible (or similar between formulations). Let Yijk be the log, -transformed j-th period's 

observation (j = 1,2) for the k-th subject (k = 1,2, . .., ni) in the i-th sequence group (i = 1,2). 

Then 

Yijk --": 
Ai + (Y + I'lk(i)) + 7ri + Td[ij] + Eijk (2) 

where p is the grand mean, 

Aj, 7rj, and Td[i, j] are fixed effects for sequence, period, and formulation, 

I"k(j) and Eijk are random effects which are independent with mean zero, Var(vk(j))=u', the B 

between-subject variance, and 

2 Var(6iik)--':::: O'w7 the within-subject variance. This equation is usually expressed in practice as: 

Yijk -"::: Ai + I"k(i) + 7ri + Ad + Eijk (3) 

where d= (T, R). Analysis of data under log, -transformation is described in Box and Cox 

(1964). 

For balanced designs (nl=n2) with no missing data, period effects are orthogonal to formu- 

lation effects. Note that homogeneity of test and reference product between-subject variance 

is assumed in such a random-intercept model, as is the homogeneity of within-subject vari- 

ance for test and reference products. Observations between-subject are held to be independent 

(with covariance zero), and the variance-covariance structure for observations within a subject 

under these assumptions is compound symmetric. Under this model, the COV(Yijk) Yij'k) = 

E(vk(j) + Eijk) (1"k(i) + Eij'k) = E(V2(i)) = Var(Vk(i)) = 0' 2 such that: kB 

2 

p= Corr (Yij k) Yij I k) -2B2 
O'B + UW 

(4) 

23 



for j 54 f, and 

2=0,2 + or2 Var(Yijk) 
Bw (5) 

Comparisons between the estimated means AT-AR are thus normally-distributed with mean AT- 
22)+ (0,2 + 0,2 ý- ýOr 2W or2 AR and variance of ((O'B +7W Bw2 (p) ( Vo-, TB,:, 7ý -w2-) ( Vu- 1B +or 2w 

n=2( W)/n in 

balanced two-period cross-over designs with no missing data and n=n, + n2 subjects. 

FDA initially proposed Decision Rules (sometimes referred to as uniformity requirements) 

to assess bioequivalence such as the 80/20 and 75/75 rule. Under these criteria, the study first 

(the 80/20 rule) must not have rejected the hypothesis that 

Ho : AT 7-- AR 

versus 

PT 7ý PR 

Additionally the study must have had sufficient number of subjects and low enough within- 

subject variance to have had eighty percent post-hoc power (probability of demonstrating bioe- 

quivalence under this decision rule when it is in fact bioequivalent) to detect a clinically im- 

portant difference, usually defined to be In 1.25 on the log, -scale (a twenty percent difference 

on the natural scale). For some additional products, see Haynes (1981), an additional require- 

ment (the 75/75 rule) was defined such that seventy-five percent of subjects' individual ratios 

of test to reference must be greater than or equal to the value of 0.75 for bioequivalence to be 

demonstrated. 

Criticisms of the 80/20 approach to bioequivalence are statistically obvious. Absence of 

evidence does not imply evidence of absence - i. e. statistical significance does not imply clinical 

significance, and vice versa (for more discussion see Altman and Bland, 1995 and Jones et al., 

1996), and the statistical community had been aware, for some time, of better methods to test 

the hypothesis of equivalence of two treatments relative to a pre-set, clinically relevant goalpost. 
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Furthermore, the use of post-hoc power calculations is inappropriate in this context (Hoenig 

and Heisey, 2001). 

On a practical level, Haynes (1981) established using simulation studies that the proposed 

75/75 uniformity requirement was highly dependent on the magnitude of within-subject vari- 

ation. Additionally, as can readily be seen from the above model (2), individual ratios are 

confounded with period effects. As these effects are known to frequently appear as significant in 

cross-over studies in normal healthy volunteers (Schuirmann, 1990), due for example to changes 

in assay procedures between periods, use of the 75/75 rule criteria for bioequivalence assessment 

was quickly observed to be inappropriate for a large variety of drug products and was dismissed 

from regulatory practice. 

Cox (1967) related Fieller's theorem (1954) for the ratio of two normal distributed means 

to the conditional distributions used to obtain similar regions based on traditional Neyman- 

Pearson theory (for the testing of hypotheses; see also Locke, 1984). Alteration of the traditional 

hypothesis tested in clinical trials (equations 6 and 7, above), to a framework appropriate for 

equivalence testing, was introduced by Dunnett and Gent (1977). In this paper, Dunnett and 

Gent compared two binomial samples relative to a prespecified goalpost 5 to assess equivalence of 

the responses to treatment. Westlake (1972-1979; for summary of work performed in the 1970's 

see Westlake, 1986) applied similar concepts to the analysis of bioequivalence trials. In brief, a 

bioequivalence study is conducted, and the confidence interval for the ratio Of AT: AR is derived 

based on a model or method appropriate to the data, the study design, and the question under 

consideration. If the confidence interval falls within pre-specified goalposts, the formulations are 

declared bioequivalent. 

Differences in between- or within-subject variation received little attention in the press during 

this period though references in the work by Haynes (1981) indicate that they were not neglected 

by the statisticians involved in the bioequivalence debate. Testing procedures for reference and 

test formulation variability estimates were derived by Pitman (1939) and Morgan (1939) for 

paired data, such as that arising in cross-over studies. Though potentially of interest, measures 

of accuracy (i. e. mean bioavailability) seemingly were deemed more important than precision (i. e. 

variability in bioavailability) as a first step in addressing the evolving question of bioequivalence. 

Statistical methods had been developed (Marcus et al., 1976) at this time for the closed ordered 
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testing of hypotheses to ensure fixed experiment-wise error to test such effects in series. Such 

methodology requires a set of pre-ordered, pre-set hypothesis to be closed under intersection, 

which seemingly could be applied in a straightforward manner to bioequivalence testing (i. e. test 

for equivalence of means followed by variances or vice versa). Little additional attention has 

focussed on application of such a straightforward approach to inference until recently (Barrett 

et al. , 2000). 

Illustration of the application of the 80/20 rule and the 75/75 rule follows based on the model 

described in (2) and based on a study design like the one described in Section 1.1. The data for 

subjects with data in both periods for AUC (n=45) and Cmax (n=47) in Table 4 were analyzed 

according to the model in SAS@ using simple GLM code as follows: 

PROC GLM; CLASS SEQUENCE SUBJECT PERIOD REGIMEN; 
MODEL LNAUC=SEQUENCE SUBJECT (SEQUENCE) PERIOD REGIMEN; 
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Table 4: Data from a Two Period Cross-over Study Design with 
Test and Reference Formulations 

Subject Seq AUC 
Test 

AUC 
Ref 

AUC 
T: R 

Cmax 
Test 

Cmax 
Ref 

Cmax 
T: R 

1 RT 79-34 58.16 1.36 2.827 2.589 1.09 
2 TR 150.12 142.29 1.06 5.145 3.216 1.6 
3 RT 85.59 69.68 1.23 4.407 2.48 1.78 
4 TR 36-95 5 7.39 2.442 0.498 4.9 
5 RT 121-84 5.319 
6 TR 24-53 26.05 0.94 1.442 2.728 0.53 
7 TR 22.11 34-64 0.64 2.007 3.309 0.61 
8 RT 377.15 208.33 1.81 11-808 9.634 1.23 
9 TR 703.83 476.56 1.48 15.133 11.155 1.36 
10 RT 14.23 17.22 0.83 1.121 1.855 0.6 
11 RT 750.79 1407.9 0.53 6.877 13.615 0.51 
12 TR 217.06 176.02 1.23 9.433 8.446 1.12 
13 RT 21.27 20-81 1.02 1.055 1.21 0.87 
14 TR 40-75 152.4 0.27 1.787 6.231 0.29 
15 RT 8.67 1.084 0.995 1.09 
16 TR 52.76 51.57 1.02 3.57 2.445 1.46 
17 TR 101-52 23.49 4.32 4.476 1.255 3.57 
18 RT 269.4 203.22 1.33 9.618 7.496 1.28 
19 TR 37-14 30-54 1.22 2.169 2.613 0.83 
20 RT 412.42 386-93 1.07 12-536 16.106 0.78 
21 RT 33.89 47-96 0.71 2.129 2.679 0.79 
22 TR 143.45 42-69 3.36 5.182 3.031 1.71 
23 TR 29.8 29-55 1.01 1.714 1.804 0.95 
24 RT 32-59 22.7 1.44 1.853 1.727 1.07 
25 TR 63-03 92.94 0.68 3.201 5.645 0.57 
26 RT 72-36 44.02 1.64 4.546 3.156 1.44 
27 RT 423-05 285.78 1.48 11-167 8.422 1.33 
28 TR 0.891 0.531 1.68 
29 TR 56.7 21-03 2.7 2.203 1.514 1.46 
30 TR 61.18 66.41 0.92 3.617 2.13 1.7 
31 RT 20-33 40.6 0.5 1.247 1.9 0.66 
32 RT 17-75 19.43 0.91 0.91 1.185 0.77 
33 TR 1376.02 1200.28 1.15 27-312 22-068 1.24 
34 TR 115-33 135.55 0.85 4.688 7.358 0.64 
36 RT 1160.53 1048.6 1.11 17-374 18.976 0.92 
37 RT 82.7 107-66 0.77 6.024 5.031 1.2 
38 TR 17-34 40-35 0.43 1.072 2.15 0.5 
39 RT 928-05 469-73 1.98 14-829 6.962 2.13 
40 TR 62.23 64.92 0.96 3.025 3.041 0.99 
41 TR 48-99 61.74 0.79 2.706 2.808 0.96 
42 TR 53-18 17-51 3.04 3.24 1.702 1.9 
43 RT 20.09 14.95 1.34 2.278 0.987 2.31 
44 RT 28.47 28.57 1 1.773 1.105 1.6 
45 RT 411.72 379.9 1.08 13.81 12.615 1.09 
46 TR 1.68 
47 RT 46 88 126.09 0.37 2.339 6.977 0.34 
48 TR 98.03 236.17 0.42 3.434 7.378 0.47 
49 TR 1070-98 1016.52 1.05 21.517 20.116 1.07 
50 RT 1 106.43 75.43 1.41 1 4.771 4.925 1 0.97 

R=Reference, T=Test 
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Implementation of the general linear model (GLM in SAS(ý) for model (2)) for AUC and 

Cmax data (only subjects with data from both sessions are included) is shown in Figures 3 and 

4 below. 

General Linear Models Procedure 

Dependent Variable: TPARM LOG( AUC ) 
Sum of Mean 

Source OF Squares Square F Value Pr >F 

Model 46 142.91505522 3.10684903 15.63 0.0001 

Error 43 8.54610668 0.19874667 

Corrected Total 89 151.46116190 

R-Square C. V. Root MSE TPARM Mean 

0.943576 9.994867 0.4458101 4.4603908 

Source DF Type I SS Mean Square F Value Pr >F 

SEQUENCE 1 1.09473744 1.09473744 5.51 0.0236 
SUBJECT(SEQUENCE) 43 141.54662307 3.29178193 16.56 0.0001 
PERIOD 1 0.06212092 0.06212092 0.31 0.5790 
REGIMEN 1 0.21157379 0.21157379 1.06 0.3080 

Source OF Type III SS Mean Square F Value Pr >F 

SEQUENCE 1 1.09473744 1.09473744 5.51 0.0236 
SUBJECT(SEQUENCE) 43 141.54662307 3.29178193 16.56 0.0001 
PERIOD 1 0.05710071 0.05710071 0.29 0.5947 
REGIMEN 1 0.21157379 0.21157379 1.06 0.3080 

Tests of Hypothes es using the Type I MS for SU BJECT(SEQUENCE) as an error term 

Source DF Type I SS Mean Square F Value Pr >F 

SEQUENCE 1 1.09473744 1.09473744 0.33 0.5672 

T for HO: Pr > ITI Std Error of 
Parameter Estimate Paramet er=O Estimate 

T-R 0. 09699446 1.03 0.3080 0.09400824 

LOG( AUC BACK-TRAN SFORMED 
REGIME N LSMEAN LSMEAN 

T 4. 5113 91.04 
R 4. 4143 82.63 

Comparison Estimate Standard df t -value 90% C. I. 
Error Lower Upper 

T-R 0.0970 0.0940 43 1.6811 -0. 0610 0.2550 
T: R 1.1019 0. 9408 1.2905 

Wi. thin subject CV= 46.9% 

Figure 3: Analysis of Variance for AUC data presented in Table 4 based on model (2) 
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General Linear Models Procedure 

Dependent Variabl e: TPARM LOG( CMAX ) 
Sum of Mean 

Source OF Squares Square F Value Pr >F 

Model 48 73.14134703 1.52377806 9.62 0.0001 

Error 45 7.12696055 0.15837690 

Corrected Total 93 80.26830758 

R-Square C. V. Root MSE TPAR M Mean 

0.911211 30.94203 0.3979660 1.2 861661 

Source OF Type I SS Mean Square F Value Pr >F 

SEQUENCE 1 0.29177262 0.29177262 1.84 0.1815 
SUBJECT(SEQUENCE) 45 72.77061168 1.61712470 10.21 0.0001 
PERIOD 1 0.01827351 0.01827351 0.12 0.7357 
REGIMEN 1 0.06068922 0.06068922 0.38 0.5390 

Source OF Type III SS Mean Square F Value Pr >F 

SEQUENCE 1 0.29177262 0.29177262 1.84 0.1815 
SUBJECT(SEQUENCE) 45 72.77061168 1.61712470 10.21 0.0001 
PERIOD 1 0.01687594 0.01687594 0.11 0.7456 
REGIMEN 1 0.06068922 0.06068922 0.38 0.5390 

Tests of Hypothes es using the Type I MS for SU BJECT(SEQUENCE) as an error term 

Source OF Type I SS Mean Square F Value Pr >F 

SEQUENCE 1 0.29177262 0.29177262 0.18 0.6730 

T for HO: Pr > ITI Std Error of 
Parameter Estimate Paramet er=O Estimate 

T-R 0 . 05083001 0.62 0.5390 0.082112 70 

LOG( CMAX ) BACK-TRAN SFORMED 
REGIME N LSMEAN LSMEAN 

T 1 . 3128 3.72 
R 1 . 2619 3.53 

Comparison Estimate Standard df t -value 90% C. I. 
Error Lower Upper 

T-R 0.0508 0.0821 45 1.6794 -0. 0871 0.1887 
T: R 1.0521 0. 9166 1.2077 

Withi. n subject CV= 41.4% 

Figure 4: Analysis of Variance for Cmax data presented in Table 4 based on model (2) 

Note that sequence effects (p=0.5672 and p=0.6730 for AUC and Cmax, respectively) were 

not significant in this data set suggesting that no factors (such as carryover) are present to 

confound inference between means (for more discussion on the interpretation of sequence effects 

in the two-period cross-over see Jones and Kenward, Chapter 2,1989). The p-values for the 

comparison Of AT - AR were found to be p=0.3080 (for AUC, &W=0.4458) and p=0.5390 ýfor 

Cmax7 &w=0.3980). 

As no statistically significant change in AUC or Cmax was identified but sample size was 

insufficient to demonstrate a twenty percent difference in means with eighty percent power and 

Type I error rate of five percent, based on a paired testing procedure for means (see Walpole 

et al., Ch 10.9) 1998), this data set would have failed to demonstrate bioequivalence under the 

80/20 rule. Post-hoc power was 66% for AUC and 78% for Cmax. 

Note that 78% (thirty-five of forty-five subjects with data in both sessions) and 77% (thirty- 

six of forty-seven subjects with data in both sessions) of subjects had a test: reference formulation 
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ratio greater than 0.75 for AUC and Cmax, respectively, indicating that both endpoints were 

indicative of bioequivalent formulations under the 75/75 rule. Period effects were not statistically 

significant in this data set (p=0.5497 and p=0.7456 for AUC and Cmax, respectively). 

1.3 History of Bioequivalence from 1980 through 1992: Developing 

Average Bioequivalence 

Under the model (2), established in the 1970's, it can be shown (Kullback, 1968) that the 

statistic 

W )2 VT -RX /2 
2 (Or2 )1 

w 
(8) 

is sufficient to compare the means of the test and reference formulations, based on the assump- 

tion that the data are from a bi-variate normal distribution with homogeneous within-subject 

variance of uw' between formulations. This statistic was assessed in bioequivalence studies based 

on the estimate for the non-central F-distribution (Patnaik, 1949; Owen, 1965; Johnson, Kotz, 

and Balakrishnan, Chapter 30,1994): 

(tý T R)2 
. 
(&2 

Fl, n-2(A) (2 W) /n) 
(9) 

where A is the noncentrality parameter (AT 
- AR )2/ (20,2 /n). It should be noted that under this W 

approach it is assumed that the estimate (n - 2) &2 /0,2 is assumed to be centrally X2 -distributed ww 

such that the second corresponding non-centrality parameter for the non-central F-distribution 

(see Johnson, Kotz, and Balakrishnan, Chapter 30,1994) is assumed to be null for the purposes 

of bioequivalence testing. Thus equation (9) is usually expressed using the statistic 

VT - 1, ýR) 
tn-2(VA) 

V/-(2 
(& 

W2 )/n) 
(10) 
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where t is a non-central t-distribution (Johnson, Kotz, and Balakrishnan, Chapter 31,1994), and 

n is the sample size in a randomized, balanced two-period cross-over study. As FDA interrogated 

the performance of the 80/20 and 75/75 rules and potential alternatives (Colaizzi and Lowenthal, 

1986), statistical consideration (Metzler and Huang, 1983) of the ideas inherent in the question 

of bioequivalence continued using these properties. 

Extending the 80/20 rule in consideration of the differences in average response between 

populations and the approaches developed by Westlake, consideration of methods for decision 

making in the early 1980's focussed on the use of Bayesian posterior probabilities for the con- 

struction of comparisons for AT: YR. Rodda and Davis (1980) and Mandallaz and Mau (1981) 

interrogated the decision rules introduced by Westlake (1972-1979) and introduced considera- 

tion of this distribution relative to a predetermined goalpost interval of (-J, J); bioequivalence 

was concluded if the posterior probability of falling in this interval was higher than a prede- 

termined probability level, e. g. 0.9. This idea was further developed by Fluehler et al. (1981) 

who introduced graphical methods to accompany the consideration of the posterior probability 

and reconunended that J be altered according to the drug under study. Selwyn et al. (1981) 

and Grieve (1985) developed methods for the Bayesian analysis of the randon-iised, 2 period 

cross-over and interrogated the impact of various other factors (carryover, choice of prior distri- 

butions) on inference. Reisner and Guttman (1992) developed similar ideas in the engineering 

field, and Yee (1986) developed a non-Bayesian method for deriving the upper and lower bounds 

of the probabilities for rejecting bioequivalence. 

In summary, these methods used the non-central t- (equation 10) and X'-distributions and 

the model (2) to derive probabilistic statements using Bayes' rule on the posterior probability for 

the difference Of AT-AR given the data observed to assess the degree of average bioequivalence. 

It is assumed estimated variances for random between- and within-subject effects from (2) are: 

2 (&2 ) )B2 

2 Xn-2 
UB (11) 
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2 (&2 ) )w2 
2 Xn-2 (12) 

olw 

Between and within-subject variances are assumed to be independent, and fixed effects are nor- 

mally distributed with mean and nested variance appropriate to the model. Prior distributions 

must be specified for all model parameters. Nuisance effects (period effects) are integrated 

out of the log-likelihood function using an appropriate method based on Bayes' function (full 

details may be found in Selwyn et al., 1981 and Grieve, 1985), and the posterior distribution 

for AT - AR is derived based on the prior distributions, model, and data based on Bayes' rule 

(Lindsey, Chapter 8,1996). 

Numerical integration or approximate methods (Selwyn et al., 1981; 1984) were initially 

proposed for use in implementing these techniques; however, these are known to be subject to 

various problems (eg. impact of starting values and sensitivity to numerical assumptions, com- 

puter intensive), and while the techniques offered substantial benefit in the practical assessment 

of bioequivalence, their use was not encouraged by Regulators within industry applications. Use 

of a Bayesian procedure was known to be potentially sensitive to the choice of prior distribution 

- the classic debate between Bayesians and Requentists - thus leading to questionable validity 

in implementation, in this time period, in the eyes of those Regulators charged with protection 

of public health. 

Use of Bayesian inference offers substantial benefit in terms of data exploration (for more 

discussion, see Breslow, 1990). Recent developments in Markov-Chain-Monte- Carlo based meth- 

ods known as Gibbs sampling (eg. WINBUGS at http: //www. mrc-bsu. cam. ac. uk/bugs/) were 

developed in the late 1980's and 1990's to easily implement Bayesian methods in a straightfor- 

ward fashion. Illustration of these methods for normal data models may be found in Gelfand 

et al. (1990). The data from Table 4 were recently analyzed using such a technique to assess 

bioequivalence. 

Non-informative (i. e. flat) prior distributions for the fixed and random effects were assumed 

with N- (0,101) for fixed effects where N is the normal distribution with parameters (mean, 

variance), and IF - 
(10-3,10-3) for the inverse random effects (i. e. a- 

2 
and Or-2) where r is the BW 

gamma distribution with parameters for (location, scale). Posterior distributions were derived, 
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plotted, and descriptively summarized using log, -transformed AUC and Cmax using a Gibbs 

sampler (100000 iterations were performed) according to the procedure developed by Gelfland 

et al. (1990) for 0 AT - AR or equivalently on the natural scale 0= exp(/-LT - AR). The 

predetermined goalpost intervals for the parameters of interest were: 

0G (-0.2231,0.2231) 

0G (0.80,1.25) 

with posterior probability level prob(-0.2231 <0<0.2231) = prob(O. 80 <0<1.25) ý! 0.90 

denoting an acceptably high level of confidence in bioequivalence. Alternatively, one could 

consider (Kirkwood and Westlake, 1981; Senn, 2001), the probability of being above a prede- 

termined cut-off denoting an acceptable increase in rate and extent of bioavailability or below 

a predetermined cut-off denoting an acceptable decrease in rate and extent of bioavailability. 

Using the above lower and upper bounds for 0 and 0, the posterior probability level for prob(O 

-0.2231) = prob(O < 0.80) :50.05, and the posterior probability level for prob(O > 0.2231) = 

prob(O > 1.25) < 0.05 for the formulations to be bioequivalent. 

For AUC, prob(-0.2231 <0<0.2231) = prob(O. 80 <0<1.25) = 0.90; however, while prob(O 

0.2231) = prob(O > 1.25) = 0.09, prob(O < -0.2231) = prob(O < 0.80) = 0.01. Thus although 

the posterior probability of falling in the interval was acceptably high, the probability of falling 

above the upper cut-off of 1.25 could also be construed as unacceptably high (of the order of 

0.09). See Table 5 and Figure 5. 
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Table 5: Statistics and Quantiles for AUC 0 and 0 Posterior Densities based on Data presented 
in Table 4 

I Parameter I Mean I SD 1 5% 1 ýýo 95% 1 
0 0.096 0.097 -0.062 0.096 0.255 

1.106 
1 

0.107 ' 0.940 
1 

1.101 
1 

1.291 

phi sample: 100000 
6.0- 

4.0- 
2.0. 
0.0- Ly- -----7- 11 

-0.6 -0.26 0.0 0.26 0.6 

I theta sample: 100000 
4 
3 

0.6 1.0 1.6 

Figure 5: Posterior Densities for AUC 0 and 0 based on Data presented in Table 4 
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For Cmax, inference is more easily made. The prob(-0.2231 <0<0.2231) = prob(O. 80 

< 1.25) > 0.90; and, while prob(o > 0.2231) = prob(O > 1.25) < 0.05, prob(o < -0.2231) = 

prob(O < 0.80) < 0.05. Thus the posterior probability of falling within the interval of interest is 

acceptably high, and the probability of falling above 1.25 or below 0.80 is quite low. See Table 

6 and Figure 6. 

Table 6: Statistics and Quantiles for Cmax 0 and 0 Posterior Densities based on Data presented 
in Table 4 

Parameter Mean SD 5% 50% 95% 
0 
0 

0.051 
1.056 

0.084 
0.089 

-0-087 
0.917 

0* 051 
1.052 

0.18 
1.20 

6 
4 

phi sample: 100000 

'1 

14) 
- 

-0.4 -0.2 0.0 0.2 0.4 

theta sample: 100000 
6 

4 

0.6 0.76 1.0 1.25 1.5 

Figure 6: Posterior Densities for Cmax 0 and 0 based on Data presented in Table 4 
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The response of Food and Drug Administration regulatory authorities to the data generated 

in this study was interesting. The study was nearly twice the size of most bioequivalence studies 

(FDA Guidance 1992), but failed to demonstrate bioequivalence under the current standards (to 

be discussed later in this Chapter) due to unexpectedly large variation. The Bayesian analysis 

was conducted to characterize the degree of bio-inequivalence and to ask the advice of the 

regulatory agency on how to proceed. The initial verbal response of the regulators to the data 

was 'The Biopharm division will not accept a Bayesian analysis as a matter of historical policy 

(private communication, 1997)'. This is in obvious opposition to the spirit of numerous recent 

guidances encouraging the use of Bayesian or other alternative techniques where they enhance 

the understanding of the data (e. g. ICH-E4 Guidance, 1994). This response was amended in the 

written response (after consulting with the Biostatistical regulatory division) to read, 'Bayesian 

analysis as described in this submission are not acceptable for bioequivalence assessment (private 

communication, 1998)'. 

Before turning to the statistical procedures which regulatory agencies will accept for bioe- 

quivalence assessment, it should be noted that Bayesian analysis naturally facilitates the use of 

sequential experimentation to assess bioequivalence. Extensions to the Bayesian approach by 

first conducting a pilot relative biavailability study to estimate within-subject variability in a 

two-step procedure were discussed in Racine-Poon et al. (1987). A small pilot study (sample size 

of six subjects) is first conducted under this approach for the purpose of deriving prior beliefs (or 

distributions). A full size bioequivalence study is then conducted based on this information to 

assess bioequivalence under predetermined Regulatory standards. Other Bayesian approaches 

to the assessment of ratios of means are described in Barbieri et al. (2000). 

Frequentist implementation of the approaches proposed by Westlake (1972-1979) to the ques- 

tion of bioequivalence were initially assessed by Schuirmann (1981) in the abstract reproduced 

below: 

'In drug-quality control and bioequivalence testing, we may wish to test the 'interval 
hypothesis' 

HO: p< 01 or p> 02, 

Hl: 01 <A< 02 

at the level a of significance, where 01 and 02 are known constants, 01 < 02- If A is 

the mean of a normal distribution with unknown variance U2 , there does not exist a 
fixed-sample test with size independent of U2 . 

However, we may carry out the usual 
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size a tests of the hypotheses 

H01: A< 01 1 
HOr: A> 02 

7 

and Hil: p ý! 01 , 
Hlr: A< 02 

and reject HO only if we reject HO, and HO,. The size of this test procedure is 
always less than the nominal level a. The procedure amounts to rejecting Ho iff the 
1-2a confidence interval for p is completely contained in the interval [01,02]- We 
illustrate the power curve for this procedure in several examples and show the actual 
size depends on the relative length 02-01 of the interval, compared to the standard 
deviation of the estimator of p. For most cases of practical interest, the actual size 
is indistinguishable from the nominal size a. ' (Schuirmann, 1981) 

This procedure was designated the 'two-one sided testing procedure' (TOST), and Schuirmann 

subsequently refined his work in a publication in 1987, defining the power of the TOST in two- 

period cross-over designs for the testing of bioequivalence relative to the 80/20 rule for testing 

bioequivalence. 

Blackwelder (1982) and Anderson and Hauck (1983) published similar work. These ideas 

were further developed in Hauck and Anderson (1984) and Rocke (1984), and general approaches 

to the question of statistical inference were subsequently summarised under the framework of 

fiducial probability and inference by O'Quigley and Baudoin (1988). Under this approach to 

inference, the usual null hypothesis (6) was reformulated to correspond to the structure of testing 

the question of bioequivalence: 

H01 : AT - AR'ýý -6 

H02 : I-IT - ARýý'J (14) 

Inference was again based on the use of the non-central t-distribution using a model (typically 

2) in a randomised, two-period cross-over design. Summaries of the implementation of such a 

TOST procedure may be found in Pabst and Jaeger (1990) and Steinijans and Hauschke (1990). 

The AUC and Cmax data contained in Table 4 were separately (without multiplicity ad- 

justment in accordance with Hauck et al., 1995) analysed under the model (2) to assess bioe- 

quivalence for test relative to reference formulations under the TOST with pre-set limits of 

J= In 1.25 (corresponding to a twenty percent range on the natural scale). On the natural 

scale, if the ninety percent confidence interval for exp(j! T - IIR) is contained completely within 

the range 0.80 to 1.25, then bioequivalence is demonstrated. The results were as follows for 
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AUC and Cmax: 

Table 7: Two-One Sided Testing Procedure Results for AUC and Cmax Data in Table 4 from 
Figures 3 and 4 

I Endpoint INI exp(AT-AR) 1 90% Confidence Interval-F- 67--w-7 
AUC ý 45 1.10 0.94- 1.29 04458 
Cmax 47 1.05 0.92- 1.21 0*3980 

Bioequivalence was not demonstrated in this data set. Cmax equivalence was met under the 

TOST; however, AUC equivalence was not met as the upper bound fell above the pre-set cutoff 

value 1.25. 

Sample size considerations in the design of bioequivalence studies under the two-one sided 

testing procedure were developed in Schuirmann (1990), Phillips (1990), and Diletti et al. (1991) 

based on the bi-variate non-central t-distribution and the model introduced in Section 1.2, (2). 

As summarized by Phillips (1990), two t-statistics are defined in accordance with the two-one 

sided hypothesis: 

TL - 
(AT 

- AR - 
(-6)) 

Ný(-2(&W2 )/n) 

and 

TV - 
(AT - AR - 6) 

V4(-2 
-(&-TW-)/ n-) 

The alternative hypothesis is accepted if TL and -Tu exceed tl-cr, n-2 in a balanced, randomized, 

two-period cross-over design. TL and Tu have a bi-variate non-central t-distribution (with n-2 

degrees of freedom on a balanced design) with non-centrality parameters 6L and 6U, such that: 

JL --- 
UIT 

- AR - 
(-J)) 

. Vl'(-21, -(u-Tw-), 7n-) 

and 
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JU = 
(IIT 

- PR - 6) 
(18) 

Under this approach, it can be shown that sample size of n=56 and n=72 subjects are required 

to demonstrate bioequivalence for Cmax, based on the estimate of within-subject variation for 

Cmax in Table 7 with 80% and 90% power, respectively, when using a two-period, randomised 

cross-over. For AUC, n=70 and n=88 subjects are required to demonstrate bioequivalence with 

80% and 90% power, respectively under the assumption that no true difference exists between 

formulations. 

Practical considerations in the design and power and sample size of such studies were further 

developed in Schuirmann (1990). Randornisation to sequence and definition of a wash-out period 

sufficient to negate potential residual (i. e. carryover) effects from the previous period were 

established as desirable properties in bioequivalence study design. Sampling scheme in such 

studies were noted as being very important for proper consideration and definition of Cmax, 

and period effects were noted as being a 'recurrent phenomenon' in cross-over designs (due to 

changes in sample storage, environmental conditions, or assay bias between periods - although 

not significant in the example provided). The use of prospectively designed, properly powered, 

randomised cross-over designs were established as the norm for bioequivalence assessment. 

Regulatory agencies have little direct interest in the power of bioequivalence studies under 

the TOST (power is typically referred to as 'sponsor's risk' in this context). The Regulator's 

primary concern is with the confidence level at which bioequivalence can be concluded and 

with ensuring that the design of such studies ensure an unbiased comparison of formulations. 

Under Schuirmann's TOST procedure, the confidence level (a) was set at five percent per test 

for an overall study-wise Type I error rate of up to five percent (FDA Guidance, 1992). The 

assumptions and requirements underlying bioequivalence assessment in this approach (i. e. the 

use of general linear models) were stated as: 

1. Randomisation of Samples 
2. Homogeneity of Variances 
3. Additivity (linearity) of the statistical model 
4. Independency and normality of residuals 
(FDA Guidance, 1992) 
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FDA thus specified that subjects must be randomised to sequence, and that a general linear 

model of the form (2) be fit to the I og, -transformed AUC and Cmax for demonstration of 

bioequivalence in a two-period cross-over design. Between- and within-subject variances were 

assumed to be homogeneous across formulations, and AUC and Cmax data were assumed to 

be log-normally distributed. In practical terms, under the 1992 FDA Guidance, equivalence 

was demonstrated if the 90% confidence interval (calculated using a linear model appropriate to 

the study design) for exp(AT - MR) was contained in the interval (0.80-1.25). Different models 

should be applied if the study design differs from a two-period cross-over design (see Jones and 

Kenward, 1989; Senn, 1993; Senn, 2002) to construct the confidence intervals. 

Firms (also known as sponsors) conducting bioequivalence studies were encouraged to con- 

duct single dose studies at the maximal dose to be marketed in healthy normal subjects ensuring 

an adequate wash-out period between study periods. AUC and Cmax were designated as the pri- 

mary endpoints of interest (see Section 1.1) to assess extent and rate of absorption, respectively 

in the 1992 FDA Guidance. 

Log, -transformed data under this model are assumed to be normally distributed (i. e. log- 

normally distributed on the natural scale), and goodness of fit can be assessed based upon 

traditional graphical techniques (plotting studentised residuals versus predicted values and nor- 

malized probability plots (Jones and Kenward, Ch 2,1989) as plotted below. These plots are 

presented for AUC and Cmax below based on the results of model (2) as presented in Figures 

7 and 8. 
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Figure 7: Studentized Residual Plot and Normal Probability Plot for AUC data presented in 
Table 4 based on model (2) 
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Residual data for AUC appeared consistent with that of the normal distribution with inde- 

pendent, homogeneous variance. An outlier (subject 004, Table 4) was evident for AUC based 

on the results of the linear model implemented in GLM (see code earlier in the Chapter). The 

AUC ratio (Test: Reference) in subject 004 was 7.39; the next most extreme individual high 

and low ratios were 4.32 and 0.27. When these data are removed and the analysis repeated, 

the upper end of the confidence interval for AUC comes within the equivalence range (ninety 

percent confidence interval: 0.91 - 1.22 and point estimate of 1.06). 
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Figure 8: Studentized Residual Plot and Normal Probability Plot for Cmax data presented in 
Table 4 based on model (2) 
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Residual data for Cmax appeared consistent with that of the normal distribution with inde- 

pendent, homogeneous variance. No outliers were evident for Cmax based on the results of the 

linear model implemented in GLM (see code earlier in the Chapter). 

Outlier detection (see Jones and Kenward, Ch 2,1989) was held to be potentially indicative 

of product failure or subgroup identification (FDA guidance, Chapter V, 1992). It should be 

noted that statistical detection of an outlier (Lund, 1975) was insufficient rea-son to exclude a 

subject's observations; if data were to be excluded 'scientific evidence or explanations' (FDA 

guidance, Chapter V, 1992) should be supplied. An example of an acceptable reason might be 

if it could be documented that a subject failed to swallow their medication. 

The FDA Guidance (1992) states that, 'Firms are not encouraged to test for normality of 

data distribution after log transformation, nor should they employ normality of data distribution 

as a justification for carrying out the statistical analysis on the original scale. ' as 'ANOVA 

models are known to be relatively robust' to deviations from the homogeneity, independency, 

and normality assumptions (FDA Guidance, 1992). FDA did (earlier in the same guidance) 

suggest that nonparametric methods be considered (prior to ANOVA analysis) in place of the 

model if data appeared to violate these assumptions; however, in practice, as described in the 

example below, it appears that only linear-model based methods for log, -transformed AUC and 

Cmax data as described in Jones and Kenward (1989) are acceptable without first consulting 

appropriate regulatory authorities. While estimation procedures more robust to the presence of 

outliers are known such as M-estimation described by Chi (1994) or Jackknife-estimation by Y. 

Wang (1999), the acceptability of these procedures in the assessment of bioequivalence is not 

known. 

Nonparametric approaches to inference in a cross-over design had been introduced by Steini- 

jans and Diletti (1983) based upon the Wilcoxon signed rank test (the nonparametric analogue 

to the t-test) under the assumption that period effects are negligible. Median differences and 

ninety percent confidence intervals are again constructed on the log, -transformed scale account- 

ing for each subject as their own control and are exponentiated to provide point estimates and 

a confidence interval for the ratio of test to reference. In contrast to the normal distributional 

assumptions underlying the linear model based procedure, this procedure assumes only that 

data for test and reference products come from independent continuous distributions differing 

43 



only in terms of central tendency. Measures of spread are again assumed to be homogeneous 

between formulations. The downside of this procedure is that the coverage probability is usually 

higher than that specified (i. e. in excess of ninety percent) resulting in overly wide confidence 

intervals when the data is truly normally distributed, and power of the procedure to demon- 

strate bioequivalence is generally lower than the corresponding parametric procedure when the 

assumptions hold (Hauck et al., 1997). 

Nonparametric procedures accounting for potential period effects were subsequently docu- 

mented by Hauschke et al. (1990) but were subject to the same difficulty in coverage probability. 

For non-normally distributed data sets however, these intervals may be smaller than those com- 

puted based on least squares procedures as shown in Table 8 below. 

Table 8: Two-One Sided Testing Procedure Results for AUC and Cmax Data in Table 4 Based 
on the Non-Parametric Analysis of Hauschke et al. (1990) 

I Endpoint INI exp(AT-AR) 1 90% Confidence Interval I 

AUC 1 45 1 1.08 0.95- 1.22 
Cmax 47 1.06 0.92-1.21 

Bellavance and Tardif (1995) introduced similar techniques for assessment in three-treatment 

three-period cross-overs. 

While Pitman's permutation test can be applied to those data sets where continuous dis- 

tributions may not be assumed, straightforward exact analysis of binary and categorical data 

from randomized, two period cross-over designs are described in detail in Jones and Kenward 

(Chapter 2,1989). Assessment based upon an additional resampling technique (i. e. the Boot- 

strap) not requiring the normality assumption was further developed by Efron and Tibshirani 

(Chapter 25,1993). Bootstrap-based analysis of bioequivalence studies will be discussed in more 

detail in Chapter 2-5. 

Least squares estimation as recommended in the FDA Guidance (1992 - i. e. ANOVA or GLM 

based estimation), sometimes referred to as Method-of-Moments based models, are sometimes 

prone to the estimation of negative variance components in bioavailability designs (Milliken and 

Johnson, Chapter 22,1992; Gaffney, 1992), and the interpretation of such mis-estimated, non- 

negative variance terms is problematic, though not of direct impact to the assessment of average 

bioequivalence (Vonesh and Chinchilli, Chapter 4,1997). As noted, estimation approaches using 
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least squares procedures as in (2) assume that the Huynh-Feldt condition (equality of variances 

and covariances, Huynh and Feldt, 1970; Hinkelmann and Kempthorne, 1994) holds - an equally 

troubling assumption in some data sets (as will be shown in Chapter 2). Least squares estimates 

(Milliken and Johnson, Chapter 22,1992) for the corresponding between-subject variance are 

derived as: 

&' = (MS (Subject (sequence))-MS (Error)) /2 B 

resulting in estimates of 1.55 and 0.73 for AUC and Cmax in Table 4, respectively. Within- 

subject variability estimates (&2 ) are 0.20 and 0.16 for AUC and Cmax, respectively. w 

Cross-over data can also be naturally modelled using restricted maximum likelihood or max- 

imum likelihood techniques (Patterson and Thompson, 1971; Harville, 1977; Laird and Ware, 

1982; Brown and Kempton, 1994) as mixed model or repeated measurement data (Jones and 

Kenward, Chapter 7,1989; Milliken and Johnson, Chapter 32,1992; Vonesh and Chinchilli, 

Chapter 4,1997). Estimation of the variance-covariance, matrix for the mixed effects in such a 

model are of particular concern (Jones and Kenward, Chapter 7,1989; Milliken and Johnson, 

Chapter 22,1992) and should be specified such that variance components are non-negative. How- 

ever, proper model building-maximum likelihood based testing procedures (Neyman-Pearson 

type testing procedures described in Milliken and Johnson, Chapter 1,1992) to aid in this as- 

sessment however are not well established in data sets as small as those usually encountered in 

bioequivalence studies and should be applied with caution. 

Under the assumption that between- and within subject random effects are independent and 

normally distributed with mean zero, we obtain (after accounting for fixed sequence, period, and 

formulation effects) that I og, -transformed observations for Reference and Test AUC or Cmax 

(XR) XT) have a bi-variate normal distribution with mean (A R7 AT) and homogeneous variance- 

covariance matrix with variance 0" + o, ' and covariance a' . 
For a balanced two-period cross- BWB 

over design, this approach is equivalent to the variance (5) and correlation (4) from model (2), 

and when data from Table 4 are analysed under this approach, using PROC VARCOMP in 

B W=0.20 and 0.16 for AUC and Cmax, respectively. SAS@ for example, &2 =1.55 and 0.73 and &2 

Schuirmann's two-one sided testing procedure was adopted as the standard method by Eu- 

ropean and Canadian regulatory authorities subsequent to finalization of the US FDA guidance 

in 1992 (Cartwright, 1991; Steinijans, Hauschke, and Schall, 1995). Japan, China, and other 
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Pacific Rim nations also follow this guidance (with minor changes in study design or decision 

rules) for the assessment of bioequivalence. Bioequivalence in practice was thus 'harmonised' 

to assess the difference in means between formulations - this was designated subsequently as 

'average' bioequivalence. 

Approaches to group-sequential assessment of bioequivalence were discussed using Frequen- 

tist procedures by Srinivasan and Langenberg (1986), Kanfer, Geertsema, and Steyn (1988), 

Snikeris and Tingey (1994), Gould (1995), Whitehead (1996), and Hauck, Preston, and Bois 

(1997). Such designs are predicated on protection of the Type I error rate (conservation of 

the probability of incorrectly approving bioequivalence) following numerous looks in the course 

of the study. Practical implementation of such a group-sequential procedure was discussed in 

Patterson and Zariffa (2000b) and will be discussed further in Chapter 2. 

A method of comparing concentration curves directly through the use of a 'bioequivalence 

index' was also introduced by Rescigno (1992) -a method similar to that described by Altman 

and Bland (1995) - where moments of concentration curves were compared directly to assess 

association. Similar assessment by the use of moments of the model (2) were developed by 

Lin (1989,1992). Under this approach, distance from the complete agreement AT"AR were 

characterised relative to the regression coefficient p. Degree of disagreement of central moments 

was assessed relative to background variation. The role of p in the assessment of bioequivalence 

will be discussed further in Chapters 2-3. 

We now turn to discussion of the use of ABE in the marketplace in the mid-late 1990s and 

alternative statistical procedures under consideration for the assessment of bioequivalence. 

1.4 History of Bioequivalence since 1992: Developing Population and 

Individual Bioequivalence 

The two-one sided testing procedure was easy to implement for nearly any study design and 

had the benefit of being easy to interpret in practice. In practical terms, the ninety percent 

confidence interval provides a plausible range of values within which the true difference in means 

can be expected to fall (Hauck and Anderson, 1986). Use of the procedure quickly became the 

norm in clinical pharmacology studies of pharmacokinetics as shown in Table 1. Lack of a 

meaningful pharmacokinetic difference when a drug product was administered with and without 
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food or with and without a concomitantly administered medication could often be inferred 

based on the results of such studies under such an approach (Steinijans et al., 1991). Similar 

techniques could also be used to infer that administration in patients with a concomitant disease 

state (e. g. hepatic impairment or renal insufficiency) or administration in patients not usually 

studied in typical pivotal efficacy studies (e. g. a paediatric population) would not result in 

clinically significant change in AUC or Cmax. 

Extent of bioavailability as measured by AUC was judged, under this type of approach, to 

be a surrogate marker for efficacy in those drugs having been demonstrated to be acceptably 

efficacious to enter the marketplace. Comparable mean AUC following administration with or 

without food or a concomitantly administered medication (or in another population) were held 

to be indicative of efficacy in that condition. Decreases or increases would be used to adjust the 

dosing strategy for the drug product under study. 

Rate of bioavailability as measured by Cmax was held, under this approach, to be a surrogate 

marker for safety for drugs in the marketplace. Comparable or decreased mean Cmax following 

administration with or without food or a concomitantly administered medication (or in another 

population) were held to be indicative of safety. Increases in mean Cmax were potentially 

suggestive of a less acceptable safety profile for the drug under study. 

The range of plausible values as expressed by a confidence interval were used to assess the 

degree of equivalence or comparability. Confidence level (Type I error) was termed 'consumer' 

or 'regulator' risk - i. e. the risk of the regulator in making an incorrect decision, allowing market 

access when the application in fact should not be approved. Though often a prespecified 6 was 

difficult or impossible to define prior to study initiation, inhibiting the ability of study sponsors 

to adequately ensure adequate power to demonstrate equivalence, power was of less concern 

when assessing the results of such studies than the confidence level. This gave Regulators an 

easy standard under which to assess the results of such studies. Choice of whether or not to 

implement a change in dosing strategy under this approach was often a judgement call on the 

part of Regulators and was dependent upon their choice of J. 

In contrast, bioequivalence studies were held to a higher standard under the legislation de- 

scribed in Section 1.2. New formulations were not admissible to market unless a successful bioe- 

quivalence study demonstrated that they met the regulatory standard under a well-controlled 
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study using the TOST with predetermined J == In 1.25 (though some nations in Europe allowed 

a wider standard of 6= In 1.43 corresponding to a thirty percent range on the natural scale 

for Cmax, known to be a more variable endpoint than AUC, see Section 1-1). This average 

bsoequivalence approach (so-called as it pertains to the equivalence of the means of the test and 

reference formulations) has safeguarded public health since its adoption (Barrett et al., 2000). 

Equivalence for narrow therapeutic index drugs, those drugs for which a small change in 

dose or exposure can cause a large alteration in response to treatment, is sometimes regarded as 

particularly problematic under the average bioequivalence approach (Benet and Goyan, 1995). 

Examples of such drugs, digoxin and warfarin, (Colaizzi and Lowenthal, 1986) generally exhibit 

low within-subject variability (i. e. within-subject coefficients of variation less than ten per- 

cent. ) Under the average bioequivalence approach, it is possible (Phillips, 1990) to demonstrate 

equivalence of means with prespecified 6= In 1.25; however, small average changes in means 

of statistically significant magnitude are possible. Consider for example a point estimate for 

mean test to reference formulations of 0.90 with ninety percent confidence interval of 0.85 to 

0.97. Such small changes in mean test to reference rate and extent of exposure are potentially 

clinically meaningful in a proportion of patients (Barrett et al., 2000), and some have advo- 

cated (Ansbacher, 1990), special equivalence definitions for narrow therapeutic index products 

whereby such drugs would be held to a more strict regulatory standard (e. g. equivalence limits 

corresponding to a ten percent range on the log, -scale, 0.90 to 1.11). 

In contrast, high variability products, defined as those products with within-subject coef- 

ficients of variation in excess of 30% (Blume and Midha, 1993), require sample sizes in excess 

of thirty subjects in order to have eighty to 90% power to demonstrate average bioequivalence 

in a two period cross-over design (Phillips, 1990). Some have argued (Midha et al., 1997a and 

1997b) that small changes in rate and extent of exposure for such products are not clinically 

meaningful and have advocated allowance of a less strict regulatory standard - e. g. equivalence 

limits corresponding to a thirty percent equivalence range on the log, -scale, 0.70 to 1.43, as al- 

lowed by European Regulators for Cmax. As an alternative, equivalence limits could be widened 

based upon the within-subject variability observed in the study (Boddy et al., 1995; Schall and 

Williams, 1996; Midha et al., 1997a-b) allowing such drug products easier market access. 

Structure of within-subject variability in a two-period cross-over thus becomes a question 

48 



of concern as it (in combination with the sample size and true mean difference between formu- 

lations) determines whether a formulation meets or fails to demonstrate bioequivalence. The 

structure of this variance term can be explored in several ways. 

As is well known, in the general linear models framework, model (2), one can fit the within- 

subject variance by including a term for subject within sequence by formulation interaction 

in the model. Alternatively, under a restricted maximum likelihood approach developed in 

Patterson and Thompson (1971) and in the model notation of Laird and Ware (1980), this 

approach corresponds to fitting a random-intercept and random-slope model on the assumption 

that random slope and intercept are normally and independently distributed with null mean 

and variance of o, 
2 

and or 
2 

respectively, as follows (Jones and Kenward, 1989; Gaffney, 1992). W B) 

Let Ytj be the response (log, -transformed AUC or Cmax) for the j-th subject in the cross-over 

trial administered formulation t (t = T, R) and 

Ytj =:: At + Vj + Etj 

where vt and Etj are independent with mean zero, 

2 Var(vj) = O'B7 the between-subject variance, and 

Var(Etj) = 01' 
, the within-subject variance. W 

Period and sequence effects would be fitted in the model in practice (see model (2) and Jones 

and Kenward, Chapter 4,1989) but are omitted from the description here for the sake of clarity. 

These two approaches result in the same estimates of variation in balanced data sets with no 

missing data in two period cross-overs, as discussed in Section 1.3. 

Developing this idea further however, assuming that random-effects with mean zero, between- 

-22 subject variance of (0 
BT and O'BR), between-subject covariance 

(OBTR), and independent within- 

2-2 
subject variance 

(O'WT and 0 WR) for test (T) and reference (R) formulations are present (though 

not all moments are estimable in most two-period cross-over designs), the variance of WT - 9R 

2222 is (OBT + OrB R- 
20rBTR + OrWT + OrWR) /n (Chinchilli and Esinhart, 1996; Vonesh and Chinchilli, 

Chapter 4,1997). Note that under the model (2) developed in Section 1.2,0' 2 
B =U2 BT 

2 OIBR = O'BTR and 
2=2 

o-W UWT 0,2 WR under the Huyhn-Feldt condition (1970). Estimates 
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for within-subject variation in a two period cross-over study are thus held to be composed of 

measurement error (not estimable), within-subject variance components (estimable under the 

Huyhn-Feldt condition), and components associated with between-subject variation (estimable 

under the Huyhn-Feldt condition). 

As an aside we note here that the component of the variance for WT - gR associated with the 

(0,2 + 0,2 variance of differences in between-subject variation estimates Var(vT - VR) ý-_ BT BR 

= Or2 2UBTR) D is an important consideration in the assessment of what has been termed individual 

bioequivalence and will be discussed later in the Chapter. Here we will only note that under 

the model (2), this variance is assumed to be null. Operationally, however, it should be noted 

that between-subject variability is known to be related to the extent of absorption (Hellriegel 

et al., 1996) complicating assessment of a meaningful difference in between-subject variance (as 

its magnitude is dependent on the choice of endpoint measuring extent of absorption. ) 

Average bioequivalence compares the distance between formulations as measured by mean 

of rate and extent of exposure. Variation under this approach is of secondary interest and 

generally impacts only the choice of design (when sufficient sample size is considered to provide 

adequate power) and when assessing the final conclusions of bioequivalence in terms of the 

distance between means. Increased variation beyond that expected (consider the data presented 

in Section 1.3) can result in reduced power to demonstrate average bioequivalence. From a 

sponsor's perspective, therefore, it is preferable to increase sample size to an extent such that if 

unexplained increases in estimates of variation are observed (e. g. from the presence of an outlier 

as in the data for AUC in Table 4 or a group of outliers), the sample size is still sufficient to 

demonstrate bioequivalence in the mean rate and extent of exposure. Outliers are a frequent 

occurrence in bioequivalence studies and can result from a variety of factors (FDA Guidance, 

1992); some may simply be indicative of random variation (i. e. perhaps the volunteers did 

not heed the protocol requirement to abstain from alcohol intake during the washout period); 

however, some outliers may be indicative of subgroups in the population who absorb, distribute, 

metabolize, or eliminate the formulations differently than the general population (for example, 

see Carteret al., 1993 and Chen et al., 2000b). 

The concept of switchability of formulations for the individual patient is not addressed by 

the average bioequivalence criterion (Hwang, et al., 1978). Population means are compared, 
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and variation between individual subjects (or patients) is factored out of the variation used 

to assess the distance between population means as described above. Peace (1986), Anderson 

and Hauck (1990), Hauck and Anderson (1992), and Welleck (1993) introduced the concept of 

individual bioequivalence. Under this approach, the question, 'Can I safely and effectively switch 

my patient from their current formulation to another? ' is addressed using an approach similar 

to the 75/75 rule discussed in Section 1.2. Under the TIER procedure (Test of Individual 

Equivalence Ratios) introduced by Anderson and Hauck (1990), a predetermined minimum 

number of subjects for given sample size and Type I error rate must demonstrate individual 

ratios for test to reference rate and extent of exposure falling within a predetermined equivalence 

interval. This approach assumes that period and carryover effects are negligible. The hypothesis 

that is tested is: 

HO: PE<MINP (20) 

versus 

Hl: PE>MINP 

where MINP is the minimum proportion of subjects falling in the predetermined equivalence 

interval and PE is the true proportion of equivalent individual ratios. The number of subjects 

(Y) falling in the equivalence interval is evaluated relative to the null hypothesis using a binomial 

probability. If the p-value equal to the Prob(Number of equivalent subjects >Y given PE = 

MINP and the sample size in the data set) is less than the pre-set Type I error rate, then 

bioequivalence under the TIER is demonstrated. 

When the TIER is applied to the AUC and Cmax data in Table 4, assuming an equivalence 

interval for individual test to reference formulations of 0.80 to 1.20, it is observed that sixteen 

of forty-five subjects and fourteen of forty-seven subjects have individual ratios of test to ref- 

erence within the equivalence interval for AUC and Cmax, respectively. Assuming a MINP 

of 0.75, neither AUC nor Cmax demonstrates bioequivalence under the TIER (p-values are 

approximately unity in both cases. ) 
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TIER based assessment of bioequivalence was discussed in Hwang and Wang (1997). Sen- 

sitivity to normal and distributional assumptions was demonstrated; however, as discussed in 

Section 1.2, these assumptions are not held to be pivotal in the assessment of bioequivalence. 

Period effects however, (Schuirmann, 1990), are held to be a frequent occurrence in cross-over 

studies and are a confounding factor in the assessment of individual ratios (Welleck, 1997). 

Esinhart and Chinchilli (1994a) developed a method for assessment of an extension of the 

TIER using tolerance intervals for the ratio of individual responses which accounts for period 

effects in a two-period cross-over study. A tolerance interval is derived for the ratio of individual 

ratios using a model accounting for period effects, and should the tolerance interval fall within 

predetermined acceptance limits, bioequivalence is demonstrated. Assessment under higher 

order designs was also discussed in Esinhart and Chinchilli (1994a) and is developed in more 

detail in Chinchilli (1996) and Brown et al. (1997). Sample size determination is described 

in Esinhart and Chinchilli (1994b). While this method was intuitively attractive, it is evident 

that sample size requirements for many drug products (those with within-subject coefficient of 

variation greater than twenty percent) are too great to be addressed in a small, well-controlled 

two-period clinical pharmacology trial and are still too large to be practically implemented in a 

higher order design (Esinhart and Chinchilli, 1994b). 

Average bioequivalence is a special case of what Hauck and Anderson (1992) have termed 

population bioequivalence. This type of bioequivalence addresses the question, 'Can I safely and 

effectively start my patient on the currently approved formulation or anotherT Differences in 

variation between formulations should also be considered when determining whether a formula- 

tion. will be equally effective and safe when administering the commercial formulation of a new 

drug product relative to that used in clinical trials in Phase III (see Section 1.1). It is not clear in 

this context whether comparison of within-subject variances or total variances (so termed as the 

sum of between- and within-subject variance for a given formulation) is the appropriate variance 

for comparison between formulations, and arguments (Hauck and Anderson, 1994; Gralmen et 

al., 1984) have been offered for both in this context. 

As described in Section 1.2, techniques for comparing within-subject variances in a two 

period cross-over (under the assumption that between-subject variances across formulations are 

homogeneous) had been developed by Pitman (1939) and Morgan (1939). Alternatively the 
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total variances between formulations (between- plus within-subject variance) can be compared 

using a similar procedure. 

Most techniques for assessment of the equality of variances assume that variance components 

are independent (Brown and Forsythe, 1974; Balakrishnan and Ma, 1989), a condition not met 

in the correlated data encountered in cross-over trials. Bristol (199la-b) developed practical 

maximum likelihood techniques for comparing within-subject variances in this context based on 

techniques discussed in Mallet (1986). Cornell (1991) derived nonparametric tests of dispersion 

for the two-period cross-over design. Chow and Liu (Chapter 7,2000) described similar proce- 

dures, and Wang (1997) and Guilbaud (1993,1999) described similar procedures in subsequent 

publications. These techniques reduce to different transformations to assess unequal marginal 

scales in a bi-variate normal population (Kepner and Randles, 1982), and such comparisons 

were also addressed in work by Bhoj (1979), Ekbohm (1981), McCulloch (1987), and Bauer and 

Bauer (1994). 

When a restricted maximum likelihood model is fitted to the AUC and Cmax data in Table 

4, estimates for the variance components are derived as follows (using PROC MIXED in SAS@) 

Table 9: Estimates of Between- and Within-Subject Variance for AUC and Cmax (Table 4) 
based on a REML Model 

Endpoint &BI I 2 &ýVT &! 
W: Rý71 

AUC 
Cmax 

1.55 
0.73 

1 0.16 
0.12 

0.24 
0.19 

Comparisons of total- or within-subject variance between formulations can be accomplished 

using such procedures; however, it is known (Zariffa et al., 2000) that variance components 

are ill-characterized in cross-over studies of the size usually performed. Increasing sample size 

(Zariffa and Patterson, 2001) can improve the precision of estimated variance components (as 

we will see in Chapter 5); however, it is unusual for such studies to be performed except in the 

case of highly variable drug products (Zariffa et al., 2000). 

Moreover, while such procedures are theoretically and statistically viable, they are highly 

dependent (Vonesh and Chinchilli, Chapter 2,1997) on the choice of estimation procedure. 

Estimates for between-subject variance can be negative under a method-of-moments based pro- 

cedure or maximum-likelihood procedure (Bristol, 1991b). Such estimates may be positively 
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biased (Endrenyi and Tothfalusi, 1999) when using restricted- maximum-likelihood based esti- 

mation procedure as would be expected in a procedure constrained in the likelihood to only 

permit estimates greater than or equal to zero for between-subject variances and correlation 

constrained to lie in the range [-1,11 (Patterson and Thompson, 1971; Jones and Kenward, 

Chapter 7,1989; Davidian and Giltinan, 1995; Vonesh and Chinchilli, Chapter 4,1997. ) The 

properties of different models and variance-covariance structures are not well understood in 

small samples, however, and Chapter 2 will study these features. 

Regardless of the poor quality and high dependence of variance component estimation on 

choice of estimation procedure, such estimates continued to be of interest in the assessment of 

switchability for bioequivalence (Ekbohm and Melander, 1989. ) Under this approach, subject- 

2 by-formulation interaction, UD, quantified as the variance associated with model (2) such that 

0' 
2=22 20'BTR)-'ýO, is termed a measure of individual switchability. Such an estimate D 

(OBT+UBR- 

is estimable in what is termed a replicate design (Gaffney, 1992). 

A replicate design is a cross-over study where individual subjects receive a given formulation 

at least once (Patterson, 1950). Such a design (described in greater detail in Jones and Kenward, 

Chapter 4,1989) allows for the estimation of this subject-by-formulation interaction component 

as it is only partially confounded (Chinchilli and Esinhart, 1996) with within-subject variation for 

each formulation. Method-of-moment based, maximum likelihood based, or restricted maximum 

likelihood based estimation procedures (Harville, 1977) can be used to compute the variance 

components. Within-subject variance estimates can be computed in a straightforward manner 

based on these procedures (Chinchilli and Esinhart, 1996). 

A number of scenarios can give rise to a quantitatively large subject-by-formulation inter- 

action (Hauck et al., 2000). These are presented in the following Figure 9. A classical subject- 

by-formulation interaction (Ekbohm and Melander, 1989) occurs when subjects experience a 

more variable response when receiving one formulation relative to the other as illustrated in 

Figure 9-A. In this example, variation was greater for the test product relative to the reference 

product. Subj ect-by- formulation interaction can also occur when unpredictable responses are 

observed between regimens, as illustrated in Figure 9-B. This is essentially the case when low 

correlation (where correlation P : -- O'BTR1-\1_oTB_T_o, _IB_R_) is observed. Subject-by-formulation in- 

teract can also be generated from subgroups having differential reactions to drug products as 
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illustrated in Figure 9-C. 

A Test 

Ref Test Ref 
B Test 

1 Ref Test ef 
c Test 

Ref Test R ef 
A: Between-Subject Variance Inequivalence contributing to a Subject-by-formulation Interaction 
B: Unpredictability (low correlation) contributing to a Subject-by-formulation interaction 
C: Subgroup-by-formulation Interaction contributing to a Subject-by-formulation Interaction 

Figure 9: Sources of Subject-by-Formulation Interaction Variation 
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The use of replicate designs will now be discussed in more detail. Demonstration of average 

bioequivalence for highly variable drug products requires large numbers of subjects in a standard 

two-period cross-over (e. g. n =84 for a within-subject coefficient of variation of forty-five percent, 

n= 178 for a within-subject coefficient of variation of seventy percent with ninety percent power). 

Use of higher-order study designs (e. g. replicate study designs) can make such a seemingly 

impossibly difficult regulatory hurdle into a probable success. 

In a replicate cross-over design, each subject receives each formulation twice as follows. 

Eligible subjects are randomized to one of two treatment sequences, e. g. TRTR or RTRT 

(where T denotes the test and R the reference formulations, respectively, see Jones and Kenward, 

Chapter 4,1989). Thus, each subject is studied in four periods and receives each formulation 

twice over the course of the study. Similar to the two period cross-over described above, a 

washout period adequate to the drug under study (a least five half lives) separates each treatment 

periods. In each period, the formulation is administered following an overnight fast. 

Loa. -transformed AUC and Cmax may be analysed separately using a general linear model 

with terms for sequence, subject nested within sequence, period, formulation, and the sub- 

ject(nested within sequence)-by-formulation interaction, commonly termed the subject-by-formulation 

interaction (Gaffney, 1992). Point estimates for the difference between the test and reference 

formulations are then calculated. The mean squared errors for subject-by-formulation are used 

to derive the associated ninety percent confidence intervals. The point and interval estimates 

are exponentially back-transformed to obtain point and interval estimates of the ratio of test to 

reference formulations. 

In bioequivalence studies, using a replicate design with sequences RTRT and TRTR, the 

following mixed model for log, -transformed observations is commonly accepted (Jones and Ken- 

ward, 1989). Let Ytik be the k-th response (k =1ý2.... ) for the j-th subject in the cross-over 

trial administered formulation t (t = T, R) and 

Ytjk 
---: 

Gi + Etik : -- Ilt + Vtj + Etik 

vtj and 6tik are independent with mean zero 

(22) 
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2 Var(vtj) = O'Bt) the between-subject variance, 

2 Var(IýTj 
- I"Ri) ý O'D) the subject-by-formulation interaction variance) 

COV(IýTj 
7 I"Ri) PO'BTO'BR7 

Var(Etik) 0,2 t, the within-subject variance, W 

COV (6tj k7 6ti k') = 0, for k 54 k. 

Note that nuisance effects (period and sequence effects) are fit in practice (Jones and Kenward, 

Chapter 4,1989) but are omitted from the above description for the sake of clarity. The 

above model may be fitted using general linear models (corresponding to a method-of-moments 

approach), maximum likelihood or restricted maximum likelihood based procedures. Differences 

in estimates between these procedures will be discussed in more detail in Chapter 2. 

Under approach to analysis of the replicate design, it can be shown (Vonesh and Chinchilli, 

Chapter 4,1997) that the variance for IIT - IIR is equal to (0,2 2 ((0,2 
BT + O'BR - 217BTR + WT + 

2 (0,2 + ((0,2 2 
UWR)/2))/n =D WT + O'WR)/2))/n in a balanced design with n subjects. Under the 

assumption that 0" is zero and that within-subject variances are equal, this design is approx- D 

imately twice as efficient as the two period cross-over (in terms of the sample size required to 

demonstrate bioequivalence with equal power). It should be noted that the replicate design with 

sequences RTTR and TRRT is more efficient in those situations where first-order carryover can 

not be assumed to be negligible (or equal) between formulations (Jones and Kenward, 1989). 

Note that other four period designs (Jones and Kenward, 1989; Senn and Ezzet, 1999) are as 

or more efficient than the two-sequence design described above in the presence of first-order 

carryover. 

A replicate design (with seventy five subjects randomized to sequences RTRT and TRTR) was 

performed with the same formulations used in the study data presented above in Table 4 as that 

study failed to demonstrate average bioequivalence. Results regarding average bioequivalence 

were as follows for this second, replicate design, cross-over study. 

Table 10: Two-One Sided Testing Procedure Results for the Follow-up Replicate Design Study 

I Endpoint INI exp(AT-AR) 1 90% Confidence Interval I 

AUC 1 75 ý 0.92 0.84-1.01 
Cmax 75 0.94 0.86-1-03 
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In this study, average bioequivalence was demonstrated as the ninety percent confidence 

intervals for AUC and Cmax were contained in the interval 0.80 to 1.25, demonstrating that 

replicate designs are useful in the assessment of bioequivalence for highly variable drug products. 

Other findings relating to the magnitude of &2 and changes in within-subject variances between D 

formulations will be discussed in Chapter 2 where the modelling of replicate designs will be 

studied in detail. 

Sheiner (1992), Schall and Luus (1993), and Schall (1995) introduced an alternative method 

for individual bioequivalence assessment based on models of dose-response (Sheiner et al., 1989), 

risk assessment, and different combinations of parameters from the model (22). Under this 

'moment-based' approach to bioequivalence assessment, differences in means and variances are 

combined into one 'aggregate' statistic for the assessment of population and individual bioequiv- 

alence (for examples, see Section 1-5). If the upper ninety-five percent bound on the aggregate 

statistic falls below a preset equivalence margin, bioequivalence was demonstrated. Such a pro- 

cedure also allows for widening (or narrowing) of the equivalence margin based upon variation 

observed in the study. 

Bootstrap (Schall, 1995) or Bayesian (Sheiner, 1992) based assessment of the quantiles of the 

composite endpoint were initially proposed; however, estimation procedures for such an aggre- 

gate statistic using approximation procedures involving the Cornish-Fisher Expansion (Bickel 

and Doksum, 1977) and methods for the linear combination of independently X 2-distributed 

variables (Huitson, 1955; Fleiss, 1971; Howe, 1974; Harville, 1976; Burdick and Sielken, 1978; 

Graybill and Wang, 1980; Lu et al., 1988; Ting et al., 1990; Wang, 1990; Burdick and Gray- 

bill) 1992) were developed in more detail by Holder (1993) and were published in Holder and 

Hsuan (1993a-b). Application to the moment-based criterion of most interest (chosen by FDA 

for implementation, see Section 1.5) was developed in greater detail by Hyslop et al. (1999). An 

alternative parametric procedure was described by Kimanini and Potvin (1997) and in Quiroz et 

al. (2002). Practical strategies for population and individual bioequivalence assessment under 

this approach were developed in Schall and Williams (1996) and will also be discussed in Section 

1.5. 

Consideration of these ideas led the FDA Biopharmaceutical Science Division (headed by 

R. Williams) to form a bioequivalence working group in the mid-1990's. 'This body (composed 
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of FDA representatives from clinical, scientific, and statistical disciplines) was tasked with de- 

termining whether a public health risk under the average bioequivalence approach could exist 

(Meyer, 1995) and if so to determine a method or methods to evaluate bioequivalence in a man- 

ner to protect the public health. A description of the ideas under discussion may be found in 

Anderson (1993), Hauck and Anderson (1994), Anderson (1995), Anderson and Hauck (1996), 

Patnaik et al. (1996), Could (1997), and Chen (1997) but will not be discussed further in this 

thesis. The conclusion of this debate will be summarised in Section 1.5. 

It should be noted that many other statistical approaches were considered during the debate 

on bioequivalence. Testing procedures for assessing differences in means and variances simulta- 

neously (though not as a composite endpoint) were developed in Bauer and Bauer (1994), Bauer 

and Keiser (1996), Chen et al. (1996), and Ghosh et al. (1996). Stepwise procedures (testing 

for equivalence in means between formulations followed by testing for equivalence in variances) 

were described in Endrenyi and Schulz (1993), Endrenyi (1994), Vuorinen and Tvrunen (1996), 

Vuorinen (1997), and Guilbaud (1999), Gould (2000a), and Gould et al. (2000b). Unbiased, 

optimal tests for bioequivalence assessment were described in Munk (1993), Hsu et al. (1994), 

Brown et al. (1997), and W. Wang (1999), and multivariate, optimal assessment of bioequiv- 

alence (e. g. for AUC and Cmax simultaneously) were described in Berger (1992), Berger and 

Hsu (1996), Chinchilli and Elswick (1997), and Munk and Pfuger (1999). Testing for differences 

in profiles were described in Mauger and Chinchilli (2000). 

Though statistically valid, under the approach to inference described by Hauck et al. (1995), 

multivariate procedures were not of direct interest to the bioequivalence debate. The other 

approaches seem to have little additional benefit in practical bioequivalence assessment relative 

to those the FDA were considering (Senn, 2000) and thus seem to not have impacted upon the 

debate. 

We now turn to the conclusion of the bioequivalence debate beginning with the draft FDA 

guidance on population and individual bioequivalence released for public comment in 1997. 
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1.5 Most Recent Developments: Implementing Population and Indi- 

vidual Bioequivalence 

The US Food and Drug Administration's decision following the debate on whether population 

and individual bioequivalence were needed to protect public health and the approach chosen for 

assessment were announced in draft guidance released in 1997 (FDA Guidance, 1997) based on 

the principles discussed in Schall and Williams (1996). Previously discussed approaches (Section 

1.4) to moment-based assessment of population and individual bioequivalence, were established 

as described in later paragraphs for studies conducted prior to approval and following approval 

of new chemical entities. Average bioequivalence was deemed insufficient to protect the public 

health as it assessed only the difference in formulation means, did not adjust for the variance of 

narrow therapeutic drug products and highly variable drug products, and did not account for 

assessment of subject-by-formulation interaction. However, no evidence of therapeutic failure 

had been established over the five years in which the 1992 FDA guidance had been in effect 

(Barrett et al., 2000). 

Conventional two-period, randomised, well- controlled, cross-over designs were established as 

the design to be performed in the assessment of population bioequivalence for approval of bioe- 

quivalence in formulation changes prior to approval of the new drug product (FDA Guidance, 

1997). Two-sequence (RTRT, TRTR), randomised, well controlled, replicate designs (described 

in Section 1.4) were chosen as the design to be performed in the assessment of individual bioe- 

quivalence for approval of new formulations following approval of the new drug product for both 

generic manufacturers and those manufacturers wishing to make formulation changes following 

approval. Replicate designs were required for the assessment of individual bioequivalence so 

that within-subject estimates of variance were estimable along with the subject-by-formulation. 

interaction (FDA Guidance, 1997). 

Requirements for adequate washout between study periods were again required to ensure 

that carryover effects were negligible, and outliers were again deemed to be indicative of either 

product failure or sub-population-by-formulation interactions (FDA Guidance, 1997). Rate and 

extent of bioavailability were again measured by Cmax and AUC, respectively. 

Overall, the FDA draft Guidance (1997) involved little change in study design for sponsors 

conducting trials to establish bioequivalence of a new commercial formulation relative to that 
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used in clinical trials under the population bioequivalence approach to inference though different 

analyses were recommended for data analysis and decision making. The new draft guidance how- 

ever required replicate designs for changes in formulations following approval -a more complex 

design for the majority of drug products. Under this approach to inference) log, -transformed 

AUC and Cmax were to be analysed separately using a two stage (mixed effect, restricted max- 

imum likelihood) linear model including terms for sequence, period, and formulation in the 

model in accordance with model (22) from Section 1.4 for a replicate design. Subject within 

sequence is specified as a random effect, and a heteroscedastic compound symmetric matrix for 

between-subject variances is assumed across formulations. Within-subject variability estimates 

are derived for each formulation. Note that carryover was assumed to be negligible as a feature 

of the design. 

Population bioequivalence was to be assessed using the following aggregate statistic (FDA 

Guidance, 1997). 
)2 2 0,2 (AT 

- AR + O'T R 

0,2 max(O. 04, R 
(23) 

2=222=22 Note that this aggregate statistic can be where oj, OrWT + O'BT and O'R O'WR + O'BR* 

constructed using a mixed model from a two period cross-over design (with appropriate modifi- 

cation to model (22)) and does not require the use of a replicate design. This will be developed 

in Chapter 4. 

Individual bioequivalence was to be assessed using the following aggregate statistic (FDA 

Guidance, 1997). 
2 )2 2+ 7W2 /IR + O'D T- CrWR 

or2 max(0.04, WR) 
(24) 

Because the within-subject variance of each formulation cannot be separately estimated from 

between-subject variance estimates in most two-period cross-over designs of the form f TR, RT 

1, a replicate design is generally required. It should be noted that if the Huyhn-Feldt condi- 

tion is assumed for between-subject variability across formulations, it is sometimes possible to 

estimate within-subject variability for each formulation using a restricted or maximum likeli- 

hood approach to inference. However, under this approach, subject-by-formulation interaction 

is assumed to be null. The properties of IBE will be developed in Chapter 3. 

At least 1500 (2000 samples were recommended in the FDA Guidance, 1997) bootstrap sam- 
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ples (Efron and Tibshirani, Chapter 25,1993) preserving the number of subjects in each sequence 

are derived, and the above mixed model is fit to each bootstrap sample. The appropriate ag- 

gregate statistic, either (23) or (24), is derived based on the model estimates for each bootstrap 
I 

sample; note that the denominator for each bootstrap's aggregate statistic is chosen based on the 

point estimate from the model estimates of the original data set. The nonparametric percentile 

method (Efron and Tibshirani, 1993) is then used to calculate an upper ninety five percent 

bound for the quantity of interest. It was required that the upper ninety-fifth percent bound for 

the metric of interest fall below predetermined regulatory bounds (1.74 and 2.49 for population 

and individual bioequivalence, respectively) for both AUC and Cmax for bioequivalence to have 

been demonstrated. These predetermined bounds were established as follows. 

The goalpost for population bioequivalence assessment assumes a total-subject variance for 

the reference formulation of 0.04 and is set to 1.74 as follows 

(log, (1.25) )2 +(0.02) 
0.04 

(25) 

allowing for a mean difference of twenty percent on the log, -scale and a variance allowance 

of 0.05 in the numerator under the procedure proposed by the FDA (FDA Guidance, 1997). 

If the upper ninety-five percent bound on the FDA metric falls below this value, population 

bioequivalence is demonstrated for the endpoint under study. 

The goalpost for individual bioequivalence assessment assumes a within-subject variance for 

the reference formulation of 0.04 and is set to 2.49 as follows 

(log, (1.25) )2 + (0.03) + (0.02) 
0.04 

(26) 

allowing for a mean difference of twenty percent and a variance allowance of 0.03 in the numerator 

for subject-by-formulation interaction and 0.02 for the difference in within-subject variance 

under the procedure proposed by the FDA (FDA Guidance, 1997). If the upper ninety-five 

percent bound on the FDA metric falls below this value of 2.49, individual bioequivalence is 

demonstrated for the endpoint under study. 

Responses to release of the US FDA's draft guidance (1997) were plentiful from academia. 

Scientific flaws of the new procedure for individual bioequivalence were noted (Endrenyi et al., 
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1998b) as being: 

1. The numerical tradeoff of distance between within-subject variances and the 
means was strongly asymmetric. Developed in more detail in Endrenyi and Hao 
(1998c), it was found that a small change in within-subject variances, could allow 
for a change in means, which would still permit a conclusion of bioequivalence but 
which would expose a large number of individual patents to risk of therapeutic fail- 
ure or overexposure to drug. 
2. The scaling of the criterion to within-subject variance potentially declares the 
equivalence of formulations liberally. Again, scaling to variance could allow a pro- 
portion of individual patients to exceed safe or therapeutic levels of drug product 
when switched to a new medication. 
3. Computational uncertainty of estimation, both in the models used to assess 
population and individual bioequivalence [see model (22), and the nonparametric- 
percentile bootstrap method (Efron and Tibshirani, Chapter 25,1993)] used to assess 
inference were noted as being of potential concern when near the predetermined ac- 
ceptance bound. 

Subsequent work describing the properties of the subject-by-formulation interaction in En- 

drenyi and Tothfalusi (1999) determined that this subject-by-formulation interaction statistic 

was directly confounded under a restricted-maximum-likelihood based estimation approach, with 

within-subject variation, though the extent and impact on inference of this bias was not char- 

acterised. Bias is not unexpected under such a constrained likelihood based procedure and is 

clinically meaningful in that between-subject variation is known to be confounded with extent 

of bioavailability (Hellriegel et al., 1996). Initially, it was thought that method-of-moment based 

estimates for &2 (Endrenyi et al., 2000) are unbiased (as we will see in Chapter 5, this is not a D 

safe assumption), but the variance of &2 is still related to (0,2 )2 where W denotes within-subject DW 

variation pooled across test and reference formulations. 

On practical grounds, Endrenyi et al. (1998b) and Endrenyi and Midha (1998d) determined 

that: 

1. Average bioequivalence had not been observed to fail to protect the public health 

as no objective, adequately demonstrated reports to this effect had been published. 
2. It was noted that the available data made public by the FDA from replicate 
designs for estimates of subject-by-formulation interaction (& 2) were not sufficient D 
to demonstrate a clinical need for the assessment of individual bioequivalence. Fur- 
thermore, bioequivalence studies were not conducted in the patient population of 
concern, and so clinical safety/therapeutic failure could not reasonably be assessed 
in a non-patient population. As such, comparison of between- and within-subject 
variances had not been demonstrated to be clinically relevant surrogate markers for 
therapeutic inefficacy and or unacceptable safety profile. 

Other academic responses to the draft FDA guidance (1997) by Senn (1998) noted that it 

was inappropriate for generic drug products to be held to a stricter standard (i. e. be subject 
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to assessment of differences in within-subject variance) when innovator drug products were not 

(i. e. only held to the assessment of differences in total-subject variance between formulations). 

The new procedures were also noted as being illogical in terms of risk assessment (Senn, 2000). 

Patients are more at risk when they start a new treatment than when they switch to a new 

formulation following ongoing treatment implying that standards for population bioequivalence 

should be more stringent than individual bioequivalence. 

Lindley (1998), following on from ideas originally discussed in Westlake (1986) and Hwang 

(1996), argued that bioequivalence determination involved making a decision and proposed the 

use of Bayesian decision theory (Lindley, 1971) in bioequivalence assessment. Lindley discussed 

two potential decisions: 61 to declare bioequivalence, and 60 to deny bioequivalence based upon 

a measure of equivalence, 0. Under this approach, a loss function Le = u(6o, 0) - u(Ji, 0), 

predetermined based on agreement between the sponsoring company and regulatory authorities 

(Lindley and Singpurwalla, 1991), is assessed where u (J, 0) is a utility function measuring the 

worth of 6 when the uncertain value is 0. Expected loss can be derived using a prior distribution 

for 0 and Bayes' rule using available software packages (discussed earlier in this Chapter) and 

applied to bioequivalence assessment, and structure of the problem can easily be extended 

to multiple bioequivalence measures (i. e. for AUC and Cmax). Lindley (1998) discussed a 

straightforward method for choice of prior distributions and describes previous work impacting 

choice of sample size (Lindley, 1997) under such an approach. 

Industry responses on the scientific merits of the FDA draft guidance (1997) were similarly 

negative and were primarily based on retrospective analysis of existing replicate design data 

sets. Key findings are summarized below (and will be explored in more detail in Chapters 2- 

4). preliminary findings results were presented at the American Association of Pharmaceutical 

Scientists held a joint workshop with the FDA on the topic of bioequivalence from 16-18 March 

1998 in Washington D. C. at which a few industry representatives were able to speak to the 

scientific issues behind the proposal. Of particular note, preliminary analyses of SmithKline 

Beecham's existing database of previously performed replicate design studies (Zariffa et al., 

1998) revealed that: 

1. Large differences in means (not permitted under the average bioequivalence crite- 
ria) were permitted under the new population and individual approaches to bioequiv- 
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alence when offset by decreased test variance or scaling to variance of the reference 
formulation. This was particularly the case for highly variable drug products. 
2. Also, substantial subject-by-formulation interaction variation could be masked 
in the aggregate individual bioequivalence criteria by decreased within-subject test 
formulation variation relative to within-subject reference formulation variation. 
3. Behaviour of the individual bioequivalence statistic when variation for the refer- 
ence product nears the cutoff (0.04, see (23) and (24)) was inconsistent with logical 
inference concerning bioequivalence. 
4. Results for Cmax were far less consistent between average, population, and in- 
dividual criteria than AUC suggesting that uniform criteria for rate and extent of 
bioavailability might not be appropriate. 

Additionally, a practical benefit of the new criteria (Zariffa et al., 1998) for sponsors of bioe- 

quivalence studies was noted. For highly variable drug products, a substantial decrease in sample 

size was possible under the new criteria when scaling to the reference formulation's variation. 

Thus for highly variable products, while a replicate design was required for assessment of bioe- 

quivalence, decreased resources would be necessary for sponsors to determine if a formulation 

was bioequivalent (assuming that subject-by-formulation interaction was negligible). 

Subsequent analyses (Patterson et al., 1998) revealed that the effect of scaling to reference 

product variation was not substantial until coefficients of variation on the order of thirty to forty 

percent were observed for population and individual bioequivalence. While precision of the es- 

timated variance components was remarkably poor in the existing data sets, it was observed 

that the magnitude of subject-by-formulation interaction was greater for Cmax than AUC, and 

the magnitude of subject-by-formulation interaction appeared to increase with increasing mag- 

nitude of within-subject variation. The choice of the restricted maximum likelihood estimation 

procedure in the FDA Guidance (1997) was potentially related to these findings (and will be 

discussed in Chapter 2). 

Other published industry responses to the FDA draft guidance (1997) were similarly negative. 

Schumaker and Metzler (1998) conducted an analysis of a replicate design study using two 

formulations of phenytoin (see Section 1.2, phenytoin formulation substitution had been known 

to be subject to bio-inequivalence in the early 1970's). Notable conclusions of this trial were that, 

as means between formulation were equivalent and within-subject variation across formulations 

was homogeneous, no evidence existed for individual bio-inequivalence. This result implied that 

individual bioequivalence could be assessed using procedures based upon the usual two period 

cross-over study design, and that the imposition of additional rules for bioequivalence were not 

necessary. Additionally, as a previously known problematic drug substance was involved, this 
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implied that the existing FDA Guidance (1992) was sufficient to protect public health. 

Responses from European authorities on bioequivalence were similarly negative on the sci- 

entific merits of the proposed FDA Guidance (1997). Steinijans and Diletti (1997) noted (see 

Section 1.4) that comparison of within-subject variance between formulations was possible but 

that the use of these methods had not properly been considered and that use of the new pro- 

posed FDA population and individual bioequivalence criteria had not been justified on clinical 

grounds. On statistical issues, Steinijans and Diletti (1997) encouraged the consideration of 

alternative inferential procedures to the use of the bootstrap. Lastly, Steinijans and Diletti 

(1997) encouraged the FDA to expand its working group and to gain consensus among a wider 

audience. Similar sentiments were expressed in Godbillon et al. (1996). Later published reports, 

produced in this period, may be found in Hauschke and Steinijans (2000) and Kimanani et al. 

(2000a) 
. 

In summary, according to the FDA (private communication, 1998), a total of twenty-four 

individuals provided a total of two-hundred forty separate comments to the FDA draft Guidance 

(1997) broken down into the following categories (FDA, private communication, 1998): 

General: 
1. Individual bioequivalence is not justified because the current practice of average 
bioequivalence has worked well. 
2. Subject-by-formulation interactions are unimportant. 
3. Individual bioequivalence should not be required for all drugs. 
4. Patients should be used in bioequivalence studies rather than healthy volunteers. 
5. An individual bioequivalence criterion will not assure interchangeability between 
two generic products. 

Resources: 
1. More time to complete a replicate design study. 
2. Increased cost of bioequivalence studies. 
3. Increase in blood volumes and drug exposure, with possible reduction in avail- 
ability of subjects. 
4. More technical and procedural problems. 
5. More subjects have to be recruited because of the high dropout rate. 
6. The proposed statistical methods are complicated and would need sophisticated 
computer software. 

Process: 
1. The development of the new approaches should be coordinated through the In- 
ternational Conference on Harmonisation. 
2. An experimental period is proposed where average bioequivalence is the primary 
assessment method and the proposed population/individual criteria will be alterna- 
tives which may be left to the sponsor's choice. 
3. Future studies on approved drugs should use the average bioequivalence approach. 
4. The SUPAC-IR (FDA Guidance, 1995) document is not referenced. 
5. Lack of harmony between this guidance and the existing food effect guidance. 
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6. Consensus should be obtained between FDA, Industry, and Academia before 
broader implementation of the new criteria. 

Application: 
1. The proposed approach may be suitable only for highly variable drugs, narrow 
therapeutic index drugs, drugs with long half-life, or special cases where safety and 
efficacy profiles are greatly affected by the absorption rate of the drug. 
2. It is not clear under which certain study designs should be used, e. g. single versus 
multiple dose. 
3. It is not clear that an individual bioequivalence applies during the IND (i. e. pre- 
approval) phase of drug development. 
4. Application of the proposed approach to other clinical pharmacology studies (i. e. 
drug-drug interactions), 
5. Same criterion for metabolites. 
6. It would not be necessary to use the individual bioequivalence approach for all 
drugs, i. e. if the residual variance estimated in a two-period cross-over is adequately 
small, concerns need not arise about either within-subject variances or subject-by- 
formulation interaction. 

Criterion: 
1. A disaggregate criterion might be a better alternative. 
2. The mean/variance tradeoff might allow products in the market with substantial 
mean differences. 
3. The proposed individual bioequivalence criterion is asymetric. 
4. Justification should be provided for equal weighting of means and variances, as 
well as for grouping squared differences and differences of squares in the same equa- 
tion. 
5. The interpretation of the aggregate criterion based on transformed values is not 
straightforward. 
6. Why are the criterion not expressed in a more readily interpretable manner? 

Methodology: 
1. Bootstrap introduces randomness. 
2. Bootstrap may be biased if only one is reported. 
3.1500 bootstraps may not be enough. 
4. There are many ways to produce random numbers. 

Numerous miscellaneous public comments were also received by FDA and will not be dis- 

cussed in this thesis. 

In 1998, FDA subsequently formed what was termed a 'Blue Ribbon Panel' of academic and 

industry representatives to advise the FDA Working Group on implementation of population 

and individual bioequivalence in practice. The Pharmaceutical Research and Manufacturers 

Association (PhRMA) formed a parallel expert panel to assess the issues involved and prepare 

a joint industry statement on the merits of the proposal. A summary of FDA rejoinders to 

the concerns of industry, academia, and international regulators may be found in Chen et al. 

(2000a) and in Williams et al. (2000a) 
. 

After considering the public comments on the draft (1997) guidance and after once consulting 

the Blue Ribbon Panel (October 1998), FDA re-issued two draft guidances on the topic of 
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bioequivalence in August 1999 (replacing the draft guidance issued in 1997). These two guidances 

described when to perform a relative bioavailability, population, or individual bioequivalence 

study (FDA Guidance, 1999a) for drug products in solution, suspensions, aerosols and for topical 

administration and for the more usual immediate-release and modified-release drug products. 

General guidance for study design (discussed earlier in this Chapter) were provided. A novel 

aspect of the guidance was the suggestion that a two-year data collection period for all drugs 

would be mandated when the guidance was finalised. During this period, all sponsors would be 

required to perform a replicate design study in order to gain market access, and the sponsoring 

company would have the option of which criterion to choose to assess bioequivalence (Average 

or Population bioequivalence for sponsors applying for approval of a new product; Average or 

Individual bioequivalence for sponsors applying for approval of a new formulation of a product 

already approved for the market). 

FDA acknowledged in the new draft guidance (FDA Guidance, 1999a) that narrow thera- 

peutic index drugs (see discussion in Section 1.4) should be held to a stricter equivalence criteria 

than the usual twenty-percent range required in the existing FDA Guidance (1992). For these 

drug products, a ten-percent range on the log, -scale (corresponding to an equivalence range of 

0.90-1.11 on the natural scale) was required. 

The second draft guidance from FDA (1999b) described in more detail the study design, 

model, and approach to statistical inference for average, population, and individual bioequiva- 

lence relative to the 1997 draft guidance, but departed from the original approach only in minor 

respects. Requirements for power and sample size were described in more detail in this draft 

guidance relative to the original 1997 draft guidance; however, the main departure was in the 

method of statistical inference. 

This draft guidance (1999b) required the use of the Cornish-Fisher expansion (Hyslop et 

al., 1999; FDA Guidance, 1999b; Hyslop et al., 2000) for the assessment of population and 

individual bioequivalence based upon estimates derived using a method-of-moments based esti- 

mation approach. In contrast, the use of restricted maximum likelihood estimation was required 

for assessment of average bioequivalence in studies employing a replicate design but was to be 

used in the assessment of population and individual bioequivalence only in the case of data sets 

with 'substantial' missing data. Bootstrap based inference was also relegated to the status of 
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a 'back-up' procedure, to be used only in instances where the Cornish-Fisher expansion and 

method-of- moments based estimation could provide misleading results. One of the goals of this 

thesis will be to determine when these different alternatives can and should be employed and 

to thoroughly characterise the differences in estimation and inference among them and novel 

alternatives. 

Academic responses to the FDA draft (1999a and 1999b) guidances were not as plentiful. 

Longford (1999) discussed the concept that Phase III pivotal safety/efficacy trials should estab- 

lish whether treatment effects were of limited variance in the population of interest. If variance 

was small and only a small proportion of patients could be placed at risk when a novel for- 

mulation was introduced, this was not as concerning as those situations where higher levels of 

variance suggested that a significant proportion of patients would be placed at risk of therapeutic 

failure. Longford (2000) also introduced an alternative procedure for the assessment of individ- 

ual bioequivalence based upon a linear combination of independent X2 variates where inference 

could be assessed in small samples using a bootstrap based procedure or in large samples based 

upon a normal approximation. 

Other academic sources (Senn, 2000) held that average bioequivalence should suffice based 

upon grounds of 'practicality, plausibility, historical adequacy, and purpose' and 'because we 

have better things to do. Additionally, Senn (2000) notes that statisticians have 'a bad track 

record in bioequivalence', that 'the literature is full of ludicrous recommendations from statisti- 

cians', that 'Regulatory recommendations (of dubious validity) have been hastily implemented', 

and that 'Practical realities have been ignored'. 

Lastly, other academic authorities (seemingly ignorant of the FDA/AAPS workshops and 

various data driven publications on the concepts) called for publication of data pertaining to 

the validity and applicability of the new methods (Colburn and Keefe, 2000). 

Innovator and generic industry responses to the newest (1999a-b) draft FDA guidances were 

however more plentiful. PhRMA's expert panel published its work (2000) and concluded that: 

2 1. The clinical relevance of O'D and its use as a surrogate marker for switchability 
could be studied by a targeted clinical pharmacology trial constructed to provide the 

2 best evidence of UD* 

2. 'Drade-offs between parameters, scaling, and the maximum allowable difference 
(Hauck et al., 1996) could be addressed by the use of an ordered testing procedure. 
3. Generic-to-generic switching could be addressed through the use of simulation 
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studies. 
4. To maintain the spirit of global harmonization, it is reasonable to expect that 
FDA and PhRMA will continue to engage in dialogue with other regulatory agencies 
and solicit their involvement. 
PhRMA's expert panel further recommended that simulation studies be used to 
assess the use of alternative statistical procedures (Dragalin and Fedorov, 1999a and 
1999b; Lin, 1989,1992, and 2000; Gould, 2000a and 2000b) relative to the FDA 
draft guidance (1999a and 1999b). 

Additional industry responses (Patterson and Zariffa, 1999; Zariffa and Patterson, 1999; 

Patterson and Zariffa, 2000a; Patterson et al., 2000b; Zariffa et al., 2000) described the prac- 

tical. application of population and individual bioequivalence (to be discussed in more detail in 

Chapter 2-4) and the behaviour of the proposed criteria based upon actual data and simulation 

studies. This works concluded that (Zariffa and Patterson, 2001): 

Some of the expected features of current proposed population and individual bioe- 
quivalence criteria, such as the mean-variance tradeoffs, have been observed in the 
current database. However, collection of more data in an unsystematic manner will 
not result in clear answers to the questions of interest. Simulation studies should be 
utilized to enhance understanding of factors impacting the assessment of bioequiva- 
lence and to consider alternative criteria for assessment. Such additional simulation 
assessment should be undertaken prior to the implementation of a mandatory data 
collection period. Market access should not be permitted using any new criteria 
until it is clearly demonstrated that the new criteria offer substantive benefit and no 
added risk to public health. 

It was further recommended that: 

There are currently sufficient doubts on both sides of the debate as to the validity of 
issues raised by the opposing view points. As such, some manner of further study, 
conducted with scientific rigour, is called for. Given the complex interplay between 
the many factors at work, it is necessary to clearly outline the goals of proposed fur- 
ther studies to avoid misleading results. Of particular interest is the overall question 
of added-value, 'Do the proposed criteria reliably address substantial limitations of 
average bioequivalence and if so, can we be assured they do not in turn introduce 
additional limitations which could potentially be more seriousT A combination of 
simulation studies and data collection may be relevant to laying some of the issues 
to rest. 

Simulation Studies: 

The authors propose a series of simulation studies be undertaken so as to address 
fundamental questions regarding the additional value (if any) of the population and 
individual bioequivalence criteria relative to the existing average bioequivalence cri- 
terion. Two key areas of study come to mind: subgroup-by-formulation interaction 

as well as the appropriate (if any) cut off value for the subject-by-formulation in- 
teraction based an appropriate metric. While the recent publication by Hauck et 
al., (2000) makes an initial attempt to characterise the latter, inherent variability 
has not been directly included in their study. The ability of traditional statistical 
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techniques to detect subgroup-by-formulation interaction and that of proposed alter- 
natives PBE and IBE criteria based on 2 period cross-over trials should be studied 
alongside the current proposed PBE and IBE criteria. 
Additional simulation studies related to the sensitivity of the various criteria to 
single outliers, mean-variance tradeoffs and other comparisons between alternative 
methodologies proposed (Dragalin and Fedorov, 1999a and 1999b; Lin, 1989,1992, 
and 2000; Gould, 2000a and 2000b) are all possible using simulation techniques. 

2 Last, distribution of estimated UD as a measure of subject-by-formulation interac- 
tion under various assumptions would help put into context the relevance of observed 
values collected over a period of time. 

Data Collection: 

Since existing data may be of value, one might call for continued efforts in retro- 
spective data analysis. Other sponsors may have similar databases and the FDA has 
collected replicate design data sets over the past few years. In addition, some of the 
questions regarding the potential to detect subgroup-by-formulation interactions in 
2-period cross-overs can be studied in what must be an extensive FDA repository of 
such data sets. Once the existing data sets and simulation studies are completed, 
it may still be required to collect additional replicate design data sets over a fixed 
period of time. 
A minimal set of consideration for any data collection period can be defined as 
follows. First, and most important, a detailed study protocol should clearly specify 
the various hypotheses of interest to be addressed in the experimental data collection 
period. Decisions to be made based upon the data should be pre-specified in the 
protocol, and criteria for their assessment should be predefined. The protocol should 
specify the study design and minimum number of studies (and subjects within study) 
needed to address the hypothesis of interest accounting for both Type I and 2 errors. 
Given the joint effect between multiple factors, we recommend the minimal sample 
size in each scenario be set ahead of time. Alternative statistical procedures [Dragalin 
and Fedorov, 1999a and 1999b; Lin, 1989,1992, and 2000; Gould, 2000a and 2000b] 
should be considered. 
Finally, the data collection period should be a matter of public record. Data, blinded 
to compound, should be made available to all interested parties, including relevant 
key covariates for demography or other factors of interest. The data should be 
available on an ongoing basis to allow for detailed review by the various stakeholders 
ahead of any public discussion. 

Many of these ideas will be discussed in more detail in Chapter 2-4. 

Other industry responses (Kimanani et al., 2000b) criticised the FDA draft guidance on 

issues of logistics, time, and energy. 

International regulatory responses deemed the concepts of population and individual bioe- 

quivalence to be un-necessary as average bioequivalence had protected the public health. Rep- 

resentative of this view were the presentations by Ormsby (1999) and Pound (1999) at the 

FDA/AAPS 1999 Workshop on 'Individual Bioequivalence: Realities and Implementation' co- 

sponsored by the International Pharmaceutical Federation, Canadian Society for Pharmaceutical 

Sciences, and the Therapeutic Products Program, Health Canada. Ormsby (1999) noted that 

until subject-by-formulation interaction had been proven to be indicative of therapeutic failure 
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and the causes identified, average bioequivalence (which had served to protect the Canadian 

public since its introduction with over 2500 generic products introduced to the market) would 

continue to be the standard. Pound (1999) described alteration of the average bioequivalence 

decision rules with changes in Type I error rate and or acceptance range indicated for narrow 

therapeutic drug products or those thought to be 'dangerous' in clinical practice. 

FDA responses to the questions of interest were plentiful at the FDA/AAPS 1999 Workshop 

on 'Individual Bioequivalence: Realities and Implementation' but have been discussed previously 

in this Chapter and will not be re-iterated in this thesis. The chief outcome of the conference 

was the realisation that little evidence existed to warrant the use of the new bioequivalence 

methods based on sufficient and adequate safety of patients in the marketplace under average 

bioequivalence and that subject-by-formulation interaction had not been established as a sur- 

rogate marker for therapeutic failure (i. e. there was no 'smoking gun') in an extensive review 

of replicate design data sets. Population and individual bioequivalence were referred to as a 

theoretical solution to a theoretical problem. 

The FDA Blue Ribbon Panel present at the meeting voted to consider a mandatory data 

collection period using replicate designs for bioequivalence assessment only for drugs most likely 

to have a subject-by-formulation interaction, modified release drug products and highly vari- 

able drugs, and to allow market access only using the established decision rules of average 

bioequivalence. This view was subsequently endorsed by the FDA's Advisory Committee of 

Pharmaceutical Science in September 1999. 

Subsequent reports published by the FDA described the rationale behind assessment of 

subject-by-formulation interaction in the assessment of individual bioequivalence (Hauck et al., 

2000). The concept of a large interaction, a &2 greater than 0.0225, was held to be a conservative D 

measure and potentially indicative of significant subgroup-by-formulation interactions. These 

concepts will be discussed in more detail in Chapters 3 and 5. Another report (Singh et al., 

1999) established population-modeling based procedures for assessing bioequivalence in those 

drug products where pharmacokinetic measures such as AUC and Cmax cannot be used as 

surrogate markers for safety and efficacy. 

Prior to 2000, FDA still had not established that average bioequivalence had not protected 

public health; indeed, it would be unusual for a regulatory branch of government to produce 
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examples of failure of their own procedures to protect the public's interests. Such a situation 

requires very careful handling by those involved. 

FDA did however subsequently produce (Meyer et al., 2000) an example of a data set from 

a replicate design using two marketed immediate release formulations of methylphenidate (in- 

dicated for the treatment of sleep disorders). The innovator version had been admitted to 

the market following a full clinical development programme; however, the generic version of 

methylphenidate was admitted following only in vitro dissolution testing (under an exception to 

the average bioequivalence requirements) and had not been held to the average bioequivalence 

standard. Following reports of therapeutic failure in patients switched to the generic product, 

a replicate design bioequivalence study was conducted in twenty volunteers. AUC and Cmax of 

the formulations were bioequivalent under the average bioequivalence approach. However, Cmax 

showed slightly higher within-subject variance for the test formulation relative to reference was 

claimed to exhibit a nominally high level of &2 failing to demonstrate individual bioequivalence D 

under the method proposed by FDA. FDA thus accomplished its goal of producing a 'smoking 

gun' without having to admit that average bioequivalence had failed to protect public health. 

Other prospectively performed studies for the assessment of individual bioequivalence were pub- 

lished in Bekersky et al. (1999), Cerutti et al. (1999), Canafax et al. (1999), and Yacobi et al. 

(2000), but these studies did not identify a difference in formulations. 

FDA followed up with this publication in 2000 with the introduction of the 'Biopharma- 

ceutical Classification System' (FDA Guidance, 2000a). Orally administered drug products are 

categorized based upon in vitro testing into classes 1,11,111, or IV. Class I compounds, known as 

highly soluble and permeable in that they are quick to dissolve when ingested and are absorbed 

directly into the body quickly, are exempt from the requirements of demonstrating bioequiv- 

alence in a clinical study and only must demonstrate that in vitro dissolution profiles for the 

formulations under study are equivalent. The choice of reference product is of importance in this 

setting (Spino et al., 2000). The statistical procedures for forming the comparison between prod- 

ucts (an application of what is known as the f2 statistic, FDA Guidance, 2000a) are currently 

under investigation and will not be discussed further in this thesis. Under the BCS guidance, 

only Class 11,111, and IV drugs are required to demonstrate in vivo bioequivalence before being 

granted market access. Subsequent discussion at the FDA/AAPS Workshop on Bioavailability 
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and Bioequivalence (Washington DC, September 2000) revealed that it is likely that European 

and Japanese Regulators will be developing similar guidances in the future. 

FDA guidance (2000b) finalized in October 2000 indicated that the agency would adopt the 

recommendations of the Pharmaceutical Sciences Advisory Committee (1999). This guidance 

recommended the use of replicate designs for highly variable and modified release drug products; 

however, market access was in general to be granted if the study demonstrated average bioe- 

quivalence. Alternatively, partial replicate designs might also be utilised (Hyslop and Inglewicz, 

2001; Chow et al., 2002). Sponsors conducting the study may use population or individual bioe- 

quivalence approaches (FDA Guidance, 2001) to inference if justification is sufficient to meet 

FDA review. Procedures for review of the data generated by these replicate designs to assess 

the need and appropriateness for population and individual bioequivalence were under consid- 

eration. European guidance (EMEA Draft Guidance, 2001) also continued to utilise average 

bioequivalence as the standard procedure for bioequivalence assessment but makes no specific 

recommendation on the validity of population or individual bioequivalence. 

Additional reports of therapeutic failure for the product Clozapine, an antipsychotic, were 

published subsequently (Ereshefsky and Meyer, 2001). Clozapine was granted market access 

following 'non-standard' bioequivalence studies mandated by FDA under bio-waivers applied 

for by the manufacturers due to the fact that normal healthy volunteers may not be safely 

exposed to any dose but the lowest of clozapine. Reports of therapeutic failure followed in the 

United States where un-controlled switching in-clinic was allowed, resulting in significant costs 

as this condition requires hospitilisation. FDA subsequently has required the manufacturers of 

the generic formulations to perform a better bioequivalence study to maintain market access and 

are preparing a drug specific guidance on the topic of clozapine bioequivalence. Other published 

reports (Meyer et al., 2001) did not establish a need for individual bioequivalence assessment 

when considering generic phenytoin products with the innovator product. As discussed earlier in 

this Chapter, phenytoin switching was known to be problematic in earlier research (see Section 

1.2). 

Following additional discussion at the 2001 Pharmaceutical Sciences Advisory Committee, 

the FDA drafted guidance (2002) which removed the potential for using population and indi- 

vidual bioequivalence for market access from their guidance while the criteria were under study. 
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It is possible that in future the use of these criteria will be re-investigated if FDA determines 

that there is a need for such based upon observations of the marketplace. 

1.6 Summary and Thesis 

Bioequivalence studies evolved in the 1960's and 1970's to meet the practical needs of consumers 

in having access to inexpensive efficacious products and to meet the needs of producers in 

supplying markets with such products without the extensive costs associated with a full clinical 

development plan and the delay associated with long clinical studies. On a practical level 

therefore, their genesis was practical, economic, and driven by legislation to allow market access 

under strictly regulated conditions. In parallel, scientific advances in drug manufacturing and the 

science of clinical pharmacology and pharmacokinetics and statistics made it possible to assess 

differences in mean response between formulations based on small, well-controlled, cross-over 

studies in normal healthy volunteers. 

Therapeutic failures in the 1970's prompted extensive research into the science of bioequiv- 

alence. This continued in the 1980's and culminated in the establishment of the techniques 

for judging formulations bioequivalent based on similarity of mean rate and extent of bioavail- 

ability between different formulations of the same drug product. This average bioequivalence 

approach has served to protect the public health since its adoption by the US Food and Drug 

Administration in 1992 and has quickly spread to all parts of the globe. 

However, average bioequivalence compares only the mean rate and extent of bioavailability 

between formulations and does not compare between- or within-subject variances between for- 

mulations. Nor does average bioequivalence assess individual similarity of responses or establish 

whether different subgroups among the general population will react differently to different for- 

mulations. Theoretical solutions to these theoretical problems with the average bioequivalence 

approach prompted extensive research on the topics of population and individual bioequivalence 

in the 1990s. The FDA issued draft guidances for public comment in 1997 and 1999 prompting 

even more extensive international debate among regulators, academia, and industry. 

As of the year 2002, no consensus among regulators, academia, and industry has been es- 

tablished for the use of population and individual bioequivalence. The need for more stringent 

population and individual bioequivalence has not been demonstrated, and it is known that the 
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criteria proposed by FDA are actually less stringent under certain conditions as we will see in 

this thesis. 

The properties of method-of-moments and restricted maximum likelihood modelling in repli- 

cate designs will be explored in Chapter 2, and the application of these techniques to the 

assessment of average bioequivalence will be considered. Individual and population bioequiva- 

lence criteria in replicate cross-over designs will be explored in Chapters 3 and 4, respectively, 

and retrospective data analysis will be used to characterise the properties and behaviour of the 

metrics. 

Simulation experiments will be conducted in Chapter 5 to address questions arising from the 

retrospective data analyses in Chapters 2 through 4. Additionally, simulation will be used to 

explore of a potential phenomenon known as 'bio-creep' - that is the transitivity of individual 

bioequivalence when multiple generic products enter the market using IBE. 

We will then turn to another bioequivalence problem to conclude the thesis; that of com- 

paring rate and extent of exposure between differing ethnic groups as described in ICH-E5 

(International Conference on Harmonisation Guidance E5,1998). The properties of the popu- 

lation bioequivalence metric (FDA Guidance, 2001) and an alternative metric (Kullback, 1968; 

Dragalin and Fedorov, 1999a) will be characterised in small and large samples from parallel 

group studies. Inference will be illustrated using data from a recent submission and simulation 

studies. 

Conclusions and areas for further research will be discussed in Chapter 7. 
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Small and Large Sample Properties, Estimation, and In- 

ference for Average Bioequivalence using Replicate De- 

signs 

The findings of this chapter were presented at the annual PSI meeting (Patterson and Jones, 

2001g), at the annual American Society of Clinical Pharmacology and Therapeutics meeting 

(Patterson et al., 2000a-b), and in a tutorial at the Drug Information Association meeting 

(Jones and Patterson, 2002). Aspects of the findings were published in the Journal of Clinical 

Pharmacology (Zariffa and Patterson, 2001), in the EuroPean Journal of Clinical Pharmacology 

(Patterson et al., 2001h), in Pharmaceutical Statistics (Patterson and Jones, 2002a), and as a 

GlaxoSmithKline technical report (Patterson and Jones, 2002b). 

2.1 Introduction and Goals of Chapter 

We now turn to detailed discussion of the use of replicate designs to assess average bioequivalence. 

Following a brief review, modelling and inferential procedures in average (ABE) bioequivalence 

will be explored. Simulation will be used to assess hypotheses arising from this exercise (in 

Chapter 5), and questions remaining to be addressed by additional data collection (and other 

procedures to be explored in the remainder of this thesis) will be described. 

As discussed in Chapter 1, bioequivalence trials (see FDA Guidance, 1992-2002) play an 

important role in the drug development process. These studies are conducted primarily by 

pharmaceutical sponsors who have conducted pivotal efficacy trials with a specific formulation 

of a drug therapy but need or want market access for a more commercially suitable formulation. 

Also the generic pharmaceutical industry conducts these studies to gain market access for generic 

formulations of established drug therapies when the patent of the sponsor's formulation expires. 

The original sponsors themselves may also be required to perform a bioequivalence trial following 

formulation changes, such as moving site of manufacture. 

In these cases, rather than repeat clinical trials to establish the safety and efficacy of the 

proposed formulations, the pharmacokinetic (PK) characteristics of the plasma-concentration 

time curve are used to infer that two drug formulations will provide similar therapeutic benefit. 

The PK is expressed in terms of rate and extent of absorption as characterized by the maximum 
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observed plasma concentration (Cmax) and the area under the concentration time curve (AUC). 

In turn, bioequivalence is expressed in terms of the 'similarity' of these two metrics between 

the two formulations. For approximately the past 10 years, international regulatory agencies 

in North America, Europe, and Asia have used a criterion of average bioequivalence (ABE) 

with regulatory limits of 20% (FDA Guidance, 1992-2002) except in instances where dissolution 

profiles suffice (FDA Guidance, 2000a). 

This criterion focuses on the average PK metrics of the two formulations being studied. The 

framework for statistical inference is based on exact 90% confidence intervals for the difference in 

formulation means. This ABE criterion has been used for both instances of pre-market approval 

and post-market formulation changes described above. 

To review, average bioequivalence (ABE; FDA Guidance, 1992) has traditionally been used 

as the standard for market access with regulatory limits of twenty percent. This approach 

focuses on the average PK metrics of the two formulations being studied. The framework for 

statistical inference is based on ninety percent confidence intervals for the mean differences and 

is currently being used for both instances of pre-market approval and post-market formulation 

changes described above. The two one-sided hypotheses of interest (Schuirmann, 1987) are: 

Hol : PT - JIR <- 
- In 1.25 

H02 : PT - PR > In 1.25 

where PT and pR represent mean of the Test and Reference formulations, respectively, and 

the limit of ln 1.25 is chosen to represent a twenty percent range on the log, -scale. PK data 

such as AUC and Cmax are typically held to be log-normally distributed (Westlake, 1986) and 

are treated as normally distributed following appropriate transformation (usually log to base 

e transformation). Inference is based on the use of the non-central, bi-variate t-distribution 

using a model appropriate to the randomised, cross-over design. AUC and Cmax are analyzed 

separately, and each one-sided test is performed at the five percent level. No adjustments for 

multiplicity are made (Hauck et al., 1995). 

In practical terms, a ninety percent confidence interval is constructed using the AT - AR 
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and estimates of variation for AT - 11R- If the confidence intervals for both AUC and Cmax 

fall within the range -In 1.25 to In 1.25, then average bioequivalence is demonstrated. More 

commonly, these differences and confidence intervals are exponentiated and assessed relative to 

the interval 0.80 to 1.25. 

Under this approach, eligible subjects (typically normal healthy volunteers) are randomized 

to one of two treatment sequences, test followed by reference (TR) or reference followed by test 

(RT). A washout period adequate to the drug under study (a least 5 half lives) separates the 

treatment periods. In each period, the formulation is administered following an overnight fast. 

The models used for testing this ABE procedure are the subject of further research in this 

Chapter. 

2.2 Power and Sample Size 

Type I error in average bioequivalence testing is the probability of incorrectly concluding, based 

on the results of a study, that two formulations are bioequivalent when in fact they are not. 

This probability is sometimes referred to as 'confidence', 'alpha', or 'regulatory risk'. Each one- 

sided test in a bioequivalence study is constrained, under regulatory guidance (FDA Guidance 

1992-2002) to 5% per test corresponding to a 90% confidence interval. 

Power in a bioequivalence study is the sponsor's likelihood of correctly demonstrating bioe- 

quivalence when it, in fact, exists (Owen, 1965; Phillips, 1990). Sponsors are interested in 

maximizing their chances of success, subject to resource constraints. Sample size is chosen 

ba. sed on the Type I error rate (fixed at 5% per test) and the equivalence criteria (as described 

above), intra-subject variation, and Power (usually fixed at 90%). Sample size requirements in- 

crease dramatically when intra-subject coefficients of variation increase beyond 30%, see Table 

11. A comprehensive description of these inter-relationships may be found in Senn (1997), and 

we will comment on some aspects in the following. 

An additional complicating factor may also play into the design of such studies. Typically 

it is reasonable to assume that formulations exhibiting identical dissolution profiles will have 

true ratios of bioavailability (BA) for the test to reference products equal to unity (i. e. on the 

log, -scale, it is assumed that ILT - AR = 0). However, some drug products may not meet this 

expectation (the true ratio of bioavailability will be expected to deviate from unity by a small 

79 



amount). This requires larger sample sizes to compensate and maintain power, as illustrated 

in Table 11. When determining sample size, best estimates of intra-subject variability and true 

ratios are used. Deviations from these assumptions will cause variations in the power of the 

study's testing procedures. 

Properly applied, alternative study designs can be used to reduce the number of subjects 

required to a more manageable level and ensure conclusive results in a study when it is designed 

under conditions of uncertainty with regard to assumptions. Some alternatives are the replicate 

cross-over design and group-sequential designs. 

In a replicate cross-over design, each subject receives each formulation twice as follows. 

Eligible subjects are randomized to one of two treatment sequences, e. g. TRTR or RTRT. 

Thus, each subject is studied in four periods and receives each formulation twice over the 

course of the study. Similar to the two period cross-over described above, a washout period 

adequate to the drug under study (a least 5 half lives) separates each of the four treatment 

periods. Plasma concentration-time profiles are obtained after each administration, and non- 

compaxtmental methods were used to derive summary measures AUC and Cmax. The regulatory 

decision rule for demonstrating bioequivalence under this design is the same as the two-period 

cross-over presently, though alternatives (FDA Draft Guidance 1997,1999a, 1999b; FDA Guid- 

ance, 2000b) have been considered. These alternatives have been the subject of international 

debate for some time (see Chapter 1) and will be discussed in Chapters 3-5. 

The number of subjects required to demonstrate average bioequivalence can be reduced by 

up to 50% using a replicate design, see Table 11, relative to the usual two-period cross-over 

design. Note that the overall number of doses studied (and blood sampling), however, remains 

the similar to a two period cross-over and that the study will be of longer duration. 
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Table 11: Sample Sizes Providing Ninety Percent Power in Bioequivalence Studies for Two 
Period and Replicate Designs 

CVW% % Deviation in Two-Period Replicate Two-Period Replicate 
True BA Ratio Cross-over# Design# Cross-over& Design& 

30 0 40 22 50 26 
5 54 28 60 34 
10 112 56 124 70 

45 0 84 90 48 
5 112 56 120 64 
10 230 116 244 132 

60 0 140 0 146 76 
5 184 92 194 102 
10 384 192 404 210 

75 0 200 100 206 106 
5 264 134 276 144 
10 554 278 574 298 

#Assumes subject by formulation interaction (see Chapter 1) is negligible 
&Assumes subject by formulation interaction is non-negligible (Hauck et al., 
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Computer code to derive power in two-period cross-over designs is available in a variety of 

commercially available software packages; however, customised code is required for a replicate 

design. SAS@ code for power calculations are provided below: 

%macro bepower; 

DATA indata; n=; vard=; ratio=; cv=; run; 
data b; set indata; a=0.05; 
s=sqrt(vard+((log((cv/100)**2+1)))); n2=n-2; run; 
data outcome; set b; t1=tinv(1-a, n-2); t2=-l*tl; 
taul=(sqrt(n))*((Iog(ratio)-log(O. 8))/s); 
tau2= (sqrt (n)) * ((log (ratio)-log (1.25)) Is); 
r= (sqrt (n-2)) *((tau 1-tau2) I (tl-t 2)); 
prob1=probt(t1, r, tau1); 
prob2=probt(t2, r, tau2); 
answer=prob2-probl -, 
power=answer*100; run-, 
%mend bepower, 

This code is easily adapted to address alternative study designs with modification; however, 

power is not a central issue of this research and will not be investigated further here. 

Estimated formulation means have error associated with measurement and sampling error 

in cross-over designs. Replication of measurement within each subject reduces sampling error 

by a factor equivalent to the number of replications. For example, in a standard two-period 

cross-over design, variance of an individual's mean response on i =T (Test formulation) or R 

is 0,2 222 (Reference formulation) Bi + UWi where O'Bi is the inter-subject variance and uwi is the 

intra-subject (i. e. sampling error) variance. In a replicate design, variance of an individual's 

Or2 2 
mean response's Bi+(uWi12). Therefore, where high intra-subject variability is of concern, the 

replicate design will provide more precise estimates of the true individual response, see Figure 

10. For a low variability product, replication does not improve precision dramatically; however, 

for a high variability product, replication constrains the range over which an individual's mean 

response may vary. Such measurement is also more accurate as replicate measurement and the 

derivation of corresponding means converges to the true (and unknown) mean under the central- 

lin-iit-theorem with increasing replication (Walpole et al., 1998). Such measurement may thus 

allow for better scrutiny of outliers (Williams et al., 2000b), but as comparison of formulation 

means is of direct concern in the success of average bioequivalence studies, the desirability of 

such improvement in accuracy and precision is immediately apparent as a practical matter. 
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Figure 10: Improvement in Precision due to Intra-Subject Replication for a Low Variability and 
High Variability Product; CVw = Ve-7x7p7(-o-, 
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2.3 Discussion of Extension to Group- Sequential Designs 

Group sequential designs offer the potential for additional resource savings in bioequivalence 

designs (Gould, 1995; Hauck et al., 1997). A group sequential design consists of one or more 

interim analyses (see Figure 11), at which point the sponsor can decide to stop the trial with 

concrete evidence of success or failure or to carry on. Well known in the statistics community 

(Peace, 1992), such designs are easy and straightforward to implement in practice in this setting. 

I st cohort 
If BE then STOP 

First look If clearly not BE then STOP 
If inconclusive, CONTINUE 

tI 

2nd cohort Final look 

Overall 
TvDe I risk<5% 

Figure 11: The Concept of Group- Sequent i al Designs 
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A group sequential design approach could be used in cases where there is some uncertainty 

about estimates of variability. That is, based on previous data there is a fairly wide range of 

estimates, such that choosing a lower estimate might result in an under-powered study and 

choosing a higher estimate might result in an over-powered study, which in either case is a 

waste of resources. As such, the group sequential design allows one to conduct an interim look 

with a sample size that provides reasonable power based on a lower (or optimistic) estimate of 

variability and the final sample size based on a higher (or less optimistic) estimate of variability. 

Similarly, if uncertainty in the true ratio of bioavailability is of concern, an interim look might 

be planned based upon sample size required to provide bioequivalence based on the optimistic 

estimate, with the final look providing conclusive results should this not be the case. Lastly, 

a group-sequential design may be applied if it is undesirable to complete a large study due to 

resource constraint. Some choice of samples for interim analysis may be chosen (based on clinical 

feasibility) to facilitate an interim look. The probability of success may be quantified at that 

stage, and if results are inconclusive, the study can continue to completion. 

The two aspects of a group sequential design that help determine the probability of stopping 

early are the alpha-spending function to control the overall Type I error rate of the study and 

the decision rule(s) for stopping at an interim analysis. There are many Type I error spending 

functions and decision rules to chose from, but only those relevant to two-stage group sequential 

design for a bioequivalence trial will be discussed in this paper. 

Type I error rate (usually set by regulators at 5% per test for bioequivalence studies) is 

defined as the probability of a false-positive outcome, or in the case of bioequivalence trails, 

declaring two formulations are bioequivalent when they are not in truth. Unlike a fixed sample 

size trial where there is only one analysis, a group sequential trial may have multiple analyses. 

When data from a fixed sample size trial are analyzed repeatedly during the trial, the overall 

Type I error becomes inflated if each look is conducted at the same test level. For example, 

if two bioequivalence test procedures are is conducted (each at the usual 5% level), the overall 

Type I error rate, the probability of a false positive on the first or second test, is 8% (instead 

of 5%); if three are conducted, the overall rate is 11%; and so on (Wetherill and Glazebrook, 

1986). 

As such, to control the overall Type I error rate of the study, the Type I error rate at each 
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analysis must be some value less than the desired overall Type I error rate. In a two-stage group 

sequential bioequivalence trial, the Type I error is typically divided equally between the two 

analyses. A simple, but conservative, method is the Bonferroni adjustment, which results in an 

error rate of 2.5% (i. e. 95% Cl) at each look, but an overall error rate less than 5%. Another 

alternative suggested by Pocock (1977), is to set the error rate at the two analyses at 2.94% 

(i. e. approximately 94% CI) at each look, resulting in an overall error rate of approximately 5%. 

Stopping rules should be defined when the study is designed, and implications of their choice 

should be considered for impact on sample size (for more discussion see Gould, 1995). 

The decision rule for stopping early (at the first look) should contain both a rule for stopping 

early when bioequivalence is clearly demonstrated and a rule for when bioequivalence is not 

expected to be demonstrated, see Table 12. 

Table 12: Practical Stopping Rules for An Interim Look in a Group-sequential Bioequivalence 
Study 

Outcome Action 
Test regimen is BE Success. Stop the study 
i. e. the 95% Cls are and accept BE. 

contained in (0.80-1.25) 
At least 1 Point Estimate F'utility. Stop the study 

is outside the range and reject BE. 
(0-80-1.25) 

Point estimates are in the range Inconclusive. Continue the study. 
but Cls are not 

2.4 Design Considerations and Examples 

An algorithm for designing average bioequivalence trials is described below. 

1. Calculate power for available sample size (ie. number of beds and other clinical resources) 

for the bioequivalence trial for a standard two-period cross-over design. 

2. Consider available resources relative to desired probability of success (power) and re-evaluate 

choice of sample size. 

2a. For products with low-moderate intra-subject variation where adequate resources 

are available, use a standard two-period cross-over design. 

2b. For highly-variable products, where sample size exceeds available resources, 
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consider a replicate design and re-assess sample size. If resources are adequate, use 

the replicate design. 

3. For situations where resources are still too limited to achieve desired power, or in situations 

where one is uncertain of the magnitude of intra-subject variation (or other assumptions), con- 

sider a group-sequential design. 

To illustrate, in a recent site transfer for a highly variable drug product, it was required 

that ABE be demonstrated at each of three dose levels (Patterson et al., 2000b). For this 

drug substance, intra-subject variance appeared to fluctuate with dose (possibly increasing as 

dose was increased. ) At lower doses, based on previous experience with relative bioavailability 

studies, the true ratio in test to reference bioavailability was expected to deviate by up to 5% 

from unity. 

Based on these factors, it was decided to implement a replicate design in these studies. A 

10% dropout rate was assumed and accounted for in sample size calculations. Eighty normal 

healthy volunteer subjects were recruited in order to complete at least seventy-two subjects in 

a replicate design cross-over in studies I and II. 

As sample size was still prohibitively large relative to available resources for the third study, 

Study III was conducted using a group-sequential, replicate design, see Figure 12. The conserva- 

tive Bonferroni adjustment to Type I error was employed at each look (Type I error rate of 2.5% 

per one-sided test corresponding operationally to a 95% confidence interval. ) The bioequivalence 

decision rule to be followed the first look in this study is summarized in Table 12. 
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If BE then STOP 
If clearly not BE then STOP 
If inconclusive, CONTINUE 

2nd cohort Final look 
n-- 64 

t 
95% Cl 

n=96 (86 evaluable) 
Power >90% if CVw=45% 
Power >80% if CVw--60% 
and 0.95<True ratio <1.05 

95% Cl 
Total n=160 (144 evaluable) 
Power > 90% if CVw<66% 
Power > 80% if CVw<77% 

and 0.95<True ratio <1.05 

Figure 12: Application of a Group-Sequential Design for Study III 
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Statistical analyses were conducted using SAS(ý) version 6.12 on a COMPAQ Deskpro com- 

puter in accordance with the models for a replicate design described later in this Chapter. 

Average bioequivalence was demonstrated conclusively in all three studies (see Table 13). 

Study III demonstrated bioequivalence at the first interim look. Had the criteria not been met 

at the first look, the second cohort would have been studied. 

Table 13: Examples from Replicate Design Bioequivalence in Three Studies for AUC and Cmax 

Study I Sample Size I AUC PE (90% CI) I Cmax PE (90% CI)] 
1 
11 
111 

74 
75 
94 

0.91 (0-84,0.98) 
0.92 (0-84,1.01) 

1.01 (0-91,1.13)# 

0.92 (0-85,0.99) 
0.94 (0-86,1.03) 

0.96 (0-86,1.08)# 
# 95% Confidence Interval 

PE: Ratio of Adjusted Geometric Means 

No gross differences in inter-subject variability were noted between formulations in these 

studies as demonstrated by inspection of Figure 13. Subject-by-formulation interaction variance 

estimates (Hauck et al., 2000) were negligible, and population and individual bioequivalence 

(FDA Draft Guidance, 1997,1999a, and 1999b; FDA Guidance, 2001) were demonstrated in 

each study (as we will see in later Chapters for replicate cross-over designs in data sets B, R, 

and S). 
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For the purposes of this thesis we will now concentrate upon the modelling of replicate designs 

in bioequivalence studies. Details of the extension of these techniques to group sequential designs 

will not be further explored. 

2.5 Estimation Methods for Average Bioequivalence in Replicate De- 

signs 

We now turn to consideration of how to model PK data from replicate designs using method- 

of-moments and restricted maximum likelihood based approaches. 

The following mixed model for log, -transformed observations is sometimes used (Jones and 

Kenward, 1989; Vonesh and Chinchilli, 1997) in replicate designs. Let Ytijk be the k-th response 

(k = 1,2.... ) for the j-th subject (j = 1,2,.. ., ni) in sequence i (i = 1,2,. .., s) in the cross-over 

trial administered formulation t (t = T, R) and 

Ytijk : -::: 'Yitk + Vtj + At + Etik 

where 'Yitk is a vector of nuisance effects (sequence and period effects), 

vtj and Etik are independent and normally distributed with mean zero 

2 the between-subject variance, Var(vtj) = O'Bt7 

COV (1-'Tj 
7 VRi) --- ý PO'BTO'BR) 

2 Var(-'tik) 
= owtl the within-subject variance, 

(27) 

COV(Etik) Etik') = 0, for k : ý4 k'. Subjects are assumed to be independent. Under this model 

Var(vTj - vRj) = 0,2 the subject-by-formulation interaction variance. Note that nuisance D) 

effects (period and sequence effects) are fitted in practice (Jones and Kenward, Chapter 4,1989) 

but are omitted from the above description for the sake of clarity. The above model may be 

fitted using general linear models (corresponding to a method-of-moments approach), maximum 

likelihood or restricted maximum likelihood based procedures. 

It should be noted here that one of the key provisions of the 1999 draft FDA guidance 

was the suggestion for what has been termed a 'public health experiment' or mandatory data 

collection period (Montreal, AAPS/FDA Workshop, August/ September 1999). Sponsors of any 

bioequivalence study would be compelled to submit data from a replicate design to FDA for 
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approval to market. Subsequent discussion at the Advisory Committee for Pharmaceutical 

Science (September 1999, Washington DC) resulted in the recommendation that market access 

not be permitted unless average bioequivalence had been demonstrated under existing criteria 

unless the sponsor could convince FDA otherwise. Restricting the 'experiment' to a class of 

drugs such as controlled release formulation and highly variable drugs was also suggested. These 

proposals were adopted in the finalised guidance (FDA Guidance, 2000b), but later was changed 

in FDA Guidance (2002) to explicitly only allow the use of average bioequivalence for market 

access. 

This call for data, however, required for careful and meticulous examination of existing 

replicate design data sets prior to beginning the 'public health experiment' so as to set realistic 

expectations for the exercise (Zariffa et al., 2000) and for the careful, scientific consideration 

of viable alternatives to the procedure developed by the FDA. The differences in statistical 

estimation and inference in such data sets constitutes the remainder of this Chapter. 

We begin discussion of estimation procedures with method of moments and follow with 

discussion of maximum likelihood based procedures and the properties of estimates arising from 

the models. Asymptotic properties and bias in the proposed metrics will be characterised, and 

the content of the retrospective analysis to be presented in Section 2.7 will be defined. These 

findings follow from general results (Stuart et al., 1999) in the context of method of moments 

estimation (related to conditions on design matrices) - 

In complete data sets from two sequence (RTRT, TRTR), randomised, replicate designs, 

method-of-moments estimators may be used to calculate unbiased estimators for the parameters 

of interest in (27). We begin by establishing the statistical relationship between method-of- 

moments estimators of interest. 

Theorem 2.1 Pairmse Independence of Method- of-Moment Estimators 

In balanced, 8-sequence, replicate cross-over design, with no missing data, unbiased method of 

WT+a2 C2 

moment estimators J, MI, MT, and MR for J 
-= AT - tLR) 2= or 2+ WR 

I 
Ol 2 and 0'1 D2 WTi 

2 O'WR are independent. 

p, roof. Let the individual difference across formulations be denoted Iij ---: VTije - PRije such 

that 

92 



181 ni 1wi Eiii 

ni j=l 

I 

and 
1s ni 

mi 
ni) -s"ý 

(Iij - ii) 
i=l j=1 

It follows that these two statistics ý and MI are independent based on previous results attributed 

to Fisher (described in Johnson et al, Vol 2,1995 and Muirhead, 1982). Vonesh and Chinchilli 

(1997) show that S is unbiased for J, and Chinchilli and Esinhart (1996) showed that MI 

2 21V 
O, IxV where v is the degrees of freedom associated with MI. In a two-sequence balanced design 

with no missing data (RTRT, TRTR) recommended by FDA (1997-2002), v= (Ej=j ni) -s 

n-2. 

Let the individual difference within formulations for test and reference formulations be de- 

noted 

Tj -` YTij1 - YTij2 and Rj ---: YRijl - YRij2, respectively. Within-sub ect variances are estimated zi 

by 
8 ni 

_., 
E(Tý MT -1__i_T, )2 

2((Es 
1 ni) 8)I i= i=l j=l 

and 
s ni 

MR y, 
_7j, 

)2 

, 
F(Rj 

2((Eis=l ni) - s), 
=, j=l 

2 X21V Chinchilli and Esinhart (1996) showed that MT - UWT v where v is the degrees of freedom 

2 21V 
where v is the degrees of freedom associated with associated with MT, and MR - UWRXLI 

MR. As MR and MT are derived from independent multivariate normal observations, MR and 

MT are independent under (27). 

It remains to show that the estimates of within-subject variability (MR and MT) are pairwise 

independent with S and MI. Here we refer the reader to the well known result based on the 

properties of the multivariate normal density such that if A and B are bi-variate normally 

distributed with non-null correlation p and homogeneous variance then A-ý-B 
and A-B are 2 

independent (see Bickel and Doksurn, 1977). In this context, it follows that Rj, Tij, and Iij 

are mutually independent, and as subjects are independent, it follows that MR is independent 

of M, and S, and MT is independent of MI and S. 0110 
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We now turn to the consideration of estimation and inference in incomplete data sets. Models 

such as (27) are easily adaptable to more complex situations involving missing data through 

the use of restricted-maximum likelihood (REML) estimation (Patterson and Thompson, 1971; 

Harville, 1977; Laird and Ware, 1982; Brown and Kempton, 1994). Discussion of REML versus 

Method-of-moments estimation in this setting is an important foundation and will be thoroughly 

explored in this thesis. 

Several previous authors have explored the modelling of such data using techniques devel- 

oped for repeated measurements (Jones and Kenward, Chapter 7,1989; Milliken and Johnson, 

Chapter 32,1992; Vonesh and Chinchilli, Chapter 4,1997; Kimanani et al., 2000a). We will 

concentrate on estimation in a four period, two treatment, replicate design. 

Under such an approach in a four-period, two-sequence (RTRT, TRTR), replicate design 

study, let y be the real-valued response 4n x1 vector (p =4 is the number of periods). Here, 

there are two sequences i=1,2 corresponding to sequences RTRT and TRTR and subject 

within sequence j= ni where n= ni + n2 is the overall sample size. Then, 

MVN(Xo, E) (28) 

where X is the known 4n x9 design matrix, 0 is an 9x1 vector of fixed effect location parameters 

(including terms for intercept, sequence, period, and formulation, of which only 6 parameters 

will be estimable), and E= Var(y) = ZI(n)ZI + Z2AZ' is a 4nx4n matrix of variance 2 

components. Note that ' denotes the transpose of a matrix, and MVN indicates a multivariate 

normal distribution. We now turn to the structure of E in more detail. 

In matrix notation, this model can be expressed as 

Y: --: X)3+ Zllý + Z2e (29) 

where u is multivariate normal with expectation 0 and variance-covariance matrix fl 

MVN(Q, fl)) and e- MVN(Q, A), where u is independent of e. Let Q be defined in terms 

22 
of variance-covariance components (UBR) LURT) UBT) corresponding to the method-of-moments 

approach (Chinchilli and Esinhart, 1996) where WRT represents the covariance between test and 

reference observations under model (27), and let A be defined in terms of variance- covariance 
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components 
22 In addition, Zi and Z2 are matrices whose elements are com- 

(O'WR) 07 O'WT)' 

posed of O's or l's and are used to assemble the covariance matrix of observations in a manner 

appropriate to sequence i for each subject j. Subjects are assumed to be independent. 

For example, suppose a study is performed with sequences RTRT (i = 1) and TRTR (i = 2), 

then for two subjects with sequences RTRT and TRTR, respectively: 22 
6BR WRT O'BR WRT 

U2 
2 UORT BT LORT O'BT fIRTRT f2l is 22 

CBR LORT O'BR WRT 
22 LORT O'BT WRT O'BT 
22 

aBT WRT aBT LORT 

W2 RT O'BR WRT a2BR 

and fITRTR 112 is 22 where WRT COV (YTij k) YRij k) aBT WRT O'BT WRT 

LORT 01 
22 
BR WRT O'BR 

a2 WR 000 

2 0 aWT 00 
Also, ARTRT A, 2 00 OrWR 0 

2 000 CWT 
2 

O'WT 000 

0a2R00 

and ATRTR = A2 
0W2 0 aWT 0 

000a2 WR 

Under this approach, the log-likelihood function for (28) is expressed as: 

n[ln(27r)] s ni 
L22j: ln IE21: 1: (y - X, 3)'E-(y - XO) (30) 

i=l i=l j=l 

where E- is a generalised inverse of Z and EI is the determinant of matrix E (Jones and 

Kenward, 1989). Equation (30) is maximised over the parameter space of E (adjusted for 

fixed effects X, 3 restricting the procedure to the fixed effects space, hence restricted maximum 

likelihood as in Patterson and Thompson, 1971) using iterative Newton-Rahpson (Lindstrom and 

Bates, 1988), Fisher's scoring (Jennrich and Schluchter, 1986), or EM generalised algorithms 

(Laird and Ware, 1982; Jennrich and Schluchter, 1986). Non-iterative procedures (known as 

MIVQUEO, see Milliken and Johnson, 1992) may also be used. 

Restricted maximum-likelihood estimation may then be performed using a variety of software 

packages (SAS@, SPLUS@, or GENSTAT@) to derive unbiased, best quadratic estimators 

for the variance components and best linear unbiased estimators for the fixed effects (Searle, 

1971) only in those data sets which are balanced and have no missing data (where estimates 

will be the same as those derived using method-of-moments). In such data sets, the derivation 

of unbiased estimators for the metrics of interest follow the properties established earlier in 

this Chapter; however, of greater practical interest is the consideration of accurate estimation 

procedures in incomplete or imbalanced data sets. 

Estimates from unbalanced data sets for fixed effects are referred to as empirical best linear 
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estimates, and estimates for random effects are empirical best linear predictors (Laird and Ware, 

1982; Harville and Carriquiry, 1992). These are unbiased only in complete and balanced data 

sets, and they are empirical in that estimates for & and 1ý are derived based on least squares 

estimates ý. These variance matrices, & and 1ý, are then used to re-calculate an estimate 

This iterative process continues until convergence is reached (the reader is referred to Jennrich 

and Schluchter, 1986, for a detailed description of the procedures). 

As resulting estimates for fixed and random effects do not account for the iterative esti- 

mation of & and ! ýI and ý, the error associated with these being empirical generalised least 

squares estimators is too small as this uncertainty is not taken into account, leading to confi- 

dence intervals which may be too narrow. As such would typically lead to making it easier to 

demonstrate average bioequivalence, this is of obvious concern in bioequivalence studies, and 

has not received attention in the statistical literature. As an alternative however, it should 

be noted that estimates from method-of-moments are best, linear, unbiased, and independent 

only when a balanced complete data set is available (an infrequent occurrence in bioequivalence 

studies, see data appearing later in this Chapter). The discrepancies between these procedures 

and impact on average bioequivalence inference will be explored in subsequent sections. 

The resulting REML estimates in incomplete data sets, however, are not independent but 

are asymptotically unbiased estimators for the parameters of interest (Milliken and Johnson, 

Chapter 22,1992) with known large sample variance-covariance matrix (Searle, Chapter 10, 

1971). Let ý and t be asymptotically unbiased REML estimates for 3 and E, respectively, 

then the large sample variances for ý and t are (X'E-X)- and -E[ 02 L-1 ], respectively with aEaEl 

covariance 0 where L is the log-likelihood in expression (30). 

It should be noted that, while the comparison of fixed effects in this situation is relatively 

well characterised (see Kenward and Roger, 1997), protection of the Type I error rate for ABE 

has not been established by published simulation studies (we will address this in Chapter 5), 

and estimates of variance are not as well characterised in small samples. In the one-way analysis 

of variance, it is known (Swallow and Monahan, 1984) that variance estimates are biased by a 

negligible amount in small samples and are unbiased in a balanced setting. However, variances 

estimates in the designs used for bioequivalence are not precisely characterised (Zariffa et al., 

2000). The impact of this state of knowledge on the characterisation of aggregate criteria such 
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as PBE and IBE is of immediate concern (to be studied in Chapters 3-5), however, this does not 

greatly concern us for ABE unless it impacts inference. The impact of this state of knowledge on 

the characterisation of aggregate criteria is of immediate concern. We will remedy this situation 

in subsequent simulations to be described later in this thesis. 

We will concentrate upon SAS(ý)-based mixed effect, restricted maximum likelihood (Wolfin- 

ger et al., 1994) in this chapter as this procedure is recommended in the FDA draft and final 

guidances (1997,1999a, 1999b, 2001). To improve speed of convergence of these iterative proce- 

dures, SAS@ programming uses a 'short-cut' for models like (27) based on findings from Vonesh 

and Chinchilli (1997). Note that based on (28) and Theorem 2.1, 

vRj a2 ELL& 

MVN2 ( ýjuj TR BR+ 2 WRT 
and YTj 2 

2 Wr LORT O'BT+ 2 
WRil Rj2 2 ; 

ý2'yr 
aWR 0 

MVN2 02 

r 
YTjl; ý"Ti2 00 aWT 

2< U2 Hence, where O'Bt - Wt and variance estimates are constrained (Harville, 1977) to be positive, 

the REML algorithms described above may fail to converge in SAS@ (Data sets E and T are 

examples of this). However, by specifying starting values (method-of-moments estimates will 

usually serve for this purpose), using a TARMS' statement in SAS@, the models can usually be 

made to converge. Under such circumstances, statisticians should explore several starting val- 

ues to ensure that the model does not converge to a local maximum (Searle, 1971). Differences 

between these procedures mainly relate to the set of variance-covariance components used to 

estimate the matrix fl. In each procedure subtle differences in the way this matrix is specified 

can result in differences in the resulting estimated fl matrix resulting in differing estimates for 

the metrics of interest in bioequivalence assessment. 

The first model to be considered is referred to as 'UN' due to the 'unstructured' variance- 

covariance structure and 'unconstrained' parameter space used to express f2 using the following 

22 
set of variance-covariance parameters: (UBR 

7 WRT) O'BT) corresponding to our original descrip- 

tion. As known from Searle (1971) estimates resulting from this model should equate to a 

method-of-moments approach in balanced designs with no missing data. The following SAS(ý) 

code may be used: 

PROC MIXED METHOD=REML SCORING=50 MAXITER=200; 

CLASS SEQUENCE SUBJECT PERIOD REGIMEN; 

MODEL lnAUC = sequence period regimen /DDFM=SATTERTH; 
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RANDOM regimen / subject=subject type=UN; 

REPEATED regimen / group=regimen type=simple; 

(FDA Draft Guidance, 1997) 

Recall that the structure of the resulting variance-covariance estimates for an individual subject 
01 

22 
BR WRT OrBR WRT 

22 
LORT aBT WRT O'BT receiving sequence RTRT, IIRTRT and ARTRT, are as follows. fIRTRT is 22 
O'BR WRT (7BR WRT 

22 

(WRT 

'7BT WRT O'BT 

where 

WRT ---: WTR ý-- COV (YTij k) YRij k) 

2 
OrWR 000 

0a2 

and A WT 00 

-ne ative definite. RTRT is 29 00 aWR 0 Note that fl may not be non 
2 000 aw 

The second model is referred to as 'CSH' due to the variance-covariance structure and 

parameter space used to express Q using the following set of variance-covariance parameters 

(22 O'BR 7A UBT) and using the following SAS@ code: 

PROC MIXED METHOD=REML SCORING=50 MAXITER=-200; 

CLASS SEQUENCE SUBJECT PERIOD REGIMEN; 

MODEL lnAUC = sequence period regimen /DDFM=SATTERTH; 

RANDOM regimen / subject=subject type=CSH; 

REPEATED / group=regimen type=simple; 

(FDA Draft Guidance, 1997) 

The procedure 'CSH' is sometimes referred to as 'Constrained REML' as Sl is constrained to be 

non-negative definite (Harville, 1977) due to the constraint placed upon p, and the log-likelihood 

is maximised over the constrained parameter space (though this procedure may be modified to 

be unconstrained by adding the statement TARMS /NOBOUND; 'to the SAS@ PROC MIXED 

procedure above). 

The third model is referred to as 'FAO(2)' due to the variance-covariance structure and 

parameter space used. il is re-expressed as based upon the set of variance-covariance parameters: 

(O'BR) O'D Y O'BT) with adjustment to Z, andZ2 as appropriate. This procedure could also be 

referred to as 'Constrained REML' as f2 is constrained to be non-negative definite using SAS@ 

code as follows: 

PROC MIXED METHOD=REML SCORING=50 MAXITER=200; 

CLASS SEQUENCE SUBJECT PERIOD REGIMEN; 
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MODEL lnAUC = sequence period regimen /DDFM=SATTERTH; 

RANDOM regimen / subject=subject type=FAO(2); 

REPEATED / group=regimen type=simple; 

(FDA Draft Guidance, 1999b; FDA Guidance, 2001) 

Theoretically the three approaches (UN, CSH, and FAO(2)) should result in the same matrix 

0 as the functional forms are mathematically equivalent (as can be seen from the above). How- 

ever, the matrices fl can differ based on the parameterization of the model space corresponding 

to whether the covariance is denoted directly (UN: WRT) , denoted as a function of the correlation 

and variances (CSH: PO'BTO'BR), or denoted as a function of the difference in between-subject 
2 +0,2 _0,2 

variances (FAO(2): ' BR BT D). The constrained REML estimators for o, 
2 

using CSH have 2D 

been shown (Zariffa et al., 1998; Endrenyi and Tothfalusi, 1999; Kimanani et al., 2000a) to 

be positively biased when estimates are close to zero, and this should effect the assessment of 

average and individual bioequivalence. However, evidence to date of positive bias has been em- 

pirical or simulation based (Endrenyi and Tothfalusi, 1999) and has not been observed to effect 

inference (Hauck et al., 2000). We will study the bias and impact on inference further using 

retrospective analysis and simulation. 

We propose an alternative model, directly estimating the parameters of interest, based on 

the use of a random-intercept, random-slope model based on the cross-over model of Jones and 

Kenward (1989) and based on techniques described in Milliken and Johnson (Chapter 22,1992). 

Let Yij k, be the 1-th (1 = 1,2) replicated log, -transformed j-th period's observation (j = 1,2,3,4) 

for the k-th subject (k = 1,2,. . ., ni) in the i-th sequence group (i = 1,2). Then 

Yijkl : -- Ai + (P + Vk(i)) + 7ri + 03 + 6k(i))Td[i, jj + 6d[ijkll (31) 

where /-i is the grand mean, 

Ai, 7rj, and -rd[ij] are fixed effects for sequence, period, and formulation, respectively, 

1/k(i)7 G(i) and Ed[ijkl] are random effects which are normally distributed and independent 

): -: 0,2 with mean zero, Vark(i) B) the pooled (across formulations) between-subject variance, 

Var(G(i))=Z21, half the subject-by-formulation interaction, arid 2 

Var(6d(ijkl) )==0,2 t, the within-subject variance for test and reference formulations. In matrix W 
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notation, the model is again re-expressed as 

MVN(Xo, E) (32) 

where X is the design matrix as above, 0 is an 9x1 vector of fixed effect location parameters 

as above, and Var(y) = ZfIZ'+ A is a 4nx4n matrix of variance components. rl is composed 
2 in terms of the set (OrB) 

u' /2), and A is defined as above. In SAS@, this can be analysed using D 

the following code: 

PROC MIXED METHOD=REML SCORING=50 MAXITER=200; 

CLASS SEQUENCE SUBJECT PERIOD REGIMEN; 

MODEL lnAUC = sequence period regimen /DDFM=SATTERTH; 

RANDOM intercept regimen / subject=subject type=simple, 

REPEATED / group=regimen type=simple; 

a2 +Zh B2 01 
2 
B a2+f. 
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01 B +, 
2 

2 r) a B2 

Classical model building-maximum likelihood based testing procedu res (Neyman-Pearson 

type testing procedures described in Milliken and Johnson, Chapter 1,1992) to aid in this as- 

sessment however are not well established in data sets as small as those usually encountered 

in bioequivalence studies and should be applied with caution. However, techniques for model 

discrimination are available in the context of mixed modelling (see Lindsey and Jones, 1997 and 

Lindsey et al., 1999). The Schwarz Bayesian criterion (SBC; Schwarz, 1978) and the Akaike 

Information criteria (AIC; Akaike, 1973) may be applied to discriminate between models which 

differ in variance-covariance structure, and we will study what these criteria determine concern- 

ing the models later in this chapter. 

2.6 Properties of the Estimated Metrics and Inferential Procedures 

for ABE Assessment 

Comparisons between the estimated means ^^ AT-AR are (Jones and Kenward, 1989) normally- 

distributed with mean AT-AR and variance of 

((0.2 + 0-2 )+ (Or2 2 (0,2 
BwB+ ow) - 2(p)(V/'uB2 + ow2)(, V/aB2 + o-w2))/n =2w )/n in balanced two- 
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period cross-over designs with no missing data and n subjects. Estimates of variance may be 

derived using method-of-moments or REML estimation, and these estimates are unbiased (or 

asymptotically unbiased in the REML case) for the true variances. Tests of fixed effects are exact 

under the Huyhn-Feldt condition, and may be constructed in the usual fashion (see Chapter 1) 

for the assessment of average bioequivalence (FDA Guidance 1992,2001) in balanced, complete 

two-period cross-over data sets using method-of-moments. 

In bioequivalence studies, the Huyhn-Feldt condition for variances across formulations may 

not be applicable, and in a replicate design, the different variance estimates of each formulation 

are estimable. Vonesh and Chinchilli (1997) present methods for the estimation of total, between, 

and within-subject variances in replicate and cross-over designs. Here we note only that careful 

consideration of the covariance between observation must be implemented when analysing such 

data so as to prevent the classic errors associated with the analysis of cross-over data (Senn, 

1993; Senn, 2002). Note that estimates a2 and a2 in a two-period cross-over and estimates TR 

0,? = 0,2 (for t=T, R representing Test and Reference formulations) in replicate designs t Bt + 

should be correlated in a cross-over design (Jones and Kenward, 1989). 

Under the approaches to analysis of the replicate design described previously in this Chapter, 

it can be shown (Vonesh and Chinchilli, Chapter 4,1997) that the variance for AT - gR is equal 

-2 2222 +((0,2 +0.2 to (OBT+O'BR-2POBTO'BR+((O'WT+UWR)12))In = (OD WT WR)/2))/n in a balanced 

design with n subjects. In a two-period cross-over, the same model is used under the assumptions 

that inter-subject variance is homogeneous between formulations, that p is equal to unity, and 

that intra-subject variance is homogeneous between formulations (FDA Guidance, 1992). It can 

be shown (Vonesh and Chinchilli, Chapter 4,1997) that the variance for AT - gR in a two-period 

222+ U2 22 +0,2 cross-over is equal to (OBT + O'BR - 
2POBTO'BR + O'WT WR)/n = (UD + aWT WR)/n in a 

balanced design with n subjects. 

Small sample inference for average bioequivalence (FDA Guidance, 1992-2001; see also Chap- 

ter 1 and Section 2.1) where the comparison of interest involves AT - pR in a balanced or unbal- 

anced replicate design involves explicitly only fixed effects (Jones and Kenward, 1989; Kenward 

and Roger, 1997). In this context, it is easy to show (Vonesh and Chinchilli, 1997) that the 

101 



variance Of AT 
- AR is normally distributed with mean PT - AR and variance of 

+ aWT+aWR 

D2 

n 

in a complete data set. Inference for AT - AR involves the estimated variances based on the 

equation 
&2 

WT+&2 &2 +WR D2 

n 

which is assumed (in the case of missing data) to be centrally-X2 distributed. Satterthwaite's 

(1941) or Kenward and Roger's approximations (1997) to the degrees of freedom may be applied 

(these degrees of freedom are equivalent for one degree of freedom contrasts). Simulations for 

other study designs have shown (Kenward and Roger, 1997) that regardless of imbalance in 

the data set, assessment of mean differences appears to maintain a nominal Type I error rate. 

However, simulations referenced in Kenward and Rogers' (1997) previous work did not consider 

a replicate design, and work in this thesis will extend their findings to characterise the properties 

of the estimates arising from such models using simulation (Chapter 5). We first will use a data 

base of 51 replicate design data sets to investigate the properties of the models involved. 

In balanced, two-sequence (RTRT, TRTR), replicate cross-over design, with no missing 

2 data, unbiased method of moment estimators ý, MI, MT, and MR for J= YT - AR; O'j 

22 
Ol 2+ O'Wr+O'WR 

7 
Ol 2 

T) and a2 are known to be independent as shown in Theorem 2.1, where D2W WR 

the individual difference across formulations be denoted Iij : -- PTija - PRije such that 

s ni 
E T- 

-Tij 

j=l ni j=l 

I 

and 

mi 
s ni 

- E Diii 
- 

ii) 

i=i j=l 

Vonesh and Chinchilli (1997) show that ý is unbiased for 6, and Chinchilli and Esinhart (1996) 

2 21V 
showed that Mi - ujxv where v is the degrees of freedom associated with Mi. In a two- 

sequence (RTRT, TRTR) balanced replicate design with no missing data, v= (Ei=l ni) -s= 
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2, and it is easy to show that 

tn-2, (). 95) 

is a 90% confidence interval for 5= AT - AR (Vonesh and Chinchilli, 1997). This noted, we only 

rarely find balanced replicate designs with no missing data in such studies (see Section 2.7.1). 

Little focussed attention has been placed on the statistics of this situation to date. 

J, 0,2 10,2 
2 It is known (Searle, 1971) that REML estimates for the moments of interest D WTI O'WR 

are asymptotically normally distributed with known variances. The large sample variance for 

and E are (XIE-X)- and -E 
2 L-1 respectively with covariance 0 where L is the log- 8=1 I 

likelihood in expression (30). 

Theorem 2.2 An Asymptotic Confidence Interval for 6 

ý will be normally distributed in the limit with expected value J and large sample variance 

1'(X'E-X)-l where 11 is a vector such that 1'ý is asymptotically unbiased for l'O = J. 

Proof. Let g(ý) = L'ý be a linear function of ý such that g(O) = J. Then under Theorem 

3.3. A of Serfling (1980), '9' 
gýjAT and & 

9=IAR ali'T 

I 

'WeR 

I 

Then by application of Theorem 3.3. A (Serfling, 1980), it is found that g(gT, jiR) is asymp- 

totically normally distributed with expected value g(AT, pR) and variance DEjD! where D= 

(0,0)), 7 1) -1) and where E, = X'E-X)-. The proof then follows by matrix multiplication. 000 

Thus, substituting the estimated large sample variances :ý into this equation, it is easy to 

see that 

-, 
3:: F Z(O-95)ýr(X'F, -XN 

is an asymptotic 90% confidence interval for 6 --- ý AT - AR (where Z(O. 95) is the 95th quantile 

of the normal distribution). 

In many situations for average bioequivalence, however, sample size will be lower than 20 - 30 

calling into question the validity of an asymptotic procedure. Kenward and Roger's (1997) and 

Satterthwaite's (1941) techniques (these result in equivalent estimates in 1 degree of freedom 

contrast such as those of concern in ABE testing) may be used in this situation to develop a 

small sample confidence interval using an approximated t-distribution. Here, it is proposed that 
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a confidence interval as follows be derived for ABE assessment using the approach Giesbrecht 

and Burns (1985). Let 

tp (0.95) ýt1 (X , EI, -X 

where tr, (0.95) is the 95th quantile of a t-distribution with 

4/ni2(ni - 

with ci representing the coefficient corresponding to 1'X' and n representing the number of 

observations contributing to &i2* 

As we will see (Chapter 5), the constrained REML procedure recommended by FDA Guid- 

ance (2001) using Satterthwaite (1941) degrees of freedom for ABE testing in replicate designs 

results in biased estimates for variance components on occasion; however, it uniformly con- 

strains the rate of Type I error (of more immediate concern to Regulators and Consumers) to 

be less than 5% in ABE testing. Thus the FDA Guidance (2001) tacitly acknowledges that 

'While all models are wrong, some are useful. ' If Kenward and Roger's (1997) approach to 

estimation of the degrees of freedom is used, as currently implemented in SAS@, the degrees 

of freedom are the same as those found using Satterthwaite's procedure, however, the variance 

estimate for the confidence interval is inflated using the approach of Harville and Jeske (1992) 

to account for uncertainty introduced by iterative estimation in the fixed and random effects 

from the mixed modelling procedure to provide a confidence interval with at least 90% coverage 

probability. This results in confidence bounds which are slightly larger than those found when 

such an approach is not used and leads to slightly more conservative Type I error rates than 

those observed using the Satterthwaite option in SAS9. As these rates already protect public 

health risk (as established later in this thesis using simulation), we conclude that Kenward and 

Roger's (1997) procedure may also be applied to test for average bioequivalence and is protective 

of the Type I error rate for ABE. For the purposes of the retrospective analysis presented in 

this Chapter, Satterthwaite's degrees of freedom (and option is SAS@) was utilised as this is 

the recommended approach at present (cf. FDA Guidance, 2001) and is less conservative than 

the Kenward-Roger (1997) approximation. 

We will now turn to the exploration of data using these techniques. Simulations to answer 
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questions raised by these analyses will be reported in a Chapter 5 of this thesis. 

2.7 Retrospective Analysis 

We now have straightforward means of assessing the average bioequivalence in replicate designs 

between formulations using a variety of techniques. Several issues will be assessed by retrospec- 

tive analysis in Section 2.7: 

1. Model Discrimination among REML alternatives 

2. Differences in REML model estimates 

3. Use of REML versus Method-of- Moments estimation for ABE assessment under recommen- 

dations of relevant regulatory guidance and using the constrained and unconstrained REML 

asymptotic procedures described above. 

Unfortunately, as we will see subsequently in this Chapter, complete data sets are a rarity in 

bioequivalence studies, and method-of-moments estimation is of limited utility in such situations. 

2.7.1 Data 

Tables summarising the data to be analysed in retrospective analysis may be found in Tables 

32-33. Data analysed in this retrospective analysis are from replicate design studies performed 

at GlaxoSmithKline Pharmaceuticals and other studies posted to the FDA website 

(http: //www. fda. gov/cder/guidance/). All studies performed by GlaxoSmithKline were con- 

ducted in compliance with good clinical practice and were conducted according to a study 

protocol approved unconditionally prior to study start by an independent ethics review board. 

AUC and Cmax data were derived in each study period based on non-compartmental pharma- 

cokinetic methods and were analysed using SAS@ version 6.12. 

Of the 51 data sets (Table 32: A through ZF) from replicate designs in previous studies, 

31 data sets contained no missing data. Of the 20 data sets remaining, 14 data sets contained 

at least one missing AUC and Cmax observation. Five data sets were missing at least one 

observation for AUC but none for Cmax, and one data set (likely a data entry error) was 

missing an Cmax observation but had all observations for AUC. Data sets D, F, G, 11,12, J, 

K1-3, M, N1, WI-6, and X are balanced (i. e. contain no missing data and equal numbers of 
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subjects in each sequence). 

Twenty-eight data sets were randomised to 4 sequences (26 of which were TTRR, RRTT, 

RTTR, TRRT and the other 2 data sets were TTRR, RRTT, RTRT, TRTR), and 21 data sets 

were randomised to 2 sequences (19 of which were RTTR, TRRT and only two of which were 

RTRT, TRTR). Two data sets had 5 sequences of treatment administration. 

Only twenty-eight data sets were available with corresponding demographic information (Ta- 

ble 33: ethnicity, age, weight, height. ) Of these approximately one-third (9 of 28 data sets) were 

composed of an all male population. Fourteen of the 28 data sets were Caucasian, with the 

remaining data sets composed of at least one black or other (Oriental, Indian) subject. Height, 

weight, and age were standardised according to each study (where each subject served as their 

own control). Nineteen of 28 data sets with information available on gender had at least one 

female subject; however, only data sets C1, C2, F, Q1, Q2, and R had at least as many females 

as males. 

2.7.2 REML Model Discrimination 

We begin with discussion of REML model discrimination in the data base of replicate designs. 

REML model discrimination Akaike (AIC) and Schwarz Bayesian (SBC) criteria are listed in 

Tables 34 (AUC) and 36 (Cmax) for the four models (UN=Unstructured, CSH=Hetersceastic 

compound symmetry, FAO(2)=First-order analytic, RIS=Random-intercept and slope) discussed 

in Section 2.2. The corresponding value of the log-likelihood function given the estimates of 

the final converged model (discussed earlier in this Chapter) for AUC and Cmax are listed in 

Tables 35 and 37, respectively. Increasing AIC or SBC are indicative of better model fit. 

Inspection reveals that, while the AIC are larger for the RIS model relative to the others for 

the majority of data sets (suggestive of superior model fit), the change in criteria was usually 

less than or equal to 1 (the change in model degrees of freedom) for AIC. This also held true if 

other models were compared to the RIS model. Thus this criterion implies that the models are 

indistinguishable in terms of their performance relative to the value of the log-likelihood. 

For the SBC, however, the RIS model appeared to fit the data slightly better than the other 

models. For AUC, 33 data sets appeared to have improved fit in comparison to the FAO(2) and 

CSH models and for 29 data sets relative to the unstructured model as indicated by an increase 
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in the criterion of greater than or equal to -2-, 7,, (the change in model degrees of freedom 

accounting for sample size). For Cmax, the RIS model SBC exceeded the SBC of the FAO(2), 

CSH, and UN models by a difference greater than or equal to 71 in 37,36, and 31 data sets 5-1-5 -(n7 

respectively. However, it should be noted that the increases were not that much greater than 

-1 21; 7, -(n7 indicating that any improvement in RIS model fitting were very slight. g 

Exploring this further, we note that the AIC difference for nine AUC data sets and six Cmax 

data sets were greater than I for the UN model relative to the RIS model (indicating a slight 

improvement in fit for the UN covariance structure). However, in four of these AUC data sets 

(F, K3, ZD1, ZD2) and in three of the Cmax data sets (ZC2, ZD1, ZD2) the &2<0 implying D- 

that the f1i were not non-negative definite. For the SBC, two AUC and Cmax data sets (ZD1, 

ZD2) had a difference in UN SBC relative to RIS SBC of greater than -1 indicative of 2logTn-) 
&2 < 0. improved fit, however, in both data sets D- 

It should be noted that the values of AIC, SBC, and log-likelihood were identical in all 

data sets for the FAO(2) and CSH models, with the exception of data set E (to be examined in 

detail later in this Chapter). Fitted AIC and SBC for the UN model did not appear to result 

in distinguishable models relative to the CSH and FAO(2) models for the majority of AUC data 

sets (43 and 46 data sets, respectively) and Cmax data sets (48 and 48 data sets, respectively). 

Of the seven data sets for AIC and the four data sets for SBC where a difference in AIC of 

greater than 1 (AIC) or I for SBC was noted for the UN model, all cases (F, K3, L2, U, 21og(n) 

X, ZDI, ZD2 for AIC and F, K3, ZD1, ZD2 for SBC) had &2 <0 implying that the f2i were D- 

not non-negative definite. Similar results were evident for Cmax in data sets ZD1 and ZD2. 

Thus, it was found that values of the log-likelihood function, and information-statistics 

based upon them, did not appear strikingly different between models. Where the UN model 

performs better, in a qualitative sense, the estimates of U2 were frequently negative, greatly D 

complicating interpretation (to be discussed further in Section 2-8). These findings in combi- 

nation suggest that the REML models' performance is not distinguishable in practice but that 

care should be exercised in choice of best model based on review of the arising estimates. 
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2.7.3 Point Estimates from Method-of-Moments and REML Estimation 

We now turn to consideration of the estimates arising from these REML models and from 

method-of- moments estimation. 

Method-of-moments and REML based estimates may be found in Tables 38-47. Note that 

18 data sets for AUC (Data sets A, B, C1, F, K1, K3, L1, L2, N1, S, U, W1, W2, W3, X, 

ZD1, ZD2, ZD3) and 25 data sets for Cmax (Data Sets A, B, C1, E, J, K1, K2, K3, L1, L2, 

R, S, V, W1, W2, W6, Y, ZC1, ZC2, ZC3, ZD1, ZD2, ZD3) had &2 <0 when estimated using D 

method-of-moments. REML (UN) estimates were similarly negative, save for data set S (AUC) 

)2 <0 and ZA (Cmax). In 13 data sets (A, B, C, K1, K3, L1, L2, S, W1, W2, ZD1, ZD2, ZD3 &D 

for both AUC and Cmax method-of-moments analyses. 

Differences in estimates were minor in number for method-of-moments estimates relative to 

REML estimates from the UN model for the difference in formulation means (e4T-f'R) for com- 

plete and balanced data sets. However, within-subject and between-subject variance estimates 

were not homogeneous. Differences however were slight and likely due to numerical error in 

method-of-moment and REML procedures. It will be of interest subsequently to see whether 

the differences in procedures result in differences in inferences with any frequency. 

Model estimates for efT-fRappeared homogeneous for AUC and Cmax between the FAO(2) 

and CSH models (see Tables 42-45), except for data set E (Cmax) which fails to converge in 

REML unless extraordinary steps are taken (in the SAS@ code, starting values must be pre- 

&2 were also homogeneous, except for specified for the variance components). Estimates for WT 

&2 data set R (AUC) and E and W4 (Cmax), as were estimates for WR (with the data sets E and 

W4 displaying differences between FAO(2) and CSH for AUC and Cmax). 

&2 Between-subject variances were more heterogeneous. Estimates for BT differed for data 

&2 &2 
R sets C2, D, and R in AUC data, however7 BR in the FAO(2) analysis were lower than B in 

the CSH analysis in data sets C2, D, G, H, 12, M, N2,01,02, Q1, Q2, R, T, V, W4, W5, W6, 

Yj ZA, ZB, ZC1, ZC3, ZD4, ZE1, ZE2, ZE3 (26 of the data sets for AUC). For Cmax data, 

&2 &2 estimates for BT differed for data sets E, F, and W4, however7 BR in the FAO(2) analysis were 

&2 lower than BR in the CSH analysis in data sets C2, D, G, H, 11,12, M, N1, N2,01,02, P, Q1, 

Q2, T, W3, X, ZA, ZB, ZD4, ZE1, ZE2, ZE3, and ZF (24 of the data sets for Cmax). In 3 Cmax 

&2 &2R data sets (E, F, S), estimates for BR in the FAO(2) analysis were higher than B in the CSH 
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analysis. In the majority of cases, this contributed to estimates for &2 for CSH being greater D 

than &2 estimates in FAO(2) analyses, see Figure 14. It will be of interest to see whether this D 

decrease in estimated variation impacts inference. 
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Estimates for the RIS analysis appeared similar to the other procedures. No clear pattern 

was evident, and the magnitude of variance estimates were similar to other procedures (except 

in that the estimate for &2 is constrained to be greater than or equal to zero in accordance with D 

the other constrained REML procedures). 

Therefore, while the REML models appear to perform equally well in practical application. 

Estimates from some models may not be 'meaningful' - in the classical sense of true variance 

estimates being positive. We will discuss the interpretation of the null and negative variance 

estimates in Section 2.8 and assess whether the difference in estimates between models results 

in differential inference in Section 2.7.4. 

2.7.4 Average Bioequivalence Assessment from Method-of-Moments and REML 

Estimation 

Inference reached based upon the REML models agreed closely with that of the method-of- 

moments procedure (see Tables 48 through 53). Point estimates agree closely between proce- 

dures, and in general, although variance estimates may differ to some small extent between 

models (see previous Section for details), in only very few cases did inference differ between 

procedures. 

In particular, estimates for the ratio of geometric means, lower and upper 90% bounds ap- 

peared nearly identical between the CSH and FAO(2) procedures (as would be expected based 

on their model assessment results and the properties of the constrained REML estimation pro- 

cedure) though careful inspection of the REML results revealed a very subtle decrease in the 

width of the confidence interval due to a decrease in the &' for the FAO(2) model. Method-of- D 

moments and Unstructured REML model upper and lower bounds appeared narrower than the 

corresponding CSH/FAO(2) bounds as would be expected in 'unconstrained' procedures when 

&' can be less than or equal to 0. Interestingly, no clear pattern was evident in the random- D 

intercept and slope models limits, though in most cases the limits were similar to the CSH 

and FAO(2) limits (as would be expected in that the RIS model is also a constrained REML 

procedure) . 

In data set L2 for AUC, the ratio of geometric means (see Table 48) was 0.871 for the method- 

of-moments procedure versus approximately 0.864-0.865 for the REML modelling procedures 
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(not to be unexpected in such an imbalanced data set. ) Note however, that while the lower 

90% bound was 0.808 and 0.801 for the method-of-moments and Unstructured REML models, 

respectively, the lower 90% bound was 0.792 for the CSH, FAO(2), and RIS models. Thus while 

one set of models and procedures indicates that average bioequivalence had been demonstrated, 

the REML models constraining &2 >0 disagreed. Indeed, results of the method-of-moments D- 

and unstructured REML modelling procedures indicated that &2 <0 while the other procedures D 

constrained it to be null. Final conclusions in such a data set are problematic as the true value 

is not known, and REML model discrimination statistics (see earlier discussion in this Chapter) 

were not informative. 

In data set ZA for AUC, the upper 90% bound for the method-of-moment procedure fell just 

above 1.25 while the REML models indicated an upper bound of just below 1.25. Estimates 

for the ratio of geometric means and &2 were slightly higher for the method-of-moments model D 

relative to the REML counterparts. Such results are not unexpected in such small unbalanced 

data sets. 

Of the remainder where procedures agree, most of the data sets demonstrated average bioe- 

quivalence for AUC regardless of procedure. For AUC, 43 data sets demonstrated ABE while 

six data sets did not. Of these six, five data sets failed ABE due to a lower bound below the 

0.80 cut-off (Data Sets G, Il, 12, T, ZD1; see Table 49), and one data set failed due to an upper 

bound in excess of the 1.25 cut-off (Table 50: Data Set Q2). 

In data set Y for Cmax, the method-of-moments, CSH, and FAO(2) procedures indicated that 

average bioequivalence was not demonstrated while the unstructured and random-intercept and 

slope models indicated that it was. While the within-subject variance estimates for the reference 

formulation appeared slightly lower for the Unstructured and RIS models relative to the other 

procedures, no clear cause of these discrepancies were observed in review of the data. 

Of the remaining Cmax data sets, most (n = 36; see Tables 51 through 53) demonstrated 

average bioequivalence. Nine data sets failed to demonstrate ABE due to a lower bound falling 

below the 0.80 cut-off (Data Sets A, G, 11,12, L2, P, T, ZD1, ZE1; see Table 52) while six data 

sets failed to demonstrate ABE due to an upper bound in excess of the 1.25 cutoff (Data Sets 

F, 02, Q2, ZA, ZB, ZF; see Table 53). 
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2.8 Discussion and Findings 

For highly variable drug products (intra-subject coefficient of variation greater than 30%), repli- 

cate design studies are clearly the study design of choice in demonstrating average bioequiva- 

lence. In example studies I and 11, similar bioequivalent, results could have been obtained from 

a standard two period cross-over design; however, 160 subjects would have been enrolled in each 

study to ensure equivalent probability of success. Sample size can be reduced by up to 50% by 

using a replicate design (while the number of doses stays the same as in a typical two-period 

cross-over study and study duration doubles) . 

However, in the design of bioequivalence studies, practitioners should carefully consider the 

nature of their drug product at the design stage. In particular, the assumption that inter-subject 

variance is homogeneous (i. e. that variation associated with subject-by-formulation is null - see 

Hauck et al. (2000) and Zariffa et al. (2000) for more details) should be carefully considered as 

well as the assumption that relative bioavailability of the drug products is truly unity. Power 

to demonstrate bioequivalence using a standard two-period cross-over design will be reduced in 

either case if the assumption is violated. Allowance for these factors should be made regardless 

of the design employed. 

It is generally the case that subject-by-formulation interaction variance may be assumed to 

be null when the study is planned. In this context, only roughly half the sample size required 

for a two-period cross-over trial need be recruited while the number of assessments remains the 

same. In cases where this variance is not null, the replicate design offers the additional benefit 

that this variance term may be separated from intra-subject variation leading to enhanced 

understanding of the study outcome (Grahnen et al., 1984). In a two-period cross-over, this 

variance is confounded with intra-subject variation leading potentially to an inconclusive study 

without identification of cause. 

In general, studies of this nature compete for clinical resources (i. e. beds and clinic space, 

laboratory resources) with similar studies of brief duration. As such, it is generally of interest 

in situations with limited resources to limit sample size in favor of extended study duration 

using replicate designs. Moreover, in a statistical sense, the quality of the data is improved 

upon replication of administration within subject and leads to a definitive study outcome. The 

alternative - repeating a failed two-period cross-over study - generally leads to increased costs 
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beyond those incurred by using a replicate design. Of particular note, it has not been observed 

in published data sets that increased duration of study leads to substantially more drop-outs 

than the two-period cross-over design in these type of studies (Zariffa et al., 2000). 

Group-sequential study designs can result in substantial cost savings when applied to bioe- 

quivalence studies. Study III was terminated at the first look, resulting in cost savings of 

approximately 45% relative to the full study design. Had the study been designed in a more 

traditional fashion (two period cross-over with no interim looks), sample size would have been 

as large as n= 300, which some might find prohibitive for demonstration of bioequivalence in 

a properly powered, well-controlled setting. Practitioners using such group-sequential studies 

should carefully consider the choice of Type I error spending function and decision rule for stop- 

ping the trial at each look when the trial is designed to ensure that adequate power is available 

to meet the study objectives, to ensure a clear decision on bioequivalence. Practical considera- 

tions, such as the number of beds and other resources available (sampling kits, personnel, etc. ) 

should also be carefully considered in planning designs for highly variable products. 

Study conditions and clinical procedures should be carefully monitored to ensure that ho- 

mogeneity is observed across cohorts in a group-sequential study. Failure to do so may lead to 

incongruent variance estimates and complicate data interpretation. Under the assumption that 

study conditions are controlled across study parts and the study population is homogeneous, 

variance estimates should be homogeneous across study parts and methods of pooling variance 

estimates across cohorts may be applied in straightforward manner (Jennison and Turnbull, 

2000). While testing procedures can be constructed to compare across cohorts, based on stan- 

dard procedures for comparison of variances, it has been found that the precision of variance 

estimates is poor in such designs (Zariffa et al., 2000), and resulting testing procedures should 

be viewed with caution. 

Simulations (Gould, 1995) indicate that consideration of the decision rule in conjunction 

with the choice of sample size when performing the first interim analysis allows for use of a 

slightly less conservative Type I error spending function than that proposed by Pocock (1977). 

Use of such a procedure results in an overall Type I error rate of precisely 5% and allows for the 

construction of confidence intervals as small as 93.3% for some study designs with an interim 

and final look. However, due to the sensitivity of such Type I error rates to logistic difficulties 
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encountered during the study (i. e. dropouts), it is recommended that the simple, straightforward 

Pocock or Bonferroni spending functions be used in practice. 

If group sequential studies such as Study III continue to the second look, the variance estimate 

and the estimates for the mean effects of each formulation in the final analysis should be adjusted 

to avoid bias by the interim analysis in accordance with the procedures described by Jennison 

and Turnbull (2000). Practitioners designing such studies should take this adjustment into 

consideration when powering their group-sequential studies. 

In combination, replicate and group-sequential designs make it feasible to meet and beat 

seemingly impossible regulatory hurdles with regard to demonstration of average bioequivalence. 

Retrospective analysis of 51 replicate design data sets revealed that inference for average 

bioequivalence was relatively insensitive to choice of method-of-moment or REML estimation 

procedure. Discrepancies were observed between procedures in only a very limited subset of the 

data. However, inference in such situations can be problematic. 

Differences in choice of model parameterisation did have an effect on model estimates. How- 

ever, it was found that values of the log-likelihood function, and information-statistics based 

upon them, did not appear strikingly different between models. Where the UN model performed 

2 better, in a qualitative sense, the estimates of UD were frequently negative, greatly complicating 

interpretation. These findings in combination suggest that the models' performance was not 

distinguishable in practice but that care should be exercised in the choice of best model based 

on a review of the obtained estimates. 

FAO(2), CSH, and RIS appeared to be conservative procedures in that variance estimates 

were constrained to be null or greater, and so resulted in potentially wider confidence intervals 

than the corresponding Unstructured REML or method-of-moment procedures. However, this 

affected inference in only one, problematic data set where seemingly minor changes in estima- 

tion for variance components contributed to the findings. In the other 50 data sets, no clear 

discrepancy in inference was evident. It should be noted that characterisation of these variance 

components is also of immediate concern in PBE and IBE assessment. 

Confidence intervals for ABE assessment generated using the CSH procedure will in gen- 

eral. be wider than those generated using the FAO(2) analysis regardless of the fact that the 

information statistics (AIC, SBC) are the same. 
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Statisticians using the replicate design to establish average bioequivalence should carefully 

consider the type of estimation procedure to be used while designing the study. Should REML 

estimation be used (as would be expected in most cases where drop-outs and missing data 

cannot be ruled out), a procedure should be chosen which will consistently predict the outcome. 

12 f O'D estimates are expected to be non-null, it is evident that any of the four REML procedures 

described are roughly equivalent. However, interpretation when estimates for this variance 

component are null, or in unstructured models are negative, is somewhat problematic. 

While the REML models appeared to perform equally well in practical application, estimates 

from some models may not be 'meaningful' - in the classical sense of true variances being positive. 

Moreover, information statistics are misleading in that equivalent values do not imply equivalent 

estimates of variation due to the constraint on various parameters in the likelihood. 

In cases where resource constraints require that a minimal sample size be used in these 

studies, it is recommended that simulation studies be used in the study planning (see Chapter 

5) to ensure that the choice of estimation procedure will not effect inference. Convergence of 

the REML estimation procedure should be carefully considered, and it may be useful to use the 

bootstrap to characterise the findings from the estimation procedure. 

It is concluded that replicate designs may used easily and effectively to demonstrate average 

bioequivalence for highly variable drug products. Statisticians should, however, exercise caution 

in the choice of modelling procedure when using SAS(ýý-based approaches to the modelling of 

pharmacokinetic data in bioequivalence studies. 

However, unanswered questions remain: 

1. Do estimates from the REML models and Method-of-Moments behave as normal variables 

in small samples and when there is missing data? 

2. What is the bias in REML estimates for the components of interest in small samples and 

when there is missing data? 

3. Of those procedures found to provide acceptable estimates for the moments of interest, what 

is the Type I error rate for average bioequivalence using REML procedures in small samples? 

Simulations will be conducted in Chapter 5 to address these and other questions arising from 

the use of replicate designs in the assessment of PBE and IBE. We now turn to these topics. 
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Small and Large Sample Properties, Estimation, and 

Inference for Individual Bioequivalence 

The findings of this chapter were presented at the annual American Society of Clinical Phar- 

macology and Therapeutics meeting (Patterson et al., 2000a), at the American Association of 

Pharmaceutical Scientists joint workshop with the USA Food and Drug Administration (Zariffa 

and Patterson, 2000), at the American Statistical Society Joint Statistical meetings (Patterson 

and Jones, 2002e), and at the International Society of Clinical Biostatistics meeting (Patterson 

and Jones, 2002f). Aspects of the findings were published in the Journal of Clinical Pharma- 

cology (Zariffa and Patterson, 2001), in Pharmaceutical Statistics (Patterson and Jones, 2002a; 

2002g), in the Proceedings of the Jotnt Statistical Meetings (Patterson and Jones, 2002h), and 

in a series of a GlaxoSmithKline technical reports (Patterson et al., 2001e; Patterson and Jones, 

2002b-c). Aspects of the findings relating to use of an alternative individual bioequivalence 

metric, the Kullback-Leibler distance, were published in Dragalin et al. (2002) but will not be 

discussed further in this thesis. 

3.1 Introduction, Previous Research, and Goals of Chapter 

In this Chapter, key ideas in individual bioequivalence will be quickly reviewed, and previous 

research by the author will be summarised in order to illustrate the genesis of research topics 

explored in the remainder of the Chapter. 

1.1 Review 

We now turn to detailed discussion of the use of retrospective analysis and simulation in bioe- 

quivalence assessment. Following review of previous research, inferential procedures in individual 

(IBE) bioequivalence will be assessed, and it will be shown how retrospective analysis of data 

is used to assess performance of the metrics in bioequivalence assessment. Such an exercise 

is unlikely to yield definitive conclusions as to the proposed PBE and IBE criteria due to the 

usual caveats associated with relatively small retrospective analyses. It does however offer the 

likelihood of providing useful observations and possibly highlighting key areas where further 

investigations are needed. As such it deepens our understanding of the issues involved so that 
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a continually improved and more informed dialogue can take place. Simulations will be used in 

a subsequent Chapter to assess hypotheses arising from this exercise, and questions remaining 

to be addressed by additional data collection will be described. 

To review, average bioequivalence (ABE; FDA Guidance, 1992) has traditionally been used 

as the standard for market access with regulatory limits of twenty percent. This approach was 

discussed in Chapter 2 and will not be discussed further here. 

In bioequivalence studies, using a replicate design with sequences RTRT and TRTR, the 

following mixed model for log, -transformed observations is commonly accepted (Jones and Ken- 

ward, 1989). Let Ytik be the k-th response (k = 1,2.... ) for the j-th subject in the cross-over 

trial administered formulation t (t = T, R) and 

Ytik 
--- ý 6i + Etik : -- jLt + Vtj + Etjk 

where 

vtj and Etik are independent with mean zero 

2 Var(vtj) = O'BV the between-subject variance, 

2 Var(vTj - vRj) = O'D7 the subject-by-formulation interaction variance, 

COV(VTj 
7 VRj) ý'-- PUBTO'BRi 

Var(Etik) 
---:: 0'2 t, the within-subject variance, W 

COV(Etjk 
7 Etik') 7-- 0, for k :A k'. 

Note that nuisance effects (period and sequence effects) may be fitted in practice (Jones and 

Kenward, Chapter 4,1989) but are omitted from the above description for the sake of clarity. 

The above model may be fitted using general linear models (corresponding to a method-of- 

moments approach), maximum likelihood or restricted maximum likelihood based procedures. 

This type of study design has been used for some time to assess average bioequivalence (Chapter 

2) but was proposed for a different purpose in FDA Guidance (1997). 

Following the original proposal in 1997 (cf. FDA Guidance), in August 1999, the FDA re- 

proposed new guidelines for the assessment of bioequivalence: population bioequivalence (PBE) 

and individual bioequivalence (IBE) (FDA Guidances, 1999a and 1999b) and finalised proce- 

118 



dures in 2000-2001 (FDA Guidance, 2000b, 2001) based on ideas developed by Anderson (1993) 

and Anderson and Hauck (1983,1990). In the case of pre-market approval, one can formu- 

late the bioequivalence question as "Can a patient begin their therapy with either formulation 

(conunercial or clinical trial) and be assured same results in terms of safety and efficacy? " This 

has been called the concept of prescribability (Anderson and Hauck, 1990) and is linked to 

population bioequivalence (PBE). This topic will be addressed in Chapter 4. 

In the case of post marketing changes, the bioequivalence question becomes: "Can I safely 

and effectively switch my patient from their current formulation to another? " This has been 

called the concept of switchability (Anderson and Hauck, 1990) and is linked to IBE. The crite- 

ria used to assess IBE under the proposed FDA draft guidance (1997-1999) and finalised proce- 

dures in 2000-2001 (FDA Guidance, 2000b, 2001) aggregates the difference between population 

means and variances and accounts for subject predictability from one formulation to the other 

(subject-by-formulation interaction, Ekbohm and Melander, 1989). In addition, the individual 

bioequivalence metric allows for scaling of the regulatory limits based on the within-subject 

variability of the reference product. 

Individual bioequivalence is assessed using the following aggregate statistic (FDA Guidance, 

1997). 

2 )2 2+0, 
W2 JUR + O'D T- UWR 

er2 max(0.04, WR) 

Because the within-subject variance of each formulation cannot be separately estimated from 

between-subject variance estimates in most two-period cross-over designs of the form I TR, RT 

1, a replicate design is generally required. It should be noted that if the Huyhn-Feldt condition 

(1970) is assumed for between-subject variability across formulations, it is sometimes possible to 

estimate within-subject variability for each formulation using a restricted or maximum likelihood 

2 

approach to inference. However, under this approach, subject-by-formulation interaction, OrD) 

is assumed to be null. Because the within-subject variance of each treatment can not usually be 

reliably and separately estimated in a two-way cross-over f TR, ITT I (unless the assumption that 

between-subject variability is homogeneous is made along with the assumption that correlation 
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is unity), a replicated design (a cross-over with sequences I TRTR, RTRT }) is required for IBE 

assessment. 

Note that, due to the nature of this 'aggregate' criterion, differences in means in this criterion 

can be 'negated' by decreased within-subject variance for the test formulation. Some have noted 

this to be an undesirable property of the proposed metric, (Endrenyi and Hao, 1998c), and it 

is known that such trade-offs do occur in practice (Zariffa et al., 2000). Additionally, it should 

be noted that the between-subject inconsistency of the test-reference comparison quantified by 

2 
estimated UD might be an inadequate measure of the switchability (Zariffa et al., 2000). 

3.1.2 Previous Research 

This retrospective analysis (published in Zariffa et al., 2000 and performed by the author) will 

now be discussed in more detail. Analysis was performed on 22 data sets from 15 replicate 

cross-over bioequivalence studies (see Data sets A through 02, Section 2.7.1) and is sunnnarized 

below. AUC and Cmax parameters from these studies were analyzed using average, population, 

and individual bioequivalence methods (FDA Guidance, 1997). Practical issues involving the 

behavior of the new criteria and its expected impact on sample size for highly variable drug 

products were presented, and the characterization of key parameters and their inter-relationships 

were discussed with particular emphasis on the subject by formulation term in the individual 

bioequivalence criteria. It was concluded more studies and simulations were desirable before 

full-scale implementation of population and individual bioequivalence criteria. 

In each study, subjects provided data on four separate sessions separated by adequate 

washout to avoid residual drug concentrations from the previous occasion as described in Chap- 

ter 1. Summary measures AUC and Cmax were derived in each period (as six of the 15 studies 

involved multiple drug components, a total of 22 data sets were available). 

These data were subjected to statistical analysis under the average bioequivalence guid- 

ance from FDA (cf. FDA Guidance, 1992) as follows. LogAransformed AUC and Cmax were 

modelled separately using a general linear model (GLM in SAS@) with terms accounting for 

sequence, subject within sequence, period, formulation, and formulation by subject within se- 

quence interaction. The contrast AT - AR (where T=test and R=reference formulation) was 

derived based on the difference in least squares means, and a 90% confidence interval is derived 
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based on the mean-squared error estimate for the formulation by subject within sequence inter- 

action term. These quantities were then exponentiated to derive the ratio of geometric means 

(PE= e4r-f'R) and a corresponding confidence interval. If this confidence interval falls com- 

pletely within the interval (0.80 - 1.25) for both AUC and Cmax, then average bioequivalence 

was demonstrated. 

Under the proposed guidance for population and individual bioequivalence (FDA Guidance, 

1997), analyses were conducted using a two stage, restricted maximum likelihood model (model 

&2 &2 ý' &2 
, 

&2 &2 (22)) where estimates AT, ARI 
BT, BRI D WT) WR are derived as appropriate to the 

criteria under study ((23) for population bioequivalence and (24) for individual bioequivalence). 

Inference was assessed based on 2000 bootstraps (Efron and Tibshirani, 1993). If the upper 

ninety-five percent bound on the FDA metric, based on the nonparametric-percentile method 

(Efron and Tibshirani, 1993), falls below the value of 1.74 for population bioequivalence and 2.49 

for individual bioequivalence for both AUC and Cmax, then bioequivalence is demonstrated for 

the endpoint under study as appropriate. See Section 1.5 for discussion of derivation of these 

goalposts. Analyses were performed on COMPAQ Deskpro Pentium machines using SAS@ for 

Windows 6.11, and an external statistician validated results on a subset of five data sets. 

Of the 22 data sets for AUC, 19 pass average bioequivalence, all pass PBE and 20 pass IBE 

(see Figure 15). Of the three data sets that failed average bioequivalence, all passed PBE and 

one passed IBE. The results for Cmax are more variable (see Figure 16). Of the 16 data sets 

where average bioequivalence is demonstrated, one data set failed both PBE and IBE. Of the 

six data sets that failed average bioequivalence, two passed both PBE and IBE, three passed 

PBE but not IBE and one failed all three criteria. There were five data sets that passed average 

bioequivalence and PBE but not IBE. 
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Figure 15: Results of retrospective analyses of AUC in SB database of 22 data sets: Average, 
Population, and Individual Bioequivalence (Zariffa et al., 2000) 
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Figure 16: Results of retrospective analyses of Cmax in SB database of 22 data sets: Average, 
Population, and Individual Bioequivalence (Zariffa et al., 2000) 
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As described in Chapter 1, the proposed criteria for PBE and IBE are based on aggregate 

test statistics which tradeoff differences in means relative to difference in variances. Data set N1 

for Cmax (Figure 16) is an example where a modest mean difference of 6% is overshadowed by 

an increase in the test formulation variability for both PBE and IBE. The IBE criteria further 

penalizes the sponsor of a bioequivalence trial when the estimate Of UD is non-zero. Data set 

M for Cmax (Figure 16) is an example of this feature. Here the mean and variance differences 

are negligible but the estimate for subject-by-formulation interaction standard deviation is quite 

large (0.23) contributing directly to the failure to demonstrate IBE. Last, the effect of scaling to 

the reference formulation in PBE and IBE can offset both differences in means and increases in 

the test formulation variability. As an example of this, consider data set 12 (Figure 15) where a 

33% reduction in mean AUC is offset by the scaling in PBE. This same data set could not pass 

IBE due to a large subject by formulation interaction. These few examples from the database 

highlight the complexities and inter-relation between the various components in the PBE and 

IBE criteria. 

As the exact distribution of the test statistics for both PBE and IBE were not known at the 

time the draft guidance was issued (FDA Guidance, 1997), a bootstrap procedure was suggested 

by FDA for inference assessment. The bootstrap procedure gives rise to curious phenomena in 

the boundary region when data sets exhibit reference product variances just above the cutoff 

value of 0.04. In such cases, the decision to reference or constant scale is made based on 

the original data set and each bootstrap sample is then scaled independently to the bootstrap 

sample's or the constant value of a' for PBE and of o, 
2R for IBE. Given the distribution of RW 

the variance component, the aggregate test statistic from the separate bootstrap samples may 

be over estimated as the denominator term is often lower than the value in the original data set 

and the cutoff of 0.04. A striking example of this feature is provided by the Cmax data in data 

set E (Figure 16). Here the estimate Of O'WR is 0.204, just above the standard deviation cutoff 

value of 0.20. Using the reference scaled procedure as outlined in the draft guidance, we achieve 

an upper 95th percentile of 3.67 for IBE thus failing to demonstrate IBE. It should be noted 

that using a constant scaled IBE approach (which is theoretically more conservative), the upper 

95th percentile of the bootstrap distribution is 2.08 indicating data set E would have passed 

IBE. 
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It was anticipated that minor modifications to the bootstrap procedure could remedy this 

curious situation. Alternatively, sponsors could be allowed to make the decision to reference or 

constant scale based on the properties of the specific data set for the study being analyzed. 

Reports subsequently published separately (Shao et al., 2000a-b) indicated that the bootstrap 

procedure proposed by FDA (cf. 1997 Guidance) is consistent when estimates for the reference 

product variation differ from 0.04 and discussed alterations of the bootstrap procedure to ensure 

accurate, precise estimates in the neighborhood of 0.04. Conservation of Type I error using these 

approaches however was not well studied (we will address this in Chapter 5), and we will consider 

practical performance of this approach using the database of replicate cross-over designs. 

It should be noted that sponsors of bioequivalence studies would bear additional resource 

burden for products with low to moderate variability in the reference formulation to assess IBE 

(see Table 14 below) . In contrast, the scaling feature of the PBE and IBE criteria lead to a 

decrease in sample size requirements for highly variable drug products (Table 14). In order to 

demonstrate this, random selections of data from half the subjects in each sequence in data set 

B (see Section 2.7.1) were taken, and there was no difficulty in demonstrating PBE and IBE 

(data not shown). 

Table 14: Sample Sizes for Average and Individual Bioequivalence in a Four-period, Replicate 
Cross-over Design (FDA Draft Guidance, 1999b) 

07WR I N for ABE I N for I! FE] 

0.15 8 14 
0.23 16 30 
0.30 28 36 
0.50 72 36 

Assumptions: 90% power, 
O'D " O-Oli OWT O'WR 

Even without further data and studies, it was clear that at least some features of the PBE 

and IBE were undesirable. Chief was the use of the bootstrap procedure as suggested (FDA 

Guidance, 1997), particularly, the peculiar behavior of the methodology in the boundary region 

of 0.04 for scaling to reference product variation. This problem for scaling to reference variation 

would not be easily resolved in practice and had the potential to lead industry sponsors and 

regulators into unreasonable discussions regarding the final inference in such data sets. 

Finally, it should be noted that the scaling of the regulatory limits for compounds with 
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intrinsically large variance is a welcome feature of the proposed criteria, but this can also achieved 

within the average bioequivalence framework, for example by using scaled-average bioequivalence 

(Midha et al., 1997a-b). 

While some understanding can be gained by the above individual review of the various data 

sets and the reasons leading to the changes in inference under each criteria, careful examination 

of the various components of the criteria and their inter- dependencies across the entire database 

was more revealing. Such an approach was used in evaluating the key term of subject by 

formulation (OD) in the IBE criteria. See Chapter 1 for discussion of the importance of this 

parameter in IBE assessment. 

Subject predictability, as expressed by O'D, is of particular concern in assessing switchability. 

In three of 22 data sets, estimated AUC O'D exceed the 0.15 value. For Cmax, a more variable 

endpoint, the frequency of estimates exceeding the 0.15 cutoff was eight of 22 in this database. 

This might suggest a possible relationship between estimates Of O'D and the intrinsic variance 

of the PK metric itself. Further, when considering the 90% bootstrap CI for estimated O'D, 

the value of 0.15 was often contained in the confidence interval. In fact, this occurred in nine 

and 19 data sets for AUC and Cmax respectively. These large estimates Of O'D were associated 

with failure to demonstrate IBE in one of three cases for AUC and six of eight cases for Cmax 

(Figures 15 and 16). However, care needs to be taken when evaluating the magnitude Of O'D 

in isolation of other parameters of interest. Indeed, when reviewing the relationship between 

the subject predictability term and the inherent variation in the estimates for O'WR a possible 

positive correlation was observed (Figure 17). Again, it is noted that the SB database did not 

contain many examples of high estimated O'D coupled with low O'WR. This can be due to a true 

positive relationship between the two parameters or, equally possible, an observation bias in this 

database. 

Figure 18 offers the characterization of estimated O'D as a function of estimates for the 

difference in between-subject test and reference standard deviations (O'BT - UBR) and twice the 

product of the correlation and between-subject standard deviations (2(1 - P)UBTUBR). Here 

it is clear that there is a relationship between estimates for UD and the absolute difference 

between O'BT and 17BR- More curious are the large number of data sets with estimates for 

2 (1 - P)UBTOrBR of zero, associated with an estimated correlation of unity. Indeed, half of all data 
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sets exhibited estimates for correlation of unity using the PROC MIXED procedure described 

in the guidance. This observation deserves further consideration especially as alternative mixed 

modelling procedures and parametric inferential methods are entertained (and will be discussed 

further in this Chapter. ) As O'D is a key ingredient in the IBE criteria, these features were 

deserving further study, through the use of simulation, as will be considered in Chapter 5. 
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Figure 17: Estimated Subject by Formulation Interaction (0, D) and 90% bootstrap CI versus 
Estimated Within-subject Reference Product Standard Deviation (UWR) for AUC and Cmax 
(Zariffa et al., 2000) 
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Figure 18: Estimated Subject by Formulation Interaction Standard Deviation (UD) in Relation 

to the Difference in Between-Subject Variability in Test and Reference Products (UBT - UBR) 

and the Corrected Correlation (2(1 - P)O'BTO'BR) (Zariffa et al., 2000) 
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Further observations regarding O'D can be found in the work of Endrenyi et al. (2000). In 
22 

&2 = &2 
&WT +&WR ) is this paper it was established that the method-of-moments estimator D12 

2 
unbiased (Chinchilli and Esinhart, 1996) for UD with variance 

22 
WW (0'2WT+O'WR 2 )2 (O'wT+172wR)2 

2+ t7D 
+2 

n-1n 

in balanced, replicate designs. 

We now turn to considerations for further research. While there is little to no evidence to 

suggest that the ABE criteria has failed to protect the public (Barrett et al., 2000), consumers 

may find the specific questions above related to PBE and IBE more relevant. One reviewer noted 

recently that very little data have been published to assess how the proposed FDA criterion per- 

form (Colburn and Keefe, 2000). There is some level of intuitive appeal for both population and 

individual bioequivalence although it is expected the individual criteria would be more relevant 

to consumers as they 'switch' to generic formulations of chronically administered medications. 

It should be noted here that one of the key provisions of the 1999 draft FDA guidance 

was the suggestion for what has been termed a 'public health experiment' or mandatory data 

collection period (Montreal, AAPS/FDA Workshop, August/ September 1999). Sponsors of any 

bioequivalence study would be compelled to submit data from a replicate design to FDA for 

approval to market. Subsequent discussion at the Advisory Committee for Pharmaceutical 

Science (September 1999, Washington DC) resulted in the recommendation that market access 

not be permitted unless average bioequivalence had been demonstrated under existing criteria. 

Restricting the 'experiment' to a class of drugs such as controlled release formulation and highly 

variable drugs was also suggested. These proposals were adopted in the finalised guidance (FDA 

Guidance, 2000b) but were subsequently removed (FDA Guidance, 2002). 

This calls for careful and meticulous examination of existing replicate design data sets prior 

to concluding the 'public health experiment' so as to set provide a comprehensive outcome for 

the exercise and for the careful, scientific consideration of viable alternatives to the procedure 

developed by the FDA. 

It should be noted that ideas relating to assessment of population bioequivalence have been 

underdeveloped in the statistical literature. Attention has focussed on individual bioequivalence, 

in the majority of publications and meetings on the topic (see Chapter 1). Note that the FDA 
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metric (23) does not account for each subject as their own control as is the case in cross- 

over designs. Ignoring this relationship is a classical error in cross-over designs (Jones and 

Kenward, 1989; Senn, 1993; Senn, 2002). A framework proper to the assessment of population 

bioequivalence in cross-over designs will be developed in Chapter 4. 

3.1.3 Goals of Chapter 

In this chapter we will develop frequentist procedures for assessment of individual bioequivalnce. 

Emphasis will be placed upon the use of unbiased (or asymptotically unbiased) procedures 

appropriate to the study design performed and data collected. Retrospective analysis will be 

used to assess the performance of procedures developed in practice, and simulation studies to 

assess any hypotheses resulting from the exercise will be defined for Chapter 5. 

Estimation and inferential procedures for FDA proposed assessment in individual bioequiv- 

alence assessment will be explored, and an alternative testing procedure to those currently 

available will then be developed. 

Retrospective analysis using the procedures developed in the previous Chapters and this one 

will be conducted and discussed based on the database of replicate cross-over designs described 

in Section 2.7.1. Based on these findings, a plan and program for simulation studies are prepared 

to assess hypotheses generated from the retrospective analyses. Discussion of the findings and 

issues to be addressed in the remainder of the thesis will conclude discussion in this Chapter. 

We adopt the Method-of- Moment and REML procedures described in Chapter 2 for the 

estimation of moments involved in individual bioequivalence assessment. See Chapter 2 for 

further details. 

3.2 Properties of the Estimated Metrics for IBE Assessment 

Based on the above findings, we will first show that the metric proposed by the FDA in complete 

data sets (FDA Guidance, 1997,1999a, 1999b, 2000b, 2001) for the assessment of individual 

bioequivalence is asymptotically unbiased, though in small samples it carries a small positive 

bias related to degrees of freedom using method-of-moments estimation. We will then turn to 

the study of its properties using REML models described previously. 

The FDA (2001) guidance specifies that both the constant and reference scaled metrics 
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should be constructed independent of the level of reference product variation and the approach 

to estimation developed in this thesis were studied under this approach. Hence the expectations 

and variances are derived independent of the level of estimated within-subject reference variation. 

Within-subject reference variation is subsequently used to determine which is the most ap- 

propriate criteria to look at, but not necessarily to post hoc determine which one is the most 

appropriate for use. Indeed FDA guidance suggests using both constant and reference scaled 

metrics under certain circumstances, ' VII. D. Discontinuity The mixed-scaling approach has 

a discontinuity at the changeover point, sWO (individual BE criterion) or sTO (population BE 

criterion), from constant- to reference-scaling. For example, if the estimate of the within-subject 

standard deviation of the reference is just above the changeover point, the confidence interval will 

be wider than just below. In this context, the confidence interval could pass the predetermined 

BE limit if the estimate is just below the boundary and could fail if just above. This guidance 

recommends that sponsors applying the individual BE approach may use either reference-scaling 

or constant-scaling at either side of the changeover point. With this approach, the multiple test- 

ing inflates the type I error rate slightly, to approximately 6.5%, but only over a small interval 

of sWR (about 0.18-0.20). ). 

In all cases we will first investigate reference-scaled metrics followed with discussion of 

constant-scaled metrics. 

Theorem 3.1 Bias in reference-scaled FDA Metric Estimated using Method-of-Moments 

The reference -scaled FDA metric (24) may be estimated (FDA Guidance, 1999a, 1999b, 2000b, 

2001) using the method of moments approach as: 

S2 +M+ Mz 
- 

3MR ý2 Mm3 122+ IVII + 
T) 

MR MR MR 2 MR 2 

22+Z. ýv 2 
Z +- 

-0'W. fL Note that M, is an unbiased estimate for o-I O'D 2 

(33) 

This statistic is a consistent estimator and furthermore is asymptotically unbiased and posi- 

tively biased in small samples with expected value 

V( j2 

+ 
(n + 1) o,, 2 

+)-3 (34) TO-2 - 
0,2 v-2 

ýW2R 
WR 2 WR 2 
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Proof. Let (27) with corresponding assumptions hold. Then it follows directly that 
,, 

/n 

2'( 62 
) (Vonesh and Chinchilli, 1997) where X2' represents a non-central chi-squared distri- x1 -aT-/-n 1 

52 bution with one degree of freedom and non-centrality parameter (Muirhead, p22,1982). 

As (33) is an estimate for (24) obtained from method of moments and (24) is continuous, then 

(33) is consistent (Bickel and Doksurn, 1977). 

Taking the expectation of terms in (33) and assuming terms are pairwise independent under 

Theorem 2.1, 

E( 
62 MI 

+ 
(') (MT) 

MR+v 2 MR R 

al . /n) 
S2 2( 2 

or UWT( 

E(- al / 
))+E( 

+E( 
UW2 -Ivia 

2 
WRUT -a 20r2 (jýt 

WR 
WR WR 

Further, using the results of Muirhead (p 24,1982), it is seen that this expression reduces to, 

2 o»j2 
_ 

3 
E( 0', Fj) +E( +E( 2 

F2) __ 
nu 

2u2 Fl) 
2o, 2 WR WR WR 

where F! is a random variable with non-central Fl',, ( 62 )-distribution with non-centrality pa- __7_ 

rameter 
j2 

and 1, v degrees of freedom. Fj is a random variable distributed according to the 
or 2 

, /n 

central-F, I, -distribution with v, v degrees of freedom. Taking the expectation (Muirhead, p 25 

1982), we see that the result is (34). As sample size increases, 

V( 62 

+ 
(n + 1)u, 2 

+ 
52 

+ 
0, j2 lim, 

00 22 2u 22u2 or 2+ 2or 2-2 
v-2 UWR naWR WR WR WR WR 

which is an unbiased estimate for (24). However in small samples, the bias is 

_jj _+(- 
1) 

2 
v J2 

+ (v(n + 1) 1) 
2V 

'ýW2R 
n(v - 2) 2v-2 2o, 

(v-2 
OrWR WR 

000 

Theorem 3.2 Bias in constant-scaled FDA Metric Estimated using Method-of-Moments 

The constant-scaled FDA metric (24) may be estimated (FDA Guidance, 1999a, 1999b, 2000b, 
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2001) using the method of moments approach as: 

S2 +M+ MZ 
_ 

3MR 
122 (62 + M, + 

(1) (M 
T 

3MR) 
(35) 0.04 0.04 22 

and has expected value 
2 

a 62 +a2+a2T2 
nDw WR 

0.04 

Proof. Under the approach developed in Theorem 3.1, consider (35). Taking the expectation 

of each term (Muirhead, p24-27,1982), it is found that this is 

2 0,2 a+ 62 + U2 + WT 

0.04 n12 

J2 222 ++ OrD + OrWT - O'WR 

0.04 

OFIF-1 

Thus the estimation procedure is positively biased (against sponsors) when using the recom- 

mended method-of-moments estimation procedure (FDA Guidance, 1999a, 1999b, 2000b, 2001). 

An unbiased estimator for the metric is now provided. 

Theorem 3.3 Unbiased FDA Metr%cs for IBE Estimated using Method-of-Moments 

The reference-scaled FDA metric (24) may be estimated in an unbiased fashion in small samples 

using the method of moments approach as: 

v-2 [ 
S2 

+ 
(n - I)MI 

+ (1) (ýHT 3 (36) 
Ll MR nMR 2 MR)] -2 

A constant-scaled unbiased estimator for the FDA metric is: 

S2 + (1 
-.! 

)M + 
MT 

- 
3MR 

n122 
0.04 

Proof. Let (27) with corresponding assumptions hold. Taking the expectation of terms in 

(36) and assuming terms are pairwise independent under Theorem 2.1 and using the results of 
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Muirhead (p 24,1982), it is seen that this expression reduces to, 

220,2 (v - 2)o� - 2)(n -2) TF 
)Fj +E«v W 

2) 
3 

ý7(nU2 nvu 
2- 

1)e', 
F, ) + E«v 

2VU2 -. 
2. WR WR WR 

where Fj' and Fj are random variables with the non-central and central- F-distributions as pre- 

viously. Taking the expectation (Muirhead, p 25 1982), we see that the result is 

J2 22 0'1 O'WT 3 
-2 +2+2 
UWR O'WR 2UWR 2 

which is unbiased for the FDA metric (24). 

Similarly, taking the expectation of 
S2 

it is found (Muirhead, p24-27, 0.04 1 

1982) that this expression has expectation: 

62 22 
+WW 

. 
1)0,2 + OWT 30'wR 
n22 

0.04 

EIEIEI 

Estimates from a REML model may be utilised in construction of the metric of interest in 

similar fashion to that used for the method-of-moments procedure to estimate the metrics of 

interest. However, the estimators are known to be only asymptotically unbiased and asymptoti- 

cally normally distributed based on previously established results (Searle, 1971). Here ý and t 

are REML estimates for 3 and E. Then based on Rao (1973) and as an extension to the results 

of Searle (1971), the large sample variance for and t are (X'E-X)- and -E[ 02 L-1 ], respec- 

tively with covariance 0 where L is the log-likelihood in expression (30). We discuss application 

of this method in the next section. 

3.3 Testing and Inferential Procedures for IBE 

We first turn to discussion of the goalpost in IBE assessment. These were discussed in Chapter I 

but are briefly summarised here. The goalpost for individual bioequivalence assessment assumes 

a within-subject variance for the reference formulation of 0.04 and is set to 2.49 as follows 

(log, (1.25) )2 + (0.03) + (0-02) 
0.04 
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allowing for a mean difference of twenty percent and a variance allowance of 0.03 in the numerator 

for subject-by-formulation interaction and 0.02 for the difference in within-subject variance 

under the procedure proposed by the FDA (FDA Guidance, 1997). If the upper ninety-five 

percent bound on the FDA metric falls below this value of 2.49, individual bioequivalence is 

demonstrated for the endpoint under study. 

However, from a scientific perspective given knowledge of the estimates from the database 

in Chapter 2, this would appear to allow for quite large changes in average exposure dependent 

on the magnitude of o, 
2 

and the difference in within-subject variability. Alternatively, as we D 

2 know that the estimates for AT - pR and UD are usually near 0, the metric would appear to 

22 
allow for large increases in UWT dependent on the magnitude of O'WR, The response-surface and 

projected contour plots describing these 'trade-offs' may be found in Figure 19. 
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However, definition of the regulatory acceptance bound is a regulatory responsibility, and 

while we question the approach that the FDA has adopted and recommend they reconsider 

based on inspection of data and plots such as Figure 19, for the purposes of the work in this 

thesis, we will utilise the goalpost defined in the FDA Guidance (1997,1999b, 2001). 

Note that the results of the previous section allow for straightforward application of the non- 

parametric percentile method (Efron and Tibshirani, 1993; Shao and Týi, 1996) to construct 

confidence intervals for the metric of interest. The properties of these procedures have been 

established separately (Shao et al., 2000a-b) but have only received limited study in practice 

(Zariffa et al., 2000) and have not been studied with regard to protection of Type I error. We will 

amend these deficiencies in this thesis. However, it is obviously desirable to have an approximate 

or asymptotic procedure to assess inference. 

In complete data sets, inferential procedures for such the FDA metric may be based on 

approximation procedures such as the Cornish-Fisher expansion (Hyslop et al., 2000). Under 

this approach, the one-sided null hypothesis 

+ 0,2 22 

Ho D+ OrWT - O'WR 
CFDA (37) 

or2 max(O. 04, WR) 

is tested where CFDA = 2.49. This expression is linearised as 

HO : VIBE = j2 + or2 + or2 
2>0 (38) D WT + CFDA)UWR 

- 

For low variability compounds the expression is linearised as: 

= j2 + or2 + or2 _ 0,2 HO: VC. IBE D WT WR - 0.04(CFDA) ýý' 0 

Method-of-moments estimates for the moments of interest may be placed in this expression 

and the Cornish-Fisher expansion (Johnson, et al., 1994) may be applied to calculate an ap- 

proximate upper bound (Hyslop et al., 2000) for complete data sets using confidence bounds for 

each of the parameters as follows. 

For the linearised version of the FDA's IBE metric, a procedure is described in the FDA 

Guidance (2001) based on Hyslop et al. (2000) that is appropriate for replicate cross-over de- 
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signs with no missing data and is surnmarised as follows. In this situation, the estimates 
&2 &2 

0,2 = 0,2 + 
4T+&W2 

R22 WT, and WRare derived for 6= AT - MR) ID21 aWT, andaWRbased on 

method-of-moment estimates as follows. Let the individual difference across formulations be 

denoted lij --` VTije - PRije such that 

ni 

i=l 

Ini 

j=l 

and 

mi =: 
1. s ni 

- 
(ES ZE(Iii-ii) 

i=, ni) -s i=l j=l 

Let the individual difference within formulations for test and reference formulations be denoted 

Tij ---: YTijI - YTii2 and Rj " YRij I- YRij2, respectively. Within-subject variances are estimated 

by 

MT 
ss 

ni 

jý - 
Ti)2 

2((Ei=l ni) - 8) 
E E(T 

i=l j=l 

and 

5 ni 

.j_R, 
)2 MR 

2((Es ni) - i= i=l j=l 

The estimates ý, MI, MR and MT are known to be pair-wise independent (Theorem 2.1) in 

complete, balanced data sets. 

Note that 
S2 2'( &2) 

(Vonesh and Chinchilli, 1997) where X2 ' represents a non- -T-- 1 I/n X -a, FFn 

central chi-squared distribution with one degree of freedom and non-centrality parameter 
52 

, 
FFn 

(Muirhead, p22,1982). Hence, when these estimates are 'plugged-in' to the equation for the 

FDA metric, it is composed of a linear function of independent chi-squared variables. The 

following approach is then used to derive an approximate 90% confidence interval. 

1. Derive unbiased, independent method-of-moments estimators J, &1'7 &WT and &wR' 

2. Let H6 be the square of the absolute value of the larger of the lower and upper 90% bounds 

on J derived using the t-distribution and using Satterthwaite approximation for the degrees 

of freedom, H, 
2 

V(&2wr) 
H +2.4948)v(&2w '(&") jq) X2 2, 

HT R where is the ath- xv(O. 05) 2X2 (0.05) X2 (0.95) 
vv 

percentile point of the Chi-squared distribution with v degrees of freedom. 
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3. Then 
ý2 

(S2 + &2 + 
O'ýVT 3 

)&2 
I- (- + 2.4948 WR) 22 

23 
Z)2 2].! S2)2 + (HI 

_ &2)2 + (H 
_22 IT-+ 

(HR + 2.4948)&WR 
22 

is an approximate, 90% confidence interval for the FDA's IBE metric. Appropriate modifications 

to this approach are made when the metric is scaled to a constant variance (see FDA Guidance, 

2001). 

We now find the bias and variance of the statistic JýIBE used to estimate the quantity VIBE 

in balanced, replicate designs with no missing data to enable application of the nonparametric 

bootstrap and to develop an asymptotic test for IBE. 

Theorem 3.4 Bias and Variance of the Linearised IBE Metric from FDA using Method-of- 

Moments 

Let 

JýIBE 
ý2 + M, + 

ýLT 

_ (3 + CFDA)MR (39) 
22 

be an estimate for the (38) reference-scaled metric in accordance with FDA Guidance (2001). 

Then, this estimate is asymptotically unbiased with 

2 
: ý_l + j2 + or2 + or2 )or2 E[JýIBEI ý:::::: 
nD 

WT + CFDA WR 

and has variance of 

(ýOj 
+ 

j2oI2 
+ 

to, 
4 
I)+ (0,4 or2 

3 
)2) Var[JýIBEI `-1- WT +2 WR( + CFDA 

n2 n n-p n-p2 

An unbiased reference-scaled estimator in a balanced replicate design is: 

--,: 
ý2 + (1 _1 

MT 3+ 
CFDA)MR JýU-IBE .n )MI +22 (40) 

Then, 

= 62 + or2 
22 E[jýu-IBEI D+ OrWT + CFDA)UWR 
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and has variance of 

4- 
-L)20,4 0,4 4 )2 2o, j 2(l 2a R 

(2 + CFDA Var[JýU-IBEJ 
--- -++nI 

WT +W2 
n2 nn-p+ ý-(n 

- p) n-p 

Then the constant-scaled estZmator: 

ý'C. IBE 62 + M, + 
MT 3 )MR - 

0.04(CFDA) (41) 2- 
(2 

is positively biased with expectation 

2 LI 
+ j2 + or2 + or2 2 

nD 
WT - OrWR - 0.04(CFDA) 

and variance 
240,14 o, j + 

ýo-, 252 
+2+ 

n2 n n-p 2(n - p) 
+ 2(n - p) 

An unbiased constant-scaled estimator is: 

S2 +1 )MI + 
MT 3 )MR - 

(0.04)CFDA 

n22 

This expressZon has variance: 
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Proof First we note that as in Theorem 2.1, that unbiased method of moment estimators 

2=2 
"WI+"WR 

01 22 
are independent. J, MI, MT, and MR for J= AT - PRi 0'1 UD +27 WT, and UWR 

Let (27) with corresponding assumptions hold. Then it follows directly that 
S2 

" 2'( 62 
-'I- X 

, /n _/n 

X2' (Vonesh and Chinchilli, 1997) where 1 represents a non-central chi-squared distribution with 
P 

one degree of freedom and non-centrality parameter (Muirhead, p22,1982). The expected 0', /n 

value of 
S2 is 

0.12 62 

n+a2 /n) I 

with variance 
0,14 

2+ 
4J2 

W2- 
a2 /n) I 
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22 
W x w WRXn-p Since M, 

n-p , 
MT , 

aw 
n-p and MR - 

0' 
n-p are independently distributed 

according to the central chi-squared distribution with n-p degrees of freedom, where p is the 

number of sequences of formulation administration. Then the expected value of M, is o, 
2 

with 
24 

is 0,2 variance ý! L; the expected value of MT with variance 24wr; and the expected value of nP WT n-P 

M is Or2 R WR with variance 
24wR 

n-p 

Then, based on the properties of the chi-squared distribution (Muirhead, p25-27,1982), the 

2 J2 
21232 E(JýIBE) `ý(l + -2) + 0'1 + -OrWT (- + CFDA)01 

n a, /n 22 WR 

2 EI 
+ j2 + or2 +1 or2 

32 

n12 
WT 2+ 

CFDA)UWR 

2 LI 
+ j2 + or2 + or2 2 

nD WT + CFDA)O'WR 

-: -: J2 2 Similarly, the proof that E[IýU 2 )0,2 
-IBEI 

+ O'D + O'WT + CFDA WR follows from the 

same principles. 

As each term in JýIBE are pairwise independent (see Theorem 2.1), then 

Var(ý'IBE) 
= Var(S') + Var(MI) +1 Var(MT) +3+ CFDA)2 Var(MR) 

42 

from which it is found that 

4 2u 1 0,14 2a 4 
Var()ýIBE) 

-+ 
juj2J2 

+2++3+ CFDA )2 WR 
n2 n n-p 2(n - p) 2 n-p 

The variance Of IýU-IBE follows using the same principles. Derivations for the constant-scaled 

case follow similarly. 000 

Thus we now know the expected value and variance of the estimator of the linearised FDA 

criterion. It is possible therefore to derive asymptotic confidence intervals for the criterion and 

evaluate its inferential properties. This however addresses only balanced, replicate design data 

sets with no missing data. We now turn to REML modelling results in replicate design studies 

for assessing reference and constant-scaled metrics. At this point, we shall turn to asymptotic 

properties in REML modelling as in most data sets this will be of practical utility (i. e. when 

missing data is present or when imbalance exists in the data set. ) 
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We note that as the JýIBE is a linear combination of asymptotically normal variates (Muir- 

head, 1982), it should be possible to use the delta-method (Serfling, 1980) and Satterthwaite's 

procedure (1941) or Kenward-Roger's approximations (1997) to develop a more precise confi- 

dence interval in small samples. However, as most of the data sets in IBE studies are likely to 

be large (n > 28, see Chapter 2 and FDA Guidance, 2001), the asymptotically normal interval 

will be explored in this thesis. 

For incomplete data sets, a large sample, asymptotic hypothesis test for the linearised version 

of the FDA-criterion may serve as an alternative to the procedure developed by Hyslop et al. 

(2000). This would appear desirable given the potential for bias in Hyslop et al. 's (2000) proce- 

dure introduced by imbalance and missing data (Chapter 5). However, the degree of such bias 

has not been well studied, and it is not known whether the introduction of bias is of significance. 

We will consider how these procedures behave in practice in the retrospective analysis to be 

performed later in the thesis and discuss the properties of the procedures using simulation. Also 

to be considered is the recommended (FDA Guidance, 1997,1999b) nonparametric-percentile 

application of the bootstrap (Efron and Tibshirani, 1993), and we will develop rules for when 

each procedure should be used and compare them. 

Note that estimates arising from the use of REML models are model dependent (Chapter 

2). We will consider the use of an unconstrained REML procedure (UN) and as an alternative 

will consider a constrained procedure (RIS). 

To review, it is known (Searle, 1971) that REML estimates for the moments of interest 

J222 are asymptotically normally distributed with known variances. The large sam- ) O'D 7 OIWT 7 OrWR 

ple variance for ý and t are (X'E-X)- and -E[ 
a2L-1 ], respectively with covariance 0 where aEaEl 

L is the log-likelihood in expression (30). In this situation, S2 will be normally distributed in 

J2 2J2 0,2 the limit with expected value and variance 4u& where j is the usual large sample variance 

of J usually estimated using the (X'E-X)- matrix if J ý4 0 (Serfling, 1980). Here, S2 
will be 

chi-squared distributed in the limit with expected value o, 
2+62 

and variance 2a 4+ 40,2J2 where 

2 
uj is the usual large sample variance of J usually estimated using the (X'F, -X)- matrix if 

J=0. In bioequivalence testing, it is most of interest to consider the first situation, and we will 

develop the properties of the estimators under this condition. We will later use simulation to 

ensure that the procedure we develop operates adequately under the second condition. 
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We now turn to the variance estimates. These are normally distributed in the limit with 

variance- covariance matrix appropriate to the structure of the model. For a REML UN model, 2 
'BT 

(ýRT 
62 where we estimate BR these are normally distributed with expected value 62 

WT 
&2 

WR 
2 

'7 BT 
WRT 

2 
BR and symmetric variance-covariance of 

) 

or 
2 
WT 
2 
WR 

21 

E -j-z- , 9E, ], the terms of which we shall denote as 
1BT I BTxw IBTxBR 1BTxWT IBTMWR 

1BTxw 1, IBRxw IwxWT lwxWR 
1BTxBR 1BRxw 1BR IBRxWT IBRxWR 
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a2D12 

Similarly, for the constrained REML model RIS, we find that where we estimate U2 WT 
2 & 
WR 

these are normally distributed with expected value 
or2, /2 

2 
WT) and symmetric variance-covariance of 2 

6WR 

-E 
02 L-1 the terms of which we shall denote as aEaE, 7 

ID lDxWT ID; ýR 
V lDxWT IWT IWV WR 

( 

lDxWR IWTxWR IWR 

) 

Rom these definitions, it is easy to derive the expected values and variances of the relevant 

estimators of the FDA metric. The delta method may then be applied to construct asymptoti- 

cally normal confidence intervals for the metric. 

Theorem 3.5 Asymptotic Bias and Variance of the Linearised IBE Metric from FDA using 

REML Estimation 

Let 

= 
S2 + &2 + &2 + &2 &2 JýIBE BT BR - 2ý)RT WT + CFDA) WR 

(42) 

be an estimate for the (38) reference- scaled metric in accordance with FDA Guidance (2001) 

using a REML UN model. Then, this estimate is asymptotically normally distributed, unbiased 

with 

= 62 + or2 
22 E[IýIBE] D+ OrWT + CFDA)OrWR 

and variance of 

Var[NBEI = 4o, 262 + 1BT + 1BR + 41, + 1WT + (I + CFDA )2 (IWR)+ 
6 

21BTxBR - 41BTxw + 21BTxWT - 2(l + CFDA)lBTxWR - 41BRxu) + 21BRxWT- 
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2(l + CFDA)lBRxWR - 41, xWT + 4(l + CFDA)lu)xWR - 2(l + CFDA)lWTxWR 

Let 

= 
ý2 + &2 + &2 + &2 

_ &2 OC. IBE BT BR - 2C)RT WT WR - 0.04(CFDA) (43) 

be an estimate for the constant-scaled metric in accordance with FDA Guidance (2001) using a 

REML UN model. Then, this estimate is asymptotically normally distributed, unbiased with 

= j2 + or2 + 0,2 _ U2 E[JýCJBEI 
D WT WR - 0.04(CFDA) 

and has variance of 

Var[JýC. IBEI = 4or6262 + IBT + 1BR+ 

41, + 1WT + 1WR + 21BTxBR 
- 

41BTxw + 21BTxWT 
- 

21BTxWR 
- 

41BRxw+ 

21BRxWT - 21BRxWR - 41wxWT + 41u; 
xWR - 21WTxWR 

Similarly, let 

JýIBE = 
ý2 

+2 (&2 /2) + &2 
T+ CFDA )&2 (44) Dw WR 

be an estimate for the (38) reference-scaled metric in accordance with FDA Guidance (2001) and 

using a REML RIS model. Then, this estimate is asymptotically normally distributed, unbiased 

with 

= 62 + or2 + 0,2 
2 E[IJIBEI 

D WT + CFDA)O'WR 

and has variance of 

2j2 )2 Var[OIBEI = 4or, 5 + 41D + 1WT + (1 + CFDA 1WR+ 

4lDxWT - 4(l + CFDA)lDxWR - 2(l + CFDA)lWTxWR 

Let 

j2 22 ý2 I"C. IBE + 2(6DI2) + 6WT - O'WR - 
0.04(CFDA) (45) 

be an estimate for the constant-scaled metric in accordance with FDA Guidance (2001) using a 
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REML RIS model. Then, this estimate is asymptotically normally distributed, unbiased with 

:- j2 222 E[JýCJBEJ + O'D + UWT - O'WR - 0.04(CFDA) 

and has variance of 

Var[JýCJBEI = 40,6262 + 41D + 1WT + 1WR + 4lDxWT - 4lDxWR - 21WTxWR 

Proof Here we apply the findings of Theorem 3.3. A of Serfling (1980) using the properties 

described previously of the estimates making up IýIBE = g(S' &2 &2 &2 2 BT, BR7Cý)i WTI&WR), The 

function g is obviously differentiable such that 29 
g=j 2J, 2 

aq I 

g=a2 
17 

06 961B 9=aB I 
BR T B-R 

'99 
Ig=, 

= -2, g=a2 
1, 

and g=a2 + CFDA)- 494^0 49& WT .9& WR WT 

I 

WR 

Then by application of Theorem 3.3. A (Serfling, 1980), it is found that g(S' 2 &2 &2 &BT2 BR7ý)7 WT) WR) 

is asymptotically normally distributed with expected value g(j, Or2 T, 0,2 R7W, Or2 T, Or2 R) and BBWW 

variance DEIL2' where D= (2J, 1,1, -2,1, -(1 + CFDA)) and where El is the Unstructured 

REML asymptotic variance-covariance matrix above augmented with the 0,2 associated in the 6 

first row, first column, such that 
2 
.5 

0000 0 
0 IB-r IBTxus IBTxBR 1BTxWT IBTxWR 
0 IBTxw 1W 1BRxw lwxWT lwxWR 

. The proof then follows by matrix multipli- 

) 

0 IBTxBR IBRxw IBR IBRxWT IBRxWR 
0 IBTxWT IwxWT IBRzWT 1WT IWTxWR 
0 1BTxWR IwxWR IBRxWR IWTxWR IWR 

cation. Th e proofs for the other situations described above follow in the same manner and are 

not reproduced here. 000 

These findings allow for the derivation of approximate confidence intervals for the linearised 

FDA criterion in a straightforward manner as we know (Serfling, 1980) that 

g(S' &2 
BT) 

&2 
BR)Cýl 

&2 
WT) 

&2 - g(j, 0,2 WR) 
- 

BT, 0,2 BR)WI or2 WT7 
2 0'WR) 

d N(O, 1) 
VýQt IV 

_ ý 

where d denotes convergence in distribution and : ý, is the estimated asymptotic variance- 

covariance matrix (observed inverse Fisher information), a consistent estimate for El. 

We now have straightforward means of assessing the average and individual bioequivalence 

between formulations using a variety of techniques. Bias in the estimates arising from Method- 

of-Moments estimation will be considered, and the use of REML versus Method-of-Moments 
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estimation for IBE assessment under recommendations of relevant regulatory guidance and using 

the constrained and unconstrained REML asymptotic procedures described above will be studied 

using the 51 replicate design data sets described previously (Section 2.7.1). 

Unfortunately, as we have seen in the previous Chapter, complete data sets are a rarity in 

bioequivalence studies, and Method-of-moments estimation is severely limited in such situations 

(as will be established in Chapter 5). We will investigate whether REML asymptotic procedures 

yield reasonable conclusions in this context in small samples using simulation and discuss findings 

from modest simulations carried out to examine the sensitivity of &2 D in Chapter 5. 

3.4 Retrospective Analysis 

We now turn to discussion of retrospective analysis of the replicate design data sets for the 

assessment of individual bioequivalence. 

Three inferential methods were explored: 

1. The approximation-method (Hyslop et al., 2000) based on the Cornish-Fisher expansion was 

applied to the data sets in accordance with FDA Guidance (2001) using method-of-moments 

estimates to derive the upper bound of a 90% confidence interval for the linearised FDA popu- 

lation bioequivalence metric. 

2. The non-parametric percentile method (Efron and Tibshirani, 1993) was used with 2000 boot- 

straps, maintaining the observed numbers of subjects per sequence, and using an unrestricted 

(UN) REML model to derive the upper bound of a 90% confidence interval for the linearised 

FDA population bioequivalence metric. The unrestricted model was selected instead of a re- 

stricted REML model (recommended in FDA Guidance, 1997) in order to provide consistency 

relative to the method-of-moments procedure used in the Hyslop et al (2000) method described 

above. Method-of-moments and unrestricted REML estimates should be equal when the data 

set is strongly balanced (Vonesh and Chinchilli, 1997) and has no missing data. Also this model 

was selected in order to provide consistency with the asymptotic procedure developed in previ- 

ously in this Chapter. 

3. The asymptotic procedure developed previously in this Chapter was applied to each data set 

using an unrestricted REML model and a restricted REML model. 

We first describe the results of each analysis and then compare and contrast between them. 
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This sub-section ends with discussion of significant findings to be explored through the use of 

simulation and conclusions. Results of the Hyslop et al. (2000) analysis may be found in Tables 

54-55. Results of analysis using the REML asymptotic test developed in this thesis may be 

found in Tables 59 and 61. Nonparametric bootstrap findings may be found in Tables 57-58. 

Many data sets failed to demonstrate IBE. The procedure of Hyslop et al. (2000) found that 

nine AUC data sets (G, 11,12, J, Q2, R, W4, ZB, and ZEl) and 14 Cmax data sets (D, E, F, G) 

11,12, M, NI) N2) P, Q2, W3, X, and ZB) failed to demonstrate IBE. The bootstrap procedure 

found that 11 AUC data sets (G, Il, 12, Q2, R, T, V, W4, W6, ZB, and ZEl) and 17 Cmax data 

sets (D, E, F, G, 11,12, M, NI, 01,02, Q2, T, W3, X, Y, ZB, and ZE1) failed to demonstrate 

IBE while the unrestricted asymptotic procedure finds that 11 AUC data sets (G, 11,12, J, 025 

Q2, R, W4, W6, ZB, and ZEl) and 16 Cmax data sets (D, E, F, G, 11,12, J, M, Nl, 02, P, Q2, 

W3, X, ZB, and ZEI) failed to demonstrate IBE. 

For AUC data sets R and W6, it was evident that accounting for the non-null the covariance 

between variance estimates using a bootstrap or asymptotic procedure, differing inference can 

result relative to a procedure which assumes it to be null (Hyslop et al., 2000). For the remain- 

der of the AUC data sets where a discrepancy is observed (J, 02, T, and V), no reason was 

readily evident, and we will use simulation to explore the error rates subsequently in this thesis. 

Constraint on the variance estimates may play a role in this setting for data set J as when the 

REML model is constrained to the usual parameter space, IBE was demonstrated. 

For Cmax, discrepancies were observed between procedures for data sets J, N2, P, T, Y, 

and ZEL For data sets N2 and ZE1, it was evident that non-null correlation again contributes 

to passage or failure for asymptotic and bootstrap procedures while the Hyslop et al. (2000) 

procedure fails to account for these factors. Data set P passes but was very near the cut-off 

of zero when using the bootstrap; it is likely that is more bootstraps were added, this data 

set would fail to demonstrate IBE. Thus in three data sets, no reason for the discrepancy was 

readily evident and may be attributable to random error. 

Constraint of the parameter space did impact the results of the asymptotic procedure for 

Cmax. Data sets E, F, J, and N2 failed under the unrestricted asymptotic procedure however, 

these data sets demonstrated IBE under the constrained REML model. 

Lastly, we considered the estimated bias in the individual bioequivalence metric, equal as 
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previously established in this Chapter as o,, /n. We neglect that this bias is exact for only 

strongly balanced, complete data sets for the purposes of this exercise. The mean (STD) bias 

for AUC and Cmax were estimated as 0.002 (0-001) and 0.004 (0.003), respectively. Expressed 

as an absolute percentage of the estimate for the IBE metric, this mean (STD) was 1.50% 

(4.61%) and 2.19% (3.83%), respectively. Accounting for this positive bias was not found to 

impact inference relative to the Hyslop upper bound in any data set, as would be expected given 

the asymptotic unbiasedness of the metric previously established in this Chapter relative to the 

sample sizes employed in these studies. 

3.5 Discussion and Findings 

We begin discussion with consideration of the goalposts chosen by FDA for acceptance of IBE. 

The goalpost allows for large changes in average exposure (which would result in ABE) failure 

due to decreased within-subject variability on the test formulation relative to reference or by 

scaling to large within-subject reference variation. Based on the findings of retrospective analy- 

sis, we believe this goalpost may be too liberal and has the potential to endanger public health. 

We will study this potential issue using simulation in Chapter 5. 

The procedure developed by Hyslop et al. (2000) is flawed in a theoretical sense due to its 

assumption of independence among the estimates making up the metric. This assumption is 

violated when missing data or imbalance are present in the data. However, when the asymptotic 

test and nonparametric bootstrap were applied (which do account for these non-null correla- 

tions), only slight differences in inference were observed. We will study this question further in 

Chapter 5. 

Similar to the PBE findings (as will be seen in Chapter 4), several data sets exhibit the 

trade-offs described previously (Zariffa et al., 2000) allowing for demonstration of IBE and 

presumably market access. These trade-offs appear undesirable in practice in order to ensure 

equal therapeutic benefit in the marketplace. 

While both REML and method-of-moment procedures were shown to provide asymptotically 

unbiased estimates in replicate design studies (under certain conditions), slight discrepancies in 

IBE inference were observed when using the Hyslop et al. (2000), Asymptotic, and nonpara- 

metric bootstrap methods. Some seemingly random discrepancies are also observed, as is not 

149 



unexpected in a data set this large (n = 51). We will explore the relative Type I and II error 

rates using simulation in Chapter 5 following an exploration using simulation of the properties of 

2 
of particular concern in IBE assessment and the potential for bias in small sample estimates UD) 

from the various models. 

In conclusion, we find that for the majority of data sets, the Hyslop et al. (2000), bootstrap, 

and asymptotic procedures yield the same conclusions with regard to the data sets analysed. 

Bias in small sample estimates (not accounting for bas introduced by missing data) is minor 

in these data sets and was not observed to impact inference. Minor discrepancies are observed 

which may be due to the practice of accounting for correlation among the estimated moments, to 

constraints placed on the variance estimates themselves (i. e. to be non-zero), to bias introduced 

by missing data, and due to differences in Type I and Il error rates of these testing procedures 

studied. 

4 Small and Large Sample Properties, Estimation, and 

Inference for Population Bioequivalence 

The findings of this chapter were presented at the annual American Society of Clinical Phar- 

macology and Therapeutics meeting (Patterson et al., 2000a), at the American Association of 

Pharmaceutical Scientists joint workshop with the USA Food and Drug Administration (Zariffa 

and Patterson, 2000), at the Societe de Statistique Francaise (Patterson et al., 2001f), at the 

American Statistical Society Joint Statistical meetings (Patterson and Jones, 2002e), and at the 

International Society of Clinical Biostatistics meeting (Patterson and Jones, 2002f). Aspects 

of the findings were published in the Journal of Clinical Pharmacology (Zariffa and Patterson, 

2001), in Pharmaceutical Statistics (Patterson and Jones, 2002a; 2002g), in the Proceedings of 

the Joint Statistical Meetings (Patterson and Jones, 2002h), and in a series of a GlaxoSmithKline 

technical reports (Patterson et al., 2001e; Patterson and Jones, 2002b-c). 

4.1 Introduction and Goals of Chapter 

In this Chapter, key ideas in population bioequivalence will be quickly reviewed, and we then 

turn to detailed assessment of the properties of population bioequivalence. 
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To review, average bioequivalence (ABE; FDA Guidance, 1992) has traditionally been used 

as the standard for market access with regulatory limits of twenty percent. This approach and 

the models used to test for ABE are described in Chapter 2. In practical terms, a ninety percent 

confidence interval is constructed on the AT - AR- If the confidence intervals for both AUC and 

Cmax fall within the range - In 1.25 to In 1.25, then average bioequivalence is demonstrated. 

More commonly, these differences and confidence intervals are exponentiated and assessed rela- 

tive to the interval 0.80 to 1.25. 

Following the original proposal in 1997 (cf. FDA Guidance), in August 1999, the FDA re- 

proposed new guidelines for the assessment of bioequivalence: population bioequivalence (PBE) 

and individual bioequivalence (IBE) (FDA Guidances, 1999a and 1999b) and finalised proce- 

dures in 2000-2001 (FDA Guidance, 2000b, 2001) based on ideas developed by Anderson (1993) 

and Anderson and Hauck (1983,1990). In the case of pre-market approval, one can formulate 

the bioequivalence question as "Can a patient begin their therapy with either formulation (com- 

mercial or clinical trial) and be assured same results in terms of safety and efficacy? " This has 

been called the concept of prescribability (Anderson and Hauck, 1990) and is linked to PBE. 

PBE has not been well studied (see Chapter 1) as most attention has focussed on IBE (the sub- 

ject of Chapter 2), and we will develop methods appropriate to its study in cross-over designs 

in this thesis. 

Population bioequivalence is assessed using the following aggregate statistic (FDA Guidance, 

1997). 

+ 0, T2 
2 (IIT 

- /IR)2 - O'R 

0,2) max(0.041 R 
(46) 

2=222=2+ U2 where o-T UWT + OrBT and o-R UWR BR' Note that this aggregate statistic can be con- 

structed using a mixed model from a two period cross-over design (with appropriate modification 

to model (22)) and does not require the use of a replicate design. 

In the case of post marketing changes, the bioequivalence question becomes: "Can I safely 

and effectively switch my patient from their current formulation to another? " This has been 

called the concept of switchability (Anderson and Hauck, 1990) and is linked to IBE. The crite- 
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ria used to assess IBE under the proposed FDA draft guidance (1997-1999) and finalised proce- 

dures in 2000-2001 (FDA Guidance, 2000b, 2001) aggregates the difference between population 

means and variances and accounts for subject predictability from one formulation to the other 

(subj ect-by- formulation interaction, Ekbohm and Melander, 1989). In addition, the individual 

bioequivalence metric allows for scaling of the regulatory limits based on the within-subject 

variability of the reference product. 

Previous findings on PBE are described in Zariffa et al. (2000a) and in the previous Chapter 

3 and will not be reviewed here. PBE has been neglected in favor of research in IBE in recent 

years and little attention (Chapter 1; see also Barrett et al., 2000) has focussed on the use of 

such a metric. This situation will be rectified in this thesis. 

4.2 Estimation Methods and Inferential Procedures for Population 

Bioequivalence 

We now begin discussion of population bioequivalence, neglected for the most part in the sta- 

tistical and biomedical literature in favor of the study of individual bioequivalence. 

4.2.1 Estimation Procedures 

In the assessment of population bioequivalence metrics, it will be of interest to compare various 

properties of first and second order moments (Rao, 1973). Such methods are well described in 

the statistical literature for parallel group designs (the subject of Chapter 6), and such will not 

be discussed here. Instead we will dwell on estimation methods used in cross-over studies for 

the assessment of population bioequivalence. 

For the two-period cross-over, methods are utilised which are consistent with the methods 

described in Jones and Kenward (1989), Senn (1993), Vonesh and Chinchilli (1997), and Senn 

(2002) making use of the bi-variate normal (in large samples or when using asymptotic theory) 

or the bi-variate t-distribution in small samples. 

The following mixed model for log, -transformed observations can be applied in replicate 

designs. Let Yijk(t) be the response for the k-th subject (k = 1,2, . ., ni) in sequence i (i = 

172, ..., s) and period j (i = 1,2) in the cross-over trial administered formulation t (t = T, R) 
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and 

Yijk(t) --,,: Ai + 7rj + At + Eijk(t) (47) 

where Ai and7rj are nuisance effects (sequence and period effects), 

6ijk(t) are normally distributed with mean zero 

Var(Etik) ý 0' 2=a2t+ 
0' 

2 the sum of between- and within-subject variance, tW BO 

COV(6ijk(T)7Eijlk(tl)) ý-- WRT, for i : ý: 4 j. Subjects are assumed to be independent. Under 

2+0,2 
= 0,2 222 this model Var(Yijk(t) - Yijlk(tl)) = O'T R- 

2LURT 
WT + O'BT + O'WR + OrBR - 

2WRT) 

the subj ect-by- formulation interaction variance plus the sum of within-subject variances (Senn, 

1993; Vonesh and Chinchilli, 1997; Senn, 2002). If the Huyhn-Feldt condition is applied, this is 

the model of Jones and Kenward (1989). 

Standard analysis of variance (Rao, 1973; Searle, 1971) may be applied if the Huyhn-Feldt 

condition (1970) holds to generated unbiased estimators for the between and within-subject 

variances and best-linear unbiased estimates for the means of each formulation in balanced two- 

period cross-overs; furthermore, restricted maximum likelihood models may be applied to derive 

asymptotically unbiased estimates for the moments of interest (Jones and Kenward, 1989; Mil- 

liken and Johnson, 1992). Method of moments estimation is described in Vonesh and Chinchilli 

(1997) when this condition is not applied, and will not be reproduced here. Here, an approach is 

developed using PROC MIXED (SAS@) to provide an example of the principles in unbalanced 

models. 

In matrix notation, the above model can be expressed as 

XO+ Zu (48) 

where u is a multivariate normal density (MVN) with expectation 0 and variance-covariance 

matrix f2 (u - MVN(Q, fl) and ' denotes the transpose of a matrix. fl will be composed of a 

4nx4n matrix of variances and covariances ZSIZ' = fl. Let ft be defined from the following 

2 2) 
set of variance-covariance components (UR 

7 WRT i OrT corresponding to the method-of-moments 

approach (Chinchilli and Esinhart, 1996) where WRT represents the covariance between test 

and reference observations under model (47). Z is a matrix of composed from the set (0,1) to 

assemble the covariance matrix of observations in a manner appropriate to sequence i for each 
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subject j (subjects are assumed to be independent. PROC MIXED (SAS(ý)) code may then be 

written to derive asymptotically unbiased estimates for the moments of interest. 

proc mixed method=rerril; 

class sequence subject period regimen; 

model Inauc=sequence period regimen; 

repeated regimen/subj ect =subject type=UN; 

run; 

This REML model will be applied later in this Chapter to provide an example of the appli- 

cation of the estimation technique in a two-period cross-over. Estimation methods in a replicate 

design are described the preceding sections. 

4.2.2 Properties of the Estimated Metrics for PBE Assessment 

We now turn to consideration of the population bioequivalence metric from FDA (FDA Guid- 

ance, 1997,1999a-b, 2000b). 

To review, summary measurements such as AUC from a two-by-two cross-over trial may 

be modeled using a random-intercept mixed modelling procedure accounting for each subject 

as their own control (Jones and Kenward, Ch 7,1989; Milliken and Johnson, Ch 32,1992). 

In bioequivalence studies, the following model for observations is commonly accepted for a 

randomized, two period, cross-over trial in normal healthy volunteers, under the assumption 

that carryover effects are negligible (or similar between formulations). Let Yijk be the log, - 

transformed j-th period's observation (j = 1,2) for the k-th subject (k = 1,2, ---, ni) in the i-th 

sequence group (i == 1,2). Then 

Yijk " Ai + (A + I"k(i)) + 7ri + Td[ij] + Eijk 

where p is the grand mean, 

Aj, -7rj, and -rd[i, jl are fixed effects for sequence, period, and formulation, 

I"k (j) and Eijk are random effects which are independent with mean zero, Var(vk(j))=u 2, the B 

between-subject variance, and 
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) 0,2 Var(6iik W, the within-subject variance. This equation is usually expressed in practice as: 

Yijk --: 
Ai + "'k(i) + 7ri + Ad + 6ijk 

where d= (T, R). Analysis of data under log, -transformation is described in Box and Cox 

(1964). See also Chapter 1. 

For balanced designs (nl=n2) with no missing data, period effects are orthogonal (non- 

aliased) with formulation effects. Note that homogeneity of test and reference product between- 

subject variance is assumed in such a random- intercept model, as is the homogeneity of within- 

subject variance for test and reference products. Observations between-subject are held to 

be independent (with covariance zero), and the variance-covariance structure for observations 

within a subject under these assumptions is compound symmetric. Under this model, the 

COV(Yijk) Yij'k) = E(I"k(i) + Eijk)(Vk(i) + Eijlk) = E(v 2= Var(l"k(i)) = U2 such that: k(i)) B 

P=COr'r(Yijk, Yij'k)= 2 
or2 

2 OrB + UW 

for j /: j, and 

2= 
or2 + 0,2 or = Var(Yijk) 

Bw 

Comparisons between the estimated means AT-1-IR are thus (Jones and Kenward, 1989) 

normally-distributed with mean PT-1-IR and variance of 

((0,2 + 0-2 )+ (0,2 + 0,2 (2 
BWB W) - 2(p)(V/'o-, B2 + oW2)(V4u--q-B2. -+ (-or-WýT, -))/n =2 orw)/n in bal an ced two-period 

cross-over designs with no missing data and n subjects. Estimates of variance may be derived 

using method-of-moments or REML estimation, and these estimates are unbiased (or asymptot- 

ically unbiased in the REML case) for the true variances. Tests of fixed effects are exact under 

the Huyhn-Feldt condition, and may be constructed in the usual fashion (see Chapter 1) for the 

assessment of average bioequivalence (FDA Guidance 1992,2001). 

Approaches to scaled average bioequivalence have been described previously (Endrenyi, 1994; 
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Dragalin and Fedorov, 1999a). In situations with missing data, REML modelling may be used 

to derive asymptotic inference, or the bootstrap may be used to assess inference. Regulatory 

bodies have not been readily receptive of the method in practice (FDA Guidance, 2001) given 

the uncertainty in precision in variance components and as this criteria still ignores differences 

in variability between formulations and subject-by-formulation interaction. Discussion of this 

approach thus will be neglected in favor of methods potentially of relevance to implementation 

in the pharmaceutical industry. 

Considering an alternative expression of the data in a balanced two-period cross-over of n 
(VRi) 

ý, 
MVN ( PT+Pil 0'2R WRT 

subjects with sequences i (z'=TR, RT), let 22 where pi, and 9-ri IAR+Pi2 WRT UT 

) 

A2 denote the effects of period appropriate to sequence i for each subject. Similarly, mean and 

vaxiance estimates may be constructed for replicate designs. In unbalanced data sets, REML 

models may be used to derive asymptotically unbiased estimates. 

Pitman (1939) and Morgan (1939) approaches for equality of variances arising from paired 

data may be found in Chow and Liu (Chapter 7,2000) and will not be reproduced in this thesis. 

In two-period or four-period replicate designs, the Huyhn-Feldt condition (1970) for variances 

across formulations may not be applicable. Vonesh and Chinchilli (1997) present methods for the 

estimation of total, between, and within-subject variances in replicate and cross-over designs. 

Here we note only that careful consideration of the covariance between observation must be 

implemented when analysing such data so as to prevent the classic errors associated with the 

analysis of cross-over data (Senn, 1993; Senn, 2002). Note that estimates 0'2 and a2 in a two- TR 

period cross-over and estimates a? = 0.2 t+ Cw2t (for t=T, R representing Test and Reference tB2 

formulations) in replicate designs should be correlated in a cross-over design (Jones and Kenward, 

1989). 

This finding impacts the use of the proposed FDA procedure for PBE (FDA Guidance, 2001) 

as this intrinsic correlation is not taken into account when forming the approximate confidence 

interval (Hyslop et al., 2000) for the linearised criterion 

2 62 + or2 (49) 1"PBE -T+ CFDA)O'R 

or 

= j2 +22 1"C. PBE O"j' - O'R - CFDA(0.04) (50) 
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It is easy to show that an unbiased method-of-moments (or an asymptotically unbiased) estimate 

C'PBE for PPBE may easily be derived using unbiased estimates from a parallel group, four-period 

replicate cross-over, or two-period cross-over design, as we will study further below. 

As in Chapter 3, the FDA (2001) guidance specifies that both the constant and reference 

scaled metrics should be constructed independent of the level of reference product variation and 

the approach to estimation developed in this thesis were studied under this approach. Hence 

the expectations and variances are derived independent of the level of estimated total reference 

variation for PBE. Impact on PBE statistics would be expected to be negligible in this context 

as total variability is in general well above the 0.04 level in PK studies. 

We first turn to consideration of the goalpost in PBE assessment. The goalpost for population 

bioequivalence (see Chapter 1) assessment assumes the variance for the reference formulation is 

0.04. The difference AT-MR is allowed to take on a value of up to In 1.25 and a variance allowance 

of 0.5 in the numerator under the procedure proposed by the FDA (cf. FDA Guidance, 1999). 

Thus the regulatory 'cut-off 'is constrained to a level of 1.74. If the upper 95% bound on the FDA 

metric falls below this value of 1.74, population bioequivalence is demonstrated for the endpoint 

under study. Scaled to reference variation (again, assumed to be 0.04, under the FDA Guidance 

1997), the goalpost accounting for the means amounts to a value of 1.24=(In(l. 25) )2/0 
. 04. 

The remaining allowance, known as the 'variance allowance' and is equal to 0.5 (allowing for a 

difference in variances ((o, 2_ 01 2)/0,2 )=(0.02/0.04), when scaled to reference product variation. ) 
TRR 

One questions whether this is an appropriate choice of goalpost when looking at a PBE 

study. We illustrate this point by separating the metric into components x= 
(AT-AR) 2 

and 12 R 

_2 

y 4. Note that (46) is equal to x+y- UR 

In Figure 20, the response-surface for combinations of x and y yielding (46) is plotted both 

as a surface and, in the second part of the figure, as a projection onto the plane of possible 

responses as a function of x and y. Here we see the potential for trade-offs in (46). For example, 

in most cases, the value on the x-axis will be close to zero (see Retrospective analysis later in this 

Chapter). In such cases, we observed that the value on the y-axis can vary quite dramatically, 

yet still fall below the 1.74 acceptance value. However, at the present time 1.74 has been selected 

as the relevant value, and we will utilise it in further research. 

157 



LO 

-W 
-0 f; KIJ 

CD 

12 

00 

,w 

m 

C14 
04 

4ý 

0.0 0.5 1.0 1.5 2.0 

deltaA2/sig2r 

(AT-IAR) 2. 

Figure 20: Response- Surface and Projected Values of (46)= x+y-I relative to x Orz R 
2 

and y 'R 

158 



In the findings below, we will show that method-of-moments and REML estimation result 

in asymptotically normally distributed estimates with estimable variance. These findings are 

important as they allow the use of the nonparametric bootstrap and asymptotic tests in the 

assessment of PBE inference and support the use of the FDA Guidance (2001) procedure in the 

assessment of inference. 

In a two-period cross-over, independent unbiased method ý2 -of-moments estimators S, urr, and 

&2 0,2,0,2 R are derived for J ---: AT - MR) T R7 and WRT (the covariance of Reference and Test 

observations) according to the methods described in Vonesh and Chinchilli (1997) where 

ä2 
, 

01 2 +0,2 -2 
52 

TR WRT ) 
X2' 

( 

n1 o�2T +uR2 -2WRT- 

n 

where X 
2' ( j2 

ff2 +ý2 -2ýR represents the non-central chi-squared distribution with non-centrality 'r RR 
n 

parameter 
(P)- The sample variance-covariance matrix may be constructed based 

n 

on the principles described by Muirhead (1982) adjusting for the cross-over nature of the study 

(Jones and Kenward, 1989; Vonesh and Chinchilli, 1997). Let ý be 
&R2 O)RT 

which is dis- &2 (DRT T 

tributed according to a Wishart distribution W2(v, S) where S is the matrix 
0'R2 WRT 

The 2 
WRT aT 

22 

E(, §) =S and Var (&2) = 
201 for (t = T, R), VarPRT) = 

2WILZ COV(&2, &2 
-2' Bx- , and t n-2 n-2 ITR n-2 

COV(&2,2at2WRT for (t = T, R) (Muirhead, p. 90,1982). We now derive the expected t LýRT) 
n-2 

value and variance for the FDA's proposed estimate of PBE (FDA Guidance, 2001) in such a 

design and derive an unbiased estimator based on the findings. 

Theorem 4.1 Bias and Variance in Linearised PBE Metrics in a Two-period, Balanced Cross- 

over Estimated using Method- of-Moments 

When a me thod- of- moments estimator for the reference-scaled FDA metric is derived for (49) 

from a balanced two-period cross-over usZng a plug-in approach with method- of- moment esti- 

mates, then the expected value is 

2 +0,2 2 17T R- WRT) 
+ 62 + or2 )U2 t5l) 

n 
T-(l+CFDA Rk 
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This expression (51) is asymptotically unbiased for (49) and has variance of 

(0,2 +0,2 222_0,4 
2TR- 

2LJRT ) 
+4 

(O'T+6R 2WRT)62+ 2T 

nnn2 (52) 
0,4 2T) 

+(l + CFDA )2( 2R+ 
CFDA) 

(2WR 

n-2n-2 

An unbiased reference-scaled estimator for (49) is 

ý2+(n-l .21 &2 
2CDRT 

n) 
T-(l+CFDA+ 

n) 
R+ 

n 
(53) 

and has variance of 

( 0,2 + or2 - 
2WRT 222- 2WRT 2(l - . 

1)2t74 

2TR +4 
( O'T + O'R )j2 

+nT 

nnn-2 

OR4 
+ 

2T 
+ CFDA + 

1)2 
+ CFDA + 

WR 

nn-2 n2(n - 2) nn n-2 

8(l - -')UT2WRT 

nn -2 
- 8(l + CFDA + 

n) 
(n(n 

- 2) 

When a method- of- moments estimator for the constant-scaled FDA metric is derived for (50) 

from a balanced two-period cross-over as 

S2 + &2 _ 
&2 

TR- CFDA(0.04) 

then the expected value is 

0' 2+a2- 2WRT 
TR+ j2 + or2 _ or2 TR- CFDA (0.04) (54) 
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This expression (54) is asymptotically unbiased for (49) and has variance of 

(0,2 +0,2 - 2WRT )2 (0,2 + 0,2 2WRT ) 
62 

4 
2TR +4 TR+ 20rT 

nn4n2 -2 (55) 

+ 
20'R 2WRT 

n-2n-2 

An unbiased estimator for (50) is 

S2 +1 )&2 +1 )&2 
2CýRT 

nTnR+n- 
CFDA(0.04) (56) 

and has variance of 

0,2 + or2 2 (0,2 + 0,2 -1)20,4 T22 2(1- 
2R- WRT) 

+4 TR- WRT)62 
+nT 

nnn-2 

( ZO, 4 ) W2 2 
+1 )2 2R+8 RT 

-4(1- 
1) WRT 

nn-2 n2(n - 2)) 
ýT2 

n-2 

4(1- L)0,2 WRT 1 
+nT 4(1+- 

n(n - 2) n) 
(n(n 

- 2) 

Proof. Taking expectations of a plug-in estimate using method-of-moments in a two-period, 

balanced cross-over study and using the results of Muirhead (p 24-25,1982), it is seen that this 

expression reduces to: 

u2+ or 2 
-2 

62 
TR WRT 

+ 1--7) + UT2 + CFDA )0,2 
0,2 2- w WR 

n F+0, R WRT wg? 
n 

which reduces to (51). As sample size increases (51) becomes, 

22 OrT + OrR - 
2WRT 

+ j2 + or2 
2 lim", 00 

(T+ CFDA)O'R 

j2 + 0,2 )or2 
T-(l+CFDA R 

which is thus asymptotically unbiased. The expected value for (53) using the same approach 
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reduces this value. 

The variance of this expression is 

VAR(ý2) + VAR(&2) ++ CFDA )2 (VAR(&2 )) + 2COV(32, &2) TRT 

-2(l + CFDA)COV(S2, &2) -2 
(1 + CFDA) COV (&2, &2 ) 

RTR 

As S is independent of S^, the covariance terms associated with these terms are null, and we are 

left with, 

(S2) (&2) + )2 (&2 )) ) COV (&2, &2 ) VAR + VAR T 
(1 + CFDA (VAR R- 2(l + CFDA TR 

which equals (52) based on the findings in text above. The variance of the unbiased estima- 

tor follows and proof for the constant-scaled metric follows similar principles to the previous 

proof. 000 

Consider the data presented in Table 4 of Chapter 1. The estimated moments are as follows. 
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Table 15: Statistics and Quantiles for AUC and Cmax based on Data presented in Table 4 

&2 &2 Parameter INITR CýRT 
AUC 45 1 0.097 1 1.706 1 1.785 1 1.547 1 0.094 
Cmax 47 0.051 0.852 0.924 0.729 0.082 

Table 16: Estimates (Variance) for Linearised FDA Metric of PBE and Unbiased FDA Metric 
based on AUC and Cmax Data presented in Table 4 

Parameter Lin. FDA (Var) Unb-Lin. FDA (Var) 
AUC -3-18 (0-64) -3.26 (1.12) 
Cmax -1-68 (0-19) -1.72 (0-30) 
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Note that while point estimates for the linearised FDA metric and unbiased estimators do 

not differ by a great amount, the variances for the unbiased estimators are nearly twice that of 

the biased metrics. 

Thus, a great price in terms of precision would appear to be paid for accuracy. Correction 

for the correlation not taken into account due to the nature of the design in the metric appears 

to carry an associated cost in precision. This finding is not at all unexpected when it is recalled 

(see Chapter 2) that variance estimates in these designs are poorly characterised. In the next 

section, we will explore whether this impacts inference in replicate designs. 

The asymptotic bias and variance of the metric derived using a REML UN model are straight- 

forward to calculate as with IBE metrics. Again, it is known (Searle, 1971) that REML estimates 

for the moments of interest 6, a27a2 are asymptotically normally distributed. The large sample TR 

variance for ý and i are (X'E-X)- and -E[2'-' 1, respectively with covariance 0 where L is azaEl 

the log-likelihood in expression (30). Note that in this situation, S2 will be normally distributed 

2 +62 0,262 0,2 in the limit with expected value o, 6 and variance 2u, 45 +4 where is the usual large 66& 

sample variance of 6 usually estimated using the (X'E-X)- matrix if J=0 and with expected 

value j2 and variance 40r2j2 if 5 =/- 0. As with the IBE case, here we are most interested in j 

situations where 5 : ý4 0 and will concentrate on aspects relating to this situation. 

We now turn to the variance estimates. These are normally distributed in the limit with 

va, riance-covariance matrix appropriate to the structure of the model. For a REML UN model, 
2 &T 

where we estimate &2 these are normally distributed with expected value 

0, T2 
2 and symmetric variance- covariance of aR 

W) 

-E[ 
a2 L-1 1, the terms of which we shall denote as DEDE, 

( IT lTxR lTxw 
lTxR IR lRxw 
lTxw lRxLo lw 

) 

Theorem 4.2 Asymptotic Bias and Variance of the Linearised PBE Metrics from FDA using 

REML Estimation in a Two-Period Cross-over 

Let 

=: 
S2 + &2 )&2 (57) JýPBE T-(l+CFDA R 

be an estimate for the reference-scaled PBE metric in accordance with FDA Guidance (2001) 
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using a REML UN model. Then, this estimate is asymptotically normally distributed, unbiased 

wZth 

= j2 + or2 _ 
(1 2 E[IýPBEJ 

T+ CFDA)O'R 

and has variance of 

Var(JýPBEI = 4U62j2 + 1T + (1 + CFDA )2(lR) 

-2(l + CFDA)lTxR 

Let 

= 
S2 + &2 - &2 VC. PBE TR-0.04(CFDA) (58) 

be an estimate for the constant-scaled metric in accordance with FDA Guidance (2001) using a 

REML UN model. Then, this estimate Zs asymptotically normally distributed, unbiased with 

E[JýC. PBEI :: 62 + 0,2 _ or2 - 0.04(CFDA) TR 

and has variance of 

U, 
2 Var[IýC. PBEI =4 562 + 1T + 1R 

- 2lTxR 

Proof. The proofs follow the general structure of theorems in Chapter 3 under the asymptotic 

variance- covariance structure described above and are omitted here. EIOO 

An asymptotically normal confidence interval for the metric can easily be computed using 

SAS@ PROC MIXED code in the same manner as that described in the previous Chapter for 

IBE. 

We now derive the moments (and unbiased estimators) for the FDA's PBE metric in replicate 

designs. 

Theorem 4.3 Bias and Variance in the Linearised PBE Metrics in a Balanced, Replicate De- 

stgn Cross-over Estimated using Method- of-Moments 

In a replicate destgn, the 'plug-in' reference-scaled estimator for (49) is expressed as 

S2 + &Z + 
&W2T 

_ &Z + 
&W2R 

T2 
(1 + CFDA) 

(R2) 
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where &, ' (t = T, R) is the estimated variance of the average of test and reference formulations 

respectively. This expression has expected value 

2 UI 
_ý j2 22 

n+ 
O'T + CFDA)O'R 

which is asymptotically unbiased for (49) with variance 

2)2 

+ 
4J2 

+ 
2a4T 

+ 
2o, 44 

(2 )2 'R )2 O'WR 
-ý 2 -/n + (1 + CFDA -+ (1 + CFDA 

nI n-p 2(n - p) n-p 2(n - p) 

2 
+ CFDA ) 

-RT 
n-p 

An unbiased reference-scaled estimator may be derived as 

ý2& 
W2 

T 
or ýVT) 

- 
(1 + CFDA +1) Wý + R) + 

2C7JRT 
(59) 

n)(&ý 
+2nR2 

with variance 

EýI2 S2 44 2er 4 
, )2 41 )2 20r� 12 OWT 1)2 

(2+ 2+ 
(1 + (1 + (1 + CFDA +- 

n o', /n n n-p n 2(n - p) n n-p 

1)2 0'4WR 8w 211w2 
+(l + CFDA +-+ RT 4(l - -)(1 + CFDA + _) 

RT 

n 2(n - p) n2(n - p) nn n-p 

I)T2 
+8(1-- _. 

ýT2WR 
- 8(l + CFDA + 

O'f? WRT 

n n(n - p) n n(n - p) 

In a replicate design, the constant-scaled 'plug-in' estimator for (50) ZS expressed as 

-2 -2 
S2 + &Z + 

OTVT 
&2 + 

6WR 
_ CFDA(0.04) T2R2 

where 6-? (t = T, R) is the estimated variance of the average of test and reference formulations 
t 

respectively. This expression has expected value 

2 LI 
+ j2 + U2 _ or2 TR- CFDA(0.04) 
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which is asymptotically unbiased for (50) with variance 

2)2 J2 or, 4 
a4 2oT4 F4 (2 ++-++21+ 

UWR 

n a, /n n-p 2(n - p) n-p 2(n - p) 

2 

_RT 
n-p 

An unbiased constant-scaled estimator may be derived as 

S2 + )(&2 + 
ýW2T) &2 JRT 

- (1 + WR) + 
12 

nT2nR+2n 
CFDA(0.04) (60) 

with variance 

,p4 
2)2 J2 44 41 )2 2a 

+ (i -1 
)2 O'W 2o,, q (2+ 2 

+0 - 
WT + (i + )2 

n ai /n n n-p n 2(n -p) n n-p 

422 
+2 

07WR 
+ 

8WRT 

- 4(l - 
wRT 

n 2(n - p) n2(n - p) W2-) n-p 

+8(1- 
1) 

-8(1+ 
1) 

n n(n - p) n n(n - 

Proof In a balanced, p-sequence, replicate design cross-over, independent unbiased method- 
0,2 W, r + LT 

2 
&2, &2 &2 2=2 WR of-moments estimators ý, 

I WTjand WR are derived for J= AT-1-IR, 0'1 O'D +2 

22 
22 WT+Ow R22 

according to the methods described in Vonesh UBT + UBR - 
2WRT + 0' 

2, OrWT, and UWR 

and Chinchilli (1997) where 
2 (EI ) 2' ( j2 

n 
X 1 

n 

2' ( 62 ) 

where X --r represents the non-central chi-squared distribution with non-centrality parame- 
L 

ter The sample variance-covariance matrices may be constructed based on the principles 
Of=' 

described by Muirhead (1982) adjusting for the cross-over nature of the study (Jones and Ken- 

&2 &2 LDRT 
ward, 1989; Vonesh and Chinchilli, 1997). Let AýB be BR+ 

2'ý2ý C)RT 

&2 CIIRT &TýL 
CJRT BT+±L2Z 

which is distributed according to a Wishart distribution W2(n - p, SB) where SB is the matrix 
2 f" 
BR+ 2 WRT 

2 
O'A2 WRT ). The E(&§B) = SB, and Var(&? ) = -2ý! 

L for (t = T, R), 
2 ,, WT WRT O'Tý' t n-P WRT UBT+ 2 

Var(CDRT) = 
2ýýL' COV(&Z'&2) = 

2"121L, 
and COV(&2, (DRT) = 

2a[2WRT 
for (t = T, R) (Muir- 

n-p TA n-p f n-p 

head, p-90,1982). 

Similarly, let ýW be defined in accordance with Vonesh and Chinchilli (1997) such that it 
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&2 is independent Of kýB (see also Theorem 2.1) and equal to WR 0 

02 which is distributed &WT 

) 

0' 
2 

according to a Wishart distribution W2 (n - p, SW) where Sw is the matrix WR 0 ). The 02 

E(Sw) = Sw, and Var( Wt) =2 wl for (t = T, R) (Muirhead, p. 90, S2, n-p 1982). Note that AýB) 

and ýw are pairwise independent (Vonesh and Chinchilli, 1997). 

Now, 
22 

^2 (62 + 
6WR 

f1PBE + (6Týý + 
O'ýVT) 

+ CFDA) 
jq 

W 

22 

and from the results above and Muirhead (p. 25-27,1982) we see that 

222 El 
+ j2 ++ 

orýVT) 
+ CFDA) (Or 2+ O'WR) E[JýPBEI 

nT2A2 

which is obviously asymptotically unbiased as n -+ oo. The variance Of PPBE is 

Var(ý2) + Var(&Z) + (1/4)Var(&2 T) + (1 + CFDA )2 (Var&Z) TwR 

1 
(0,2 

4 
(1 + CFDA)'Var WR) - 2(l + CFDAWOV(&Týý) &RD 

44 
LI ) (2+4( J2 

+ 
2U, ý + 

n2 an-p 2(n - p) 
n 

2o, '! 42 
+(1 + CFDA )2 R+ (1 + CFDA )2 WR 

- 4(l + CFDA ) WRT 

n-p 2(n - p) n-p 

Since, a2=2 
fýEz) + (0,2 

I 
(OBT +2 BR + 2WRT = uT2 + oZ - 

2WRT, then E[JýPBEJ 
2R 

2 
J2 + (1 + . 

1) (0.2 W1) (0.2 + 0'2wR 2wRT O, W from which the unbiased estimator n T+ 2T)-(I+CFDA-n A2n 

(59) for the linearised PBE metric from FDA is immediately derived. The variance of the 

unbiased estimator follows from the principles above. The proof for other cases involving the 

constant-scaled metric follow similarly. OEIEI 

This however addresses only balanced, replicate design data sets with no missing data. We 

now turn to REML modelling results in replicate design studies for assessing reference and 

constant-scaled metrics. Estimates arising from the use of REML models are model dependent 

(as will be seen in the retrospective analysis section of this Chapter. ) We will consider the use 

of an unconstrained REML procedure (UN) and as an alternative will consider a constrained 

procedure (CSH). 

It is known (Searle, 1971) that REML estimates for the moments of interest 6, Or2 or 2u2a2 
BT) BRI WT7 WR 
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are asymptotically normally distributed. The large sample variance for and E are (X'E-X)- 

and -E[ 
02 L-1 1, respectively with covariance 0 where L is the log-likelihood in expression (30). 0=11 

Note again that in this situation, S2 will be normally distributed in the limit with expected 

2 0,4 0,262 value a6 +62 and variance 2 +4 where 0,2 is the usual large sample variance of 6 usually 666 

estimated using the (X'E-X)- matrix if 6=0 and with expected value 6' and variance 40,262 
6 

if 6 ýý 0. As with the IBE case, here we are most interested in situations where 6 :A0 and will 

concentrate on aspects relating to this situation. 

We now turn to the variance estimates. As in IBE, these are normally distributed in the 
2 

'BT 

CZIRT 

limit with variance-covariance matrix appropriate to the structure of the model. 
&2 

BR these 
&2 

WT 
&2 

WR 

are normally distributed with expected value 
2 

O'BT 
WRT 

2 
O'BR and symmetric variance-covariance of 

) 

O'W T 
2 
WR 

2-1 

, am, ], the terms of which we shall denote as -E[-jF- , am, 1BT 1BTxý IBTxBR IBTxWT IBTmWR 

IBTxw 1, IBRxw IwxWT IwxWR 

1BTxBR 1BRxw IBR 1BRxWT IBRxWR 

( 

IBTxWT IwxWT 1BRxWT IWT IWTxWR 

IBTxWRIýxWRIBRxWRIWTxWR IWR 
-2 0, BT 
&2 

BR 

for the constrained REML model CSH, we find that where we estimate Similarly , 62 WT 
&2 

WR 

these are normally distributed with expected value 
2 

O'BT 
2 

O'BR 
P and symmetric variance- covariance of 2 

ITWT 
2 

aWR 
2 

, gz, 1, the terms of which we shall denote as -E [-5-M 
IBT IBTxBR 1BTxp IBTxWT IBTWR 

IBTxBR IBR IBRxp IBRxWT 1BRxWR 

1BTxp 1BRxp IP lpxWT lpxWR 

1BTxWT IBRxWT IpxWT IWT IWTzWR 

IBTWR 1BRxWR IpxWR IWTxWR 1WR 

) 

From these definitions, it is easy to derive the expected values and variances of the relevant 

estimators of the FDA metric (Serfling, 1980). 

Theorem 4.4 Asymptotic Bias and Variance of the Linearised PBE Metrics from FDA in 

Replicate Designs using REML Estimation 

Let 

S2 + &2 + &2 (&2 + &2 
I"PBE -` BT WT + CFDA) WR BR) (61) 

be an estimate for the reference-scaled metric in accordance with FDA Guidance (2001) using a 
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REML UN model. Then, this estimate is asymptotically normally distributed, unbiased with 

= j2 + or2 +0,2 22 E[JýPBEI 
BT WT + CFDA)(O'WR + OrBR) 

and has variance of 

Var[4BEI = 40.2j2 + IBT + 1WT ++ CFDA )2 (1BR + 1WR)+ 6 

21BTxWT - 2(l + CFDA)lBTxBR - 2(l + CFDA)lBTxWR - 2(l + CFDA)lBRxWT 

-2(l + CFDA)lWTxWR + 2(l + CFDA )2 (lBRxWR) 

Let 

+ &2 + &2 (&2 + &2 1-'C. PBE -:: -- 
6 

BT WT - WR BR) - 
0.04(CFDA) (62) 

be an estimate for the constant-scaled metric in accordance with FDA Guidance (2001) using a 

REML UN model. Then, this estimate is asymptotically normally distributed, unbiased with 

= j2 + 0,2 +0,2 (072 + Or2 R) 
E[JýC. PBEJ BT WT - WR B-0.04(CFDA) 

and has variance of 

Var[OC. PBEI = 40,62j2 + 1BT + IWT+ 

1BR + 1WR + 21BTxWT - 21BTxBR - 21BTxWR - 21BRxWT - 21WTxWR + 21BRxWR 

Similarly, let 

f'PBE = 
S2 + &2 + &2 (&2 + &2 (63) 

BT WT + CFDA) WR BR) 

be an estimate for the reference-scaled metric in accordance with FDA Guidance (2001) using a 

REML CSH model. Then, this estimate is asymptotically normally distributed, unbiased with 

= j2 + U2 + OrW2 (Or2 + or2 E[OPBEI 
BT T+ CFDA) WR BR) 
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and has variance of 

Var[OPBEI = 4U52j2 + 1BT + (1 + CFDA )2 (1BR) + 1WT + (I + CFDA )2 (lWR) 

-2(l + CFDA)lBTxBR + 21BTxWT - 2(l + CFDA)lBTxWR - 2(l + CFDA)lBRxWT+ 

2(l + CFDA )2 1BRxWR - 2(l + CFDA)lWTxWR 

Let 

2+ &2 (&2 + &2 IJC. PBE --- +&BT WT - WR BR) - 0.04(CFDA) (64) 

be an estimate for the constant-scaled metrZc in accordance with FDA Guidance (2001) using a 

REML CSH model. Then, this estimate is asymptotically normally distributed, unbiased with 

-",:: 62 2+ 
or2 (0.2 + or2 E[JýC. PBEI + O'BT WT - WR BR) - 0.04(CFDA) 

and has variance of 

Var[JýC. PBEI = 4Uý262 + 1BT + 1WT+ 

IBR + IWR + 21BTxWT - 21BTxBR - 21BTxWR - 21BRxWT - 21WTxWR + 21BRxWR 

Proof The proofs follow the general structure of those used for Chapter 3 based on the above 

variance-covariance matrices and are omitted here. 000 

An asymptotically normal confidence interval for the metric can easily be computed using 

SAS@ PROC MIXED code in the same manner as previously described. 

4.2.3 Testing and Inferential Procedures for PBE 

We now consider testing and inferential procedures for PBE criteria. Practical testing and 

inferential procedures for PBE have received little attention in the literature. Quiroz et al. 

(2002) describes an asymptotic procedure using method-of-moments estimation; however, as 

findings are similar to those produced by the FDA Guidance (2001) procedure developed based 

on the findings in Hyslop et al. (2001-2002), we will include only the latter in the assessments of 

this chapter. Hauck et al. (1997) and Welleck (2000) also considered alternative approaches, but 

we will not further develop these apporaches here. Some have noted that the FDA's procedure to 
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be flawed in that it does not take into account the covariance produced by repeated observations 

on the same subject; however, as we will see in the retrospective analysis of this Chapter and 

the simulations of Chapter 5, little practical differences in inference are evident. 

For the linearised version of the FDA's PBE metric (49), a procedure is described in the 

FDA Guidance (2001) that is appropriate for parallel group designs - i. e. where the mutually 

independent estimates S, &', and A are derived for 6 
---: AT - AR) 0, T2 , and o, 

2 
where TRR 

ý2 
, 

(ýjl 
+ ýýR2)X2'( 

ý2 

nT nR 
1, 

T2 + 
nT nR 

where X 2' 62 represents the non-central chi-squared distribution with non-centrality pa- fl + fl 
) 

nT nR 

rameter 
j2 

T nR 

where 
22 

&2 
"T(Xv-r) 

T 
VT 

with X2 representing the central chi-squared distribution with vT = nT -1 degrees of freedom, VT 

and 

where 
22 

&2 
o'R(Xvil) 

R VR 

with X2 representing the central chi-squared distribution with I"R = nR -1 degrees of freedom. 
V, R 

This procedure is summarised below. Here an approximate procedure such as that developed 

by Hyslop et al. (2000) is proposed based on the findings of Ting et al. (1990) and presented in 

the FDA Guidance (2001). 

1. Derive unbiased independent estimators S, &2 
, and &2 for 6 JIT - AR7 07 2, 

and Or2 as TRTR 

described earlier in this Chapter. 

2. Let Hj be the square of the absolute value of the larger of the lower and upper 90% bounds 

on 6 derived using the t-distribution and using Satterthwaite approximation for the degrees of 

2) 
-(l+CFDA)VR62R 2 

freedom, HT (6T 
, and HR = where X (a) is the ath-percentile point of 

X2 
(0.05) X2R (0.95) V 

vT V 

the Chi-squared distribution with vt degrees of freedom. 

3. Then 

_ &2 )2 + (HR 2 »2] (32 + &2 [(H6 
_ 

ä2)2 + (HT 
T-(l+CFDA RT 

(- (1 + CFDA) ÜR 
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is an approximate, 90% confidence interval for (49). 

The properties of nonparametric bootstrap-based inference, extending the results of Shao et 

al. (2000a-b), is a trivial exercise (data on file) and will not be reproduced here. Obviously, for 

the reasons discussed in Chapter 1, it is be desirable to have an approximate or asymptotic pro- 

cedure in addition to this non-parametric method, and we will develop an asymptotic approach 

using the REML properties of the previous section similar to that developed for IBE in Chapter 

I 

The findings in the previous Chapters also allow for the derivation of asymptotic REML 

confidence intervals for the linearised FDA criterion in a straightforward manner (see Chapter 

3). 

Confidence intervals constructed based on the REML normal asymptotic approximation 

(described above), the Cornish-Fisher approximation, and using the non-parametric percentile 

method (2000 bootstrap samples maintaining the number of subjects per sequence) for Linearised 

PBE FDA metrics are below based on the data of Table 4. Inference is the same using all three 

approaches (PBE is demonstrated for AUC and Cmax). Note that the normal approximation 

falls between the bootstrapped bound and the upper bound constructed using the Cornish-Fisher 

approximation. The non-parametric percentile bootstrap is known to be conservative in Type I 

error rate and the Cornish-Fisher approximation is known to be anti-conservative with respect 

to maintenance of the Type I error rate. 

Table 17: Upper 95% Bounds for the Linearised FDA Metric of PBE based on AUC and Cmax 
Data presented in Table 4 

I Parameter I Normal Appx I CF A ýC-U-] 

AUC 1 -1.87 1 -1.60 ý -1.93 
Cmax -0.97 -0.89 -1.16 
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4.3 Retrospective Analysis 

In the retrospective analysis of the replicate design data sets, we will consider: 

1. Bias in the estimates arising from Method-of- Moments estimation 

2. PBE inference reached based on comparison of the bootstrap, Hyslop's procedure, and the 

application of asymptotically normal confidence intervals from REML. 

The same data was utilised as was in Chapter 2-3. 

We now turn to discussion of retrospective analysis of the replicate design data sets for the 

assessment of population bioequivalence. Three inferential methods were explored: 

1. The approximation-method based on the Cornish-Fisher expansion was applied to the data 

sets in accordance with FDA Guidance (2001) using method-of-moments estimates to derive 

the upper bound of a 90% confidence interval for the linearised FDA population bioequivalence 

metric. 

2. The non-parametric percentile method (Efron and Tibshirani, 1993) was used with 2000 boot- 

straps, maintaining the observed numbers of subjects per sequence, and using an unrestricted 

(UN) REML model to derive the upper bound of a 90% confidence interval for the linearised 

FDA population bioequivalence metric. The unrestricted model was selected instead of a re- 

stricted REML model (recommended in FDA Guidance, 1997) in order to provide consistency 

relative to the method-of-moments procedure used in the Hyslop et al (2000) method described 

above. Method-of-moments and unrestricted REML estimates should be equal when the data 

set is strongly balanced (Vonesh and Chinchilli, 1997) and has no missing data. Also this model 

was selected in order to provide consistency with the asymptotic procedure developed in previ- 

ously in this Chapter. 

3. The asymptotic procedure developed previously in this Chapter was applied to each data set 

using an unrestricted REML model and a restricted REML model. 

We first describe the results of each analysis and then compare and contrast between them. 

This sub-section ends with discussion of significant findings to be explored through the use of 

simulation and conclusions. 

When Hyslop et al's (2000) approximate procedure was applied to each data set for the 

assessment of population bioequivalence, it was found that three AUC data sets (Q1, X, Y) and 

five Cmax data sets (E, G, N1, X, ZB) failed to demonstrate bioequivalence with upper bounds 
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falling above zero (see Table 54 and 55). However, the non-parametric percentile bootstrap 

method found that one AUC data set (N1) and five Cmax data sets (G, N1, P, Y, ZB) failed 

to demonstrate PBE (see Tables 56 and 57). When assessed using the unrestricted REML 

asymptotic procedure (Tables 56 and 60), no AUC data sets failed to demonstrate PBE, and 

only three Cmax data sets (G, NI, and ZB) failed to demonstrate PBE. 

Thus in the vast majority of cases, all three methods of inference indicate that most data 

sets demonstrated population bioequivalence. Of those that failed, for Cmax, data sets G, N1, 

and ZB are consistently identified by all procedures as failing to demonstrate PBE. 

The results for data set N1 (AUC) and P (Cmax) again illustrated (for previous discussion 

see Zariffa et al., 2000) the peculiar behaviour of the FDA criterion near the cut-off value for 

2 
reference scaling of O'R = 0.04. Here we observed estimated &R = 0.204 for N1 (AUC) and 

O'R = 0.232 for P (Cmax) just above the cut-off. It is known in instances such as this (Zariffa et 

al., 2000; Shao et al., 2000a-b) that the bootstrap procedure can result in inconsistent inference, 

and the observation that this data set fails to demonstrate PBE should therefore be interpreted 

with caution. Indeed previous reports (Zariffa et al., 2000) did not observe the data sets to fail 

PBE. Thus we believe these findings to be related to inconsistency of the bootstrap and the 

change to a linearised procedure. 

Indeed) when Shao et al. 's (2000a-b) proposed correction to the bootstrap procedure of FDA 

Guidance (1997) was applied an upper bound of 1.33 for NI (AUC) and of 0.47 for P (Cmax) 

results for the non-linearised criterion (values are assessed relative to a cut-off of 1.74 with value 

less than this denoting demonstration of PBE). Shao et al. 's proposed procedure was carried 

out without regard to the fact that the estimate from such an exercise is positively biased (see 

previous results in this Chapter). Thus we believe the findings for data set N1 (AUC) and P 

(Cmax) to be an artifact of the bootstrap inferential procedure in accordance with previous 

findings for other data sets (Zariffa et al., 2000). 

Discrepancies in findings for AUC data sets Ql, X, and Y and Cmax data sets E and X were 

potentially more readily interpretable. Accounting for non-null correlation between variance 

estimates allowed the asymptotic and the non-parametric percentile bootstrap procedures to 

conclude PBE was demonstrated while ignoring this correlation resulted in rejection under 

the procedure developed by Hyslop et al. (2000). Given the number of changes, however, the 
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assumption of independence of variance estimates is of limited potential, and certainly not great, 

concern in data from cross-over studies. 

The discrepancy in findings between the bootstrap and asymptotic procedures for data set 

Y (Cmax) did not appear to be due to any striking finding in the data set. Thus we suspect 

that random-error may be involved and will investigate using simulation to elicit comparative 

error rates. 

Turning to consideration of constraints in REML modelling and its impact on inference for 

PBE using the asymptotic procedure, for PBE, no discrepancies in inference for AUC and Cmax 

were observed when constraining variance estimates to be non-zero. 

Lastly, we consider the estimated bias in the population bioequivalence metric, equal as 

previously established in this Chapter as ol /n. We neglect that this bias is exact for only 

strongly balanced, complete data sets for the purposes of this exercise. The mean (STD) bias 

for AUC and Cmax were estimated as 0.002 (0.001) and 0.004 (0.003), respectively. Expressed 

as an absolute percentage of the estimate for the PBE metric, this mean (STD) was 0.55% 

(0.49%) and 1.62% (3.53%), respectively. Accounting for this positive bias was not found to 

impact inference relative to the Hyslop upper bound in any data set, as would be expected given 

the asymptotic unbiasedness of the metric previously established in this Chapter relative to the 

sample sizes employed in these studies. 

Obviously, PBE allows for much easier market access than does the corresponding ABE 

criteria. Indeed, the vast majority of data sets demonstrate PBE regardless of inferential method. 

This was concerning in particular for data sets 11,12, and T (AUC) and for data sets 11,12, 

L2, Q2 and T (Cmax). These data sets demonstrated 20 to 40% changes in mean response 

but would still be allowed market entry under PBE due to a combination of decreased total 

variability in the test product and the impact of scaling to reference product variation. The 

widening of goalposts while indicative of carrying out a smaller study (see FDA Guidance, 2001), 

for such tradeoffs between moments of interest in the estimated metric for PBE is of concern 

when considering the potential for therapeutic failure in the marketplace. 
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4.4 Findings and Discussion 

The procedure developed in FDA Guidance (2001) based upon Hyslop et al. (2000) for the 

assessment of PBE is flawed in that it does not account for the covariance among variance 

estimates introduced by repeated observations within-subject in cross-over designs. However, 

when this correlation is taken into account (using the asymptotic REML approach developed in 

this thesis, which should also guard against bias introduced by missing data or imbalance), little 

change in inference is observed. Thus the criticism leveled at the procedure would not appear 

to be warranted at this time based upon empirical review of the data. However, we will study 

whether this holds true in other situations using simulation in Chapter 5. 

However, we note one very concerning finding here. It appears very easy to demonstrate 

PBE in the typical replicate design BE study. Several studies would permit products with 

large changes in average bioavailability to market. This is due to decreases in the test products 

variance and due to the scaling of the metric due to large total variance in the reference product. 

Such a test product has the potential to fail users upon marketplace entry due to failure of efficacy 

or the presence of intolerable side effects. 

The magnitude of this potential for marketplace failure is a characteristic of the therapeutic 

index of the individual drug product, and hence we will not pursue the subject further here, 

except to note it is worrisome. Revision of the goalpost would appear to be a first step in 

correcting this deficiency, and we believe the goalpost chosen by FDA should be revisited if 

PBE is considered as an approach for market access in future (FDA Guidance, 2002). 

Behaviour of the PBE criteria should be assessed cautiously when examining products with 

reference product total variation near the FDA cut-off of 0.04 if using a nonparametric bootstrap 

procedure. Consistency of such a procedure is concerning, along with its potential for Type I or 

II error, and we will study a correction (suggested by Shao et al., 2000a-b) to study its effects 

in Chapter 5. 

In conclusion, the asymptotic procedure proposed in this thesis appears to result in consistent 

inference with alternative procedures currently available. In sample sizes usually used for the 

assessment of average bioequivalence in replicate design studies, bias introduced by a 'plug-in' 

method does not appear to be of a magnitude sufficient for concern with regard to impact on 

inference in balanced data sets with complete data. Inconsistency of the bootstrap procedure and 
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issues in correlation with the definition of FDA Guidance (2001) procedure appear to make the 

asymptotic assessment procedure developed in this thesis a potential alternative when reviewing 

the results of PBE studies. 

5 Simulations and the 'Eransitivity of Individual Bioequiv- 

alence Testing 

Aspects of the findings of this chapter were presented at the American Association of Pharma- 

ceutical Scientists joint workshop with the USA Food and Drug Administration (Zariffa and 

Patterson, 2000), at the American Statistical Society Joint Statistical meetings (Patterson and 

Jones, 2002e), and at the International Society of Clinical Biostatistics meeting (Patterson and 

Jones, 2002f). Aspects of the findings were published in the Journal of Clinical Pharmacology 

(Zariffa and Patterson, 2001), in Pharmaceutical Statistics (Patterson and Jones, 2002g), in the 

Proceedings of the Joint Statistical Meetings (Patterson and Jones, 2002h), and in a series of a 

GlaxoSmithKIine technical reports (Patterson et al., 2001e; Patterson and Jones, 2002b-c). 

5.1 Introduction and Goals of Chapter 

In Chapters 2 through 4, retrospective analyses were used to assess the performance of the 

average bioequivalence (ABE), individual bioequivalence (IBE), and population bioequivalence 

(PBE) methods in practice. To briefly summarise, the FDA's recommended methods of analysis 

were first used to assess ABE, IBE, and PBE. A constrained REML model (option 'FAO(2)' 

to constrain variance estimates to be positive) was used to construct the ABE two-one sided 

tests as described in Chapter 2, and the Cornish-Fisher expansion (see Hyslop et al., 2000 and 

FDA Guidance, 2001) was used utilising method-of-moments estimates to test for IBE and PBE 

respectively for both AUC and Cmax. For AUC, seven data sets failed to demonstrate ABE; 

nine data sets failed to demonstrate IBE, and three data sets failed to demonstrate PBE using 

these approaches to analysis. For Cmax, 16 data sets failed to demonstrate ABE; 14 data sets 

failed to demonstrate IBE, and five data sets failed to demonstrate PBE. The agreement within 

data sets across procedures is described in Table 18. 
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Table 18: ABE, IBE, and PBE Findings from Retrospective Analysis of 51 Replicate Design 
Data Sets using the FDA Guidance (2001) Procedures 

Number of Data Sets with FindingT AUC C 
Fails ABE, Fails IBE, Fails PBE 0 2 
Fails ABE, Pass IBE, Fails PBE 0 0 
Fails ABE, Fails IBE, Pass PBE 4 5 
Fails ABE, Pass IBE, Pass PBE 3 9 
Pass ABE, Fails IBE, Fails PBE 0 3 
Pass ABE, Pass IBE, Fails PBE 3 0 
Pass ABE, Fails IBE, Pass PBE 5 4 
Pass ABE, Pass IBE, Pass PBE 36 28 

Total 51 51 

From these findings, we can infer that IBE is less stringent than ABE in some situations. For 

example, in one instance, an 18% change in J was observed (failing ABE) but passed under IBE. 

The magnitude and variance of the variance estimates (ill-characterised in samples this small) 

are the contributing factor to this in the confidence interval for (24) (as we will illustrate using 

simulation in this chapter). Note also, that it appears very easy to demonstrate PBE in the 

typical replicate design BE study for a highly variable product. Some data sets demonstrated 

20 to 40% changes in mean response (failing ABE) but would still be admitted to market under 

the PBE approach. 

Additionally findings indicate that inference may be model dependent (see Chapter 2). When 

using unbiased method-of-moments estimates to construct the IBE and PBE metrics in repli- 

cate cross-over designs, it is known (Chapter 3 and 4) that the estimates for (24) and (23) 
2 +(,,, 

2 +a2 

are positively biased by an amount proportional to D Lw_ý) in small samples and are n 

asymptotically unbiased. In the analysis of these 51 replicate design data sets, as an absolute 

percentage of the estimate for the IBE metric, the positive bias mean (sd) was estimated to be 

1.50% (4.61%) and 2.19% (3.83%) for AUC and Cmax, respectively. As an absolute percentage 

of the estimate for the PBE metric, this mean (sd) is 0.55% (0.49%) and 1.62% (3.53%) for AUC 

and Cmax, respectively. Such a small bias would not be expected to impact inference (given the 

relatively large sample sizes employed in these studies) - 

Retrospective comparison of method-of-moment, unconstrained and constrained REML es- 

timation as applied to ABE may be found in Chapter 2. We now consider the agreement in 

inference between the Cornish-Fisher expansion (Hyslop et al., 2000 and FDA Guidance, 2001), 

the large sample REML testing procedures developed in Chapters 3 and 4, and a nonparametric 
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bootstrap procedure (FDA Guidance, 1997) using unconstrained REML estimates as applied 

to IBE and PBE testing. Using the asymptotic procedures for AUC, 11 data sets failed to 

demonstrate IBE, and no data set failed to demonstrate PBE. Using the nonparametric per- 

centile bootstrap for AUC, 11 data sets failed to demonstrate IBE, and one data set failed to 

demonstrate PBE. Using the asymptotic procedure for Cmax, 16 data sets failed to demonstrate 

IBE while three data sets failed to demonstrate PBE. Using the nonparametric percentile boot- 

strap procedure for Cmax, 17 data sets failed to demonstrate IBE while five data sets failed to 

demonstrate PBE. The agreement across procedures is further described in the following Table 

19. 

Table 19: IBE Cornish-Fisher (CF), Large Sample Asymptotic (Asy), and Nonparametric Per- 
centile Bootstrap (NP) Findings from Retrospective Analysis of 51 Replicate Design Data Sets 

Number of Data Sets with Finding TAUC Cma7x7] 
IBE 

Fails CF, Fails Asy, Fails NP 8 12 
Fails CF, Pass Asy, Fails NP 0 0 
Fails CF, Fails Asy, Pass NP 1 1 
Fails CF, Pass Asy, Pass NP 0 1 
Pass CF, Fails Asy, Fails NP 1 2 
Pass CF, Pass Asy, Fails NP 2 3 
Pass CF, Fails Asy, Pass NP 1 1 
Pass CF, Pass Asy, Pass NP 38 31 

Total 51 51 
PBE 

Fails CF, Fails Asy, Fails NP 0 3 
Fails CF, Pass Asy, Fails NP 0 0 
Fails CF, Fails Asy, Pass NP 0 0 
Fails CF, Pass Asy, Pass NP 3 2 
Pass CF, Fails Asy, Fails NP 0 0 
Pa, ss CF, Pass Asy, Fails NP 1 2 
Pass CF, Fails Asy, Pass NP 0 0 
Pass CF, Pass Asy, Pass NP 47 44 

Total 51 51 

Findings suggest that the procedures are not remarkably dissimilar in inference; however, 

there are some discrepancies which may be associated with the potential bias in the method 

chosen for estimation (method-of-moments or REML) and-or Type I and II error rate. This 

chapter will address the questions raised by the retrospective analysis exercises undertaken in 

Chapters 2 through 4 with regard to the properties of ABE, IBE, and PBE metrics and inference 

in replicate designs. Specifically, for ABE, we will use simulation studies to assess: 

1. Do estimates from the REML models and Method-of-Moments behave as normal variables 
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in small samples and when there is missing data? 

2. What is the bias in REML estimates for the components of interest in small samples and 

when there is missing data? 

3. Of those procedures found to provide acceptable estimates for the moments of interest, what 

is the Type I error rate using REML procedures in small samples? 

For IBE and PBE, simulation studies will be used to assess: 

1. How do the Type I error rates of the Hyslop et al. (2000), asymptotic, and bootstrap 

procedures compare? 

2. What is the impact of missing data, and is the assumption of pairwise independence of 'plug- 

in' terms making up the metric critical relevance in IBE and PBE assessment? 

I Does the assumption that 5 :ý0 impact IBE and PBE inference when using an asymptotic 

procedure? 

Last, we will use simulation to assess the potential for 'bio-creep' regarding allowable changes 

in average exposure observed as multiple studies are used to allow multiple entries to market 

using IBE. 

5.2 Models and Theory 

Two sequence (RTRT, TRTR), replicate deigns were simulated using SAS@ using the parameter 

space described in the below table. Simulations were conducted for sample sizes of 16,24,34, 

and 80 in accord with the recommended sample sizes in the FDA Guidance (2001) with equal 

numbers of subjects in each sequence n/2. Each simulation study was composed of 1000 runs. 

The parameter space studied is defined in the below Table 20. 

Table 20: True Values used in Simulation Experiments 1 through 
54 (1000 runs per simulation) 

Sim j 0' 2 
D a2 WT ol 2 

WR 
0 0 0.01 0.0025 

2 0 0.001875 0.01 0.0025 
3 0 0 0.01 0.01 
4 0 0.0075 0.01 0.01 
5 0 0 0.01 0.0225 
6 0 0.016875 0.01 0.0225 
7 0 0 0.09 0.04 
8 0 0.03 0.09 0.04 
9 0 0 0.09 0.09 
10 0 0.0675 0.09 0.09 
11 0 0 0.09 0.16 
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Table 20: True Values used in Simulation Experiments 1 through 
54 (1000 runs per simulation) 

Sim 6 ol 2 
D ol 2 

WT or 2 
WR 

12 0 0.12 0.09 0.16 
13 0 0 0.25 0.16 
14 0 0.12 0.25 0.16 
15 0 0 0.25 0.25 
16 0 0.1875 0.25 0.25 
17 0 0 0.25 0.49 
18 0 0.3675 0.25 0.49 
19 0.2231 0 0.01 0.0025 
20 0.2231 0.001875 0.01 0.0025 
21 0.2231 0 0.01 0.01 
22 0.2231 0.0075 0.01 0.01 
23 0.2231 0 0.01 0.0225 
24 0.2231 0.016875 0.01 0.0225 
25 0.2231 0 0.09 0.04 
26 0.2231 0.03 0.09 0.04 
27 0.2231 0 0.09 0.09 
28 0.2231 0.0675 0.09 0.09 
29 0.2231 0 0.09 0.16 
30 0.2231 0.12 0.09 0.16 
31 0.2231 0 0.25 0.16 
32 0.2231 0.12 0.25 0.16 
33 0.2231 0 0.25 0.25 
34 0.2231 0.1875 0.25 0.25 
35 0.2231 0 0.25 0.49 
36 0.2231 0.3675 0.25 0.49 
37 0.6931 0 0.01 0.0025 
38 0.6931 0.001875 0.01 0.0025 
39 0.6931 0 0.01 0.01 
40 0.6931 0.0075 0.01 0.01 
41 0.6931 0 0.01 0.0225 
42 0.6931 0.016875 0.01 0.0225 
43 0.6931 0 0.09 0.04 
44 0.6931 0.03 0.09 0.04 
45 0.6931 0 0.09 0.09 
46 0.6931 0.0675 0.09 0.09 
47 0.6931 0 0.09 0.16 
48 0.6931 0.12 0.09 0.16 
49 0.6931 0 0.25 0.16 
50 0.6931 0.12 0.25 0.16 
51 0.6931 0 0.25 0.25 
52 0.6931 0.1875 0.25 0.25 
53 0.6931 0 0.25 0.49 
54 1 0.6931 1 0.3675 0.25 1 0.49 

182 



Two scenarios were investigated. The first scenario involved studies with no missing data. In 

the second scenario, twelve subjects were randomly selected to have missing observations. Three 

subjects had a missing observation for the test formulation. Three additional subjects were 

missing both observations for the test formulation. Three subjects were missing an observation 

for both the test and reference formulations, and three subjects were missing both observations 

for the reference formulations. Twelve subjects were selected as this number is indicative (as a 

practical matter) of a setting where one would be concerned about the amount and extent (and 

reasons why) there was such a significant amount of missing data. 

The second set of simulations were performed in order to compare the Type I error rates 

of the IBE procedures again utilising samples sizes of n= 16,24,34 and 80 in a two sequence, 

replicate design with no missing data. 

Table 21: True Values used in Simulation Experiments 55 through 
59 (1000 runs per simulation) 

Sim j 2 UD 2 O'WT 2 O'WR 

55 In 1.31 0.0075 0.03 0.01 
56 In 1.25 0.03 0.06 0.04 
57 In 1.45 0.0675 0.11 0.09 
58 In 1.66 0.12 0.18 0.16 
59 In 2.49 0.3675 0.51 0.49 

The third set of simulations were performed in order to compare the Type I error rates of 

the PBE procedures again utilising samples sizes of n= 16,24,34 and 80 in a two sequence, 

replicate design with no missing data. 

Table 22: True Values used in Simulation Experiments 60 through 
62 (1000 runs per simulation) 

Sim :2 O'BT 42R 2 O'WT C2 WR 

60 In 1.30 0.06 0.04 0.01 0.01 
61 In 1.39 0.08 0.06 0.015 0.015 
62 In 1.48 0.10 0.08 0.02 0.02 

Simulations were performed using the SAS@ procedure 'rannor' in a manner appropriate to 

a replicate design and were performed using SAS(ý) version 8.1 running under UNIX. Sequence 

and period effects were induced in the model and were assumed to be non-null. Method-of- 

Moments estimation, unconstrained (UN) and Constrained (CSH, FAO(2), and RIS) SAS@- 

based REML mixed modelling procedures were conducted in accordance with the descriptions 
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in Chapters 2 through 4 to estimate the effects of interest in ABE, IBE, and PBE testing and 

will not be reproduced here. ABE testing was conducted in accordance with the descriptions 

of Chapter 2. For IBE and PBE, the procedure described by Hyslop et al. (2000) and in the 

FDA Guidance (2001) were used to derive an upper bound for the linearised FDA metrics, 

respectively, based on method-of-moment estimates. Asymptotic testing for IBE and PBE were 

conducted in accordance with the findings of Chapters 3 and 4, respectively. 

Nonparametric percentile bootstrap testing for IBE and PBE were conducted in accordance 

with the findings of Shao, et al. (2000a-b) to assess the potential of this method for correction of 

the previous findings of inconsistency of the bootstrap testing procedure (Zariffa et al., 2000) at 

2 the constant-scaling boundary of UWR = 0.04. Here 2000 bootstrap samples (subject being the 

bootstrapped unit) were taken (FDA Guidance, 1997). Each bootstrap sample was modelled 

using the unconstrained REML procedure of Chapter 2, and the linearised metric was scaled 

based on the magnitude of the sample's reference product variation (a slight modification to 

Shao et al., 2000a-b, approach based on the findings of Chapters 3-4). The upper 95th quantile 

serves as the upper bound of interest (Efron and Tibshirani, 1993). 

We now turn to the findings from the simulation exercise. We first address the issues of 

2 bias in estimates of J, UD, and the within-subject variance estimates. This will be followed by 

discussion of findings relating to Type I and II error rates in ABE, IBE, and PBE testing. 

2 Or2 Tables of bias (SE) for J (Tables 62,67,72,77), O'D (Tables 63,68,737 78), WT (Tables 

64,69) 74,79), 0,2 R (Tables 65,70,75,80), and the FDA IBE (Tables 82,84,86,88) and w 

PBE (Tables 83,85,87,89) metrics' estimates in the simulation studies may be found in the 

Appendix following this thesis. Findings are summarised below. 

5.3 Summary of Simulation Findings for Estimation in a Replicate 

Cross-over Design 

5.3.1 Estimation of 5 

Estimates of J were mean unbiased in all (method-of-moments, constrained and unconstrained 

REML) procedures in complete data sets. 

When substantial missing data was introduced, REML procedures remained mean unbiased. 

Method-of-moments estimates were positively biased by mean of 0.05 - 0.06 when n= 16) 
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0.035 - 0.04 when n= 24,0.03 when n= 34, and 0.012 when n= 80. 

As the Kolmogorov's test is known to be sample size dependent (Schulman, 1992; page 92), 

the graphical approach advocated in Fisher and van Belle (1993, page 97-100) using normal- 

probability plots was used to assess normality. Examples are included as follows for simulation 

study 1 using sample sizes of n= 16 in complete data sets and those with substantial missing 

data. 
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Figure 21: Normal Probability plots for method-of-moments and REML S from Simulation 
Study I where n= 16 with No Missing data 
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Figure 22: Normal Probability plots for method-of-moments and REML S from Simulation 
Study I where n= 16 with Substantial Missing data 
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Thus we confirm based on these (and other plots on file) that estimates for 6 from REML and 

method-of-moments procedures are normally distributed and mean unbiased in complete data 

sets and for REML procedures with substantial missing data. While estimates were biased for 

the method-of-moments procedure in data sets with missing data, the estimates still appeared 

to behave as normally distributed variables. 

The bias observed in method-of-moments estimates of J when missing data were present are 

unlikely to be of concern in ABE testing. It is common practice (see FDA Guidance, 2001) 

to Plan for deviations in J of up to 0.05 when planning a trial. Moreover, the FDA Guidance 

(2001) recommends the use of a REML procedure for ABE assessment, which we know to be 

a, symptotically unbiased (Chapter 2) and observed in this report via simulation is in general 

unbiased in distribution for 6 in small samples. 

The method-of-moments bias is more of immediate concern in PBE and IBE assessment 

under the reconunended (FDA Guidance, 2001) approach to analysis. Chapters 3 and 4 demon- 

strated that the statistics used to assess PBE and IBE are positively biased in small samples 

when 'plugged-in' estimates of 6 are unbiased. Additional bias due to the choice of method-of- 

moments estimation procedure in the presence of missing data for J is of immediate concern to 

IBE and PBE inference. 

2 5.3.2 Estimation of O'D 

2 We begin with discussion of the properties of O'D as a surrogate marker for switchability in 

individual bioequivalence. 

Examination of method-of-moments 07' in the database (Figure 23) reveals the spread or D 

variability in &2 increases with increasing within-subject variability. This is consistent with D 

previous simulations results (Endrenyi and Tothfalusi, 1999) and gives rise to complications in 

2 
the definition of what may constitute a signal for an excessive UD estimate. A publication by 

Hauck et al. (2000) makes a first attempt to address such considerations. 
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2 Note also that negative variance estimates for UD are not unusual when using the Method- 

of-Moments procedure (Figure 23). Interpretation of such negative estimates for a null or truly 

positive quantity is problematic, and a satisfactory resolution has never been reached in extensive 

statistical debates. As an alternative, the constrained (CSH) REML methodology (see FDA 

Guidance, 1997), gives rise to a small but detectable positive bias in 0,2 (Zariffa et al., 2000; D 

Endrenyi and Tothfalusi, 1999) as between- and within-subject variance estimates and resulting 

0" (see Chapter 2) are constrained to be non-negative. Other REML alternatives (see Chapter D 

2) have not been studied. The data clearly indicate that further evaluation of the relationship 

2) between inherent variation and the subject-by-formulation interaction (expressed as O'D or O'D 

is warranted. 

This factor, sometimes known as Subject-by-formulation interaction, was highlighted as a 

potential issue in bioequivalence studies by Ekbohm and Melander (1989). Variation associated 

with this interaction can be driven by a variety of factors as discussed in Chapter 1. The term 

2 
O'D (and its related metric Of O'D) in the proposed aggregate IBE criterion is meant to quantify 

the subject-by-formulation interaction and has been the subject of intense debate since it was 

originally proposed in draft FDA regulatory guidance (1997). Determination of how well the 

measure performs may help elucidate whether it has the potential to be a meaningful surrogate 

marker for failure in switching products on the market. The reader is referred to Chapter 1 for 

a mathematical definition of o, ' . Of note for this thesis, o, 
2 

can be generated by differences in DD 

between-subject variation between test and reference formulations, by low correlation (p) and/or 

by a subgroup-by-formulation interaction (Hauck et al., 2000). 

Initially, simulation studies were conducted using bi-variate Normal density distributions to 

explore the interactions between model parameters of interest. One hundred simulated studies 

were conducted in each run. Data sets from each simulation were analyzed according to the 

statistical methodology described earlier in this thesis. 

It is known (Patterson et al., 1999; Zariffa et al., 2000) that variance estimates generated in 

bioequivalence studies powered for average bioequivalence are poorly (i. e. imprecisely) charac- 

terized, and estimates in excess of the UD > 0.15 cut-off (Hauck et al., 2000) should be expected 

due to random chance (as simulated in Figure 24). Increasing sample size does appear to provide 

some benefit in making these estimates quantitatively more precise (Figure 24) but the larger 
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sample sizes needed to achieve this are not currently recommended for demonstration of average 

bioequivalence in moderate variability compounds (FDA Guidance, 2001). 
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Cross-over Studies as a function of sample size (n=12,54, or 80 subjects per simulated study) 
(&2 for a Moderate Variability WR=0.04) compound (n=100 Simulations per Scenario) Estimated 

using Method-of-Moments 

191 

a0 



Thus, as a practical matter, in studies powered for ABE (the current international standard, 

see Chapter 1), inference on variance estimates, or resulting metrics like IBE and PBE, should 

be approached with caution. 

While the previous simulation study was concerned with the scenario where 0,2 is in fact D 

2 non-existent, the more important question is to assess whether estimates of UD can be expected 

to detect subj ect-by- formulation interaction in cases where it is known to be present. The 

simulation study depicted in Figure 25 assesses various scenarios based on a range of correlation 

values, keeping all other factors involved fixed. 

2 The ranges of simulated responses for the estimates of UD overlapped despite substantially 

different scenarios. A correlation of 0.1 (p = 0.1) indicates very little agreement in subjects' 

responses between the two formulations, and so we would expect large estimated o, ' . However D 

2 
a high correlation of 0.9 would likely not be expected to give rise to large estimated UD' 

This is not the case as 66 out of 100 simulated studies exhibited a2 in excess of 0.0225 D 

(Figure 25). It was only when the correlation is forced to its most extreme value of p=1 

indicating perfect agreement between the subjects' responses on the two formulations that the 

estimated 0" behaves as expected with 98 of the 100 simulated trials below the cutoff of 0.0225. D 

2 This would indicate that the estimated value for O'D in a single bioequivalence study (without 

the benefit of simulated distributions of studies) may be misleading. 
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The final simulation study presented in Figure 26 demonstrates that the impact of decreases 

in correlation (p) are dependent upon the magnitude of other variance terms. For low variability 

drug products, large changes in correlation have negligible effect on the magnitude of &2 
, while D 

for products exhibiting higher variation, small changes in correlation can have dramatic effect 

on the magnitude of &2 
. 

(Figures 25 and 26). This is seemingly counterintuitive since for large D 

variability compounds, lesser agreement should be permissible for the switchability metric. 
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Quantitative definition of a significant subgroup-by- formulation interaction has received little 

attention in the literature. However, it is known that outliers can occur in bioequivalence studies 

and such outliers may be indicative of - or mistaken for a subgroup-by- formulation interaction 

(FDA Guidance, 1992). It should be noted that, in the data sets identified with outliers in our 

database of 51 studies, retrospective inspection of demographic factors, where available, did not 

help to explain outlier data (data on file). 

We now turn to consideration of the estimates of 0" from more robust simulation studies D 

tabulated in this thesis. 

In complete data sets, method-of-moments and UN REML estimates were mean unbiased 

regardless of sample size. The CSH REML procedure yielded positively biased estimates when 

n= 16 regardless of whether 0" =0 or o, ' > 0. When n= 24 - 80 we observed that positively DD 

2 
0,2 > 0. biased estimates were found when O'D = 0, but that unbiased estimates are derived when D 

2 RIS REML estimates were positively biased found when O'D = 0, but unbiased estimates are 

2 derived when O'D >0 for n= 16 - 80. In contrast, FAO(2) REML estimates were positively 

biased when a2=0, but underestimated o, 
2 

when o, 
2>0. The mean CSH REML estimates DDD 

were greater than mean FAO(2) REML estimates across n= 16 - 80. Bias in the constrained 

REML estimates increased as drugs became more highly variable and decreased with increasing 

sample size (as we would expect in procedures known to be asymptotically unbiased, see Chapter 

2-4). 

2 Missing data had a profound effect on estimates of UD . UN REML estimates remained 

mean unbiased across n= 16 - 80; however, method-of-moments estimates were observed to be 

positively biased by 0.36 - 0.52 for n= 16,0.18 - 0.26 for n= 24,0.11 - 0.16 for n= 34, and 

0.04 - 0.06 for n= 80. Bias increased as the drugs became more highly variable and decreased 

with increasing sample size. CSH REML estimates were positively mean biased to a lesser extent 

in small (0.003 - 0.01 for n= 16,0.01 - 0.04 for n= 24), and the properties of the estimates 

appeared similar to findings in the complete data sets for larger sample sizes (n = 34 - 80). 

Similarly, mean RIS REML estimates appeared positively biased by 0.002 - 0.09 for n= 16, and 

the properties of estimates appeared similar to findings in complete data sets for n= 24 - 80. 

FAO(2) REML findings appear similar to those in complete data sets. 

For practical purposes, the estimates did not appear in general to differ from a normal 
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distribution for UN REML estimates sufficiently to cause concern for the UN REML procedure. 

Normality of the estimates arising from constrained REML procedures (CSH, FAO(2), RIS) in 

small samples was extremely questionable. This appeared to be due to the poor characterisation 

of arising estimates, and the constraint placed upon them such that 0" > 0. Examples are D- 

included in Figures 27 and 28 from Simulation Study 1 with n= 16 for complete data sets and 

those with missing data, respectively. 
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These examples raise several questions. While method-of-moments and UN REML estimates 

appeared normally distributed, constrained REML procedures CSH, FAO(2), and RIS appear 

skewed right in distribution (due to the constraints placed on the likelihood). Of interest is 

whether this pattern continues when a2>0. To illustrate this examples are included from D 

Simulation Study 2 with n= 16 in Figures 29 and 30 for complete data sets and those with 

missing data, respectively. This pattern was observed to continue to be present when a' > 0. D 
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Moreover, it is of interest to see whether this pattern continues with increasing sample size. 

To illustrate this examples are included in Figures 31 through 34 for Simulation Studies 1 and 

2 with n= 80. The trends were observed to continue for constrained REML procedures. 
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Only one REML procedure (UN) was found to yield unbiased estimates in complete data 

sets and those with missing data. Method-of-moments, as expected, yielded unbiased estimates 

in complete data sets, but was positively biased in samples with missing data. Bias in method- 

of-moments (with missing data) and constrained REML procedures increased as drugs become 

more highly variable and decreased with increasing sample size. Biased method-of-moments 

estimates in data sets with missing data were greater than those found in CSH REML which were 

in turn observed to be slightly greater than those derived using RIS REML. The performance 

of estimates from FAO(2) REML was questionable. Estimates were positively biased when the 

2 
0,2 > 0. true O'D =0 and estimates were negatively biased when D 

In summary, Subject-by-formulation interaction is strikingly ill-characterized in studies pow- 

ered to assess ABE and biased estimates are more common than not. Variance associated with 

this interaction can be generated by a large number of inter-related factors including within- 

subject variation, sample size, correlation, and between-subject variation. Estimates are biased 

in the majority of models with bias increasing with variation in the sample space and decreasing 

with increasing sample size. In general, these observations imply that it will be difficult to 

separate spurious study results from reality in such designs. 

5.3.3 The Pattern of Missing Data and Bias in the Method-of-Moment Estimate 

2 Of OrD 

The pattern of missing data does impact the magnitude of bias in method-of-moments based 
2 

estimates for Consider the formula for &2 = 
M, 

- 
(&wT+&2wR) 

where DD2 

Ml =518 

ni 
- 

ni) -s 
Y"' E(Ij 

i=l j=l 

and Iij : -- PTije - VRij. as previously described. From this formula, it is easy to see that if 

both observations for the reference or the test product are missing for any given subject, this 

subject's data will not contribute to the value of Iij nor 1i and hence will not bias the estimate 

2 Of O'D' 

&2 
However, if one test and one reference is missing for an individual subject, D will be 

WT+_2 _I a( WR) 

positively biased byan amount proportional to the level of within-subject variation (Eil=, ni)-s 

where a in this expression denotes the number of subjects missing one test and one reference 
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observation. Given large enough sample size however, we would expect the contribution to bias 

from this situation to be relatively minor. This finding was confirmed via a simulation sub-study 

(on file). 

Alternatively however, consider the situation where a subjects are missing one test or one 

reference observation. In this situation, it is easy to see that &' derived using method-of- D 

moments will be positively biased by an amount proportional to the between-subject variation 

and within-subject variation associated with the regimen missing an observation. Between- 

subject variation can be quite substantial, and this explains our previous findings with regard to 

the level of bias observed with substantial missing data. Bias would be expected to increase with 

increasing numbers of subjects with missing data and decrease with increasing study sample size 

but can be quite substantial even with only 1 missing data point. To illustrate this concept, a 

simulation sub-study was conducted using Scenario 25. Findings are summarised in Figure 35. 
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Here we observed that as expected, bias in method-of-moments estimated 0,2 increased with D 

increasing numbers of subjects with missing data for the test formulation. The variance of 

the estimates similarly increased with increasing numbers of subjects having one missing data 

point. However, unconstrained REML estimates continued to be unbiased in distribution and 

did not appear to be greatly impacted by the presence of missing data in terms of the variation 

of estimates. 

5.3.4 Estimation of a2T and a2 w WR 

We begin discussion with assessment of bias in estimates for a' Method-of-moments and WT' 

UN REML were mean unbiased across n= 16 = 80 in complete data sets. Bias was small 

but negative in constrained REML procedures for n= 16. For larger sample sizes, constrained 

of U2 REML procedures continued to carry a very slight, but negative, mean bias in estimates WT 
2 

0,2 when O'D = 0. Estimates were mean unbiased when D 

When missing data was introduced, method-of-moments estimates were observed to be un- 

biased across n= 16 - 80; however, a very slight positive bias was observed for UN REML when 

n= 16. However, UN REML estimates were unbiased for n= 24 - 80. Constrained REML 

estimates were observed to be negatively biased when n= 16 with mean bias in estimates from 

CSH and FAO(2) being larger than RIS, and the bias with increasing variation and sample size 

followed the same pattern as observed for complete data sets. 

2 Estimates for UWR followed the same pattern observed for U2 WT* 

Again, bias increased as drugs became more highly variable and decreased with increasing 

sample size. 

Practical assessment using normal probability plots reveals that discrepancies from normality 

are relatively minor for UN and method-of-moments estimates as sample size increases beyond 

n= 16 and do not raise practical concerns. See illustration in Figures 36 and 37 below. 
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Results were interesting when taken in the context of particular model. Constrained REML 

estimates are negatively biased for a2T and a2 but are positively biased for U2 . 
It will be W WR D 

interesting to see whether these findings cancel each other out when assessing ABE. However, 

it is important to note that the use of the procedures when assessing PBE and IBE is nebulous 

as bias would be expected to have a non-negligible impact there. 

5.3.5 Estimated FDA IBE and PBE Metrics 

As expected, in small samples from complete data sets (n = 16) positive bias was observed when 

6=0; however, as sample size increases (n > 24) this bias becomes smaller. At the maximum 

samples size studied (n = 80), slight negative bias in the estimates for the IBE and PBE metrics 

were observed on occasion for the method-of-moments and UN REML procedure. This was 

associated with the mixed scaling procedure for the FDA's metrics and was not unexpected. 

As an alternative however, the constrained RIS model was observed to be positively biased 

2 0,2 for the FDA IBE metric (as expected) when O'D =0 and is unbiased only when D>0. The 

restricted CSH REML model was studied for the PBE metric; however, as the covariance term 

2 
associated with O'D does not impact the derivation of the PBE metric, we observed FDA PBE 

metrics derived using this methods are similarly negatively biased by a small amount for low 

vaxiability products. 

When missing data were introduced, we know from previous findings described in this report 

that 6' and 0,2 are positively biased when estimated using method-of-moments and are unbiased D 

when using UN REML. These findings carry over to estimation of the FDA IBE metric with 

positive bias (against sponsors) observed. This bias increased as drugs became more highly 

variable and was observed to decrease as sample size increased. The unbiased nature of UN 

REML estimates continued to be prevalent and the biased nature of RIS REML estimates 

2 =: 0. continued when UD 

When missing data were introduced, the method-of-moments PBE metric estimates were 

negatively biased (for sponsors). This bias increased as drugs became more highly variable and 

decreased with increasing sample size. Exploratory analyses (on file) revealed that this bias was 

due to positive bias in the total variance estimates for the test formulation co-incident with less 

degree of positive bias in the reference formulation. In combination, this difference contributed 
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2 to the positive bias in the estimated UD and negative bias in the function used to compute the 

estimate for the PBE metric. 

Positive bias is generally not of direct concern as it is against sponsors. To compensate, 

increased sample size would appear to be desirable as this negates such bias and increases 

precision. This however appeaxs undesirable from the standpoint of decreasing the sample size 

of these studies due to scaling in use of IBE and PBE compared to ABE (Chapter 1-4). 

Negative bias (for sponsors) is of obvious concern to regulators. It too can be negated by 

increasing sample size, but possibly aids in explaining why it was so easy to demonstrate PBE 

among the data sets studied in Chapter 4. As an alternative, for nearly unbiased estimation, 

REML modelling should be used. 

5.4 Type I and II Error for Average Bioequivalence from Method-of- 

Moments and Restricted Maximum Likelihood Models 

We begin discussion with regards to Type I error in ABE assessment (Tables 66,71,76,81: 

simulations 17-54). For 5>0.2231, all Mom and REML procedures (Tables 66,71,76,81: 

simulations 37-54) indicated that Type I error rates were 0% in complete data sets and those 

with substantial missing data. On the boundary point J=0.2231, the Type I error rate appeared 

-2 partially dependent on sample size and the magnitude Of 0D 

For complete data sets, method-of-moments and UN REML procedures had Type I error 

rates less than or equal to 6% when n= 16. Type I error rates decreased with increasing 

sample size, and when n= 80, method-of-moments Type I error rate appeared to be less than 

5%. However, Type I error rates in the UN REML models were less than or equal to 5% 

when n> 24. These findings appeared to be due to the poor characterisation of a2 and are D 

2 
associated with simulations where the true O'D = 0. Type I error rates in excess of 5% occurred 

&2 <0 when estimates for D, resulting in narrower confidence intervals for approximately half of 

the simulated data sets. 
2 

In contrast, constraints on the estimated parameter space for O'D constraining it to be greater 

than or equal to 0 using the CSH, FAO(2), and RIS REML options uniformly constrained the 

Type I error rate to be less than 5% regardless of sample size. 

When missing data were introduced, Type I error rates were near 0 for method-of-moments 
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2 based procedures. This was associated with the positive bias in estimates of 6 and O'D. As 

bias in these estimates decreased with increasing sample size, Type I error rates increased. The 

resulting rates though were less than 5%. Type I error rates for the REML procedures appeared 

similar to those produced in complete data sets. 

We now consider REML modelling and Type II error in ABE testing. 

First, it should be noted that in complete data sets REML models are slightly less powerful 

in some cases that method-of-moments (Tables 66,71,76,81: simulations 1-18). However, in 

data sets with missing data, the Type II error rate for method-of- moments approaches 100% 

2 in small samples (due to the bias in estimates of 6 and O'D). Type II error rates in REML 

procedures appeared roughly the same regardless of constraints placed on the parameter space 

when n= 16 - 24. 

2 When sample size is large n == 34 - 80, bias in the estimates of 6 and UD grew smaller for 

method-of-moments procedures and Type 11 error rates began to approach the levels observed 

for the REML procedures such than when n= 80, they were roughly the same. 

2 For complete data sets, when O'D = 0, Type I error rates for the method-of-moments proce- 

dures are approximately 5-6% in ABE testing. Method-of-moments estimation results in a very 

biased testing procedure when there is substantial missing data. 

The simulated Type I error rate for the UN REML procedure was observed to be approxi- 

mately 5% in complete and non-complete data sets, and constrained REML procedures result 

in Type I error rates of less than 5%. 

REML modelling was more powerful than method-of-moments modelling in small samples 

when missing data was present. This finding is likely associated with the bias in method-of- 

moments estimates of J and 01- In larger samples, power for method-of-moments and REML 

procedures converges and appears similar between procedures. In small samples, method-of- 

moments modelling should be utilised with caution due to bias in the estimates and the testing 

procedure. No clear difference in power was evident between constrained and unconstrained 

REML procedures when testing for ABE. 
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5.5 Type I Error Rates for Individual and Population Bioequivalence 

We now turn to the simulations to assess Type I error in the Hyslop et al. ý2000), Asymptotic, 

and bootstrap procedures. 

Simulation findings indicated (see Table 23) that Type I error from the Cornish-Fisher ex- 

pansion (Hyslop et al., 2000) procedure was approximately 5% for IBE testing; however, the 

PBE test proposed in the FDA Guidance (2001) appeared biased though conservative with Type 

I error of approximately 0.5% observed in the simulation studies. 

The asymptotic test developed for IBE (Chapter 3) using unconstrained REML estimation 

also appears biased though conservative except for low variability products (see Simulations 55- 

59) where rates appeared slightly higher than 5%. As sample size was increased, rates approached 

5% for such products. This finding was likely associated with the variation in the estimation 

2 
Of O'D as described above. When this factor was not accounted for in the asymptotic test for 

PBE (Chapter 4), Type I error rates appear similar, though slightly less conservative, relative 

to those found using the Cornish-Fisher expansion. Protection of regulator risk, however, is 

maintained at less than 5%. 

Nonparametric percentile bootstrap procedure findings (using unconstrained REML esti- 

mation) do not appear to maintain an acceptable type I error rate with findings indicative of 

approximately twice the regulatory standard being observed (see Table 23) for low and moder- 

ate variability products (Simulations 55-56). Calibration of the confidence intervals to constrain 

Type I error (see Efron and Tibshirani, Ch. 18,1993) should be considered if such a procedure 

is used. 

Constrained REML asymptotic testing procedures (see Chapters 3 and 4) appeared slightly 

more conservative than unconstrained REML asymptotic testing (data on file). 
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Table 23: IBE and PBE False-Positive Rate (%) from Cornish-Fisher (CF), Large Sample 
Asymptotic (Asy), and Nonparametric Percentile Bootstrap (NP) Analysis Procedures (1000 

runs per Simulation) 

Sim CF Asy 

n 16 
55 4.3 8.6 10.4 
56 4.2 3.1 11.1 
57 3.3 1.3 3.7 
58 3.5 1.2 3.9 
59 3.9 1.3 3.8 
60 0.6 1.6 6.9 
61 0.5 1.1 2.7 
62 0.6 1.0 2.2 

n 24 
55 4.4 7.7 9.1 
56 5.7 3.5 10.5 
57 5.1 1.9 4.1 
58 5.1 2.2 4.1 
59 5.1 2.2 4.1 
60 0.6 2.3 5.4 
61 0.6 1.9 3.0 
62 0.8 1.9 3.1 

n 34 
55 4.7 7.3 7.7 
56 4.7 4.0 9.5 
57 4.1 2.7 4.5 
58 4.0 2.8 4.5 
59 4.3 2.8 4.7 
60 0.3 3.0 4.4 
61 0.5 2.8 3.0 
62 0.5 2.7 2.9 

n 80 
55 3.6 5.6 5.6 
56 5.2 3.7 7.8 
57 4.7 2.6 4.2 
58 5 2.7 4.0 
59 5 2.7 4.3 
60 0.7 3.9 4.0 
61 0.9 3.5 3.5 
62 1.1 3.3 3.5 
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5.6 Type II Error Rates for Individual and Population Bioequivalence 

Failure probabilities are tabulated in Tables 90-93 for simulation 1 though 54 in situations 

involving complete and missing data for sample sizes n= 16 - 80 for IBE and in Tables 94-97 

for simulation 1 though 54 in situations involving complete and missing data for sample sizes 

n= 16 - 80 for PBE. For the evaluation of Type 11 error see simulations 3,5,9,11,15, and 17. 

Results for IBE agreed with those found in the retrospective analysis summarised earlier 

in this chapter, and confirmed that the asymptotic testing procedure developed in Chapter 3 

was conservative and less powerful (though this decreased with increasing sample size) relative 

to the method-of-moments estimation procedure with Cornish-Fisher expansion based inference 

(Hyslop et al., 2000) in complete data sets. This appeared to be due to the method chosen for 

2 
estimation of UD 

2 This UD parameter is estimated in the unconstrained REML model using the between- 

sub ect variances of each formulation (o, 2 and o, 2 i 
BT BR) and their covariance 

(O'TR, known to be 

&2 = &2 + &2 non-null in cross-over studies) such that D BT BR - 
(2&TR). The asymptotic variation 

(estimated using observed Fisher's information) associated with the covariance *R) is large 

and when unconstrained, results in very conservative upper bounds for IBE inference. When it 

2 >0 is constrained (via constrained REML) to the 'usual' parameter space (i. e. in that UD -) 
this 

asymptotic variance is less, and the upper bound is affected less dramatically. 

Alternatively, the properties of method-of-moments estimates for o, 
2 have been described D 

previously in Chapters 1 and 3; here we remind the reader that in method-of-moments estima- 

2 tion, O'D is not estimated directly but is estimated as a function of the within-subject variances 

associated with the estimated difference in formulation means. This measure of variation is less 

2 
variable than UD and is observed to be greater than null on all occasions. 

Consider however that in data sets with missing data, the method-of-moments estimates for 

IBE became quite conservative due to the bias in the estimate &2 
, and we found that REML is D 

more powerful for low variability products. This trend decreased with increasing sample size. 

O'D is not included in a composite metric (i. e. in PBE), we see asymptotic results more as f2 

expected relative to the extension of the Hyslop et al. (2000) procedure proposed in the FDA 

Guidance (2001). Again, this agreed with the findings from our retrospective PBE analysis 

where we observed that less data sets failed PBE under the asymptotic approach to inference 
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relative to the Hyslop et al. (2000) procedure. This trend again decreased with increasing 

sample size and is impacted by the bias introduced with missing data in method-of-moments 

estimates. However, it is important to note that as sample size increased, it became very easy 

to demonstrate PBE even when large differences in parameters existed between formulations. 

Interestingly, the assumption that 6 : ý4 0 for the asymptotic IBE and PBE procedures did 

not appear to impact power dramatically. See Tables 90-97, simulations 1- 18. 

5.7 M-ansitivity of Individual Bioequivalence and the Potential for 

'Drift' in Generic to Generic Switching 

We consider the problem of comparability between two generic products (see Chapter 1) ap- 

proved based on the current IBE criteria (using the Cornish-Fisher approximation technique 

developed by Hyslop et al., 2000) following the principles of a procedure developed in for ABE 

by Anderson and Hauck (1996). We wish to answer the question 'How much can average expo- 

sure differ between two generic formulations (G1 and G2) when they are both declared individual 

bioequivalent to the same innovator formulationT 

This is to address the practical issue of generic to generic switching in the marketplace phar- 

macy. When generics enter the market, they are required to be bioequivalent to the innovator 

formulation, but not to other generic formulations which are also marketed. We know from 

previous simulations in this chapter that 6 can vary quite significantly in the presence of a 

highly-variable reference product and-or when within-subject variation is decreased on the test 

formulation. 

We will assume that independent individual bioequivalence studies of the generic formula- 

tions (labelled formulations G, and G2, respectively) are carried out relative to the innovator 

formulation. A low variability 
(O'WR 

= 0.15), moderate variability 
(O'WR 

= 0.25), and a high 

variability innovator product 
(UWR 

= 0.50) will be considered, and the variation associated with 

2 
subject-by-formulation interaction will be assumed to be negligible (OD = 0) in both generic 

studies. Sample sizes will be selected in each study to provide 90% power to demonstrate IBE 

under these conditions (FDA Guidance, 2001). Sample size will thus be n= 12, n= 32, and 

n= 46 for the low, moderate, and high variability products, respectively, and for the purposes 

22 
of study design, we will assume the condition that UWR = O'WT* However, in the simulations 
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2 
we will allow O'WT to vary and examine its potential for impact on the level of allowable J. It is 

most likely that as formulation development improves through the life of a drug product intra- 

subject variation will decrease or remain the same; however, we will also study the potential for 

increases in the intra-subject test product variance for completeness. 

The two generic IBE studies to the reference formulation will be considered independent (as in 

Anderson and Hauck, 1996). We will assess the probability that G, is successfully demonstrated 

to be IBE to the reference formulation and that G2 is successfully demonstrated to be IBE to 

the reference formulation as a function of increasing 6 using the Hyslop et al. (2000) procedure 

in two-sequence, replicate cross-over designs with no missing data. The impact of missing data 

on IBE testing has been previously discussed and will not be further explored. 

The simulation space presented in Table 24 will be utilised. 

Table 24: True Values used in Simulation Experiments 63 through 
107 (1000 runs per simulation) 

Sim 61 62 or 2 
D 01 2 

WT O'WR N 
63 0 0 0 0.750ý6 0.15 12 
64 InO. 95 -lnO. 95 0 2 0.75oWR 0.15 12 
65 In 0.90 - In 0.90 0 2 0.75UWR 0.15 12 
66 In 0.80 - In 0.80 0 2 0.750'WR 0.15 12 
67 In 0.60 - In 0.60 0 2 0.75orwR 0.15 12 
68 0 0 0 2 O'WR 0.15 12 
69 InO. 95 -InO. 95 0 2 UWR 0.15 12 
70 InO. 90 -InO. 90 0 2 OrWR 0.15 12 
71 InO-80 -InO. 80 0 2 UWR 0.15 12 
72 In 0.60 - In 0.60 0 2 UWR 0.15 12 
73 0 0 0 2 1.5UWR 0.15 12 
74 In 0.95 - In 0.95 0 2 1.5UWR 0.15 12 
75 InO. 90 -InO. 90 0 2 1.5UWR 0.15 12 
76 InO. 80 -InO. 80 0 2 1.50'WR 0.15 12 
77 InO. 60 -InO. 60 0 2 1.5UWR 0.15 12 
78 0 0 0 2 0.756rWR 0.25 32 
79 In 0.95 - In 0.95 0 2 0.75UWR 0.25 32 
80 InO. 90 -InO. 90 0 2 0.750'WR 0.25 32 
81 In 0.80 - In 0.80 0 0.75o, 2 

WR 0.25 32 
82 In 0.60 - In 0.60 0 2 0.75UWR 0.25 32 
83 0 0 0 2 UWR 0.25 32 
84 In 0.95 - In 0.95 0 01 

2 
WR 0.25 32 

85 InO. 90 -InO. 90 0 2 UWR 0.25 32 
86 In 0.80 In 0.80 0 2 UWR 0.25 32 
87 In 0.60 - In 0.60 

.0 
2 UWR 0.25 32 

88 0 0 0 2 1.5oWR 0.25 32 

89 In 0.95 - In 0.95 0 2 1.50'WR 0.25 32 

90 In 0.90 - In 0.90 0 1.5or 2R 
w 0.25 32 

91 In 0.80 - In 0.80 0 1.5a 2R 
w 0.25 32 

92 InO. 60 -lnO. 60 0 2 1.5UWR 0.25 32 
93 0 0 0 2 0.75awR 1 0.5 46 
61: Týue difference in G, to Innovator Formulation 
62: TYue difference in G2 to Innovator Formulation 
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Table 24: True Values used in Simulation Experiments 63 through 
107 (1000 runs per simulation) 

Sim 61 62 

- 
a2 D U2T w UWR N 

94 In 0.95 - In 0.95 0 0.75o, 2 WR 0.5 46 
95 In 0.90 - In 0.90 0 2 0.75UWR 0.5 46 
96 In 0.80 - In 0.80 0 2 0.75UWR 0.5 46 
97 lnO-60 -InO. 60 0 2 0.750'WR 0.5 46 
98 0 0 0 2 UWR 0.5 46 
99 In 0.95 - In 0.95 0 2 O'WR 0.5 46 

100 In 0.90 - In 0.90 0 2 UWR 0.5 46 
101 InO. 80 -InO. 80 0 2 UWR 0.5 46 
102 InO. 60 -InO. 60 0 2 UWR 0.5 46 
103 0 0 0 2 1.5UWR 0.5 46 
104 InO. 95 -InO. 95 0 2 1.50'WR 0.5 46 
105 InO. 90 -InO. 90 0 2 1.5UWR 0.5 46 
106 InO. 80 -InO. 80 0 2 1.50'WR 0.5 46 
107 In 0.60 - In 0.60 0 1.5a 2R 

w 0.5 46 
61: Týrue difference in G, to Innovator Formulation 
62: Týue difference in G2 to Innovator Formulation 
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The output of these simulated experiments will be the percentage of successful paired (but 

2 independent) studies for given levels Of 62-61 and UWT* This will allow us to determine when one 

should take caution when switching from a generic formulation to another generic formulation at 

the pharmacy. A similar problem was address under the ABE criteria by Anderson and Hauck 

(1996). Given the conclusions of Chapters 4 and the simulations carried out in this Chapter 

with regard to the PBE criteria, we recommend PBE not be used to allow market access as 

proposed and did not study its potential impact in this setting. 

The findings of these simulations are summarised in Figures 38,39, and 40 for low, moderate, 

and high variability products, respectively. 
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Percentage Change in Generic to Generic Means 

Figure 38: Percentage of Pairs of Independent Generic to Innovator IBE trials Demonstrating 

IBE versus the T! rue Difference in Generic to Generic Means for a low variability innovator 

product oWR = 0.15 in 1000 simulations (n = 12 for each simulated study) 
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For the low variability innovator product in Figure 38, it is observed that for test (Generic) 

products with decreased or equal within-subject variability mean exposure may vary between 

generic products up to 10% with some frequency (around 80% of the simulated studies). Changes 

in mean exposure up to 20% in generic products (the traditional threshold of clinical concern) will 

occur 60-80% of the time when switching from generic to generic produces under the proposed 

method from FDA. Changes in mean exposure up to 30% may occur with some frequency (i. e. 

50%). Changes in mean exposure in excess of 30% are possible but unlikely. Note that if the 

test product has increased within-subject variability, mean exposure between generic products 

was only observed to differ by up to 10% in around 50% of the studies. 
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Figure 39: Percentage of Pairs of Independent Generic to Innovator IBE trials Demonstrating 

IBE versus the Ttue Difference in Generic to Generic Means for a moderate variability innovator 

product O'WR = 0.25 in 1000 simulations (n = 32 for each simulated study) 
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For products with moderate within-subject variation in the innovator product, it is observed 

that for test (Generic) products with decreased or equal within-subject variability mean exposure 

may vary between generic products up to 20% with some frequency (around 80% of the simulated 

studies). Changes in mean exposure up to 35-40% may occur with some frequency (i. e. 50%). 

Changes in mean exposure in excess of 30% are possible but unlikely. Note that if the test 

product has increased within-subject variability, mean exposure between generic products was 

only observed to differ by up to 10% in less than 50% of the studies. 
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Figure 40: Percentage of Pairs of Independent Generic to Innovator IBE trials Demonstrating 
IBE versus the Týue Difference in Generic to Generic Means for an high variability innovator 
product uwR = 0.5 in 1000 simulations (n = 46 for each simulated study) 
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For products with high within-subject variation in the innovator product, it is observed that 

for test (Generic) products with decreased or equal within-subject variability mean exposure may 

vary between generic products up to 40% with some frequency (around 80% of the simulated 

studies). Changes in mean exposure up to 60% may occur with some frequency (Le. 50%). 

Changes in mean exposure in excess of 60% are possible with some frequency. Note that if the 

test product has increased within-subject variability, mean exposure between generic products 

was only observed to differ by up to 20% in approximately 50% of the studies. 

5.8 Discussion 

Average bioequivalence will likely continue to serve as the international regulatory standard as 

its properties are well understood. IBE and PBE have yet to be shown to be valid for the 

same purposes, and evidence of therapeutic failure under the ABE approach has yet to surface. 

In small samples, especially those with missing data, method-of-moments modelling for ABE 

should be utilised with caution due to bias in the estimates and the testing procedure. 

The constrained REML procedure recommended by FDA Guidance (2001) using Sattertwaite 

(1941) degrees of freedom for ABE testing in replicate designs results in biased estimates for 

variance components on occasion; however, it uniformly constrains the rate of Type I error 

(of more immediate concern to Regulators and Consumers) to be less than 5% in ABE testing. 

Thus the FDA Guidance (2001) tacitly acknowledges that 'While all models are wrong, some are 

useful. ' If Kenward and Roger's (1997) approach to estimation of the degrees of freedom is used, 

the degrees of freedom are the same as those found using Satterthwaite's procedure; however, the 

variance estimate for the confidence interval for J is inflated using the approach of Harville and 

Jeske (1992) to account for shrinkage in the fixed and random effects from the mixed modelling 

procedure to provide a confidence interval with at least 90% coverage probability. This results in 

confidence bounds for 5 which are slightly larger than those found when Satterthwaite's approach 

is used and leads to slightly more conservative Type I error rates for ABE than those observed 

using the Satterthwaite option in SAS@. As these rates already protect public health risk 

(as shown in this Chapter using simulation), Kenward and Roger's (1997) procedure protects 

regulatory risk and may also be applied to test for average bioequivalence. 

The bias observed in method-of-moment estimates of J when missing data are present is 

225 



unlikely to be of direct concern in ABE testing. It is common practice (see FDA Guidance, 

2001) to plan for deviations in 6 of up to 0.05 when planning a trial. Moreover, the FDA 

Guidance (2001) recommends the use of a REML procedure for ABE assessment, which we 

know to be asymptotically unbiased and have found via simulation is in general unbiased for J 

in small samples. 

The potential method- of-moments bias in 6 induced by missing data is more of immediate 

concern in PBE and IBE assessment under the recommended (FDA Guidance, 2001) approach 

to analysis. While the slight positive bias in small samples induced by the 'plug-in' procedures 

recommended in the FDA Guidance (2001) is not of sufficient magnitude to be of concern (see 

Chapters 3 and 4), when biased estimates for 5 or a2 are 'plugged' into the metric, bias is of D 

concern and may impact inference. 

Variance estimates are of less concern in ABE testing, but in alternative criteria where es- 

timates are important to interpretation (i. e. for IBE and PBE) method-of-moments estimates 

should be viewed cautiously. Method-of-moment estimation, as expected, yields unbiased esti- 

mates in complete data sets, but results in positively biased &2 in some samples with missing D 

data. Bias in method-of-moment &2 (with certain patterns of missing data) and constrained D 

REML procedures increases as drugs become more highly variable and decreases with increas- 

ing sample size. Biased method-of-moment estimates in data sets with missing data exhibit a 

greater degree of bias than those found in CSH REML, and the estimates from an alternative 

constrained (FAO(2)) REML are similarly questionable. Only the unconstrained REML proce- 

222 dure (Type='UN') was found to yield unbiased estimates for OrD7 UWT) and UWR in complete 

data sets and those with missing data. 

Research continues to indicate that subject-by-formulation interaction variance (0,2 ) is strik- D 

ingly ill-characterized in studies powered to assess ABE, and biased method-of-moment estimates 

are common in the presence of missing data. Variance associated with this interaction can also 

be generated by a large number of inter-related factors including within-subject variation, sam- 

ple size, correlation, and between-subject variation (Hauck et al., 2000; Zariffa and Patterson, 

2001). Simulation studies indicate that method-of-moments estimates may be biased with the 

magnitude of bias increasing as drugs become more highly variable and decreasing with increas- 

ing sample size. In general, these observations continue to imply that it will be difficult to 
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separate spurious study results for a2 from reality in such designs. D 

In situations where this is of concern, asymptotic based IBE and PBE inference appears 

similar to that of the Cornish-Fisher expansion recommended by FDA and provides a practi- 

cal, though conservative alternative to the FDA procedure. There is precedent for the use of 

asymptotic tests in the study of pharmacokinetics (Machado et al., 1999), but such techniques 

should be viewed with caution and studied thoroughly using simulation before their use becomes 

widespread. Such procedures should be considered when the pattern of missing data is sufficient 

to cause concern with the potential for bias in method-of-moments estimation. Harville and 

Jeske's (1992) and Kenward and Roger's (1997) approach to estimation in this setting could be 

extended to provide a more precise conservative upper bound in this setting for the asymptotic 

testing procedure developed in Chapters 3 and 4; however, as simulation has shown in this 

report that the asymptotic testing procedure is in general conservative, such extension was not 

considered here. 

Turning to the statistical testing procedures, the Cornish-Fisher expansion procedure for 

PBE (FDA Guidance, 2001) is flawed in theory due to it not taking account of covariance 

among the estimates; however, when the asymptotic procedure is applied to take account of 

such in data sets with missing data (and hence non-null covariances), little to no practical 

difference in inference is observed. Based on the simulation studies reported in this paper, both 

asymptotic and Cornish-Fisher tests appear to protect the Type I error rate. It is unlikely that 

accounting for these covariances is of pivotal importance to PBE inference though the validity 

of PBE itself as an adequate protection for public health is questionable as proposed. 

It is very easy to demonstrate PBE for most products regardless of the presence of large 

changes in mean exposure between formulations, and the FDA's Guidance (2001) permits a 

potential problem to surface in public health due to generic-to-generic pharmacy switches if 

approval is granted based on IBE as proposed. 

In conclusion, the findings of this chapter suggest that the Cornish-Fisher expansion (Hyslop 

et al., 2000) will adequately serve for IBE and PBE testing except in the presence of missing data 

where method-of-moments estimates become biased. In situations where missing data and the 

resulting bias in estimates are of great concern, an asymptotic testing procedure using REML 

(though conservative) may be used to assess inference. 
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While valid statistical tests for PBE have been developed under the proposed FDA standards, 

this procedure quite easily allows for market access with very large changes in mean exposure for 

highly variable drug products. The potential for threats to public health generated by generic- 

to-generic switching should not be underestimated if IBE is used to allow market access. We 

recommend that the FDA reconsider the use of the IBE and PBE procedures for market access 

and not allow their use without major modification to ensure patient safety and efficacy. 

Population Pharmacokinetics and Bridging 

The findings of this chapter were presented at the Societe Francaise de Statistique (Patterson 

et al., 2001f), at the Drug Information Association meeting (Patterson et al., 2001i). Aspects 

of the findings were published in a series of a GlaxoSmithKline reports (Altman et al., 2000 

and Patterson et al., 2002d) and in a GlaxoSmithKline technical report (Patterson and Jones, 

2002i). 

6.1 Background on Bridging 

Population bioequivalence (see Chapters 1,4, and 5) is defined as the assessment of bioequiva- 

lence for formulations used in pivotal clinical trials relative to the to be marketed formulation 

and falls under the definition of prescribability. This approach is said to answer the question, 

'Can a patient (naive to drug) be exposed to either the clinical trials formulation of the to-be- 

marketed formulation with equal assurance that the efficacy and safety profile established in the 

clinical trials will 'hold true' for them alsoT (FDA Guidance, 2000b) 

In such a situation, it is assumed that the population exposed to drug in the pivotal clinical 

trial is a subset of that to be exposed when the drug is marketed. 'Population' bioequivalence is 

thus somewhat of a misnomer in that the formulation is being changed in the study of interest 

(and not the population, the change for which happens outside the study). In any event, 

however, the practice of referring to this type of bioequivalence as 'population' is well established 

(FDA Guidance, 20OOb-2001) and will be abbreviated in this thesis as PBE, where P refers to 

Topulation'. 

In the assessment of PBE, it is assumed that the clinical trials population is a subset of the 

full population. It is held (FDA Guidance, 1997,1999a-b, 2000b) that cross-over designs for 
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PBE in a normal healthy volunteer population are sufficient to isolate any differences between 

formulations. Thus, cross-over or replicate cross-over designs (Jones and Kenward, 1989; Senn, 

1993; Senn, 2002) are considered appropriate for use in these studies, and the properties of 

PBE in such studies were developed in great detail in the previous chapters. It is generally the 

case that no quantitative evaluation is made regarding the appropriateness of this assumption 

that the clinical trials population is a true and representative subset of the market population. 

Such evaluations are qualitative are left to the purview of the regulatory agency from whom 

authorisation to market is sought. For some agencies, it may be of interest to ensure that the 

assessment of equivalence in formulations is not confounded with any uncontrolled change in 

population. 

As a first step then, consider an assessment of 'true' bioequivalence between differing popu- 

lations when the same formulation is given to differing populations (or ethnic groups). In this 

context, it is informative to explore the International Conference on Harmonisation (ICH-E5, 

1998) 'Guidance on Ethnic Factors in the Acceptability of Foreign Clinical Data'. Work by 

the author on these topics may be found in Patterson et al. (2002i) and work by the author 

was included in a points to consider document in the implementation of this ICH-E5 guidance 

(Altman et al., 2000). These materials are included for completeness, and these topics will be 

expanded upon in this thesis, concentrating upon application to pharmacokinetic studies. 

The purpose of this chapter is to develop model-based techniques that may be used in 

situations involving small samples and when the inclusion of covariate information may be im- 

portant to assess whether pharmacokinetics are equivalent between ethnic groups. We first 

consider a clinical development strategy for 'bridging' data from one population into another 

and then concentrate in the subsequent section on issues particular to experimentation involv- 

ing pharmacokinetic endpoints. Next we develop methods appropriate for the comparison of 

populations derived from the FDA PBE metric and an alternative procedure developed based 

on the Kullback-Leibler Distance (Dragalin and Fedorov, 1999a) and illustrate their use using 

a data set from a recent submission and simulation. The approaches which are developed will 

be illustrated using an existing data set and explored using simulation. 
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6.2 Clinical Drug Development Planning for Inter-Regional Bridging 

It is common for any new drug to be studied primarily in a particular region, such as North 

America and Europe. The initial requests for registration are made to the regulatory authorities 

within these original regions, and in order to accelerate global market access and accelerate 

patient access to the latest improvements in health care, it is desirable to be able to utilize 

these data in registering the product in other regions such as Pan-Asia. These new regions, 

however, must be assured that that regional and ethnic differences do not impact the product's 

safety, efficacy, dose, and dose regimen. The stated purpose of ICH-E5 (1998) is "to facilitate 

the registration of medicines among ICH regions by recommending a framework for evaluating 

the impact of ethnic factors upon a medicine's effect, i. e., its efficacy and safety at a particular 

dosage and dose regimen. " 

As described in ICH-E5, the first of two primary requirements for a submission package 

is that the data requirements for registration in the new region be met - i. e. that clinical 

trial methodology, record-keeping, protocol compliance and drug accountability, and informed 

patient consent must be acceptable in the new region (ICH-E5,1998). The minimal data 

package, consisting of either data from the original region and/or data from the new region, 

should include an adequate characterization of the pharmacokinetics (PK), pharmacodynamics 

(PD), dose response, efficacy and safety of the drug (see Chapter I for more details). At least 

PK (Naito, 1998a), and preferably PD and dose response, should also be characterized in a 

population that is relevant to the new region (ICH-E5,1998) but not necessarily resident in the 

new region (Naito, 1998b). 

The second requirement (the domain of 'Bridging' bioequivalence, henceforth referred to 

as BBE) is the demonstration of the ability to extrapolate findings from any data from the 

original region to the population of the new region. It is easier to extrapolate from one region 

to another if the new medication is "ethnically insensitive, " i. e., unlikely to behave differently 

in different populations. Ethnic sensitivity can be categorized into two components, intrinsic 

(genetic) and extrinsic (environmental), either or both of which may impact bioavailability and 

hence the appropriate dose and response relationship. These are described in greater detail in 

the following Figure 41. 

230 



INTRINSIC EXTRINSIC 
i 

Genefic I 
1 

Physiological and 
pathological conditions 

Environmental 

Age Climate 
Gender (children-elderly) Sunlight 

Height Pollution 
Bodyweight 

Liver Culture 
Kidney Socioeconomic factors 

Cardiovascular functions Educabonal status 
AdME Language 

Receptor sensitivity 
Race Medical pracbee 

Disease definition/Diagnostic 

---'Genetic polymorphism 
of the drug metabolism 

Therapeutic approach 
Drug compliance Smoking 

Alcohol 

Food habit,, e,, 
Genetic diseases Diseases Strlessý 

Regulatory practice/GCP 
Methodology/Endpoints 

Figure 41: Intrinsic and Extrinsic Population Factors Impacting the Dose-PK-PD Response 
Relationship (ICH-E5,1998) 
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A 'bridging' study, as its name implies, is designed to allow one to bridge from the original 

region's (foreign) data in the original population to the new region. It is a (ICH-E5,1998): 

"supplemental study performed in the new region to provide pharmacodynamic or 
clinical data on efficacy, safety, dosage, and dose regimen in the new region that 
will allow extrapolation of the foreign clinical data to the new region... Extrinsic 
ethnic factors are factors associated with the environment and culture in which a 
person resides. Extrinsic factors tend to be less genetically and more culturally 
and behaviourally determined. Examples of extrinsic factors include the social and 
cultural aspects of a region such as medical practice, diet, use of tobacco, use of 
alcohol, .. compliance with prescribed medication and practices in clinical trial 
design and conduct. " 

The degree of ethnic sensitivity will determine whether a study is necessary and the design 

of such a study (e. g. PK only, PK/PD only, in what population, etc. ). ICH-E5 (1998) describes 

several characteristics of drug products which would make such a product 'ethnically insensitive'. 

These are: 

" 1. Linear pharmacokinetics 
2. A flat response curve for both efficacy and safety in the range of the recommended 
dosage and dose regimen (this may mean the medicine is well tolerated) 
3. A wide therapeutic dose range (again an indicator of good tolerability) 
4. Minimal metabolism or metabolism distributed among multiple pathways 
5. Ifigh Bioavailability, thus less susceptibility to dietary absorption effects 
6. Low potential for protein binding 
7. Little potential for drug-drug, drug-diet, and drug-disease interactions 
8. Nonsysternic mode of action 
9. Little potential for inappropriate use" 

It is very rare for a drug to meet all nine conditions which would make it ethnically insensitive 

and result in only minimal data requirements to enter new regions and markets (e. g. such as 

Pan-Asia). However, early phase pharmacokinetic studies of the drug product will hopefully 

help assess which of the nine conditions may not be met and allow for an informed decision to 

be taken with regard to how to bridge inter-ethnic data as part of clinical studies in patients in 

global drug development. 

We now turn to points to consider in the incorporation of an ICH-E5 bridging strategy 

in a clinical development program. The strategy spans across studies in normal volunteers 

and clinical studies in patients in the original filing regions. Differences between populations 

in intrinsic and/or extrinsic factors (see above) may impact measures of central tendency or 

variation in pharmacokinetics by altering a drug product's absorption, distribution, metabolism, 

or elimination in different populations. These changes may or may not result in concentrations 
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at the site of action sufficient to elucidate a clinically meaningful change in safety or efficacy 

response between populations. 

Prior to the first-in-man study in clinic, in-vitro and animal pre-clinical experimentation 

should establish a range of safe doses for study in man. Doses are then selected for introduction 

into clinical studies in Phase I in humans (see Reigner and Blesch, 2001). Clinical development 

of a drug product, with the exception of only the most toxic products targeted for the treatment 

of cancer, then initiates with the study of the drug product in normal healthy male volunteers 

in Europe or the USA. These studies are typically small, well-controlled, data-intensive, dose 

escalating, and placebo-controlled. In this stage of development, the primary objective of a 

clinical study is to determine a safe range of doses and dosing regimens (e. g. once-a-day or twice- 

a-day) for later dosing in studies involving patients with the disease state under study. Dose and 

dosing regimen are examined with respect to their impact on the PK of the drug product, and 

additionally, should biomarker or surrogate markers (Biomarker Definitions Working Group, 

2001) be present to characterize the pharmacodynamic activity of the drug in normal healthy 

volunteers, these data are characterized relative to dose or PK levels. By the end of Phase 1, dose 

finding studies in normal healthy volunteers or patient studies (e. g. for oncology compounds) 

should (Patterson et al., 2000d; see Lesko et al., 2000 for further discussion): 

" 1. Provide the range of safe (and potentially efficacious) doses for further study in 

patients, 
2. Provide an initial description of pharmacokinetic exposure levels and/or biomarker/surrogate 

marker levels at each dose to facilitate choice of dose, dose titration, and dosing in- 
terval in Phase II studies, 
3. Develop initial models for use in pharmacokinetic-pharmacodynamic modeling for 
both desirable and undesirable effects. " 

Subsequent Phase 11 clinical studies in patients establish the minimum starting and maximum 

effective dose as well as the maximum tolerated dose in patients with the disease state using 

pharmacodynamic endpoints or surrogate markers of therapeutic response. Dose titration and 

the length of time needed to see an effect (desirable or undesirable) are also established. In these 

studies, models relating dose to PK and to PD are developed to understand the mechanism of 

the drug's action and to search for relevant covariates (e. g. age or gender) to control later 

Phase II or Phase III confirmatory trial designs (International Conference on Harmonization 

Guidance ICH-E4,1994). Dose finding studies in Phase II studies in the target population 
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should (Patterson et al., 2000d): 

" 1. Establish the therapeutic window by identifying a minimum effective starting 
dose (the lowest dose yielding a desirable effect), a maximum effective dose (the dose 
beyond which further escalation lacks further desirable benefit), and a maximum tol- 
erated dose (the dose beyond which there is an unacceptable increase in undesirable 
effects) in the target population, 
2. Identify the time interval needed to see an effect (desirable and/or undesirable) 
and reasonable, response-guided titration steps along with the time intervals at which 
to dose titrate, 
3. Develop updated pharmacokinetic-pharmacodynamic models for both desirable 
and undesirable effects in the population of interest, and identify potential covariates 
to be studied for dose adjustment in Phase III (e. g. age, gender). " 

Once a dose or set of efficacious doses are chosen from Phase 11 trials, confirmatory trials 

are subsequently performed to support regulatory acceptance. These trials, in large numbers of 

patients with the disease under study, should characterize the risk relative to benefit in clinical 

use of the compound. These studies in late Phase II or Phase III should be used to (Patterson 

et al., 2000d): 

" 1. Establish the risk: benefit ratio and pharmacokinetic-pharmacodynamic relation- 
ship (if any) for doses chosen to be in the therapeutic window established in Phase 
II) 
2. Finalize pharmacokinetic-pharmacodynarnic models developed in Phase II, and 
identify adjustments to dosing procedures appropriate to special populations for the 
drug under study. " 

Generally, from the time a drug enters the clinic to the time it is approved and ready to 

market 10.4 years on average elapse (DiMasi, 2001). Many approaches to speeding this process 

have been considered (see for example, Patterson, 2002i). We will not develop these approaches 

further but instead will dwell on bridging approaches using pharmacokinetics for the purpose of 

speeding global market access as part of clinical development planning using an ICH-E5 based 

approach. 

We will concentrate on obtaining a firm understanding of the comparison between popula- 

tions in pharmacokinetics early in the development process. Assuming a first-time-in-human 

study has been performed in Western volunteers and that a maximum tolerated dose has been 

identified, it should, theoretically, be possible with the additional support of in vitro and pre- 

clinical data to evaluate the nine conditions described above to determine a compound's com- 

parative ethnic sensitivity. 
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HistoricallY, however, pre-clinical and in vitro evidence has sometimes been proven unreliable 

in drug development (DiMasi, 2001), and it is desirable to explore findings from this exercise 

using a small, randomised, single-dose, placebo- controlled parallel group PK study in an ethnic 

group different from those studied in the USA or Europe. In early phase planning, to characterize 

potential differences in PK across doses and populations, another option is to perform a single 

dose, dose ranging, placebo controlled, parallel group PK bridging study in Pan-Asian volunteers 

as part of late Phase I or early Phase II studies. 

Often Japanese volunteers are studied for this purpose and PK exposure levels are compared 

back to Western volunteers as there is a significant population of such volunteers in Australia 

and Hawaii. Alternatively, a South Korean or Taiwanese population in Pan-Asia may be utilised 

as these nations are to some degree westernised. Exposure (AUC, Cmax) pharmacokinetic data 

are summarised in both populations. The objective of the study is to estimate the difference (if 

any) in extent (AUC) and rate (Cmax) of exposure between the populations. 

More than one such bridging study may be required for different markets or regulatory re- 

quirements depending upon the properties of the drug product - it is not yet known whether 

differences in intrinsic/extrinsic factors within the Pan-Asian market will require more than 

one such PK study (Aarons et al., 2001). ICH E5 discusses three ethnic groups: Asians, Cau- 

casians and Blacks. Some previous reports (Naito, 1994a-b; Yusahura, 1994) had claimed that 

'inter-ethnic differences were no larger than intra-ethnic variation' in pharmacokinetics for most 

medicines implying that statistically significant changes could be unusual. This view is not 

widely held and is at odds with the extensive debate on population and individual bioequiv- 

alence (see Chapter 1) and is not in accord with the practices of most regulatory agencies 

with respect to the considerations in population pharmacokinetics (for example FDA Guidance, 

1999c). This finding also does not agree with recent reports on the impact of inter-ethnic intesti- 

nal CYP3A metabolism and genetic polymorphism (Mancinelli et al., 2001) and would appear 

to be misleading. 

These Pan-Asian PK studies should characterize the PK-exposure levels across a range of 

doses comparable to those studied in the Western Phase I studies or alternatively, at the max- 

imum tolerated dose. Placebo should be used in order to ensure that any unexpected safety 

findings are placed in context. 
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These bridging studies should be regarded as exploratory in nature and as part of the 'learn- 

ing' process enhancing the information-base for subsequent, more rigorous development (Sheiner, 

1997; Sheiner and Steimer, 2000). In combination, the full information from the complete Phase 

I Western clinical development program and the Pan-Asian PK-bridging study should provide 

sufficient information to evaluate whether any gross differences between populations in pharma- 

cokinetics could result in qualitative changes to PD response. 

This constitutes a shift in focus relative to the techniques utilised in Chapters 1 through 5 

of this thesis in that statistical analysis will be exploratory rather than confirmatory, though 

many of the concepts developed earlier will be helpful. Statistical methods for study design and 

approaches to analysis of pharmacokinetic data arising from such studies will be developed in 

this thesis. The approach taken to analysis will be exploratory rather than confirmatory, and 

we will refer to such studies as BBE ('Bridging, Bioequivalence style') studies. 

For some few products which are insensitive to intrinsic and extrinsic factors, and where 

PK can serve as a suitable surrogate or intermediate marker (Sheiner, 1997) for safety and 

efficacy, a PK only bridging strategy may be sufficient to secure market access (though we 

expect such products to be rare, given the discussion of this Chapter). We will develop sample 

size requirements using simulation to assess how to use the metrics to establish a claim, if such an 

extension to the exploratory methods developed in this thesis is desirable. We will subsequently 

discuss whether such an approach is reasonable. 

Some methods have been described previously (Liu, 2000; Kawai et al., 2000; Sarkar et al., 

2002), but these will not be developed for application in this thesis as they relate primarily to 

clinical or pharmacodynamic data. 

Although much progress has been made since ICH-E5 became effective in 1998 there is still 

much diversity regarding how the guidelines are interpreted by the various countries within the 

Pan-Asian area. Currently Japan (Naito, 1998b) is considered to take a far more conservative 

approach to bridging than other countries such as Taiwan (EFPIA-99,1999) or South Korea. 

Under certain conditions, pharmacokinetic bridging is acceptable in South Korea and Taiwan. 

In general however, at least one dose response study (as detailed in ICH-E4,1994), and in many 

situations a Phase III trial, in Japanese patients is required for regulatory approval in Japan 

(though recent reports such as Nagata et al., 2000 indicate that this policy may be weakening). 
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It should be realised that in regions where there is little experience with registration based on 

clinical data from the original region, the regulatory authorities may, prior to approval, request 

a bridging study even for compounds insensitive to ethnic factors. 

We will now discuss concepts in study design important for consideration in BBE studies. 

6.3 Topics in Bridging Bioequivalence PK Study Design 

We will consider BBE designs with a test and reference population where one dose level (a single 

administration) is of interest (for a single formulation of drug product). 

In a BBE study design, the classic factors involved in experimental design (randomisation and 

blinding, replication, and blocking; Hinkelmann and Kempthorne, 1994) should be considered. 

Randornisation and Blinding: It is recommended that normal healthy volunteer subjects 

(the experimental unit) within the test (the population in the new region) and reference (the 

population in the original region) populations be randomlY assigned to receive a dose of drug 

product or placebo, so that, if unexpected adverse events are observed in either population, 

these can be placed in context of spontaneously occurring events. In consideration of such 

factors, it is recommended that both subjects and clinical personnel be blinded to placebo or 

drug administration (i. e. double blinded). In general, as these studies will be performed early in 

drug development, it may be the case that enrollment will be restricted to male subjects only, 

until definitive repro-toxicology results are available. If female volunteers can be included in the 

study, randomisation should be stratified by gender within each population. 

Choice of dose in the test population should be carefully considered and based upon what 

was observed in the reference population. Allometric scaling techniques using population phar- 

macokinetic modelling (see Reigner and Blesch, 2001) may also be considered when choosing 

the dose (or doses) to be used in the new population. 

Replication: BBE studies where pharmacokinetics are the endpoints of interest are likely 

to be conducted early in drug development (see Section 6.2), and in this context, it is likely that 

only few subjects (n =8- 12) in each population will be exposed to drug in order to ensure 

that, if the drug is unsafe, few subjects will be exposed to risk. This is in line with recent 

communications surnmarising the ethics of dosing normal healthy volunteers with experimental 

drug substance, regardless of national or regional considerations (Tanida, 2002). It is assumed 
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that subjects will not derive any medical benefit from the study. Study design then consists of 

careful consideration of the intrinsic an extrinsic factors to ensure an unbiased comparison of 

populations is captured. 

In general, at the point in drug development at which we consider such trials will be employed, 

it will generally be the case that reliable estimates of between-subject and of within-subject 

variation in the reference population will be available. We propose that sample size be selected 

in the new population (if safety issues are not of great concern) in order to provide a given 

level of precision in the study findings relative to the original population. We note here that 

in general, drug development will be in such an early stage that no pre-specified difference in 

population means will be of interest nor will testing whether a difference relative to a goalpost 

of nature similar to those utilised in bioequivalence be of interest. 

The 'estimation' approach can be useful when the magnitude of effect is not known and 

the main study objective is to provide evidence of what the potential value, or range of values, 

may be, or when the sample size is in part set by feasability, and we wish to provide an idea 

of the precision the trial is likely to provide for the effect of interest. In such cases, the intent 

is to provide an estimate of the expected width or precision of the plausible range of values 

as expressed by a confidence interval. This will help satisfy our expectation with regard to 

acceptability and applicability of study results in the knowledge that, 'The confidence interval 

can be thought of as the set of true but unknown differences that are statistically compatible 

with the observed difference. ' (Goodman, 1994) 

First consider AUC and Cmax data from a parallel group design where independent unbiased 

method-of-moments estimators S, &', and &2 are derived for 6= AT - AR) 0' 2, 
and a2. AUC and TRTR 

Cmax pharmacokinetic data are 10ge-normally distributed (see Chapter 1), and are sufficiently 

2 described by mean pt and variance at, where t represents test and reference populations. 

Where intrinsic and extrinsic factors are sufficiently precluded to ensure that comparison 

between populations is not confounded, traditional method-of-moment techniques (Rao, 1973) 

may be used (following log, -transformation) to derive unbiased estimators At and &' for the t 

moments of interest. Let Yij be the log, -transformed AUC or Cmax for subject j (j = 1, ---, ni) 
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of population i (i =Test, Reference) 
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with X2 representing the central chi-squared distribution with vT = nT -1 degrees of freedom, VT 
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where 
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it I"R 

with X2 representing the central chi-squared distribution with I-R = nR -1 degrees of freedom. VR 

In the context of BBE in this Chapter, the subscripts T and R refer to test and refer- 

ence populations, respectively. In such a design, 2, 
and &2 are independent and unbiased TR 

estimators. 

22 Then J= (AT 
- AR) 

- 
N(AT - AR) (O'T + O'R)/n)) where n is the sample size (per group) in a 

two-group, balanced, parallel design with T=Test and R=Reference populations in this context 

where N represents the normal distribution with (mean, variance). Further S= (AT - AR) ' 

NGIT - ttR) (ýý' + where ni is the sample size (in population i=T, R for T =Test and nT nR 

R =Reference populations) in a two-group parallel design where sample size is not presumed 

equal. Then, a 90% confidence interval for AT - AR iS: 
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where tr, (0.95) is the 95th quantile of a t-distribution with Satterthwaite (1941) degrees of 

freedom 

(Ei (&i') /ni)' 
Ei(&i'/ni2(ni - 

Sample size may then be derived using the techniques described previously in this thesis to de- 

termine the necessary sample size to conclude equivalent exposure. Alternatively, the nonpara- 

metric percentile bootstrap procedure (Efron and Tibshirani, 1993) may be used to construct a 

confidence interval, and we will assess which is most appropriate later in this Chapter. 

Consider 
& 

T2 
2 

wj = tr, (0.95) + 
&R 

nT nR 

This function provides a 'precision' estimate for the true mean difference. Goodman (1994) 

notes that use of a method like that proposed above should be exercised with caution as, in a 

situation where the study design is truly intended to support a test of hypothesis, the approach 

corresponds to a test using 50% power when precision is equal to the difference of interest. 

Similarly, in situations where an equivalence approach is intended (i. e. 90% CI are calculated), 

the method presented in this thesis corresponds to a two-one sided hypothesis test with 50% 

power when precision is equal to the equivalence range of interest. 

When a pre-specified goalpost is available for utilisation in equivalence testing, it is easy to 

construct a two-one sided testing procedure akin to that used in average bioequivalence testing. 

Here, let x>0 be a pre-defined scalar such that differences in populations in excess of x are 

undesirable. Then we will test the following two one-sided tests to evaluate equivalence in 

population means: 

HO1 : PT - IIR >X 

H02 : JIT - PR < -X 

However this type of 'bioequivalence' approach to choice of sample size is dependent upon the 

variation and the true difference in populations (see Senn, 1997); both of which are unlikely to 

have been studied at this stage of drug development. Later in this Chapter, we will also consider 

some additional metrics for BBE assessment. These metrics will incorporate the population 

variances in a manner similar to that considered in PBE testing. 
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Consider now a comparison of the variances between populations. As above we know that 
2 &2 , 0,2 &2 &2 , 0,2 

11ý-L-i 
T TX2-T-- where nT -1 is the degrees of freedom associated with , and nT -I TRR nR-1 

where nR -I is the degrees of freedom associated with &2 where these two estimates of variance R 

2 

are independent. Here a 90% confidence interval for will be: aR 

T2 
2 4 

(-F nR-l, nT-1(0.05), 
LTFnR-l, 

nT-1(0.95)) &2 &2 RR 

such thatW,, 2 /,,, 2 = rnax(F, TR R-l, nT-1 
(0*05)1 FnR 

- l, nT-1(0.95)) 

= F,,,, 
-l,,,, -1(0.95) where denotes the ath percentage of the F-distribution 

(Muirhead, 1982). 

Here also, when a pre-specified goalpost is available for utilisation in equivalence testing, it is 

easy to construct a two-one sided testing procedure akin to that used in average bioequivalence 

testing. Here, let y>0 be a pre-defined scalar such that changes in variance in populations 

in excess of y are undesirable. Then we will test the following two one-sided tests to evaluate 

equivalence in population variances: 

Hol : 
0,72, 

2 orR 

2 
T H02 : 

0'12: 
:5 11Y 

UR 

2 In the example to be considered later in this Chapter, O'R = 0.0632 for nR = 53 caucasian 

male subjects dosed with an innovator drug product. The intent of the study to be planned was 

to estimate the difference in AUC and Cmax in a new South Korean, male, healthy volunteer 

population, who previously had not been exposed to drug. Only a few Korean subjects would be 

initially exposed, in order to ensure that few subjects were exposed to potential risk. The drug 

product in question was expected to be ethnically insensitive based upon the pharmacokinetic 

profile in caucasians. 

An initial sample size of nT =8 was proposed. Based on the above estimate of variation for 

AUC and assuming homogeneity in variation between populations, we find that jý = 9.24 and 

wS = 0.1742. Thus we would expect the half-width of a confidence interval for the difference in 

mean AUC to be approximately 19% of the point estimate; certainly acceptable for the purposes 

of studying the pharmacokinetics between populations. 
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However, the precision associated with the ratio of variances is F52,7(0.95) = 3.31. This is 

informative in that this finding indicates that it is unlikely we will be able to make any meaningful 

inference between population variances. To increase precision, nT must be increased; however, 

it was judged sufficient that precision be adequate for comparison of mean AUC and that only 

extreme differences in variation be recognisable. 

Precision in other metrics we will consider later in this chapter are less straightforward (espe- 

cially when the poor precision of the comparison of vahances is taken into account). While the 

mean and variance of these expressions are readily derivable, in studies with such small sample 

sizes, they are not likely to aid in defining a precision estimate. Nor would such an estimate be 

readily interpretable in the context of a composite metric based on the combination of means 

and variances. We will instead develop a nonparametric bootstrap program and combine it in 

application with a simulation mechanism to address precision in study planning for such metrics. 

The power of such metrics to demonstrate BBE will be studied using simulation and compared 

to several potential goalposts. 

Blocking: To isolate differences between populations and ensure unbiased comparison of 

exposure levels, intrinsic and extrinsic factors should be controlled. Gender stratification (see 

Miller, 2001) and age, height, and weight ranges should be made as homogeneous as possible 

between populations. Subjects should be in good physical condition and should not have any 

concomitant disease state which would impact exposure levels and confound interpretation (e. g. 

liver, kidney, or cardiovascular disease). Subjects should not be taking any concomitant medi- 

cation (including smoking and alcohol) and should be on a consistent diet and exposed to the 

same set of climatic variables (e. g. light, exercise, stress levels) while being studied. 

Pharmacokinetic properties of the drug product should be carefully considered when selecting 

subjects for participation in the study. For example, in drugs known to be metabolised by certain 

pathways in the liver (CYP2D6), in Caucasians, there is known to be a rare sub-population 

(some 10% of the population) in which subjects metabolise a drug metabolised by this pathway 

slowly. Thus in this 'poor- metaboliser' population, exposure levels of the parent compound 

will be dramatically increased relative to the rest of the population. If a drug is known to be 

prone to such ADME properties (see Chapter 1), subjects should be screened and randomised to 

ensure that the number of volunteers with such a genetic polymorphism is homogeneous between 
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populations. 

Standardisation of the application of study procedures to the experimental units should be 

ensured. Clinical practice should be standardised and conducted in accordance with good clinical 

practice (e. g. time and content of meals, time and administration of and compliance with study 

medication), and the pharmacokinetic (and other) sampling schemes should be standardised 

across populations. Clinical personnel should ensure that subjects receive study medication in 

a standard manner (e. g. after an overnight fast) according to the randomisation schedule. 

Of particular importance in BBE studies involving pharmacokinetics is the quality and uni- 

formity of the assay and shipping of the biological materials to the site of assay. Assays used 

should be validated and if performed at different sites should be confirmed to provide equivalent 

results (to do otherwise risks biasing the study results or at the least increasing noise). Opti- 

mally, to avoid these issues, shipping procedures should be arranged to ensure that, regardless 

of point of origin, samples do not degrade and arrive at the single site of assay in sufficient time 

to be utilised under good laboratory practices. 

Under some circumstances, it will not be possible to ensure that all intrinsic and extrinsic 

factors are homogeneous across populations (e. g. weight in Pan-Asian volunteers is unlikely 

to be homogeneous with Western volunteers). Under such circumstances, the factor involved 

should be carefully controlled in a manner appropriate to the eventual patient population to 

which the drug will be applied, and the model to be used in analysis should account for this 

factor. 

One such factor, deserving of special consideration, is dose. If knowledge of the dose to PIC 

response relationship is not well established by the Phase I studies in the original region, a dose 

ranging design in the BBE study may be employed. Under such a design, subjects would be 

randomly assigned to placebo or one of several active doses of drug. Dose then would be one of 

the factors explored in detail in such a model. 

We now turn to the consideration of data from a single dose comparison. 
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6.4 Single Dose, Placebo Controlled BBE Studies 

6.4.1 Background 

For the purposes of this thesis, it is assumed that a single active dose, randomised (to placebo 

control), clinical trial is conducted for the purposes of estimating the difference in primary 

endpoints AUC and Cmax (from the subjects receiving active regimen) between the test and 

reference populations. For those few compounds known to be ethnically insensitive (see previous 

discussion in this chapter), it may be the case that the study is performed to establish that 

the populations are equivalent in ternis of their AUC and Cmax, and we now turn to the 

consideration of metrics to be used in such measurement. 

6.4.2 Metrics 

It was originally proposed that population bioequivalence be assessed using the following aggre- 

gate statistic (FDA Guidance, 1997). 

)2 22 (AT 
- AR + O'T - O'R (65) 

0,2) max(O. 04, R 

where a2= or 2T+U2T 
and or 

2=u2R+a2 
R* Note that this aggregate statistic can be 

TWBRWB 

constructed using a mixed model from a parallel group, two-period cross-over design, or other 

R<0.04; otherwise the (e. g. replicate) design. We refer to this metric as constant-scaled if U2 

metric is deemed to be reference-scaled as the variance for the reference formulation appears 

in the denominator. Constant-scaling was introduced (see Chapter 1) as a means of keeping 

low-variability products from being held to what was felt to be an unreasonable strict standard 

for bioequivalence. 

For the purposes of Bridging bioequivalence, we will neglect constant-scaling and consider 

only the reference scaled metric. 

)2 22 UIT 
- AR + O'T - O'R 

2 OrR 
(66) 
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Note that, due to the nature of this 'aggregate' criterion, differences in means in this crite- 

rion can be 'negated' by decreased variance for the test formulation. As discussed in previous 

Chapters, some have noted this to be an undesirable property of the proposed metric, (Endrenyi 

and Hao, 1998c), and it is known that such trade-offs do occur in practice in cross-over trials 

(Zariffa et al., 2000). 

The goalpost for population bioequivalence (see Chapter 4) assessment assumes the variance 

for the reference formulation is 0.04. The difference I-IT - MR is allowed to take on a value of 

up to 0.2231 and a variance allowance of 0.5 in the numerator under the procedure proposed 

by the FDA (cf. FDA Guidance, 1999) and (66). Thus the regulatory 'cut-off' is constrained 

to a level of 1.74. If the upper 95% bound on the FDA metric falls below this value of 1.74, 

population bioequivalence is demonstrated for the endpoint under study. Scaled to reference 

variation (again, assumed to be 0.04, under the FDA Guidance 1997), the goalpost accounting 

for the means amounts to a value of 1.24=(log, (1.25) )2 /0.04. The remaining allowance, known 

as the 'variance allowance' and is equal to 0 ((0,2 .5 
(allowing for a difference in variances T 

2 )/Or2 )=(0.02/0.04), when scaled to reference product variation. ) O'R R 

This is not an appropriate choice of goalpost when looking at a BBE study. Obviously, this 

is an exploratory study, so one would debate whether a 'goalpost' is at all relevant. However, 

one might set a number beyond which it would be extremely undesirable to see any potential for 

responses in the limited data such an exploratory PK study would generate. We will illustrate 

OIT -AR 
)2 

y2 +. Note that (66) how to do so separating the metric into components x and R O'R 

is equal to x+y-1. 

In Figure 42, the response-surface for combinations of x and y yielding (66) is plotted both 

as a surface and, in the second part of the figure, as a projection onto the plane of possible 

responses as a function of x and y. Here we see the potential for trade-offs in (66). For example, 

for an (66) value equal to 1, it is observed that x can be as large as 2 if the variation in the test 

population is very small relative to reference. Equivalently, we can see such a value when the 

ratio of test to reference variances is 2, but x is near 0. 

As discussed previously in Chapter 4, this potentially helps explain the findings of Chapter 

4 and 5 in that PBE is so liberal as to allow nearly any product market access for a large sample 

size. 
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Dragalin and Fedorov (1999a) introduced an alternative discrepancy measure for measuring 

the divergence in two independent distributions based on measures of Kullback-Leibler distance 

(Kullback, 1968). In the situation where two parallel groups are being assessed, this measure is 

as follows: 

1 
)2 2+ 

or 
2 l( '+1) 

-2 (67) d(fT, fR) =ý (IIT 
- PR + OT R 7ý 22 7' 

ýR 

Here, we see a metric which does not allow 'rewards' for decreases in variance to offset 

2=2 dianges in means. In fact (67) is equal to 0 if and only if AT - AR =0 and UT O'R . Separating 

(AT 
-AR 

)2 OIT 
-AR 

)2 22 

the metric into components x+ --2, -, 2- and y+ Note that (67) is 2a 2 urý- - RR 
2aT 

equal to x+y-1. Here again, we see trade-offs in terms of varying the x and y space to achieve 

a given value of (67). See Figure 43. 
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Finally, one might compare the estimates for the means and variances themselves using 

established methods for their comparison and evaluate them relative to a goalpost to assess 

clinical relevance. We will explore this approach in the subsequent sections also. 

6.4.3 Estimation and Properties of Estimates 

The estimation procedures follow the general principles of a 'plug-in' method. Estimates for the 

parameters of interest (J, a27U2) are derived using method-of-moments or restricted maximum TR 

likelihood estimation. These estimates (ý, &2 
, 

&2 ) and then analysed in accordance with the TR 

ý2 

procedures described above (for S and 4,. or 'plugged-in' to the formulas for the FDA and KLD a. R 

metrics to provide an estimate for the metrics. 

In this context, much like PBE, the statistics At and &2 accounting for nt may be compared t 

in some fashion to determine whether population exposure levels are sufficiently similar to be 

termed 'bioequivalent' (see Chapter I and Chapter 2. ). However, unlike PBE, in BBE studies, 

intrinsic and extrinsic factors may confound inference. A REML model based approach, ac- 

counting for intrinsic and extrinsic factors potentially can be used to derive unbiased estimates 

for the moments of interest where factors are known to differ. Such an example will be con- 

sidered. In such a study, as is common practice, it is assumed that subjects are independent. 

We will consider SAS@ based REML procedures which allow for the inclusion of continuous 

independent variables while allowing for the differentiation of variances between populations. 

The REML procedure to be considered does not constrain the variance to be homogenous 

across populations. As known from Searle (1971) estimates resulting from this model should 

equate to a method-of-moments approach in complete and strongly balanced data sets based on 

SAS@ code as follows: 

PROC MIXED METHOD=REML SCORING=50 MAXITER=200; 
CLASS POP; 
MODEL lnAUC = POP covariates/DDFM=KENWARDROGER; 
REPEATED /group=POP; 
LSMEANS POP; 

Note that beginning here, we will adopt the use of the Kenward-Roger (1997) degrees of 

freedom as implemented in SAS@ as this procedure also inflated the variance estimate for 6 to 

account for the iterative nature of REML estimation according to the approach of Harville and 
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Jeske (1992). Satterthwaite's (1941) procedure, as currently implemented in SAS@, does not 

account for this and should be expected to provide a slightly lower level of coverage probability. 

The metric proposed by the FDA (FDA Guidance, 1997,1999a, 1999b, 2000b) for the as- 

sessment of population bioequivalence under such a design is asymptotically unbiased, though 

in small samples it carries a small positive bias also related to degrees of freedom. We will also 

show how an unbiased estimator can be derived. 

We now consider the bias in the FDA metric for such a design. 

Theorem 6.1 Bias in the FDA Metric for BBE 

A method of moments estimator for the FDA metric for assessment of BBE is 

ý2 + &2 &2 ý2 &2 
TR-+ 'T 

&2 &2 &2 
RRR 

(68) 

The expected value of expressions (68) is asymptotically unbiased but is positively biased in 

small samples. 

Proof. Taking expectations and assuming independence in (68), 

J2 

Tý + 

R 

22 f- +2 O"r +aR 82 
OT2 -- ': Fa-R n Ta 

T2F n 
=E- 2 +E 

(&2 2( 4& 2 or or R CrR R aR) 

Further, using the results of Muirhead (p 24-25,1982), it is seen that this expression reduces to, 

n-1 J2 (n + 1)oT2 1 

n-3[2 no, 
2n ýR 
R 

As sample size increases this expression becomes, 

n12 
62 0-2 6 (n + 1)o-T2 +T liMn-oo 

n-3 

lo, 
21 

nor 
2+n-1 -- or 2 or 2 

(69) 
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which is an unbiased estimate for (66). However in small samples, the bias is 

n- J2 

32 
Q 

+( 
(n - 1)(n + 2 ol T 

2+ - > 

- UR n(n -3) 
ý 

R n 

[300 Thus the estimation procedure is positively biased (against sponsors) when using a 'plug- 

method-of-moments estimation procedure. An unbiased estimator may be derived as follows: 

Theorem 6.2 An Unbiased FDA Metric for BBE 

An unbiased method of moments estimator for the FDA Metric in BBE is 

62 ýn 1)&2 n 3. 
-- T 
ý2.2 &2 n n 

(OR 

nR 

Proof Taking expectations and assuming independence in (70), 

u2 +0,2 32 & 

T� 2 )/n (n - 
1)or2 

n 
ý-+, 2 n-3 , . )/n T(oT 

E- 2R2 

n- or 2 no, 2 (& n RR UR 

(70) 

Further, using the results of Muirhead (p 24-25,1982), it is seen that this expression reduces to, 

J2 0, T2 [ý-2 
+ ý-2 

R R] 

OCID 

We now develop an extension to the above proofs when sample size differs between popula- 

tions. 

Theorem 6.3 Bias in the FDA Metric for BBE when Sample Size Differs between Populations 

glen a method- of- moments estimator for the FDA metric is derived as in (68) where nT and 

nR are the sample size in test and reference populations, then the expected value is 

2 vR [ 5' 
+. + 

(nT + ')O'T 

vR -20,2 
(nT)O' 2 nR RR 
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This expression (71) is asymptotically unbiased for (66), but is positively biased by 

2J2 2+ nR/nT - 1/nT) uT2 
+1- 

1/nR 
or 2 (nR - 3) + 

nR -3 or 2 nR -3 RR 

An unbiased estimator is 

I"R -2[ 
ý2 

+ 
(nT - 1)&2 I"R 

22T (72) 
1ýR ýR (nT)&R (1-ýR - 2)nR 

&2 where vt IS the degrees of freedom associated with t for t =test and reference populations, 

Proof Taking expectations of (68) and using the results of Muirhead (p 24-25,1982), it is 

seen that this expression reduces to: 

2 
T F'+ 

07T 
F1 2 or2 OR R 

where P is a random variable such that P and F is a random variable such 
F1, 

VR 

+ HE) 
nR nT 

that F- Fý'T, 
VR * Taking the expectation, the expression (71) is found. As sample size increases 

(71) becomes, 

ý 62 1)0,2 62 0,2 VR 
+ 

(nT+ 
T+ T- liMn. 

R-oo, nTý00 
U2 222 vR -2 

(nT)O' nR RR 
ý-R ýR 

which is asymptotically unbiased for (66). Consider (72), which can be expressed as 

2 VR -2 (nT 
- ')o'T VR 

IIR 

1(U2) 

(nT)o, 21 
R 

(VR 
- 2)nR 

Taking the expectation, this expression reduces to 

j2 0,2 
ý2+ -'T 2 -R 

UR 

coo 

Note the metric is positively biased (against sponsors) in this setting though the expected 

bias is small and negligible due to the sample sizes expected. We now turn to bias in the KLD 

for BBE. 
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Theorem 6.4 Bias in the KLD for BBE 

A method- of-moments estimator for the KLD metric is 

I[ S2 

+ 

ý2 

+ 
&T2 

+ 
&R2 

2T ý2 (73) - ý2 - ý-2 &2 
RRT 

The expected value of expression (73) is asymptotically unbiased but is positively biased in small 

samples. An unbiased method-of-moments estimator is: 

1)&2 l[n-3(S' 
+ 

(n- R (n - ý -2 -&2 + 2n1T (n) T (n - 3)n) 
(74) 

n-3( ý2 
+ 

(n - 1)&2 n- T 

n 
ý-2 (n)&2 (n - 3)-n) RR 

Proof. As method-of-moment estimators are used, taking expectations of 73) and assuming 

independence and using the results of Muirhead (p 24-25,1982), it is seen that this expression 

reduces to: 
2 52 +2 n-1 (n + 1)oT2 (n ')O'R 2] 

_1 
[ý-2 

+ -- +- -2 + 
072 

+ý (75) 2(n - 3) T 0,2 nn R 
ýO'R 

T 

As sample size increases (75) becomes, 

liMn-oo 
-n-1 

J2 
+ 

j2 

+ 
(n + 1)oT2 

++ 
2] 

2(n - 3) 
[ý-T2 

2 0,2 
ýR 

noR2 nTn 

J2 
+ 

J2 
+ 

0, T2 + 
OR2 

-2 2[ 
T 

-2 ý-2 
0,2 RRT 

which is an unbiased estimate for (67). However in small samples, the bias is 

l(n- 1 62 

++ 
l«n-1)(n+ 1) 22n-1 

-2 
ZTI 

+ 
0, ii 

+> 

n-3 2 n(n -3 
-) 

lo, 
2 u2 

] 

n(n-3 - 4RT 

The proof that (74) is unbiased for (67) follows directly from these results. DEIEI Thus the 

estimation procedure is positively biased (against sponsors) when using a 'plug-in' approach to 

estimation. 

In similar fashion to that of the FDA BBE metric, we show that the KLD for BBE is posi- 
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tively biased in small samples when sample size differs between populations and asymptotically 

unbiased. We derive an unbiased estimator in small samples. 

Theorem 6.5 Bias in the KLD for BBE when Sample Size Differs between Populations 

When a method- of-moments estimator for the KLD of BBE is derived as in (73) where nT 

and nR are the sample size in test and reference populations, then the expected value is 

V( J2 +1)0,2 1 J2 1)0,2 1 T+ (nR 
)0,2 

ýR + _) +_ 
VR 

+, 
(nT + 

)0,2 
T+ 

-) 
I-1 (76) 

2 vT -2 
ý-T2 (nR T nT VR -2 

(ý-2R 

(nT R nR 

This expression (76) is asymptotically unbiased for (67) but is positively biased in small samples 

by 
52 

) or2 
++ 

nT R+ )+ 
2 nT -3 or, 2nR 2nR UT 2 2nT 

62 nR 1 0,2 11 
) 

2' 
+-- -) ++2 2nR nR-3 R 2nT 2nT ýR 

An unbiased estimator of (67) is 

2 1)&2 [vT -2 (6 (nR IIT 
+ 

1R 

ý: 
T-2- 

+ 
)&2 (vT 

- 2)nT VT (nR T (77) 
VR -2 (S2 1)&2 VR 
- 3-2 +, 

(nT - 
)&2 

T 

VR R (nT R 
(VR 

- 2)nR 

Proof. Consider (73). Assuming pairwise independence and using the results of Muirhead (p 

24-25,1982), it is seen that this expression reduces to: 

)FT' 
+ ýý-TFTlý + FRT] 

2 
)FR' 

+222 
UR OIT UR OIT 

where FR' - Fl',,, 
R 

62 FT' - Fj', VT 

(f 62 FTR r"' 
FVT, 

VR , and FRT - 
FvR, 

VT . 
Taking 

_I + _2 fl + ---T r 
nR nT nR nT 

the expectation, the expression (76) is found. As sample size increases (71) becomes, 

1 . 62 62 22 

(76)] =--+ý! 
Th + 

OrR 
"M"R--+oo, 

nT-00 

[ý2 
+ 72ý 22 2TR OrR OrT 

which is asymptotically unbiased for (67). 
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Consider (77), which can be expressed as 

22 

vT -2+T, 1) 2 
nr Fý 

(nR - O'R 
F 

VT 

2vT 2+ (nR )0,2 RT - (vT 
- 2)nT UT T 

vR -2- 1)0,2 (nT TF VR 
2+ )0,2 + 21"R OrR 

FR 
(nT R vR - 2)nR 

Taking the expectation, this expression reduces to 

J2 
+ 

J2 
+ 

0, T2 + 
OrR2 

ý-2 -2 
T 

ý-2 
0,2 RRT 

EIEIEI 

6.4.4 Extensions concerning large sample properties and the inclusion of informa- 

tion on covariates 

Now, we turn to the large sample properties of the estimates of interest. It is known (Muirhead, 

1982) that the method-of-moments estimates 8, &2 
, and &2 are independent and asymptotically TR 

normally distributed unbiased estimates. Similarly, REML estimates ý, &T2, and &2 are asymp- R 

totically normally distributed with known variances. The large sample variances for ý and i; 

are (XE-X)- and -E[ 
a2L-1 ], respectively with covariance 0 where L is the log-likelihood. aEaEl 

The arising estimates are normally distributed in the limit with variance-covariance matrix 

appropriate to the structure of the model. For our purposes in BBE assessment, where we 

estimate &R these are asymptotically normally distributed with expected value 
&2 

T 

2 
O'R 

01 
2 
T 

The asymptotic variance estimates have a symmetric variance- covariance matrix as described 

above, the elements of which we shall denote as 

16 00) Note that under this design (unlike the cross-over designs of earlier Chpaters), asymp- 0 1R o 
00 1T 

totic estimates of the variance components o- 
2 

and a2 are independent (Searle, 1971) of each RT 

other and of the variance of S which we will denote 16. 

From these findings, it is easy to derive the expected values of the relevant estimators of the 

FDA BBE metric and the KLD metric for BBE. 

Theorem 6.6 Asymptotic Bias and Variance of the BBE Metrics using REML Estimation 
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Let 
S2 + &2 

- &2 
-R 1-lFDA 

&2 (78) 
R 

be an estimate for the (66) FDA metric from a REML UN model. Then, this estimate is 

asymptotically normally distributed, unbiased with 

62 + or2 _ (y2 TR E[JýFDAI -2 
O'R 

(when 6 =, A 0) 

Let 
S2 S2 22 1+T 

JýKLD `:::: -(- +-+ 
6R a 

(79) 62 62 62 62 2TRTR 

be an estimate for the (67) KLD metric from a REML UN model. Then, this estimate is 

asymptotically normally distributed, unbiased with 

2 ä2 22 15T 
E[IýKLDI = -(- ++ 

O'R 
+ 

0, T 
2u2 01 2 or 2 01 2 

TRTR 

(when 6 :A 0) 

Proof. Here we apply the findings of Theorem 3.3. A of Serfling (1980) using the proper- 

ties described previously of the estimates making up IýFDA &2, &2 The function g is TR 

2 62 0,2 
obviously differentiable such that !U g=, 5 = 25,0 g=a2 g=a2 

+ "' 

TI 
&R 0' ig - aa_r TRR 0' RI R 

Then by application of Theorem 3.3. A (Serfling, 1980), it is found that g(S' &2, &2 ) is asymp- TR 

totically normally distributed with expected value g(J, a2, or 2) 
and variance DE12' where TR 

D= (2J +-), o -2 ) and where El is the Unstructured REML asymptotic variance- 40, 
R OTR OrR 

covariance matrix above augmented with the 18 associated in the first row, first column, such 

that 
( 16 00 

0 IR 0 The proof then follows by matrix multiplication for J 54 0. The proof for the 
00 1T) 

KLD is similar and is not reproduced here. 000 

We note here that when J=0, the estimates are asymptotically positively biased in the same 

manner as the small sample estimates using method-of-moments. Simulations (to be performed 

later in this Chapter) will characterise the degree of bias in small sample REML estimates. 
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6.4.5 Inference and Example 

In contrast to earlier chapters where sample sizes in excess of 20 were not unusual, for BBE 

studies it will be unusual to find studies with more than 8 to 12 subjects in the new region 

receiving a dose of drug product. Sample sizes may be substantially larger in the original region 

(as we shall see in the example later in this Chapter). 

For the purposes of inference concerning the metrics of interest, we will utilise the nonparametric- 

percentile bootstrap method (Efron and Tibshirani, 1993) to construct confidence sets for the 

metrics of interest. Rom findings of previous authors as described in Shao and Tu (Chapter 3, 

1995) based on the work of Bickel, Reedman, and Singh, it is known that 

Pr[g(ý)95 > g(-y)] --40-95 (80) 

where g is the function of the estimates -y required to estimate the FDA or KLD metric of interest, 

where ý is estimated using method-of-moments, and where 9M95 is the 95th quantile of the 

bootstrap distribution of the sample estimates for the metric. We know g is a differentiable 

function in the neighborhood of -y (see proof above), and under certain regularity conditions 

(discussed in Shao and Mj, 1995 and Shao et al., 2000b), it is also known that (80) holds for 

estimates derived from REML. 

We will utilise REML estimates for the metrics of interest in BBE in this thesis so as to 

provide a consistent modelling approach with the later parts of this Chapter and as this is most 

of interest when comparing data from unbalanced populations. 

An additional benefit of the use of REML is the ability to incorporate supplementary infor- 

mation as covariates into our estimates for the means and variances. This information is critical 

when for example demographic factors such as weight are of immediate concern (as we will see 

in the example) or when one wishes to account for the effect of dose in the findings. 

In such cases, the supplementary information can be added to the REML model as a fixed 

effect. The resulting estimates for the means and variances are then adjusted for the effect 

of supplementary information (for more details see Hinkelmann and Kempthorne, Chapter 8, 

1994). Our findings above with respect to the large sample properties of the arising mean and 
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variance estimates are adjusted for in the fixed effects space, so we find that in general, REML 

models will provide an efficient means of analysis in this setting, especially when supplementary 

information is of concern. 

When not accounting for covariates, REML estimates are equivalent to method-of-moment 

estimates in small samples. To illustrate the concepts in involved in construction of metrics, we 

first consider some pharmacokinetic data from a recent submission. In the following Figure 44, 

AUC and Cmax (on the In-scale) are plotted versus weight for Caucasian and Korean volunteers 

subjects following a single 8 mg dose. 
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Figure 44: AUC and Cmax to Weight Response-Relationship for South Korean and Western 
Volunteers 
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Mean AUC and Cmax in South Koreans were observed to be higher than in Caucasian 

volunteers. Even in the most well controlled of trials, some demographic factors may differ 

between populations and should be accounted for in any metric constructed. In the Korean and 

Caucasian data set, it was found that Caucasian volunteers had greater weight than the South 

Korean volunteers, see the following table. 

Table 25: Weight (kg) by Dose and Race 

Dose Race N Mean SD Min Median Maximum 
8K8 65.5 4.84 59 64.5 73 
8W 53 79.6 10.63 58.7 78.2 106.6 

K=South Korean, W=Western 
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We now turn to consideration of the metrics developed thus far in this Chapter. Data at the 

8 mg dose level will be examined not accounting for weight as a covariate. 

Table 26: REML First and Second Moment Estimates for AUC and Cmax Data by Race 

Endpoint I Race N &2 

AUC K 
W 

8 
53 

8.3785 
7.9053 

0.0769 
0.0632 

0.4732(0.2822,0.6642)(0.3190,0.6347)B 
ff 1.2174(0.5555)4.0363)(0-3197,2.2020)B 

FDA=3.7611 (1-1537,8.0319) 
KLD=3.2467 (2-0741,7.7332) 
FDA'=3.3066 (0.8958,7.3142) 
KLD'=2.4713 (1.4321,6.0251) 

Cmax K 
W 

8ý 
53 

6,6106 
6.2990 

00737 
0.0533 

0.3116(0.1252,0.4979)(0-1521,0.4551)B 
1.3843(0.6316,4.5895)(0.2465; 3.4943)B 

FDA=2.2065 (0.7952,4.2726) 
KLD=l 

. 6227 (0-5830,8.8301) 
FDA'=1.7918 (0-5035,3.7997) 
KI: D'=1.1098 (0.2289,6.5084) 

K=South Korean, W=Caucasian 
B indicates bootstrap CI 

Indicates Unbiased Estimator 

Here we observe that mean AUC and Cmax data (as indicated by J) from the Koreans were 

significantly higher on average than that observed for Caucasians for mean AUC and Cmax. 

Variability appeared slightly higher in the Korean population relative to the Western population 

for both endpoints though we cannot conclude that variation is differentiable (see Figure 45). 

Examination of the density plots of bootstrapped values in Figure 45 revealed that the positive 

bias in the unadjusted FDA and KLD estimators is negligible relative to the unbiased estimator 

and variation appeared roughly similar between positively biased and unbiased estimators. As 

the usual estimate has been shown to be asymptotically unbiased and appeared positively biased 

(against sponsors) by a negligible amount, we will utilise it further in discussions and research 

in this thesis. 
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We now turn to consideration of the metrics correcting for weight as a covariate. 

Table 27: REML First and Second Moment Estimates for AUC and Cmax Data by Race ac- 
counting for Weight (kg) as a Covariate 

Endpoint T-Rac-- Race [- NI AI &2 -I 
AUC I K 

W 
8 
53 

8.2317 
7.9275 

0.0612 
0.0493 

Parametric REML ý =-0.3043(0.1240,0.4845) 
Non-Parametric REML 6=0.3039(0.1540,0.4681) 

&2 

4& = 1.2414(0.3338,2.3316) 
R_ 

FDA=2.1184 (-0.0079,6.0360) 
KLD=1.7179 (0-8517,5.0056) 

Cmax K 1 
Wj 

8 
53 

6.4679 
6.3205 

0.0683 1 
0.0389 

Parametric REML 6=0.1474(-0.0380,0.3328) 
Non-Parametric REML 6=0.1446(-0.0229,0.2960) 

ýi 
&2 = 1.7524(0.3433,3.4401) 

n FDA=1.3103 (0.1717,3.0334) 
KLD=0.5996 (0-1860,4.3419) 

K=South Korean, W=Caucaslan 

Accounting for weight has a significant effect of the estimate of J for Cmax but not for AUC. 

For both endpoints, variation appears higher in the Korean population relative to Caucasians, 

even when accounting for weight. Examination of the density plots of bootstrapped values in 

Figure 46 reveals that the densities for both AUC and Cmax are shifted to the left relative to the 

unadjusted estimates. Unless the acceptance levels are set very high however, it is difficult to 

conclude that the populations are equivalent in terms of AUC, though Cmax may be somewhat 

more indicative of BBE, assuming a somewhat large equivalence bound is acceptable. 
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It should be noted that when fitting linear covariates (in this example, weight), it is important 

(Hinkelmann and Kempthorne, 1994) to evaluate whether the assumption regarding homogeneity 

of slopes (Rao, 1973) is not grossly violated. In this example, p-values for the test evaluating 

this assumption (population by weight interaction) was not significant (p > 0.05) and was not 

indicative of heterogeneity of slopes indicating that comparisons between populations adjusted 

for these factors are statistically valid (Hinkelmann and Kempthorne, 1994). It should be noted 

however that this evaluation is relative to the uncertainty observed in the study and that the 

study was not designed to assess this factor. 

6.4.6 Simulation 

In this section, we will use simulation to: 

1. Assess whether REML estimation results in negligible bias in small samples for J, o, 
2 /a 2 
T R) 

and the FDA and KLD metrics. 

2. Compare bounds from the traditional approach to inference versus the nonparametric per- 

22 
centile bootstrap method for 5 and O'T/OrR' 

Two group (T or R), single PK outcome designs were simulated using SAS@ using the 

parameter space described in the below table. Simulations were conducted for sample sizes of 

(nT, nR) = (8,24) and (nT, nR) = (16,48) in accord with the practicalities of sample size dis- 

cussed earlier in this section. Each simulation study was composed of 500 runs. Nonparametric 

percentile bootstrapping was conducted with 1000 samples drawn for each run of the simulated 

data sets. The parameter space studied is defined in the below table. 

Table 28: True Values used in Simulation Experiments I through 
36 (500 runs per simulation) 

Sim 6 OrR (nT, nR) 

1 0 0.5 0.1 (8,24) 
2 In 1.5 0.5 0.1 (8,24) 
3 In 2 0.5 0.1 (8,24) 
4 0 1 0.1 (8,24) 
5 In 1.5 1 0.1 (8,24) 
6 In 2 1 0.1 (8,24) 
7 0 3 0.1 (8,24) 
8 In 1.5 3 0.1 (8,24) 
9 In 2 3 0.1 (8,24) 
10 0 0.5 0.8 (8,24) 
11 In 1.5 0.5 0.8 (8,24) 
12 In 2 0.5 0.8 (8,24) 
13 0 11 0.8 (8,24) 
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Table 28: True Values used in Simulation Experiments 1 through 
36 (500 runs per simulation) 

Sim 6 O'R (nT, nR) 

14 In 1.5 1 0.8 (8,24) 
15 In 2 1 0.8 (8,24) 
16 0 3 0.8 (8,24) 
17 In 1.5 3 0.8 (8,24) 
18 In 2 3 0.8 (8,24) 
19 0 0.5 0.1 (16,48) 
20 In 1.5 0.5 0.1 (16,48) 
21 In 2 0.5 0.1 (16,48) 
22 0 1 0.1 ý16,48) 
23 In 1.5 1 0.1 (16,48) 
24 In 2 1 0.1 (16,48) 
25 0 3 0.1 (16,48) 
26 In 1.5 3 0.1 (16,48) 
27 In 2 3 0.1 (16,48) 
28 0 0.5 0.8 (16,48) 
29 In 1.5 0.5 0.8 (16,48) 
30 In 2 0.5 0.8 (16,48) 
31 0 1 0.8 (16,48) 
32 In 1.5 1 0.8 (16,48) 
33 In 2 1 0.8 (16,48) 
34 0 3 0.8 (16,48) 
35 In 1.5 3 0.8 (16,48) 
36 J In 2 13 1 0.8 1 (16,48) 
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These simulations will also be used to characterise the coverage probability rates in small 

samples for 6, ' /A 
, and the FDA and KLD metrics. O'T R 

The second set of simulations were performed in order to investigate the Type II error rates 

of the BBE procedures for 0" /a' 
, and the FDA and KLD metrics for a range of sample sizes. TR 

Sample size and power for equivalence testing of J using confidence intervals has been described 

previously in Diletti et al. (1991; see also Hauschke, 2002 for a bibliography) and will not be 

further explored in this thesis. 

Table 29: True Values used in Simulation Experiments 37 through 
54 (500 runs per simulation, 1000 bootstraps per run) where nR 
60 

Sim 6 O'T O'R nT 

37 In 1 0.1 0.1 16 
38 In 1 0.1 0.1 20 
39 In 1 0.1 0.1 30 
40 In 1 0.1 0.1 40 
41 In 1 0.1 0.1 50 
42 In 1 0.1 0.1 60 
43 In 1 0.3 0.3 16 
44 In 1 0.3 0.3 20 
45 In 1 0.3 0.3 30 
46 In 1 0.3 0.3 40 
47 In 1 0.3 0.3 50 
48 In 1 0.3 0.3 60 
49 In 1 0.5 0.5 16 
50 In 1 0.5 0.5 20 
51 In 1 0.5 0.5 30 
52 In 1 0.5 0.5 40 
53 In 1 0.5 0.5 50 
54 In 1 0.5 1 0.5 1 60 
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Simulations were performed using the SAS@ procedure 'rannor' in a manner appropriate 

to a parallel group design and were performed using SAS@ version 8.1 running under UNIX. 

The programme used to perform the simulations and bootstrapping may be found in the ap- 

pendix. SAS'ý)-based REML mixed modelling procedures and method-of-moments modelling 

were conducted in accordance with the descriptions in this Chapter. 

We now turn to the findings from the simulation exercise. We first address the issues of 

bias in estimates of 6, the ratio of variances, and the BBE metrics. This will be followed by 

discussion of findings relating to Type I and II error in BBE assessment. 

a2 6.4.7 Estimation and Precision of J and 

Findings from simulation studies 1-36 may be found in Table 98. Based on the simulations, 

in the smallest of studies (nT = 8, nR = 16) one should expect a small degree of bias in the 

estimate for J; however, this bias is minor (around 5% in the simulations studied) and would 

not be expected to impact inference. If sample size is increased (to nT = 16, nR = 48), the 

estimated bias becomes negligible. 

In the smallest of studies (nT = 8, nR = 16) one should expect a small degree of positive 

bias in the estimate for f +; however, this bias is minor and decreases with increasing sample aR 

size. The magnitude of the bias would not be expected to impact inference. 

The mean (SE) and median (5th and 95th quantiles) of the lower and upper 90% bounds for 

J and f + derived using parametric methods and the nonparametric percentile bootstrap method aR 

may be found in Table 99. 

For J, the nonparametric bootstrap lower bound appears shifted to the right relative to 

the traditional bound (computed based on a t-interval with Kenward-Roger (1997) degrees of 

freedom) based on inspection of the mean and median findings. The upper bound for the 

nonparametric bootstrap similarly appears shifted left relative to the traditional upper bound. 

However, the spread in the estimates appears similar between statistical methods (as evidenced 

by the SE and quantile findings). This shift appears to decrease with increased sample size (see 

simulations 19-36) suggesting that the findings for the bootstrap are associated with asymp- 

totic nature of the bootstrap's probability coverage, and this finding will be investigated in the 

subsequent assessments of this chapter. 
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a2 For 4, the nonparametric bootstrap lower and upper bounds appear shifted to the left aR 

relative to the lower and upper bounds derived using the traditional F-statistics. Additionally, 

the traditional bounds appear more variable (as evidenced by the SE and quantiles) relative 

to the bootstrap confidence limits. As with the nonparametric percentile bootstrap bounds 

for 6, this suggests that the asymptotic nature of probability coverage for the bootstrap may 

impact the results in small samples. This will be investigated subsequently in this chapter and 

an algorithm for calibration will be developed. This shift appears to decrease with increased 

sample size (see simulations 19-36). 

6.4.8 Estimation and Precision of the FDA and KLD metrics for BBE 

Findings from simulation studies 1-36 may be found in Table 98. Based on the simulations, 

in the smallest of studies (nT = 8, nR = 16) one should expect a potentially large degree of 

bias in the estimate for the FDA and KLD metrics. In the smallest of studies, this bias can be 

quite large and may impact inference. However, the bias is positive (against sponsors) making 

it 'harder' to demonstrate BBE. If sample size is increased by a small amount (to nT ý 16, 

nR = 48), the estimated bias becomes negligible and would not be expected to impact inference 

in the majority of situations. This raises the possibility however that coverage probability may 

be impacted, and this will be investigated in the following section of this chapter. 

6.4.9 Coverage Probability Rates 

2 

+, and the FDA and KLD metrics were assessed relative to the traditional The true values for 6,5 
aR 

and nonparametric percentile bootstrap confidence bounds for simulations 1-36 in Table 30 

below. The traditional 90% t-interval for J was derived using the Kenward-Roger (1997) degrees 

of freedom and 5th and 95th quantiles of the nonparametric bootstraps were selected as the 

corresponding bounds (Efron and Tibshirani, 1993). The traditional 90% F-interval for was UR 

derived as described previously in this section, and 5th and 95th quantiles of the nonparametric 

bootstraps were selected as the corresponding bounds. For the FDA and KLD metrics, the 95th 

quantile of the nonparametric bootstraps were utilised as the upper bound for testing purposes 

in accordance with previous research in Chapters 3 and 4. 
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2 
Table 30: Coverage Probability Rates for True Values of 6a 

-4, and aR 
the FDA and KLD metrics in Simulation Experiments I through 
36 (500 runs per simulation with 1000 Bootstraps per run) 

Sim 6 
T 

O"r 
a2 R 

T 
6 

NP 
aR 

NP 
FDA 
NP 

KLD 
NP 

1 89 90.2 86 81.8 97.2 100 
2 89 90.2 86 81.8 97.6 100 
3 89 90.2 86 81.8 98 99.8 
4 89.4 90.2 84.8 81.8 95.4 100 
5 89.4 90.2 84.8 81.8 96.8 100 
6 89.4 90.2 84.8 81.8 97.6 100 
7 89.8 90.2 84 81.8 93 100 
8 89.8 90.2 84 81.8 94.6 99.6 
9 89.8 90.2 84 81.8 96.8 99.8 
10 89 90.2 86 81.8 97.2 100 
11 89 90.2 86 81.8 94.6 100 
12 89 90.2 86 81.8 92.6 100 
13 89.4 90.2 84.8 81.8 95.4 100 
14 89.4 90.2 84.8 81.8 93 100 
15 89.4 90.2 84.8 81.8 91.6 100 
16 89.8 90.2 84 81.8 93 100 
17 89.8 90.2 84 81.8 91.2 100 
18 89.8 90.2 84 81.8 91.4 100 
19 89.2 89.6 89 82.6 96 100 
20 89.2 89.6 89 82.6 95.2 99.8 
21 89.2 89.6 89 82.6 96.2 99.6 
22 87.6 89.6 86 82.6 92.8 100 
23 87.6 89.6 86 82.6 95.4 99.6 
24 87.6 89.6 86 82.6 95.8 100 
25 87.8 89.6 85.2 82.6 91.8 98.6 
26 87.8 89.6 85.2 82.6 93.4 98 
27 87.8 89.6 85.2 82.6 95.4 99.4 
28 89.2 89.6 89 82.6 96 100 
29 89.2 89.6 89 82.6 93 99.4 
30 89.2 89.6 89 82.6 93.8 98.8 
31 87.6 89.6 86 82.6 92.8 100 
32 87.6 89.6 86 82.6 90.8 100 
33 87.6 89.6 86 82.6 91.8 99.6 
34 87.8 89.6 85.2 82.6 91.8 98.6 
35 87.8 89.6 85.2 82.6 89.8 95.8 

7.8 1 89.6 85.2 82.6 1 90.8 95.8 
Týad: TYad tional t- or F- confidence bounds 

NP: Nonparametric Percentile Bootstrap confidence bounds 
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2 
As expected, the traditional t-interval (for J) and F-interval (for 4') confidence bounds OrR 

resulted in coverage probability rates of approximately 90% consistent with their properties 

of first-order correctness (Efron and Tibshirani, Ch. 18,1993). Coverage probability rates of 

the nonparametric percentile method were lower than the traditional approach as expected in 

keeping with the small sample size, asymptotic findings with regard to coverage probability 

rates, and in the knowledge that the nonparametric bootstrap intervals are themselves only 

first-order correct; however, they did not appear to fall below 80% and should serve adequately 

for descriptive purposes. For 6, increasing sample size caused the nonparametric coverage to 

approach the traditional rate within 2-3% and should prove adequate for formal statistical testing 

(which is not unexpected given the asymptotic basis for the bootstrap). Increasing sample size 

also appeared to cause the coverage probability rate for the nonparametric percentile bootstrap 

2 a 
to approach the traditional rate for 4; however, in the sample sizes studied, the coverage aR 

probabilities for the nonparametric bootstrap were still 6-8% lower than the gold-standard F- 

intervals. This lower than expected rate was not unexpected when the asymptotic normality 

basis for the nonparametric bootstrap procedure is taken into account. 

To correct this deficit in the nonparametric percentile bootstrap coverage probability rate, 

we advise that a minimum of 12-16 subjects in the test population be exposed to drug to ensure 

that the statistics used provide an appropriate coverage rate for 6; furthermore, if estimation 

and-or testing involving the variances is warranted, we advise that the nonparametric percentile 

interval be calibrated (Efron and Tibshirani, Ch. 18,1993). In Efron and Tibshirani (1993), 

a data driven bootstrap-based algorithm is utilised; however, it is unlikely such an approach 

would be acceptable to regulatory agencies as the calibration is based upon the data collected. 

We recommended an alternative algorithm that is simulation-based to determine (a priori) 

the appropriate quantiles to select from the nonparametric bootstraps to provide a confidence 

interval of appropriate 90% coverage: 

Algorithm 6.1 

1. Simulate X data sets (X1, X27)7 XX) of sample size consistent with the study design 

planned on the basis of the known value of 0 (where 0 is the unknown parameter of 

interest). 

1 *B 2. For each simulated data set xx, generate B bootstrap samples (x* 
7777 xx x 
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3. Derive A and I-A level confidence points for ý, 
\ (b) and ý, 

-, \ 
(b) for a grid of values 

of A for each data set xx - 

4. For each A and 1-A, compute p(A) = #10 < ýA (b)}IX and p(l - A) = #f 0 

5. Choose the values of Ax and 1- Ax from the grid of A such that p(Ax) = 0.05 

and p(l - AX) = 0.95. 

One can easily then confirm via simulation that these levels of Ax and I- Ax will provide a 

90% coverage probability rate. Consider the example provided previously in this chapter. If we 

perform a simulation (500 runs with 1000 bootstraps per run) using the estimated parameters in 

this example, under Algorithm 6.1, it is found that the 13th and 100th quantiles should be used to 

a2 determine a 90% nonparametric bootstrap confidence interval for f+ , and the resulting interval aR 

based on the data is found to be (0.48,4.61) for AUC closely approximating the bounds generated 

for the F-interval which we have observed to provide approximately 90% coverage in this type of 

study when no covariates are present. Note however, that in our example simulation the 100th 

percentile is selected by the algorithm suggesting that not enough bootstraps have been taken 

to fully characterise the distribution of responses in the tail. In this situation, we reconunend 

that more bootstraps be taken in practice (eg. a minimum of 2000). Computationally this can 

be challenging, but modern computing power should provide sufficient resource to do this in this 

relatively simple situation. 

For the FDA and KLD metrics, conservative coverage probabilities were sometimes observed 

consistent with previous findings in Chapter 5. Coverage probabilities for the FDA metric 

appears provide at least a 90% coverage rate. The KLD coverage probability rate, on the other 

hand, appears conservative and maintains at least 95% coverage. These findings appear to be 

_+ 
in the KLD; these two terms are so ill characterised related to the inclusion of both an d 21 

aR aT 

in samples this small that the upper bound of KLD is inflated in recognition of this combination. 

As we shall see in the next section, sample sizes adequate to provide sufficient power for goalposts 

for equivalence testing are quite large and will likely not be acceptable for use of such testing of 

composite metrics in this setting when it is remembered that a primary purpose of these BBE 

studies is to confirm that it is safe to study large numbers of subjects and patients in the new 

region in further drug development. 
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If formal inference is being drawn, an approach to statistical analysis should be used to 

ensure coverage probability is conserved. 'Iýraditional methods appear to provide an appropriate 
a2 level of coverage in this setting for 6 and 4, but such parametric methods are only appropriate R 

2 

for 4 assessment when no covariates are utilised in the restricted maximum likelihood model. O'R 

When covariates are included, calibrated nonparametric percentile bootstrap intervals provide 

adequate coverage and can easily be constructed using simulation-based methods for these and 

alternative metrics. 

2/0,2 6.4.10 Type II Error in BBE Testing of O'T R and the FDA and KLD metrics 

The selection of goalposts in this report is consistent with the FDA's approach to goalpost 

setting for PBE and implies 50% increase or acceptance range of (0.67,1.5) for UT'IO'R'. Simple 

inspection of an F-table reveals that in these type of studies with the sample sizes available, 

testing for equivalence based on this range is not feasible. Even for an nR = nT = 61 the 95th 

quantile of the F60,60-distribution is 1.53. For the purposes of this report, however, we will 

utilise the range (0-5,2) to provide a gross range within which it may be desirable to assess 

equivalence of variances. 

If the original ideas proposed by FDA for goalpost setting are followed (FDA Guidance, 

1997), then the BBE acceptance bound for the FDA metric would be 1.74. As can see from 

2 Figure 42, this allows quite wide trade-offs in variances as 5 is usually small compared to O'R' 

We will utilise this bound and a more conservative bound (1, selected based on inspection of 

Figure 42) in this assessment. For KLD we will utilise a bounds of 1 (conservative) and 1.5 as 

this seems reasonable based on inspection on Figure 43. 

The findings of the exercise may be found in the following Table 31: 

Table 31: Failure Rates (%) for Simulation Experiments 37 through 
54 (500 runs per simulation, 1000 bootstraps per run) where nR 
60 for BBE Metrics and Acceptance Criteria 

Sim 

(0-5,2) 
FDA 

1 
FDA 
1.74 

KLD 
1 

KLD 
1.5 

37 86.8 47.2 17.6 46.0 18.8 
38 79.6 41.4 12.4 24.6 9.0 
39 56.0 34.6 8.2 9.2 0.8 
40 41.2 27.4 4.6 2.4 0.2 
41 37.6 25.4 2.8 1.0 0 
42 34.8 23.2 2.2 0.4 0 
43 86.8 47.2 17.6 46.0 1 18.8 
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Table 31: Failure Rates (%) for Simulation Experiments 37 through 
54 (500 runs per simulation, 1000 bootstraps per run) where nR 
60 for BBE Metrics and Acceptance Criteria 

Sim 
UR 

(0-5,2) 
FDA 

1 
FDA 
1.74 

KLD 
1 

KLD 
1.5 

44 79.6 41.4 12.4 24.6 9.0 
45 56.0 34.6 8.2 9.2 0.8 
46 41.2 27.4 4.6 2.4 0.2 
47 37.6 25.4 2.8 1.0 0 
48 34.8 23.2 2.2 0.4 0 
49 86.8 47.2 17.6 46.0 18.8 
50 79.6 41.4 12.4 24.6 9.0 
51 56.0 34.6 8.2 9.2 0.8 
52 41.2 27.4 4.6 2.4 0.2 
53 37.6 25.4 2.8 1.0 0 
54 34.8 23.2 1 2.2 1 0.4 0 
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From these simulations we conclude that power to demonstrate equivalence using the popu- 

lation variances is very low in such studies, unless a large acceptance interval or value is used. 

Alternatively, one may increase the sample size to provide adequate power, but this is likely to 

be less than acceptable in early phase studies. 

6.5 Discussion 

In ICH-E5 comparisons of pharmacokineties between populations, it is important to recognise 

that the presence of confounding factors relating to intrinsic differences in populations will be 

involved in inference. Traditional methods for the comparison of pharmacokinetics involving 

the population means are sufficient if this is not the case, but in general, more sophisticated 

statistical methods should be utilised to account for these intrinsic factors. Clinical development 

planning, study design, and the role of pharmacokinetics in this setting are described in this 

chapter. 

Restricted maximum likelihood based modelling using the nonparametric percentile boot- 

strap for testing, appears adequate for comparison of the means between populations. Power 

to demonstrate a pre-specified equivalence acceptance region for the difference in population 

means was previously discussed in Diletti et al. (1991) and appears feasible for some drug prod- 

ucts. Estimates for these and other metrics from REML are nearly unbiased in small samples 

and are known to be asymptotically unbiased in distribution. The nonparametric percentile 

bootstrap appears to provide adequate probability coverage and should serve for most purposes 

when covariate information is included in a REML model. 

Extensions to this approach to estimation and-or testing on the variances however are more 

challenging. While testing of the variances may be important in a clinical sense, it is extremely 

unlikely such studies will be able to differentiate variance statistically between populations. In 

such cases, one should consider interpretation of the data based on the plausible range of values 

(Hauck and Anderson, 1986). Estimates for the ratio of population variances and other more 

sophisticated metrics involving both means and variances as developed in this report are nearly 

unbiased in small samples and are asymptotically unbiased, but the nonparametric bootstrap 

provides slightly low probability coverage in this situation relative to the desired rate and should 

be calibrated using a simulation based method prior to data analysis. Moreover, the power to 
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demonstrate equivalence based on the goalposts considered in this chapter is either not feasible 

or is likely to involve large sample sizes. 

Pharmacokinetic equivalence is not a prerequisite for successful bridging using pharmacoki- 

netics. Interpretation of pharmacokinetic changes in light of the dose (concentration) - response 

relationship is pivotal. Shifts in the mean of pharmacokinetic parameters measured will often 

be observed, and it will be important to consider their clinical, rather than statistical relevance. 

Goalpost setting, as applied in the context of the analysis of bioequivalence, precludes the draw- 

ing of conclusions based on broader issues related to the drug itself. It will therefore be of 

limited interest as drugs will be considered on a case-by-case basis in light of all relevant issues. 

Furthermore, the subject numbers required for studies providing goalpost evidence are large. 

The initial simulation studies surnmarised in this report consider bias in the statistics as 

one of the primary outcomes of interest in line with the use of this finding in bioequivalence 

related simulations. Future simulations will consider alternative approaches to consideration of 

the simulation findings. In particular mean squared error and the probability that the absolute 

value of the estimate falls beyond some constant f will be considered in future research. It is also 

worthy of mention that the simulations assume data arises from a normal distribution. While 

this assumption is reasonable for pharmacokinetic data (Westlake, 1986), for other data this 

may not be the case and may impact inference. 

Extension of these techniques to other situations involving multiple doses and pharmacody- 

namic or clinical data should prove possible and will constitute the topics of future research. 

Of particular interest, application of the Kolmogorov-Smirnov test for two independent samples 

(Sheskin, 2000) and the techniques described by O'Brien (1988) seem applicable in this setting 

and will be considered. 
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Conclusions 

This thesis explores the statistical science of what is involved in bioequivalence testing, of how 

one goes about designing, powering, and analysing studies, and where such techniques are im- 

plemented in drug development. The thesis also describes why such studies and their analyses 

are performed and who is involved as a stakeholder in the outcome. We will briefly summarise 

the findings of this thesis in this chapter and consider topics for future research. 

The science of biopharmaceutical statistics traditionally has focused on differentiating be- 

tween products (or placebo) to provide new and enhanced treatments for the public's benefit 

(Senn, 1997). However, this is generally expensive and time-consuming (DiMasi, 2001) and over 

time steps have been taking to reduce costs and to increase supply of pharmaceutical products 

while maintaining the potential for innovation. One such example pertains to bioequivalence. 

An history of bioequivalence may be found in Chapter 1. To summarise, in the 1970s 

and 1980s, advances in chemical and biopharmaceutical engineering made it relatively feasible 

to create improved formulations of drug products (to enhance efficacy while maintaining or 

improving safety profile) and to create inexpensive copies of pharmaceutical products, which 

could presumably be marketed once patent protection on the innovator product was exhausted. 

Biopharmaceutical statistics then was required to assess how one would go about quantitatively 

defining how the two products could be determined to be equivalent. 

To call something equivalent imPlies a context or criteria for the determination. The US 

Food and Drug Administration were directed to create such a context by the US government in 

1984. There are several stakeholders in determining such a criteria: 

* Regulatory and public-health considerations: The approach used must protect public health 

(in that the risk of false positive market access must be controlled at a pre-determined rate). 

* Statistical considerations: the approach should be quantifiable, accurate, precise, well under- 

stood, and should be transparent in interpretation. 

* Sponsor considerations: Using a well-designed, controlled, and reasonably sized study (or set 

of studies) the sponsor should be able to show the criteria have been met with a quantified 

chance of success. 

Various approaches to the problem of bioequivalence were considered in the 1980 through 

early 1990s and were discarded as they failed to address one or more of the above considera- 
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tions. This debate culminated in 1987 when Schuirman's two one-sided testing method for a 

regulatory set goalpost of 20% was introduced using pharmacokinetic measures AUC and Cmax 

as surrogate markers for efficacy and safety by the FDA. The design of choice was determined to 

be a randomised two-period cross-over in normal healthy volunteers to isolate and quantify any 

differences in formulation, and regulatory risk was set at 5% per test. The design and analysis 

of cross-over studies had been extensively developed by this time (Jones and Kenward, 1989; 

Senn, 1993; Senn, 2002), and statistical considerations in power and sample size were described 

in Diletti et al. (1991). 

This approach was formalised in the 1992 FDA Guidance and applied to both pre- and 

post-marketing approvals for changes in formulation. Average bioequivalence quickly became 

an international standard with most nations utilising the FDA's 1992 guidance or slight mod- 

ifications to the approach. To date, products which have utilised this approach have not been 

observed to have marketplace failures in terms of their safety and efficacy profiles (see Barrett et 

al., 2000 for more details). Average bioequivalence testing of J= AT - MR thus has been estab- 

lished de facto as a surrogate marker for public safety based upon primarily upon observation, 

consistency of knowledge, and replication of findings of the application of the FDA Guidance 

(1992) and less upon quantified, scientific assessment of biological plausibility and strength of 

association. 

Average bioequivalence did however have the potential for issues in implementation with 

regard to the three considerations above. One potential difficulty was regulatory in nature. 

The approach was concerned with testing only the formulations means and did not contain any 

explicit criteria pertaining to individual subjects, and it was felt that the inclusion of criteria 

relating to variation might address such points. Another potential area of difficulty involved 

both regulatory and sponsor considerations. The regulatory limits of 20% were also questioned 

as they might be too large for low variability products with a narrow therapeutic index, and 

the 20% acceptance limits created a practical difficulty for sponsors in that sample size became 

very large to have a high probability of success for high variability products. 

FDA addressed this second issue presented by low variability drugs by tightening the range in 

some instances (eg. for vaccines), and it was known alternative designs (Vonesh and Chinchilli, 

1997) and mixed modelling approaches (Satterthwaite, 1941; Kenward and Rogers, 1997) could 
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in theory be used to demonstrate average bioequivalence to address sponsor's considerations 

for highly variable drug products, though the statistical and regulatory considerations of such 

an approach were not precisely defined. FDA opened the discussion on the resolution of these 

issues with the publishing of the 1997 preliminary draft guidance and significant international 

debate followed (for examples see Chapter 1). 

Sponsor, Statistical, and Regulatory considerations in meeting the average bioequivalence 

criteria with a replicate design study were considered in Chapter 2 and 5. Statistically, it was 

determined that a constrained restricted maximum likelihood approach could be used in small 

samples to assess average bioequivalence in a well-controlled and replicate design study and 

that the Satterthwaite (1941) or Kenward-Roger approximation (1997) protected the regulatory 

risk of Type I error at less than 5% in average bioequivalence testing. The choice of REML 

variance-covariance structure was observed to have the potential to impact inference (Chapter 

2). Utilisation of REML techniques to provide unbiased variance estimates in small samples from 

replicate designs (with or without missing data) were determined, and small and large sample 

estimation and Type I and II error characteristics for average bioequivalence were precisely 

defined in Chapters 2 and 5 of this thesis when using a replicate design. Average bioequivalence 

assessment and interpretation is thus readily transparent through the use of 90% confidence 

intervals and the practical implementation of such techniques using this higher order design is 

now well understood. 

In 1997, FDA also reconsidered criteria to address the explicit inclusion of criteria to include 

individual subject responses. This was addressed in the individual bioequivalence criteria by the 

inclusion of variance components for subject-by-formulation interaction (Ekbohm and Melander, 

1989) and within-subject variances (Chinchilli and Esinhart, 1996). International debate on the 

merits of this proposal was extensive (see Chapter I for details). Regulatory considerations were 

in part addressed through the use of a replicate cross-over design for this assessment and using 

a one-sided test 5% for the criterion, though the setting of acceptance criteria in this setting 

were not well defined. Statistical and sponsor considerations, however, were not well-defined in 

the proposal and were the subject of extensive, vociferous debate. 

The first of many statistical issues concerned the estimation method to be used in the assess- 

ment of IBE. It was known that a certain constrained REML model (CSH option) was potentially 
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inappropriate for this assessment, and the use of the nonparametric percentile bootstrap was 

not well understood in this confirmatory setting. 

These topics were not well studied and were quickly (and quietly) discarded by the FDA in 

subsequent guidances (1999a-b, 2000,2001) as alternatives were proposed based on method-of- 

moments estimation with inference to be based on confidence limits generated using a Cornish- 

Fisher approximation (Hyslop et al., 2000). Additionally, PBE was not studied save for isolated 

reports. Techniques were developed and studied for its testing in this thesis. 

This thesis made an extensive study of REML and method-of-moments estimation in repli- 

cate designs and showed, based on retrospective analysis and simulation, that when the variance 

components and differences between means are unbiased, the 'plug-in' estimates of the IBE and 

PBE criteria were biased (Chapters 3 and 4) by a negligible amount in small samples and were 

asymptotically unbiased and normal in distribution. However, significant bias in the estimates 

of the differences in means and in the variance components may be introduced by the presence 

of certain patterns of missing data when method-of-moments estimation is used and by the 

placement of constraints on the parameter space when using REML estimation (Chapter 5). 

REML models were proposed to deal with the presence of these factors (Chapter 2), and 

the impact on Type I and 11 error was studied in this setting using simulation (Chapter 5). 

It was determined that the Hyslop et al. (2000) procedure was appropriate for most situa- 

tions and, where it was not as determined by the patterns of missing data, REML methods 

using asymptotic tests or alternatively calibrated nonparametric-percentile bootstrapping (un- 

der certain circumstances) were shown to provide alternative procedures protecting sponsor and 

regulatory considerations and maintaining the statistical validity of the findings. 

However, the use of the IBE and PBE criteria were not found to be transparent and the 

validity of the inclusion of variance components making up the IBE and PBE criteria was ques- 

tionable. The findings of Chapter 2-3 indicated that the precision of the subject-by-formulation 

2) 
variance (7D involved in IBE testing was extremely poor, and found estimates were frequently 

negative or null unless constraints were placed on their estimation. The imposition of such 

constraints however introduces bias. These findings were enhanced using simulation in Chapter 

2 5, and this thesis concludes that O'D is a poor surrogate for individual switchability based upon 

lack of observations indicative of temporal observation of a problem (Chapter 1), consistency of 
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knowledge, replication of findings, and strength of association (Chapters 2,3, and 5). Biological 

plausibility was addressed by other authors (Chen et al., 2000a-b; Hauck et al., 2000) and was 

not considered in this thesis. 

Between-subject and within-subject variance estimates are similarly poorly characterised 
(Chapter 3 and 4) and their use in the composite criteria led to results which were likely not 

what regulators intended. For example, PBE can be demonstrated for highly variable drugs with 

changes in mean exposure between formulations of at least 40% (Chapter 4) with reasonable 

probability of success (Chapter 5). IBE allows for the potential for public health risks to be 

created in generic-to-generic switching (Chapter 5) which are not present when using the ABE 

criteria (Anderson and Hauck, 1996). 

We recommend that these IBE and PBE criteria not be used as proposed. The potential 

for public risk was recognised in part based upon the work done for this thesis, and IBE and 

PBE were removed from FDA guidance in 2002. The approach used to define of the acceptance 

criteria for IBE and PBE (Chapter 3 and 4) are likely a contributing factor to this finding, 

and if IBE and PBE are ever re-interrogated as potential approaches for market access, further 

research in these definitions will be worthy of attention. 

Assuming one does condition on the value observed for reference product variation using an 

appropriate test, impact of the potential dependence on expectation and variance is recognisable. 

This however is not the framework taken by the regulatory agency which is the basis for the 

thesis. Such however consititutes an interesting area for future research. 

A related problem is the question of equivalence testing for pharmacokinetic data between 

populations. This approach impacts the regulatory acceptance of foreign pharmacokinetic data, 

in general to provide supporting information for larger studies, but for some few drug products, 

comparison of such data may constitute a basis for approval to market. Parallel-group designs 

will be used for this purpose, and this thesis (Chapter 6) describes the drug development plan 

along with study design issues which should be considered to address the Regulatory, Statisti- 

cal, and Sponsor considerations which were described earlier in this chapter. A model-based, 

calibrated, nonparametric percentile bootstrap approach was developed in this thesis to allow 

for the inclusion of supporting information (i. e. covariates) and shown to provide appropriate 

estimates and coverage probability rates for the metrics of interest in bioequivalence testing 
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in this setting. Power and sample size requirements for bioequivalence testing were developed 

(building on the work of Diletti et al., 1991). A simulation based environment and an algorithm 

for future research in this area was created (Chapter 6). 

On a practical level, it is unlikely that pharmacokinetic studies will serve as sufficient for 

market access except in rare circumstances (an example where it was sufficient is provided in 

Chapter 6). Power and sample size for the assessment of equivalence is larger than would in 

general be used for such small, well-controlled pharmacokinetic studies, and it is likely that only 

the difference in population means will be characterised to an appropriate degree of precision 

in this setting. Thus if more information is needed, we recommend a larger trial involving dose 

response in patients should be performed. Statistical techniques for this type of study will be 

considered in future research. 

This thesis advances the understanding of regulatory, sponsor, and statistical issues in av- 

erage, individual, and population bioequivalence testing. The findings represent the first com- 

prehensive comparison of estimation methods to determine accuracy and precision in replicate 

designs following on from the work of Jones and Kenward (1989), Senn (1993), Vonesh and 

Chinchilli (1997), and Senn (2002). A simulation based environment is provided to answer ques- 

tions arising for practical research. This thesis also contains the first comprehensive comparative 

study of Type I and 11 error rates in Cornish-Fisher, Nonparametric percentile bootstrap, and 

asymptotic testing for individual and population bioequivalence, and additionally thoroughly 

explores the practical implications of missing data. Finally, the potential for public health risk 

is assessed for techniques proposed by FDA using simulation and found to be quite substantial 

and of concern sufficient to result in the recommendation that the criteria not be used for market 

as proposed as they represent a potential threat to public health. 

Population bioequivalence testing techniques proposed originally for the assessment of for- 

mulation equivalence are extended to ICH-E5 population pharmacokinetic testing to evaluate 

their use in that setting, and use of such approaches were not recommended in such trials. 

In conclusion, as of the time of finalisation of this thesis, in part based upon findings published 

as part of the research in this thesis, the debate on individual and population bioequivalence 

has concluded in their removal from FDA regulatory guidance, but the use of alternative repli- 

cate designs for highly variable products is allowed for average bioequivalence testing. Further 
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developments in the area of ICH-E5 population equivalence testing will be a topic of future 

research. 
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8 Appendix: SAS(D Simulation Code for Chapter 5-6 

8.1 Two-Sequence Replicate Cross-over Design Simulation Code (Chap- 
ter 5) 

*Macro for two sequence replicate design; 
*Author: Scott Patterson; 
*Date: 21JAN02; 
*Sim macro outputs temp dataset forsim which is then analysed; 

%macro sim(mul, /*mean T*/ 
mu2, /*rnean R*/ 
sigbt, /*SD Between T*/ 
sigwt, /*SD Within T*/ 
sigbr, /*SD Between R*/ 
sigwr, /*SD Within R*/ 
f, /* sig2d=f(sig2wr)*/ 
i, /* Number of Sims */ 
j, /* Sample Size per sim 
seq, /* sequence effect 
pl, /* Period 1 effect 
p2, /* Period 2 effect 
p3, /* Period 3 effect 
p4); /* Period 4 effect 

data betl; keep ijtr; mul=&mul; mu2=&mu2; sigbt=&sigbt; sigwt=&sigwt; sigbr=&sigbr; 
sigwr=&sigwr; f=&f; 

sig2bt=sigbt**2; sig2wt=sigwt**2; sig2br=sigbr**2; sig2wr=sigwr**2; sig2d=f*sig2wr; 
varl=sig2bt; var2=sig2br; rho= (sig2bt+sig2br-sig2d) /(2*sigbt*sigbr); c=sqrt(l-rho**2); 
do i=1 to &i; do i=1 to &j by 2; t= rannor(123); r= rho*t+c*rannor(123); t= mul + 

sqrt(varl)*t; r= mu2 + sqrt(var2)*r; output betl; end; end; 
run; 

data witla; keep ijxy; mul=O; mu2=0; sigwt=&sigwt; sigwr=&sigwr; 
varl=(sigwt**2)/2; var2=(sigwr**2)/2; 
rho=O; c=sqrt(l-rho**2); 
do i=1 to &i; do j=1 to &j by 2; x= rannor(456); y= rho*x+c*rannor(456); x= mul 

+ sqrt(varl)*x; y= mu2 + sqrt(var2)*y; output witla; end; end; run; data all1a; merge betl 

witla; by i j; keep ijtr; t=t+x; r=r+y; run; proc sort; by i j; run; 

data wit1b; keep ijxy; mul=O; mu2=0; sigwt=&sigwt; sigwr=&sigwr", 
varl=(sigwt**2)/2; var2=(sigwr**2)/2; 
rho=O; c=sqrt(l-rho**2); 
do i=1 to &i; do j=1 to &j by 2; x= rannor(789); y= rho*x+c*rannor(456); x= mul 

+ sqrt(varl)*x; y= mu2 + sqrt(var2)*y; output wit1b; end; end; run, 

data alll; merge all1a witlb-by i j; keep ij t1 t2 rl r2 t-bar r-bar; tl=t-x; t2=t+x; rl=r- 

y; r2=r+y; t-bar=(tl+t2)/2; r-bar=(rl+r2)/2; sequence='RTRT'; keep ij sequence t1 t2 rl r2 
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t-bar r-bar; run; proc sort; by i j; run; 

data bet2; keep ijtr; mul=&mul; mu2=&mu2; sigbt=&sigbt; sigwt=&sigwt; sigbr=&sigbr; 
sigwr=&sigwr; f=&f; seq=&seq; 

sig2bt=sigbt**2; sig2wt=sigwt**2; sig2br=sigbr**2; sig2wr=sigwr**2; sig2d=f*sig2wr; 
varl=sig2bt; var2=sig2br; rho= (sig2bt+sig2br-sig2d) / (2*sigbt*sigbr); c=sqrt(I-rho**2); 
do i=1 to &i; do j=2 to &j by 2; t= rannor(1234); r= rho*t+c*rannor(1234); t= mul 

+ sqrt(varl)*t; r= mu2 + sqrt(var2)*r; *induce sequence effect; t= t+seq; r= r+seq; output 
bet2; end; end; 

run; 

data wit2a; keep ijxy; mul=O; mu2=0; sigwt=&sigwt; sigwr=&sigwr; 
varl=(sigwt**2)/2; var2=(sigwr**2)/2; 
rho=O; c=sqrt(I-rho**2)-, 
do i=1 to &i; do j=2 to &j by 2; x= rannor(4567); y= rho*x+c*rannor(4567); x= mul 

+ sqrt(varl)*x; y= mu2 + sqrt(var2)*y; output wit2a; end; end; run; 

data all2a; merge bet2 wit2a; by i j; keep ijtr; t=t+x; r=r+y; run; proc sort; by i j; run; 
data wit2b; keep ijxy; mul=O; mu2=0; sigwt=&sigwt; sigwr=&sigwr; 
varl=(sigwt**2)/2; var2=(sigwr**2)/2; 
rho=O; c=sqrt(l-rho**2); 
do i=I to &i- do j=2 to &j by 2; x= rannor(45678); y= rho*x+c*rannor(45678); x 

mul + sqrt(varl)*x; y= mu2 + sqrt(var2)*y; output wit2b; end; end; run; 

data a112; merge all2a wit2b; by i j; keep ij tl Q rl r2 t-bar r-bar; tl=t-x; t2=t+x; rl=r- 
y; r2=r+y; t-bar=(tl+t2)/2; r-bar=(rl+r2)/2; sequence='TRTR'; keep ij sequence tl Q rl r2 
t-bar r-bar; run; proc sort; by i j; run; 

data all; merge alll a112; by i j; subject=j; *if subject=2 then tl=.; *if subject=2 then rl=.; 
*if subject=l then tl=.; *if subject=l then t2=.; drop j; run; 

data pl; set all; period=l, 
if sequence='RTRT' then do; In-auc=rl; regimen='R'; output; end; 
if sequence='TRTR' then do; ln-auc=tl; regimen='T'; output; end; 
keep i subject sequence period regimen In-auc; 
run; 
proc sort; by i subject sequence period regimen; run-, 
data p2; set all; period=2; 
if sequence='RTRT' then do; ln-auc=tl; regimen='T'; output; end; 
if sequence='TRTR' then do; ln-auc=rl; regimen='R'; output; end; 
keep i subject sequence period regimen In-auc; 
run; 
proc sort; by i subject sequence period regimen; run; 
data p3; set all; period=3; 
if sequence='RTRT' then do; In-auc=r2; regimen='R'; output; end; 
if sequence='TRTR' then do; In-auc=t2; regimen='T'; output; end; 
keep i subject sequence period regimen In-auc; 
run, 
proc sort; by i subject sequence period regimen; run; 
data p4; set all; period=4; 
if sequence='RTRT' then do; ln-auc=t2; regimen='T'; output; end; 
if sequence='TRTR' then do; In-auc=r2; regimen='R'; output; end; 
keep i subject sequence period regimen In-auc; 
run; 
proc sort; by i subject sequence period regimen; run; 

data forsim; merge pl p2 p3 p4; by i subject sequence period regimen; 
perleff=&pl, 
per2eff=&p2; 
per3eff=&p3; 
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per4eff=&p4; 
if period=l then In-auc =ln-auc+perleff; 
if period=2 then ln-auc =ln-auc+per2eff; 
if period=3 then In-auc =ln-auc+per3eff; 
if period=4 then In-auc =ln-auc+per4eff; 
lnmetric=ln-auc; 
keep i subject sequence period regimen Inmetric; run; 

%mend sim; 

8.2 Bootstrap Code (Chapter 5) 
%macro bootstrp(indata=, /* dataset to sample from */ seq=, /* Sequence bootstrapping */ 
seed=12345, /* random number seed */ nrep=, /* # of bootstrap repetitions */ bootsamp=); 
/* output dataset */ data test; set &indata; if sequence=&seq and sim=&sim; run; 
data 

-null-; set test nobs=count; call symput ('count'jeft (put (count, 18. ))); 
if &nsampi=O then call symput ('nsamp', left (put (count, 18. ))); if &seed=O then do; seed=timeo; 
call symput ('seed', left (put (seed, 18. ))); end; run; 
data &bootsamp (label=seed= &seed); retain seed &seed; drop ijlkrst r seed; %do i=1 %to &nrep; 
rep=&i; put "generating rep " rep "of &nrep"; do ijlkrst=l to &nsamp; call ranuni(seed, r); 
pointvar = ceil(r*&count); set test point=pointvar; output; end; %end; stop; run; 
proc sort data=&bootsamp; by rep; run; %mend bootstrp; 

8.3 Analysis Code (Chapter 5) 
%macro anova(out, il, i2); 

data dset; set forsim; if &ili=ii=&i2; run; proc sort; by i subject; run; 

proc means data=dset noprint; by i subject; var Inmetric; output out=tot mean=mean, run; 

proc means data=tot noprint; by i; var mean; output out=n n=n; run; 

proc sort data=dset; by i sequence; run; proc means data=dset noprint; by i sequence; var In- 
metric; output out=seq mean=mean; run; proc means data=seq noprint; by i; var mean; output 
out=p n=p; run; 

data n; merge n p; by i; run; 

*************Calc BLUE for diff in means using GLM, 
proc glin data=dset outstat=glmout noprint; by i; class regimen sequence subject period; 

model Inmetric=sequence subject (sequence) period regimen regimen*subject (sequence) /SS1 SS3, 

random sequence subject (sequence) /test; 
Ismeans regimen/stderr cov e=regimen*subj ect (sequence) out=lsm noprint; 
run; 

data tvalue; 
set glmout; by i; 
if -SOURCE-='REGIM*SUBJEC(SEQUEN)' and -TYPE-='SS3'; 
tval=tinv(0.95, df, O); 
run; 

data A; set Ism (where= (regimen='T')); by i; mean-A=Ismean; var-A=cov2; cov-AB=covl; 
keep i mean-A var-A cov-AB; run; 

data B; set Ism (where= (regimen='R')); by i; mean-B=Ismean; var-B=covl; keep i mean-B 
var-B; run; 

data ci-AB; 
merge tvalue A B; by i; 
diff=mean-A-mean-B-) ratio=exp(diff); 
sed=sqrt(var-A+var-B-(2*cov-AB)); 
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lnlow=diff-(tval*sed); low=exp(Inlow); 
Inup=diff+(tval*sed); up=exp(Inup), 
minus='A - B'; comp='A : B'; 
run; 

data point; set ci-ab; keep i diff ratio low up; run; 

*************Calc BLUE for diff in means using MIXED UN; proc sort data=dset; by i 
subject sequence period regimen; run, 

title 'UN FOR MACRO'; run; proc mixed data=dset method=reml ITDETAILS DFBW 
CL=WALD ALPHA=0.1 scoring=50 maxiter=200 IC ASYCOV; by i; class regimen sequence 
subject period; model Inmetric=sequence period regimen/DDFM=SATTERTH; random regi- 
men/type=UN subject=subject G; repeated/group=regimen subject=subject; Ismeans regimen 
sequence period; estimate 'T-R' regimen -1 1/CL ALPHA=0.1; ods output Estimates=BLUEUN 
CovParms=COVUN AsyCov=ascovun; run; 

data covdun(keep=i delta2 asigdel); set blueun; 
delta2=ESTIMATE*ESTIMATE-, 
asigdel=STDERR*STDERR; 
run; 

data covunBT(keep=i LBT I-BTxw I-BTxBR I-BTxWT I-BTxWR); set ascovun; if COV- 
PARM='UN(2,2)'; I-BT=COVP3; 1-BTxw=COVP2; I-BTxBR=COVP1; I-BTxWT=COVP5; 
1-BTxWR=COVP4; run; 

data covunw(keep=i 1-w I-BRxw I-wxWT I-wxWR); set ascovun; if COVPARM='UN(2,1)'; 
I-w=COVP2; I-BRxw=COVP1; I-wxWT=COVP5; I-wxWR=COVP4; run; 

data covunBR(keep=i LBR I-BRxWT I-BRxWR); set ascovun; if COVPARM='UN(l, l)'; 
I-BR=COVP1; I-BRxWT=COVP5; I-BRxWR=COVP4; run; 

data covunWT(keep=i LWT I-WTxWR); set ascovun; if COVPARM='Residual'and Row=5; 
I-WT=COVP5; I-WTxWR=COVP4; run; 

data covunVVR(keep=i I-WR); 
set ascovun; 
if COVPARM='Residual' and Row=4; 
I-WR=COVP4; 
run; 

data blueUN(keep=i undiff unlow unup unratio unrlow unrup); set blueun; 

undiff=ESTIMATE; unratio=exp(undiff 
unlow=LOWER; unrlow=exp(unlow); 
unup=UPPER; unru. p=exp(unup); 
run; 

data bsigaun(keep=i bsdaun bsigaun); set covun; if substr(COVPARM, 1,6)='UN(2,2'; 
bsigaun=ESTIMATE; 
bsdaun=SQRT (ESTIMATE); 
run; 
data bsigbun(keep=i bsdbun bsigbun); set covun; if substr(COVPARM, 1,6)='UN(1,1'; 
bsigbun=ESTIMATE; 
bsdbun=SQRT (ESTIMATE); 
run, 
data wsigaun(keep=i wsdaun wsigaun); set covun; if substr(GROUP, 9,1)='T'; 

wsigaun=ESTIMATE; 
wsdaun=SQRT(ESTIMATE); 
run; 
data wsigbun(keep=i wsdbun wsigbun); set covun; if substr(GROUP, 9,1)='R'; 
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wsigbun=ESTIMATE; 
wsdbun=SQRT (ESTIMATE); 
run; 
data covun(keep=i covun); set covun; if substr(COVPARM, 1,6)='UN(2,1'; 
covun=ESTIMATE; 
run; 

data covun(keep=i bsigaun bsdaun bsigbun bsdbun covun wsigaun wsdaun wsigbun wsdbun 
sigdun rhoun); merge bsigaun bsigbun wsigaun wsigbun covun; by i; sigdun=bsigaun+bsigbun- (2*covun); rhoun=covun/(bsdaun*bsdbun); run; 

data ascovun(keep=i v-ibeun v-cibeun fibeun Lcibeun ubibeun ubcibeun v-pbeun v-cpbeun f-pbeun Lcpbeun ubpbeun ubcpbeun); merge covdun covunBT covunw covunBR covunWT cov- 
unWR covun; by i; theta= (((log (1.25)) * *2) +0-05) /0.04; thetap= ffllog (1.25)) ** 2) +0.02) /0.04; 

v-ibeun=delta2+sigdun+wsigaun- ((I +theta) *wsigbun); 
v-cibeun=delta2+sigdun+wsigaun-wsigbun- (0.04*theta); 
f-ibeun= (4*asigdel*delta2) +I-BT+I-BR+ (4*1-w) +I-WT+ ((I +theta)* (1 +theta) *I-WR) + 
(2*1-BTxBR)-(4*1-BTxw)+(2*1-BTxWT)-(2* (1 +theta) *I-BTxWR)-(4*1-BRxw)+(2*1-BRxWT)- 

(2* (1 +theta) *I-BRxWR)- (4*1-wxWT)+ (4* (1 +theta) *I-wxWR)- (2* (1 +theta) *I-WTxWR); 
f-cibeun=(4*asigdel*delta2)+ 
I-BT+1-BR+(4*1-w)+I-WT+I-WR+ 
(2*1-BTxBR)-(4*1-BTxw)+(2*1-BTxWT)-(2*1-BTxWR)-(4*I-BRxw)+(2*1-BRxWT)- 
(2*1-BRxWR)-(4*1-wxWT)+(4*1-wxWR)-(2*1-WTxWR); 
ubibeun=v-ibeun+ ((probit (0.95)) *sqrt (f-ibeun)); 
ubcibeun=v-cibeun+((probit(O. 95))*sqrt(Lcibeun)); 

v-pbeun=delta2+bsigaun+wsigaun- ((I +thetap) * (wsigbun+bsigbun)); 
v-cpbeun=delta2+bsigaun+wsigaun- (wsigbun+bsigbun)- (0.04 *thetap); 
f-pbeun= (4*asigdel*delta2) + 
I-BT+I-WT+ ((l +thetap) *(l +thetap) *I-BR) + ((I +thetap) * (1+thetap) *I-WR) + 
(2*1-BTxWT)-(2*(l+thetap)*I-BTxBR)-(2*(I+thetap)*I-BTxWR)- 
(2*(l+thetap)*I-BRxWT)-(2*(l+thetap)*I-WTxWR)+(2*(l+thetap)*(l+thetap)*I-BRxWR); 
f-cpbeun==(4*asigdel*delta2)+I-BT+I-WT+I-BR+I-WR+ 
(2*1-BTxWT)-(2*1-BTxBR)-(2*1-BTxWR)-(2*1-BRxWT)-(2*1-WTxVv'R)+(2*1-BRxWR); 
ubpbeun=v-pbeun+ ((probit (0.95)) *sqrt (Lpbeun)); 
ubcpbeun=v-cpbeun+((probit(O. 95))*sqrt(f-cpbeun)); 
run; 

*************Calc BLUE for diff in means using MIXED CSH; proc sort data=dset; by i 
subject sequence period regimen; run; 

title ICSH FOR MACRO'; run; proc mixed data=dset method=reml ITDETAILS DFBW 
CL=WALD ALPHA=0-1 scoring=50 maxiter=200 IC ASYCOV; 
class regimen sequence subject period; by i; 
model Inmetric=sequence period regimen/DDFM=SATTERTH; 
random regimen/type=CSH subject=subject G; 
repeated/group=regimen subject=subject; 
Ismeans regimen sequence period; 
estimate 'T-R'regimen -1 1/CL ALPHA=0.1; 
ods output Estimates=BLUECSH CovParms=COVCSH AsyCov=ascovcsh; 
run; 

data covdcsh(keep=i delta2 asigdel); set bluecsh; 
delta2=ESTIMATE*ESTIMATE, 
a, sigdel=STDERR*STDERR; 
run; 

data covcshBT(keep=i LBT I-BTxBR I-BTxr I-BTxWT I-BTxWR)-2 
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set ascovcsh; 
if substr(COVPARM, 1,5)='Var(2'; 
I-BT=COVP2; 
I-BTxBR=COVP1; 
I-BTxr=COVP3; 
I-BTxWT=COVP5; 
I-BTxWR=COVP4; 
run; 

data covcshBR(keep=i LBR I-BRxr I-BRxWT I-BRxWR); 
set ascovcsh; 
if substr(COVPARM, 1,5)='Var(l'; 
I-BR=COVP1; 
1-BRxr=COVP3; 
I-BRxWT=COVP5; 
I-BRxWR=COVP4; 
run; 

data covcshr(keep=i Lr I-rxWT I-rxV%TR); set ascovcsh; if substr(COVPARM, 1,3)='CSH'; 
I-r=COVP3; I-rxWT=COVP5; I-rxWR=COVP4; run; 

data covcshWT(keep=i LWT I-WTxWR); set ascovcsh; if substr(COVPARM, 1,3) ='Res' 
and ROW=5; I-WT=COVP5; 1-WTxWR=COVP4; run; 

data covcshWR(keep=i I-WR); set ascovcsh; if substr(COVPARM, 1,3) ='Res' and ROW=4; 
I-WR=COVP4; run; 

data bluecsh(keep=i cshdiff cshlow cshup cshratio cshrlow cshrup); 
set bluecsh; 
cshdiff=ESTIMATE; cshratio=exp(cshdiff 
cshlow=LOWER; cshrlow=exp(cshlow), 
cshup=UPPER; cshrup=exp(cshup); 
run; 

data bsigacsh(keep=i bsdacsh bsigacsh); 
set covcsh; if substr(COVPARM, 1,5)='Var(2'; 
bsigacsh=ESTIMATE; 
bsdacsh=SQRT (ESTIMATE); 
run; 
data bsigbcsh(keep=i bsdbcsh bsigbcsh); 
set covcsh; if substr(COVPARM, 1,5)='Var(l'; 
bsigbcsh=ESTIMATE; 
bsdbcsh=S QRT (ESTIMATE); 
run; 
data wsigacsh(keep=i wsdacsh wsigacsh); 
set covcsh; if substr(GROUP, 9,1)='T'; 
wsigacsh=ESTIMATE; 
wsdacsh=SQRT (ESTIMATE); 
run; 
data wsigbcsh(keep=i wsdbcsh wsigbcsh); 
set covcsh; if substr(GROUP, 9,1)='R', 
wsigbcsh=ESTIMATE-, 
wsdbcsh=SQRT (ESTIMATE); 
run; 
data rhocsh(keep=i rhocsh); 
set covcsh; if substr(COVPARM, 1,3)='CSH'; 
rhocsh=ESTIMATE; 
run; 

data covcsh(keep=i bsigacsh bsdacsh bsigbcsh bsdbcsh covcsh wsigacsh wsdacsh wsigbcsh 
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wsdbcsh covcsh rhocsh sigdcsh); 
merge bsigacsh bsigbesh wsigacsh wsigbcsh rhocsh; by i; 
covcsh=rhocsh*bsdacsh*bsdbcsh; 
sigdcsh=bsigacsh+bsigbesh-(2*covcsh) 
run; 

data ascovcsh(keep=i v-pbecs v-cpbecs f-pbecs Lcpbecs ubpbecs ubcpbecs); 
merge covdcsh covcshBT covcshBR covcshr covcshWT covcshWR covcsh; by i; 
thetap= (((log (1.25)) ** 2) +0.02) /0.04; 

v-pbecs=delta2+bsigacsh+wsigacsh- ((l +thetap) * (wsigbcsh+bsigbcsh)); 
v-cpbecs=delta2+bsigacsh+wsigacsh-(wsigbcsh+bsigbcsh)-(0.04*thetap); 
f-pbecs= (4*asigdel*delta2) + 
I-BT+I-WT+ ((l +thetap)*(l+thetap) *LBR) +((l+thetap)* (1+thetap)*I-WR)+ 
(2*1-BTxWT)-(2*(l+thetap)*I-BTxBR)-(2*(l+thetap)*I-BTxWR)-(2*(l+thetap)*I-BRxWT)- 

(2*(l+thetap)*I-WTxWR)+(2*(l+thetap)*(l+thetap)*I-BRxWR); 
f-cpbecs= (4*asigdel*delta2)+ 
I-BT+I-WT+I-BR+I-WR+ 
(2*1-BTxWT)-(2*1-BTxBR)-(2*1-BTxWR)-(2*1-BRxWT)- 
(2*1-WTxWR)+(2*1-BRxWR); 
ubpbecs=v-pbecs+ ((probit (0-95)) *sqrt(f-pbecs)); 
ubcpbecs=v-cpbecs+ ((probit (0.95)) *sqrt (Lcpbecs)); 
run; 

*************Calc BLUE for diff in means using MIXED FAO(2); proc sort data=dset; by i 
subject sequence period regimen; run; 

title TAO(2) FOR MACRO'; run; 
proc mixed data=dset method=reml ITDETAILS DFBW CL=WALD ALPHA=0.1 scoring=50 
maxiter=200 IC ASYCOV; by i; class regimen sequence subject period; model Inmetric=sequence 
period regimen/DDFM=SATTERTH; random regimen/type=FAO(2) subject=subject G; re- 
peated/group=regimen subject=subject; Ismeans regimen sequence period; estimate 'T-R' reg- 
imen -1 1/CL ALPHA=0.1; 
ods output Estimates=BLUEFAO CovParms=COVFAO; 
run; 

data bluefaO(keep=i faOdiff faOlow faOup faoratio faOrlow faOrup); set bluefaO; 
fa0diff=ESTIMATE; fa0ratio=exp(fa0diff 
fa0low=LOWER; faOrlow=exp(fa0low); 
fa0up=UPPER; fa0rup=exp(fa0up); 
run; 

data bsigafaO(keep=i bsdafaO bsigafaO); set covfaO; if substr(COVPARM, 1,6)='FA(2,1'; 
bsigafaO=ESTIMATE*ESTIMATE; 
bsdafaO=ESTIMATE; 
run; 
data bsigbfaO(keep=i bsdbfaO bsigbfaO); set covfaO; if substr(COVPARM, 1,6)='FA(1,1'; 
bsigbfaO=ESTIMATE*ESTIMATE; 
bsdbfaO=ESTIMATE, 
run; 
data sigdfaO(keep=i sigdfaO); set covfaO; if substr(COVPARM, 1,6)='FA(2,2'; 
sigdfao=ESTIMATE*ESTIMATE; 
run; 
data wsigafaO(keep=i wsdafaO wsigafaO); set covfaO; if substr(COVPARM, 1,3) ='Res' and sub- 
str(GROUP, 9,1)='T'; 
wsigafaO=ESTIMATE; 
wsdafaO=SQRT (ESTIMATE); 

run; 
data wsigbfaO(keep=i wsdbfaO wsigbfaO); set covfaO; if substr(COVPARM, 1,3) ='Res' and sub- 
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str(GROUP, 9,1)='R'; 
wsigbfaO=ESTIMATE; 
wsdbfaO=SQRT (ESTIMATE); 
run; 

data covfaO(keep=i bsigafaO bsdafaO bsigbfaO bsdbfaO sigdfaO wsigafaO wsdafaO wsigbfaO ws- 
dbfaO); merge bsigafaO bsigbfaO wsigafaO wsigbfaO sigdfaO; by i; run; 

*************Calc BLUE for diff in means using new model from 2.2; proc sort data=dset; by 
subject sequence period regimen; run; 

title 'RIRS FOR MACRO'; run; proc mixed data=dset method=reml ITDETAILS DFBW 
CL=WALD ALPHA=0.1 scoring=50 maxiter=200 ASYCOV IC INFO; by i; class regimen se- 
quence subject period; model Inmetric=sequence period regimen/S CHISQ DDFM=SATTERTH; 
random intercept regimen/type=SIMPLE subject=subject G V; repeated/ group=regimen sub- 
ject=subject R; estimate 'T-R' regimen -1 1/CL ALPHA=0.1; ods output Estimates=BLUERIS 
CovParms=COVRIS AsyCov=ascovris; run; 

data covdris(keep=i delta2 asigdel); set blueris; 
delta2=ESTIMATE*ESTIMATE; 
a. sigdel=STDERR*STDERR; 
run; 

data covrisD(keep=i I-D I-DxWT I-DxWR); 
set ascovris; 
if COV'PARM='REGIMEN'; 
I-D=COVP2; 
I-DxWT=COVP4; 
I-DxWR=COVP3; 
run; 

data covrisWT(keep=i LWT I-WTxWR); 
set ascovris; 
if COVPARM='Residual' and Row=4; 
I-WT=COVP4; 
I-WTxVVR=COVP3; 
run -, 

data covrisWR(keep=i I-WR); 
set ascovris; 
if COVPARM='Residual' and Row=3; 
I-WR=COVP3; 
run; 

data blueris(keep=i risdiff rislow risup risrat risrlow risrup); set blueris; 

risdiff=ESTIMATE; risrat=exP (risdiff 

rislow=LOWER; risrlow=exp(rislow); 
risup=UPPER; risrup=exp(risup); 
run; 

data bsigris(keep=i bsdris bsigris); 

set covris; if substr(COVPARM, 1,5) ='Inter'; 
bsigris=ESTIMATE; 
bsdris=SQRT(ESTIMATE); 
run; 
data sigdris(keep=i sigdris); 
set covris; if substr(COVPARM, 1,7)='REGIMEN', 

sigdris=2*ESTIMATE; 
run; 
data wsigaris(keep=i wsdaris wsigaris); 
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set covris; if substr (GROUP, 9,1) ='T'; 
wsigaris=ESTIMATE; 
wsdaris= SQRT (ESTIMATE); 
run; 
data wsigbris(keep=i wsdbris wsigbris); 
set covris; if substr (GROUP, 9,1) ='R'-, 
wsigbris=ESTIMATE; 
wsdbris=SQRT (ESTIMATE); 
run; 

data covris(keep=i bsigris bsdris sigdris wsigaris wsdaris wsigbris wsdbris); merge bsigris 
wsigaris wsigbris sigdris, by i; run; 

data ascovris(keep=i v-iberi v-ciberi Liberi Lciberi ubiberi ubciberi)l 
merge covdris covrisD covrisWT covrisWR covris; by i; 
theta= ffllog (1.25)) ** 2) +0.0 5) /0.04, 
v-iberi=delta2+sigdris+wsigaris- ((1 +theta) *wsigbris); 
v-ciberi=delta2+sigdris+wsigaris-wsigbris- (0.04 *theta); 
f-iberi=(4*asigdel*delta2)+ 
(4*1-D) +I-WT+((l +theta)* (1 +theta) *1-WR)+ 
(4*1-DxWT)- (4* (1 +theta) *I-DxWR)- (2* (1 +theta) *I-WTxWR); 
f-ciberi=(4*asigdel*delta2)+ 
(4*1-D)+I-WT+I-WR+(4*1-DxWT)-(4*1-DxWR)-(2*1-WTxWR); 
ubiberi=v-iberi+((probit(O-95))*sqrt(f-iberi)); 
ubciberi=v-ciberi+((probit(O-95))*sqrt(f-ciberi)); 
run; 

*********Calc Variance of a mean obs(B + . 5w); 
proc sort data=dset; by i subject regimen sequence; run; 

proc means data=dset noprint; by i subject regimen; id sequence; var Inmetric; output out=sigd 
mean=mean; run; 

data sigda; set sigd; if regimen='T'; mean-a=mean; keep i sequence subject mean-a; run; proc 
sort; by i sequence subject; run; 
proc g1m. data=sigda outstat=outba noprint; by i; class sequence; model mean-a=sequence/SS1 
SS3; run-, 
DATA bsiga(keep=i bsiga-w df-ta); set outba; if -SOURCE-='ERROR'; 

bsiga-w=ss/df; df-ta=df; 
run; 

data sigdb; set sigd; if regimen='R'; mean-b=mean; keep i sequence subject mean-b; run; proc 
sort; by i sequence subject; run; 
proc glm data=sigdb outstat=outbb noprint; by i; class sequence; model mean-b=sequence/SS1 
SS3; run; 

DATA bsigb(keep=i bsigb-w df-tb); set outbb; if -SOURCE-='ERROR'; 
bsigb-w=ss/df; 

df-tb=df; run; 
*********Calc sigma-i and diff in means acc to Hyslop approach; 
proc sort data=dset; by i subject regimen sequence; run; 
proc means data=dset noprint; by i subject regimen; id sequence; var Inmetric; output 

out=sigi mean=mean; run; 

data sigia; set sigi; if regimen='T'; mean-a=mean; keep i sequence subject mean-a; run; proc 
sort; by i sequence subject; run; 
data sigib; set sigi; if regimen='R'; mean-b=mean; keep i sequence subject mean-b; run; proc 
sort; by i sequence subject; run; 
data sigi; merge sigia sigib; by i sequence subject; diffmean=mean-a-mean-b; run; 
proc sort data=sigi; by i sequence; run; 

proc means data=sigi noprint; by i sequence; var diffinean; output out=dm n=n sum=sum; 
run; 
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data dm(keep=i sequence ad-mean); set dm; ad-mean=sum/n; run; 
proc means data=drn noprint; by i; var ad-mean; output out=dm n=n sum=sum; run; 
data dm(keep=i d-rnean); set dm; d-mean=sum/n; run; 
data point; merge dm point; by i; if diff=. then diff=d-mean; if ratio=. then ratio=exp(d-mean); 
run; 
proc glm data=sigi outstat=glmouti NOPRINT; by i; class sequence; 
model diffmean=sequence/SS1 SS3; run; 
DATA SIGI; set glmouti; if -source-='ERROR'; 

df-i=df; sigi=ss/df; keep i dLi sigi; run; 
**************Calculate within-subject variances; 

proc sort data=dset; by i regimen sequence subject period; run; 
proc glm data=dset outstat=glmoutw noprint; class sequence subject period; by i regimen; 

model Inmetric=sequence subject (sequence) period/SSI SS3; run; 
DATA SIGWA; set glmoutw; if -source-='ERROR' and regimen='T'; df-wa=df; sigwa=ss/df; 
keep i df-wa, sigwa; run; 
DATA SIGWB; set glmoutw; if -source-='ERROR' and regimen='R'; dLwb=df; sigwb=ss/df; 
keep i df-wb sigwb; run; 
*******************Merge & Calculate 90% CI; 

data final; merge point blueun bluefaO bluecsh blueris n sigwa sigwb sigi bsiga bsigb covun 
covcsh covfaO covris ascovun ascovcsh ascovris; by i; 
sigd=sigi-(0.5*(sigwa+sigwb)); 
if low=. then low=exp(diff-((tinv(0.95, df-i, O))*(SQRT(sigi/n)))); 
if up=. then up=exp(diff+((tinv(0.95, df-i, O))*(SQRT(sigi/n)))); 

keep i diff ratio low up np df-wa sigwa df-wb sigwb df-i sigi sigd df-ta df-tb bsiga-w bsigb-w 

risdiff rislow risup risrat risrlow risrup undiff unlow unup unratio unrlow unrup faOdiff faOlow 
faOup faOratio faOrlow faOrup cshdiff cshlow cshup cshratio cshrlow cshrup bsigaun bsdaun bsig- 
bun bsdbun covun wsigaun wsdaun wsigbun wsdbun sigdun rhoun bsigafaO bsdafaO bsigbfaO 
bsdbfaO sigdfaO wsigafaO wsdafaO wsigbfaO wsdbfaO bsigacsh bsdacsh bsigbcsh bsdbcsh covcsh 
wsigacsh wsdacsh wsigbcsh wsdbcsh sigdcsh rhocsh bsigris bsdris sigdris wsigaris wsdaris wsig- 
bris wsdbris v-ibeun v-cibeun Libeun Lcibeun ubibeun ubcibeun v-pbeun v-cpbeun Lpbeun 
f-cpbeun ubpbeun ubcpbeun v-pbecs v-cpbecs f-pbecs Lcpbecs ubpbecs ubcpbecs v-iberi v-ciberi 
Liberi Lciberi ubiberi ubciberi ; run; 
data final; set final; 

sigmad=O; if sigdZO then sigmad=sqrt(sigd); 
lowdci=diff-((tinv(0.95, df-i, O))*(SQRT(sigi/n))); 
highdci=diff+((tinv(0.95, df-i, 0))*(SQRT(sigi/n))); 
HD=((abs(diff))+((tinv(0.95, df-i, O))*(SQRT(sigi/n))))**2; 
e-dcil=exp(lowdci); e-dcih=exp(highdci); 

HI=(dLi*sigi)/(cinv(0.05, df-i, O)); 

sdwa=sqrt(sigwa); sdwb=sqrt(sigwb); 
highwa=(df-wa*sigwa)/(cinv(0.05, df-wa, O)); 
highwb=(df-wb*sigwb)/(cinv(0.05, df-wb, O)); 

run; 
data &out; set final; 

ED=diff*diff; 
if ED=. then ED=(diff*diff); 
if HD=. then HD=((abs(diff))+((tinv(0.95, df-i, O))*(SQRT(sigi/n))))**2; 
UD=(HD-ED)*(HD-ED); 

UI=: (HI-sigi)*(HI-sigi)-, 

EA=0.5*sigwa; 
HA=0.5*highwa; 
UA=(HA-EA)*(HA-EA); 

theta= (((Iog(1.25)) **2) +0.05) /0.04; 
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EB=(-l 
. 5-theta)*sigwb; 

HB=(df-wb*EB)/(cinv(0.95, df-wb, O)); 
UB=(HB-EB)*(HB-EB); 

EBC=(-1.5)*sigwb; 
HBC= (df-wb*EBC)/ (cinv(0.95, df-wb, O)); 
UBC=(HBC-EBC)*(HBC-EBC); 

nul=ED+sigi+EA+EB; 
nu2=ED+sigi+EA+EBC-(theta*0.04); 

IBETRUE=nul+(SQRT(UD+UI+UA+UB)); 
IBECTRUE=nu2+(SQRT(UD+UI+UA+UBC)); 

IBECRIT=theta+nul+(SQRT(UD+UI+UA+UB)); 
IBECONST=theta+nu2+(SQRT(UD+UI+UA+UBC)); 

***********Relative contribution of spread to mean ratio; 
RELD=(sqrt(UD))/ED; 

RELI=(sqrt(Ul))/sigi; 
RELA=(sqrt(UA))/EA; 
RELB=(sqrt(UB))/EB-, 

***********PopBE Assessment-, 
thetap= (((log (1.25)) * *2) +0.02) /0.04; 

totsiga=bsiga-w+(0.5*sigwa); 
totsigb=bsigb-w+(0.5*sigwb) 
sdtotb=sqrt (totsigb); 

/* ETT=totsiga; 
HTT=(df-ta*ETT)/(cinv(0.05, df-ta, O))-, 
UTT=(HTT-ETT)*(HTT-ETT); 

ETR=(-l-thetap)*totsigb; 
HTR=(df-tb*ETR)/(cinv(0.95, df-tb, O)); 
UTR=(HTR-ETR)*(HTR-ETR); 

ETRS=(-l)*totsigb; 
HTRS=-(df-tb*ETRS)/(cinv(0.95, df-tb, o)); 
UTRS=(HTRS-ETRS)*(HTRS-ETRS); 

EA-W=BSIGA-W; 
HA-W=(DF-TA*EA-W)/(cinv(0.05, df-ta, O)); 
UA-W=(HA-W-EA-W)**2; 

EWA=0.5*SIGWA; 
HWA= (DF-WA*EWA)/(cinv(0.05, df-wa, O)); 
UWA= (HWA-EWA)**2; 
EB-W= (-l-thetap)*BSIGB-W, 
HB-W= (DF-TB*EB-W)/(cinv(0.95, df-tb, O)); 
UB-W= (HB-W-EB-W)**2; 

EWB=(-I-thetap)*0.5*SIGWB; 
HWB=(DF-WB*EWB)/(cinv(0.95, df-wb, O)); 
UWB=(HWB-EWB)**2; 

EB-WC=(-I)*BSIGB-W; 
HB-WC=(DF-TB*EB-WC)/(cinv(0.95, df-tb, O)); 
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UB-WC=(HB-WC-EB-WC)**2; 

EWBC=(-l)*0.5*SIGWB; 
HWBC=(DF-WB*EWBC)/(cinv(0.95, dLwb, O)); 
UWBC=(HWBC-EWBC)**2; 

Pl=ED+EA-W+EWA+EB-W+EWB; 
P2=ED+EA-W+EWA+EB-WC+EWBC-(thetap*0.04); 

POPTRUE=Pl+(SQRT(UD+UA-W+UWA+UB-W+UWB)); 
POPTRUEC=P2+(SQRT(UD+UA-W+UWA+UB-WC+UWBC)); 

POPCRIT=thetap+Pl+(SQRT(UD+UA-W+UWA+UB-W+UWB)); 
POP CONST=thetap+P 2+ (SQRT (UD +UA-W+UWA+UB-WC+UWBC)); 

""""'Variance components for section 2.5; 
tsigaun=bsigaun+wsigaun; 

tsigbun=bsigbun+wsigbun; 
tsigacsh=bsigacsh+wsigacsh; 
tsigbcsh=bsigbesh+wsigbcsh; 
tsigafaO=bsigafaO+wsigafaO; 
tsigbfaO=bsigbfaO+wsigbfaO; 
tsigaris=bsigris+wsigaris; 
tsigbris=bsigris+wsigbris; 

**********SE for ABE Assessment; 
VARMOM=sigd+((sigwa+sigwb)/2); 

VARUN=sigdun+((wsigaun+wsigbun)/2); 
VARCSH=sigdcsh+((wsigacsh+wsigbcsh)/2); 
VARFAO=sigdfaO+((wsigafaO+wsigbfaO)/2); 
VARRIS=sigdris+((wsigaris+wsigbris)/2); 

""Differences in means; 
momdiff=log(ratio); 

undiff=log(unratio); 
esdiff=log(cshratio); 
fadiff=log(fa0ratio); 
ridiff=log(risrat); 

***********keep statement; 
keep in ratio low up unratio unrlow unrup faOratio faOrlow faOrup cshratio cshrlow cshrup risrat 
risrlow risruP df-wa sigwa sdwa df-wb sigwb sdwb df-i sigi sigd sigmad Isigmad usigmad nul 
nu2 ibecrit ibeconst pl p2 POPCRIT POPCONST POPTRUE POPTRUEC dLta df-tb bsiga-w 
bsigb-w totsiga totsigb sdtotb totratio t-ratiol t-ratiou wratio w-ratiol w-ratiou t5ratiol t5ratiou 
w5ratiol w5ratiou kl IBETRUE IBECTRUE RELD REM RELA RELB UD UI UA UB UBC bsi- 
gaun bsigbun wsigaun wsigbun sigdun covun tsigaun tsigbun bsigafaO bsigbfaO sigdfaO wsigafaO 
wsigbfaO tsigafaO tsigbfaO bsigacsh bsigbcsh wsigacsh wsigbcsh sigdcsh rhocsh tsigacsh tsigbcsh 
bsigris wsigaris wsigbris sigdris tsigaris tsigbris VARMOM VARUN VARCSH VARFAO VAR- 
RIS v-ibeun v-cibeun Libeun Lcibeun ubibeun ubcibeun v-pbeun v-cpbeun Lpbeun Lcpbeun 
ubpbeun ubcpbeun v-pbecs v-cpbecs f-pbecs Lcpbecs ubpbecs ubcpbecs v-iberi v-ciberi Liberi 
Lciberi ubiberi ubciberi momdiff undiff csdiff fadiff ridiff ; run; 
%mend; 

8.4 Parallel Design Simulation Code (Chapter 6) 
%macro sim(mul, /*mean T*/ mu2, /*mean R*/ sigt, /*SD T*/ sigr, /*SD R*/ i, /* Number 

of Sims */ jt, /* Sample Size per sim population t*/ jr) /* Sample Size per sim population r*/ 

data t; keep ij race Inmetric; race='T'; mul=&mul; sigt=&sigt; sig2t=sigt**2; varl=sig2t; do 
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i=1 to &i; do j=1 to &jt; t= rannor(123); Inmetric = mul + sqrt(varl)*t; output t; end; end; 
run; 
data r; keep ij race Inmetric; race='R'; mu2=&mu2; sigr=&sigr; sig2r=sigr**2; var2=sig2r; do 
i=1 to &i; do j=1 to &jr; r= rannor(456); Inmetric = mu2 + sqrt(var2)*r; output r; end; end; 
run; 
data forsim; set t r; by i j; subject=j; drop j; run; 

proc sort; by i subject race; run; 
%mend sim; 

8.5 Bootstrap Code (Chapter 6) 
%macro bootstrp(indata=, /* dataset to sample from */ i=, /* Sim run */ race=, /* Race */ 
seed=12345, /* random number seed */ nrep=, /* # of bootstrap repetitions */ nsamp=O, /* # 
in bootstrap sample */ bootsamp=); /* output dataset */ data test; set &indata; if race=&race 
and i=&i; run; 
data 

-null-; set test nobs=count; call symput('count', Ieft (put (count, 18. ))); if &nsampi=O then 
call symput ('nsamp', left (put (count, 18. ))); 
if &seed=O then do; seed=timeo; call symput ('seed', left (put (seed, 18. ))); end; run; 
data &bootsamp (lab el=seed= &seed); retain seed &seed; drop ijlkrst r seed; %do b=1 %to 
&nrep; rep=&b; put "generating rep " rep "of &nrep"; do ijlkrst=l to &nsamp; call ra- 
nuni(seed, r); pointvar = ceil(r*&count); set test point=pointvar; output; end; %end; stop; 
run; %mend bootstrp; 

8.6 Analysis Code (Chapter 6) 
%macro boot-n-iix(in); 

data boot-itl; set &in; by rep; if repi=500; run; data boot-it2; set &in; by rep; if 500irepi=1000; run; 
proc sort; by rep race; run, 
ods listing close; proc mixed data=boot-itl method=reml scoring=50 maxiter=200 itdetails 
CL alpha=0.1; by rep; class race; model Inmetric=race/S DDFM=KENWARDROGER; re- 
peated /group=race; estimate 'T - R' race -1 1/alpha=0.10; ods output Estimates=delbtl Cov- 
Parms=COVBT1; run; 
proc mixed data=boot-it2 method=reml scoring=50 maxiter=200 itdetails CL alpha=0.1; by 
rep; class race; model Inmetric=race/S DDFM=KENWARDROGER; repeated /group=race; 
estimate 'T - R' race -1 1/alpha=0.10; ods output Estimates= delbt2 CovParms=COVBT2; 
run; 
ods listing; 

data delbt(keep=rep delta); set delbtl delbt2 ; by rep; delta=ESTIMATE; run; 
data sig2-tbt(keep=rep sig2-t); set covbtl covbt2 ; 
by rep; if substr(Group, 6,1)='T'; sig2-t =ESTIMATE; run; 
data sig2-rbt(keep=rep sig2-r); 
set covbtl covbt2 ; by rep; if substr (Group, 6,1) ='R'; 
sig2-r=ESTIMATE; run; 

data boot-out; merge delbt sig2-tbt sig2-rbt; 
fda=((delta*delta)+sig2A-sig2-r)/sig2-r; 
kld=0.5*((delta*delta)+sig2A+sig2-r)*((l/sig2A)+(I/sig2-r))-2; 
t-r=sig2A/sig2-r; 
run; 

proc univariate data=boot-out plot; var delta sig2-t sig2-r t-r fda k1d; output out=&in 
p5=delta5 sig2-t5 sig2-r5 t-r5 fda5 kld5 
mean=deltam sig2Am sig2-rm t-rm fdam kldm p95=delta95 sig2-t95 sig2-r95 t-r95 fda95 kld95 

; run; 

%mend boot-mix; 

9 Appendix: Summary Tables 
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Table 32: Sample Size, Sequences, and Number of Missing Obser- 
vations for Data Sets A through ZF 

Data Set Sample 
Size 

Sequences 

-- 

Number of 
Missing Observations 

A 30 TTkR 
, RRTT, RTTR, TRRT 3 AUC, 3 Cmax 

B 74 TRRT, RTTR 7 AUC, 0 Cmax 
C1 30 TTRR, RRTT, RTTR, TRRT 2 AUCý 2 Cmax 
C2 29 TTRR, RRTT, RTTR, TRRT NA 
D 32 TTRR, RRTT, RTTR, TRRT NA 
E 17 RTTR, TRRT 1 AUC) I Cmax 
F 12 RTRT, TRTR NA 
G 16 TTRR, RRTT, RTTR, TRRT NA 
H 20 TTRR, RRTT, RTTR, TRRT, TRTR NA 
11 24 RTTR, TRRT NA 
12 24 RTTR, TRRT NA 
1 24 TTRR, RRTT, RTTR, TRRT NA 

KI 36 TTRR, RRTT, RTTR, TRRT NA 
K2 36 TTRR, RRTT, RTTR, TRRT NA 
K3 36 TTRR, RRTT, RTTR, TRRT NA 
Ll 38 RTTR, TRRT 3 AUC, 3 Cmax 
L2 38 RTTR, TRRT 3 AUC, 3 Cmax 
M 20 TTRR, RRTT, RTTR, TRRT NA 
N1 28 TTRR, RRTT, RTTR, TRRT NA 
N2 28 TTRR, RRTT, RTTR, TRRT 1 AUC, 0 Cmax 
01 24 TTR. R, RRTT, RTTR, TRRT NA 
02 24 TTRR, RRTT, RTTR, TRRT NA 
P 24 RTTR, TRRT 7 AUC, 7 Cmax 

Q1 29 RTTR, TRRT 5 AUC, 5 Cmax 
Q2 33 RTTR, TRRT 6 AUC, 6 Cmax 
R 75 RTTR, TRRT 18 AUC) 12 Cmax 
S 95 RTTR, TRRT 14 AUC, 4 Cmax 
T 96 RTTR, TRRT 2 AUC) 2 Cmax 
U 40 TTRR, RRTT, RTTR, TRRT 5 AUC) 4 Cmax 
v 25 TTRR, RRTT, RTTR, TRRT 2 AUCI 2 Cmax 

wi 36 TTRR, RRTT, RTTR, TRRT NA 
W2 36 TTRRRRTT, RTTR, TRRT NA 
W3 36 TTRRRRTT, RTTR, TRRT NA 
W4 36 TTRR, RRTT, RTTR, TRRT NA 
W5 36 TTRR, RRTT, RTTR, TRRT NA 
W6 36 TTRR, RRTT, RTTR, TRRT NA 
x 20 TTRR, RRTT, RTTR, TRRT NA 
y 20 TTRR, RRTT, RTTR, TRRT, TRTR 12 AUC, 12 Cmax 

ZA 22 TTRR, RTRT, TRTR, RRTT NA 
ZB 19 TTRR, RTRT, TRTR, RRTT NA 

ZC1 43 TTRR, RTTR, TRRT, RRTT NA 
ZC2 43 TTRR, RTTR, TRRT, RRTT NA 
ZC3 43 TTRR, RTTR, TRRT, RRTT 3 AUC7 0 Cmax 
ZD1 38 TRRT, RTTR NA 
ZD2 38 TRRTRTTR NA 
ZD3 38 TRRT, RTTR NA 
ZD4 38 TRRT, RTTR 6 AUC) 0 Cmax 
ZE1 37 TRRT, RTTR NA 
ZE2 37 TRRT, RTTR 0 AUC) 1 Cmax 
ZE3 37 TRRT, RTTR NA 

54 RTRT, TRTR 1 7 AUC, 7 Cmax 
R =Reference, T=Test, NA=None Missing 
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Table 33: Gender, Ethnicity, Age, Weight, and Height for Data 
Sets A through ZF 

Data 
Set 

Gender Ethnicity Age I Weight Height 

A OF, 30M 9B, 30,18W 28±6 79±11 178±8 
B 22F, 52M 74W 33±8 75±12 176±8 
ci 18FI12M 1B, 29W 36±10 72±13 171±10 
C2 17F)12M 1B)28W 36±10 72±13 171±9 
D 32M 32W 28±6 76±9 178±8 
E 17M 17W 37±8 81±11 177±6 
F 6F, 6M 12W 26±3 79±4 164±31 
G 16M 16W 27±5 78±6 182±5 
H 20M 10,19w 47±9 93±14 183±8 
11 9F)15M 24W 37±10 76±14 175±11 
12 9F)15M 24W 37±10 76±14 175±11 
i 7F717M 24W 36±10 76±11 177±8 

K1 36M 23B)13W 34±6 76±11 179±6 
K2 36M 23B)13W 34±6 76±11 179±6 
K3 36M 23B, 13W 34±6 76±11 179±6 
Ll 13F)25M 38W 37±12 77±12 178±10 
L2 13F)25M 38W 37±12 77±12 178±10 
m 20M 20W 28±5 78±7 179±5 
N1 1OF718M 28W 31±7 75±12 177±8 
N2 IOF, 18M 28W 31±7 75±12 177±8 
01 8F, 16M 1BI10,22W 28±5 73±12 175±10 
02 8F716M 1B, 10,22W 28±5 73±12 175±10 
p NA NA NA NA NA 

Q1 19F, 10M 2B, 10,26W 36±9 67±10 170±8 
Q2 22F, 11M 2B, 10,30W 35±9 67±10 170±8 
R 38F, 37M 1B774W 31±8 69±10 174±9 
S 38F757M 95W 35±7 74±12 175±9 
T 46FI50M IB)20,93W 33±9 69±10 172±8 

U-ZE3 NA NA NA NA NA 
ZF 15F, 39M 28B, 20,24W 1 34±10 1 76±11 1 174±10 

NA: Not Available 
Gender: F=Female, M=Male 

Ethnicity: B=Black, O=Other, W=White 
Age(yrs), Weight(kg), and Height(cm) expressed as Mean±SD 
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Table 34: REML Model Discrimination using the Akaike Informa- 
tion Criterion (AIC) and the Schwarz Bayesian Criterion (SBC) 
for AUC in Data Sets A through ZF 

Data 
Set 

AIC 
UN 

AIC 
CSH 

AIC 
FAO(2) 

AIC 
RIS 

SBC 
UN 

SBC 
CSH 

SBC 
FAO(2) 

SBC 
RIS 

A -51.5 -51.7 -51.7 -50.9 -58.3 -58.4 -58.4 -56.3 B -297 -297 -297 -296 -306 -306 -306 -303 C1 -0.8 -1.2 -1.2 -0.3 -7.6 -8 -8 -5.7 C2 -39.6 -39.6 -39.6 -38.8 -46.3 -46.3 -46.3 -44.2 D -16.3 -16.3 -16.3 -15.3 -23.3 -23.3 -23.3 -20.9 
E 19.9 19.9 19.8 20.8 14.6 14.6 14.6 16.6 
F -20.2 -22.3 -22.3 -21.5 -24.5 -26.6 -26.6 -25 G -17.5 -17.5 -17.5 -17.8 -22.6 -22.6 -22.6 -21.8 
H 8.7 8.7 8.7 9.5 3.1 3.1 3.1 5 
11 -28.9 -28.9 -28.9 -28.6 -35.2 -35.2 -35.2 -33.6 
12 -69 -69 -69 -70.6 -75.3 -75.3 -75.3 -75.6 
1 -41 -41 -41 -40.4 -47.2 -47.2 -47.2 -45.4 

K1 -52.7 -53 -53 -52.2 -60 -60.3 -60.3 -58 
K2 37.9 37.9 37.9 37 30.6 30.6 30.6 31.2 
K3 4.8 1.2 1.2 2.1 -2.5 -6.1 -6.1 -3.7 
Ll -51.2 -51.2 -51.2 -50.3 -58.6 -58.6 -58.6 -56.2 
L2 -101 -103 -103 -102 -109 -110 -110 -108 
M -23.9 -23.9 -23.9 -23.2 -29.6 -29.6 -29.6 -27.7 
N1 29.5 29.2 29.2 30 22.9 22.6 22.6 24.7 
N2 -34.4 -34.4 -34.4 -33.8 -41 -41 -41 -39.1 
01 -7 -7 -7 -6.4 -13.2 -13.2 -13.2 -11.3 
02 -40 -40 -40 -40 -46.2 -46.2 -46.2 -45 
P 25.7 25.2 25.2 26.2 19.7 19.2 19.2 21.4 

Q1 27.8 27.8 27.8 26.4 21.1 21.1 21.1 21.1 
Q2 -28.1 -28.1 -28.1 -27.1 -35 -35 -35 -32.6 
R -317 1 -317 1 -317 1 -316 -326 -326 1 -327 -324 

UN=Unstructured 
CSH=Hetersceda. stic Compound Symmetry 

FAO(2)=First order autoregressive 
RIS=Random Intercept and Slope 

See Section 2.2 for details 
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Table 34: REML Model Discrimination using the Akaike Informa- 
tion Criterion (AIC) and the Schwarz Bayesian Criterion (SBC) 
for AUC in Data Sets A through ZF 

Data 
Set 

AIC 
UN 

AIC 
CSH 

AIC 
FAO(2) 

AIC 
RIS 

SBC 
UN 

SBC 
CSH 

SBC 
FAO(2) 

SBC 
RIS 

S -439 -439 -439 -439 -449 -449 -449 -447 T -462 -462 -462 -462 -472 -472 -472 -470 U -125 -127 -127 -126 -133 -134 -134 -132 V -63.6 -63.6 -63.6 -62.7 -69.9 -69.9 -69.9 -67.7 W1 -5.6 -6 -6 -5 -12.8 -13.2 -13.2 -10.8 W2 -15 -15.2 -15.2 -14.2 -22.2 -22.4 -22.4 -19.9 W3 -16.4 -16.6 -16.6 -16.4 -23.6 -23.8 -23.8 -22.1 W4 -55.5 -55.5 -55.5 -55.1 -62.7 -62.7 -62.7 -60.9 W5 -32 -32 -32 -31.1 -39.3 -39.3 -39.3 -36.9 W6 -87.7 -87.7 -87.7 -86.7 -94.9 -94.9 -94.9 -92.5 * -16.8 -17.8 -17.8 -17.3 -22.4 -23.5 -23.5 -21.9 * -11.6 -11.6 -11.6 -11.2 -17.2 -17.2 -17.2 -15.8 ZA -39.7 -39.7 -39.7 -38.7 -45.6 -45.6 -45.6 -43.4 ZB -20.9 -20.9 -20.9 -19.9 -26.4 -26.4 -26.4 -24.4 zC1 -83 -83 -83 -83.2 -90.8 -90.8 -90.8 -89.3 ZC2 -7.2 -7.2 -7.2 -8.3 -14.9 -14.9 -14.9 -14.5 ZC3 -18.4 -18.4 -18.4 -20.1 -26.1 -26.1 -26.1 -26.3 ZD1 -139 -148 -148 -149 -146 -156 -156 -155 ZD2 38.3 33.9 33.9 33.1 30.9 26.4 26.4 27.1 
ZD3 33.4 33.3 33.3 32.9 25.9 25.9 25.9 26.9 
ZD4 21.4 21.4 21.4 21.9 14.1 14.1 14.1 16.1 
ZE1 -98.3 -98.3 -98.3 -97.4 -106 -106 -106 -103 
ZE2 5.4 5.4 5.4 5.6 -2 -2 -2 -0.3 
ZE3 -5.4 -5.4 -5.4 -7.2 -12.8 -12.8 -12.8 -13.1 
ZF -128 1 -128 1 -128 1 -127 1 -136 1 -136 1 -136 -134 

UN=Unstructured 
CSH=Heterscedastic Compound Symmetry 

FAO(2)=First order autoregressive 
RIS=Random Intercept and Slope 

See Section 2.2 for details 

Table 35: Residual log-likelihoods for AUC in Data Sets A through 
ZF 

Data 
Set 

UN FAO(2) CSH RIS 

A -46-543 -46-696 -46-696 -46-939 
B -291.731 -292.135 -292.135 -292.159 
C1 4.197 3.771 3.771 3.676 
C2 -34-624 -34.624 -34.624 -34-845 
D -11.305 -11.305 -11-305 -11.306 
E 24.859 24.845 24.859 24-838 
F -15-168 -17.257 -17.257 -17.532 
G -12.539 -12.539 -12.539 -13.77 
H 13.731 13.731 13.731 13.543 
11 -23-901 -23-905 -23.905 -24.615 
12 -64.009 -64.009 -64.009 -66.576 
1 -35.97 -35.97 -35.97 -36.421 

K1 1 -47.724 1 -48.014 1 -48.014 1 -48.166 
UN=Unstructured 

CSH=Heterscedastic Compound Symmetry 
FAO(2)=First order autoregressive 
RIS=Random Intercept and Slope 

See Section 2.2 for details 
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Table 35: Residual log-likelihoods for AUC in Data Sets A through 
ZF 

Data 
Set 

UN FAO(2) CSH RIS 

K2 42.911 42.911 42.911 41-006 
K3 9.802 6.217 6.217 6.137 
Li -46-156 -46.183 -46.183 -46-276 
L2 -96-364 -97-696 -97-696 -97.696 
M -18-918 -18.918 -18-918 -19.151 
N1 34-516 34.238 34.238 33.961 
N2 -29.412 -29.412 -29.412 -29.794 
01 -2.013 -2-013 -2.013 -2.35 
02 -34.978 -34.978 -34-978 -36-019 
P 30.706 30.212 30.212 30.208 
Q1 32.754 32.754 32.754 30-395 
Q2 -23.063 -23-063 -23-063 -23-072 
R -312.39 -312.457 -312.39 -312.398 
S -434.036 -434-066 -434.066 -435-099 
* -457.466 -457.466 -457.466 -457.782 
* -120-37 -121-573 -121.573 -122-312 
* -58-627 -58-627 -58-627 -58.709 

wi -0.564 -1-031 -1-031 -1.041 
W2 -9.979 -10-165 -10.165 -10-168 
W3 -11-35 -11.619 -11.619 -12.366 
W4 -50.476 -50.476 -50.476 -51.1 
W5 -27.045 -27.045 -27.045 -27-146 
W6 -82-693 -82.693 -82-693 -82.701 
x -11.75 -12.798 -12.798 -13.303 
Y -6-559 -6.559 -6-559 -7.226 
ZA -34-659 -34-659 -34.659 -34.675 
ZB -15-874 -15-874 -15-874 -15.917 
zC1 -78.014 -78.014 -78.014 -79-15 
ZC2 -2.196 -2.199 -2.199 -4-338 
ZC3 -13.43 -13.43 -13.43 -16.149 
ZD1 -133.736 -143.087 -143-087 -145.092 
ZD2 43.339 38.856 38.856 37.087 
ZD3 38-383 38-312 38-312 36.915 
ZD4 26.408 26.408 26.408 25.943 
ZE1 -93.253 -93-253 -93.253 -93.368 
ZE2 10-395 10-395 10-395 9.644 
ZE3 -0.369 -0-369 -0-369 -3-164 
ZF -122.822 

1 -122.826 1 -122.826 1 -123-229 
UN=Unstructured 

CSH=Hetersceda, stic Compound Symmetry 
FAO(2)=First order autoregressive 
RIS=Random Intercept and Slope 

See Section 2.2 for details 
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Table 36: REML Model Discrimination using the Akaike Informa- 
tion Criterion (AIC) and the Schwarz Bayesian Criterion (SBC) 
for Cmax in Data Sets A through ZF 

Data 
Set 

AIC 
UN 

AIC 
CSH 

AIC 
FAO(2) 

AIC 
RIS 

SBC 
UN 

SBC 
CSH 

SBC 
FAO(2) 

SBC 
RIS 

A -71.6 -71.6 -71.6 -70.6 -78.3 -78.3 -78.3 -76 
B -280 -280 -280 -279 -289 -289 -289 -286 
C1 -19.2 -19.4 -19.4 -19.5 -25.9 -26.2 -26.2 -24.9 
C2 -48.2 -48.2 -48.2 -47.6 -54.9 -54.9 -54.9 -52.9 
D -78.4 -78.4 -78.4 -77.5 -85.3 -85.3 -85.3 -83.1 
E -11.5 -11.7 -10.8 -16.8 -17 -15 
IT -38.7 -38.7 -38.7 -38.9 -43.1 -43.1 -43.1 -42.3 
G -53.6 -53.6 -53.6 -53.1 -58.6 -58.6 -58.6 -57.2 
H -8 -8 -8 -7.2 -13.7 -13.7 -13.7 -11.7 
Il -46.1 -46.1 -46.1 -46.3 -52.3 -52.3 -52.3 -51.3 
12 -73.8 -73.8 -73.8 -76 -80.1 -80.1 -80.1 -81 
J -61.3 -61.7 -61.7 -61.1 -67.5 -67.9 -67.9 -66 

K1 -124 -125 -125 -124 -132 -132 -132 -129 
K2 -8.9 -8.9 -8.9 -8.5 -16.2 -16.2 -16.2 -14.3 
K3 -107 -108 -108 -107 -115 -115 -115 -113 
Ll -73.9 -73.9 -73.9 -73 -81.3 -81.3 -81.3 -78.9 
L2 -117 -118 -118 -117 -125 -126 -126 -123 
M -50.8 -50.8 -50.8 -49.8 -56.5 -56.5 -56.5 -54.4 
NI -13.2 -13.2 -13.2 -12.2 -19.8 -19.8 -19.8 -17.5 
N2 -36.1 -36.1 -36.1 -36.1 -42.7 -42.7 -42.7 -41.4 
01 -38.4 -38.4 -38.4 -37.4 -44.6 -44.6 -44.6 -42.4 
02 -52.7 -52.7 -52.7 -52.4 -58.9 -58.9 -58.9 -57.3 
P 0.5 0.5 0.5 1.3 -5.5 -5.5 -5.5 -3.6 

Q1 10 10 10 10.4 3.3 3.3 3.3 5.1 
Q2 -33.9 -33.9 -33.9 -33.4 -40.9 -40.9 -40.9 -39 
R -309 -309 -309 1 -308 1 -318 -318 1 -318 1 -315 

UN=Unstructured 
CSH=Hetersceda, stic Compound Symmetry 

FAO(2)=First order autoregressive 
RIS=Random Intercept and Slope 

See Section 2.2 for details 
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Table 36: REML Model Discrimination using the Akaike Informa- 
tion Criterion (AIC) and the Schwarz Bayesian Criterion (SBC) 
for Cmax in Data Sets A through ZF 

Data 
Set 

AIC 
UN 

AIC 
CSH 

AIC 
FAO(2) 

AIC 
RIS 

SBC 
UN 

SBC 
CSH 

SBC 
FAO(2) 

SBC 
RIS 

S -441 -441 -441 -441 -451 -451 -451 -449 
T -408 -408 -408 -408 -418 -418 -418 -415 
U -142 -142 -142 -144 -150 -150 -150 -150 
V -91.9 -92.1 -92.1 -91.1 -98.1 -98.3 -98.3 -96.1 

W1 -38.9 -39.1 -39.1 -38.5 -46.1 -46.3 -46.3 -44.3 
W2 -36.4 -36.9 -36.9 -36.3 -43.6 -44.1 -44.1 -42 
W3 -57.5 -57.5 -57.5 -56.6 -64.7 -64.7 -64.7 -62.4 
W4 -50 -50 -50 -50.3 -57.2 -57.2 -57.2 -56.1 
W5 -35.3 -35.3 -35.3 -34.7 -42.5 -42.5 -42.5 -40.5 
W6 -58.9 -59 -59 -58.2 -66.1 -66.2 -66.2 -64 
* -25.1 -25.1 -25.1 -24.1 -30.8 -30.8 -30.8 -28.6 
* -50.7 -51.1 -51.1 -50.3 -56.4 -56.7 -56.7 -54.8 
ZA -64.9 -64.9 -64.9 -64.2 -70.9 -70.9 -70.9 -68.9 
ZB -47.5 -47.5 -47.5 -47.9 -53.1 -53.1 -53.1 -52.4 
zC1 -94.8 -94.8 -94.8 -94.4 -103 -103 -103 -101 
ZC2 -9.6 -9.9 -9.9 -11.3 -17.3 -17.6 -17.6 -17.5 
ZC3 -28.2 -28.2 -28.2 -28.4 -35.9 -36 -36 -34.6 
ZD1 -161 -167 -167 -167 -168 -174 -174 -173 
ZD2 -0.9 -6.2 -6.2 -5.2 -8.4 -13.7 -13.7 -11.2 
ZD3 89.4 89 89 89.6 81.9 81.5 81.5 83.6 
ZD4 40.1 40.1 40.1 40.9 32.6 32.6 32.6 34.9 
ZE1 -130 -130 -130 -129 -138 -138 -138 -135 
ZE2 9.6 9.6 9.6 10.2 2.2 2.2 2.2 4.3 
ZE3 1.4 1.4 1.4 0.3 -6 -6 -6 -5.6 
ZF -222 -222 1 -222 -222 1 -230 1 -230 1 -230 -228 

UN=Unstructured 
CSH=Heterscedastic Compound Symmetry 

FAO(2)=First order autoregressive 
RIS=Random Intercept and Slope 

See Section 2.2 for details 

Table 37: Residual log-likelihoods for Cmax in Data Sets A 

through ZF 

Data 
Set 

UN FAO(2) CSH RIS 

A -66.59 -66.604 -66.604 -66-608 
B -274.719 -274.888 -274.888 -275.056 
C1 -14.189 -14.45 -14.45 -15.532 
C2 -43-179 -43-179 -43-179 -43-575 
D -73.369 -73.369 -73-369 -73.525 
E -6.52 -6.721 -6.754 
F -33.719 -33.719 -33.719 -34.86 
G -48.564 -48.564 -48.564 -49.13 
H -3.048 -3.048 -3-048 -3.215 
11 -41.092 -41.092 -41.092 -42.338 
12 -68.819 -68.819 -68-819 -71.993 
1 -56.265 -56.67 -56.67 -57.059 

KI -119-339 -119.626 -119.626 -119.63 
UN=Unstructured 

CSH=Hetersceda, stic Compound Symmetry 
FAO(2)=First order autoregressive 
RIS=Random Intercept and Slope 

See Section 2.2 for details 

321 



Table 37: Residual log-likelihoods for Cmax in Data Sets A 
through ZF 

Data 
Set 

UN FAO(2) 

- 

CSH RIS 

K2 -3.924 -T 937 -3-937 -4-502 K3 -102-332 -102.735 -102-735 -102-747 Ll -68-884 -68.925 -68.925 -69 L2 -112.279 -113.224 -113.224 -113.275 M -45.785 -45-785 -45.785 -45-814 N1 -8-158 -8.158 -8-158 -8.227 N2 -31.123 -31.123 -31.123 -32-067 01 -33-395 -33-395 -33-395 -33.4 02 -47.697 -47.697 -47.697 -48.355 P 5.522 5.522 5.522 5.252 
Q1 14-954 14.954 14.954 14.416 
Q2 -28-89 -28.89 -28-89 -29.424 R -303.511 -303-639 -303.639 -303-682 S -436.287 -436-365 -436-365 -437.256 T -403.451 -403.451 -403.451 -403.541 U -137-06 -137.163 -137-163 -139.606 v -86-862 -87-086 -87.086 -87-087 wi -33.9 -34.111 -34.111 -34.506 W2 -31-397 -31-852 -31.852 -32.271 W3 -52.474 -52.474 -52.474 -52.592 W4 -44-968 -44-971 -44.968 -46-31 W5 -30.301 -30.301 -30-301 -30.745 W6 -53-94 -53-963 -53-963 -54.195 * -20.091 -20.091 -20.091 -20-096 * -45.745 -46-084 -46-084 -46-321 ZA -59.903 -59-903 -59-903 -60-164 
ZB -42.526 -42.526 -42-526 -43.921 
zC1 -89-817 -89-841 -89-841 -90.431 
ZC2 -4-591 -4-865 -4-865 -7.285 
ZC3 -23-181 -23.219 -23.219 -24.41 
ZD1 -155-679 -161.999 -161.999 -163.259 
ZD2 4.079 -1.197 -1.197 -1.197 
ZD3 94.408 93-985 93.985 93-581 
ZD4 45-098 45-098 45-098 44.912 
ZE1 -125.473 -125.473 -125.473 -125.478 
ZE2 14-618 14-618 14.618 14.19 
ZE3 6.404 6.404 6.404 4.326 
ZF 1 -216.921 1 -216.921 -216.921 1 -217.549 

UN=Unstructured 
CSH=Heterscedastic Compound Symmetry 

FAO(2)=First order autoregressive 
RIS=Random Intercept and Slope 

See Section 2.2 for details 
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Table 38: Method-of-Moment Analysis for AUC in Data Sets A 
through ZF 

Data e 
AT-AR ý2 U 

-P 01, -2 UWT &2 
WR 

6,2 - 
I 

& 
T! 
' &2 

R 
&2 

D 
A 0.908 0.181 0.203 0.057 0.074 0.061 0.210 0.240 -0.004 B 0.910 1.888 1.934 0.160 0.173 0.150 1.968 2.020 -0.016 C1 1.059 0.028 0.042 0.028 0.048 0.027 0.042 0.066 -0.011 C2 1.069 0.097 0.148 0.028 0.080 0.087 0.111 0.188 0.033 
D 0.927 0.295 0.304 0.015 0.028 0.026 0.303 0.318 0.004 
E 1.035 0.057 0.057 0.012 0.006 0.010 0.063 0.060 0.001 
F 1.007 0.248 0.303 0.048 0.062 0.019 0.272 0.334 -0.036 G 0.820 0.217 0.300 0.030 0.027 0.038 0.231 0.313 0.010 
H 1.019 0.086 0.075 0.012 0.017 0.021 0.092 0.084 0.006 
11 0.794 0.124 0.151 0.064 0.032 0.048 0.156 0.167 0.000 
12 0.667 0.262 0.448 0.121 0.087 0.143 0.323 0.492 0.039 
J 0.879 0.145 0.178 0.059 0.046 0.061 0.174 0.201 0.009 

K1 1.024 0.208 0.236 0.046 0.066 0.045 0.231 0.269 -0.010 K2 0.974 0.041 0.025 0.015 0.018 0.020 0.048 0.034 0.003 
K3 1.057 0.061 0.067 0.032 0.031 0.013 0.078 0.082 -0.018 Ll 0.920 0.150 0.133 0.061 0.054 0.053 0.181 0.159 -0.004 L2 0.871 0.354 0.360 0.111 0.130 0.076 0.409 0.426 -0.045 M 0.990 0.270 0.250 0.023 0.047 0.037 0.282 0.274 0.002 
N1 0.985 0.027 0.018 0.046 0.005 0.020 0.050 0.020 -0.005 N2 0.951 0.110 0.141 0.049 0.044 0.057 0.135 0.163 0.011 
01 0.980 0.069 0.050 0.032 0.026 0.036 0.085 0.063 0.007 
02 1.058 0.199 0.136 0.024 0.075 0.123 0.211 0.174 0.073 
p 0.980 0.063 0.066 0.010 0.015 0.007 0.068 0.073 -0.005 
Q1 0.900 0.049 0.027 0.014 0.012 0.025 0.056 0.033 0.012 
Q2 1.188 0.084 0.069 0.057 0.032 0.053 0.112 0.085 0.009 
R 0.918 2.115 2.047 0.295 0.122 0.225 2.263 2.108 0.016 
S 1.010 1.684 1.891 0.333 0.204 0.294 1.850 1.993 0.026 
T 0.818 1.515 1.322 0.345 0.210 0.391 1.687 1.426 0.113 
U 0.989 0.388 0.336 0.141 0.190 0.121 0.459 0.431 -0.045 
V 1.020 0.258 0.292 0.057 0.137 0.122 0.287 0.361 0.025 

W1 0.996 0.127 0.113 0.035 0.018 0.021 0.145 0.122 -0.005 
W2 0.953 0.127 0.116 0.034 0.024 0.026 0.144 0.128 -0.003 
W3 0.933 0.206 0.159 0.035 0.020 0.025 0.224 0.168 -0.002 
W4 1.094 0.158 0.207 0.044 0.044 0.115 0.180 0.229 0.071 
W5 0.984 0.106 0.119 0.033 0.037 0.066 0.122 0.137 0.031 
W6 0.995 0.370 0.352 0.065 0.075 0.123 0.403 0.390 0.052 
x 1.081 0.130 0.093 0.050 0.037 0.026 0.155 0.112 -0.017 
y 0.933 0.134 0.098 0.021 0.033 0.047 0.145 0.115 0.020 
ZA 1.137 0.135 0.172 0.029 0.103 0.074 0.150 0.223 0.008 
ZB 1.010 0.063 0.070 0.046 0.034 0.064 0.086 0.087 0.024 
zC1 1.095 0.140 0.185 0.093 0.065 0.096 0.186 0.218 0.017 
ZC2 1.056 0.057 0.092 0.029 0.033 0.035 0.072 0.108 0.004 
ZC3 1.151 0.102 0.151 0.035 0.024 0.040 0.120 0.163 0.011 
ZDI 0.743 1.222 1.524 0.167 0.146 0.066 1.306 1.597 -0-090 
ZD2 0.934 0.153 0.179 0.013 0.008 0.007 0.160 0.183 -0.004 
ZD3 0.989 0.042 0.055 0.020 0.013 0.017 0.052 0.062 0.000 
ZD4 0.991 0.062 0.069 0.019 0.015 0.020 0.072 0.077 0.003 
ZEI 0.958 0.447 0.395 0.098 0.067 0.132 0.496 0.429 0.049 
ZE2 0.989 0.082 0.055 0.036 0.016 1 0.030 1 0.100 1 0.063 1 0.004 

fit =MoM estimate for Formulation Mean (t=Test, Reference) 
=MoM estimate for Variance of a mean observation (within-subject) 

t 
&2 

wt : -_MoM estimate for Within-Subject variance 
&2 =MoM estimate for Variance0f ATi - 

ARi (i n) 1 ,2 &2 
t =Derived Total Variance of an observation + 6") 

2 t 
&2 

WT+&2 (&2 
- 

WR) 

D2=Derived estimate for Subject-by-Formulation variance I- 
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Table 38: Method-of- Moment Analysis for AUC in Data Sets A 
through ZF 

eAT-AR &Z 2 &2 &2 &2 &2 &2 Data &Z I &WT 
WR RD TRIT 

ZE3 0.926 0.151 0.103 1 0.021 0.024 0.033 0.161 0.115 0.011 
ZF 1.101 0.248 0.305 0.075 0.118 0.098 0.286 0.364 0.002 

At =MoM estimate for Formulation Mean (t=Test, Reference) 

=MoM estimate for Variance of a mean observation (within-subject) t 
.2 6wt --MoM estimate for Within-Subject variance 

&2 =MoM estimate for Variance Of ATi - ARi (i = n) 1 -2 
&2 + Wt 

t =Derived Total Variance of an observation (0 - t2 
W, r+&2 

&2 
&2 =Derived estimate for Subject-by-Formulation. variance 

(&2 
- 

WR) 
DI 
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Table 39: Method-of-Moment Analysis for Cmax in Data Sets A 
through ZF 

Data e 
AT-AR &Z 

T_ 
- 

ý2 &2 
WR 

&J2 - 
1 

&2 
T 

ý2 O'R 2 &D 

A 0.863 0.184 0.193 0.100 0.109 0.103 0.234 0.247 -0.002 B 0.916 0.942 0.908 0.151 0.197 0.156 1.018 1.006 -0-018 C1 1.010 0.057 0.046 0.030 0.057 0.044 0.071 0.075 0.001 C2 1.033 0.093 0.155 0.041 0.087 0.107 0.113 0.198 0.044 D 0.905 0.208 0.236 0.085 0.074 0.143 0.251 0.274 0.063 E 0.904 0.039 0.029 0.070 0.044 0.045 0.074 0.051 -0.012 F 1.027 0.151 0.348 0.121 0.144 0.201 0.212 0.420 0.068 
G 0.637 0.196 0.274 0.220 0.107 0.204 0.306 0.328 0.040 
H 0.994 0.083 0.103 0.021 0.028 0.037 0.094 0.118 0.012 
11 0.863 0.136 0.189 0.102 0.047 0.086 0.187 0.212 0.012 
12 0.671 0.234 0.463 0.145 0.094 0.196 0.307 0.510 0.076 
J 0.969 0.153 0.181 0.138 0.079 0.088 0.222 0.221 -0.021 KI 1.014 0.388 0.425 0.145 0.225 0.148 0.460 0.538 -0-037 K2 0.974 0.073 0.050 0.039 0.030 0.035 0.092 0.065 0.001 

K3 1.095 0.305 0.275 0.170 0.125 0.114 0.390 0.338 -0-034 Ll 0.936 0.144 0.161 0.079 0.090 0.082 0.184 0.206 -0.003 L2 0.823 0.355 0.393 0.137 0.178 0.104 0.423 0.482 -0-053 M 1.035 0.221 0.193 0.094 0.077 0.141 0.268 0.232 0.056 
N1 0.942 0.062 0.034 0.079 0.015 0.061 0.102 0.042 0.014 
N2 0.958 0.093 0.131 0.056 0.037 0.078 0.120 0.149 0.031 
01 1.030 0.077 0.079 0.063 0.068 0.085 0.108 0.113 0.019 
02 1.088 0.194 0.144 0.042 0.101 0.150 0.215 0.195 0.078 
p 0.846 0.031 0.041 0.026 0.024 0.055 0.044 0.053 0.030 
Q1 1.145 0.029 0.051 0.017 0.026 0.042 0.037 0.064 0.020 
Q2 1.255 0.065 0.072 0.066 0.038 0.074 0.098 0.092 0.022 
R 0.936 1.145 1.111 0.323 0.152 0.215 1.306 1.187 -0.023 S 0.963 0.975 1.102 0.354 0.266 0.298 1.152 1.235 -0.012 T 0.804 0.768 0.680 0.275 0.190 0.346 0.905 0.775 0.114 
U 0.977 0.635 0.464 0.108 0.258 0.190 0.689 0.593 0.007 
V 0.977 0.267 0.308 0.205 0.299 0.189 0.370 0.458 -0-063 W1 0.961 0.143 0.107 0.067 0.037 0.043 0.176 0.126 -0.009 W2 0.950 0.140 0.106 0.064 0.038 0.039 0.172 0.125 -0.012 W3 0.880 0.186 0.156 0.064 0.048 0.088 0.218 0.180 0.032 

W4 1.049 0.134 0.185 0.053 0.056 0.062 0.161 0.213 0.007 
W5 1.007 0.101 0.126 0.041 0.050 0.047 0.121 0.151 0.001 
W6 0.959 0.164 0.189 0.054 0.074 0.060 0.191 0.226 -0.004 x 1.096 0.113 0.089 0.063 0.029 0.069 0.144 0.103 0.023 
y 0.895 0.116 0.080 0.125 0.145 0.098 0.178 0.152 -0-037 ZA 1.128 0.225 0.231 0.053 0.220 0.134 0.251 0.341 -0.002 ZB 1.116 0.204 0.094 0.081 0.073 0.178 0.244 0.131 0.101 

zC1 1.106 0.108 0.155 0.105 0.114 0.109 0.161 0.212 0.000 
ZC2 1.034 0.056 0.093 0.032 0.035 0.033 0.071 0.111 0.000 
ZC3 1.102 0.103 0.137 0.037 0.039 0.038 0.121 0.156 0.000 
ZD1 0.788 1.160 1.441 0.235 0.221 0.105 1.277 1.551 -0.122 
ZD2 0.995 0.088 0.089 0.033 0.036 0.013 0.105 0.107 -0.022 
ZD3 0.979 0.012 0.020 0.005 0.013 0.009 0.015 0.027 -0-001 
ZD4 0.963 0.042 0.046 0.016 0.013 0.016 0.050 0.052 0.002 
ZE1 0.900 0.548 0.537 0.171 0.123 0.196 0.634 0.598 0.049 
ZE2 1.005 1 0.075 0.054 1 0.030 1 0.015 0.030 0.090 1 0.061 1 0.008 

_ ýt =MoM estimate for Formulation Mean (t=Test, Reference) 
=MoM estimate for Variance of a mean observation (within-subject) t 

ý2 o, wt =MoM estimate for Within-Subject variance 
&2 

=MoM estimate for Variance0f ATi - AM (i n) 2 
&2 

t =Derived Total Variance of an observation (&? + &wt) 
t2 

&2 
WT+&2 &2 

=Derived estimate for Subject-by-Formulation variance 
(&2 

-2 WR) DI 
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Table 39: Method-of-Moment Analysis for Cmax in Data Sets A 
through ZF 

Data efLT-AR &2 &2 &2 &2 41&: 
Rý. 

I &WT &WR 
ITRD 

ZE3 0.928 0.141 1 0.104 1 0.020 0.021 0.026 0.152 0.114 0.005 
ZF 1.493 0.455 0.355 0.270 0.310 0.340 0.590 0.510 0.050 

At =MoM estimate for Formulation Mean (t=Test, Reference) 
0 =MoM estimate for Variance of a mean observation (within-subject) 

t &2 
Wt =MoM estimate for Within-Subject variance 

&2 
I =MoM estimate for Variance Of ATi - AM (i 1, n) 

&2 + 
t =Derived Total Variance of an observation t2 

&2 (&2 
- 

OWT-t-OWR 

D =Derived estimate for Subject-by-Formulation variance I 
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Table 40: Unstructued (UN) REML Analysis for AUC in Data Sets 
A through ZF 

Data eAT-AR &2 
BT 

&2 
BR 

COV ý2 O'WT ý2 O'WR -2 O'T &2 
R 

2 &D 

A 0.914 0.137 0.168 0.158 0.060 0.071 0.197 0.239 -0.010- B 0.906 1.810 1.836 1.838 0.162 0.176 1.972 2.012 -0.029 C1 1.059 0.015 0.017 0.021 0.026 0.049 0.041 0.066 -0-010 C2 1.075 0.084 0.109 0.079 0.027 0.077 0.111 0.187 0.035 
D 0.927 0.288 0.289 0.287 0.016 0.029 0.303 0.318 0.003 
E 1.036 0.051 0.054 0.052 0.012 0.006 0.063 0.060 0.001 
F 1.007 0.224 0.271 0.266 0.049 0.063 0.273 0.334 -0.037 G 0.820 0.204 0.296 0.243 0.029 0.026 0.232 0.323 0.014 
H 1.019 0.079 0.068 0.071 0.012 0.016 0.091 0.083 0.005 
11 0.794 0.094 0.135 0.114 0.061 0.031 0.155 0.167 0.002 
12 0.667 0.201 0.404 0.284 0.122 0.088 0.323 0.492 0.038 
J 0.879 0.110 0.154 0.130 0.069 0.051 0.179 0.205 0.004 

K1 1.024 0.185 0.203 0.199 0.045 0.064 0.230 0.267 -0-011 K2 0.974 0.033 0.017 0.023 0.015 0.017 0.047 0.034 0.003 
K3 1.057 0.045 0.052 0.057 0.033 0.030 0.078 0.082 -0.018 LI 0.915 0.118 0.105 0.113 0.061 0.053 0.178 0.158 -0.003 L2 0.864 0.292 0.289 0.314 0.112 0.128 0.404 0.417 -0.047 M 0.990 0.261 0.226 0.242 0.021 0.049 0.282 0.275 0.004 
N1 0.985 0.004 0.015 0.012 0.048 0.005 0.052 0.020 -0.006 N2 0.946 0.085 0.113 0.096 0.050 0.045 0.135 0.158 0.006 
01 0.980 0.052 0.037 0.042 0.032 0.027 0.083 0.064 0.004 
02 1.070 0.191 0.101 0.105 0.024 0.072 0.215 0.173 0.082 
p 0.982 0.059 0.057 0.060 0.009 0.013 0.069 0.071 -0.004 Q1 0.902 0.043 0.019 0.025 0.014 0.013 0.057 0.032 0.011 
Q2 1.198 0.048 0.051 0.047 0.065 0.033 0.113 0.084 0.003 
R 0.905 1.962 1.982 1.964 0.285 0.119 2.246 2.102 0.017 
S 1.001 1.527 1.743 1.638 0.339 0.211 1.866 1.953 -0.006 T 0.817 1.337 1.217 1.221 0.349 0.211 1.686 1.428 0.112 
U 0.976 0.325 0.202 0.294 0.146 0.207 0.471 0.409 -0-061 V 1.024 0.234 0.201 0.210 0.057 0.140 0.292 0.342 0.015 

W1 0.996 0.103 0.103 0.107 0.037 0.019 0.139 0.122 -0.007 
W2 0.955 0.104 0.103 0.106 0.036 0.026 0.139 0.129 -0.005 
W3 0.936 0.176 0.148 0.164 0.038 0.020 0.214 0.169 -0.005 
W4 1.086 0.132 0.183 0.124 0.044 0.044 0.176 0.227 0.066 
W5 0.983 0.087 0.100 0.079 0.032 0.038 0.119 0.138 0.030 
W6 0.987 0.330 0.319 0.288 0.065 0.074 0.395 0.394 0.073 
x 1.081 0.104 0.076 0.098 0.049 0.035 0.153 0.110 -0.017 
y 0.941 0.119 0.083 0.093 0.019 0.031 0.139 0.114 0.016 
ZA 1.127 0.121 0.111 0.116 0.028 0.124 0.149 0.235 0.001 
ZB 0.997 0.041 0.051 0.034 0.045 0.041 0.086 0.091 0.024 
zC1 1.097 0.095 0.152 0.115 0.090 0.064 0.185 0.216 0.017 
ZC2 1.057 0.043 0.075 0.057 0.028 0.033 0.071 0.108 0.004 
ZC3 1.146 0.086 0.135 0.106 0.033 0.024 0.120 0.159 0.008 
ZDI 0.743 1.116 1.436 1.340 0.212 0.177 1.328 1.613 -0.128 
ZD*2 0.934 0.144 0.174 0.163 0.018 0.010 0.162 0.184 -0.007 
ZD3 0.989 0.032 0.048 0.040 0.021 0.014 0.053 0.062 0.000 
ZD4 0.989 0.051 0.063 0.056 0.020 0.015 0.071 0.078 0.002 
ZE1 0.958 0.399 0.362 0.355 0.096 0.066 0.494 0.428 0.051 
ZE2 0.989 0.065 0.047 0.053 0.035 0.016 0.100 0.063 0.005 
ZE3 0.926 1 0.140 1 0.091 0.110 0.021 1 0.024 1 0.161 1 0.115 0.011 

At =REML estimate for Formulation Mean (t=Test, Reference) 
A 

Bt=REML estimate for Between-subject Variance 
2 
Wt =REML estimate for Within-Subject variance 

COV =REML estimate for covariance of a test and reference obs. 
&2 (&2 

t+ 
&2 

t) t =Derived Total Variance of an observation BW 
(&2 2 &2 =Derived Subject-by-Formulation variance T+ 

&BR- 2COV) QB 

327 



Table 40: Unstructued (UN) REML Analysis for AUC in Data Sets 
A through ZF 

Data e 
AT-AR &2 &T BR COV &WýýT &W2R &2D 

ZF 1 1.106 

1 
0.205 1 0.246 0.226 0.076 0.121 0.281 0.367 -0-000 

At =REML estimate for Formulation Mean (t=Test, Reference) 
&2 

Bt =REML estimate for Between-subject Variance 
&2 

Wt =REML estimate for Within-Subject variance 
COV =REML estimate for covariance of a test and reference obs. 

&2 (&2 
t+ 

&2 
t) t =Derived Total Variance of an observation BW 

&2 (&2 + &2 
D =Derived Subject-by-Formulation variance BT BR - 2COV) 
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Table 41: Unstructued (UN) REML Analysis for Cmax in Data 
Sets A through ZF 

Data e 
AT -AR 2- &BT &2 

BR PO'BTO'BR &2 
WT 

I 2 UWR &: 2 
T 

&2 
R 

&2 
Q 

A 0.862 0.131 0.135 0.136 0.102 0.106 0.232 0.241 -0.005 B 0.916 0.867 0.809 0.847 0.151 0.197 1.018 1.007 -0.019 C1 1.008 0.043 0.010 0.030 0.028 0.071 0.071 0.082 -0-006 C2 1.042 0.073 0.111 0.070 0.039 0.087 0.112 0.198 0.044 
D 0.905 0.163 0.198 0.150 0.091 0.077 0.254 0.275 0.060 
E 0.913 0.000 0.008 0.010 0.064 0.042 0.064 0.051 -0.012 F 1.027 0.093 0.280 0.149 0.116 0.137 0.209 0.417 0.075 
G 0.637 0.092 0.225 0.131 0.210 0.107 0.302 0.332 0.054 
H 0.999 0.072 0.087 0.076 0.022 0.028 0.094 0.115 0.008 
11 0.863 0.088 0.166 0.119 0.096 0.046 0.184 0.212 0.015 
12 0.671 0.162 0.416 0.250 0.143 0.093 0.305 0.509 0.078 
J 0.969 0.071 0.142 0.122 0.166 0.084 0.237 0.226 -0.030 K1 1.014 0.315 0.314 0.333 0.144 0.218 0.459 0.532 -0-037 K2 0.974 0.052 0.036 0.044 0.038 0.029 0.091 0.065 0.000 

K3 1.095 0.217 0.215 0.234 0.174 0.120 0.392 0.335 -0.035 Ll 0.928 0.100 0.114 0.110 0.081 0.091 0.181 0.205 -0.006 L2 0.817 0.281 0.300 0.317 0.138 0.175 0.420 0.475 -0.052 M 1.035 0.175 0.155 0.136 0.093 0.076 0.267 0.231 0.058 
NI 0.942 0.018 0.026 0.018 0.085 0.015 0.103 0.041 0.009 
N2 0.958 0.063 0.109 0.074 0.059 0.038 0.122 0.147 0.024 
01 1.028 0.043 0.047 0.034 0.069 0.066 0.112 0.113 0.022 
02 1.098 0.178 0.097 0.091 0.044 0.098 0.222 0.195 0.093 
p 0.848 0.019 0.031 0.009 0.025 0.023 0.044 0.054 0.032 
Q1 1.150 0.021 0.036 0.019 0.016 0.025 0.038 0.061 0.018 
Q2 1.264 0.024 0.050 0.028 0.074 0.040 0.098 0.090 0.018 
R 0.921 0.981 1.027 1.016 0.315 0.151 1.296 1.177 -0.023 
S 0.964 0.802 0.963 0.889 0.358 0.269 1.159 1.231 -0-015 
T 0.803 0.627 0.585 0.550 0.280 0.193 0.907 0.777 0.112 
U 0.978 0.583 0.332 0.454 0.109 0.264 0.692 0.596 0.007 
V 0.979 0.174 0.158 0.194 0.195 0.290 0.369 0.448 -0.055 

W1 0.961 0.111 0.088 0.104 0.064 0.038 0.176 0.126 -0-008 
W2 0.950 0.109 0.087 0.104 0.062 0.038 0.171 0.126 -0-011 
W3 0.883 0.151 0.132 0.128 0.063 0.047 0.214 0.179 0.028 
W4 1.044 0.103 0.157 0.126 0.051 0.054 0.154 0.212 0.007 
W5 1.004 0.077 0.101 0.089 0.041 0.049 0.118 0.150 0.001 
W6 0.956 0.129 0.154 0.143 0.057 0.070 0.186 0.224 -0-003 
x 1.096 0.078 0.074 0.067 0.065 0.028 0.143 0.102 0.017 
y 0.920 0.055 0.007 0.047 0.129 0.149 0.184 0.156 -0.033 
ZA 1.116 0.205 0.127 0.151 0.057 0.228 0.262 0.355 0.030 
ZB 1.096 0.177 0.046 0.057 0.080 0.099 0.257 0.145 0.108 

ZC1 1.107 0.056 0.097 0.077 0.103 0.113 0.160 0.210 -0-001 
ZC2 1.033 0.040 0.074 0.058 0.031 0.036 0.071 0.110 -0-001 
ZC3 1.101 0.085 0.117 0.101 0.036 0.038 0.121 0.154 0.000 
ZDI 0.788 1.019 1.310 1.247 0.281 0.261 1.300 1.571 -0.165 
ZD2 0.995 0.071 0.071 0.082 0.033 0.036 0.105 0.107 -0.022 
ZD3 0.979 0.010 0.012 0.012 0.005 0.017 0.015 0.029 -0-002 
ZD4 0.963 0.034 0.039 0.036 0.017 0.013 0.050 0.053 0.001 
ZE1 0.900 0.465 0.476 0.444 0.167 0.121 0.632 0.597 0.052 
ZE2 1.006 0.060 0.047 0.049 0.030 0.014 0.090 0.061 0.009 
ZE3 0.928 0.131 0.094 0.110 0.021 

'0.021 
1 0.152 1 0,115 0.005 

At =REML estimate for Formulation Mean (t _Test, Reference) 
&2 

=REML estimate for Between-subject Variance Bt &2 
Wt =REML estimate for Within-Subject variance 

COV =REML estimate for covariance of a test and reference obs. 
&2 (&2 

t+ 
&2 

t) =Derived Total Variance of an observation BW t &2 (&2 + &2 
- 2COV) Q =Derived Subject-by-Formulation variance BT BR 
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Table 41: Unstructued (UN) REML Analysis for Cmax in Data 
Sets A through ZF 

&2 22 &2 1 6,2 1 &2 Data eAT-AR BT 
&ý2R KBTO'BR 6rWT I &WR ITRD 

ZF 1.510 0.311 0.200 0.233 
1 

0.269 1 0.306 1 0.580JUNI- 0.044 
At =REML estimate for Formulation Mean (t=Test, Reference) 

&2 
Bt =REML estimate for Between-subject Variance 

&2 
Wt =REML estimate for Within-Subject variance 

COV =REML estimate for covariance of a test and reference obs. 
&2 (&2 + &2 

t) t =Derived Total Variance of an observation Bt W 
&2 (&2 + &2 

R D =Derived Subject-by-Formulation variance BT B- 2COV) 
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Table 42: FAO(2) REML Analysis for AUC in Data Sets A through 
ZF 

Data e ý'T -AR ý2 O'BT ^2 UBR &2 
WT 

&2 
WR 

^2 UD &2 
T 

&2 
R 

A 0.913 0.142 0.172 0.056 0.068 0.000 0.198 0.239 
B 0.907 1.819 1.848 0.153 0.166 0.000 1.972 2.014 
C1 1.060 0.017 0.022 0.024 0.044 0.000 0.041 0.066 
C2 1.075 0.084 0.075 0.027 0.077 0.035 0.111 0.152 
D 0.927 0.288 0.286 0.016 0.029 0.003 0.303 0.315 
E 1.036 0.051 0.054 0.012 0.007 0.000 0.063 0.060 
F 1.007 0.235 0.286 0.038 0.049 0.000 0.273 0.335 
G 0.820 0.204 0.290 0.029 0.026 0.006 0.232 0.316 
H 1.019 0.079 0.063 0.012 0.016 0.004 0.091 0.079 
11 0.794 0.095 0.136 0.060 0.031 0.000 0.155 0.167 
12 0.667 0.201 0.400 0.122 0.088 0.004 0.323 0.487 
J 0.879 0.110 0.154 0.069 0.051 0.000 0.179 0.205 

K1 1.024 0.188 0.208 0.042 0.059 0.000 0.230 0.267 
K2 0.974 0.032 0.017 0.015 0.017 0.000 0.047 0.034 
K3 1.057 0.052 0.057 0.027 0.025 0.000 0.078 0.082 
Ll 0.915 0.119 0.106 0.059 0.051 0.000 0.178 0.158 
L2 0.865 0.307 0.307 0.099 0.111 0.000 0.405 0.418 
M 0.990 0.261 0.224 0.021 0.049 0.002 0.282 0.272 
N1 0.985 0.009 0.015 0.042 0.005 0.000 0.052 0.020 
N2 0.946 0.085 0.109 0.050 0.045 0.004 0.135 0.154 
01 0.980 0.052 0.034 0.032 0.027 0.002 0.083 0.062 
02 1.070 0.191 0.058 0.024 0.072 0.043 0.215 0.130 
p 0.981 0.060 0.059 0.008 0.012 0.000 0.069 0.071 

Q1 0.902 0.043 0.015 0.014 0.013 0.004 0.057 0.028 
Q2 1.198 0.048 0.047 0.065 0.033 0.003 0.113 0.080 
R 0.905 1.951 1.980 0.295 0.121 0.000 2.246 2.102 
S 1.002 1.533 1.746 0.332 0.209 0.000 1.866 1.954 
T 0.817 1.337 1.115 0.349 0.211 0.102 1.686 1.326 
U 0.978 0.337 0.240 0.132 0.172 0.000 0.469 0.411 
V 1.024 0.234 0.188 0.057 0.140 0.013 0.292 0.329 

W1 0.996 0.107 0.104 0.033 0.017 0.000 0.140 0.122 
W2 0.955 0.106 0.104 0.034 0.025 0.000 0.140 0.129 
W3 0.936 0.179 0.149 0.035 0.019 0.000 0.214 0.169 
W4 1.086 0.132 0.117 0.044 0.044 0.065 0.176 0.162 
W5 0.983 0.087 0.071 0.032 0.038 0.029 0.119 0.109 
W6 0.987 0.330 0.252 0.065 0.074 0.068 0.395 0.326 
x 1.081 0.111 0.081 0.041 0.030 0.000 0.152 0.111 
y 0.941 0.119 0.073 0.019 0.031 0.010 0.139 0.104 
ZA 1.127 0.121 0.110 0.028 0.124 0.001 0.149 0.235 
ZB 0.997 0.041 0.028 0.045 0.041 0.023 0.086 0.068 
zC1 1.097 0.095 0.139 0.090 0.064 0.013 0.185 0.203 
ZC2 1.057 0.043 0.075 0.028 0.033 0.000 0.071 0.108 
ZC3 1.146 0.086 0.131 0.033 0.024 0.004 0.120 0.155 
ZDI 0.743 1.175 1.473 0.151 0.142 0.000 1.326 1.616 
ZD2 0.934 0.149 0.175 0.013 0.008 0.000 0.162 0.184 
ZD3 0.989 0.033 0.048 0.020 0.013 0.000 0.053 0.062 
ZD4 0.989 0.051 0.061 0.020 0.015 0.002 0.071 0.076 
ZEI 0.958 0.399 0.316 0.096 0.066 0.046 0.494 0.382 
ZE2 0.989 0.065 0.044 0.035 0.016 0.003 0.100 0.060 
ZE3 0.926 0.140 0.087 0.021 0.024 0.004 0.161 0.111 
ZF 1.106 0.206 0.247 0.076 0.120 1 0.000 0.281 1 0.367 

At =REML estimate for Formulation Mean (t=Test, Reference) 
&2 

-=REML estimate for Between-subject Variance - Bt 

&2 : =REML estimate for Within-Subject variance . Wt &2 =REML estimate for Subject-by-Formulation variance D 
&2 (&2 

t+ 
&2 

t) t =Derived Total Variance of an observation BW 
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Table 43: FAO(2) REML Analysis for Cmax in Data Sets A through 
ZF 

Data e"T -AR &2 - 
BT 

&2 
BR 

_ý2 - UWT 
7 

2- &D _^ 2 O'T &2 
R 

A 0.862 0.132 0.137 0.100 0.104 0.000 0.232 0.242 
B 0.916 0.871 0.818 0.147 0.189 0.000 1.018 1.007 
C1 1.009 0.044 0.018 0.027 0.063 0.000 0.071 0.082 
C2 1.042 0.073 0.067 0.039 0.087 0.044 0.112 0.154 
D 0.905 0.163 0.139 0.091 0.077 0.059 0.254 0.216 
E 0.912 0.006 0.010 0.059 0.040 0.000 0.065 0.050 
F 1.027 0.093 0.238 0.116 0.137 0.041 0.209 0.375 
G 0.637 0.092 0.187 0.210 0.107 0.038 0.302 0.294 
H 0.999 0.072 0.080 0.022 0.028 0.007 0.094 0.107 
11 0.863 0.088 0.162 0.096 0.046 0.004 0.184 0.208 
12 0.671 0.162 0.386 0.143 0.093 0.031 0.305 0.478 
J 0.969 0.094 0.145 0.144 0.080 0.000 0.238 0.225 

K1 1.014 0.323 0.331 0.136 0.202 0.000 0.459 0.533 
K2 0.974 0.053 0.036 0.038 0.028 0.000 0.091 0.065 
K3 1.095 0.233 0.223 0.158 0.112 0.000 0.392 0.335 
Ll 0.929 0.102 0.117 0.079 0.089 0.000 0.181 0.205 
L2 0.818 0.297 0.321 0.124 0.155 0.000 0.421 0.476 
M 1.035 0.175 0.106 0.093 0.076 0.049 0.267 0.182 
N1 0.942 0.018 0.017 0.085 0.015 0.009 0.103 0.032 
N2 0.958 0.063 0.087 0.059 0.038 0.022 0.122 0.124 
01 1.028 0.043 0.027 0.069 0.066 0.020 0.112 0.093 
02 1.098 0.178 0.047 0.044 0.098 0.050 0.222 0.144 
p 0.848 0.019 0.004 0.025 0.023 0.027 0.044 0.027 

Q1 1.150 0.021 0.018 0.016 0.025 0.018 0.038 0.043 
Q2 1.264 0.024 0.033 0.074 0.040 0.017 0.098 0.073 
R 0.922 0.995 1.030 0.301 0.147 0.000 1.296 1.177 
S 0.964 0.811 0.968 0.348 0.264 0.000 1.159 1.231 
T 0.803 0.627 0.482 0.280 0.193 0.102 0.907 0.675 
U 0.978 0.584 0.349 0.107 0.248 0.000 0.692 0.597 
V 0.978 0.186 0.184 0.183 0.265 0.000 0.369 0.449 

W1 0.962 0.115 0.090 0.060 0.036 0.000 0.175 0.126 
W2 0.951 0.114 0.090 0.056 0.035 0.000 0.170 0.126 
W3 0.883 0.151 0.108 0.063 0.047 0.024 0.214 0.155 
W4 1.044 0.102 0.157 0.052 0.055 0.000 0.154 0.212 
W5 1.004 0.077 0.101 0.040 0.049 0.000 0.118 0.150 
W6 0.956 0.130 0.156 0.056 0.069 0.000 0.186 0.224 
x 1.096 0.078 0.058 0.065 0.028 0.016 0.143 0.086 
y 0.917 0.062 0.027 0.122 0.130 0.000 0.183 0.157 

ZA 1.116 0.205 0.111 0.057 0.228 0.016 0.262 0.339 
ZB 1.096 0.177 0.018 0.080 0.099 0.027 0.257 0.118 

zC1 1.107 0.059 0.099 0.101 0.111 0.000 0.160 0.210 
ZC2 1.033 0.042 0.076 0.029 0.034 0.000 0.071 0.110 
ZC3 1.101 0.086 0.117 0.035 0.037 0.000 0.121 0.154 
ZD1 0.788 1.088 1.362 0.212 0.211 0.000 1.299 1.573 
ZD2 0.995 0.078 0.078 0.027 0.029 0.000 0.105 0.107 
ZD3 0.979 0.010 0.014 0.005 0.015 0.000 0.015 0.029 
ZD4 0.963 0.034 0.038 0.017 0.013 0.001 0.050 0.052 
ZE1 0.900 0.465 0.425 0.167 0.121 0.051 0.632 0.546 
ZE2 1.006 0.060 0.040 0.030 0.014 0.007 0.090 0.055 
ZE3 0.928 0.131 0.092 0.021 0.021 0.002 0.152 0.113 
ZF 1.510 0.311 0.175 0.269 0.306 1 0.025 0.580 1 0.4 

At =REML estimate for Formulation Mean (t=Test, Reference) 
&2 =REML estimate for Between-subject Variance Bt 
&2 

wt =REML estimate for Within-Subject variance 
&2 

D =REML estimate for Subject-by-Formulation variance 
+ &2 &2 (&2 

=Derived Total Variance of an observation ) 
t t B Wt 
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Table 44: CSH REML Analysis for AUC in Data Sets A through 
ZF 

DatL O'T L &2-- 
BT 

&2 
BR 

a 
T T 

&2 
R 

A 0.913 0.142 0.172 1.000 0.056 
1 

0.068 0.001 0.198 0.239 
B 0.907 1.819 1.848 1.000 0.153 1 

ý166 
0.000 1.972 2.014 

C1 1.060 0.017 0.022 1.000 O. nqI ,4 0.044 0.000 0.041 0.066 
C2 1.075 0.084 0.109 0.826 0.027 0.077 0.035 0.111 0.187 
D 0.927 0.287 0.289 0.994 0.016 0.029 0.003 0.303 0.318 
E 1.036 0.051 0.054 0.993 0.012 0.006 0.001 0.063 0.060 
F 1.007 0.235 0.286 1.000 0.038 0.049 0.002 0.273 0.335 
G 0.820 0.204 0.296 0.989 0.029 0.026 0.014 0.232 0.323 
H 1.019 0.079 0.068 0.968 0.012 0.016 0.005 0.091 0.083 
11 0.794 0.095 0.136 1.000 0.060 0.031 0.004 0.155 0.167 
12 0.667 0.201 0.404 0.995 0.122 0.088 0.038 0.323 0.492 
J 0.879 0.110 0.154 1.000 0.069 0.051 0.004 0.179 0.205 

K1 1.024 0.188 0.208 1.000 0.042 0.059 0.001 0.230 0.267 
K2 0.974 0.032 0.017 0.998 0.015 0.017 0.003 0.047 0.034 
K3 1.057 0.052 0.057 1.000 0.027 0.025 0.000 0.078 0.082 
Ll 0.915 0.119 0.106 1.000 0.059 0.051 0.000 0.178 0.158 
L2 0.865 0.307 0.307 1.000 0.099 0.111 0.000 0.405 0.418 
M 0.990 0.261 0.226 0.995 0.021 0.049 0.004 0.282 0.275 
N1 0.985 0.009 0.015 1.000 0.042 0.005 0.001 0.052 0.020 
N2 0.946 0.085 0.113 0.981 0.050 0.045 0.006 0.135 0.158 
01 0.980 0.052 0.037 0.968 0.032 0.027 0.004 0.083 0.064 
02 1.070 0.191 0.101 0.755 0.024 0.072 0.082 0.215 0.173 
p 0.981 0.060 0.059 1.000 0.008 0.012 0.000 0.069 0.071 

Q1 0.902 0.043 0.019 0.885 0.014 0.013 0.011 0.057 0.032 
Q2 1.198 0.048 0.051 0.966 0.065 0.033 0.003 0.113 0.084 
R 0.905 1.962 1.982 0.996 0.285 0.119 0.017 2.246 2.102 
S 1.002 1.533 1.746 1.000 0.332 0.209 0.007 1.866 1.954 
T 0.817 1.337 1.217 0.957 0.349 0.211 0.112 1.686 1.428 
U 0.978 0.337 0.240 1.000 0.132 0.172 0.008 0.469 0.411 
V 1.024 0.234 0.201 0.967 0.057 0.140 0.015 0.292 0.342 

W1 0.996 0.107 0.104 1.000 0.033 0.017 0.000 0.140 0.122 
W2 0.955 0.106 0.104 1.000 0.034 0.025 0.000 0.140 0.129 
W3 0.936 0.179 0.149 1.000 0.035 0.019 0.001 0.214 0.169 
W4 1.086 0.132 0.183 0.801 0.044 0.044 0.066 0.176 0.227 
W5 0.983 0.087 0.100 0.843 0.032 0.038 0.030 0.119 0.138 
W6 0.987 0.330 0.319 0.888 0.065 0.074 0.073 0.395 0.394 
x 1.081 0.111 0.081 1.000 0.041 0.030 0.002 0.152 0.111 
y 0.941 0.119 0.083 0.938 0.019 0.031 0.016 0.139 0.114 

ZA 1.127 0.121 0.111 0.997 0.028 0.124 0.001 0.149 0.235 
ZB 0.997 0.041 0.051 0.740 0.045 0.041 0.024 0.086 0.091 
zC1 1.097 0.095 0.152 0.955 0.090 0.064 0.017 0.185 0.216 
ZC2 1.057 0.043 0.075 1.000 0.028 0.033 0.004 0.071 0.107 
ZC3 1.146 0.086 0.135 0.986 0.033 0.024 0.008 0.120 0.159 
ZD1 0.743 1.175 1.473 1.000 0.151 0.142 0.017 1.326 1.616 
ZD2 0.934 0.149 0.175 1.000 0.013 0.008 0.001 0.162 0.184 
ZD3 0.989 0.033 0.048 1.000 0.020 0.013 0.002 0.053 0.062 
ZD4 0.989 0.051 0.063 0.987 0.020 0.015 0.002 0.071 0.078 
ZEI 0.958 0.399 0.362 0.934 0.096 0.066 0.051 0.494 0.428 
ZE2 0.989 0.065 0.047 0.971 0.035 0.016 0.005 0.100 0.063 
ZE3 0.926 1 0.140 1 0.091 0.976 0.021 0.024 1 0.011 1 0.161 1 0.115 

At =REML estimate for Formulation Mean (t=Test, Reference) 
&2 

=REML estimate for Between-subject Variance Bt 
&2 

Wt =REML estimate for Within-Subject variance 
=REML estimate for correlation of a test and reference obs. 

) &2 
=Derived Total Variance of an observation 

(&2 + &2 
tB W t t 

&2 2 +&2 =Derived Subject-by-Formulation variance 
O 

- 
2ý6rBT&BR) 

D BT BR 
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Table 44: CSH REML Analysis for AUC in Data Sets A through 
ZF 

Data eý'T-AR &2 &2R &2 &2 &2 &2 &2 
BT B WT WR QTR 

ZF 1.106 0.206 0.247 1.000 0.076 0.120 0.002 0.281 0.367 
At =REML estimate for Formulation Mean (t=Test, Reference) 

&2 
Bt =REML estimate for Between-subject Variance 

&2 
Wt =REML estimate for Within-Subject variance 

=REML estimate for correlation of a test and reference obs. 
&2 (&2 + &2 

t) t =Derived Total Variance of an observation Bt W 
&2 22 

D =Derived Subject-by-Formulation variance OrBT + &BR - 2ý&BT&BR) 
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Table 45: CSH REML Analysis for Cmax in Data Sets A through 
ZF 

Data e 
ILT-AR &2 

- 
BT 

&2 
- 

BR 
&2- 

WT 
- 

^ :2 O'WR ET- 

- 
O'D -2 O'T ^2 O'R 

A 0.862 0.132 0.137 1.000 0.100 0.104 0.000 0.232 0.242 
B 0.916 0.871 0.818 1.000 0.147 0.189 0.001 1.018 1.007 
C1 1.009 0.044 0.018 1.000 0.027 0.063 0.005 0.071 0.082 
C2 1.042 0.073 0.111 0.778 0.039 0.087 0.044 0.112 0.198 
D 0.905 0.163 0.198 0.838 0.091 0.077 0.060 0.254 0.275 
E 0.000 0.008 0.000 0.064 0.042 0.008 0.064 0.050 
F 1.027 0.093 0.280 0.923 0.116 0.137 0.075 0.209 0.417 
G 0.637 0.092 0.225 0.912 0.210 0.107 0.054 0.302 0.332 
H 0.999 0.072 0.087 0.956 0.022 0.028 0.008 0.094 0.115 
11 0.863 0.088 0.166 0.989 0.096 0.046 0.015 0.184 0.212 
12 0.671 0.162 0.416 0.963 0.143 0.093 0.078 0.305 0.509 
J 0.969 0.094 0.145 1.000 0.144 0.080 0.006 0.238 0.225 

K1 1.014 0.323 0.331 1.000 0.136 0.202 0.000 0.459 0.533 
K2 0.974 0.053 0.036 1.000 0.038 0.028 0.002 0.091 0.065 
K3 1.095 0.233 0.223 1.000 0.158 0.112 0.000 0.392 0.335 
Ll 0.929 0.102 0.117 1.000 0.079 0.089 0.000 0.181 0.205 
L2 0.818 0.297 0.321 1.000 0.124 0.155 0.000 0.421 0.476 
M 1.035 0.175 0.155 0.827 0.093 0.076 0.058 0.267 0.231 
N1 0.942 0.018 0.026 0.813 0.085 0.015 0.009 0.103 0.041 
N2 0.958 0.063 0.109 0.892 0.059 0.038 0.024 0.122 0.147 
01 1.028 0.043 0.047 0.760 0.069 0.066 0.022 0.112 0.113 
02 1.098 0.178 0.097 0.693 0.044 0.098 0.093 0.222 0.195 
p 0.848 0.019 0.031 0.378 0.025 0.023 0.032 0.044 0.054 

Q1 1.150 0.021 0.036 0.703 0.016 0.025 0.018 0.038 0.061 
Q2 1.264 0.024 0.050 0.812 0.074 0.040 0.018 0.098 0.090 
R 0.922 0.995 1.030 1.000 0.301 0.147 0.000 1.296 1.177 
S 0.964 0.811 0.967 1.000 0.348 0.264 0.007 1.159 1.231 
T 0.803 0.627 0.585 0.908 0.280 0.193 0.112 0.907 0.777 
U 0.978 0.584 0.349 1.000 0.107 0.248 0.030 0.692 0.597 
V 0.978 0.186 0.184 1.000 0.183 0.265 0.000 0.369 0.449 

W1 0.962 0.115 0.090 1.000 0.060 0.036 0.001 0.175 0.126 
W2 0.951 0.114 0.090 1.000 0.056 0.035 0.001 0.170 0.126 
W3 0.883 0.151 0.132 0.905 0.063 0.047 0.028 0.214 0.179 
W4 1.044 0.103 0.157 0.994 0.051 0.054 0.007 0.154 0.212 
W5 1.004 0.077 0.101 1.000 0.040 0.049 0.002 0.118 0.150 
W6 0.956 0.130 0.156 1.000 0.056 0.069 0.001 0.186 0.224 
x 1.096 0.078 0.074 0.885 0.065 0.028 0.017 0.143 0.102 
y 0.917 0.062 0.027 1.000 0.122 0.130 0.007 0.183 0.157 

ZA 1.116 0.205 0.127 0.935 0.057 0.228 0.030 0.262 0.355 
ZB 1.096 0.177 0.046 0.636 0.080 0.099 0.108 0.257 0.145 

zC1 1.107 0.059 0.099 1.000 0.101 0.111 0.005 0.160 0.210 
ZC2 1.033 0.042 0.076 1.000 0.029 0.034 0.005 0.071 0.110 
ZC3 1.101 0.086 0.117 1.000 0.035 0.037 0.002 0.121 0.154 
ZD1 0.788 1.088 1.362 1.000 0.212 0.211 0.015 1.299 1.573 
ZD2 0.995 0.078 0.078 1.000 0.027 0.029 0.000 0.105 0.107 
ZD3 0.979 0.010 0.014 1.000 0.005 0.015 0.000 0.015 0.029 
ZD4 0.963 0.034 0.039 0.987 0.017 0.013 0.001 0.050 0.053 
ZE1 0.900 0.465 0.476 0.945 0.167 0.121 0.052 0.632 0.597 
ZE2 1.006 0.060 0.047 0.928 0.030 0.014 0.009 0.090 0.061 
ZE3 0.928 0.131 0.094 0.991 0.021 1 0.021 1 0.005 0.152 0.115 

At =REML estimate for Formulation Mean (t=Test, Reference) 
A 

=REML estimate for Between-subject Variance Bt 
&2 

Wt =REML estimate for Within-Subject variance 
=REML estimate for correlation of a test and reference obs. 
&2 (&2 

t+ 
&2 

t) t =Derived Total Variance of an observation BW 
&2 (&2 + &2 

D =Derived Subject-by-Formulation variance BT BR - 
2ý&BT&BR) 
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Table 45: CSH REML Analysis for Cmax in Data Sets A through 
ZF 

Data e 
AT-AR 6r2 

T 
62 

R 
62 

T 
62 

R1 
&2 &2 &2 

BBWWQTR 
ZF 1.510 0.311 0.200 0.936 0.269 0.306 1 0.044 0.58-0 [0.506 

At =REML estimate for Formulation Mean (t=Test, Reference) 
a2t =REML estimate for Between-subject Variance B 
&2 

Wt =REML estimate for Within-Subject variance 
=REML estimate for correlation of a test and reference obs. 
&2 

t =Derived Total Variance of an observation (&2 + &2 

&2 
Bt Wt) 

(&2 + &2 
D =Derived Subject-by-Formulation variance BT BR - 

2ý&BT6BR) 
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Table 46: Random-Intercept and Random-Slope REML Analysis 
for AUC in Data Sets A through ZF 

Data &T-AR 2 O'B 
- 

2 6D 62W 
T 6,2 

WR 'T - OTý 2 6R 

A 0.912 0.155 0.000 0.055 0.070 0.210 0.226 
B 0.906 1.833 0.000 0.152 0.166 1.985 1.999 
C1 1.060 0.019 0.000 0.024 0.045 0.042 0.064 
C2 1.075 0.076 0.030 0.027 0.082 0.103 0.158 
D 0.927 0.287 0.003 0.016 0.029 0.302 0.315 
E 1.036 0.052 0.001 0.011 0.007 0.064 0.059 
F 1.007 0.256 0.000 0.038 0.051 0.294 0.307 
G 0.820 0.238 0.014 0.028 0.028 0.266 0.266 
H 1.020 0.071 0.005 0.012 0.015 0.083 0.087 
11 0.794 0.118 0.005 0.056 0.033 0.174 0.150 
12 0.667 0.287 0.041 0.109 0.098 0.397 0.385 
J 0.879 0.132 0.005 0.064 0.055 0.196 0.186 

K1 1.024 0.196 0.000 0.041 0.060 0.237 0.256 
K2 0.974 0.023 0.002 0.016 0.016 0.040 0.039 
K3 1.057 0.054 0.000 0.026 0.025 0.081 0.080 
Ll 0.915 0.112 0.000 0.061 0.051 0.173 0.162 
L2 0.865 0.307 0.000 0.098 0.111 0.405 0.418 
M 0.990 0.247 0.005 0.021 0.047 0.268 0.294 
N1 0.985 0.014 0.000 0.042 0.005 0.056 0.019 
N2 0.946 0.096 0.005 0.048 0.047 0.144 0.144 
01 0.980 0.042 0.003 0.034 0.026 0.075 0.068 
02 1.070 0.110 0.090 0.024 0.068 0.134 0.177 
p 0.981 0.060 0.000 0.008 0.012 0.068 0.071 

Q1 0.902 0.025 0.010 0.016 0.012 0.041 0.036 
Q2 1.198 0.048 0.004 0.064 0.033 0.112 0.081 
R 0.905 1.967 0.017 0.284 0.119 2.251 2.087 
S 1.001 1.656 0.000 0.326 0.217 1.982 1.874 
T 0.817 1.211 0.106 0.356 0.208 1.567 1.419 
U 0.979 0.289 0.000 0.140 0.169 0.429 0.458 
V 1.023 0.215 0.021 0.058 0.135 0.272 0.350 

W1 0.997 0.105 0.000 0.033 0.017 0.138 0.123 
W2 0.955 0.105 0.000 0.034 0.025 0.139 0.130 
W3 0.936 0.159 0.000 0.037 0.019 0.196 0.178 
W4 1.086 0.124 0.066 0.042 0.046 0.167 0.170 
W5 0.983 0.078 0.030 0.032 0.039 0.110 0.117 
W6 0.987 0.288 0.073 0.065 0.074 0.354 0.362 
x 1.081 0.093 0.000 0.044 0.030 0.136 0.122 
y 0.941 0.096 0.017 0.020 0.029 0.116 0.125 

ZA 1.127 0.118 0.004 0.029 0.122 0.146 0.239 
ZB 0.997 0.034 0.024 0.044 0.042 0.078 0.076 

zC1 1.097 0.117 0.020 0.083 0.068 0.200 0.185 
ZC2 1.057 0.055 0.001 0.026 0.038 0.081 0.093 
ZC3 1.145 0.108 0.008 0.031 0.026 0.139 0.134 
ZD1 0.743 1.320 0.000 0.155 0.150 1.475 1.471 
ZD2 0.934 0.165 0.000 0.013 0.009 0.178 0.173 
ZD3 0.989 0.041 0.000 0.019 0.015 0.060 0.056 
ZD4 0.990 0.057 0.003 0.019 0.015 0.075 0.072 
ZE1 0.958 0.353 0.050 0.097 0.066 0.450 0.419 
ZE2 0.989 0.051 0.002 0.038 0.015 0.089 0.066 
ZE3 0.926 0.110 0.011 0.023 0.022 0.133 0.133 
ZF 1.105 1 0.221 0.000 1 0.073 1 0.125 1 0.294 LO. 346ý 

At =REML estimate for Formulation Mean (t=Test, Reference) 
6,2 =REML estimate for Between-subject Variance B 

62 
D =REML estimate for Subject-by-Formulation variance 

62 
Wt =REML estimate for Within-Subject variance 

6,2 =Derived Total Variance of an observation (, 62 +, 52 
t) tBW 
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Table 47: Random-Intercept and Random-Slope REML Analysis 
for Cmax in Data Sets A through ZF 

__5ata eAT-AR &2 
B 

ý2 UD 2 &WT &T &2 
R 

A 0.862 0.135 0.000 0.099 0.105 0.234 0.240 
B 0.916 0.847 0.000 0.149 0.187 0.996 1.034 
C1 1.009 0.032 0.003 0.030 0.061 0.063 0.093 
C2 1.041 0.067 0.036 0.038 0.094 0.105 0.161 
D 0.905 0.151 0.060 0.089 0.079 0.240 0.230 
E 0.912 0.008 0.000 0.058 0.042 0.066 0.050 
F 1.027 0.139 0.053 0.104 0.166 0.243 0.305 
G 0.637 0.138 0.071 0.191 0.114 0.329 0.252 
H 0.999 0.075 0.007 0.021 0.029 0.096 0.104 
11 0.863 0.126 0.023 0.087 0.049 0.213 0.175 
12 0.671 0.256 0.085 0.127 0.103 0.384 0.359 
J 0.969 0.123 0.000 0.141 0.086 0.264 0.209 

K1 1.014 0.327 0.000 0.136 0.202 0.462 0.529 
K2 0.974 0.043 0.000 0.041 0.027 0.084 0.070 
K3 1.095 0.227 0.000 0.159 0.112 0.387 0.339 
LI 0.929 0.109 0.000 0.077 0.091 0.186 0.200 
L2 0.818 0.307 0.000 0.123 0.156 0.430 0.464 
M 1.035 0.136 0.057 0.094 0.075 0.230 0.211 
NI 0.942 0.019 0.013 0.081 0.015 0.100 0.034 
N2 0.958 0.076 0.027 0.054 0.040 0.130 0.116 
01 1.028 0.034 0.022 0.068 0.067 0.102 0.101 
02 1.098 0.094 0.101 0.045 0.092 0.140 0.186 
p 0.848 0.009 0.032 0.024 0.024 0.033 0.033 

Q1 1.150 0.019 0.016 0.016 0.028 0.034 0.047 
Q2 1.263 0.029 0.023 0.066 0.043 0.096 0.072 
R 0.922 1.018 0.000 0.300 0.148 1.318 1.167 
S 0.965 0.895 0.000 0.339 0.276 1.234 1.170 
T 0.803 0.548 0.109 0.283 0.191 0.831 0.738 
U 0.979 0.484 0.030 0.116 0.236 0.600 0.720 
V 0.978 0.185 0.000 0.183 0.265 0.368 0.450 

W1 0.963 0.098 0.000 0.063 0.035 0.161 0.133 
W2 0.952 0.098 0.000 0.059 0.035 0.157 0.133 
W3 0.884 0.127 0.027 0.064 0.046 0.191 0.173 
W4 1.043 0.124 0.006 0.048 0.059 0.172 0.184 
W5 1.004 0.087 0.000 0.039 0.052 0.126 0.139 
W6 0.955 0.141 0.000 0.054 0.071 0.196 0.212 
x 1.096 0.067 0.017 0.066 0.028 0.133 0.095 
y 0.917 0.041 0.000 0.131 0.127 0.172 0.168 

ZA 1.116 0.161 0.050 0.057 0.213 0.218 0.374 
ZB 1.096 0.054 0.113 0.090 0.088 0.144 0.142 
zC1 1.107 0.075 0.000 0.096 0.121 0.171 0.196 
ZC2 1.033 0.055 0.000 0.027 0.040 0.082 0.094 
ZC3 1.101 0.100 0.000 0.034 0.040 0.133 0.140 
ZD1 0.788 1.217 0.000 0.212 0.221 1.429 1.438 
ZD2 0.995 0.078 0.000 0.027 0.029 0.105 0.107 
ZD3 0.979 0.011 0.000 0.005 0.016 0.016 0.026 
ZD4 0.963 0.036 0.001 0.016 0.014 0.052 0.050 
ZEI 0.900 0.445 0.053 0.166 0.121 0.611 0.566 
ZE2 1.006 0.048 0.007 0.032 0.014 0.079 0.062 
ZE3 0.928 0.109 0.005 0.022 0.020 0.131 0.129 
ZF 1 1.511 1 0.233 1 0.044 1 0.287 0.288 1 0.521 1 0.521 

[Lt =REML estimate for Formulation Mean (t=Test, Reference) 
&2 

B =REML estimate for Between-subject Variance 
&2 

D =REML estimate for Subject-by-Formulation variance 
&2 Wt =REML estimate for Within-Subject variance 

&2 (&2 + &2 =Derived Total Variance of an observation d 
t BW 
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Table 48: Average Bioequivalence point Estimates for AUC in Data 
Sets A through ZF 

Data MoM UN Cg-H-- [ FAO(2) RIS 
A 0.908 0.914 0.913 

. 913 0.9 
B 0.910 0.906 0.907 0.907 0.906 
Cl 1.059 1.059 1.060 1.060 1.060 
C2 1.069 1.075 1.075 1.075 1.075 
D 0.927 0.927 0.927 0.927 0.927 
E 1.035 1.036 1.036 1.036 1.036 
F 1.007 1.007 1.007 1.007 1.007 
G 0.820 0.820 0.820 0.820 0.820 
H 1.019 1.019 1.019 1.019 1.020 
Il 0.794 0.794 0.794 0.794 0.794 
12 0.667 0.667 0.667 0.667 0.667 
J 0.879 0.879 0.879 0.879 0.879 

Kl 1.024 1.024 1.024 1.024 1.024 
K2 0.974 0.974 0.974 0.974 0.974 
K3 1.057 1.057 1.057 1.057 1.057 
Ll 0.920 0.915 0.915 0.915 0.915 
L2 0.871 0.864 0.865 0.865 0.865 
M 0.990 0.990 0.990 0.990 0.990 
Nl 0.985 0.985 0.985 0.985 0.985 
N2 0.951 0.946 0.946 0.946 0.946 
01 0.980 0.980 0.980 0.980 0.980 
02 1.058 1.070 1.070 1.070 1.070 
P 0.980 0.982 0.981 0.981 0.981 

Ql 0.900 0.902 0.902 0.902 0.902 
Q2 1.188 1.198 1.198 1.198 1.198 
R 0.918 0.905 0.905 0.905 0.905 
S 1.010 1.001 1.002 1.002 1.001 
T 0.818 0.817 0.817 0.817 0.817 
U 0.989 0.976 0.978 0.978 0.979 
V 1.020 1.024 1.024 1.024 1.023 

Wl 0.996 0.996 0.996 0.996 0.997 
W2 0.953 0.955 0.955 0.955 0.955 
W3 0.933 0.936 0.936 0.936 0.936 
W4 1.094 1.086 1.086 1.086 1.086 
W5 0.984 0.983 0.983 0.983 0.983 
W6 0.995 0.987 0.987 0.987 0.987 
X 1.081 1.081 1.081 1.081 1.081 
Y 0.933 0.941 0.941 0.941 0.941 

ZA 1.137 1.127 1.127 1.127 1.127 
ZB 1.010 0.997 0.997 0.997 0.997 

zCl 1.095 1.097 1.097 1.097 1.097 
ZC2 1.056 1.057 1.057 1.057 1.057 
ZC3 1.151 1.146 1.146 1.146 1.145 
ZD1 0.743 0.743 0.743 0.743 0.743 
ZD2 0.934 0.934 0.934 0.934 0.934 
ZD3 0.989 0.989 0.989 0.989 0.989 
ZD4 0.991 0.989 0.989 0.989 0.990 
ZEI 0.958 0.958 0.958 0.958 0.958 
ZE2 0.989 0.989 0.989 0.989 0.989 
ZE3 0.926 0.926 0.926 0.926 0.926 
ZF 1.101 1.106 1.106 1 1.106 1.105 

MoM: Method-of-Moments Estimate 
UN: Unstructured REML Estimate 

CSH: Heteroscedastic REML Estimate 
FAO(2): First-Order REML Estimate 

RIS: Random-Intercept and Slope REML Estimate 
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Table 49: Average Bioequivalence Lower 90% Bound for AUC in 
Data Sets A through ZF 

Data MoM UN CSH FA0(2) RIS 
A 0.843 0.848 0.845 0.845 0.844 
B 0.845 0.842 0.839 0.839 0.838 
Cl 1.003 1.006 1.002 1.002 1.001 
C2 0.973 0.980 0.980 0.980 0.981 
D 0.884 0.884 0.884 0.884 0.884 
E 0.992 0.994 0.994 0.996 0.993 
F 0.936 0.938 0.907 0.907 0.909 
G 0.750 0.751 0.751 0.751 0.751 
H 0.962 0.967 0.967 0.967 0.966 
11 0.735 0.735 0.736 0.736 0.734 
12 0.584 0.585 0.585 0.585 0.584 
J 0.805 0.806 0.807 0.807 0.805 

Kl 0.966 0.966 0.962 0.962 0.962 
K2 0.937 0.937 0.937 0.938 0.937 
K3 1.021 1.023 1.011 1.011 1.011 
Ll 0.862 0.859 0.858 0.858 0.858 
L2 0.808 0.801 0.792 0.792 0.792 
M 0.916 0.918 0.918 0.918 0.918 
Nl 0.939 0.940 0.938 0.938 0.938 
N2 0.883 0.879 0.879 0.879 0.878 
01 0.919 0.919 0.919 0.919 0.920 
02 0.935 0.943 0.943 0.943 0.941 
P 0.949 0.951 0.947 0.947 0.947 
Ql 0.855 0.858 0.858 0.858 0.859 
Q2 1.108 1.118 1.118 1.118 1.118 
R 0.836 0.825 0.825 0.827 0.825 
S 0.922 0.915 0.914 0.914 0.915 
T 0.735 0.735 0.735 0.735 0.735 
U 0.893 0.890 0.879 0.879 0.882 
V 0.904 0.912 0.912 0.912 0.910 

Wl 0.955 0.956 0.952 0.952 0.953 
W2 0.911 0.912 0.910 0.910 0.910 
W3 0.892 0.894 0.892 0.892 0.893 
W4 0.994 0.987 0.987 0.987 0.986 
W5 0.915 0.914 0.914 0.914 0.913 
W6 0.901 0.885 0.885 0.885 0.885 
X 1.018 1.017 1.005 1.005 1.007 
Y 0.862 0.870 0.870 0.870 0.870 
ZA 1.017 1.019 1.019 1.019 1.018 
ZB 0.909 0.900 0.900 0.900 0.900 

zCl 1.013 1.014 1.014 1.014 1.013 
ZC2 1.007 1.008 1.009 1.009 1.009 
ZC3 1.095 1.090 1.090 1-090 1.089 
ZD1 0.692 0.692 0.666 0.666 0.668 
ZD2 0.914 0.914 0.907 0.907 0.908 
ZD3 0.954 0.954 0.953 0.953 0.954 
ZD4 0.953 0.951 0.951 0.951 0.952 
ZE1 0.866 0.866 0.866 0.866 0.866 
ZE2 0.942 0.942 0.942 0.942 0.944 
ZE3 0.880 0.880 0.880 0.880 0.880 
ZF 1.024 1.029 1.029 1.029 1.029 

MoM: Method-of-Moments Estimate 
UN: Unstructured REML Estimate 

CSH: Heteroscedastic REML Estimate 
FAO(2): First-Order REML Estimate 

RIS: Random-Intercept and Slope REML Estimate 
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Table 50: Average Bioequivalence Upper 90% Bound for AUC in 
Data Sets A through ZF 

Data Mom UN CSffl FAO(2) RIS 
A 0.978 0.984 0.987 6-. _987 0.985 
B 0.981 0.976 0.980 0.980 0.980 
Cl 1.117 1.116 1.122 1.122 1.122 
C2 1.174 1.180 1.180 1.180 1.178 
D 0.972 0.973 0.973 0.973 0.973 
E 1.080 1.081 1.081 1.078 1.081 
F 1.083 1.080 1.118 1.118 1.116 
G 0.897 0.896 0.896 0.896 0.896 
H 1.079 1.075 1.075 1.075 1.075 
11 0.857 0.857 0.856 0.856 0.858 
12 0.762 0.761 0.761 0.761 0.762 
J 0.961 0.960 0.958 0.958 0.960 

Kl 1.086 1.086 1.090 1.090 1.090 
K2 1.011 1.012 1.012 1.011 1.012 
K3 1.094 1.092 1.105 1.105 1.105 
Ll 0.981 0.976 0.976 0.976 0.976 
L2 0.939 0.931 0.945 0.945 0.945 
M 1.071 1.068 1.068 1.068 1.069 
NI 1.034 1.032 1.035 1.035 1.035 
N2 1.025 1.019 1.019 1.019 1.018 
01 1.044 1.045 1.045 1.045 1.044 
02 1.198 1.213 1.213 1.213 1.217 
P 1.011 1.014 1.017 1.017 1.017 
Ql 0.948 0.949 0.949 0.949 0.948 
Q2 1.274 1.284 1.284 1.284 1.284 
R 1.008 0.993 0.993 0.990 0.993 
S 1.108 1.096 1.097 1.097 1.096 
* 0.910 0.909 0.909 0.909 0.908 
* 1.095 1.070 1.088 1.088 1.088 
V 1.151 1.151 1.151 1.151 1.151 

Wl 1.038 1.038 1.042 1.042 1.043 
W2 0.997 1.001 1.003 1.003 1.003 
W3 0.976 0.979 0.982 0.982 0.982 
W4 1.204 1.195 1.195 1.195 1.195 
W5 1.058 1.058 1.058 1.058 1.058 
W6 1.098 1.101 1.101 1.101 1.101 
X 1.148 1.149 1.163 1.163 1.161 
Y 1.010 1.017 1.017 1.017 1.017 
ZA 1.272 1.248 1.248 1.248 1.249 
ZB 1.122 1.104 1.104 1.104 1.104 
zCl 1.184 1.187 1.187 1.187 1.187 
ZC2 1.107 1.109 1.108 1.108 1.107 
ZC3 1.210 1.205 1.205 1.205 1.204 
ZD1 0.797 0.797 0.828 0.828 0.825 
ZD2 0.955 0.955 0.962 0.962 0.961 
ZD3 1.025 1.024 1.025 1.025 1.025 
ZD4 1.030 1.028 1.028 1.028 1.029 
ZE1 1.059 1.059 1.059 1.059 1.059 
ZE2 1.038 1.038 1.038 1.038 1.036 
ZE3 0.974 0.974 0.974 0.974 0.974 

1.183 1.188 1 1.188 1 1.188 1.187 
MoM: Method-of-Moments Estimate 
UN: Unstructured REML Estimate 

CSH: Heteroscedastic REML Estimate 
FAO(2): First-Order REML Estimate 

RIS: Random-Intercept and Slope REML Estimate 
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Table 51: Average Bioequivalence Point Estimates for Cmax in 
Data Sets A through ZF 

Data MoM UN CSH FA0(2) RIS 
A 0.863 0.862 0.862 0.862 08-62 
B 0.916 0.916 0.916 0.916 0.916 
C1 1.010 1.008 1.009 1.009 1.009 
C2 1.033 1.042 1.042 1.042 1.041 
D 0.905 0.905 0.905 0.905 0.905 
E 0.904 0.913 0.912 0.912 
F 1.027 1.027 1.027 1.027 1.027 
G 0.637 0.637 0.637 0.637 0.637 
H 0.994 0.999 0.999 0.999 0.999 
11 0.863 0.863 0.863 0.863 0.863 
12 0.671 0.671 0.671 0.671 0.671 
J 0.969 0.969 0.969 0.969 0.969 

KI 1.014 1.014 1.014 1.014 1.014 
K2 0.974 0.974 0.974 0.974 0.974 
K3 1.095 1.095 1.095 1.095 1.095 
Ll 0.936 0.928 0.929 0.929 0.929 
L2 0.823 0.817 0.818 0.818 0.818 
M 1.035 1.035 1.035 1.035 1.035 
NI 0.942 0.942 0.942 0.942 0.942 
N2 0.958 0.958 0.958 0.958 0.958 
01 1.030 1.028 1.028 1.028 1.028 
02 1.088 1.098 1.098 1.098 1.098 
P 0.846 0.848 0.848 0.848 0.848 

Q1 1.145 1.150 1.150 1.150 1.150 
Q2 1.255 1.264 1.264 1.264 1.263 
R 0.936 0.921 0.922 0.922 0.922 
S 0.963 0.964 0.964 0.964 0.965 
* 0.804 0.803 0.803 0.803 0.803 
* 0.977 0.978 0.978 0.978 0.979 
* 0.977 0.979 0.978 0.978 0.978 

W1 0.961 0.961 0.962 0.962 0.963 
W2 0.950 0.950 0.951 0.951 0.952 
W3 0.880 0.883 0.883 0.883 0.884 
W4 1.049 1.044 1.044 1.044 1.043 
W5 1.007 1.004 1.004 1.004 1.004 
W6 0.959 0.956 0.956 0.956 0.955 
* 1.096 1.096 1.096 1.096 1.096 
* 0.895 0.920 0.917 0.917 0.917 

ZA 1.128 1.116 1.116 1.116 1.116 
ZB 1.116 1.096 1.096 1.096 1.096 

zC1 1.106 1.107 1.107 1.107 1.107 
ZC2 1.034 1.033 1.033 1.033 1.033 
ZC3 1.102 1.101 1.101 1.101 1.101 
ZD1 0.788 0.788 0.788 0.788 0.788 
ZD2 0.995 0.995 0.995 0.995 0.995 
ZD3 0.979 0.979 0.979 0.979 0.979 
ZD4 0.963 0.963 0.963 0.963 0.963 
ZE1 0.900 0.900 0.900 0.900 0.900 
ZE2 1.005 1.006 1.006 1.006 1.006 
ZE3 0.928 0.928 0.928 0.928 0.928 
ZF 1.493 1 1.510 1.510 1 1.510 1.511 

MoM: Method-of-Moments Estimate 
UN: Unstructured REML Estimate 

CSH: Heteroscedastic REML Estimate 
FA0(2): First-Order REML Estimate 

RIS: Random-Intercept and Slope REML Estimate 
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Table 52: Average Bioequivalence Lower 90% Bound for Cmax in 
Data Sets A through ZF 

Data MoM UN CSH FA0(2) RIS 
A 0.783 0.781 0.781 0.781 0.781 
B 0.849 0.849 0.846 0.846 0.847 
Cl 0.940 0.944 0.942 0.942 0.942 
C2 0.931 0.940 0.940 0.940 0.942 
D 0.808 0.808 0.808 0.808 0.808 
E 0.828 0.839 0.832 0.832 
F 0.812 0.817 0.817 0.817 0.824 
G 0.519 0.521 0.521 0.521 0.519 
H 0.922 0.932 0.932 0.932 0.932 
11 0.779 0.779 0.779 0.779 0.777 
12 0.575 0.575 0.575 0.575 0.574 
J 0.868 0.870 0.862 0.862 0.864 

Kl 0.911 0.911 0.905 0.905 0.905 
K2 0.925 0.925 0.925 0.925 0.926 
K3 0.996 0.997 0.989 0.989 0.989 
Ll 0.865 0.859 0.858 0.858 0.858 
L2 0.752 0.747 0.739 0.739 0.739 
M 0.897 0.896 0.896 0.896 0.896 
Nl 0.870 0.871 0.871 0.871 0.870 
N2 0.879 0.879 0.879 0.879 0.878 
01 0.928 0.926 0.926 0.926 0.926 
02 0.947 0.954 0.954 0.954 0.952 
P 0.776 0.779 0.779 0.779 0.779 

Ql 1.074 1.079 1.079 1.079 1.081 
Q2 1.155 1.165 1.165 1.165 1.162 
R 0.855 0.842 0.841 0.841 0.841 
S 0.877 0.878 0.876 0.876 0.878 
* 0.727 0.726 0.726 0.726 0.727 
* 0.867 0.869 0.867 0.867 0.866 
V 0.837 0.843 0.833 0.833 0.833 

Wl 0.906 0.905 0.902 0.902 0.904 
W2 0.898 0.898 0.894 0.894 0.895 
W3 0.810 0.813 0.813 0.813 0.814 
W4 0.978 0.973 0.973 0.975 0.972 
W5 0.947 0.944 0.945 0.945 0.944 
W6 0.895 0.890 0.890 0.890 0.890 
X 0.994 0.994 0.994 0.994 0.994 
Y 0.783 0.810 0.799 0.799 0.801 

ZA 0.958 0.959 0.959 0.959 0.954 
ZB 0.932 0.920 0.920 0.920 0.917 

zCl 1.018 1.018 1.018 1.018 1.019 
ZC2 0.987 0.987 0.985 0.985 0.986 
ZC3 1.049 1.048 1.048 1.048 1.049 
ZD1 0.721 0.721 0.694 0.694 0.695 
ZD2 0.965 0.965 0.951 0.951 0.951 
ZD3 0.954 0.954 0.952 0.952 0.952 
ZD4 0.930 0.930 0.930 0.930 0.930 
ZE1 0.796 0.796 0.796 0.796 0.796 
ZE2 0.958 0.958 0.958 0.958 0.959 
ZE3 0.887 0.887 0.887 0.887 0.888 
ZF 1.307 1.323 1 1.323 1.323 1.324 

MoM: Method-of-Moments Estimate 
UN: Unstructured REML Estimate 

CSH: Heteroscedastic REML Estimate 
FA0(2): First-Order REML Estimate 

RIS: Random-Intercept and Slope REML Estimate 
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Table 53: Average Bioequivalence Upper 90% Bound for Cmax in 
Data Sets A through ZF 

Data MoM UN CSH FAO(2) RIS 
A 0.951 0.951 0.951 0.951 0.951 
B 0.989 0.989 0.991 0.991 0.991 
Cl 1.085 1.076 1.081 1.081 1.081 
C2 1.147 1.155 1.155 1.155 1.152 
D 1.013 1.013 1.013 1.013 1.014 
E 0.988 0.994 1.000 0.999 
F 1.298 1.290 1.290 1.290 1.279 
G 0.781 0.778 0.778 0.778 0.781 
H 1.071 1.071 1.071 1.071 1.071 
Il 0.957 0.956 0.956 0.956 0.959 
12 0.784 0.783 0.783 0.783 0.785 
J 1.081 1.078 1.088 1.088 1.086 

Kl 1.128 1.128 1.136 1.136 1.136 
K2 1.025 1.026 1.025 1.025 1.025 
K3 1.203 1.203 1.212 1.212 1.212 
Ll 1.013 1.004 1.005 1.005 1.005 
L2 0.900 0.893 0.905 0.905 0.905 
M 1.194 1.196 1.196 1.196 1.196 
Nl 1.020 1.018 1.018 1.018 1.019 
N2 1.044 1.044 1.044 1.044 1.045 
01 1.144 1.140 1.140 1.140 1.140 
02 1.250 1.265 1.265 1.265 1.268 
P 0.923 0.922 0.922 0.922 0.922 

Ql 1.221 1.225 1.225 1.225 1.224 
Q2 1.364 1.372 1.372 1.372 1.373 
R 1.025 1.008 1.011 1.011 1.011 
S 1.057 1.059 1.060 1.060 1.060 
T 0.889 0.888 0.888 0.888 0.887 
U 1.101 1.102 1.104 1.104 1.106 
V 1.139 1.137 1.147 1.147 1.147 

Wl 1.018 1.021 1.025 1.025 1.025 
W2 1.004 1.006 1.012 1.012 1.013 
W3 0.957 0.960 0.960 0.960 0.960 
W4 1.126 1.120 1.120 1.119 1.120 
W5 1.070 1.068 1.067 1.067 1.068 
W6 1.028 1.026 1.026 1.026 1.026 
X 1.208 1.208 1.208 1.208 1.207 
Y 1.023 1.044 1.052 1.052 1.050 

ZA 1.327 1.299 1.299 1.299 1.305 
ZB 1.336 1.307 1.307 1.307 1.308 

zCl 1.202 1.204 1.205 1.205 1.204 
ZC2 1.082 1.082 1.084 1.084 1.082 
ZC3 1.157 1.156 1.157 1.157 1.156 
ZD1 0.862 0.862 0.896 0.896 0.894 
ZD2 1.026 1.026 1.041 1.041 1.041 
ZD3 1.004 1.004 1.006 1.006 1.006 
ZD4 0.997 0.997 0.997 0.997 0.997 
ZE1 1.017 1.017 1.017 1.017 1.017 
ZE2 1.056 1.056 1.056 1.056 1.055 
ZE3 0.970 0.970 0.970 0.970 0.970 
ZF 1.707 1.723 1.723 1.723 1.725 

MoM: Method-of-Moments Estimate 
UN: Unstructured REML Estimate 

CSH: Heteroscedastic REML Estimate 
FAO(2): First-Order REML Estimate 

RIS: Random-Intercept and Slope REML Estimate 
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Table 54: Hyslop et al (2000) Upper 90% Bound for Linearised 
Population and Individual Bioequivalence FDA Metric of AUC in 
Data Sets A through ZF 

Data &R JýPBE VC. PBE O'WR IýIBE iýC. IBE 
A 0.490 -0.211 0.056 0.271 -0-084 -0-048 B 1.421 -2.209 0.673 0.415 -0.281 -0-034 C1 0.257 -0-087 -0-063 0.219 -0-080 -0.094 C2 0.433 -0.241 -0-053 0.282 -0-088 -0-037 D 0.564 -0.233 0.138 0.169 -0-032 -0.078 E 0.245 -0.013 0.000 0.080 0.008 -0.079 F 0.578 -0.104 0.277 0.249 -0-082 -0.086 G 0.559 -0-135 0.200 0.163 0.066 0.021 
H 0.290 -0.015 0.035 0.132 -0.007 -0.073 11 0.409 -0-067 0.094 0.179 0.081 0.049 
12 0.701 -0-364 0.217 0.295 0.232 0.317 
J 0.449 -0.142 0.063 0.215 0.014 0.007 

K1 0.519 -0.271 0.037 0.256 -0-108 -0.086 K2 0.185 -0-011 -0.029 0.133 -0-018 -0.083 K3 0.287 -0-076 -0.028 0.175 -0-051 -0.094 Ll 0.399 -0.112 0.052 0.232 -0.050 -0.046 L2 0.652 -0-384 0.158 0.361 -0.203 -0.062 M 0.523 -0-085 0.229 0.216 -0-056 -0.074 
N1 0.142 0.026 -0-013 0.073 0.046 -0.042 
N2 0.403 -0-152 0.002 0.210 -0.016 -0.029 
01 0.252 -0.009 0.016 0.161 -0-001 -0.049 
02 0.417 -0.042 0.148 0.274 -0.010 0.040 
P 0.270 -0-051 -0-019 0.121 -0.023 -0.098 

Q1 0.181 0.020 0.001 0.111 0.022 -0.052 
Q2 0.291 -0.004 0.053 0.178 0.047 0.014 
R 1.452 -2-065 0.954 0.350 0.042 0.203 
S 1.412 -2.451 0.422 0.452 -0-158 0.175 
T 1.194 -1-328 0.756 0.458 -0.016 0.340 
U 0.656 -0-363 0.202 0.436 -0-330 -0.078 
V 0.601 -0.341 0.094 0.370 -0.175 -0.028 

W1 0.349 -0-064 0.041 0.133 -0.005 -0.068 
W2 0.358 -0-079 0.036 0.155 -0.016 -0.068 
W3 0.410 -0.048 0.129 0.141 0.000 -0.060 
W4 0.479 -0.238 0.010 0.211 0.062 0.059 
W5 0.371 -0-133 -0.008 0.192 -0.002 -0.026 
W6 0.624 -0.289 0.199 0.275 -0.025 0.029 
* 0.334 0.023 0.119 0.193 -0.022 -0.054 
* 0.339 0.015 0.114 0.183 0.004 -0.030 

ZA 0.473 -0.221 0.019 0.322 -0.136 -0.052 
ZB 0.295 -0.046 0.007 0.184 0.042 0.012 

zC1 0.467 -0.236 0.003 0.255 -0.014 0.019 
ZC2 0.329 -0.143 -0.062 0.181 -0-036 -0.071 
ZC3 0.403 -0.176 -0.022 0.154 0.021 -0.028 
ZD1 1.264 -1-587 0.535 0.382 -0.158 0.019 
ZD2 0.428 -0.171 0.011 0.091 -0.004 -0.087 
ZD3 0.248 -0.066 -0.050 0.115 -0.006 -0.080 
ZD4 0.277 -0.072 -0.034 0.121 -0.008 -0.079 
ZE1 0.655 -0.269 0.277 0.260 0.027 0.068 
ZE2 0.250 1 -0.007 0.018 0.127 1 0.011 -0.055 

&R: MoM Estimate for Total SD, Reference Formula 
PPBE: Upper 90% Bound for Linearised PBE Metric 

PC. PBE: Upper 90% Bound for Linearised Constant-Scaled PBE Metric 
&WR: MoM Estimate for Within-Subject SD, Reference Formula 

PIBE: Upper 90% Bound for Linearised IBE Metric 
PC. IBE: Upper 90% Bound for Linearised Constant-Scaled IBE Metric 
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Table 54: Hyslop et al (2000) Upper 90% Bound for Linearised 
Population and Individual Bioequivalence FDA Metric of AUC in 
Data Sets A through ZF 

Data 6R I JýPBE I JýC. PBE 6WR ]JýIBE VC. IBE 
ZE3 0.339 -0.029 0.073 0.155 1 -0-010 -0-061 
ZF 0.603 -0.460 -0.004 0.344 -0-195 -0.065 

6R: MoM Estimate for Total SD, Reference Formula 
IýPBE: Upper 90% Bound for Linearised PBE Metric 

JýC. PBE: Upper 90% Bound for Linearised Constant-Scaled PBE Metric 
6WR: MoM Estimate for Within-Subject SD, Reference Formula 

JýIBE: Upper 90% Bound for Linearised IBE Metric 

JýCJBE: Upper 90% Bound for Linearised Constant-Scaled IBE Metric 
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Table 55: Hyslop et al (2000) Upper 90% Bound for Linearised 
Population and Individual Bioequivalence FDA Metric of Cmax in 
Data Sets A through ZF 

Data 6R 
- 

iýPBE iýC. PBE 6WR JýIBE JýC. IBE 
A 0.497 -0.195 0.091 0.330 -0.091 0.016 
B 1.003 -1-086 0.336 0.444 -0-361 -0-065 CI 0.273 -0.069 -0.028 0.239 -0-087 -0-083 C2 0.445 -0.266 -0-065 0.295 -0.078 -0.011 D 0.523 -0.235 0.080 0.273 0.039 0.094 
E 0.226 0.018 0.028 0.209 0.012 -0-003 F 0.648 -0.428 0.028 0.380 0.107 0.291 
G 0.573 0.100 0.494 0.328 0.500 0.633 
H 0.343 -0-083 0.005 0.168 -0-006 -0.051 11 0.461 -0-155 0.064 0.218 0.080 0.080 
12 0.714 -0.424 0.178 0.307 0.309 0.412 
J 0.470 -0-150 0.089 0.281 -0-011 0.042 

K1 0.733 -0-576 0.124 0.474 -0-388 -0-074 K2 0.256 -0.024 0.005 0.173 -0.021 -0.062 K3 0.581 -0.224 0.200 0.353 -0.117 0.025 
Ll 0.454 -0.218 0.010 0.300 -0.114 -0.043 L2 0.694 -0.478 0.144 0.421 -0.270 -0.042 M 0.481 -0-055 0.209 0.278 0.074 0.133 
N1 0.204 0.056 0.051 0.123 0.103 0.038 
N2 0.386 -0.144 -0.011 0.193 0.038 0.017 
01 0.336 -0.090 0.004 0.261 -0.031 0.001 
02 0.441 -0.084 0.136 0.318 -0.028 0.071 
P 0.231 -0.014 -0.005 0.154 0.067 0.017 
Q1 0.253 -0.064 -0.044 0.161 0.015 -0.032 Q2 0.303 -0.013 0.054 0.196 0.088 0.070 
R 1.089 -1.158 0.524 0.390 -0.058 0.162 
S 1.111 -1.554 0.218 0.516 -0.345 0.110 
* 0.881 -0.729 0.381 0.436 -0.033 0.281 
* 0.770 -0.408 0.410 0.508 -0.462 -0.082 
V 0.677 -0.476 0.107 0.547 -0.440 -0.017 

W1 0.355 -0.039 0.079 0.193 -0.015 -0.040 
W2 0.354 -0.042 0.075 0.195 -0.021 -0.046 
W3 0.424 -0.080 0.115 0.219 0.031 0.032 
W4 0.462 -0.243 -0.017 0.237 -0.054 -0.044 
W5 0.389 -0.167 -0.024 0.224 -0.064 -0.068 
W6 0.475 -0.234 0.017 0.272 -0.108 -0-068 
X 0.321 0.024 0.106 0.170 0.086 0.049 
Y 0.390 -0.044 0.117 0.380 -0.149 0.008 
ZA 0.584 -0.330 0.090 0.469 -0.351 -0.072 
ZB 0.362 0.153 0.290 0.271 0.172 0.230 
zC1 0.460 -0.264 -0.029 0.337 -0.137 -0.015 
ZC2 0.333 -0.151 -0.067 0.187 -0.046 -0.077 
ZC3 0.395 -0.177 -0.028 0.198 -0.039 -0.062 
ZD1 1.245 -1.593 0.481 0.470 -0.325 -0.012 
ZD2 0.327 -0-100 -0.016 0.190 -0.071 -0.105 
ZD3 0.164 -0.040 -0.072 0.115 -0.025 -0.100 
ZD4 0.228 -0.048 -0.043 0.112 -0.007 -0.081 
ZEI 0.773 -0.457 0.328 0.351 -0.007 0.146 
ZE2 1 0.248 1 -0.016 1 0.005 1 0.121 1 0.013 -0.056 

&R: MoM Estimate for Total SD, Reference Formula 
IýPBE: Upper 90% Bound for Linearised PBE Metric 

JýC. PBE: Upper 90% Bound for Linearised Constant-Scaled PBE Metric 
&WR: MoM Estimate for Within-Subject SD, Reference Formula 

flIBE: Upper 90% Bound for Linearised IBE Metric 
PC. IBE: Upper 90% Bound for Linearised Constant-Scaled IBE Metric 
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Table 55: Hyslop et al (2000) Upper 90% Bound for Linearised 
Population and Individual Bioequivalence FDA Metric of Cmax in 
Data Sets A through ZF 

Data &R JýPBE JýC. PBE &WR JýIBE 1-'C. IBE 
ZE3 0.338 -0.040 0.059 0.144 -0.010 -0.069 
ZF 0.714 -0.287 0.429 0.557 -0.223 0.306 

&R: MoM Estimate for Total SD, Reference Formula 
IýPBE: Upper 90% Bound for Linearised PBE Metric 

JýC. PBE: Upper 90% Bound for Linearised Constant-Scaled PBE Metric 
&WR: MoM Estimate for Within-Subject SD, Reference Formula 

JýIBE: Upper 90% Bound for Linearised IBE Metric 

_JýCJBE: 
Upper 90% Bound for Linearised Constant-Scaled IBE Metric 
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Table 56: Asymptotic Upper 90% Bound for Linearised Popula- 
tion Bioequivalence FDA Metric of AUC in Data Sets A through 
ZF using an Unconstrained (UN) and Constrained (CSH) REML 
Model 

Data &R 

UN 
f1PBE 
UN 

JýC. PBE 
UN 

O'R 

CSH 
VPBE 

CSH 
IýC. PBE 

CSH 
A 0.489 -0.265 -0.042 0.489 -70.260 

-0.038 B 1.419 -2-577 0.100 1.419 -2.571 0.110 
CI 0.257 -0.085 -0-071 0.257 -0-083 -0-069 C2 0.432 -0.237 -0-081 0.432 -0.237 -0.081 D 0.564 -0-340 -0-030 0.564 -0-340 -0-030 E 0.245 -0.040 -0.048 0.245 -0.040 -0.048 F 0.578 -0.266 -0-059 0.579 -0.240 -0.028 G 0.568 -0.262 -0-030 0.568 -0.262 -0.030 H 0.288 -0.066 -0-036 0.288 -0.066 -0.036 11 0.408 -0.088 0.035 0.408 -0.088 0.035 
12 0.701 -0-362 0.111 0.701 -0.362 0.111 
J 0.453 -0.181 -0.012 0.453 -0.181 -0.012 K1 0.517 -0-318 -0-054 0.517 -0-314 -0.050 K2 0.184 -0.022 -0.043 0.184 -0.022 -0.043 K3 0.286 -0-090 -0-053 0.287 -0.085 -0.048 Ll 0.397 -0.136 0.006 0.397 -0.135 0.007 

L2 0.646 -0.442 0.030 0.647 -0.427 0.044 
M 0.524 -0.244 0.006 0.524 -0.244 0.006 
NI 0.142 0.019 -0.022 0.142 0.020 -0.022 N2 0.398 -0.161 -0.041 0.398 -0.161 -0.041 01 0.253 -0.037 -0.022 0.253 -0.037 -0.022 02 0.416 -0.093 0.067 0.416 -0.093 0.067 
P 0.266 -0.067 -0.056 0.266 -0.066 -0.055 Q1 0.179 0.009 -0.014 0.179 0.009 -0.014 

Q2 0.290 -0-010 0.035 0.290 -0-010 0.035 
R 1.450 -2.488 0.346 1.450 -2.488 0.346 
S 1.398 -2-605 0.080 1.398 -2-605 0.082 
* 1.195 -1-552 0.479 1.195 -1-552 0.479 
* 0.639 -0.404 0.103 0.641 -0-388 0.111 
* 0.584 -0-362 -0.012 0.584 -0-362 -0.012 

W1 0.349 -0.113 -0.025 0.349 -0-111 -0.023 
W2 0.360 -0.125 -0.027 0.360 -0.124 -0.025 
W3 0.411 -0.140 0.017 0.411 -0.138 0.019 
W4 0.476 -0.252 -0.042 0.476 -0.252 -0.042 
W5 0.371 -0.150 -0.045 0.371 -0.150 -0.045 
W6 0.627 -0.388 0.048 0.627 -0.388 0.048 
* 0.332 -0.059 0.019 0.333 -0.051 0.025 
* 0.337 -0.072 0.005 0.337 -0.072 0.005 

ZA 0.485 -0.274 -0-064 0.485 -0.274 -0.064 
ZB 0.302 -0-068 -0-032 0.302 -0.068 -0.032 

zC1 0.465 -0.243 -0-032 0.465 -0.243 -0.032 
ZC2 0.328 -0.144 -0.077 0.328 -0.144 -0.077 
ZC3 0.399 -0-183 -0.054 0.399 -0-183 -0.054 
ZD1 1.270 -1.894 -0.080 1.271 -1-850 -0.003 
ZD2 0.429 -0.210 -0.068 0.429 -0.208 -0.063 
ZD3 0.248 -0.070 -0.063 0.248 -0.069 -0.063 
ZD4 0.279 -0.085 -0.058 0.279 -0.085 -0.058 
ZE1 0.654 -0.368 0.121 0.654 -0-368 0.121 
ZE2 0.250 -0.027 -0.008 0.250 -0.027 -0.008 
ZE3 0.339 -0-076 0.019 1 0.339 1 -0.076 0.019 

&R: REML Estimate for Total SD, Reference Formula 
JýPBE: Upper 90% Bound for Linearised PBE Metric 

JýC. PBE: Upper 90% Bound for Linearised Constant-Scaled PBE Metric 
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Table 56: Asymptotic Upper 90% Bound for Linearised Popula- 
tion Bioequivalence FDA Metric of AUC in Data Sets A through 
ZF using an Unconstrained (UN) and Constrained (CSH) REML 
Model 

Data &R JýPBE JýC. PBE &R JýPBE JýC. PBE 
UN UN UN CSH CSH CSH 

ZF 0.606 -0.491 -0.070 0.606 -0.491 -0.069 
&R: REML Estimate for Total SD, Reference Formula 
JýPBE: Upper 90% Bound for Linearised PBE Metric 

JýC. PBE: Upper 90% Bound for Linearised Constant-Scaled PBE Metric 
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Table 57: Bootstrapped Upper Non-Parametric Percentile 90% 
Bound for Linearised Population and Individual Bioequivalence 
FDA Metric of AUC in Data Sets A through ZF using an Un- 
constrained (UN) REML Model 

Data &R 

UN 
JýPBE 
UN 

OC. PBE 
UN 

&WR 

UN 
OIBE 

UN 
OC. IBE 

UN 
A 0.489 -0.216 -0-034 0.267 -0-038 -0.046 B 1.419 -2.457 0.079 0.420 -0.265 -0.046 C1 0.257 -0-072 -0.067 0.221 -0-044 -0.091 C2 0.432 -0-170 -0-085 0.278 -0-006 -0-054 D 0.564 -0-299 -0-033 0.170 -0-024 -0-082 E 0.245 -0-039 -0.043 0.081 0.008 -0-085 F 0.578 -0.182 -0-064 0.252 -0-043 -0-087 G 0.568 -0-099 -0.004 0.163 0.063 0.002 
H 0.288 -0-046 -0.048 0.125 -0-001 -0-082 
11 0.408 -0-048 0.033 0.177 0.082 0.032 
12 0.701 -0-336 0.122 0.296 0.244 0.271 
J 0.453 -0-161 0.000 0.227 -0.028 -0.020 

K1 0.517 -0-235 -0.042 0.253 -0.104 -0.094 
K2 0.184 -0.014 -0.041 0.131 -0.014 -0.086 
K3 0.286 -0-079 -0.054 0.174 -0.041 -0.094 
Ll 0.397 -0.131 0.029 0.229 -0.024 -0.035 
L2 0.646 -0.461 0.035 0.358 -0-159 -0.059 
M 0.524 -0.164 0.036 0.221 -0.026 -0.073 
NI 0.142 0.045 0.005 0.072 0.073 -0-016 
N2 0.398 -0.151 -0.040 0.211 -0-019 -0.051 
01 0.253 -0.015 -0-009 0.165 0.008 -0.058 
02 0.416 -0.014 0.119 0.268 -0-017 0.010 
P 0.266 -0.073 -0.058 0.115 -0-017 -0-099 

Q1 0.179 0.003 -0.017 0.113 0.024 -0-059 
Q2 0.290 -0.002 0.032 0.182 0.047 0.005 
R 1.450 -2.484 0.294 0.345 0.062 0.190 
S 1.398 -2.632 0.058 0.459 -0.114 0.196 
T 1.195 -1-520 0.482 0.459 0.102 0.431 
* 0.639 -0-369 0.117 0.455 -0-160 -0.034 
* 0.584 -0.079 0.176 0.375 0.044 0.066 

WI 0.349 -0-099 -0.018 0.136 -0.002 -0.070 
W2 0.360 -0.108 -0.017 0.161 -0-007 -0.071 
W3 0.411 -0.112 0.019 0.143 0.006 -0-057 
W4 0.476 -0.214 -0.035 0.210 0.057 0.026 
W5 0.371 -0.127 -0.042 0.195 0.013 -0.034 
W6 0.627 -0.351 0.064 0.272 0.036 0.048 
* 0.332 -0.037 0.010 0.187 -0.003 -0-061 
* 0.337 -0.043 -0.003 0.175 0.010 -0.048 

ZA 0.485 -0.117 -0.017 0.352 -0.143 -0.095 
ZB 0.302 -0.024 -0.019 0.202 0.027 -0.006 

zC1 0.465 -0.245 -0.029 0.253 -0.013 0.007 
ZC2 0.328 -0.143 -0.080 0.182 -0.037 -0.074 
ZC3 0.399 -0.174 -0.058 0.156 0.018 -0.037 
ZD1 1.270 -1.599 -0.079 0.421 -0.150 0.033 
ZD2 0.429 -0.205 -0.069 0.098 -0.002 -0.086 
ZD3 0.248 -0.071 -0.064 0.116 -0.004 -0.081 
ZD4 0.279 -0.089 -0.058 0.122 1 -0.006 -0.078 

&R: REML Estimate for Total SD, Reference Formula 
OIBE: Upper 90% Bound for Linearised PBE Metric 

OC. IBE: Upper 90% Bound for Linearised Constant-Scaled PBE Metric 
&WR: REML Estimate for Within SD, Reference Formula 

PIBE: Upper 90% Bound for Linearised IBE Metric 
OC. IBE: Upper 90% Bound for Linearised Constant-Scaled IBE Metric 
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Table 57: Bootstrapped Upper Non-Parametric Percentile 90% 
Bound for Linearised Population and Individual Bioequivalence 
FDA Metric of AUC in Data Sets A through ZF using an Un- 
constrained (UN) REML Model 

Data &R 

UN 
JýPBE 
UN 

JýC. PBE 
UN 

&WR 

UN 
JýIBE 
UN 

JýCJBE 
UN 

ZE1 0.654 -0-383 0.097 0.258 0.035 0.041 
ZE2 0.250 -0.032 -0.010 0.126 0.007 -0-060 
ZE3 0.339 -0.059 0.013 0.155 -0.009 -0-074 
ZF 0.606 -0.272 0.108 0.348 -0.009 0.020 

O'R: REML Estimate for Total SD, Reference Formula 
C'IBE: Upper 90% Bound for Linearised PBE Metric 

IýCJBE: Upper 90% Bound for Linearised Constant-Scaled PBE Metric 
&WR: REML Estimate for Within SD, Reference Formula 

JýIBE: Upper 90% Bound for Linearised IBE Metric 
OC. IBE: Upper 90% Bound for Linearised Constant-Scaled IBE Metric 
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Table 58: Bootstrapped Upper Non-Parametric Percentile 90% 
Bound for Linearised Population and Individual Bioequivalence 
FDA Metric of Cmax in Data Sets A through ZF using an Un- 
constrained (UN) REML Model 

Data 15R 
UN 

JýPBE 

UN 
iýC. PBE 

UN 
6WR 

UN 
I"IBE 

UN 
IýCJBE 

UN 
A 0.491 -0.196 0.028 0.326 -0.066 -0-004 B 1.003 -1.258 0.076 0.444 -0-348 -0-066 C1 0.286 -0-081 -0-050 0.267 -0-117 -0-104 C2 0.445 -0-193 -0-087 0.295 -0-034 -0-038 D 0.525 -0.261 0.016 0.278 0.064 0.066 
E 0.225 -0.009 -0-011 0.206 0.003 -0.034 F 0.645 -0-312 -0-050 0.370 0.028 0.115 
G 0.576 0.151 0.363 0.328 0.440 0.521 
H 0.338 -0.053 -0-054 0.166 -0.009 -0.076 11 0.460 -0-116 0.032 0.215 0.083 0.052 
12 0.713 -0-330 0.148 0.305 0.290 0.335 
J 0.476 -0.148 0.045 0.290 -0.047 0.010 

K1 0.730 -0-539 0.006 0.467 -0-357 -0.098 K2 0.255 -0.039 -0-023 0.170 -0.025 -0.071 K3 0.579 -0.210 0.115 0.346 -0.075 0.022 
Ll 0.453 -0.234 -0-030 0.302 -0.124 -0.062 L2 0.689 -0-524 0.035 0.418 -0.212 -0.043 M 0.481 -0.066 0.097 0.276 0.078 0.079 
N1 0.203 0.094 0.080 0.122 0.140 0.076 
N2 0.383 -0.137 -0-039 0.194 0.025 -0.014 01 0.336 -0-052 0.003 0.257 0.015 0.008 
02 0.441 -0-053 0.091 0.312 0.019 0.054 
P 0.232 0.017 -0-005 0.150 0.057 0.000 
Q1 0.247 -0.048 -0.044 0.159 0.022 -0.041 Q2 0.300 -0-003 0.048 0.199 0.090 0.059 
R 1.085 -1.449 0.206 0.388 -0.035 0.151 
S 1.110 -1-648 0.054 0.518 -0.252 0.145 
T 0.882 -0.753 0.281 0.439 0.040 0.358 
U 0.772 -0.522 0.215 0.513 -0.292 -0.046 
V 0.669 -0.121 0.207 0.538 -0.031 0.209 

W1 0.356 -0.067 0.022 0.195 -0.020 -0.045 
W2 0.355 -0.075 0.018 0.196 -0.030 -0.056 
W3 0.423 -0.121 0.047 0.217 0.041 0.027 
W4 0.460 -0.219 -0-059 0.233 -0.044 -0.053 
W5 0.388 -0.156 -0-058 0.222 -0.058 -0.075 
W6 0.473 -0.240 -0.042 0.264 -0-096 -0.070 
X 0.320 -0.003 0.043 0.168 0.084 0.013 
Y 0.394 0.104 0.190 0.386 0.047 0.093 

ZA 0.596 -0.214 0.054 0.477 -0.296 -0.087 
ZB 0.381 0.096 0.212 0.315 0.171 0.199 
zC1 0.458 -0.263 -0.051 0.336 -0-119 -0.022 
ZC2 0.331 -0.146 -0.085 0.190 -0.052 -0.083 
ZC3 0.393 -0.177 -0-061 0.194 -0.044 -0.071 
ZDI 1.253 -1.732 -0.070 0.511 -0-325 -0.006 
ZD2 0.327 -0.120 -0.054 0.190 -0.056 -0.103 
ZD3 0.169 -0.027 -0.070 0.129 -0.020 -0.102 
ZD4 0.229 -0.050 -0.056 0.115 -0.003 -0.078 

6R: REML Estimate for Total SD, Reference Formula 
JýIBE: Upper 90% Bound for Linearised PBE Metric 

PC. IBE: Upper 90% Bound for Linearised Constant-Scaled PBE Metric 
&WR: REML Estimate for Within SD, Reference Formula 

PIBE: Upper 90% Bound for Linearised IBE Metric 
PC. IBE: Upper 90% Bound for Linearised Constant-Scaled IBE Metric 
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Table 58: Bootstrapped Upper Non-Parametric Percentile 90% 
Bound for Linearised Population and Individual Bioequivalence 
FDA Metric of Cmax in Data Sets A through ZF using an Un- 
constrained (UN) REML Model 

Data &R 

UN 
IýPBE 
UN 

JýC. PBE 
UN 

&WR 

UN 
JýIBE 
UN 

IýC. IBE 
UN 

ZEI 0.773 -0-577 0.129 0.348 0.004 0.127 
ZE2 0.248 -0-036 -0.021 0.120 0.010 -0.059 
ZE3 0.339 -0.065 -0.002 0.145 -0.011 -0.075 
ZF 0.711 -0-550 0.202 0.553 -0.065 0.345 

&R: REML Estimate for Total SD, Reference Formula 
JýIBE: Upper 90% Bound for Linearised PBE Metric 

JýC. IBE: Upper 90% Bound for Linearised Constant-Scaled PBE Metric 
&WR: REML Estimate for Within SD, Reference Formula 

JýIBE: Upper 90% Bound for Linearised IBE Metric 
fIC. IBE: Upper 90% Bound for Linearised Constant-Scaled IBE Metric 
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Table 59: Asymptotic Upper 90% Bound for Linearised Individual 
Bioequivalence FDA Metric of AUC in Data Sets A through ZF 
using an Unconstrained (UN) and Constrained (RIS) REML Model 

Data O'WR 

UN 
I, IBE 

UN 
I-"C. IBE 

UN 
O'WR 

RIS 
JýIBE 

RIS 
IýCJBE 

RIS 
A 0.267 -0-067 -0-059 0.265 -0-087 -0-069 
B 0.420 -0.277 -0.048 0.408 -0.265 -0.041 
C1 0.221 -0-068 -0.095 0.212 -0.076 -0.099 
C2 0.278 -0-067 -0.047 0.286 -0-089 -0-060 
D 0.170 -0.028 -0.082 0.170 -0.029 -0-083 
E 0.081 0.006 -0-084 0.081 0.006 -0-084 
F 0.252 -0.048 -0.088 0.225 -0.035 -0.074 
G 0.163 0.061 0.002 0.166 0.057 0.000 
H 0.125 -0.005 -0-083 0.124 -0.004 -0.082 
11 0.177 0.078 0.033 0.181 0.074 0.031 
12 0.296 0.221 0.275 0.312 0.190 0.258 
J 0.227 0.011 -0.010 0.234 -0.001 -0.016 

K1 0.253 -0-090 -0.088 0.245 -0.096 -0.092 
K2 0.131 -0-015 -0-087 0.125 -0-011 -0.084 
K3 0.174 -0.041 -0.093 0.159 -0.026 -0-082 
Ll 0.229 -0-035 -0.048 0.225 -0.041 -0-052 
L2 0.358 -0-162 -0.057 0.333 -0.128 -0.032 
M 0.221 -0.045 -0-082 0.218 -0.043 -0.080 
N1 0.072 0.041 -0.048 0.072 0.040 -0.048 
N2 0.211 -0.016 -0.047 0.218 -0.026 -0.052 
01 0.165 -0.007 -0-066 0.161 -0.004 -0.064 
02 0.268 0.006 0.019 0.260 0.020 0.030 
P 0.115 -0.014 -0.096 0.108 -0.013 -0.096 
Q1 0.113 0.018 -0-060 0.107 0.021 -0.058 
Q2 0.182 0.050 0.009 0.183 0.048 0.008 
R 0.345 0.049 0.182 0.346 0.048 0.182 
S 0.459 -0.186 0.131 0.466 -0.238 0.100 
* 0.459 -0.008 0.324 0.456 -0-001 0.327 
* 0.455 -0-328 -0.096 0.411 -0.250 -0.052 
* 0.375 -0-153 -0-056 0.368 -0.151 -0-054 

W1 0.136 -0.006 -0.074 0.132 -0.002 -0.071 
W2 0.161 -0.017 -0.074 0.157 -0.017 -0.073 
W3 0.143 0.000 -0.065 0.138 0.004 -0.062 
W4 0.210 0.043 0.025 0.214 0.038 0.023 
W5 0.195 -0.007 -0.042 0.196 -0-011 -0.043 
W6 0.272 0.004 0.035 0.272 0.004 0.035 
* 0.187 -0.012 -0-064 0.172 0.001 -0-053 
* 0.175 -0.003 -0-060 0.171 0.000 -0.057 

ZA 0.352 -0.145 -0.079 0.349 -0.162 -0.087 
ZB 0.202 0.017 -0.024 0.205 0.011 -0.027 
zC1 0.253 -0-011 0.003 0.261 -0.027 -0.005 
ZC2 0.182 -0.033 -0.076 0.194 -0.050 -0.085 
ZC3 0.156 0.015 -0.040 0.163 0.007 -0.045 
ZDI 0.421 -0.179 0.011 0.388 -0.081 0.093 
ZD2 0.098 -0.003 -0.087 0.094 0.000 -0.084 
ZD3 0.116 -0.005 -0.082 0.121 -0-009 -0-084 
ZD4 0.122 -0.006 -0.081 0.124 -0.008 -0.082 
ZE1 0.258 0.028 0.047 0.256 0.030 0.047 
ZE2 0.126 0.011 -0.060 0.124 0.012 -0.060 
ZE3 0.155 -0.007 -0.066 0.150 -0.003 -0.063 
ZF 0.348 -0.179 -0.067 0.354 -0.232 -0.097 

Reference Formula for Within-Subject SD & REML E ti t , WR: s ma e 
JýIBE: Upper 90% Bound for Linearised IBE Metric 

JýCJBE: Upper 90% Bound for Linearised Constant-Scaled IBE Metric 
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Table 60: Asymptotic Upper 90% Bound for Linearised Popula- 
tion Bioequivalence FDA Metric of Cmax in Data Sets A through 
ZF using an Unconstrained (UN) and Constrained (CSH) REML 
Model 

Data &R 

UN 
JýPBE 
UN 

JýC. PBE 
UN 

UR 

CSH 
1, PBE 
CSH 

1, 'C. PBE 
CSH 

A 0.491 -0.216 0.026 0.491 -0.215 0.027 
B 1.003 -1.257 0.094 1.003 -1.251 0.099 
C1 0.286 -0-089 -0.051 0.286 -0-088 -0.050 C2 0.445 -0.258 -0.089 0.445 -0.258 -0-089 D 0.525 -0.260 0.014 0.525 -0.260 0.014 
E 0.225 -0.007 -0.014 0.225 -0-005 -0.012 F 0.645 -0.359 -0.072 0.645 -0-359 -0-072 G 0.576 0.023 0.340 0.576 0.023 0.340 
H 0.338 -0.112 -0-054 0.338 -0.112 -0-054 
Il 0.460 -0-162 0.007 0.460 -0.162 0.007 
12 0.713 -0-391 0.098 0.713 -0-391 0.098 
J 0.476 -0.177 0.027 0.475 -0.169 0.034 

K1 0.730 -0-635 -0.012 0.730 -0-625 -0.005 
K2 0.255 -0.041 -0.019 0.255 -0.040 -0.018 
K3 0.579 -0.286 0.095 0.579 -0.278 0.101 
Ll 0.453 -0.227 -0.029 0.453 -0.225 -0.028 
L2 0.689 -0-515 0.030 0.690 -0.500 0.044 
M 0.481 -0.132 0.077 0.481 -0-132 0.077 
N1 0.203 0.041 0.030 0.203 0.041 0.030 
N2 0.383 -0.145 -0.041 0.383 -0.145 -0.041 
01 0.336 -0.092 -0.021 0.336 -0.092 -0.021 
02 0.441 -0.118 0.066 0.441 -0.118 0.066 
P 0.232 -0.012 -0.015 0.232 -0.012 -0.015 

Q1 0.247 -0.051 -0.046 0.247 -0.051 -0.046 
Q2 0.300 -0.005 0.046 0.300 -0.005 0.046 
R 1.085 -1-340 0.244 1.085 -1.336 0.249 
S 1.110 -1.646 0.049 1.110 -1-643 0.052 
* 0.882 -0.803 0.276 0.882 -0-803 0.276 
* 0.772 -0.582 0.198 0.772 -0.573 0.201 
* 0.669 -0.484 0.005 0.670 -0.473 0.012 

W1 0.356 -0.085 0.023 0.356 -0-082 0.025 
W2 0.355 -0.089 0.017 0.355 -0-085 0.020 
W3 0.423 -0.126 0.045 0.423 -0.126 0.045 
W4 0.460 -0.263 -0.072 0.460 -0.263 -0.072 
W5 0.388 -0-183 -0.063 0.388 -0-183 -0.063 
W6 0.473 -0.265 -0.050 0.474 -0.264 -0.049 
* 0.320 -0.023 0.035 0.320 -0.023 0.035 
* 0.394 -0.084 0.046 0.397 -0.085 0.046 
ZA 0.596 -0-383 -0.016 0.596 -0-383 -0.016 
ZB 0.381 0.039 0.169 0.381 0.039 0.169 
zC1 0.458 -0.259 -0.049 0.458 -0.258 -0.048 
ZC2 0.331 -0.152 -0.082 0.331 -0.151 -0.081 
ZC3 0.393 -0.188 -0.060 0.393 -0-187 -0.060 
ZDI 1.253 -1.877 -0.064 1.254 -1.821 0.013 
ZD2 0.327 -0.122 -0.052 0.327 -0.114 -0.046 
ZD3 0.169 -0.043 -0.076 0.169 -0.042 -0.075 
ZD4 0.229 -0.054 -0.056 0.229 -0.054 -0.056 
ZE1 0.773 -0.551 0.146 0.773 -0.551 0.146 
ZE2 0.248 -0.032 -0.017 0.248 -0.032 -0.017 
ZE3 0.339 -0.086 0.005 1 0.339 1 -0.086 0.005 

6rR: REML Estimate for Total SD, Reference Formula 
JýPBE: Upper 90% Bound for Linearised PBE Metric 

JýC. PBE: Upper 90% Bound for Linearised Constant-Scaled PBE Metric 
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Table 60: Asymptotic Upper 90% Bound for Linearised Popula- 
tion Bioequivalence FDA Metric of Cmax in Data Sets A through 
ZF using an Unconstrained (UN) and Constrained (CSH) REML 
Model 

Data &R JýPBE iýC. PBE &R 4BE JýC. PBE 
UN UN UN CSH CSH CSH 

ZF 0.711 -0.303 0.365 0.711 -0.303 0.365 
&R: REML Estimate for Total SD, Reference Formula 
4BE: Upper 90% Bound for Linearised PBE Metric 

IýC. PBE: Upper 90% Bound for Linearised Constant-Scaled PBE Metric 
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Table 61: Asymptotic Upper 90% Bound for Linearised Individual 
Bioequivalence FDA Metric of Cmax in Data Sets A through ZF 
using an Unconstrained (UN) and Constrained (RIS) REML Model 

Data &WR 

UN 
flIBE 

UN 
OC. IBE 

UN 
&WR 

RIS 
VIBE 

RIS 
OC. IBE 

RIS 
A 0.326 -0-067 -0.002 0.324 -0.100 -0.020 B 0.444 -0-333 -0-064 0.432 -0.333 -0-067 C1 0.267 -0-105 -0-100 0.246 -0-086 -0-088 C2 0.295 -0.066 -0-031 0.307 -0.100 -0-050 D 0.278 0.030 0.063 0.281 0.022 0.059 
E 0.206 0.009 -0-035 0.204 -0.009 -0.041 F 0.370 0.083 0.139 0.407 -0-007 0.080 
G 0.328 0.408 0.492 0.337 0.395 0.490 
H 0.166 -0.009 -0-071 0.169 -0-013 -0-074 11 0.215 0.072 0.049 0.222 0.064 0.047 
12 0.305 0.283 0.351 0.321 0.253 0.337 
J 0.290 0.006 0.034 0.293 -0.018 0.024 

K1 0.467 -0-318 -0.073 0.450 -0-333 -0-081 K2 0.170 -0-016 -0.068 0.164 -0.017 -0-068 K3 0.346 -0-082 0.016 0.334 -0-072 0.026 
Ll 0.302 -0.095 -0.048 0.301 -0.125 -0.065 L2 0.418 -0.213 -0-032 0.395 -0.190 -0.012 
M 0.276 0.053 0.069 0.274 0.053 0.069 
N1 0.122 0.086 0.017 0.123 0.087 0.017 
N2 0.194 0.025 -0.011 0.201 0.017 -0.015 
01 0.257 -0.012 -0.012 0.259 -0.021 -0.016 
02 0.312 0.001 0.052 0.303 0.016 0.064 
P 0.150 0.064 0.003 0.154 0.059 0.001 
Q1 0.159 0.016 -0.042 0.167 0.005 -0.048 
Q2 0.199 0.090 0.063 0.206 0.080 0.058 
R 0.388 -0.047 0.144 0.385 -0.050 0.143 
S 0.518 -0-325 0.103 0.525 -0.392 0.065 
T 0.439 -0.026 0.267 0.437 -0.022 0.269 
U 0.513 -0.411 -0.085 0.486 -0-338 -0.045 
V 0.538 -0-331 -0.028 0.514 -0.377 -0.051 

W1 0.195 -0.014 -0.049 0.187 -0.008 -0.045 
W2 0.196 -0.020 -0.056 0.186 -0-011 -0.049 
W3 0.217 0.023 0.007 0.215 0.024 0.007 
W4 0.233 -0.044 -0.054 0.243 -0.061 -0.062 
W5 0.222 -0.053 -0.073 0.228 -0.065 -0.079 
W6 0.264 -0.079 -0.066 0.267 -0.105 -0.082 
X 0.168 0.060 0.008 0.168 0.060 0.008 
Y 0.386 -0.112 -0.017 0.356 -0.115 -0.011 
ZA 0.477 -0.246 -0.040 0.462 -0.241 -0.032 
ZB 0.315 0.078 0.128 0.297 0.108 0.150 
zC1 0.336 -0.118 -0.026 0.348 -0.189 -0.065 
ZC2 0.190 -0.044 -0.082 0.199 -0.067 -0.095 
ZC3 0.194 -0.032 -0.067 0.201 -0.051 -0.078 
ZD1 0.511 -0.347 -0.025 0.471 -0.221 0.073 
ZD2 0.190 -0.061 -0-103 0.169 -0.038 -0.088 
ZD3 0.129 -0.030 -0.103 0.125 -0.033 -0.105 
ZD4 0.115 -0-006 -0.084 0.117 -0.008 -0.085 
ZE1 0.348 0.006 0.117 0.349 0.003 0.116 
ZE2 0.120 0.013 -0.061 0.119 0.014 -0.061 
ZE3 0.145 -0-008 -0.072 0.140 -0.005 -0.070 
ZF 1 0.553 1 -0.169 0.290 1 0.537 1 -0.125 0.316 

O'WR: REML Estimate for Within-Subject SD, ference Formula 

OIBE: Upper 90% Bound for Linearised IBE Metric 

OC. IBE: Upper 90% Bound for Linearised Constant-Scaled IBE Metric 
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Table 62: Simulation 1: Mean Bias (SE) in S for Sample Size 16 
(1000 runs per simulation) 

Sim mom 
Bias 

mom 
SE 

UN 
Bias 

UN 
SE 

CSH 
Bias 

CSH 
SE 

0(2) 
Bias 

FAO(2) 
SE 

RIS 
Bias 

RIS 
SE 

Complete Data Set 
1 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
2 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
3 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
4 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
5 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 
6 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
7 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
8 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
9 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
10 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 
11 -0.002 0.003 -0.002 0.003 -0.001 0.003 -0.002 0.003 -0.002 0.003 
12 -0.001 0.004 -0.001 0.004 -0.001 0.004 -0.001 0.004 -0.001 0.004 
13 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 
14 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 
15 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 
16 -0.001 0.005 -0.001 0.005 -0.001 0.005 -0-001 0.005 -0.001 0.005 
17 -0.003 0.005 -0-003 0.005 -0.003 0.005 -0-003 0.005 -0.003 0.005 
18 -0.001 0.007 -0.001 0.007 -0.001 0.007 -0.001 0.007 -0.001 0.007 
19 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
20 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
21 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
22 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
23 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 
24 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
25 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
26 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
27 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
28 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 
29 -0.002 0.003 -0.002 0.003 -0.002 0.003 -0.002 0.003 -0.002 0.003 
30 -0.001 0.004 -0.001 0.004 -0.001 0.004 -0.001 0.004 -0.001 0.004 
31 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 
32 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 
33 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 
34 -0-001 0.005 -0.001 0.005 -0.001 0.005 -0.001 0.005 -0.001 0.005 
35 -0.003 0.005 -0.003 0.005 -0-003 0.005 -0-003 0.005 -0-003 0.005 
36 -0.001 0.007 -0.001 0.007 -0.001 0.007 -0-001 0.007 -0.001 0.007 
37 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
38 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
39 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
40 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
41 -0.001 0.001 -0.001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 
42 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
43 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0-001 0.002 -0.001 0.002 
44 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
45 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
46 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 
47 -0.002 0.003 -0.002 0.003 -0-001 0.003 -0.002 0.003 -0.002 0.003 
48 -0.001 0.004 -0.001 0.004 -0.001 0.004 -0-001 0.004 -0.001 0.004 
49 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 
50 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 
51 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 
52 -0.001 0.005 -0.001 0.005 -0.001 0.005 -0-001 0.005 -0.001 0.005 
53 -0.003 0.005 -0-003 0.005 -0-003 0.005 -0.003 0.005 -0.003 0.005 
54 -0.001 1 0.007 1 -0.001 1 0.007 1 -0.001 0.007 1 -0-001 0.007 1 -0.001 1 0.007 
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Table 62: Simulation 1: Mean Bias (SE) in S for Sample Size 16 
(1000 runs per simulation) 

Sim mom 
Bias 

mom I 
SE 

N 
Bias 
U I UN 

SE 
SH 

Bias 
IC I CSH 

SE 
I FAO(2) 

Bias 
FAO(2) I RIS 

Rim 
I RIS 

q1F, 
- Substantial Missing Data 

1 0.062 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 
2 0.062 0.001 -0-001 0.001 -0.002 0.001 -0.002 0.001 -0.001 0.001 
3 0.062 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 
4 0.061 0.002 -0.002 0.002 -0.002 0.002 -0-002 0.002 -0.002 0.002 
5 0.062 0.002 -0.001 0.002 -0.002 0.002 -0.001 0.002 -0-001 0.002 
6 0.060 0.002 -0.002 0.002 -0.003 0.002 -0-002 0.002 -0-002 0.002 
7 0.062 0.003 -0.003 0.004 -0.004 0.004 -0.004 0.004 -0-003 0.003 
8 0.060 0.004 -0.005 0.004 -0.005 0.004 -0.005 0.004 -0-005 0.004 
9 0.061 0.004 -0.003 0.004 -0.004 0.004 -0.004 0.004 -0.004 0.004 
10 0.059 0.005 -0.005 0.005 -0-006 0.005 -0-006 0.005 -0.006 0.005 
11 0.061 0.005 -0-003 0.005 -0.005 0.005 -0.004 0.005 -0.005 0.005 
12 0.057 0.006 -0.005 0.006 -0-007 0.006 -0-007 0.006 -0.006 0.006 
13 0.061 0.006 -0-005 0.006 -0.007 0.006 -0-007 0.006 -0.006 0.006 
14 0.058 0.007 -0-008 0.007 -0.010 0.007 -0.010 0.007 -0.009 0.007 
15 0.060 0.007 -0.005 0.007 -0.007 0.007 -0.007 0.007 -0.007 0.007 
16 0.056 0.008 -0.009 0.008 -0.010 0.008 -0.010 0.008 -0.010 0.008 
17 0.059 0.008 -0.006 0.008 -0.007 0.008 -0.007 0.008 -0.007 0.008 
18 0.053 0.011 -0-009 0.010 -0.012 0.010 -0.012 0.010 -0.011 0.010 
19 0.062 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 
20 0.062 0.001 -0.001 0.001 -0.002 0.001 -0.002 0.001 -0-001 0.001 
21 0.062 0.001 -0.001 0.001 -0.001 0.001 -0-001 0.001 -0-001 0.001 
22 0.061 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
23 0.062 0.002 -0.001 0.002 -0.002 0.002 -0.001 0.002 -0.001 0.002 
24 0.060 0.002 -0.002 0.002 -0.003 0.002 -0.002 0.002 -0.002 0.002 
25 0.062 0.003 -0.003 0.004 -0.004 0.004 -0.004 0.004 -0.003 0.003 
26 0.060 0.004 -0.005 0.004 -0.005 0.004 -0.005 0.004 -0.005 0.004 
27 0.061 0.004 -0.003 0.004 -0.004 0.004 -0.004 0.004 -0.004 0.004 
28 0.059 0.005 -0.005 0.005 -0.006 0.005 -0.006 0.005 -0.006 0.005 
29 0.061 0.005 -0.003 0.005 -0.005 0.005 -0.004 0.005 -0.005 0.005 
30 0.057 0.006 -0.005 0.006 -0.007 0.006 -0.007 0.006 -0.006 0.006 
31 0.061 0.006 -0.005 0.006 -0.007 0.006 -0.007 0.006 -0.006 0.006 
32 0.058 0.007 -0.008 0.007 -0.010 0.007 -0-010 0.007 -0.009 0.007 
33 0.060 0.007 -0.005 0.007 -0.007 0.007 -0.007 0.007 -0.007 0.007 
34 0.056 0.008 -0.009 0.008 -0.010 0.008 -0-010 0.008 -0.010 0.008 
35 0.059 0.008 -0.006 0.008 -0.007 0.008 -0.007 0.008 -0.007 0.008 
36 0.053 0.011 -0.009 0.010 -0.013 0.010 -0.012 0.010 -0-011 0.010 
37 0.062 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-001 -0-001 0-001 
38 0.062 0.001 -0.001 0.001 -0.002 0.001 -0.002 0.001 -0-001 0.001 
39 0.062 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-001 
40 0.061 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
41 0.062 0.002 -0.001 0.002 -0.002 0.002 -0-001 0.002 -0.001 0.002 
42 0.060 0.002 -0.002 0.002 -0.003 0.002 -0.002 0.002 -0.002 0.002 
43 0.062 0.003 -0.003 0.004 -0.004 0.004 -0.004 0.004 -0.003 0.003 
44 0.060 0.004 -0.005 0.004 -0.006 0.004 -0.005 0.004 -0.005 0.004 
45 0.061 0.004 -0.003 0.004 -0.005 0.004 -o. 004 0.004 -0.004 0.004 
46 0.059 0.005 -0.005 0.005 -0.006 0.005 -0.006 0.005 -0.006 0.005 
47 0.061 0.005 -0.003 0.005 -0.004 0.005 -0.004 0.005 -0.005 0.005 
48 0.057 0.006 -0.005 0.006 -0.007 0.006 -0.007 0.006 -0.006 0.006 
49 0.061 0.006 -0.005 0.006 -0.007 0.006 -0.007 0.006 -0.006 0.006 
50 0.058 0.007 -0.008 0.007 -0.010 0.007 -0-010 0.007 -0.009 0.007 
51 0.060 0.007 -0.005 0.007 -0.007 0.007 -0.007 0.007 -0.007 0.007 
52 0.056 0.008 -0-009 0.008 -0-010 0.008 -0-010 0.008 -0.010 0.008 
53 0.059 0.008 -0.006 0.008 -0-008 0.008 -0.007 0.008 -0.007 0.008 
54 0.053 1 0.011 -0.009 0.010 -0.013 0.010 1 -0.012 1 0.010 1 -0-011 1 0.010 
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Table 63: Simulation 1: Mean Bias (SE) in &2 for Sample Size 16 D 
(1000 runs per simulation) 

Sim MoM] 
Bias 

MoM 
SE 

UN I 
Bias 

I UN 
SE 

I CSH 
Bias 

I CSH - 
SE 

I FAO(2) 
Bias 

7-0(2) 
c SE 

RIS 
Bia., - 

I RIS 
sR 

Complete Data Set 
1 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
2 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 
3 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.002 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.004 0.000 0.002 0.000 0.003 0.000 
6 0.000 0.000 0.000 0.000 0.001 0.000 -0.004 0.000 0.000 0.000 
7 -0.002 0.001 -0.002 0.001 0.013 0.001 0.009 0.000 0.011 0.001 
8 -0-001 0.001 -0-001 0.001 0.005 0.001 -0.003 0.001 0.004 0.001 
9 -0.002 0.001 -0.002 0.001 0.018 0.001 0.011 0.001 0.015 0.001 
10 -0.001 0.002 -0.001 0.002 0.004 0.002 -0.012 0.002 0.002 0.002 
11 -0.002 0.002 -0-003 0.002 0.026 0.001 0.015 0.001 0.021 0.001 
12 0.000 0.003 0.000 0.003 0.005 0.003 -0.027 0.002 0.001 0.003 
13 -0.006 0.003 -0.006 0.003 0.042 0.002 0.026 0.001 0.034 0.002 
14 -0.003 0.004 -0-003 0.004 0.012 0.004 -0.017 0.003 0.008 0.004 
15 -0.006 0.004 -0-007 0.004 0.051 0.002 0.031 0.002 0.041 0.002 
16 -0.002 0.006 -0.002 0.006 0.011 0.005 -0-034 0.004 0.006 0.005 
17 -0-006 0.005 -0-007 0.005 0.079 0.003 0.045 0.002 0.061 0.003 
18 0.002 0.009 0.001 0.009 0.014 0.009 -0.087 0.007 0.003 0.009 
19 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
20 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 
21 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.002 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 0.004 0.000 0.002 0.000 0.003 0.000 
24 0.000 0.000 0.000 0.000 0.001 0.000 -0.004 0.000 0.000 0.000 
25 -0.002 0.001 -0.002 0.001 0.013 0.001 0.009 0.000 0.011 0.001 
26 -0-001 0.001 -0.001 0.001 0.005 0.001 -0-003 0.001 0.004 0.001 
27 -0.002 0.001 -0.002 0.001 0.018 0.001 0.011 0.001 0.015 0.001 
28 -0-001 0.002 -0.001 0.002 0.004 0.002 -0.012 0.002 0.002 0.002 
29 -0.002 0.002 -0.003 0.002 0.026 0.001 0.015 0.001 0.021 0.001 
30 0.000 0.003 0.000 0.003 0.005 0.003 -0.027 0.002 0.001 0.003 
31 -0.006 0.003 -0.006 0.003 0.042 0.002 0.026 0.001 0.034 0.002 
32 -0-003 0.004 -0.003 0.004 0.012 0.004 -0-017 0.003 0.008 0.004 
33 -0-006 0.004 -0.007 0.004 0.051 0.002 0.031 0.002 0.041 0.002 
34 -0.002 0.006 -0.002 0.006 0.011 0.005 -0-034 0.004 0.006 0.005 
35 -0.006 0.005 -0.007 0.005 0.079 0.003 0.045 0.002 0.061 0.003 
36 0.002 0.009 0.001 0.009 0.014 0.009 -0-087 0.007 0.003 0.009 
37 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
38 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 
39 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.002 0.000 
40 0.000 0.000 0.000 0.000 0.000 0.000 -0-001 0.000 0.000 0.000 
41 0.000 0.000 0.000 0.000 0.004 0.000 0.002 0.000 0.003 0.000 
42 0.000 0.000 0.000 0.000 0.001 0.000 -0.004 0.000 0.000 0.000 
43 -0.002 0.001 -0.002 0.001 0.013 0.001 0.009 0.000 0.011 0.001 
44 -0.001 0.001 -0.001 0.001 0.005 0.001 -0.003 0.001 0.004 0.001 
45 -0.002 0.001 -0.002 0.001 0.018 0.001 0.011 0.001 0.015 0.001 
46 -0.001 0.002 -0.001 0.002 0.004 0.002 -0.012 0.002 0.002 0.002 
47 -0.002 0.002 -0.003 0.002 0.026 0.001 0.015 0.001 0.021 0.001 
48 0.000 0.003 0.000 0.003 0.005 0.003 -0.027 0.002 0.001 0.003 
49 -0.006 0.003 -0.006 0.003 0.042 0.002 0.026 0.001 0.034 0.002 
50 -0.003 0.004 -0.003 0.004 0.012 0.004 -0.017 0.003 0.008 0.004 
51 -0.006 0.004 -0.007 0.004 0.051 0.002 0.031 0.002 0.041 0.002 
52 -0.002 0.006 -0.002 0.006 0.011 0.005 -0.034 0.004 0.006 0.005 
53 -0.006 0.005 -0.007 0.005 0.079 0.003 0.045 0.002 0.061 0.003 
54 0.002 1 0.009 1 0.001 1 0.009 1 0.014 1 0.009 -0.087 0.007 1 0.003 1 0.009 
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Table 63: Simulation 1: Mean Bias (SE) in &I for Sample Size 16 D (1000 runs per simulation) 

Sim mom 
Bias 

MoM 
SE 

UN I 
Bias 

UN 
SE 

CSH 
Bias 

CSH I 
SE 

I-FAO(2) 
Bias 

I FAO(2) 
SE 

I RIS 
Bim, 

RIS I 
SE, 

Substantial Missing Data 
1 0.363 0.001 0.000 0.000 0.003 0.000 0.002 0.000 0.002 0.000 
2 0.364 0.002 0.000 0.000 0.003 0.000 0.001 0.000 0.002 0.000 
3 0.364 0.002 0.000 0.000 0.005 0.000 0.003 0.000 0.003 0.000 
4 0.365 0.002 0.000 0.000 0.003 0.000 0.000 0.000 0.002 0.000 
5 0.366 0.002 0.001 0.000 0.008 0.000 0.004 0.000 0.005 0.000 
6 0.367 0.003 0.001 0.001 0.004 0.001 -0-005 0.000 0.002 0.001 
7 0.395 0.005 0.002 0.002 0.032 0.001 0.018 0.001 0.023 0.001 
8 0.396 0.005 0.002 0.003 0.026 0.002 0.008 0.002 0.018 0.002 
9 0.402 0.005 0.003 0.003 0.043 0.002 0.023 0.001 0.031 0.002 
10 0.405 0.007 0.004 0.004 0.028 0.003 -0.004 0.003 0.018 0.003 
11 0.413 0.006 0.006 0.004 0.057 0.002 0.029 0.002 0.041 0.002 
12 0.416 0.009 0.005 0.006 0.033 0.005 -0.027 0.004 0.017 0.005 
13 0.464 0.010 0.007 0.006 0.099 0.004 0.054 0.003 0.073 0.004 
14 0.468 0.012 0.005 0.009 0.073 0.007 0.010 0.006 0.050 0.007 
15 0.477 0.011 0.009 0.007 0.118 0.005 0.063 0.004 0.087 0.005 
16 0.482 0.014 0.010 0.011 0.079 0.009 -0.011 0.008 0.050 0.009 
17 0.515 0.014 0.017 0.011 0.169 0.007 0.083 0.005 0.123 0.007 
18 0.521 0.020 0.015 0.017 0.092 0.015 -0.091 0.010 0.043 0.014 
19 0.363 0.001 0.000 0.000 0.003 0.000 0.002 0.000 0.002 0.000 
20 0.364 0.002 0.000 0.000 0.003 0.000 0.001 0.000 0.002 0.000 
21 0.364 0.002 0.000 0.000 0.005 0.000 0.003 0.000 0.003 0.000 
22 0.365 0.002 0.000 0.000 0.003 0.000 0.000 0.000 0.002 0.000 
23 0.366 0.002 0.001 0.000 0.008 0.000 0.004 0.000 0.005 0.000 
24 0.367 0.003 0.001 0.001 0.004 0.001 -0-005 0.000 0.002 0.001 
25 0.395 0.005 0.002 0.002 0.032 0.001 0.018 0.001 0.023 0.001 
26 0.396 0.005 0.002 0.003 0.026 0.002 0.008 0.002 0.018 0.002 
27 0.402 0.005 0.003 0.003 0.042 0.002 0.023 0.001 0.031 0.002 
28 0.405 0.007 0.004 0.004 0.028 0.003 -0.004 0.003 0.018 0.003 
29 0.413 0.006 0.006 0.004 0.057 0.002 0.029 0.002 0.041 0.002 
30 0.416 0.009 0.005 0.006 0.033 0.005 -0.027 0.004 0.017 0.005 
31 0.464 0.010 0.007 0.006 0.099 0.004 0.054 0.003 0.073 0.004 
32 0.468 0.012 0.005 0.009 0.072 0.007 0.010 0.006 0.050 0.007 
33 0.477 0.011 0.009 0.007 0.118 0.005 0.063 0.004 0.087 0.005 
34 0.482 0.014 0.010 0.011 0.079 0.009 -0-011 0.008 0.050 0.009 
35 0.515 0.014 0.017 0.011 0.168 0.007 0.083 0.005 0.123 0.007 
36 0.521 0.020 0.015 0.017 0.092 0.015 -0-091 0.010 0.043 0.014 
37 0.363 0.001 0.000 0.000 0.003 0.000 0.002 0.000 0.002 0.000 
38 0.364 0.002 0.000 0.000 0.003 0.000 0.001 0.000 0.002 0.000 
39 0.364 0.002 0.000 0.000 0.005 0.000 0.003 0.000 0.003 0.000 
40 0.365 0.002 0.000 0.000 0.003 0.000 0.000 0.000 0.002 0.000 
41 0.366 0.002 0.001 0.000 0.008 0.000 0.004 0.000 0.005 0.000 
42 0.367 0.003 0.001 0.001 0.004 0.001 -0.005 0.000 0.002 0.001 
43 0.395 0.005 0.002 0.002 0.032 0.001 0.018 0.001 0.023 0.001 
44 0.396 0.005 0.002 0.003 0.027 0.002 0.008 0.002 0.018 0.002 
45 0.402 0.005 0.003 0.003 0.042 0.002 0.023 0.001 0.031 0.002 
46 0.405 0.007 0.004 0.004 0.028 0.003 -0.004 0.003 0.018 0.003 
47 0.413 0.006 0.006 0.004 0.057 0.002 0.029 0.002 0.041 0.002 
48 0.416 0.009 0.005 0.006 0.033 0.005 -0.027 0.004 0.017 0.005 
49 0.464 0.010 0.007 0.006 0.098 0.004 0.054 0.003 0.073 0.004 
50 0.468 0.012 0.005 0.009 0.072 0.007 0.010 0.006 0.050 0.007 
51 0.477 0.011 0.009 0.007 0.118 0.005 0.063 0.004 0.086 0.005 
52 0.482 0.014 0.010 0.011 0.079 0.009 -0-011 0.008 0.050 0.009 
53 0.515 0.014 0.017 0.011 0.169 0.007 0.083 0.005 0.123 0.007 
54 0.521 1 0.020 1 0.015 1 0.017 0.092 0.015 1 -0-091 1 0.010 1 0.043 1 0.014 
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Table 64: Simulation 1: Mean Bias (SE) in &' for Sample Size WT 
16 (1000 runs per simulation) 

Sim mom 
Bias 

MoM 
SE 

UN 
Bias 

u 
SE 

CSH 
Bias 

CSH 
SE 

FAO(2) 
Bias 

FAO(2) 
SE 

RIS 
Bias 

RIS 
SE 

Complete Data Set 
1 0.000 0.000 0.000 0.000 -0.001 0.000 -0-001 0.000 -0.001 0.000 
2 0.000 0.000 0.000 0.000 -0-001 0.000 -0.001 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.001 0.001 0.001 0.001 -0.008 0.001 -0.008 0.001 -0.007 0.001 
8 0.001 0.001 0.001 0.001 -0.003 0.001 -0.003 0.001 -0.002 0.001 
9 0.001 0.001 0.001 0.001 -0.006 0.001 -0.006 0.001 -0.005 0.001 
10 0.001 0.001 0.001 0.001 -0.001 0.001 -0-001 0.001 0.000 0.001 
11 0.001 0.001 0.001 0.001 -0.005 0.001 -0.005 0.001 -0.004 0.001 
12 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
13 0.002 0.003 0.002 0.003 -0.021 0.002 -0.021 0.002 -0.016 0.002 
14 0.002 0.003 0.002 0.003 -0.006 0.003 -0-006 0.003 -0.004 0.003 
15 0.002 0.003 0.002 0.003 -0.018 0.002 -0-018 0.002 -0.014 0.003 
16 0.002 0.003 0.002 0.003 -0.003 0.003 -0.003 0.003 -0.001 0.003 
17 0.002 0.003 0.002 0.003 -0.012 0.003 -0.012 0.003 -0.010 0.003 
18 0.002 0.003 0.002 0.003 0.000 0.003 0.000 0.003 0.001 0.003 
19 0.000 0.000 0.000 0.000 -0-001 0.000 -0.001 0.000 -0.001 0.000 
20 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 
25 0.001 0.001 0.001 0.001 -0.008 0.001 -0-008 0.001 -0.007 0.001 
26 0.001 0.001 0.001 0.001 -0.003 0.001 -0.003 0.001 -0.002 0.001 
27 0.001 0.001 0.001 0.001 -0.006 0.001 -0.006 0.001 -0-005 0.001 
28 0.001 0.001 0.001 0.001 -0-001 0.001 -0-001 0-001 0-000 0-00' 
29 0.001 0.001 0.001 0.001 -0.005 0.001 -0-005 0.001 -0.004 0.001 
30 0.001 0.001 0.001 0.001 0.000 0.001 0-000 0-001 0-000 0-00' 
31 0.002 0.003 0.002 0.003 -0.021 0.002 -0.021 0.002 -0-016 0.002 
32 0.002 0.003 0.002 0.003 -0.006 0.003 -0.006 0.003 -0.004 0.003 
33 0.002 0.003 0.002 0.003 -0.018 0.002 -0.018 0.002 -0.014 0.003 
34 0.002 0.003 0.002 0.003 -0.003 0.003 -0.003 0.003 -0.001 0.003 
35 0.002 0.003 0.002 0.003 -0.012 0.003 -0.012 0.003 -0.010 0.003 
36 0.002 0.003 0.002 0.003 0.000 0.003 0.000 0.003 0.001 0.003 
37 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 -0,001 0,000 
38 0.000 0.000 0.000 0.000 -0-001 0-000 -0-001 0.000 0,000 0*000 
39 0.000 0.000 0.000 0.000 -0-001 0-000 -0-00' 0.000 -0,001 0*000 
40 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 0,000 0*000 
41 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0,000 0,000 
42 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0,000 0*000 
43 0.001 0.001 0.001 0.001 -0.008 0.001 -0.008 0.001 -0.007 0.001 
44 0.001 0.001 0.001 0.001 -0.003 0.001 -0.003 0.001 -0.002 0.001 
45 0.001 0.001 0.001 0.001 -0.006 0.001 -0.006 0.001 -0-005 0.001 
46 0.001 0.001 0.001 0.001 -0-001 0-001 -0-001 0*00, 0*000 0*001 
47 0.001 0.001 0.001 0.001 -0.005 0.001 -0.005 0.001 -0.004 0.001 
48 0.001 0.001 0.001 0.001 0.000 0-001 0.000 0,001 0,000 0,001 
49 0.002 0.003 0.002 0.003 -0.021 0.002 -0.021 0.002 -0.016 0.002 
50 0.002 0.003 0.002 0.003 -0.006 0.003 -0.006 0.003 -0.004 0.003 
51 0.002 0.003 0.002 0.003 -0-018 0.002 -0-018 0.002 -0.014 0.003 
52 0.002 0.003 0.002 0.003 -0-003 0.003 -0.003 0.003 -0.001 0.003 
53 0.002 0.003 0.002 0.003 -0-012 0.003 -0.012 0.003 -0.010 0.003 
54 0.002 1 0.003 1 0.002 0.003 1 0.000 1 0.003 1 0.000 1 0.003 1 0.001 1 0.003 
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Table 64: Simulation 1: Mean Bias (SE) in &2 for Sample Size WT 
16 (1000 runs per simulation) 

Sim Mom 
Bias 

I MoM 
SE 

UN I I 
Bias 

UN I 
SE 

CSH 
Bias 

IC 
SE 

I FAO(2) 
Bias 

I FAO(2) 
SE 

I RIS 
Bia.,; 

I RIS 
SF 

Substantial M issing Data 
1 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.001 0.000 
2 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.00, 0.000 
3 0.000 0.000 0.000 0.000 -0.001 0.000 -0 001 0.000 -0.001 0.000 
4 0.000 0.000 0.001 0.000 -0.001 0.000 -0 001 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 -0.001 0.000 -0 001 0.000 -0.001 0.000 
6 0.000 0.000 

, 
0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

7 0.000 0.002 0.003 0.002 -0-013 0.001 -0*013 0.001 -0-010 0.001 
8 0.000 0.002 0.005 0.002 -0.010 0.001 -0 * 010 0.001 -0.007 0.001 
9 0.000 0.002 0.004 0.002 -0.011 0.001 -0.012 0.001 -0.008 0.001 
10 0.000 0.002 0.005 0.002 -0.006 0.001 -0.006 0.001 -0.004 0.002 
11 0.000 0.002 0.004 0.002 -0.009 0.001 -0.010 0.001 -0.007 0.001 
12 0.000 0.002 0.005 0.002 -0.003 0.002 -0.004 0.002 -0.002 0.002 
13 0.001 0.005 0.010 0.005 -0.035 0.003 -0.035 0.003 -0-026 0.004 
14 0.001 0.005 0.014 0.005 -0.023 0.004 -0.023 0.004 -0.015 0.004 
15 0.001 0.005 0.011 0.005 -0-031 0.004 -0.032 0.003 -0.024 0.004 
16 0.001 0.005 0.013 0.005 -0.017 0.004 -0.018 0.004 -0.011 0.004 
17 0.001 0.005 0.012 0.005 -0.024 0.004 -0.026 0.004 -0.020 0.004 
18 0.001 0.005 0.015 0.006 -0.008 0.004 -0.009 0.004 -0.003 0.005 
19 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.001 0.000 
20 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
21 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
22 0.000 0.000 0.001 0.000 -0-001 0.000 -0-001 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
24 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
25 0.000 0.002 0.003 0.002 -0.013 0.001 -0.013 0.001 -0-010 0.001 
26 0.000 0.002 0.005 0.002 -0.010 0.001 -0-010 0.001 -0.007 0.001 
27 0.000 0.002 0.004 0.002 -0-011 0.001 -0.012 0.001 -0.008 0.001 
28 0.000 0.002 0.005 0.002 -0.006 0.001 -0.006 0.001 -0.004 0.002 
29 0.000 0.002 0.004 0.002 -0.009 0.001 -0-010 0.001 -0.007 0.001 
30 0.000 0.002 0.005 0.002 -0.003 0.002 -0.004 0.002 -0.002 0.002 
31 0.001 0.005 0.010 0.005 -0-035 0.003 -0.035 0.003 -0.026 0.004 
32 0.001 0.005 0.014 0.005 -0.023 0.004 -0.023 0.004 -0.015 0.004 
33 0.001 0.005 0.011 0.005 -0.031 0.004 -0.032 0.003 -0.024 0.004 
34 0.001 0.005 0.013 0.005 -0.017 0.004 -0.018 0.004 -0.011 0.004 
35 0.001 0.005 0.012 0.005 -0.025 0.004 -0.026 0.004 -0.020 0.004 
36 0.001 0.005 0.015 0.006 -0.008 0.004 -0-009 0.004 -0.003 0.005 
37 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0-001 0.000 
38 0.000 0.000 0.000 0-000 -0-001 0-000 -0-001 0-000 -0-001 0-000 
39 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 -0-001 0-000 
40 0.000 0.000 0.001 0.000 -0-001 0.000 -0-001 0-000 0-000 0-000 
41 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 -0-00' 0.000 
42 0.000 0.000 0.001 0.000 0.000 0.000 0-000 0-000 0-000 0.000 
43 0.000 0.002 0.003 0.002 -0.013 0.001 -0-013 0.001 -0-010 0.001 
44 0.000 0.002 0.005 0.002 -0-010 0.001 -0-010 0.001 -0.007 0.001 
45 0.000 0.002 0.004 0.002 -0-011 0.001 -0.012 0.001 -0.008 0.001 
46 0.000 0.002 0.005 0.002 -0.006 0.001 -0.006 0.001 -0.004 0.002 
47 0.000 0.002 0.004 0.002 -0-009 0.001 -0-010 0.001 -0.007 0.001 
48 0.000 0.002 0.005 0.002 -0.003 0.002 -0.004 0.002 -0.002 0.002 
49 0.001 0.005 0.010 0.005 -0.035 0.003 -0.035 0.003 -0.026 0.004 
50 0.001 0.005 0.014 0.005 -0.023 0.004 -0.023 0.004 -0.015 0.004 
51 0.001 0.005 0.011 0.005 -0.031 0.004 -0.032 0.003 -0.023 0.004 
52 0.001 0.005 0.013 0.005 -0-017 0.004 -0.018 0.004 -0-011 0.004 
53 0.001 0.005 0.012 0.005 -0.025 0.004 -0.026 0.004 -0.020 0.004 
54 0.001 1 0.005 1 0.015 0.006 -0.008 1 0.004 1 -0-009 1 0.004 1 -0.003 1 0.005 
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Table 65: Simulation 1: Mean Bias (SE) in &2 WR for Sample Size 
16 (1000 runs per simulation) 

Sim mom 
Bias 

_I 

MoM 
SE 

I UN I 
Bias 

UN I 
SE 

CSH 
Bias 

I CSH 
SE 

FAO(2) I 
Bias 

FAO(2) 
SE 

I RIS 
Bi 

RIS 
SE 

Complete Data Set 
1 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 -0-001 0.000 0.000 0.000 
7 -0.001 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
8 -0-001 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
9 -0.001 0.001 -0.001 0.001 -0.007 0.001 -0.007 0.001 -0-006 0.001 
10 -0.001 0.001 -0.001 0.001 -0.002 0.001 -0.002 0.001 -0-001 0.001 
11 -0.002 0.002 -0.001 0.002 -0.016 0.002 -0.016 0.002 -0-013 0.002 
12 -0.002 0.002 -0.001 0.002 -0.004 0.002 -0.004 0.002 -0.001 0.002 
13 -0.002 0.002 -0.001 0.002 -0.011 0.002 -0.011 0.002 -0.009 0.002 
14 -0.002 0.002 -0.001 0.002 -0.004 0.002 -0.004 0.002 -0.003 0.002 
15 -0.003 0.003 -0.002 0.003 -0.021 0.003 -0.021 0.003 -0.017 0.003 
16 -0.003 0.003 -0.002 0.003 -0.006 0.003 -0.006 0.003 -0.004 0.003 
17 -0.006 0.006 -0.004 0.006 -0.049 0.005 -0.050 0.005 -0.039 0.005 
18 -0.006 0.006 -0.004 0.006 -0.011 0.006 -0.011 0.006 -0-003 0.006 
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 -0.001 0.000 -0-001 0.000 -0-001 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
24 0.000 0.000 0.000 0.000 0.000 0.000 -0-001 0.000 0.000 0.000 
25 -0.001 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
26 -0.001 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
27 -0.001 0.001 -0.001 0.001 -0.007 0.001 -0.007 0.001 -0.006 0.001 
28 -0.001 0.001 -0.001 0.001 -0.002 0.001 -0.002 0.001 -0.001 0.001 
29 -0.002 0.002 -0.001 0.002 -0-016 0.002 -0.016 0.002 -0.013 0.002 
30 -0.002 0.002 -0.001 0.002 -0.004 0.002 -0.004 0.002 -0.001 0.002 
31 -0.002 0.002 -0.001 0.002 -0.011 0.002 -0-011 0.002 -0.009 0.002 
32 -0.002 0.002 -0.001 0.002 -0.004 0.002 -0.004 0.002 -0.003 0.002 
33 -0.003 0.003 -0.002 0.003 -0.021 0.003 -0.021 0.003 -0.017 0.003 
34 -0.003 0.003 -0.002 0.003 -0.006 0.003 -0.006 0.003 -0.004 0.003 
35 -0.006 0.006 -0.004 0.006 -0.049 0.005 -0.050 0.005 -0.039 0.005 
36 -0.006 0.006 -0.004 0.006 -0-011 0.006 -0-011 0.006 -0.003 0.006 
37 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0-000 
38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 
39 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 -0-001 0-000 
40 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 
41 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
42 0.000 0.000 0.000 0.000 0.000 0-000 -0-001 0-000 0-000 0-000 
43 -0.001 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
44 -0-001 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 -0-001 0.000 
45 -0.001 0.001 -0.001 0.001 -0.007 0.001 -0.007 0.001 -0.006 0.001 
46 -0.001 0.001 -0.001 0.001 -0.002 0.001 -0.002 0.001 -0-001 0.001 
47 -0.002 0.002 -0.001 0.002 -0-016 0.002 -0.016 0.002 -0.013 0.002 
48 -0.002 0.002 -0.001 0.002 -0.004 0.002 -0.004 0.002 -0.001 0.002 
49 -0.002 0.002 -0.001 0.002 -0-011 0.002 -0-011 0.002 -0.009 0.002 
50 -0.002 0.002 -0-001 0.002 -0-004 0.002 -0.004 0.002 -0.003 0.002 
51 -0.003 0.003 -0.002 0.003 -0.021 0.003 -0.021 0.003 -0.017 0.003 
52 -0.003 0.003 -0.002 0.003 -0.006 0.003 -0-006 0.003 -0.004 0.003 
53 -0.006 0.006 -0.004 0.006 -0.049 0.005 -0-050 0.005 -0.039 0.005 
54 -0.006 0.006 -0.004 0.006 -0-011 0.006 -0.011 1 0.006 1 -0.003 1 0.006 
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&2 Table 65: Simulation 1: Mean Bias (SE) in WR for Sample Size 
16 (1000 runs per simulation) 

Sim mom 
Bias 

MoM 
SE 

UN I 
Bias 

UN I 
SE 

CSH I 
Bias 

CSH 
SE 

FAO(2) 
Bias 

FAO(2) 
SE 

RIS ý 
Bias 

RIS 
SE 

Substantial Missing Data 
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 

1 
0.000 

3 0.000 0.000 0.000 0.000 -0-001 0-000 -0-001 0-000 -0-00' 0.000 
4 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 0.000 0-000 
5 0.000 0.000 0.000 0.000 -0.003 0.000 -0-003 0.000 -0.002 0.000 
6 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 0.000 0.000 
7 -0-001 0.001 0.000 0.001 -0-003 0.001 -0-003 0.001 -0.002 0.001 
8 -0.001 0.001 0.000 0.001 -0.002 0.001 -0.002 0.001 -0.002 0.001 
9 -0-001 0.001 -0-001 0.001 -0-009 0.001 -0.009 0.001 -0.007 0.001 
10 -0-001 0.001 0.000 0.001 -0-005 0.001 -0.005 0.001 -0.003 0.001 
11 -0.002 0.002 -0.002 0.002 -0-018 0.002 -0-018 0.002 -0.014 0.002 
12 -0.002 0.002 -0.001 0.002 -0.009 0.002 -0.009 0.002 -0.004 0.002 
13 -0.002 0.002 -0.001 0.003 -0-013 0.002 -0-013 0.002 -0.011 0.002 
14 -0.002 0.002 0.000 0.003 -0-008 0.002 -0-008 0.002 -0.006 0.002 
15 -0-003 0.004 -0.002 0.004 -0.024 0.003 -0.024 0.003 -0.019 0.003 
16 -0.003 0.004 -0.001 0.004 -0.014 0.003 -0.014 0.003 -0.009 0.004 
17 -0.007 0.008 -0.007 0.007 -0-055 0.006 -0.057 0.006 -0.042 0.006 
18 -0.007 0.008 -0.005 0.007 -0.026 0.007 -0.027 0.007 -0.010 0.007 
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
22 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 0.000 0-000 
23 0.000 0.000 0.000 0.000 -0.003 0.000 -0.003 0.000 -0.002 0.000 
24 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 0.000 0.000 
25 -0.001 0.001 0.000 0.001 -0.003 0.001 -0.003 0.001 -0.002 0.001 
26 -0.001 0.001 0.000 0.001 -0.002 0.001 -0.002 0.001 -0.002 0.001 
27 -0-001 0.001 -0-001 0.001 -0-009 0.001 -0-009 0.001 -0.007 0.001 
28 -0.001 0.001 0.000 0.001 -0.005 0.001 -0.005 0.001 -0.003 0.001 
29 -0.002 0.002 -0.002 0.002 -0-018 0.002 -0-018 0.002 -0.014 0.002 
30 -0.002 0.002 -0.001 0.002 -0.009 0.002 -0.009 0.002 -0.004 0.002 
31 -0.002 0.002 -0.001 0.003 -0.013 0.002 -0.013 0.002 -0.011 0.002 
32 -0.002 0.002 0.000 0.003 -0.008 0.002 -0.008 0.002 -0.006 0.002 
33 -0.003 0.004 -0.002 0.004 -0.024 0.003 -0.024 0.003 -0.019 0.003 
34 -0.003 0.004 -0.001 0.004 -0.014 0.003 -0.014 0.003 -0.009 0.004 
35 -0.007 0.008 -0.007 0.007 -0-055 0.006 -0.057 0.006 -0.042 0.006 
36 -0.007 0.008 -0-005 0.007 -0.027 0.007 -0.027 0.007 -0.010 0.007 
37 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 
38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 

39 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 -0-00' 0.000 
40 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 0-000 0-000 

41 0.000 0.000 0.000 0.000 -0.003 0.000 -0.003 0.000 -0.002 0.000 

42 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 0-000 0.000 

43 -0.001 0.001 0.000 0.001 -0.003 0.001 -0.003 0.001 -0.002 0.001 

44 -0.001 0.001 0.000 0.001 -0.002 0.001 -0.002 0.001 -0.002 0.001 

45 -0-001 0.001 -0-001 0.001 -0-009 0-001 -0-009 0.001 -0.007 0.001 

46 -0.001 0.001 0.000 0.001 -0.005 0.001 -0.005 0.001 -0.003 0.001 

47 -0.002 0.002 -0.002 0.002 -0.018 0.002 -0.018 0.002 -0.014 0.002 

48 -0.002 0.002 -0.001 0.002 -0.009 0.002 -0-009 0.002 -0.004 0.002 

49 -0.002 0.002 -0-001 0.003 -0.013 0.002 -0.013 0.002 -0.011 0.002 

50 -0.002 0.002 0.000 0.003 -0.008 0.002 -0.008 0.002 -0.006 0.002 

51 -0.003 0.004 -0.002 0.004 -0.024 0.003 -0.024 0.003 -0.019 0.003 

52 -0.003 0.004 -0-001 0.004 -0.014 0.003 -0.014 0.003 -0.009 0.004 

53 -0.007 0.008 -0.007 0.007 -0.055 0.006 -0.057 0.006 -0.042 0.006 

54 -0.007 0.008 -0.005 0.007 -0.027 0.007 -0.027 0.007 1 -0.010 1 0.007 
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Table 66: Simulation 1: Percentage of ABE Failures for Sample 
Size 16 (1000 runs per simulation) 

Sim MoM UN I CSH FAO-(2)- TR-IS 
Complete Data Set 

1 0 0 0 0 0 
2 0 1 1 1 0.3 
3 0 1.3 1.3 1.3 0 
4 0 17.1 17.1 17.1 1.1 
5 0 4.6 4.8 4.5 0 
6 0.1 30.1 30.2 30.1 10 
7 9.6 27.1 28 27.9 13.9 
8 25.8 58.3 58.8 58.7 38 
9 23.7 37.7 42 42 32.9 
10 59.7 79.1 79.8 79.8 70.7 
11 47.4 56.2 60.5 60.2 55.6 
12 85.8 93.3 93.5 93.5 91.3 
13 77.3 79.2 85.5 85.5 88.4 
14 94.3 95.3 97 97 97.1 
15 87.1 87.2 93.2 93.2 95.1 
16 98.2 98.3 99.5 99.5 99.5 
17 96.9 96.9 99.4 99.4 99.9 
18 99.9 99.9 100 100 100 
19 95.1 95.7 97.4 97.4 97.2 
20 95.6 96.8 97.3 97.3 96.8 
21 94.2 94.4 96.4 96.4 96.7 
22 95.2 97 97.2 97.2 96.4 
23 94.3 94.4 96.4 96.4 96.7 
24 94.9 97.1 97.4 97.3 96.4 
25 94.3 95.1 96.9 96.9 96.8 
26 95.9 97.3 97.4 97.4 96.7 
27 94.2 94.4 96.4 96.4 96.8 
28 95.7 97.2 97.5 97.5 97 
29 94.4 94.6 96.4 96.4 96.9 
30 97.3 98.6 98.8 98.8 98.5 
31 95.3 95.8 98 98 97.9 
32 98.9 99 99.5 99.5 99.4 
33 96.2 96.3 98.8 98.8 99.2 
34 99.6 99.7 99.9 99.9 99.9 
35 98.3 98.3 99.9 99.9 100 
36 100 100 100 100 100 
37 100 100 100 100 100 
38 100 100 100 100 100 
39 100 100 100 100 100 
40 100 100 100 100 100 
41 100 100 100 100 100 
42 100 100 100 100 100 
43 100 100 100 100 100 
44 100 100 100 100 100 
45 100 100 100 100 100 
46 100 100 100 100 100 
47 100 100 100 100 100 
48 100 100 100 100 100 
49 100 100 100 100 100 
50 100 100 100 100 100 
51 100 100 100 100 100 
52 100 100 100 100 100 
53 100 100 100 100 100 

54 1 100 1 100 100 100 10 
Subs tantial Missing Data 
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Table 66: Simulation 1: Percentage of ABE Failures for Sample 
Size 16 (1000 runs per simulation) 

Sim mom UN CS FAO(2) RIS 
1 100 26.8 26.7 25.3 29.7 
2 100 38.9 39 37.5 42.9 
3 100 28.2 28.9 27.3 23.2 
4 100 52.9 53.1 52.4 48.7 
5 100 30.4 32.1 29.7 32.3 
6 99.9 63 64.5 62.7 62.9 
7 99.7 70.9 78.2 77.5 97.2 
8 99.6 80 86.5 86.1 98.8 
9 99.8 80.3 89.5 89.2 99.3 
10 99.8 91.1 96 95.8 100 
11 99.9 87.4 97.3 97.2 99.8 
12 100 95.8 99.4 99.4 100 
13 99.8 94.5 99.9 99.9 100 
14 99.9 96.9 100 100 100 
15 99.9 95.3 100 100 100 
16 100 98.2 100 100 100 
17 100 97 100 100 100 
18 100 99.2 100 100 100 
19 100 92.5 96.8 96.8 99.3 
20 100 92.3 96.1 95.8 99.3 
21 100 92.7 96.7 96.7 99.2 
22 100 94.1 96.2 96.1 99 
23 100 93.5 97.2 96.9 99.4 
24 100 95.7 96.9 96.9 99 
25 100 93.6 97.7 97.6 99.8 
26 100 94.2 97.1 96.9 99.7 
27 100 94.1 97.9 97.9 100 
28 99.9 95.9 98.6 98.6 100 
29 99.9 95.6 99.2 99.2 100 
30 99.9 98 99.5 99.5 100 
31 99.8 96.4 100 100 100 
32 99.9 97.9 100 100 100 
33 99.9 97.9 100 100 100 
34 99.9 97 100 100 100 
35 99.9 98.3 100 100 100 
36 100 98.4 100 100 100 
37 99.8 99.6 100 100 100 
38 100 100 100 100 100 
39 100 100 100 100 100 
40 100 100 100 100 100 
41 100 100 100 100 100 
42 100 100 100 100 100 
43 loo 100 100 100 100 
44 100 100 100 100 100 
45 100 100 100 100 100 
46 100 100 100 100 100 
47 100 100 100 100 100 
48 100 100 100 100 100 
49 100 100 100 100 100 
50 loo loo 100 100 100 
51 100 100 100 100 100 
52 100 100 100 100 100 
53 100 100 100 100 100 
54 1 100 1 100 1 100 100 100 
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Table 67: Simulation 1: Mean Bias (SE) in ý for Sample Size 24 
(1000 runs per simulation) 

Sim mom MoM UN u CSH CSH FAO(2) FAO(2) RIS ] RIS 
Bias SE Bias SE Bias 

[ 
SE Bias SE Bias SE 

Complete Data Set 
1 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0-001 0.001 -0.001 0.001 
2 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
3 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 
4 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
5 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 
6 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
7 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
8 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
9 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
10 -0.001 0.003 -0.001 0.003 -0.001 0.003 -0.001 0.003 -0.001 0.003 
11 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
12 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 
13 -0.003 0.003 -0.003 0.003 -0.003 0.003 -0.003 0.003 -0.003 0.003 
14 -0.001 0.004 -0.001 0.004 -0.001 0.004 -0.001 0.004 -0.001 0.004 
15 -0.003 0.003 -0-003 0.003 -0.003 0.003 -0.003 0.003 -0.003 0.003 
16 -0.001 0.004 -0.001 0.004 -0.001 0.004 -0.001 0.004 -0.001 0.004 
17 -0.003 0.004 -0.003 0.004 -0.003 0.004 -0.003 0.004 -0.003 0.004 
18 -0.001 0.006 -0.001 0.006 -0.001 0.006 -0-001 0.006 -0.001 0.006 
19 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 
20 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
21 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-001 
22 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
23 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-001 
24 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
25 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
26 -0.001 0.002 -0-001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
27 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
28 -0.001 0.003 -0-001 0.003 -0-001 0.003 -0-001 0.003 -0.001 0.003 
29 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
30 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 
31 -0.003 0.003 -0.003 0.003 -0.003 0.003 -0.003 0.003 -0.003 0.003 
32 -0.001 0.004 -0-001 0.004 -0.001 0.004 -0-001 0.004 -0.001 0.004 
33 -0.003 0.003 -0.003 0.003 -0.003 0.003 -0.003 0.003 -0.003 0.003 
34 -0.001 0.004 -0-001 0.004 -0.001 0.004 -0-001 0.004 -0.001 0.004 
35 -0.003 0.004 -0-003 0.004 -0.003 0.004 -0.003 0.004 -0.003 0.004 
36 -0.001 0.006 -0-001 0.006 -0-001 0.006 -0-001 0.006 -0.001 0.006 
37 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-00' -0-001 0,001 
38 0.000 0.001 0.000 0.001 0.000 0.001 0-000 0-00, 0.000 0,001 
39 -0-001 0.001 -0-001 0.001 -0-001 0-001 -0-00' 0.001 -0*001 0,001 
40 0.000 0.001 0.000 0-001 0.000 0-001 0-000 0.001 0.000 0*001 
41 -0-001 0.001 -0-001 0.001 -0-001 0-001 -0-00' 0.001 -0,001 0,001 
42 0.000 0.001 0.000 0.001 0.000 0.001 0-000 0-001 0,000 0,001 
43 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
44 -0.001 0.002 -0-001 0.002 -0.001 0.002 -0-001 0.002 -0.001 0.002 
45 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
46 -0.001 0.003 -0-001 0.003 -0-001 0.003 -0-001 0.003 -0.001 0.003 
47 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
48 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 
49 -0.003 0.003 -0-003 0.003 -0.003 0.003 -0.003 0.003 -0.003 0.003 
50 -0.001 0.004 -0-001 0.004 -0.001 0.004 -0-001 0.004 -0.001 0.004 
51 -0.003 0.003 -0-003 0.003 -0-003 0.003 -0.003 0.003 -0.003 0.003 
52 -0.001 0.004 -0-001 0.004 -0.001 0.004 -0-001 0.004 -0.001 0.004 
53 -0.003 0.004 -0.003 0.004 -0-003 0.004 -0-003 0.004 -0.003 0.004 
54 -0.001 1 0.006 1 -0-001 0.006 1 -0.001 1 0.006 1 -0-001 1 0.006 1 -0.001 1 0.006 

369 



Table 67: Simulation 1: Mean Bias (SE) in S for Sample Size 24 
(1000 runs per simulation) 

Sim mom 
Bias 

MoM 
SE 

UN I 
Bias 

ý U-N- 
SE 

F-CSH 
I Bias 

CSH- 
SE 

FFAO(2) 
I Bins 

FAO(2)- RIS 
'Rich 

-s 

RIS 
QP. 

Substantial Missing Data 
1 0.041 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 
2 0.041 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 
3 0.041 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 
4 0.041 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 
5 0.040 0.001 -0.001 0.001 -0.001 0.001 -0-002 0.001 -0.002 0.001 
6 0.040 0.001 -0-002 0.001 -0.002 0.001 -0.002 0.001 -0.002 0.001 
7 0.039 0.002 -0-002 0.002 -0-003 0.002 -0-003 0.002 -0.003 0.002 
8 0.039 0.003 -0-002 0.002 -0-003 0.002 -0-003 0.002 -0-003 0.002 
9 0.038 0.003 -0-003 0.002 -0-003 0.002 -0-003 0.002 -0.004 0.002 
10 0.039 0.003 -0.004 0.003 -0.004 0.003 -0.004 0.003 -0.004 0.003 
11 0.038 0.003 -0-003 0.003 -0.004 0.003 -0.004 0.003 -0.005 0.003 
12 0.038 0.004 -0.005 0.004 -0-005 0.004 -0-005 0.004 -0.005 0.004 
13 0.037 0.004 -0-004 0.004 -0-005 0.004 -0-005 0.004 -0.006 0.004 
14 0.037 0.005 -0-005 0.005 -0-005 0.005 -0-005 0.005 -0.006 0.005 
15 0.036 0.004 -0-005 0.004 -0-006 0.004 -0-006 0.004 -0.007 0.004 
16 0.036 0.005 -0-006 0.005 -0.006 0.005 -0-006 0.005 -0.007 0.005 
17 0.035 0.005 -0-006 0.005 -0.007 0.005 -0-007 0.005 -0.008 0.005 
18 0.035 0.007 -0-008 0.007 -0.009 0.007 -0.009 0.007 -0.009 0.007 
19 0.041 0.001 -0.001 0.001 -0.001 0.001 -0-001 0.001 -0-001 0.001 
20 0.041 0.001 -0.001 0.001 -0.001 0.001 -0-001 0.001 -0-001 0.001 
21 0.041 0.001 -0.001 0.001 -0.001 0.001 -0-001 0.001 -0-001 0.001 
22 0.041 0.001 -0.001 0.001 -0.001 0.001 -0-001 0.001 -0-001 0.001 
23 0.040 0.001 -0.001 0.001 -0.002 0.001 -0.002 0.001 -0.002 0.001 
24 0.040 0.001 -0.002 0.001 -0.002 0.001 -0.002 0.001 -0.002 0.001 
25 0.039 0.002 -0.002 0.002 -0-003 0.002 -0-003 0.002 -0.003 0.002 
26 0.039 0.003 -0.002 0.002 -0.003 0.002 -0-003 0.002 -0.003 0.002 
27 0.038 0.003 -0.003 0.002 -0.003 0.002 -0-003 0.002 -0.004 0.002 
28 0.039 0.003 -0.004 0.003 -0.004 0.003 -0.004 0.003 -0.004 0.003 
29 0.038 0.003 -0.003 0.003 -0.004 0.003 -0.004 0.003 -0.005 0.003 
30 0.038 0.004 -0.005 0.004 -0.005 0.004 -0.005 0.004 -0.005 0.004 
31 0.037 0.004 -0.004 0.004 -0.005 0.004 -0.005 0.004 -0.006 0.004 
32 0.037 0.005 -0.005 0.005 -0.005 0.005 -0-005 0.005 -0.006 0.005 
33 0.036 0.004 -0.005 0.004 -0-006 0.004 -0-006 0.004 -0.007 0.004 
34 0.036 0.005 -0.006 0.005 -0.006 0.005 -0-006 0.005 -0.007 0.005 
35 0.035 0.005 -0.006 0.005 -0.007 0.005 -0.007 0.005 -0.008 0.005 
36 0.035 0.007 -0.008 0.007 -0-009 0.007 -0-009 0.007 -0.009 0.007 
37 0.041 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-001 -0-001 0-001 
38 0.041 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-001 
39 0.041 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-001 
40 0.041 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-001 
41 0.040 0.001 -0-001 0.001 -0-001 0-001 -0.002 0.001 -0.002 0.001 
42 0.040 0.001 -0.002 0.001 -0.002 0.001 -0.002 0.001 -0.002 0.001 
43 0.039 0.002 -0.002 0.002 -0-003 0.002 -0.003 0.002 -0.003 0.002 
44 0.039 0.003 -0.002 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 
45 0.038 0.003 -0.003 0.002 -0-003 0.002 -0.003 0.002 -0.004 0.002 
46 0.039 0.003 -0.004 0.003 -0.004 0.003 -0.004 0.003 -0.004 0.003 
47 0.038 0.003 -0.003 0.003 -0.004 0.003 -0.004 0.003 -0.005 0.003 
48 0.038 0.004 -0.005 0.004 -0.005 0.004 -0.005 0.004 -0.005 0.004 
49 0.037 0.004 -0.004 0.004 -0.005 0.004 -0.005 0.004 -0.006 0.004 
50 0.037 0.005 -0.005 0.005 -0-005 0.005 -0.005 0.005 -0.006 0.005 
51 0.036 0.004 -0.005 0.004 -0-006 0.004 -0-006 0.004 -0.007 0.004 
52 0.036 0.005 -0-006 0.005 -0-006 0.005 -0-006 0.005 -0.007 0.005 
53 0.035 0.005 -0-006 0.005 -0-007 0.005 -0-007 0.005 -0.008 0.005 
54 0.035 0.007 1 -0.008 1 0.007 1 -0.009 0.007 -0-009 1 0.007 1 -0.009 1 0.007 
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Table 68: Simulation 1: Mean Bias (SE) in &2 D for Sample Size 24 
(1000 runs per simulation) 

Sim mom 
Bias 

I MM 
SE 

UN 
Bias 

N 
SE 

CSH 
Bias 

CSH 
SE 

FAO(2) 
Bias 

FAO(2) 
SE 

RIS 
Bias 

RIS I 
SE 

Complete Data Set 
1 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.001 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 -0-001 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.003 0.000 0.002 0.000 0.002 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 -0.004 0.000 0.000 0.000 
7 -0-001 0.001 -0-001 0.001 0.010 0.000 0.007 0.000 0.009 0.000 
8 -0.001 0.001 -0.001 0.001 0.002 0.001 -0.003 0.001 0.002 0.001 
9 -0.002 0.001 -0.002 0.001 0.014 0.001 0.009 0.001 0.012 0.001 
10 -0.001 0.002 -0.001 0.002 0.001 0.002 -0.011 0.001 0.000 0.002 
11 -0.002 0.001 -0.002 0.001 0.020 0.001 0.013 0.001 0.016 0.001 
12 -0.001 0.002 -0.001 0.002 0.000 0.002 -0.024 0.002 -0.001 0.002 
13 -0.004 0.002 -0.004 0.002 0.032 0.001 0.022 0.001 0.028 0.001 
14 -0.002 0.003 -0-002 0.003 0.004 0.003 -0.016 0.003 0.002 0.003 
15 -0.004 0.003 -0-005 0.003 0.039 0.002 0.026 0.001 0.033 0.002 
16 -0.002 0.004 -0.002 0.004 0.002 0.004 -0.031 0.004 0.000 0.004 
17 -0.006 0.004 -0.007 0.004 0.059 0.002 0.038 0.002 0.048 0.002 
18 -0.002 0.007 -0.003 0.007 0.002 0.007 -0.077 0.006 -0.004 0.007 
19 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10-000 
21 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.001 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 -0-001 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 0.003 0.000 0.002 0.000 0.002 0.000 
24 0.000 0.000 0.000 0.000 0.000 0,000 -0.004 0.000 0.000 0.000 
25 -0-001 0.001 -0-001 0.001 0.010 0.000 0.007 0.000 0.009 0.000 
26 -0.001 0.001 -0.001 0.001 0.002 0.001 -0.003 0.001 0.002 0.001 
27 -0.002 0.001 -0.002 0.001 0.014 0.001 0.009 0.001 0.012 0.001 
28 -0.001 0.002 -0.001 0.002 0.001 0.002 -0.011 0.001 0.000 0.002 
29 -0.002 0.001 -0.002 0.001 0.020 0.001 0.013 0.001 0.016 0.001 
30 -0.001 0.002 -0.001 0.002 0.000 0.002 -0.024 0.002 -0.001 0.002 
31 -0.004 0.002 -0.004 0.002 0.032 0.001 0.022 0.001 0.028 0.001 
32 -0.002 0.003 -0.002 0.003 0.004 0.003 -0.016 0.003 0.002 0.003 
33 -0.004 0.003 -0.005 0.003 0.039 0.002 0.026 0.001 0.033 0.002 
34 -0.002 0.004 -0.002 0.004 0.002 0.004 -0.031 0.004 0.000 0.004 
35 -0.006 0.004 -0.007 0.004 0.059 0.002 0.038 0.002 0.048 0.002 
36 -0.002 0.007 -0.003 0.007 0.002 0.007 -0.077 0.006 -0.004 0.007 
37 0.000 0.000 0.000 0.000 0.001 0.000 0-001 0.000 0.001 0.000 
38 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 0.000 
39 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.001 0.000 
40 0.000 0.000 0.000 0.000 0.000 0.000 -0-001 0-000 0.000 0.000 
41 0.000 0.000 0.000 0.000 0.003 0.000 0.002 0.000 0.002 0.000 
42 0.000 0.000 0.000 0.000 0.000 0.000 -0.004 0.000 0.000 0.000 
43 -0-001 0.001 -0-001 0.001 0.010 0.000 0.007 0.000 0.009 0.000 
44 -0.001 0.001 -0.001 0.001 0.002 0.001 -0.003 0.001 0.002 0.001 
45 -0.002 0.001 -0.002 0.001 0.014 0.001 0.009 0.001 0.012 0.001 
46 -0.001 0.002 -0-001 0.002 0.001 0.002 -0-011 0.001 0.000 0.002 
47 -0.002 0.001 -0.002 0.001 0.020 0.001 0.013 0.001 0.016 0.001 
48 -0.001 0.002 -0.001 0.002 0.000 0.002 -0.024 0.002 -0.001 0.002 
49 -0.004 0.002 -0.004 0.002 0.032 0.001 0.022 0.001 0.028 0.001 
50 -0.002 0.003 -0.002 0.003 0.004 0.003 -0.016 0.003 0.002 0.003 
51 -0.004 0.003 -0.005 0.003 0.039 0.002 0.026 0.001 0.033 0.002 
52 -0.002 0.004 -0.002 0.004 0.002 0.004 -0.031 0.004 0.000 0.004 
53 -0.006 0.004 -0.007 0.004 0.059 0.002 0.038 0.002 0.048 0.002 
54 -0,002 1 0.007 1 -0-003 1 0.007 1 0.002 1 0.007 1 -0-077 1 0.006 1 -0.004 1 0.007 

371 



Table 68: Simulation 1: Mean Bias (SE) in &2 D for Sample Size 24 
(1000 runs per simulation) 

Sim mom 
Bias 

I Mom 
SE 

UN I I 
Bias 

UN 
SE 

CSH 
Bias 

I CSH 
SE 

I FAO(2) 
Bias 

FAO(2) 
SE 

RIS 
Bins, 

RIS 
SF 

Substantial Missing Data 
1 0.184 0.001 0.000 0.000 0.002 0.000 0.001 0.000 0.001 0.000 
2 0.184 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 
3 0.184 0.001 0.000 0.000 0.002 0.000 0.002 0.000 0.002 0.000 
4 0.185 0.001 0.000 0.000 0.001 0.000 -0-001 0.000 0.000 0.000 
5 0.185 0.001 0.000 0.000 0.004 0.000 0.002 0.000 0.003 0.000 
6 0.186 0.001 0.000 0.000 0.001 0.000 -0.004 0.000 0.000 0.000 
7 0.199 0.003 -0.001 0.001 0.016 0.001 0.011 0.001 0.013 0.001 
8 0.200 0.003 0.000 0.002 0.007 0.001 -0.001 0.001 0.005 0.001 
9 0.203 0.003 -0-001 0.001 0.021 0.001 0.013 0.001 0.017 0.001 
10 0.205 0.004 0.000 0.002 0.005 0.002 -0.010 0.002 0.003 0.002 
11 0.209 0.004 -0.001 0.002 0.028 0.001 0.018 0.001 0.023 0.001 
12 0.211 0.005 0.000 0.003 0.005 0.003 -0.026 0.003 0.002 0.003 
13 0.235 0.005 -0.001 0.004 0.048 0.002 0.032 0.002 0.039 0.002 
14 0.237 0.007 -0.001 0.005 0.017 0.004 -0.011 0.004 0.010 0.004 
15 0.242 0.006 -0-001 0.004 0.059 0.003 0.038 0.002 0.047 0.003 
16 0.245 0.008 -0.001 0.006 0.015 0.006 -0.028 0.005 0.008 0.006 
17 0.261 0.008 -0.001 0.006 0.084 0.004 0.052 0.003 0.067 0.004 
18 0.266 0.012 -0.001 0.010 0.014 0.009 -0.083 0.008 0.004 0.009 
19 0.184 0.001 0.000 0.000 0.002 0.000 0.001 0.000 0.001 0.000 
20 0.184 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 
21 0.184 0.001 0.000 0.000 0.002 0.000 0.001 0.000 0.002 0.000 
22 0.185 0.001 0.000 0.000 0.001 0.000 -0-001 0.000 0.000 0.000 
23 0.185 0.001 0.000 0.000 0.004 0.000 0.002 0.000 0.003 0.000 
24 0.186 0.001 0.000 0.000 0.001 0.000 -0.004 0.000 0.000 0.000 
25 0.199 0.003 -0-001 0.001 0.016 0.001 0.011 0.001 0.013 0.001 
26 0.200 0.003 0.000 0.002 0.007 0.001 -0-001 0.001 0.005 0.001 
27 0.203 0.003 -0-001 0.001 0.021 0.001 0.013 0.001 0.017 0.001 
28 0.205 0.004 0.000 0.002 0.005 0.002 -0.010 0.002 0.003 0.002 
29 0.209 0.004 -0.001 0.002 0.028 0.001 0.018 0.001 0.023 0.001 
30 0.211 0.005 0.000 0.003 0.005 0.003 -0.026 0.003 0.002 0.003 
31 0.235 0.005 -0.002 0.003 0.048 0.002 0.032 0.002 0.039 0.002 
32 0.237 0.007 -0-001 0.005 0.017 0.004 -0-011 0.004 0.010 0.004 
33 0.242 0.006 -0.002 0.004 0.059 0.003 0.037 0.002 0.047 0.003 
34 0.245 0.008 -0-001 0.006 0.015 0.006 -0.028 0.005 0.008 0.006 
35 0.261 0.008 -0-001 0.006 0.084 0.004 0.052 0.003 0.067 0.004 
36 0.266 0.012 -0.001 0.010 0.014 0.009 -0.083 0.008 0.004 0.009 
37 0.184 0.001 0.000 0.000 0.002 0.000 0.001 0.000 0.001 0.000 
38 0.184 0.001 0.000 0.000 0.001 0.000 0.000 0-000 0-001 0-000 
39 0.184 0.001 0.000 0.000 0.002 0.000 0.001 0.000 0.002 0.000 
40 0.185 0.001 0.000 0.000 0.001 0-000 -0-001 0-000 0-000 0.000 
41 0.185 0.001 0.000 0.000 0.004 0.000 0.002 0.000 0.003 0.000 
42 0.186 0.001 0.000 0.000 0.001 0.000 -0.004 0.000 0.000 0.000 
43 0.199 0.003 -0-001 0.001 0.016 0.001 0.011 0.001 0.013 0.001 
44 0.200 0.003 0.000 0.002 0.007 0.001 -0-001 0.001 0.005 0.001 
45 0.203 0.003 -0-001 0.001 0.021 0.001 0.013 0.001 0.017 0.001 
46 0.205 0.004 0.000 0.002 0.005 0.002 -0-010 0.002 0.003 0.002 
47 0.209 0.004 -0-001 0.002 0.028 0.001 0.018 0.001 0.023 0.001 
48 0.211 0.005 0.000 0.003 0.005 0.003 -0.026 0.003 0.002 0.003 
49 0.235 0.005 -0.002 0.003 0.048 0.002 0.032 0.002 0.039 0.002 
50 0.237 0.007 -0-001 0.005 0.017 0.004 -0-011 0.004 0.010 0.004 
51 0.242 0.006 -0-001 0.004 0.059 0.003 0.038 0.002 0.047 0.003 
52 0.245 0.008 -0.001 0.006 0.015 0.006 -0.028 0.005 0.008 0.006 
53 0.261 0.008 -0.001 0.006 0.084 0.004 0.052 0.003 0.067 0.004 
54 0.266 1 0.012 -0.001 1 0.010 0.014 0.009 1 -0.083 1 0.008 1 0.004 1 0.009 
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Table 69: Simulation 1: Mean Bias (SE) in &2 WT for Sample Size 
24 (1000 runs per simulation) 

Sim mom 
Bias 

MoM 
SE 

UN 
Bias 

UN 
SE 

CgH ] 
Bias 

CSH ý 
SE 

FAO(2) 
Bias 

FAO(2) 
SE 

I RIS LB 
iIa. 9 

J RIS 
SE 

Complete Data Set 
1 0.000 0.000 0.000 0.000 -0.001 0.000 -0-001 0.000 -0-001 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.001 0.001 0.001 0.001 -0-006 0.001 -0.006 0.001 -0.005 0.001 
8 0.001 0.001 0.001 0.001 -0-001 0.001 -0-001 0.001 0.000 0.001 
9 0.001 0.001 0.001 0.001 -0.004 0.001 -0.004 0.001 -0.003 0.001 
10 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
11 0.001 0.001 0.001 0.001 -0-003 0.001 -0.003 0.001 -0-003 0.001 
12 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
13 0.003 0.002 0.003 0.002 -0.014 0.002 -0.014 0.002 -0.012 0.002 
14 0.003 0.002 0.003 0.002 0.000 0.002 0.000 0.002 0.001 0.002 
15 0.003 0.002 0.003 0.002 -0-012 0.002 -0.012 0.002 -0.010 0.002 
16 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 
17 0.003 0.002 0.003 0.002 -0.007 0.002 -0.007 0.002 -0.007 0.002 
18 0.003 0.002 0.003 0.002 0.003 0.002 0.002 0.002 0.003 0.002 
19 0.000 0.000 0.000 0.000 -0-001 0.000 -0.001 0.000 -0-001 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
25 0.001 0.001 0.001 0.001 -0.006 0.001 -0-006 0.001 -0.005 0.001 
26 0.001 0.001 0.001 0.001 -0-001 0.001 -0-001 0.001 0.000 0.001 
27 0.001 0.001 0.001 0.001 -0.004 0.001 -0.004 0.001 -0.003 0.001 
28 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
29 0.001 0.001 0.001 0.001 -0.003 0.001 -0.003 0.001 -0.003 0.001 
30 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
31 0.003 0.002 0.003 0.002 -0.014 0.002 -0.014 0.002 -0.012 0.002 
32 0.003 0.002 0.003 0.002 0.000 0.002 0.000 0.002 0.001 0.002 
33 0.003 0.002 0.003 0.002 -0.012 0.002 -0.012 0.002 -0.010 0.002 
34 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 
35 0.003 0.002 0.003 0.002 -0.007 0.002 -0.007 0.002 -0.007 0.002 
36 0.003 0.002 0.003 0.002 0.003 0.002 0.002 0.002 0.003 0.002 
37 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 -0-001 0-000 
38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 
39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 
40 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 
41 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 
42 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 
43 0.001 0.001 0.001 0.001 -0.006 0.001 -0.006 0.001 -0.005 0.001 
44 0.001 0.001 0.001 0.001 -0-001 0.001 -0-001 0-001 0-000 0-00' 
45 0.001 0.001 0.001 0.001 -0.004 0.001 -0.004 0.001 -0.003 0.001 
46 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
47 0.001 0.001 0.001 0.001 -0.003 0.001 -0.003 0.001 -0.003 0.001 
48 0.001 0.001 0.001 0.001 0.001 0.001 0-001 0.001 0.001 0.001 
49 0.003 0.002 0.003 0.002 -0.014 0.002 -0.014 0.002 -0.012 0.002 
50 0.003 0.002 0.003 0.002 0.000 0.002 0.000 0.002 0.001 0.002 
51 0.003 0.002 0.003 0.002 -0.012 0.002 -0.012 0.002 -0.010 0.002 
52 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 
53 0.003 0.002 0.003 0.002 -0.007 0.002 -0.007 0.002 -0.007 0.002 
54 0.003 1 0.002 1 0.003 1 0.002 1 0.003 1 0.002 0.002 1 0.002 1 0.003 1 0.002 
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&2 Table 69: Simulation 1: Mean Bias (SE) in WT for Sample Size 
24 (1000 runs per simulation) 

Sim mom 
Bias 

OM I I MSE UN 
Bias 

I UN 
SE 

I CSH I 
Bias 

CSH -I 
SE 

- FAO(2) 
Bias 

FAO(2) 
SE 

RIS 
Bias 

RIS I 
SE 

Substantial M issing Data 
1 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0.001 0.000 
2 0.000 0.000 0.000 0.000 -0-001 0.000 -0.001 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.001 0.001 0.001 0.001 -0.008 0.001 -0.008 0.001 -0.006 0.001 
8 0.001 0.001 0.001 0.001 -0.003 0.001 -0-003 0.001 -0.002 0.001 
9 0.001 0.001 0.001 0.001 -0-006 0.001 -0-006 0.001 -0-005 0.001 
10 0.001 0.001 0.001 0.001 -0.001 0.001 -0-001 0.001 0.000 0.001 
11 0.001 0.001 0.001 0.001 -0.005 0.001 -0.005 0.001 -0.004 0.001 
12 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
13 0.002 0.003 0.003 0.003 -0.021 0.002 -0.021 0.002 -0.016 0.002 
14 0.002 0.003 0.003 0.003 -0-006 0.003 -0-006 0.003 -0.003 0.003 
15 0.002 0.003 0.003 0.003 -0-018 0.003 -0-018 0.003 -0.014 0.003 
16 0.002 0.003 0.003 0.003 -0-003 0.003 -0-003 0.003 -0.001 0.003 
17 0.002 0.003 0.003 0.003 -0-013 0.003 -0-013 0.003 -0.011 0.003 
18 0.002 0.003 0.003 0.003 0.000 0.003 0.000 0.003 0.000 0.003 
19 0.000 0.000 0.000 0.000 -0.001 0.000 -0-001 0.000 -0.001 0.000 
20 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 
25 0.001 0.001 0.001 0.001 -0.008 0.001 -0-008 0.001 -0.006 0.001 
26 0.001 0.001 0.001 0.001 -0-003 0.001 -0-003 0.001 -0.002 0.001 
27 0.001 0.001 0.001 0.001 -0.006 0.001 -0.006 0.001 -0.005 0.001 
28 0.001 0.001 0.001 0.001 -0-001 0.001 -0-001 0-001 0-000 0-001 
29 0.001 0.001 0.001 0.001 -0.005 0.001 -0-005 0.001 -0.004 0.001 
30 0.001 0.001 0.001 0.001 0.000 0.001 0-000 0-001 0-000 0-001 
31 0.002 0.003 0.004 0.003 -0.021 0.002 -0.021 0.002 -0.016 0.002 
32 0.002 0.003 0.003 0.003 -0.006 0.003 -0.006 0.003 -0.003 0.003 
33 0.002 0.003 0.003 0.003 -0.018 0.003 -0.018 0.003 -0.014 0.003 
34 0.002 0.003 0.003 0.003 -0.003 0.003 -0-003 0.003 -0.001 0.003 
35 0.002 0.003 0.003 0.003 -0.013 0.003 -0.013 0.003 -0.011 0.003 
36 0.002 0.003 0.003 0.003 0.000 0.003 0.000 0.003 0.000 0.003 
37 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 -0-001 0.000 
38 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 0.000 0,000 
39 0.000 0.000 0.000 0.000 -0-001 0-000 -0-001 0.000 -0-001 0,000 
40 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0,000 
41 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0*000 
42 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0,000 
43 0.001 0.001 0.001 0.001 -0.008 0.001 -0.008 0.001 -0.006 0.001 
44 0.001 0.001 0.001 0.001 -0.003 0.001 -0.003 0.001 -0.002 0.001 
45 0.001 0.001 0.001 0.001 -0.006 0.001 -0.006 0.001 -0.005 0.001 
46 0.001 0.001 0.001 0.001 -0-001 0-001 -0-001 0.001 0,000 0,001 
47 0.001 0.001 0.001 0.001 -0.005 0.001 -0.005 0.001 -0.004 0.001 
48 0.001 0.001 0.001 0.001 0.000 0-001 0-000 0.001 0"000 0,001 
49 0.002 0.003 0.004 0.003 -0.021 0.002 -0.021 0.002 -0.016 0.002 
50 0.002 0.003 0.003 0.003 -0.006 0.003 -0.006 0.003 -0.003 0.003 
51 0.002 0.003 0.003 0.003 -0.018 0.003 -0-018 0.003 -0.014 0.003 
52 0.002 0.003 0,003 0.003 -0-003 0.003 -0.003 0.003 -0-001 0.003 
53 0.002 0.003 0.003 0.003 -0-013 0.003 -0.013 0.003 -0.011 0.003 
54 0.002 1 0.003 0.003 0.003 0.000 1 0.003 1 0.000 1 0.003 1 0.000 1 0.003 
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Table 70: Simulation 1: Mean Bias (SE) in &2 WR for Sample Size 
24 (1000 runs per simulation) 

Sim mom 
Bias 

mom 
SE 

UN 
Bias 

UN 
E S "I 

CSH 
Bias 

CSH 
SE 

FAO(2) 
Bias 

FAO(2) 
SE 

RIS 
Bias 

TO RIS 
SE 

Complete Data Set 
- 1 0.000 0.000 0.000 0.000 6 
. 000 0.000 0.000 0.000 0-000 0.000 

2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 -0-001 0.000 -0.001 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0-001 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0-001 0.000 
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
9 0.000 0.001 0.000 0.001 -0.005 0.001 -0.005 0.001 -0.004 0.001 
10 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
11 0.000 0.001 0.000 0.001 -0.011 0.001 -0.011 0.001 -0.009 0.001 
12 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.001 0.002 
13 0.000 0.001 0.000 0.002 -0.007 0.001 -0.007 0.001 -0.006 0.001 
14 0.000 0.001 0.000 0.002 -0.001 0.001 -0.001 0.001 0.000 0.001 
15 0.000 0.002 0.001 0.002 -0.014 0.002 -0.014 0.002 -0.012 0.002 
16 0.000 0.002 0.001 0.002 -0.001 0.002 -0.001 0.002 0.000 0.002 
17 0.000 0.005 0.001 0.005 -0-034 0.004 -0-034 0.004 -0.027 0.004 
18 0.000 0.005 0.001 0.005 -0.001 0.004 -0-001 0.004 0.003 0.005 
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 0-000 0-000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 
23 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0-001 0.000 
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
25 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 -0-001 0-000 
26 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0-000 0-000 0-000 
27 0.000 0.001 0.000 0.001 -0.005 0.001 -0.005 0.001 -0.004 0.001 
28 0.000 0.001 0.000 0.001 0-000 0.001 0-000 0.001 0.000 0.001 
29 0.000 0.001 0.000 0.001 -0-011 0.001 -0-011 0-001 -0-009 0.001 
30 0.000 0.001 0.000 0.001 0-000 0.001 0-000 0.001 0.001 0.002 
31 0.000 0.001 0.000 0.002 -0.007 0.001 -0.007 0.001 -0.006 0.001 
32 0.000 0.001 0.000 0.002 -0.001 0.001 -0-001 0.001 0.000 0.001 
33 0.000 0.002 0.001 0.002 -0.014 0.002 -0.014 0.002 -0.012 0.002 
34 0.000 0.002 0.001 0.002 -0.001 0.002 -0-001 0.002 0.000 0.002 
35 0.000 0.005 0.001 0.005 -0.034 0.004 -0.034 0.004 -0.027 0.004 
36 0.000 0.005 0.001 0.005 -0-001 0.004 -0-001 0.004 0.003 0.005 
37 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0,000 0,000 
38 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0,000 0,000 
39 0.000 0.000 0.000 0.000 -0-001 0-000 -0-001 0.000 0*000 0,000 
40 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0,000 0*000 
41 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0-001 0.000 
42 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0,000 0*000 
43 0.000 0.000 0.000 0.000 -0-001 0-000 -0-001 0,000 -0,001 0*000 
44 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0.000 0.000 
45 0.000 0.001 0.000 0,001 -0.005 0.001 -0.005 0.001 -0.004 0.001 
46 0.000 0.001 0.000 0.001 0-000 0-001 0.000 0,001 0,000 0*001 
47 0.000 0.001 0.000 0-001 -0-011 0-001 -0-011 0,001 -0,009 0*001 
48 0.000 0-001 0.000 0.001 0-000 0-001 0.000 0.001 0.001 0.002 
49 0.000 0.001 0.000 0.002 -0-007 0.001 -0.007 0.001 -0.006 0.001 
50 0.000 0.001 0.000 0.002 -0.001 0.001 -0-001 0.001 0-000 0-001 
51 0.000 0.002 0.001 0.002 -0.014 0.002 -0.014 0.002 -0.012 0.002 
52 0.000 0.002 0.001 0.002 -0.001 0.002 -0.001 0.002 0.000 0.002 
53 0.000 0.005 0.001 0.005 -0.034 0.004 -0.034 0.004 -0.027 0.004 
54 0.000 1 0.005 1 0.001 1 0.005 1 -0.001 1 0.004 1 -0.001 1 0.004 1 0.003 1 0.005 
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Table 70: Simulation 1: Mean Bias (SE) in &2 
24 (1000 runs per simulation) 

WR for Sample Size 

Sim mom FBias MoM I 
SE 

UN I 
Bias 

ý UN 
SE 

ý CS] 
Bias 

I 
SE 

FAO(2 
I Biqq 

FAO(2) -P I 
RP, 

RIS 
'Rine 

RIS I 
QP. 

Substantial Missing Data 
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 -0-002 0.000 -0.002 0.000 -0.001 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.001 0.000 
8 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
9 0.000 0.001 0.000 0.001 -0-006 0.001 -0.006 0.001 -0-005 0.001 
10 0.000 0.001 0.000 0.001 -0.002 0.001 -0.002 0.001 -0.001 0.001 
11 0.000 0.002 -0.001 0.002 -0.013 0.001 -0.012 0.001 -0-010 0.001 
12 0.000 0.002 0.000 0.002 -0.002 0.002 -0.002 0.002 -0.001 0.002 
13 0.000 0.002 -0.001 0.002 -0.008 0.002 -0.008 0.002 -0.007 0.002 
14 0.000 0.002 0.000 0.002 -0.003 0.002 -0.003 0.002 -0.002 0.002 
15 -0.001 0.003 -0.001 0.003 -0.016 0.002 -0.016 0.002 -0.014 0.002 
16 -0.001 0.003 0.000 0.003 -0.004 0.003 -0.004 0.003 -0.003 0.003 
17 -0.001 0.005 -0.002 0.005 -0-039 0.004 -0.039 0.004 -0.031 0.004 
18 -0.001 0.005 -0.001 0.005 -0.007 0.005 -0.007 0.005 -0.002 0.005 
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 
23 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0-001 0.000 
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 
25 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0-001 0.000 
26 0.000 0.000 0.000 0.000 -0-001 0-000 -0-001 0-000 -0-001 0-000 
27 0.000 0.001 0.000 0.001 -0.006 0.001 -0.006 0.001 -0.005 0.001 
28 0.000 0.001 0.000 0.001 -0.002 0.001 -0.002 0.001 -0-001 0.001 
29 0.000 0.002 -0-001 0.002 -0.013 0.001 -0.012 0.001 -0-010 0.001 
30 0.000 0.002 0.000 0.002 -0.002 0.002 -0.002 0.002 -0.001 0.002 
31 0.000 0.002 -0.001 0.002 -0.008 0.002 -0.008 0.002 -0.007 0.002 
32 0.000 0.002 0.000 0.002 -0.003 0.002 -0.003 0.002 -0.002 0.002 
33 -0.001 0.003 -0-001 0.003 -0.016 0.002 -0.016 0.002 -0.014 0.002 
34 -0.001 0.003 0.000 0.003 -0.004 0.003 -0.004 0.003 -0.003 0.003 
35 -0.001 0.005 -0.002 0.005 -0.039 0.004 -0.039 0.004 -0.031 0.004 
36 -0.001 0.005 -0-001 0.005 -0.007 0.005 -0.007 0.005 -0.002 0.005 
37 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0.000 0,000 
38 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0,000 0*000 
39 0.000 0.000 0.000 0-000 -0-001 0-000 -0-001 0.000 -0,001 0*000 
40 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0*000 0,000 
41 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0-001 0.000 
42 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 0,000 0,000 
43 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0-001 0-000 
44 0.000 0.000 0.000 0.000 -0-001 0-000 -0-001 0.000 -0,001 0*000 
45 0.000 0.001 0.000 0.001 -0.006 0.001 -0.006 0.001 -0.005 0.001 
46 0.000 0.001 0.000 0.001 -0.002 0.001 -0.002 0.001 -0-001 0.001 
47 0.000 0.002 -0-001 0.002 -0.013 0.001 -0.012 0.001 -0-010 0.001 
48 0.000 0.002 0.000 0.002 -0.002 0.002 -0.002 0.002 -0.001 0.002 
49 0.000 0.002 -0.001 0.002 -0.008 0.002 -0.008 0.002 -0.007 0.002 
50 0.000 0.002 0.000 0.002 -0.003 0.002 -0.003 0.002 -0.002 0.002 
51 -0.001 0.003 -0-001 0.003 -0-016 0.002 -0-016 0.002 -0.014 0.002 
52 -0.001 0.003 0.000 0.003 -0-004 0.003 -0.004 0.003 -0.003 0.003 
53 -0.001 0.005 -0.002 0.005 -0-039 0.004 -0-039 0.004 -0.031 0.004 
54 -0.001 1 0.005 1 -0.001 1 0.005 1 -0-007 0.005 -0.007 0.005 1 -0.002 1 0.005 
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Table 71: Simulation 1: Percentage of ABE Failures for Sample 
Size 24 (1000 runs per simulation) 

Sim I MoRT -U-NFI CSH FAO(2) I RIS 
_ Complete Data Set 

1 0 0 0 0 0 
2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 2.2 2.2 2.2 0 
5 0 0.1 0.1 0.1 0 
6 0 8.7 8.9 8.7 0.5 
7 1.2 8.8 8.8 8.7 1.6 
8 7.1 30.3 30.4 30.4 11.1 
9 5.2 12.9 14 14.1 7.6 
10 27.7 53.5 53.7 53.7 37.6 
11 16.4 23.7 25.3 25.2 20.7 
12 61.4 80.3 80.3 80.3 70.6 
13 48.5 57.2 61.4 61.4 56.4 
14 80.6 88.7 89.3 89.3 85.9 
15 63.5 69.3 74 74 73.2 
16 94 96.5 97.1 97.1 96.2 
17 87.2 88 93.9 93.9 94.8 
18 99.7 99.7 99.8 99.8 99.8 
19 95.1 95.7 96.8 96.8 96.5 
20 95.2 96 96.5 96.5 96.3 
21 94.4 95.2 96.6 96.6 96.2 
22 95.1 96.6 96.9 96.9 96.3 
23 95 95.4 96.4 96.4 96.4 
24 94.8 97.1 97.2 97.2 96.3 
25 94.6 95.1 96.3 96.3 96.2 
26 95.1 96.9 97.1 97.1 96.3 
27 94.4 95.2 96.6 96.6 96.2 
28 95.2 96.7 97 97 96.4 
29 94.4 95 96.5 96.5 96.2 
30 95.7 97.8 98 98 96.8 
31 94.7 95.5 96.3 96.3 96.1 
32 97.2 98.3 98.4 98.4 97.9 
33 95 95.8 97.3 97.3 97 
34 98.3 98.9 99.2 99.2 98.9 
35 96.9 97.2 98.9 98.9 99 
36 99.8 99.8 100 100 99.9 
37 100 100 100 100 100 
38 100 100 100 100 100 
39 100 100 100 100 100 
40 100 100 100 100 100 
41 100 100 100 100 100 
42 100 100 100 100 100 
43 100 100 100 100 100 
44 100 100 100 100 100 
45 100 100 100 100 100 
46 100 100 100 100 100 
47 100 100 100 100 100 
48 100 100 100 100 100 
49 100 100 100 100 100 
50 100 100 100 100 100 
51 100 100 100 100 100 
52 100 100 100 100 100 
53 100 100 100 100 100 
54 100 1 100 100 100 100 

Substantiai Missing Data 
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Table 71: Simulation 1: Percentage of ABE Failures for Sample 
Size 24 (1000 runs per simulation) 

Sim MOM UN I CSH FAO(2) RIS 
1 12.6 0.3 0.4 0.3 0.3 
2 16 1.5 1.5 1.5 0.9 
3 18.3 1.8 1.8 1.8 0.3 
4 27.4 13.2 13.2 13.3 3.7 
5 25.6 3.5 3.6 3.5 0.5 
6 37.5 25.9 26.2 25.9 12.4 
7 59.3 28 29.7 28.8 21.8 
8 71.5 54.6 55.9 54.9 45.4 
9 69.4 39.3 42.6 42.3 36.7 
10 84.2 78.5 78.7 78.2 72.7 
11 81 55.9 60.4 59.4 59.3 
12 94.2 92.6 93 92.9 92.3 
13 92.1 80.9 87.8 87.3 92 
14 97.4 95.9 97.5 97 99.1 
15 94.5 88.7 95.7 95.5 98.1 
16 98.7 98.7 99.8 99.7 100 
17 97.9 96.9 100 100 100 
18 99.9 99.8 100 100 100 
19 100 94.9 96.3 96.1 96.9 
20 100 95.8 96.8 96.4 96.5 
21 100 95.9 97.3 97.2 96.9 
22 100 96.7 96.9 96.9 95.8 
23 100 96.5 97.1 97 96.8 
24 100 97.1 97.2 97.1 96.3 
25 99.9 95.2 96.6 96.4 96.9 
26 99.5 96.2 96.4 96.3 96.1 
27 99.8 95.9 97.3 97.2 96.9 
28 99.3 96.8 97 97 96.3 
29 99.5 96.2 97.1 96.9 96.9 
30 98.7 98.2 98.4 98.4 97.9 
31 99.2 96.7 98.4 98.2 98.8 
32 99.3 98.9 99.1 99 99 
33 99.5 97.4 99.3 99.3 99.6 
34 99.9 99.3 99.7 99.7 99.8 
35 99.7 99.1 99.9 99.9 100 
36 100 100 100 100 100 
37 100 100 100 100 100 
38 100 100 100 100 100 
39 100 100 100 100 100 
40 100 100 100 100 100 
41 100 100 100 100 100 
42 100 100 100 100 100 
43 100 100 100 100 100 
44 100 100 100 100 100 
45 100 100 100 100 100 
46 100 100 100 100 100 
47 100 100 100 100 100 
48 100 100 100 100 100 
49 100 100 100 100 100 
50 100 100 100 100 100 
51 100 100 100 100 100 
52 100 100 100 100 100 
53 100 100 100 100 100 
54 1 100 100 1 100 100 100 
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Table 72: Simulation 1: Mean Bias (SE) in ý for Sample Size 34 
(1000 runs per simulation) 

Sim mom 
Bias 

OM I MS 
E 

I UN 
Bias 

I UN 
SE 

-CSH 
Bias 

ý CSH 
SE 

I FAO(2q I 
Bias 

FAO(2) 
SE 

[-RIS 
I Bias 

Rff- I 
SE 

Complete Data Set 
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0-00 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
4 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
5 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
6 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
7 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 
8 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
9 -0-001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
10 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
11 -0-001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
12 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 
13 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
14 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 
15 -0.001 0.003 -0.001 0.003 -0.001 0.003 -0.001 0.003 -0.001 0.003 
16 0.000 0.004 0.000 0.004 0.000 0.004 0.000 0.004 0.000 0.004 
17 -0-001 0.003 -0-001 0.003 -0.001 0.003 -0.001 0.003 -0.001 0.003 
18 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
22 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
23 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
24 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
25 -0-001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0-001 0.001 
26 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
27 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
28 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
29 -0-001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
30 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 
31 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
32 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 
33 -0-001 0.003 -0.001 0.003 -0.001 0.003 -0.001 0.003 -0-001 0.003 
34 0.000 0.004 0.000 0.004 0.000 0.004 0.000 0.004 0.000 0.004 
35 -0-001 0.003 -0-001 0.003 -0.001 0.003 -0.001 0.003 -0-001 0.003 
36 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 
37 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
39 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
40 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
41 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
42 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
43 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 
44 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
45 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
46 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
47 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0-001 0.002 -0.001 0.002 
48 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 
49 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
50 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 
51 -0.001 0.003 -0.001 0.003 -0.001 0.003 -0-001 0.003 -0.001 0.003 
52 0.000 0.004 0.000 0.004 0.000 0.004 0.000 0.004 0.000 0.004 
53 -0.001 0.003 -0.001 0.003 -0.001 0.003 -0.001 0.003 -0.001 0.003 
54 0.000 1 0.005 1 0.000 1 0.005 1 0.000 1 0.005 0.000 0.005 1 0.000 0.005 
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Table 72: Simulation 1: Mean Bias (SE) in S for Sample Size 34 
(1000 runs per simulation) 

Sim mom 
Bias 

Mom I 
SE 

UN I 
Bias 

UN 
SE 

I I CSH 
Bias 

[ 
SE 

I FAO(2) 
Bias 

FAO(2) 
SF 

RIS 
"R in 

RIS 

Substantial Missing Data 
1 0.029 0.001 -0-001 0.001 -0-001 0.001 -0.001 0.001 -0.001 0.001 
2 0.029 0.001 -0-001 0.001 -0-001 0.001 -0.001 0.001 -0.001 0.001 
3 0.029 0.001 -0-001 0.001 -0-001 0 001 -0.001 0.001 -0.001 0.001 
4 0.029 0.001 -0.001 0.001 0.000 0 001 0.000 0.001 0.000 0.001 
5 0.029 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.001 
6 0.029 0.001 0.000 0.001 0.000 0.001 0.000 0.001 -0-001 0.001 
7 0.027 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
8 0.028 0.002 -0.002 0.002 -0.001 0.002 -0.001 0.002 -0.002 0.002 
9 0.027 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
10 0.028 0.002 -0.002 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
11 0.027 0.002 -0.002 0.002 -0.002 0.002 -0-002 0.002 -0.002 0.002 
12 0.028 0.003 -0-001 0.003 -0.001 0.003 -0-001 0.003 -0.002 0.003 
13 0.026 0.003 -0-003 0.003 -0.003 0.003 -0-003 0.003 -0.003 0.003 
14 0.027 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 
15 0.026 0.003 -0.003 0.003 -0.003 0.003 -0-003 0.003 -0-003 0.003 
16 0.027 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 
17 0.026 0.004 -0.003 0.004 -0.003 0.004 -0-003 0.004 -0.003 0.004 
18 0.028 0.005 -0.002 0.005 -0.002 0.005 -0.002 0.005 -0.003 0.005 
19 0.029 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 
20 0.029 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 
21 0.029 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 
22 0.029 0.001 -0-001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
23 0.029 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-001 
24 0.029 0.001 0.000 0.001 0.000 0.001 0.000 0.001 -0.001 0.001 
25 0.027 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
26 0.028 0.002 -0.002 0.002 -0.001 0.002 -0-001 0.002 -0.002 0.002 
27 0.027 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
28 0.028 0.002 -0.002 0.002 -0.001 0.002 -0-001 0.002 -0.001 0.002 
29 0.027 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
30 0.028 0.003 -0-001 0.003 -0.001 0.003 -0-001 0.003 -0.002 0.003 
31 0.026 0.003 -0.003 0.003 -0.003 0.003 -0.003 0.003 -0.003 0.003 
32 0.027 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 
33 0.026 0.003 -0.003 0.003 -0.003 0.003 -0.003 0.003 -0.003 0.003 
34 0.027 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 
35 0.026 0.004 -0.003 0.004 -0.003 0.004 -0.003 0.004 -0.003 0.004 
36 0.028 0.005 -0.002 0.005 -0.002 0.005 -0.002 0.005 -0.003 0.005 
37 0.029 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-00' -0-00, 0,001 
38 0.029 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-00' -0*001 0,001 
39 0.029 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-00' -0*001 0*001 
40 0.029 0.001 0.000 0.001 0.000 0.001 0-000 0.001 0.000 0.001 
41 0.029 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-00' -0*001 0*001 
42 0.029 0.001 0.000 0.001 0.000 0.001 0-000 0.001 -0.001 0.001 
43 0.027 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
44 0.028 0.002 -0.002 0.002 -0.001 0.002 -0-001 0.002 -0.002 0.002 
45 0.027 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
46 0.028 0.002 -0.002 0.002 -0.001 0.002 -0-001 0.002 -0.001 0.002 
47 0.027 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 -0.002 0.002 
48 0.028 0.003 -0-001 0.003 -0-001 0.003 -0-001 0.003 -0.002 0.003 
49 0.026 0.003 -0.003 0.003 -0-003 0.003 -0.003 0.003 -0.003 0.003 
50 0.027 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 -0.002 0.004 
51 0.026 0.003 -0-003 0.003 -0.003 0.003 -0.003 0.003 -0.003 0.003 
52 0.027 0.004 -0.002 0.004 -0.002 0.004 -0-002 0.004 -0.002 0.004 
53 0.026 0.004 -0.003 0.004 -0.003 0.004 -0-003 0.004 -0.003 0.004 
54 0.028 1 0.005 -0.002 0.005 -0.002 0.005 -0-002 0.005 -0.003 0.005 
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Table 73: Simulation 1: Mean Bias (SE) in &' for Sample Size 34 D 
(1000 runs per simulation) 

Sim mom 
Bias 

MoM I 
SE 

UN I 
Bias 

I UN I 
SE 

CSH 
Bias 

I CSH 
SE 

-FAO(2) 
Bias 

FAO(2) 
SE 

] S 
Bt 

RIS 
SE 

Complete Data Set 
1 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.002 0.000 
6 0-000 0.000 0.000 0.000 0.000 0.000 -0-003 0.000 0.000 0.000 
7 -0-001 0-001 -0-001 0.001 0.009 0.000 0.006 0.000 0.008 0.000 
8 -0-001 0.001 -0-001 0.001 0.001 0.001 -0-003 0.001 0.001 0.001 
9 -0-001 0.001 -0-001 0.001 0.012 0.000 0.008 0.000 0.010 0.000 
10 -0-001 0.001 -0.001 0.001 0.000 0.001 -0-009 0.001 0.000 0.001 
11 -0-001 0.001 -0.002 0.001 0.016 0.001 0.011 0.001 0.014 0.001 
12 -0-001 0.002 -0.001 0.002 0.000 0.002 -0.020 0.002 -0.001 0.002 
13 -0-003 0.002 -0.003 0.002 0.027 0.001 0.020 0.001 0.023 0.001 
14 -0.002 0.003 -0.002 0.003 0.001 0.003 -0-013 0.002 0.000 0.003 
15 -0.003 0.002 -0.003 0.002 0.032 0.001 0.023 0.001 0.028 0.001 
16 -0.002 0.004 -0.002 0.004 0.000 0.004 -0.025 0.003 -0.001 0.004 
17 -0.004 0.004 -0.004 0.003 0.049 0.002 0.034 0.002 0.041 0.002 
18 -0.002 0.006 -0.002 0.006 -0.001 0.006 -0.064 0.005 -0-003 0.006 
19 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.002 0.000 
24 0.000 0.000 0.000 0.000 0.000 0.000 -0-003 0.000 0.000 0.000 
25 -0-001 0.001 -0-001 0.001 0.009 0.000 0.006 0.000 0.008 0.000 
26 -0.001 0.001 -0.001 0.001 0.001 0.001 -0-003 0.001 0.001 0.001 
27 -0.001 0.001 -0.001 0.001 0.012 0.000 0.008 0.000 0.010 0.000 
28 -0-001 0.001 -0-001 0.001 0.000 0.001 -0-009 0-001 0.000 0.001 
29 -0.001 0.001 -0.002 0.001 0.016 0.001 0.011 0.001 0.014 0.001 
30 -0.001 0.002 -0.001 0.002 0.000 0.002 -0.020 0.002 -0.001 0.002 
31 -0-003 0.002 -0.003 0.002 0.027 0.001 0.020 0.001 0.023 0.001 
32 -0.002 0.003 -0.002 0.003 0.001 0.003 -0.013 0.002 0.000 0.003 
33 -0-003 0.002 -0.003 0.002 0.032 0.001 0.023 0.001 0.028 0.001 
34 -0.002 0.004 -0.002 0.004 0.000 0.004 -0.025 0.003 -0.001 0.004 
35 -0.004 0.004 -0.004 0.003 0.049 0.002 0.034 0.002 0.041 0.002 
36 -0.002 0.006 -0.002 0.006 -0-001 0.006 -0-064 0.005 -0-003 0.006 
37 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 
39 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
40 0.000 0.000 0.000 0.000 0.000 0.000 -0-001 0.000 0-000 0-000 
41 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.002 0.000 
42 0.000 0.000 0.000 0.000 0.000 0.000 -0.003 0.000 0.000 0.000 
43 -0-001 0.001 -0-001 0.001 0.009 0.000 0.006 0.000 0.008 0.000 
44 -0.001 0.001 -0.001 0.001 0.001 0.001 -0.003 0.001 0.001 0.001 
45 -0.001 0.001 -0.001 0.001 0.012 0.000 0.008 0.000 0.010 0.000 
46 -0-001 0.001 -0-001 0.001 0.000 0.001 -0-009 0-001 0-000 0-00' 
47 -0.001 0.001 -0.002 0.001 0.016 0.001 0.011 0.001 0.014 0.001 
48 -0.001 0.002 -0.001 0.002 0.000 0.002 -0.020 0.002 -0.001 0.002 
49 -0.003 0.002 -0.003 0.002 0.027 0.001 0.020 0.001 0.023 0.001 
50 -0.002 0.003 -0.002 0.003 0.001 0.003 -0.013 0.002 0.000 0.003 
51 -0.003 0.002 -0.003 0.002 0.032 0.001 0.023 0.001 0.028 0.001 
52 -0.002 0.004 -0.002 0.004 0.000 0.004 -0.025 0.003 -0.001 0.004 
53 -0.004 0.004 -0.004 0.003 0.049 0.002 0.034 0.002 0.041 0.002 
54 -0.002 0.006 -0.002 0.006 -0-001 1 0.006 1 -0.064 1 0.005 1 -0.003 0.006 
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Table 73: Simulation 1: Mean Bias (SE) in &2 for Sample Size 34 D 
(1000 runs per simulation) 

Sim MoM 
Bias 

I -MoM 
SE 

UN 
Bias 

UN 
SE 

ý CSH 
Bias 

CSH- 
SE 

FAO(2) 
Bias I 

FAO(2) 
SE 

RIS 
Bias 

I RIS 
SE 

_ Substantial Missing Data 
1 0.114 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
2 0.114 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 
3 0.115 0.001 0.000 0.000 0.002 0.000 0.001 0.000 0.001 0.000 
4 0.115 0.001 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 
5 0.115 0.001 0.000 0.000 0.003 0.000 0.002 0.000 0.002 0.000 
6 0.116 0.001 0.000 0.000 0.000 0.000 -0-004 0.000 0.000 0.000 
7 0.124 0.002 0.000 0.001 0.011 0.000 0.008 0.000 0.010 0.000 
8 0.125 0.002 0.000 0.001 0.003 0.001 -0.002 0.001 0.002 0.001 
9 0.127 0.002 0.000 0.001 0.015 0.001 0.010 0.001 0.013 0.001 
10 0.128 0.002 -0.001 0.002 0.001 0.002 -0.010 0.001 0.000 0.002 
11 0.131 0.002 -0.001 0.001 0.020 0.001 0.014 0.001 0.017 0.001 
12 0.132 0.003 -0.001 0.002 0.000 0.002 -0.023 0.002 -0.001 0.002 
13 0.148 0.003 -0-001 0.002 0.035 0.001 0.025 0.001 0.030 0.001 
14 0.149 0.004 -0.001 0.003 0.006 0.003 -0-013 0.003 0.004 0.003 
15 0.153 0.004 -0.001 0.003 0.041 0.002 0.029 0.002 0.035 0.002 
16 0.154 0.006 -0-002 0.004 0.006 0.005 -0.027 0.004 0.001 0.004 
17 0.166 0.005 -0.002 0.004 0.060 0.002 0.040 0.002 0.050 0.002 
18 0.167 0.008 -0-003 0.007 0.000 0.007 -0-073 0.006 -0.004 0.007 
19 0.114 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
20 0.114 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 
21 0.115 0.001 0.000 0.000 0.002 0.000 0.001 0.000 0.001 0.000 
22 0.115 0.001 0.000 0.000 0.000 0.000 -0-001 0.000 0.000 0.000 
23 0.115 0.001 0.000 0.000 0.003 0.000 0.002 0.000 0.002 0.000 
24 0.116 0.001 0.000 0.000 0.000 0.000 -0.004 0.000 0.000 0.000 
25 0.124 0.002 0.000 0.001 0.011 0.000 0.008 0.000 0.010 0.000 
26 0.125 0.002 0.000 0.001 0.003 0.001 -0.002 0.001 0.002 0.001 
27 0.127 0.002 0.000 0.001 0.015 0.001 0.010 0.001 0.013 0.001 
28 0.128 0.002 -0.001 0.002 0.001 0.002 -0-010 0.001 0.000 0.002 
29 0.131 0.002 -0.001 0.001 0.020 0.001 0.014 0.001 0.017 0.001 
30 0.132 0.003 -0-001 0.002 0.000 0.002 -0.023 0.002 -0.001 0.002 
31 0.148 0.003 -0-001 0.002 0.035 0.001 0.025 0.001 0.030 0.001 
32 0.149 0.004 -0-001 0.003 0.006 0.003 -0.013 0.003 0.004 0.003 
33 0.153 0.004 -0-001 0.003 0.041 0.002 0.029 0.002 0.035 0.002 
34 0.154 0.006 -0.002 0.004 0.006 0.005 -0.027 0.004 0.001 0.004 
35 0.166 0.005 -0.002 0.004 0.060 0.002 0.040 0.002 0.050 0.002 
36 0.167 0.008 -0.003 0.007 0.000 0.007 -0.073 0.006 -0.004 0.007 
37 0.114 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
38 0.114 0.000 0.000 0.000 0.001 0.000 0.000 0-000 0-000 0.000 
39 0.115 0.001 0.000 0.000 0.002 0.000 0.001 0.000 0.001 0.000 
40 0.115 0.001 0.000 0.000 0.000 0.000 -0-001 0-000 0.000 0*000 
41 0.115 0.001 0.000 0.000 0.003 0.000 0.002 0.000 0.002 0.000 
42 0.116 0.001 0.000 0.000 0.000 0.000 -0.004 0.000 0.000 0.000 
43 0.124 0.002 0.000 0.001 0.011 0.000 0.008 0.000 0.010 0.000 
44 0.125 0.002 0.000 0.001 0.003 0.001 -0.002 0.001 0.002 0.001 
45 0.127 0.002 0.000 0.001 0.015 0.001 0.010 0.001 0.013 0.001 
46 0.128 0.002 -0-001 0.002 0.001 0.002 -0-010 0.001 0.000 0.002 
47 0.131 0.002 -0.001 0.001 0.020 0.001 0.014 0.001 0.017 0.001 
48 0.132 0.003 -0-001 0.002 0.000 0.002 -0.023 0.002 -0.001 0.002 
49 0.148 0.003 -0-001 0.002 0.035 0.001 0.025 0.001 0.030 0.001 
50 0.149 0.004 -0-001 0.003 0.006 0.003 -0.013 0.003 0.004 0.003 
51 0.153 0.004 -0-001 0.003 0.041 0.002 0.029 0.002 0.035 0.002 
52 0.154 0.006 -0.002 0.004 0.006 0.005 -0.027 0.004 0.001 0.004 
53 0.166 0.005 -0.002 0.004 0.060 0.002 0.040 0.002 0.050 0.002 
54 0.167 1 0.008 1 -0-003 1 0.007 . 0.000 0.007 1 -0.073 1 0.006 1 -0.004 1 0.007 
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Table 74: Simulation 1: Mean Bias (SE) in &2 WT for Sample Size 
34 (1000 runs per simulation) 

Sim MoM- 
Bias 

1 MoM 
SE 

I UN 
Bias 

I UN 
SE 

ý CSH I 
Bias 

CSH I 
SE 

FAO(2) 
Bias 

FAO(2 
SE 

RIS I 
Bim, 

RIS 
SE 

Co mplete D ata Set 
1 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.000 0-001 0.000 0.001 -0-005 0.001 -0-005 0.001 -0.004 0.001 
8 0.000 0.001 0.000 0.001 -0.001 0.001 -0.001 0.001 0.000 0.001 
9 0.000 0.001 0.000 0.001 -0-004 0.001 -0-004 0.001 -0.003 0.001 
10 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
11 0.000 0.001 0.000 0.001 -0-003 0.001 -0-003 0.001 -0-003 0.001 
12 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
13 0.001 0.002 0.001 0.002 -0-013 0.002 -0-013 0.002 -0.011 0.002 
14 0.001 0.002 0.001 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
15 0.001 0.002 0.001 0.002 -0.011 0.002 -0.011 0.002 -0.010 0.002 
16 0.001 0.002 0.001 0.002 0.000 0.002 0.000 0.002 0.001 0.002 
17 0.001 0.002 0.001 0.002 -0.007 0.002 -0.007 0.002 -0.007 0.002 
18 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 
19 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
25 0.000 0.001 0.000 0.001 -0-005 0.001 -0.005 0.001 -0.004 0.001 
26 0.000 0.001 0.000 0.001 -0-001 0.001 -0-001 0.001 0.000 0-001 
27 0.000 0.001 0.000 0.001 -0.004 0.001 -0.004 0.001 -0.003 0.001 
28 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
29 0.000 0.001 0.000 0.001 -0.003 0.001 -0.003 0.001 -0.003 0.001 
30 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
31 0.001 0.002 0.001 0.002 -0.013 0.002 -0.013 0.002 -0.011 0.002 
32 0.001 0.002 0.001 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
33 0.001 0.002 0.001 0.002 -0-011 0.002 -0-011 0.002 -0.010 0.002 
34 0.001 0.002 0.001 0.002 0.000 0.002 0.000 0.002 0.001 0.002 
35 0.001 0.002 0.001 0.002 -0.007 0.002 -0.007 0.002 -0.007 0.002 
36 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 
37 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 -0-001 0-000 
38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 
40 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0-000 0-000 
41 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 
42 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0-000 0-000 
43 0.000 0.001 0.000 0.001 -0.005 0.001 -0.005 0.001 -0.004 0.001 
44 0.000 0.001 0.000 0.001 -0-001 0-001 -0-001 0.001 0-000 0-001 
45 0.000 0.001 0.000 0.001 -0.004 0.001 -0.004 0.001 -0.003 0.001 
46 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
47 0.000 0.001 0.000 0.001 -0.003 0.001 -0.003 0.001 -0.003 0.001 
48 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
49 0.001 0.002 0.001 0.002 -0-013 0.002 -0-013 0.002 -0.011 0.002 
50 0.001 0.002 0.001 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
51 0.001 0.002 0.001 0.002 -0.011 0.002 -0.011 0.002 -0.010 0.002 
52 0.001 0.002 0.001 0.002 0.000 0.002 0.000 0.002 0.001 0.002 
53 0.001 0.002 0.001 0.002 -0-007 0.002 -0.007 0.002 -0.007 0.002 
54 0.001 1 0.002 0.001 1 0.002 0.001 1 0.002 0.001 0.002 1 0.001 1 0.002 
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Table 74: Simulation 1: Mean Bias (SE) in &2 WT for Sample Size 
34 (1000 runs per simulation) 

Sim mom 
Bias 

MoM I 
SE 

I UN 
Bias 

I UN- 
SE 

1 CSH 
Bias 

I CSH I 
SE 

FAO(2) I 
Bias 

FAO(2) 
SE 

RIS 
Bias 

I RIS 
SE 

Substantial M issing Data 
1 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.060- 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.000 0.001 0.000 0.001 -0-006 0.001 -0-006 0.001 -0-005 0.001 
8 0.000 0.001 0.000 0.001 -0.002 0.001 -0.002 0.001 -0-001 0.001 
9 0.000 0.001 0.000 0.001 -0-005 0.001 -0.005 0.001 -0.004 0.001 
10 0.000 0.001 0.000 0.001 -0.001 0.001 -0.001 0.001 0.000 0.001 
11 0.000 0.001 0.000 0.001 -0.004 0.001 -0.004 0.001 -0.004 0.001 
12 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
13 0.000 0.002 0.001 0.002 -0.016 0.002 -0.016 0.002 -0.014 0.002 
14 0.000 0.002 0.000 0.002 -0.003 0.002 -0.003 0.002 -0.002 0.002 
15 0.000 0.002 0.001 0.002 -0.014 0.002 -0.014 0.002 -0.012 0.002 
16 0.000 0.002 0.000 0.002 -0.002 0.002 -0.001 0.002 -0.001 0.002 
17 0.000 0.002 0.001 0.002 -0.010 0.002 -0.010 0.002 -0.010 0.002 
18 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
19 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 
21 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 0.000 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 
25 0.000 0.001 0.000 0.001 -0.006 0.001 -0.006 0.001 -0.005 0.001 
26 0.000 0.001 0.000 0.001 -0.002 0.001 -0.002 0.001 -0-001 0.001 
27 0.000 0.001 0.000 0.001 -0.005 0.001 -0.005 0.001 -0.004 0.001 
28 0.000 0.001 0.000 0.001 -0-001 0.001 -0-001 0.001 0.000 0-001 
29 0.000 0.001 0.000 0.001 -0.004 0.001 -0.004 0.001 -0.004 0.001 
30 0.000 0.001 0.000 0.001 0.000 0.001 0-000 0.001 0-000 0-001 
31 0.000 0.002 0.001 0.002 -0.016 0.002 -0.016 0.002 -0.014 0.002 
32 0.000 0.002 0.000 0.002 -0.003 0.002 -0.003 0.002 -0.002 0.002 
33 0.000 0.002 0.001 0.002 -0.014 0.002 -0.014 0.002 -0.012 0.002 
34 0.000 0.002 0.000 0.002 -0.002 0.002 -0.001 0.002 -0.001 0.002 
35 0.000 0.002 0.001 0.002 -0.010 0.002 -0.010 0.002 -0.010 0.002 
36 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
37 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 -0-001 0-000 
38 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0-000 0-000 0-000 
39 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0-000 0-000 0.000 
40 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 
41 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 
42 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 
43 0.000 0.001 0.000 0.001 -0.006 0.001 -0.006 0.001 -0.005 0.001 
44 0.000 0.001 0.000 0.001 -0.002 0.001 -0.002 0.001 -0-001 0.001 
45 0.000 0.001 0.000 0.001 -0.005 0.001 -0-005 0.001 -0.004 0.001 
46 0.000 0.001 0-000 0.001 -0-001 0-001 -0-001 0-00' 0.000 0.001 
47 0.000 0.001 0.000 0.001 -0.004 0.001 -0.004 0.001 -0.004 0.001 
48 0.000 0.001 0.000 0.001 0.000 0-001 0-000 0.001 0.000 0.001 
49 0.000 0.002 0.001 0.002 -0-016 0.002 -0.016 0.002 -0.014 0.002 
50 0.000 0.002 0.000 0.002 -0.003 0.002 -0.003 0.002 -0.002 0.002 
51 0.000 0.002 0.001 0.002 -0.014 0.002 -0.014 0.002 -0.012 0.002 
52 0.000 0.002 0.000 0.002 -0.002 0.002 -0.001 0.002 -0.001 0.002 
53 0.000 0.002 0.001 0.002 -0.010 0.002 -0.010 0.002 -0.010 0.002 
54 0.000 0.002 0.000 1 0.002 1 0.000 1 0.002 0.000 1 0.002 1 0.000 1 0.002 
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Table 75: Simulation 1: Mean Bias (SE) in &2 for Sample Size WR 
34 (1000 runs per simulation) 

Sim mom I 
Bias 

- MoM I 
SE 

uN I 
Bia-s 

UN 
SE 

CSH 
Bias 

CSH 
SE 

FAO(2) I 
Bias 

FAO(2) 
SE 

RIS I 
Bias 

RIS 
SE 

Complete Data Set 
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
9 0.000 0.001 0.000 0.001 -0.004 0.001 -0.004 0.001 -0.004 0.001 
10 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
11 0.000 0.001 0.000 0.001 -0.009 0.001 -0.009 0.001 -0.007 0.001 
12 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
13 0.000 0.001 0.000 0.001 -0.006 0.001 -0.006 0.001 -0.005 0.001 
14 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
15 0.000 0.002 0.000 0.002 -0.011 0.002 -0.011 0.002 -0.010 0.002 
16 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
17 0.000 0.004 0.000 0.004 -0.029 0.003 -0.029 0.003 -0.023 0.003 
18 0.000 0.004 0.000 0.004 -0.001 0.004 -0.001 0.004 0.001 0.004 
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0.000 0-000 
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 
23 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0-000 
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
25 0.000 0.000 0.000 0.000 -0-001 0-000 -0-001 0.000 -0-001 0-000 
26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 
27 0.000 0.001 0.000 0.001 -0.004 0.001 -0.004 0.001 -0.004 0.001 
28 0.000 0.001 0.000 0.001 0.000 0.001 0-000 0.001 0.000 0.001 
29 0.000 0.001 0.000 0.001 -0-009 0-001 -0-009 0.001 -0.007 0.001 
30 0.000 0.001 0.000 0.001 0.000 0-001 0-000 0-001 0-000 0.001 
31 0.000 0.001 0.000 0.001 -0.006 0.001 -0.006 0.001 -0.005 0.001 
32 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
33 0.000 0.002 0.000 0.002 -0-011 0.002 -0.011 0.002 -0.010 0.002 
34 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
35 0.000 0.004 0.000 0.004 -0.029 0.003 -0.029 0.003 -0.023 0.003 
36 0.000 0.004 0.000 0.004 -0-001 0.004 -0-001 0.004 0.001 0.004 
37 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 0*000 
38 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 0,000 
39 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0,000 0,000 
40 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0.000 0*000 
41 0.000 0.000 0.000 0.000 -0-001 0-000 -0-00' 0.000 -0-001 0,000 
42 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0.000 0.000 
43 0.000 0.000 0.000 0.000 -0-001 0-000 -0-00, 0.000 -0,001 0,000 
44 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0,000 0*000 
45 0.000 0.001 0.000 0.001 -0.004 0.001 -0.004 0.001 -0.004 0.001 
46 0.000 0.001 0.000 0.001 0-000 0-001 0-000 0.001 0.000 0.001 
47 0.000 0.001 0.000 0.001 -0-009 0-001 -0-009 0.001 -0.007 0.001 
48 0.000 0.001 0.000 0-001 0-000 0-001 0.000 0.001 0.000 0.001 
49 0.000 0.001 0.000 0.001 -0-006 0.001 -0.006 0.001 -0.005 0.001 
50 0.000 0-001 0-000 0-001 0-000 0.001 0.000 0.001 0.000 0.001 
51 0.000 0.002 0.000 0.002 -0-011 0.002 -0.011 0.002 -0-010 0.002 
52 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
53 0.000 0.004 0.000 0.004 -0-029 0.003 -0.029 0.003 -0-023 0.003 
54 0.000 1 0.004 1 0.000 1 0.004 1 -0.001 1 0.004 1 -0.001 1 0.004 1 0.001 1 0.004 
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Table 75: Simulation 1: Mean Bias (SE) in &2 for Sample Size WR 
34 (1000 runs per simulation) 

Sim mom 
Bias 

Mom 
SE 

UN 
Bias 

UN I 
SE 

CS-H- 
B 

CSH TSE ' FAO(2) 
Bias 

FAO(2 
SE 

] RIS 
Bias 

RIS 

Substantial M issing Data 
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
9 0.000 0.001 0.000 0.001 -0.004 0.001 -0.004 0.001 -0.004 0.001 
10 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
11 0.000 0.001 0.000 0.001 -0.009 0.001 -0.009 0.001 -0.007 0.001 
12 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
13 0.000 0.001 0.000 0.001 -0-006 0.001 -0.006 0.001 -0.005 0.001 
14 0.000 0.001 0.000 0.001 -0.001 0.001 -0.001 0.001 0.000 0.001 
15 0.000 0.002 0.001 0.002 -0.012 0.002 -0.011 0.002 -0.010 0.002 
16 0.000 0.002 0.001 0.002 -0.001 0.002 -0.001 0.002 0.000 0.002 
17 0.000 0.004 0.001 0.004 -0.029 0.004 -0.029 0.004 -0.023 0.004 
18 0.000 0.004 0.001 0.004 -0.001 0.004 -0.001 0.004 0.001 0.004 
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0-001 0.000 
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
25 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 
26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
27 0.000 0.001 0.000 0.001 -0.004 0.001 -0.004 0.001 -0.004 0.001 
28 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
29 0.000 0.001 0.000 0.001 -0.009 0.001 -0.009 0.001 -0.007 0.001 
30 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
31 0.000 0.001 0.000 0.001 -0.006 0.001 -0-006 0.001 -0-005 0.001 
32 0.000 0.001 0.000 0.001 -0.001 0.001 -0.001 0.001 0.000 0.001 
33 0.000 0.002 0.001 0.002 -0.012 0.002 -0.011 0.002 -0.010 0.002 
34 0.000 0.002 0.001 0.002 -0.001 0.002 -0.001 0.002 0.000 0.002 
35 0.000 0.004 0.001 0.004 -0.029 0.004 -0.029 0.004 -0.023 0.004 
36 0.000 0.004 0.001 0.004 -0.001 0.004 -0-001 0.004 0.001 0.004 
37 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
40 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
41 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
42 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
43 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
44 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
45 0.000 0.001 0.000 0.001 -0.004 0.001 -0.004 0.001 -0.004 0.001 
46 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
47 0.000 0.001 0.000 0.001 -0-009 0.001 -0-009 0.001 -0.007 0.001 
48 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
49 0.000 0.001 0.000 0.001 -0.006 0.001 -0-006 0.001 -0.005 0.001 
50 0.000 0.001 0-000 0.001 -0-001 0.001 -0-001 0.001 0.000 0.001 
51 0.000 0.002 0.001 0.002 -0.012 0.002 -0.011 0.002 -0.010 0.002 
52 0.000 0.002 0.001 0.002 -0.001 0.002 -0.001 0.002 0.000 0.002 
53 0.000 0.004 0.001 0.004 -0.029 0.004 -0.029 0.004 -0.023 0.004 
54 0.000 1 0.004 1 0.001 1 0.004 -0.001 0.004 - . 001 0.004 1 0.001 0.004 
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Table 76: Simulation 1: Percentage of ABE Failures for Sample 
Size 34 (1000 runs per simulation) 

_Sim 
MoKI I UN I ýýSH j FAO (2) 1 RIS 

Complete Data Set 
1 0 0 0 0 0 
2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 0 0 0 0 
5 0 0 0 0 0 
6 0 0.9 0.9 0.9 0 
7 0.1 1.6 1.6 1.6 0.1 
8 0.9 9.8 9.8 9.8 1.7 
9 0.7 1.9 2.1 2.1 1 
10 11.8 24.9 24.9 24.9 15 
11 4.8 6.7 7.8 7.8 6.6 
12 35.4 53.3 53.3 53.2 42.7 
13 24.2 29.9 32.1 32.1 28 
14 55.6 70.4 70.6 70.6 60.6 
15 39 44.6 47.2 47.2 44.2 
16 78.5 87.2 87.3 87.3 82.9 
17 66.2 69.5 72.6 72.6 71.8 
18 98.3 99.3 99.3 99.3 99.1 
19 94.8 95.3 96.1 96.1 96.2 
20 94.9 96.1 96.6 96.6 95.6 
21 94.4 94.7 96.2 96.2 95.8 
22 96.1 97.2 97.2 97.1 96.4 
23 93.9 94.3 95.5 95.5 95.4 
24 95.6 97.1 97.1 97.1 96.3 
25 95.4 95.5 96.1 96.1 96.3 
26 95.2 96.5 96.8 96.8 95.7 
27 94.5 94.8 96.2 96.2 95.8 
28 96.1 97.2 97.2 97.1 96.4 
29 94.3 94.5 95.6 95.6 95.4 
30 95.8 97.6 97.6 97.6 96.4 
31 95.1 95.4 96.3 96.3 96.1 
32 95.5 97.2 97.3 97.3 96.2 
33 94.5 94.8 96.2 96.2 95.8 
34 97.5 98.7 98.7 98.6 97.9 
35 94.5 95.1 96.7 96.7 96.4 
36 99.4 99.6 99.6 99.6 99.5 
37 100 100 100 100 100 
38 100 100 100 100 100 
39 100 100 100 100 100 
40 100 100 100 100 100 
41 100 100 100 100 100 
42 100 100 100 100 100 
43 100 100 100 100 100 
44 100 100 100 100 100 
45 100 100 100 100 100 
46 100 100 100 100 100 
47 100 100 100 100 100 
48 100 100 100 100 100 
49 100 100 100 100 100 
50 100 100 100 100 100 
51 100 100 100 100 100 
52 100 100 100 100 100 
53 100 100 100 100 100 
54 100 1 100 1 100 100 100 

Substantial Missing Data 
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Table 76: Simulation 1: Percentage of ABE Failures for Sample 
Size 34 (1000 runs per simulation) 
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Table 77: Simulation 1: Mean Bias (SE) in S for Sample Size 80 
(1000 runs per simulation) 

Sim mom 
Bia. s 

I MoM 
SE 

UN 
Bias 

UN 
SE 

CSH 
Bias 

CSH 
SE 

FAO(2) 
Bias 

FAO(2) 
SE 

RIS 
Bias 

RIS 
SE 

Complete Data Set 
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
6 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
7 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
8 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
9 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
10 -0-001 0.001 -0.001 0.001 -0.001 0.001 -0-001 0.001 -0.001 0.001 
11 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
12 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
13 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
14 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
15 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
16 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
17 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
18 -0.001 0.003 -0.001 0.003 -0.001 0.003 -0.001 0.003 -0.001 0.003 
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
24 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
25 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
26 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
27 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
28 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0-001 0.001 -0.001 0.001 
29 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
30 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0-001 0.002 -0.001 0.002 
31 -0-001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
32 -0-001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
33 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
34 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
35 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0-001 0.002 -0.001 0.002 
36 -0-001 0.003 -0.001 0.003 -0.001 0.003 -0-001 0.003 -0.001 0.003 
37 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
40 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
41 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
42 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
43 0.000 0.001 0.000 0.001 0.000 0.001 0-000 0.001 0.000 0.001 
44 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
45 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
46 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 
47 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
48 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
49 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
50 -0.001 0.002 -0-001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
51 -0.001 0.002 -0-001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
52 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
53 -0.001 0.002 -0-001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
54 -0.001 1 0.003 1 -0.001 1 0.003 -0-001 1 0.003 -0.001 1 0.003 -0.001 0.003 
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Table 77: Simulation 1: Mean Bias (SE) in S for Sample Size 80 
(1000 runs per simulation) 

Sim mom 
Bias 

mom 
SE 

UN 
Bias 

UN 
SE 

I CSH 
Bias 

CSH 
SE 

FAO(2) 
Bias 

FAO(2) 
SE 

RIS 
Bias 

RIS 
SE 

Substantial Missing Data 
1 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
6 0.012 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
7 0.012 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
8 0.012 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
9 0.012 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
10 0.012 0.001 -0-001 0.001 -0.001 0.001 -0.001 0.001 -0-001 0.001 
11 0.012 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
12 0.011 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
13 0.012 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
14 0.011 0.002 -0-001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
15 0.012 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
16 0.011 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
17 0.011 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
18 0.010 0.003 -0-001 0.003 -0.001 0.003 -0.001 0.003 -0.001 0.003 
19 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 
22 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 
23 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 
24 0.012 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0-000 0-001 
25 0.012 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0-000 0-001 
26 0.012 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0-001 
27 0.012 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0-000 0-001 
28 0.012 0.001 -0-001 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-001 
29 0.012 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0-000 0-001 
30 0.011 0.002 -0-001 0.002 -0-001 0.002 -0.001 0.002 -0.001 0.002 
31 0.012 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
32 0.011 0.002 -0-001 0.002 -0-001 0.002 -0-001 0.002 -0.001 0.002 
33 0.012 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
34 0.011 0.002 -0-001 0.002 -0-001 0.002 -0-001 0.002 -0.001 0.002 
35 0.011 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
36 0.010 0.003 -0-001 0.003 -0-001 0.003 -0-001 0.003 -0.001 0.003 
37 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 
38 0.012 0.000 0.000 0.000 0.000 0-000 0.000 0-000 0-000 0.000 
39 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 
40 0.012 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0,000 
41 0.012 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0*000 
42 0.012 0.001 0.000 0.001 0.000 0.001 0-000 0-001 0-000 0.001 
43 0.012 0.001 0.000 0.001 0.000 0.001 0-000 0-001 0-000 0,00, 
44 0.012 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
45 0.012 0.001 0.000 0.001 0-000 0.001 0.000 0-001 0-000 0*001 
46 0.012 0.001 -0-001 0.001 -0-001 0.001 -0-001 0-001 -0-00, 0.001 
47 0.012 0.001 0.000 0.001 0.000 0.001 0.000 0-001 0-000 0.001 
48 0.011 0.002 -0-001 0.002 -0.001 0.002 -0-001 0.002 -0-001 0.002 
49 0,012 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
50 0.011 0.002 -0-001 0.002 -0.001 0.002 -0.001 0.002 -0-001 0.002 
51 0.012 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
52 0.011 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002 
53 0.011 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 
54 0.010 1 0.003 1 -0-001 0.003 -0.001 1 0.003 -0.001 0.003 1 -0.001 1 0.003 
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Table 78: Simulation 1: Mean Bias (SE) in 6,2 for Sample Size 80 D (1000 runs per simulation) 

7 1 mom 
Bias 

MoM I 
SE 

UN I 
Bias 

ý UN 
SE 

I -CSH 
Bias 

I CSH 
SE 

FAO(2)T 
Bias 

-FAO(2) 
SE, 

RIS RIS 

Complete Data Set 
1 0.000 0.000 0.000 0-000 0.001 0.000 0.000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 -0.002 0.000 0.000 0.000 
7 -0.001 0.000 -0.001 0.000 0.005 0.000 0.005 0.000 0.005 0.000 
8 0.000 0.001 0.000 0.001 0.000 0.001 -0.002 0.001 0.000 0.001 
9 -0-001 0.001 -0-001 0.001 0.007 0.000 0.006 0.000 0.006 0.000 
10 -0.001 0.001 -0-001 0.001 -0.001 0.001 -0.006 0.001 -0-001 0.001 
11 -0.001 0.001 -0.001 0.001 0.010 0.000 0.008 0.000 0.009 0.000 
12 -0.001 0.001 0.000 0.001 0.000 0.001 -0.014 0.001 -0-001 0.001 
13 -0.002 0.001 -0.002 0.001 0.017 0.001 0.014 0.001 0.015 0.001 
14 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.009 0.002 -0.001 0.002 
15 -0.002 0.002 -0.002 0.002 0.020 0.001 0.016 0.001 0.018 0.001 
16 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.016 0.002 -0.002 0.002 
17 -0-003 0.002 -0.003 0.002 0.030 0.001 0.024 0.001 0.027 0.001 
18 -0.001 0.004 -0.001 0.004 -0.001 0.004 -0.047 0.003 -0.002 0.004 
19 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 -0-001 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
24 0.000 0.000 0.000 0.000 0.000 0.000 -0.002 0.000 0.000 0.000 
25 -0.001 0.000 -0.001 0.000 0.005 0.000 0.005 0.000 0.005 0.000 
26 0.000 0.001 0.000 0.001 0.000 0.001 -0.002 0.001 0.000 0.001 
27 -0.001 0.001 -0.001 0.001 0.007 0.000 0.006 0.000 0.006 0.000 
28 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0-006 0.001 -0-001 0.001 
29 -0-001 0.001 -0-001 0.001 0.010 0.000 0.008 0.000 0.009 0.000 
30 -0.001 0.001 0.000 0.001 0.000 0.001 -0.014 0.001 -0.001 0.001 
31 -0.002 0.001 -0.002 0.001 0.017 0.001 0.014 0.001 0.015 0.001 
32 -0.001 0.002 -0-001 0.002 -0.001 0.002 -0.009 0.002 -0.001 0.002 
33 -0.002 0.002 -0.002 0.002 0.020 0.001 0.016 0.001 0.018 0.001 
34 -0.001 0.002 -0-001 0.002 -0-001 0.002 -0.016 0.002 -0.002 0.002 
35 -0.003 0.002 -0.003 0.002 0.030 0.001 0.024 0.001 0.027 0.001 
36 -0.001 0.004 -0-001 0.004 -0.001 0.004 -0.047 0.003 -0.002 0.004 
37 0.000 0.000 0.000 0.000 0.001 0.000 0-000 0.000 0.000 0.000 
38 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 
39 0.000 0.000 0.000 0.000 0.001 0-000 0-001 0.000 0.001 0.000 
40 0.000 0.000 0.000 0.000 0.000 0.000 -0-001 0-000 0-000 0.000 
41 0.000 0.000 0.000 0.000 0.001 0-000 0-001 0.000 0.001 0.000 
42 0.000 0.000 0.000 0.000 0.000 0.000 -0.002 0.000 0.000 0.000 
43 -0.001 0.000 -0.001 0.000 0.005 0.000 0.005 0.000 0.005 0.000 
44 0.000 0.001 0.000 0.001 0.000 0.001 -0.002 0.001 0.000 0.001 
45 -0.001 0.001 -0.001 0.001 0.007 0.000 0.006 0.000 0.006 0.000 
46 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.006 0.001 -0-001 0.001 
47 -0-001 0.001 -0-001 0.001 0-010 0-000 0.008 0.000 0.009 0.000 
48 -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.014 0.001 -0.001 0.001 
49 -0.002 0.001 -0.002 0.001 0.017 0.001 0.014 0.001 0.015 0.001 
50 -0.001 0.002 -0-001 0.002 -0-001 0.002 -0-009 0.002 -0.001 0.002 
51 -0.002 0.002 -0.002 0.002 0.020 0.001 0.016 0.001 0.018 0.001 
52 -0.001 0.002 -0-001 0.002 -0-001 0.002 -0.016 0.002 -0,002 0.002 
53 -0.003 0.002 -0.003 0.002 0.030 0.001 0.024 0.001 0.027 0.001 
54 -0.001 0.004 -0-001 0.004 -0-001 0.004 -0.047 0.003 -0.002 0.004 
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Table 78: Simulation 1: Mean Bias (SE) in &2 D for Sample Size 80 
(1000 runs per simulation) 

Sim MoM MoM UN I 
Bias 

I 
SE 

I 
Bias 

1 0.041 0.000 0.000 
2 0.041 0.000 0.000 
3 0.042 0.000 0.000 
4 0.042 0.000 0.000 
5 0.042 0.000 0.000 
6 0.042 0.000 0.000 
7 0.044 0.001 0.000 
8 0.045 0.001 0.000 
9 0.045 0.001 0.000 
10 0.046 0.001 0.000 
11 0.047 0.001 -0-001 
12 0.047 0.002 0.000 
13 0.052 0.002 -0-001 
14 0.052 0.002 0.000 
15 0.054 0.002 -0-001 
16 0.054 0.003 0.000 
17 0.058 0.003 -0.002 
18 0.060 0.004 0.001 
19 0.041 0.000 0.000 
20 0.041 0.000 0.000 
21 0.042 0.000 0.000 
22 0.042 0.000 0.000 
23 0.042 0.000 0.000 
24 0.042 0.000 0.000 
25 0.044 0.001 0.000 
26 0.045 0.001 0.000 
27 0.045 0.001 0.000 
28 0.046 0.001 0.000 
29 0.047 0.001 -0-001 
30 0.047 0.002 0.000 
31 0.052 0.002 -0-001 
32 0.052 0.002 0.000 
33 0.054 0.002 -0-001 
34 0.054 0.003 0.000 
35 0.058 0.003 -0.002 
36 0.060 0.004 0.001 
37 0.041 0.000 0.000 
38 0.041 0.000 0.000 
39 0.042 0.000 0.000 
40 0.042 0.000 0.000 
41 0.042 0.000 0.000 
42 0.042 0.000 0.000 
43 0.044 0.001 0.000 
44 0.045 0.001 0.000 
45 0.045 0.001 0.000 
46 0.046 0.001 0.000 
47 o. 047 0.001 -0-001 
48 0.047 0.002 0.000 
49 0.052 0.002 -0-001 
50 0.052 0.002 0.000 
51 0.054 0.002 -0-001 
52 0.054 0.003 0.000 
53 0.058 0.003 -0-002 
54 0.060 1 0.004 1 0.001 

UN CSH 
SE 

I 
Bias 

Substantial N 
0.000 0.001 
0.000 0.000 
0.000 0.001 
0.000 0.000 
0.000 0.001 
0.000 0.000 
0.000 0.006 
0.001 0.000 
0.001 0.008 
0.001 0.000 
0.001 0.011 
0.001 0.000 
0.001 0.018 
0.002 0.000 
0.002 0.022 
0.003 0.000 
0.002 0.033 
0.004 0.001 
0.000 0.001 
0.000 0.000 
0.000 0.001 
0.000 0.000 
0.000 0.001 
0.000 0.000 
0.000 0.006 
0.001 0.000 
0.001 0.008 
0.001 0.000 
0.001 0.011 
0.001 0.000 
0.001 0.018 
0.002 0.000 
0.002 0.022 
0.003 0.000 
0.002 0.033 
0.004 0.001 
0.000 0.001 
0.000 0.000 
0.000 0.001 
0.000 0.000 
0.000 0.001 
0.000 0.000 
0.000 0.006 
0.001 0.000 
0.001 0.008 
0.001 0.000 
0.001 0.011 
0.001 0.000 
0.001 0.018 
0.002 0.000 
0.002 0.022 
0.003 0.000 
0.002 0.033 
0.004 0.001 

CSH FAO(2: 
SE Bias 

sing Data 
0.000 0.000 
0.000 0.000 
0.000 0.001 
0.000 -0.001 
0.000 0.001 
0.000 -0.002 
0.000 0.005 
0.001 -0.002 
0.000 0.006 
0.001 -0-006 
0.000 0.009 
0.001 -0-014 
0.001 0.014 
0.002 -0-009 
0.001 0.017 
0.003 -0-016 
0.001 0.026 
0.004 -0.046 
0.000 0.000 
0.000 0.000 
0.000 0.001 
0.000 -0-001 
0.000 0.001 
0.000 -0.002 
0.000 0.005 
0.001 -0.002 
0.000 0.006 
0.001 -0-006 
0.000 0.009 
0.001 -0.014 
0.001 0.014 
0.002 -0-009 
0.001 0.017 
0.003 -0-016 
0.001 0.026 
0.004 -0.046 
0.000 0.000 
0.000 0.000 
0.000 0.001 
0.000 -0-001 
0.000 0.001 
0.000 -0.002 
0.000 0.005 
0.001 -0.002 
0.000 0.006 
0.001 -0.006 
0.000 0.009 
0.001 -0.014 
0.001 0.014 
0.002 -0-009 
0.001 0.017 
0.003 -0.016 
0.001 0.026 
0.004 -0.046 

FAO(2) I RIS RIE 
SE I Bias 

I 
SE 

0.000 0.001 0.000 
0.000 0.000 0.000 
0.000 0.001 0.000 
0.000 0.000 0.000 
0.000 0.001 0.000 
0.000 0.000 0.000 
0.000 0.005 0.000 
0.001 0.000 0.001 
0.000 0.007 0.000 
0.001 0.000 0.001 
0.000 0.010 0.000 
0.001 0.000 0.001 
0.001 0.017 0.001 
0.002 0.000 0.002 
0.001 0.020 0.001 
0.002 0.000 0.003 
0.001 0.030 0.001 
0.004 0.001 0.004 
0.000 0.001 0.000 
0.000 0.000 0.000 
0.000 0.001 0.000 
0.000 0.000 0.000 
0.000 0.001 0.000 
0.000 0.000 0.000 
0.000 0.005 0.000 
0.001 0.000 0.001 
0.000 0.007 0.000 
0.001 0.000 0.001 
0.000 0.010 0.000 
0.001 0.000 0.001 
0.001 0.017 0.001 
0.002 0.000 0.002 
0.001 0.020 0.001 
0.002 0.000 0.003 
0.001 0.030 0.001 
0.004 0.001 0.004 
0.000 0.001 0.000 
0.000 0.000 0.000 
0.000 0.001 0.000 
0.000 0.000 0.000 
0.000 0.001 0.000 
0.000 0.000 0.000 
0.000 0.005 0.000 
0.001 0.000 0.001 
0.000 0.007 0.000 
0.001 0.000 0.001 
0.000 0.010 0.000 
0.001 0.000 0.001 
0.001 0.017 0.001 
0.002 0.000 0.002 
0.001 0.020 0.001 
0.002 0.000 0.003 
0.001 0.030 0.001 
0.004 0.001 0.004 
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Table 79: Simulation 1: Mean Bias (SE) in &2 for Sample Size WT 
80 (1000 runs per simulation) 

Sim Mom 
Bias 

MoM I 
SE 

UN 
Bias 

I UN I 
SE 

CSH I 
Bias 

CSH I 
SE 

FAO(2) 
Bias 

FAO(2) I 
SE 

RIS I 
Bias 

RIS 
SE 

Complete Data Set 
1 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.000 0.000 0.000 0.000 -0.003 0.000 -0-003 0.000 -0-003 0.000 
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
9 0.000 0.000 0.000 0.000 -0.003 0.000 -0.003 0.000 -0.002 0.000 
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
11 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0-002 0.000 
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
13 0.000 0.001 0.000 0.001 -0-009 0.001 -0-009 0.001 -0-008 0.001 
14 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
15 0.000 0.001 0.000 0.001 -0.007 0.001 -0.007 0.001 -0-007 0.001 
16 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
17 0.000 0.001 0.000 0.001 -0-005 0.001 -0.005 0.001 -0-005 0.001 
18 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0-000 
23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 
24 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0-000 
25 0.000 0.000 0.000 0.000 -0.003 0.000 -0.003 0.000 -0.003 0.000 
26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 
27 0.000 0.000 0.000 0.000 -0.003 0.000 -0.003 0.000 -0.002 0.000 
28 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0-000 0-000 
29 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
30 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 
31 0.000 0.001 0.000 0.001 -0-009 0.001 -0-009 0.001 -0-008 0.001 
32 0.000 0.001 0.000 0.001 0.000 0.001 0-000 0-001 0-000 0.001 
33 0.000 0.001 0.000 0.001 -0.007 0.001 -0.007 0.001 -0.007 0.001 
34 0.000 0.001 0.000 0.001 0.000 0.001 0-000 0-001 0-000 0.001 
35 0.000 0.001 0.000 0.001 -0.005 0.001 -0.005 0.001 -0-005 0.001 
36 0.000 0.001 0.000 0.001 0.000 0.001 0-000 0-00' 0.000 0.001 
37 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0*000 
38 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0.000 0,000 
39 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0,000 0,000 
40 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0*000 0*000 
41 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 0*000 0*000 
42 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0,000 0,000 
43 0.000 0.000 0.000 0.000 -0.003 0.000 -0.003 0.000 -0-003 0.000 
44 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0,000 0*000 
45 0.000 0.000 0.000 0.000 -0.003 0.000 -0.003 0.000 -0.002 0.000 
46 0.000 0-000 0.000 0.000 0-000 0-000 0.000 0.000 0.000 0.000 
47 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
48 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0.000 0.000 0.000 
49 0.000 0.001 0-000 0-001 -0-009 0-001 -0-009 0.001 -0.008 0.001 
50 0.000 0.001 0-000 0-001 0-000 0-00' 0.000 0.001 0.000 0.001 
51 0.000 0.001 0.000 0.001 -0.007 0.001 -0.007 0.001 -0-007 0.001 
52 0.000 0.001 0-000 0-001 0-000 0-001 0-000 0.001 0.000 0.001 
53 0.000 0.001 0.000 0.001 -0.005 0.001 -0.005 0.001 -0.005 0.001 
54 0.000 1 0.001 1 0-000 1 0-001 1 0-000 1 0.001 1 0.000 1 0.001 1 0.000 1 0.001 
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Table 79: Simulation 1: Mean Bias (SE) in &' for Sample Size WT 
80 (1000 runs per simulation) 

Sim I MoM 
Bias 

MoM rSE UN I 
Bias 

UN 
SE 

-1 

CSH I 
Bias 

CSH I 
SE 

- FAO(2) 
Bias 

FAO(2) I 
SE 

R19-7 
Bias I 

RIS 
SE 

Substantial Missing Data 
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.000 0.000 0.000 0.000 -0.004 0.000 -0.004 0.000 -0-003 0.000 
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
9 0.000 0.000 0.000 0.000 -0-003 0.000 -0-003 0.000 -0-003 0.000 
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
11 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
13 0.000 0.001 0.000 0.001 -0-009 0.001 -0-009 0.001 -0-009 0.001 
14 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
15 0.000 0.001 0.000 0.001 -0.008 0.001 -0-008 0.001 -0.007 0.001 
16 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
17 0.000 0.001 0.000 0.001 -0-005 0.001 -0-005 0.001 -0.006 0.001 
18 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
24 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 
25 0.000 0.000 0.000 0.000 -0.004 0.000 -0.004 0.000 -0.003 0.000 
26 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 
27 0.000 0.000 0.000 0.000 -0.003 0.000 -0.003 0.000 -0.003 0.000 
28 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 
29 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
31 0.000 0.001 0.000 0.001 -0-009 0.001 -0-009 0-001 -0-009 0-001 
32 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
33 0.000 0.001 0.000 0.001 -0.008 0.001 -0.008 0.001 -0.007 0.001 
34 0.000 0.001 0.000 0.001 0-000 0.001 0.000 0.001 0.000 0.001 
35 0.000 0.001 0.000 0.001 -0.005 0.001 -0.005 0.001 -0.006 0.001 
36 0.000 0.001 0.000 0.001 0.000 0-001 0-000 0.001 0.000 0.001 
37 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 
38 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 

39 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 'o-000 
40 0.000 0.000 0.000 0-000 0-000 0.000 0-000 0.000 0.000 0.000 

41 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 

42 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 

43 0.000 0.000 0.000 0.000 -0.004 0.000 -0.004 0.000 -0.003 0.000 

44 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 

45 0.000 0.000 0.000 0.000 -0.003 0.000 -0.003 0.000 -0.003 0.000 

46 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 0,000 

47 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0-002 0.000 

48 0.000 0.000 0.000 0-000 0-000 0-000 0-000 0.000 0.000 0.000 

49 0.000 0.001 0.000 0.001 -0-009 0-001 -0-009 0-00' -0-009 0.001 

50 0.000 0.001 0-000 0-001 0-000 0-001 0-000 0-001 0.000 0*001 

51 0.000 0.001 0.000 0.001 -0.008 0.001 -0.008 0.001 -0-007 0.001 

52 0.000 0.001 0-000 0-001 0-000 0-001 0-000 0.001 0.000 0.001 

53 0.000 0.001 0.000 0.001 -0-005 0.001 -0.005 0.001 -0.006 0.001 

54 0.000 0.000 0.001 1 0.000 0.001 0.000 1 0.001 1 0.000 1 0.001 
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&2 Table 80: Simulation 1: Mean Bias (SE) in WR for Sample Size 
80 (1000 runs per simulation) 

Sim MOM 
Bias 

MoM I 
SE 

UN I 
Bias 

UN I 
SE 

CSH I 
Bias 

CSH ý 
SE 

FAO(2) 
Bias 

FAO(2) 
SE 

RIS I 
Bias 

RIS 
SE 

Complete Data Set 
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
9 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
11 0.000 0.001 0.000 0.001 -0-006 0.001 -0.006 0.001 -0.005 0.001 
12 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
13 0.000 0.001 0.000 0.001 -0-003 0.001 -0-003 0.001 -0.003 0.001 
14 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
15 0.001 0.001 0.001 0.001 -0-007 0.001 -0.007 0.001 -0.006 0.001 
16 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
17 0.001 0.003 0.001 0.003 -0.017 0.002 -0.017 0.002 -0.014 0.002 
18 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.002 
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

23 0.000 0.000 0.000 0.000 -0-001 0-000 -0-001 0.000 -0-001 0-000 
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 

25 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0-000 
26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 
27 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 
29 0.000 0.001 0.000 0.001 -0.006 0.001 -0.006 0.001 -0.005 0.001 
30 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0-001 0-000 0-00' 
31 0.000 0.001 0.000 0.001 -0.003 0.001 -0.003 0.001 -0.003 0.001 
32 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0-001 0-000 0-001 
33 0.001 0.001 0.001 0.001 -0.007 0.001 -0.007 0.001 -0.006 0.001 
34 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
35 0.001 0.003 0.001 0.003 -0.017 0.002 -0.017 0.002 -0.014 0.002 
36 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.002 
37 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0.000 
38 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0.000 
39 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 0*000 
40 0.000 0.000 0.000 0-000 0-000 0-000 0-000 0-000 0.000 0.000 
41 0.000 0.000 0.000 0.000 -0-001 0-000 -0-001 0-000 -0-001 0.000 
42 0.000 0.000 0.000 0-000 0.000 0-000 0-000 0-000 0.000 0*000 
43 0.000 0.000 0.000 0.000 -0-001 0-000 -0-001 0-000 -0-001 0*000 
44 0.000 0.000 0.000 0-000 0.000 0-000 0-000 0-000 0.000 0,000 
45 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
46 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 0,000 0*000 
47 0.000 0.001 0.000 0.001 -0.006 0.001 -0.006 0.001 -0-005 0.001 
48 0.000 0.001 0.000 0.001 0-000 0-001 0-000 0.001 0.000 0.001 
49 0.000 0.001 0.000 0.001 -0-003 0.001 -0.003 0.001 -0.003 0.001 
50 0.000 0.001 0.000 0-001 0-000 0-001 0.000 0.001 0.000 0.001 
51 0.001 0.001 0.001 0.001 -0.007 0.001 -0.007 0.001 -0.006 0.001 
52 0.001 0.001 0.001 0-001 0-001 0-001 0-00' 0.001 0.001 0.001 
53 0.001 0.003 0.001 0.003 -0-017 0.002 -0.017 0.002 -0.014 0.002 
54 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.002 
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&2 Table 80: Simulation 1: Mean Bias (SE) in WR for Sample Size 
80 (1000 runs per simulation) 

Sim mom 
Bias 

I MoM 
SE 

I UN I 
Bias 

UN I 
SE 

CSH 
Bias 

CSH 
SE 

I FAO(2) 
Bias 

FAO(2) 
SE 

J RIS I 
Bias 

RIS 
SE 

_ Substantial Missing Data 
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
9 0.000 0.000 0.000 0.000 -0.002 0.000 -0-002 0.000 -0.002 0.000 
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
11 0.000 0.001 0.000 0.001 -0-006 0.001 -0-006 0.001 -0-005 0.001 
12 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
13 0.000 0.001 0.000 0.001 -0-003 0.001 -0-003 0.001 -0.003 0.001 
14 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
15 0.001 0.001 0.001 0.001 -0-007 0.001 -0.007 0.001 -0-006 0.001 
16 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
17 0.001 0.003 0.001 0.003 -0.018 0.002 -0-018 0.002 -0.015 0.002 
18 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0.001 0.000 
24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
25 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000 -0-001 0.000 
26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
27 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
29 0.000 0.001 0.000 0.001 -0.006 0.001 -0.006 0.001 -0-005 0.001 
30 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
31 0.000 0.001 0.000 0.001 -0.003 0.001 -0.003 0.001 -0-003 0.001 
32 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
33 0.001 0.001 0.001 0.001 -0.007 0.001 -0-007 0.001 -0-006 0.001 
34 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
35 0.001 0.003 0.001 0.003 -0.018 0.002 -0-018 0.002 -0.015 0.002 
36 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 
37 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
38 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 
40 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
41 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0-000 
42 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
43 0.000 0.000 0.000 0.000 -0-001 0.000 -0-001 0.000 -0-001 0.000 
44 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
45 0.000 0.000 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.002 0.000 
46 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 
47 0.000 0.001 0.000 0.001 -0.006 0.001 -0-006 0.001 -0.005 0.001 
48 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
49 0.000 0.001 0.000 0.001 -0.003 0.001 -0.003 0.001 -0.003 0.001 
50 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
51 0.001 0.001 0.001 0.001 -0.007 0.001 -0.007 0.001 -0.006 0.001 
52 0.001 0-001 0-000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
53 0.001 0.003 0.001 0.003 -0.018 0.002 -0.018 0.002 -0.015 0.002 
54 0.001 0.003 1 0.001 1 0.003 1 0.001 1 0.003 1 0.001 0.003 1 0.001 1 0.003 
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Table 81: Simulation 1: Percentage of ABE Failures for Sample 
Size 80 (1000 runs per simulation) 

Sim MoM I UN I Cýý FAO(2) RIS 
Complete Data Set 

1 0 0 0 0 0 
2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 0 0 0 0 
5 0 0 0 0 0 
6 0 0 0 0 0 
7 0 0 0 0 0 
8 0 0 0 0 0 
9 0 0 0 0 0 
10 0.1 0-1 0.1 0.1 0.1 
11 0 0 0 0 0 
12 1.9 2.3 2.3 2.3 2.1 
13 0.4 0.6 0.8 0.8 0.7 
14 6.7 7.5 7.5 7.5 7.2 
15 2.8 2.8 2.8 2.8 3 
16 17.7 20.8 20.8 20.8 19.4 
17 10.3 10.5 11.3 11.3 11.3 
18 51.3 55.5 55.5 55.5 54.1 
19 95.3 95.6 95.9 95.9 95.8 
20 95.1 95.8 95.8 95.8 95 
21 95.2 95.3 96 96 95.9 
22 95.8 96.5 96.5 96.5 96.4 
23 95.2 95.3 95.4 95.4 95.4 
24 95.5 96.2 96.2 96.2 96.3 
25 95.5 95.7 96.2 96.2 96.1 
26 95.7 96.5 96.5 96.5 96.2 
27 95.4 95.5 96 96 95.9 
28 95.8 96.5 96.5 96.5 96.4 
29 95.5 95.6 95.8 95.8 95.7 
30 95.5 96.3 96.3 96.3 96 
31 95.3 95.6 96.1 96.1 96.1 
32 95.9 96.4 96.4 96.4 96 
33 95.4 95.5 96 96 95.9 
34 95.8 96.5 96.5 96.5 96.4 
35 95.6 95.6 95.7 95.7 95.6 
36 95.6 96.3 96.3 96.3 96.2 
37 100 100 100 100 100 
38 100 100 100 100 100 
39 100 100 100 100 100 
40 100 100 100 100 100 
41 100 100 100 100 100 
42 100 100 100 100 100 
43 100 100 100 100 100 
44 100 100 100 100 100 
45 100 100 100 100 100 
46 100 100 100 100 100 
47 100 100 100 100 100 
48 100 100 100 100 100 
49 100 100 100 100 100 
50 100 100 100 100 100 
51 100 100 100 100 100 
52 100 100 100 100 100 
53 100 100 100 100 100 
54 1 100 1 100 100 100 100 

L- Substantial Missing Data 
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Table 81: Simulation 1: Percentage of ABE Failures for Sample 
Size 80 (1000 runs per simulation) 

Sim MOM UN CSH FAO(2) RIS 
1 0 0 0 0 0 
2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 0 0 0 0 
5 0 0 0 0 0 
6 0 0 0 0 0 
7 0 0 0 0 0 
8 0 0 0 0 0 
9 0 0 0 0 0 
10 0.3 0.3 0.2 0.2 0.1 
11 0 0 0 0 0 
12 4.2 4 4 4 3.8 
13 2.6 1.3 1.4 1.4 1.3 
14 12.4 11.2 11.2 11.2 10.6 
15 5.4 4.1 4.5 4.4 4.4 
16 25.3 26.3 26.3 26.3 24.8 
17 17.9 15.8 16.8 16.7 17.2 
18 58.6 63.2 63.2 63.2 60.9 
19 100 95.7 96 96 95.8 
20 100 95.7 95.7 95.7 95.2 
21 100 95.2 95.8 95.7 95.6 
22 100 95.7 95.7 95.7 95.4 
23 100 95.6 96.1 96.1 96.1 
24 99.9 96.5 96.5 96.5 96.3 
25 99.1 95.6 96.3 96.2 96 
26 98.7 95.8 95.8 95.8 95.7 
27 98.6 95.3 95.8 95.7 95.6 
28 98.1 95.7 95.7 95.7 95.4 
29 98.1 95.5 95.8 95.8 96 
30 97.7 96.4 96.4 96.4 96.3 
31 97 95.2 96.1 96.1 95.9 
32 96.9 95.5 95.5 95.5 95.3 
33 96.9 95.3 95.8 95.7 95.6 
34 97 95.7 95.7 95.7 95.4 
35 96.7 95.6 95.8 95.9 96.2 
36 96.5 96.9 96.9 96.9 96.8 
37 100 100 100 100 100 
38 100 100 100 100 100 
39 100 100 100 100 100 
40 100 100 100 100 100 
41 100 100 100 100 100 
42 100 100 100 100 100 
43 100 100 100 100 100 
44 100 100 100 100 100 
45 100 100 100 100 100 
46 100 100 100 100 100 
47 100 100 100 100 100 
48 100 100 100 100 100 
49 100 100 100 100 100 
50 100 100 100 100 100 
51 100 100 100 100 100 
52 100 100 100 100 100 
53 100 100 100 100 100 
54 100 100 1 100 100 100 
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Table 82: Simulation 1: Mean Bias (SE) in Estimated IBE FDA 
Metric for Sample Size 16 (1000 runs per simulation) 

Sim mom 
Bias 

I MoM 
SE 

ý UN 
Bias 

UN ý 
SE 

RIS I 
Bias 

I RIS 
SE 

Complete Data Set 
1 0.000 0.000 0.000 0.000 0.001 0.000 
2 0.000 0.000 0.000 0.000 0.001 0.000 
3 0.001 0.000 0.001 0.000 0.002 0.000 
4 0.001 0.000 0.001 0.000 0.001 0.000 
5 0.001 0.001 0.001 0.000 0.005 0.000 
6 0.002 0.001 0.002 0.001 0.002 0.001 
7 -0.010 0.002 -0.011 0.002 -0.001 0.001 
8 -0-008 0.002 -0.008 0.002 -0-005 0.002 
9 0.008 0.004 0.006 0.004 0.037 0.004 
10 0.013 0.005 0.012 0.005 0.016 0.004 
11 0.014 0.008 0.011 0.008 0.069 0.006 
12 0.023 0.008 0.021 0.008 0.022 0.008 
13 0.017 0.008 0.015 0.008 0.064 0.007 
14 0.026 0.008 0.024 0.009 0.035 0.008 
15 0.024 0.012 0.019 0.012 0.104 0.010 
16 0.039 0.013 0.034 0.013 0.045 0.012 
17 0.042 0.024 0.034 0.023 0.212 0.018 
18 0.071 0.024 0.063 0.024 0.062 0.024 
19 0.000 0.000 0.000 0.000 0.001 0.000 
20 0.000 0.000 0.000 0.000 0.001 0.000 
21 0.000 0.000 0.000 0.000 0.002 0.000 
22 0.001 0.001 0.001 0.001 0.001 0.001 
23 0.001 0.001 0.000 0.001 0.005 0.001 
24 0.002 0.001 0.002 0.001 0.002 0.001 
25 -0.011 0.002 -0.011 0.002 -0-001 0.002 
26 -0-008 0.002 -0.008 0.002 -0-005 0.002 
27 0.007 0.005 0.006 0.005 0.036 0.004 
28 0.013 0.005 0.011 0.005 0.015 0.005 
29 0.013 0.008 0.010 0.008 0.069 0.006 
30 0.023 0.008 0.020 0.008 0.021 0.008 
31 0.016 0.008 0.014 0.008 0.063 0.007 
32 0.026 0.009 0.024 0.009 0.035 0.008 
33 0.023 0.012 0.018 0.012 0.103 0.010 
34 0.038 0.013 0.034 0.013 0.045 0.013 
35 0.041 0.024 0.033 0.023 0.211 0.018 
36 0.071 0.025 0.062 0.025 0.061 0.024 
37 0.000 0.001 0.000 0.001 0.000 0-001 
38 0.000 0.001 0.000 0.001 0.001 0.001 
39 0.000 0.001 0.000 0.001 0.002 0.001 
40 0.001 0.001 0.001 0.001 0.001 0.001 
41 0.000 0.002 0.000 0.002 0.004 0.001 
42 0.002 0.002 0.001 0.002 0.001 0.002 
43 -0.012 0.003 -0.012 0.003 -0.002 0.003 
44 -0-008 0.004 -0.009 0.004 -0.005 0.004 
45 0.006 0.006 0.005 0.006 0.035 0.005 
46 0.013 0.006 0.011 0.006 0.015 0.006 
47 0.012 0.009 0.009 0.009 0.067 0.007 
48 0.022 0.010 0.020 0.010 0.021 0.010 
49 0.015 0.010 0.012 0.010 0.061 0.009 
50 0.026 0.011 0.024 0.011 0.035 0.010 
51 0.021 0.014 0.016 0.014 0.101 0.012 
52 0.038 0.015 0.033 0.015 0.044 0.015 
53 0.039 0.025 0.031 0.025 0.209 0.019 
54 1 0.070 1 0.026 1 0.061 1 0.026 1 0.060 1 0.026 
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Table 82: Simulation 1: Mean Bias (SE) in Estimated IBE FDA 
Metric for Sample Size 16 (1000 runs per simulation) 

Sim MoM 
Bias 

I MoM 
SE 

I UN 
Bias 

I UN ý 
SE 

RIS 
Bias I 

F-RI S 
SE 

Substantial Missing Data 
1 0.368 0.001 0.002 0.000 0.002 0.000 
2 0.369 0.002 0.002 0.000 0.002 0.000 
3 0.370 0.002 0.003 0.000 0.005 0.000 
4 0.372 0.002 0.004 0.000 0.004 0.000 
5 0.372 0.002 0.003 0.001 0.009 0.001 
6 0.375 0.003 0.005 0.001 0.005 0.001 
7 0.393 0.005 -0-001 0.003 0.012 0.002 
8 0.399 0.006 0.004 0.003 0.011 0.003 
9 0.425 0.007 0.025 0.006 0.060 0.005 
10 0.436 0.008 0.033 0.007 0.046 0.006 
11 0.447 0.011 0.040 0.010 0.102 0.008 
12 0.467 0.013 0.049 0.011 0.062 0.010 
13 0.514 0.013 0.058 0.012 0.121 0.009 
14 0.534 0.015 0.075 0.014 0.106 0.011 
15 0.540 0.018 0.075 0.017 0.174 0.014 
16 0.571 0.020 0.097 0.019 0.133 0.017 
17 0.610 0.032 0.118 0.031 0.312 0.024 
18 0.668 0.035 0.149 0.034 0.174 0.032 
19 0.396 0.002 0.001 0.001 0.002 0.000 
20 0.397 0.002 0.002 0.001 0.002 0.001 
21 0.398 0.002 0.002 0.001 0.004 0.001 
22 0.399 0.002 0.003 0.001 0.004 0.001 
23 0.400 0.002 0.003 0.001 0.008 0.001 
24 0.402 0.003 0.004 0.001 0.004 0.001 
25 0.421 0.005 -0.002 0.003 0.011 0.003 
26 0.426 0.006 0.002 0.004 0.009 0.003 
27 0.452 0.008 0.023 0.006 0.058 0.005 
28 0.463 0.009 0.030 0.007 0.043 0.006 
29 0.475 0.012 0.038 0.010 0.100 0.008 
30 0.492 0.013 0.047 0.012 0.059 0.011 
31 0.541 0.014 0.057 0.012 0.118 0.010 
32 0.560 0.015 0.072 0.014 0.102 0.012 
33 0.567 0.019 0.072 0.017 0.171 0.014 
34 0.596 0.021 0.093 0.020 0.129 0.017 
35 0.636 0.033 0.115 0.031 0.308 0.024 
36 0.692 0.036 0.145 0.035 0.169 0.032 
37 0.455 0.002 0.001 0.002 0.001 0.001 
38 0.455 0.002 0.000 0.002 0.001 0.002 
39 0.456 0.003 0.001 0.002 0.003 0.002 
40 0.457 0.003 0.001 0.002 0.002 0.002 
41 0.458 0.003 0.002 0.002 0.007 0.002 
42 0.459 0.004 0.002 0.003 0.002 0.003 
43 0.479 0.007 -0.004 0.006 0.008 0.005 
44 0.482 0.008 -0.003 0.007 0.005 0.006 
45 0.510 0.010 0.020 0.008 0.054 0.007 
46 0.518 0.011 0.026 0.010 0.037 0.009 
47 0.532 0.014 0.035 0.012 0.096 0.010 
48 0.546 0.016 0.042 0.014 0.053 0.013 
49 0.598 0.017 0.052 0.015 0.112 0.013 
50 0.614 0.019 0.064 0.017 0.094 0.015 
51 0.624 0.021 0.067 0.020 0.164 0.016 
52 0.649 0.024 0.085 0.023 0.119 0.020 
53 0.692 0.035 0.110 0.033 0.302 0.027 
54 1 0.742 1 0.039 1 0.136 1 0.038 1 0.159 1 0.035 
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Table 83: Simulation 1: Mean Bias (SE) in Estimated PBE FDA 
Metric for Sample Size 16 (1000 runs per simulation) 

Sim mom 
Bias 

mom 
SE 

U 
Bias 

UN 
SE 

I CSH 
Bias 

CSH 
SE 

Complete Data Set 
1 -0.008 0.001 -0-008 0.001 -0.008 0.001 
2 -0-008 0.001 -0-008 0.001 -0-008 0.001 
3 -0.003 0.001 -0-003 0.001 -0-003 0.001 
4 -0.004 0.001 -0.004 0.001 -0.004 0.001 
5 0.001 0.001 0.001 0.001 0.000 0.001 
6 0.000 0.002 0.000 0.002 0.000 0.002 
7 0.007 0.009 0.007 0.009 0.007 0.009 
8 0.003 0.009 0.003 0.009 0.003 0.009 
9 0.011 0.010 0.011 0.010 0.010 0.010 
10 0.006 0.011 0.005 0.011 0.005 0.011 
11 0.017 0.012 0.016 0.012 0.014 0.012 
12 0.009 0.013 0.008 0.013 0.008 0.013 
13 0.024 0.026 0.024 0.026 0.024 0.026 
14 0.011 0.027 0.011 0.027 0.011 0.027 
15 0.032 0.028 0.030 0.028 0.029 0.028 
16 0.015 0.031 0.014 0.031 0.014 0.031 
17 0.050 0.034 0.047 0.034 0.043 0.034 
18 0.027 0.038 0.024 0.038 0.022 0.038 
19 -0.008 0.001 -0.008 0.001 -0.008 0.001 
20 -0.008 0.001 -0.008 0.001 -0.008 0.001 
21 -0.003 0.001 -0.003 0.001 -0.003 0.001 
22 -0.004 0.001 -0.004 0.001 -0.004 0.001 
23 0.001 0.001 0.000 0.001 0.000 0.001 
24 0.000 0.002 0.000 0.002 0.000 0.002 
25 0.007 0.009 0.007 0.009 0.007 0.009 
26 0.003 0.009 0.003 0.009 0.003 0.009 
27 0.011 0.010 0.010 0.010 0.010 0.010 
28 0.005 0.011 0.005 0.011 0.005 0.011 
29 0.016 0.012 0.015 0.012 0.014 0.012 
30 0.009 0.013 0.008 0.013 0.007 0.013 
31 0.024 0.026 0.023 0.026 0.023 0.026 
32 0.011 0.028 0.011 0.028 0.010 0.028 
33 0.031 0.028 0.029 0.028 0.028 0.028 
34 0.015 0.031 0.014 0.031 0.013 0.031 
35 0.049 0.034 0.046 0.034 0.041 0.034 
36 0.027 0.038 0.024 0.038 0.021 0.038 
37 -0.008 0.001 -0-008 0.001 -0.008 0.001 
38 -0.008 0.001 -0.008 0.001 -0.008 0.001 
39 -0.004 0.001 -0.004 0.001 -0.004 0.001 
40 -0.004 0.002 -0.004 0.002 -0.004 0.002 
41 0.000 0.002 0.000 0.002 0.000 0.002 
42 -0.001 0.003 -0-001 0.003 -0-001 0.003 
43 0.006 0.009 0.006 0.009 0.006 0.009 
44 0.003 0.010 0.003 0.010 0.003 0.010 
45 0.010 0.011 0.009 0.011 0.009 0.011 
46 0.005 0.012 0.004 0.012 0.004 0.012 
47 0.015 0.012 0.014 0.012 0.012 0.012 
48 0.008 0.014 0.007 0.015 0.007 0.015 
49 0.022 0.026 0.022 0.026 0.021 0.026 
50 0.011 0.028 0.010 0.028 0.010 0.028 
51 0.029 0.028 0.027 0.028 0.026 0.028 
52 0.015 0.032 0.013 0.032 0.013 0.032 
53 0.046 0.034 0.043 0.034 0.038 0.034 
54 0.026 0.040 1 0.022 0.040 1 0.020 1 0.040 
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Table 83: Simulation 1: Mean Bias (SE) in Estimated PBE FDA 
Metric for Sample Size 16 (1000 runs per simulation) 

Sim I mom 
Bias 

I MOM 
SE 

UN I I-Bias 

_ 

UN 
L SE 

I -CS-H 
Bias 

CSH 
SE 

Substantial Missing Data 
1 -0.212 0.004 -0-008 0.001 -0.057- 0.001 
2 -0.212 0.004 -0-008 0.001 -0.007 0.001 
3 -0.214 0.005 -0.004 0.001 -0.002 0.001 
4 -0.215 0.005 -0.004 0.001 -0-003 0.001 
5 -0.218 0.006 0.001 0.002 0.001 0.002 
6 -0.219 0.006 0.000 0.002 0.000 0.002 
7 -0.186 0.018 0.018 0.011 0.028 0.011 
8 -0.188 0.018 0.013 0.012 0.021 0.011 
9 -0.197 0.020 0.018 0.013 0.030 0.013 
10 -0.200 0.020 0.014 0.014 0.022 0.014 
11 -0.213 0.022 0.021 0.015 0.032 0.015 
12 -0.214 0.023 0.018 0.017 0.024 0.016 
13 -0-138 0.041 0.051 0.033 0.081 0.032 
14 -0.142 0.042 0.037 0.035 0.058 0.034 
15 -0.156 0.044 0.049 0.037 0.082 0.035 
16 -0.160 0.046 0.040 0.039 0.061 0.038 
17 -0.205 0.052 0.060 0.045 0.082 0.042 
18 -0.205 0.055 0.054 0.048 0.064 0.047 
19 -0-184 0.004 -0-008 0.001 -0-007 0.001 
20 -0.184 0.005 -0-008 0.001 -0-008 0.001 
21 -0-187 0.005 -0.004 0.001 -0-003 0.001 
22 -0.188 0.005 -0-005 0.002 -0.004 0.002 
23 -0.190 0.006 0.000 0.002 0.000 0.002 
24 -0.192 0.006 -0-001 0.002 -0.001 0.002 
25 -0.158 0.018 0.017 0.011 0.027 0.011 
26 -0.161 0.018 0.011 0.012 0.019 0.011 
27 -0.170 0.020 0.016 0.013 0.028 0.013 
28 -0.173 0.021 0.012 0.014 0.019 0.014 
29 -0.186 0.022 0.019 0.016 0.031 0.015 
30 -0.189 0.024 0.016 0.017 0.019 0.017 
31 -0.110 0.041 0.049 0.033 0.078 0.032 
32 -0.117 0.042 0.033 0.035 0.054 0.034 
33 -0.129 0.044 0.047 0.037 0.078 0.035 
34 -0-135 0.046 0.036 0.039 0.057 0.038 
35 -0.179 0.052 0.057 0.045 0.078 0.042 
36 -0.182 0.055 0.050 0.049 0.060 0.047 
37 -0.125 0.005 -0.009 0.002 -0-008 0.002 
38 -0.126 0.005 -0.009 0.002 -0.009 0.002 
39 -0.128 0.005 -0.005 0.002 -0.004 0.002 
40 -0.130 0.006 -0-006 0.003 -0.006 0.003 
41 -0.132 0.006 -0-001 0.003 -0.002 0.003 
42 -0.135 0.007 -0.003 0.004 -0.003 0.004 
43 -0.100 0.018 0.014 0.012 0.023 0.012 
44 -0.105 0.019 0.006 0.013 0.013 0.013 
45 -0.112 0.021 0.013 0.014 0.023 0.014 
46 -0.118 0.022 0.007 0.016 0.013 0.015 
47 -0.129 0.023 0.016 0.017 0.026 0.016 
48 -0.135 0.025 0.011 0.019 0.014 0.018 
49 -0.053 0.042 0.045 0.035 0.073 0.033 
50 -0-062 0.044 0.025 0.036 0.045 0.035 
51 -0.072 0.045 0.042 0.038 0.072 0.036 
52 -0.082 0.048 0.028 0.040 0.048 0.039 
53 -0.123 0.053 0.052 0.046 0.070 0.044 
54 1 -0.132 1 0.058 1 0.041 1 0.050 1 0.048 0.049 
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Table 84: Simulation 1: Mean Bias (SE) in Estimated IBE FDA 
Metric for Sample Size 24 (1000 runs per simulation) 

Sim mom 
Bias 

I MoM 
SE 

UN 
Bias 

UN 
SE 

RIS - 
Bias 

- RIS 
SE 

Complete Data Set 
1 0.000 0.000 0.000 0.000 0.001 0.000 
2 0.000 0.000 0.000 0.000 0.001 0.000 
3 0.000 0.000 0.000 0.000 0.002 0.000 
4 0.001 0.000 0.001 0.000 0.001 0.000 
5 0.000 0.000 0.000 0.000 0.004 0.000 
6 0.001 0.000 0.001 0.000 0.001 0.000 
7 -0.009 0.001 -0.009 0.001 -0.002 0.001 
8 -0-008 0.001 -0-008 0.001 -0-006 0.001 
9 0.003 0.003 0.002 0.003 0.027 0.003 
10 0.006 0.004 0.006 0.004 0.006 0.004 
11 0.004 0.006 0.003 0.006 0.049 0.005 
12 0.010 0.006 0.009 0.006 0.007 0.006 
13 0.007 0.006 0.006 0.006 0.046 0.006 
14 0.014 0.007 0.013 0.007 0.017 0.007 
15 0.008 0.010 0.006 0.010 0.074 0.008 
16 0.018 0.010 0.016 0.010 0.018 0.010 
17 0.011 0.019 0.008 0.019 0.151 0.015 
18 0.030 0.019 0.027 0.019 0.020 0.019 
19 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 0.002 0.000 
22 0.001 0.000 0.001 0.000 0.001 0.000 
23 0.000 0.001 0.000 0.001 0.003 0.000 
24 0.001 0.001 0.001 0.001 0.001 0.001 
25 -0.010 0.002 -0.010 0.002 -0.002 0.001 
26 -0-008 0.002 -0.008 0.002 -0.007 0.002 
27 0.002 0.004 0.001 0.004 0.026 0.003 
28 0.006 0.004 0.005 0.004 0.006 0.004 
29 0.003 0.006 0.002 0.006 0.048 0.005 
30 0.010 0.006 0.009 0.007 0.007 0.006 
31 0.006 0.006 0.005 0.007 0.044 0.006 
32 0.013 0.007 0.012 0.007 0.016 0.007 
33 0.007 0.010 0.005 0.010 0.073 0.008 
34 0.018 0.010 0.016 0.010 0.018 0.010 
35 0.010 0.019 0.006 0.019 0.149 0.015 
36 0.030 0.019 0.027 0.019 0.019 0.019 
37 -0-001 0.001 -0-001 0.001 0.000 0.001 
38 0.000 0.001 0.000 0.001 0.000 0.001 
39 -0-001 0.001 -0-001 0.001 0.001 0.001 
40 0.000 0.001 0.000 0.001 0.000 0.001 
41 -0.001 0.001 -0.001 0.001 0.003 0.001 
42 0.001 0.002 0.001 0.002 0.001 0.002 
43 -0.012 0.003 -0.012 0.003 -0.004 0.003 
44 -0.009 0.003 -0.009 0.003 -0.007 0.003 
45 0.000 0.004 -0-001 0.004 0.024 0.004 
46 0.006 0.005 0.005 0.005 0.006 0.005 
47 0.001 0.007 0.000 0.007 0.046 0.006 
48 0.009 0.008 0.008 0.008 0.006 0.008 
49 0.003 0.008 0.001 0.008 0.041 0.007 
50 0.012 0.008 0.011 0.008 0.015 0.008 
51 0.004 0.011 0.002 0.011 0.070 0.009 
52 0.017 0.012 0.015 0.012 0.017 0.012 
53 0.007 0.019 0.003 0.019 0.146 0.016 
54 1 0.029 1 0.021 1 0.026 1 0.021 1 0.019 1 0.021 
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Table 84: Simulation 1: Mean Bias (SE) in Estimated IBE FDA 
Metric for Sample Size 24 (1000 runs per simulation) 

Sim MoM 
Bias 

I MoM 
SE 

UN 
Bias 

I UN 
SE 

I is 
Bias 

RIS 
SE 

Substantial Miss ing Dat a 
1 0.186 0.001 0.001 0.000 0.001 0.000 
2 0.186 0.001 0.001 0.000 0.001 0.000 
3 0.187 0.001 0.001 0.000 0.003 0.000 
4 0.188 0.001 0.001 0.000 0.001 0.000 
5 0.188 0.001 0.001 0.000 0.005 0.000 
6 0.190 0.002 0.002 0.001 0.002 0.001 
7 0.193 0.003 -0-008 0.002 0.001 0.001 
8 0.196 0.003 -0.006 0.002 -0.003 0.002 
9 0.212 0.005 0.007 0.004 0.035 0.003 
10 0.218 0.006 0.011 0.005 0.015 0.004 
11 0.221 0.008 0.011 0.007 0.062 0.006 
12 0.231 0.009 0.016 0.008 0.019 0.007 
13 0.254 0.009 0.018 0.008 0.063 0.007 
14 0.264 0.010 0.024 0.008 0.035 0.008 
15 0.265 0.013 0.022 0.012 0.098 0.010 
16 0.280 0.014 0.031 0.013 0.043 0.012 
17 0.293 0.023 0.032 0.022 0.189 0.017 
18 0.321 0.025 0.048 0.023 0.055 0.022 
19 0.204 0.001 0.000 0.000 0.001 0.000 
20 0.205 0.001 0.000 0.000 0.000 0.000 
21 0.205 0.001 0.000 0.000 0.002 0.000 
22 0.206 0.001 0.001 0.001 0.001 0.001 
23 0.206 0.001 0.000 0.001 0.004 0.001 
24 0.208 0.002 0.001 0.001 0.001 0.001 
25 0.210 0.003 -0.009 0.002 0.000 0.002 
26 0.213 0.004 -0.007 0.002 -0.005 0.002 
27 0.229 0.005 0.006 0.004 0.033 0.004 
28 0.235 0.006 0.009 0.005 0.013 0.005 
29 0.238 0.008 0.009 0.007 0.060 0.006 
30 0.247 0.009 0.014 0.008 0.017 0.008 
31 0.271 0.009 0.016 0.008 0.060 0.007 
32 0.281 0.010 0.022 0.009 0.032 0.008 
33 0.281 0.013 0.020 0.012 0.095 0.010 
34 0.296 0.014 0.028 0.013 0.040 0.012 
35 0.309 0.023 0.029 0.022 0.185 0.017 
36 0.337 0.025 0.044 0.024 0.051 0.023 
37 0.243 0.001 0.000 0.001 0.000 0.001 
38 0.243 0.001 0.000 0.001 0.000 0.001 
39 0.243 0.001 -0-001 0.001 0.001 0.001 
40 0.244 0.002 0.000 0.001 0.000 0.001 
41 0.244 0.002 -0-001 0.002 0.003 0.001 
42 0.245 0.003 -0-001 0.002 -0-001 0.002 
43 0.247 0.004 -0-011 0.003 -0.003 0.003 
44 0.250 0.005 -0.010 0.004 -0.008 0.004 
45 0.265 0.006 0.004 0.005 0.029 0.005 
46 0.271 0.007 0.006 0.006 0.009 0.006 
47 0.273 0.009 0.006 0.008 0.055 0.007 
48 0.283 0.011 0.009 0.010 0.012 0.009 
49 0.306 0.011 0.012 0.009 0.055 0.008 
50 0.316 0.012 0.018 0.011 0.027 0.010 
51 0.315 0.014 0.015 0.013 0.089 0.011 
52 0.330 0.016 0.022 0.015 0.033 0.014 
53 0.342 0.024 0.024 0.023 0.177 0.019 
54 1 0.369 0.027 1 0.036 1 0.026 1 0.042 1 0.024 
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Table 85: Simulation 1: Mean Bias (SE) in Estimated PBE FDA 
Metric for Sample Size 24 (1000 runs per simulation) 

Sim mom 
Bias 

MoM 
SE 

I UN I 
Bias 

UN I 
SE 

CSH I 
Bias 

CSH 
SE 

Com plete Da ta Set 
1 -0.006 0.001 -0-006 0.001 -0-006 0.001 
2 -0.006 0.001 -0-006 0.001 -0-006 0.001 
3 -0.002 0.001 -0.002 0.001 -0.002 0.001 
4 -0-003 0.001 -0-003 0.001 -0-003 0.001 
5 0.000 0.001 0.000 0.001 0.000 0.001 
6 0.000 0.001 0.000 0.001 -0-001 0.001 
7 0.003 0.007 0.003 0.007 0.003 0.007 
8 -0.001 0.008 -0-001 0.008 -0.001 0.008 
9 0.004 0.008 0.004 0.008 0.003 0.008 
10 -0.001 0.009 -0.001 0.009 -0.002 0.009 
11 0.005 0.009 0.005 0.009 0.004 0.009 
12 -0.001 0.011 -0-001 0.011 -0-001 0.011 
13 0.009 0.021 0.009 0.021 0.009 0.021 
14 -0.003 0.023 -0.003 0.023 -0.003 0.023 
15 0.011 0.023 0.010 0.023 0.010 0.023 
16 -0.004 0.025 -0.004 0.025 -0.004 0.025 
17 0.016 0.027 0.015 0.027 0.012 0.027 
18 -0-001 0.031 -0.002 0.031 -0-005 0.031 
19 -0.007 0.001 -0.007 0.001 -0.007 0.001 
20 -0.007 0.001 -0.007 0.001 -0.007 0.001 
21 -0.003 0.001 -0.003 0.001 -0.003 0.001 
22 -0.003 0.001 -0-003 0.001 -0.003 0.001 
23 0.000 0.001 0.000 0.001 0.000 0.001 
24 0.000 0.001 -0-001 0.001 -0-001 0.001 
25 0.002 0.007 0.002 0.007 0.002 0.007 
26 -0.001 0.008 -0-001 0.008 -0-001 0.008 
27 0.003 0.008 0.003 0.008 0.003 0.008 
28 -0.002 0.009 -0.002 0.009 -0.002 0.009 
29 0.004 0.010 0.004 0.010 0.003 0.010 
30 -0.001 0.011 -0.001 0.011 -0.002 0.011 
31 0.008 0.021 0.007 0.021 0.007 0.021 
32 -0.004 0.023 -0.004 0.023 -0.004 0.023 
33 0.009 0.023 0.009 0.023 0.008 0.023 
34 -0.004 0.025 -0.005 0.025 -0.005 0.025 
35 0.014 0.027 0.013 0.027 0.011 0.027 
36 -0.001 0.031 -0.002 0.031 -0.006 0.031 
37 -0.007 0.001 -0.007 0.001 -0.007 0.001 
38 -0.007 0.001 -0.007 0.001 -0.007 0.001 
39 -0.003 0.001 -0.003 0.001 -0.003 0.001 
40 -0.003 0.002 -0.003 0.002 -0.003 0.002 
41 -0.001 0.002 -0-001 0.002 -0-001 0.002 
42 -0.001 0.002 -0-001 0.002 -0-001 0.002 
43 0.000 0.008 0.000 0.008 0.000 0.008 
44 -0.002 0.008 -0.002 0.008 -0.002 0.008 
45 0.001 0.009 0.001 0.009 0.001 0.009 
46 -0.002 0.010 -0.002 0.010 -0.002 0.010 
47 0.002 0.010 0.002 0.010 0.001 0.010 
48 -0.001 0.012 -0.002 0.012 -0.002 0.012 
49 0.005 0.021 0.004 0.021 0.004 0.021 
50 -0.005 0.023 -0-005 0.023 -0.005 0.023 
51 0.006 0.023 0.006 0.023 0.005 0.023 
52 -0.005 0.026 -0.006 0.026 -0.006 0.026 
53 0.011 0.028 0.010 0.028 0.008 0.028 
54 1 -0.002 1 0.032 1 -0-003 1 0.032 1 -0.006 1 0.032 
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Table 85: Simulation 1: Mean Bias (SE) in Estimated PBE FDA 
Metric for Sample Size 24 (1000 runs per simulation) 

Si MoM 
Bias 

MoM 
SE 

I UN 
Bias 

UN ý 
SE 

CSH 
Bias 

CýýH- 
SE 

Substantial Missing Data 
1 -0.122 0.003 -0-006 0.001 -0-006 0.001 
2 -0.122 0.003 -0-006 0.001 -0.006 0.001 
3 -0.123 0.003 -0-002 0.001 -0.002 0.001 
4 -0.123 0.003 -0.002 0.001 -0.002 0.001 
5 -0.126 0.004 0.001 0.001 0.001 0.001 
6 -0.125 0.004 0.001 0.001 0.001 0.001 
7 -0-116 0.012 0.009 0.008 0.010 0.008 
8 -0-118 0.012 0.007 0.008 0.007 0.008 
9 -0.124 0.013 0.011 0.009 0.011 0.009 
10 -0.127 0.014 0.009 0.010 0.008 0.010 
11 -0-136 0.015 0.013 0.010 0.012 0.010 
12 -0-138 0.016 0.012 0.012 0.011 0.012 
13 -0-105 0.029 0.028 0.023 0.030 0.023 
14 -0-113 0.029 0.021 0.024 0.021 0.024 
15 -0.120 0.031 0.030 0.025 0.030 0.025 
16 -0.129 0.032 0.024 0.027 0.023 0.027 
17 -0.159 0.036 0.038 0.030 0.034 0.030 
18 -0-167 0.039 0.035 0.033 0.033 0.033 
19 -0.104 0.003 -0.006 0.001 -0.006 0.001 
20 -0.104 0.003 -0.006 0.001 -0.006 0.001 
21 -0-105 0.003 -0.002 0.001 -0.002 0.001 
22 -0.105 0.003 -0.003 0.001 -0.003 0.001 
23 -0-108 0.004 0.000 0.001 0.000 0.001 
24 -0-107 0.004 0.000 0.002 0.000 0.002 
25 -0-098 0.012 0.008 0.008 0.009 0.008 
26 -0.100 0.012 0.006 0.008 0.006 0.008 
27 -0.107 0.013 0.010 0.009 0.009 0.009 
28 -0.109 0.014 0.007 0.010 0.007 0.010 
29 -0.119 0.015 0.012 0.011 0.010 0.011 
30 -0.121 0.016 0.010 0.012 0.009 0.012 
31 -0-089 0.029 0.026 0.023 0.027 0.023 
32 -0-096 0.030 0.019 0.024 0.019 0.024 
33 -0.104 0.031 0.028 0.025 0.028 0.025 
34 -0.112 0.032 0.021 0.027 0.020 0.027 
35 -0.144 0.036 0.036 0.030 0.030 0.030 
36 -0.152 0.039 0.031 0.034 0.029 0.034 
37 -0.065 0.003 -0.007 0.001 -0.007 0.001 
38 -0.065 0.003 -0.007 0.001 -0.007 0.001 
39 -0-067 0.003 -0.003 0.001 -0.003 0.001 
40 -0.067 0.004 -0.004 0.002 -0.004 0.002 
41 -0.070 0.004 -0-001 0.002 -0-001 0.002 
42 -0.070 0.005 -0.002 0.002 -0.002 0.002 
43 -0.061 0.012 0.006 0.008 0.007 0.008 
44 -0.063 0.013 0.004 0.009 0.004 0.009 
45 -0.071 0.014 0.007 0.010 0.006 0.010 
46 -0.073 0.015 0.004 0.011 0.003 0.011 
47 -0-084 0.016 0.008 0.011 0.006 0.011 
48 -0.086 0.017 0.005 0.013 0.004 0.013 
49 -0-054 0.029 0.022 0.024 0.023 0.023 
50 -0-061 0.030 0.014 0.025 0.014 0.025 
51 -0.070 0.032 0.024 0.026 0.022 0.026 
52 -0.078 0.033 0.016 0.028 0.014 0.028 
53 -0-111 0.037 0.030 0.031 0.024 0.031 
54 -0-119 0.040 0.023 0.035 0.021 0.035 
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Table 86: Simulation 1: Mean Bias (SE) in Estimated IBE FDA 
Metric for Sample Size 34 (1000 runs per simulation) 

Sim mom 
Bias 

mom 
SE 

- 

UN 
Bias 

UN 
SE 

RIS 
Bias 

RIS I 
SE 

ýýo mplete Data Set 
1 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.001 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.003 0.000 
6 0.001 0.000 0.001 0.000 0.001 0.000 
7 -0-008 0.001 -0-008 0.001 -0.002 0.001 
8 -0.007 0.001 -0.007 0.001 -0.006 0.001 
9 0.002 0.003 0.002 0.003 0.022 0.002 
10 0.004 0.003 0.004 0.003 0.004 0.003 
11 0.003 0.005 0.003 0.005 0.041 0.004 
12 0.007 0.005 0.007 0.005 0.006 0.005 
13 0.004 0.005 0.004 0.005 0.037 0.005 
14 0.009 0.006 0.008 0.006 0.011 0.006 
15 0.005 0.008 0.005 0.008 0.061 0.007 
16 0.012 0.008 0.012 0.008 0.012 0.008 
17 0.008 0.015 0.008 0.015 0.127 0.012 
18 0.021 0.016 0.021 0.016 0.017 0.016 
19 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 0.001 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 0.003 0.000 
24 0.001 0.001 0.001 0.001 0.001 0.001 
25 -0.009 0.001 -0.009 0.001 -0.002 0.001 
26 -0.007 0.001 -0-007 0.001 -0.006 0.001 
27 0.002 0.003 0.001 0.003 0.022 0.003 
28 0.004 0.003 0.004 0.003 0.004 0.003 
29 0.002 0.005 0.002 0.005 0.041 0.004 
30 0.007 0.005 0.007 0.005 0.006 0.005 
31 0.004 0.005 0.003 0.005 0.036 0.005 
32 0.009 0.006 0.008 0.006 0.010 0.006 
33 0.005 0.008 0.004 0.008 0.061 0.007 
34 0.012 0.009 0.011 0.009 0.012 0.009 
35 0.007 0.016 0.007 0.015 0.126 0.012 
36 0.021 0.016 0.021 0.016 0.017 0.016 
37 0.000 0.001 0.000 0.001 0.000 0.001 
38 0.000 0.001 0.000 0.001 0-000 0.001 
39 0.000 0.001 0.000 0.001 0.001 0-001 
40 0.000 0.001 0.000 0.001 0.000 0-001 
41 0.000 0.001 0.000 0.001 0.003 0.001 
42 0.001 0.001 0.001 0.001 0.001 0.001 
43 -0.009 0.002 -0.009 0.002 -0.003 0.002 
44 -0-008 0.003 -0.008 0.003 -0.007 0.003 
45 0.001 0.004 0.001 0.004 0.021 0.003 
46 0.004 0.004 0.004 0.004 0.004 0.004 
47 0.002 0.006 0.001 0.006 0.040 0.005 
48 0.007 0.006 0.007 0.006 0.006 0.006 
49 0.003 0.006 0.002 0.006 0.035 0.006 
50 0.008 0.007 0.008 0.007 0.010 0.007 
51 0.003 0.009 0.003 0.009 0.059 0.008 
52 0.012 0.010 0.011 0.010 0.012 0.010 
53 0.006 0.016 0.006 0.016 0.125 0.013 
54 1 0.021 1 0.017 1 0.021 1 0.017 1 0.017 1 0.017 
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Table 86: Simulation 1: Mean Bias (SE) in Estimated IBE FDA 
Metric for Sample Size 34 (1000 runs per simulation) 

Sim MoM 
Bias 

MoM I 
SE 

UN I 
Bias.. 

I UN I 
SE 

RIS I 
Bias 

RIS 
SE 

Substantial Missing Data 
1 0.115 0.000 0.000 0.000 0.001 0.000 
2 0.115 0.000 0.000 0.000 0.000 0.000 
3 0.116 0.001 0.000 0.000 0.002 0.000 
4 0.116 0.001 0.001 0.000 0.001 0.000 
5 0.117 0.001 0.000 0.000 0.004 0.000 
6 0.118 0.001 0.001 0.000 0.001 0.000 
7 0.117 0.002 -0.009 0.001 -0-001 0.001 
8 0.119 0.002 -0-008 0.001 -0.006 0.001 
9 0.132 0.004 0.003 0.003 0.024 0.003 
10 0.135 0.004 0.005 0.004 0.006 0.003 
11 0.137 0.006 0.004 0.006 0.044 0.005 
12 0.142 0.007 0.007 0.006 0.007 0.006 
13 0.157 0.007 0.007 0.006 0.042 0.005 
14 0.163 0.007 0.011 0.006 0.015 0.006 
15 0.164 0.010 0.008 0.009 0.067 0.008 
16 0.172 0.010 0.013 0.010 0.017 0.009 
17 0.182 0.018 0.011 0.018 0.135 0.014 
18 0.196 0.019 0.021 0.018 0.019 0.018 
19 0.128 0.001 0.000 0.000 0.000 0.000 
20 0.128 0.001 0.000 0.000 0.000 0.000 
21 0.129 0.001 0.000 0.000 0.001 0.000 
22 0.129 0.001 0.000 0.000 0.000 0.000 
23 0.129 0.001 0.000 0.001 0.003 0.000 
24 0.131 0.001 0.001 0.001 0.001 0.001 
25 0.129 0.002 -0.009 0.002 -0.002 0.001 
26 0.131 0.002 -0-008 0.002 -0.007 0.002 
27 0.144 0.004 0.002 0.003 0.023 0.003 
28 0.147 0.004 0.004 0.004 0.005 0.004 
29 0.149 0.006 0.003 0.006 0.043 0.005 
30 0.155 0.007 0.007 0.006 0.006 0.006 
31 0.169 0.007 0.005 0.006 0.041 0.005 
32 0.175 0.007 0.009 0.007 0.014 0.007 
33 0.176 0.010 0.006 0.009 0.066 0.008 
34 0.184 0.011 0.012 0.010 0.015 0.010 
35 0.193 0.018 0.009 0.018 0.133 0.014 
36 0.208 0.019 0.020 0.019 0.018 0.018 
37 0.155 0.001 -0-001 0.001 0.000 0.001 
38 0.155 0.001 0.000 0.001 0.000 0.001 
39 0.156 0.001 -0-001 0.001 0.001 0.001 
40 0.156 0.001 0.000 0.001 0.000 0.001 
41 0.156 0.001 0.000 0.001 0.003 0.001 
42 0.158 0.002 0.000 0.002 0.000 0.002 
43 0.155 0.003 -0-011 0.003 -0.004 0.003 
44 0.157 0.004 -0.010 0.003 -0.008 0.003 
45 0.170 0.005 0.000 0.004 0.022 0.004 
46 0.174 0.005 0.003 0.005 0.004 0.005 
47 0.175 0.007 0.001 0.007 0.042 0.006 
48 0.181 0.008 0.005 0.007 0.005 0.007 
49 0.193 0.008 0.002 0.007 0.039 0.007 
50 0.200 0.009 0.007 0.008 0.011 0.008 
51 0.200 0.011 0.003 0.010 0.064 0.009 
52 0.210 0.012 0.010 0.011 0.013 0.011 
53 0.218 0.019 0.006 0.019 0.131 0.015 
54 0.234 0.021 0.018 0.020 0.016 1 0.019 
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Table 87: Simulation 1: Mean Bias (SE) in Estimated PBE FDA 
Metric for Sample Size 34 (1000 runs per simulation) 

Sim mom 
Bias 

MoM 
SE 

UN I 
Bias 

I UN 
SE 

CSH-1 
Bias 

-C-SH 
SE 

Complete Data Set 
1 -0-005 0.000 -0-005 0.000 -0.005 0.000 
2 -0-005 0.000 -0-005 0.000 -0-005 0.000 
3 -0-001 0.001 -0-001 0.001 -0-001 0.001 
4 -0.001 0.001 -0-001 0.001 -0-001 0.001 
5 0.000 0.001 0.000 0.001 0.000 0.001 
6 0.000 0.001 0.000 0.001 0.000 0.001 
7 0.001 0.006 0.001 0.006 0.002 0.006 
8 0.002 0.006 0.002 0.006 0.002 0.006 
9 0.001 0.007 0.001 0.007 0.001 0.007 
10 0.002 0.007 0.002 0.007 0.002 0.007 
11 0.002 0.008 0.002 0.008 0.001 0.008 
12 0.003 0.009 0.003 0.009 0.003 0.009 
13 0.004 0.017 0.004 0.017 0.004 0.017 
14 0.005 0.018 0.005 0.018 0.005 0.018 
15 0.004 0.018 0.003 0.019 0.003 0.019 
16 0.006 0.020 0.005 0.020 0.005 0.020 
17 0.005 0.022 0.005 0.022 0.003 0.022 
18 0.009 0.025 0.009 0.025 0.009 0.025 
19 -0.005 0.001 -0-005 0.001 -0-005 0.001 
20 -0.005 0.001 -0-005 0.001 -0.005 0.001 
21 -0.002 0.001 -0-002 0.001 -0.002 0.001 
22 -0.001 0.001 -0-001 0.001 -0-001 0.001 
23 0.000 0.001 0.000 0.001 0.000 0.001 
24 0.000 0.001 0.000 0.001 0.000 0.001 
25 0.001 0.006 0.001 0.006 0.001 0.006 
26 0.002 0.006 0.002 0.006 0.002 0.006 
27 0.001 0.007 0.001 0.007 0.001 0.007 
28 0.002 0.007 0.002 0.007 0.002 0.007 
29 0.001 0.008 0.001 0.008 0.001 0.008 
30 0.003 0.009 0.003 0.009 0.003 0.009 
31 0.003 0.017 0.003 0.017 0.003 0.017 
32 0.005 0.018 0.005 0.018 0.005 0.018 
33 0.003 0.019 0.003 0.019 0.002 0.019 
34 0.005 0.020 0.005 0.020 0.005 0.020 
35 0.004 0.023 0.004 0.023 0.003 0.023 
36 0.009 0.025 0.009 0.025 0.009 0.025 
37 -0.005 0.001 -0-005 0.001 -0-005 0.001 
38 -0.005 0.001 -0.005 0.001 -0.005 0.001 
39 -0.002 0.001 -0.002 0.001 -0.002 0.001 
40 -0.002 0.001 -0.002 0.001 -0.002 0.001 
41 0.000 0.001 0.000 0.001 0.000 0.001 
42 0.000 0.002 0.000 0.002 0.000 0.002 
43 0.000 0.006 0.000 0.006 0.000 0.006 
44 0.001 0.007 0.001 0.007 0.001 0.007 
45 0.000 0.007 0.000 0.007 0.000 0.007 
46 0.002 0.008 0.002 0.008 0.002 0.008 
47 0.000 0.008 0.000 0.008 0.000 0.008 
48 0.003 0.010 0.003 0.009 0.003 0.009 
49 0.002 0.017 0.002 0.017 0.002 0.017 
50 0.004 0.019 0.004 0.019 0.004 0.019 
51 0.002 0.019 0.002 0.019 0.001 0.019 
52 0.005 0.021 0.005 0.021 0.005 0.021 
53 0.003 0.023 0.003 0.023 0.002 0.023 
54 1 0.009 1 0.026 1 0.009 1 0.026 1 0.009 1 0.026 
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Table 87: Simulation 1: Mean Bias (SE) in Estimated PBE FDA 
Metric for Sample Size 34 (1000 runs per simulation) 

Sim mom 
Bias 

I Mom 
SE 

I UN I 
Bias 

UN 
SE 

I SH CBias CSH 
SE 

Substantial Miss ing Data 
1 -0.079 0.002 -0-005 0.000 -0-005 0.000 
2 -0-079 0.002 -0-005 0.001 -0.005 0.001 
3 -0-081 0.002 -0.002 0.001 -0.002 0.001 
4 -0-080 0.002 -0.002 0.001 -0.002 0.001 
5 -0-083 0.003 0.000 0.001 0.000 0.001 
6 -0-082 0.003 0.000 0.001 0.000 0.001 
7 -0.079 0.009 0.001 0.006 0.002 0.006 
8 -0.078 0.009 0.001 0.006 0.001 0.006 
9 -0-088 0.010 -0-001 0.007 0.000 0.007 
10 -0-085 0.010 0.001 0.008 0.001 0.008 
11 -0.099 0.011 -0.001 0.008 -0-001 0.008 
12 -0-095 0.012 0.002 0.009 0.002 0.009 
13 -0-083 0.022 0.000 0.018 0.003 0.018 
14 -0-080 0.022 0.002 0.019 0.003 0.019 
15 -0-098 0.023 -0.002 0.020 0.000 0.020 
16 -0-093 0.024 0.002 0.022 0.003 0.022 
17 -0-134 0.028 -0.004 0.024 -0.004 0.024 
18 -0.123 0.030 0.007 0.027 0.007 0.027 
19 -0.066 0.002 -0-005 0.001 -0-005 0.001 
20 -0-066 0.002 -0.005 0.001 -0.005 0.001 
21 -0-068 0.002 -0.002 0.001 -0.002 0.001 
22 -0-067 0.002 -0.002 0.001 -0.002 0.001 
23 -0.070 0.003 -0-001 0.001 -0-001 0.001 
24 -0-069 0.003 0.000 0.001 0.000 0.001 
25 -0-066 0.009 0.000 0.006 0.001 0.006 
26 -0-065 0.009 0.000 0.007 0.001 0.007 
27 -0-075 0.010 -0-001 0.007 -0-001 0.007 
28 -0.073 0.010 0.000 0.008 0.000 0.008 
29 -0-087 0.011 -0.002 0.008 -0.002 0.008 
30 -0.082 0.012 0.001 0.009 0.001 0.009 
31 -0.072 0.022 -0.001 0.018 0.001 0.018 
32 -0-068 0.022 0.001 0.019 0.002 0.019 
33 -0-086 0.023 -0.003 0.020 -0-001 0.020 
34 -0-081 0.024 0.001 0.022 0.002 0.022 
35 -0.122 0.028 -0.005 0.024 -0.006 0.024 
36 -0.111 0.030 0.006 0.027 0.006 0.027 
37 -0-039 0.002 -0.006 0.001 -0.006 0.001 
38 -0-039 0.002 -0.006 0.001 -0.006 0.001 
39 -0.041 0.002 -0.003 0.001 -0.003 0.001 
40 -0.040 0.002 -0.002 0.001 -0.002 0.001 
41 -0.043 0.003 -0-001 0.002 -0-001 0.002 
42 -0.042 0.003 -0-001 0.002 0.000 0.002 
43 -0.041 0.009 -0.002 0.007 -0-001 0.007 
44 -0.039 0.009 -0-001 0.007 -0-001 0.007 
45 -0.050 0.010 -0.003 0.008 -0.003 0.008 
46 -0.046 0.010 -0-001 0.009 -0-001 0-009 
47 -0.061 0.012 -0.004 0.009 -0.004 0.009 
48 -0.056 0.012 0.000 0.010 0.000 0.010 
49 -0.047 0.022 -0.004 0.019 -0.002 0.019 
50 -0.043 0.023 -0-001 0.020 -0-001 0.020 
51 -0-062 0.024 -0.006 0.020 -0.004 0.020 
52 -0-055 0.025 -0.001 0.022 0.000 0.022 
53 -0-097 0.029 -0.008 0.025 -0.009 0.025 
54 1 -0-085 1 0.031 1 0.003 1 0.028 1 0.003 1 0.028 
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Table 88: Simulation 1: Mean Bias (SE) in Estimated IBE FDA 
Metric for Sample Size 80 (1000 runs per simulation) 

Sim mom 
Bias 

mom 
SE 

I NI 
Bias 
U UN 

SE 
] RIS 

Bias 
RIS 
SE 

Complete Data Set 
1 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.001 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.000 0.002 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 
7 -0-006 0.001 -0.006 0.001 -0.002 0.001 
8 -0.006 0.001 -0.006 0.001 -0.006 0.001 
9 0.000 0.002 0.000 0.002 0.013 0.002 
10 0.001 0.002 0.001 0.002 0.001 0.002 
11 -0.001 0.003 -0.001 0.003 0.025 0.003 
12 0.001 0.004 0.001 0.004 0.001 0.003 
13 0.000 0.004 0.000 0.004 0.021 0.003 
14 0.002 0.004 0.002 0.004 0.002 0.004 
15 -0.001 0.005 -0-001 0.005 0.035 0.005 
16 0.002 0.006 0.002 0.006 0.002 0.006 
17 -0.002 0.010 -0.002 0.010 0.077 0.008 
18 0.004 0.011 0.004 0.011 0.003 0.011 
19 0.000 0.000 0.000 0.000 0.000 0.000 
20 0.000 0.000 0.000 0.000 0.000 0.000 
21 0.000 0.000 0.000 0.000 0.001 0.000 
22 0.000 0.000 0.000 0.000 0.000 0.000 
23 0.000 0.000 0.000 0.000 0.002 0.000 
24 0.000 0.000 0.000 0.000 0.000 0.000 
25 -0-006 0.001 -0-006 0.001 -0.002 0.001 
26 -0-006 0.001 -0-006 0.001 -0.006 0.001 
27 0.000 0.002 0.000 0.002 0.013 0.002 
28 0.001 0.002 0.001 0.002 0.000 0.002 
29 -0.001 0.003 -0-001 0.003 0.025 0.003 
30 0.001 0.004 0.001 0.004 0.001 0.004 
31 0.000 0.004 0.000 0.004 0.020 0.003 
32 0.001 0.004 0.001 0.004 0.001 0.004 
33 -0.001 0.005 -0-001 0.005 0.035 0.005 
34 0.002 0.006 0.002 0.006 0.001 0.006 
35 -0-003 0.010 -0.002 0.010 0.077 0.008 
36 0.003 0.011 0.004 0.011 0.002 0.011 
37 0.000 0.000 0.000 0.000 0.000 0.000 
38 0.000 0.000 0.000 0.000 0.000 0.000 
39 0.000 0.001 0.000 0.001 0.001 0.000 
40 0.000 0.001 0.000 0.001 0.000 0.001 
41 0.000 0.001 0.000 0.001 0.002 0.001 
42 0.000 0.001 0.000 0.001 0.000 0.001 
43 -0.007 0.001 -0.007 0.001 -0.003 0.001 
44 -0.007 0.002 -0.007 0.002 -0.006 0.002 
45 -0.001 0.002 -0-001 0.002 0.012 0.002 
46 0.000 0.003 0.000 0.003 0.000 0.003 
47 -0.001 0.004 -0-001 0.004 0.024 0.003 
48 0.001 0.004 0.001 0.004 0.001 0.004 
49 -0.001 0.004 -0-001 0.004 0.020 0.004 
50 0.000 0.005 0.000 0.005 0.000 0.005 
51 -0.002 0.006 -0.002 0.006 0.035 0.005 
52 0.001 0.006 0.001 0.006 0.000 0.006 
53 -0-003 0.011 -0.003 0.011 0.076 0.009 
54 1 0.002 1 0.011 1 0.003 1 0.011 1 0.001 1 0.011 
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Table 88: Simulation 1: Mean Bias (SE) in Estimated IBE FDA 
Metric for Sample Size 80 (1000 runs per simulation) 

Sim MoM 
Bias 

MoM 
SE 

UN I 
Bias 

] UN 
SE 

I RIS 
Bias 

RIS 
SE 

Substantial Missing Data 
1 0.042 0.000 0.000 0.000 0.000 0.000 
2 0.042 0.000 0.000 0.000 0.000 0.000 
3 0.042 0.000 0.000 0.000 0.001 0.000 
4 0.042 0.000 0.000 0.000 0.000 0.000 
5 0.042 0.000 0.000 0.000 0.002 0.000 
6 0.042 0.000 0.000 0.000 0.000 0.000 
7 0.039 0.001 -0-006 0.001 -0.002 0.001 
8 0.039 0.001 -0-006 0.001 -0.006 0.001 
9 0.046 0.002 0.000 0.002 0.014 0.002 
10 0.047 0.002 0.002 0.002 0.002 0.002 
11 0.047 0.004 0.000 0.004 0.026 0.003 
12 0.049 0.004 0.003 0.004 0.002 0.004 
13 0.054 0.004 0.001 0.004 0.022 0.003 
14 0.056 0.004 0.003 0.004 0.003 0.004 
15 0.055 0.006 0.001 0.006 0.038 0.005 
16 0.058 0.006 0.004 0.006 0.004 0.006 
17 0.059 0.011 0.000 0.011 0.081 0.009 
18 0.066 0.011 0.008 0.011 0.007 0.011 
19 0.047 0.000 0.000 0.000 0.000 0.000 
20 0.047 0.000 0.000 0.000 0.000 0.000 
21 0.047 0.000 0.000 0.000 0.001 0.000 
22 0.047 0.000 0.000 0.000 0.000 0.000 
23 0.048 0.000 0.000 0.000 0.002 0.000 
24 0.048 0.000 0.000 0.000 0.000 0.000 
25 0.044 0.001 -0.006 0.001 -0.002 0.001 
26 0.044 0.001 -0.006 0.001 -0-006 0.001 
27 0.051 0.002 0.000 0.002 0.014 0.002 
28 0.052 0.002 0.001 0.002 0.001 0.002 
29 0.052 0.004 0.000 0.004 0.026 0.003 
30 0.055 0.004 0.002 0.004 0.002 0.004 
31 0.059 0.004 0.001 0.004 0.022 0.003 
32 0.061 0.004 0.003 0.004 0.003 0.004 
33 0.060 0.006 0.000 0.006 0.038 0.005 
34 0.063 0.006 0.004 0.006 0.004 0.006 
35 0.064 0.011 0.000 0.011 0.080 0.009 
36 0.071 0.012 0.008 0.011 0.006 0.011 
37 0.059 0.000 0.000 0.000 0.000 0.000 
38 0.059 0.001 0.000 0.000 0.000 0.000 
39 0.059 0.001 0.000 0.001 0.001 0.001 
40 0.059 0.001 0.000 0.001 0.000 0.001 
41 0.059 0.001 0.000 0.001 0.002 0.001 
42 0.059 0.001 0.000 0.001 0.000 0.001 
43 0.055 0.002 -0.006 0.002 -0.002 0.001 
44 0.055 0.002 -0.006 0.002 -0-006 0.002 
45 0.063 0.003 0.000 0.003 0.014 0.002 
46 0.063 0.003 0.001 0.003 0.001 0.003 
47 0.064 0.004 0.000 0.004 0.026 0.003 
48 0.065 0.005 0.002 0.004 0.001 0.004 
49 0.070 0.005 0.001 0.004 0.022 0.004 
50 0.071 0.005 0.002 0.005 0.002 0.005 
51 0.071 0.006 0.000 0.006 0.038 0.005 
52 0.074 0.007 0.003 0.007 0.003 0.007 
53 0.075 0.011 0.000 0.011 0.080 0.009 
54 0.080 0.012 0.007 0.012 0.005 0.0 
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Table 89: Simulation 1: Mean Bias (SE) in Estimated PBE FDA 
Metric for Sample Size 80 (1000 runs per simulation) 

Sim i mom 
Bias 

I MoM 
SE 

UN I 
Bias 

ý UN 
SE 

CS-HJ 
Bias 

-CSH 
I SE 

Complete Data Set 
1 -0-003 0.000 -0-003 0.000 -0-003 0.000 
2 -0-003 0.000 -0-003 0.000 -0-003 0.000 
3 -0.001 0.000 -0.001 0.000 -0.001 0.000 
4 -0.001 0.001 -0.001 0.001 -0.001 0.00, 
5 0.000 0.001 0.000 0.001 0.000 0.001 
6 0.000 0.001 0.000 0.001 0.000 0.001 
7 -0.003 0.004 -0-003 0.004 -0-003 0.004 
8 -0.004 0.004 -0.004 0.004 -0.004 0.004 
9 -0.004 0.004 -0-004 0.004 -0.004 0.004 
10 -0.004 0.005 -0.004 0.005 -0.004 0.005 
11 -0.004 0.005 -0.004 0.005 -0.004 0.005 
12 -0.004 0.006 -0.004 0.006 -0.004 0.006 
13 -0-010 0.011 -0-010 0.011 -0-010 0.011 
14 -0.010 0.012 -0.010 0.012 -0.010 0.012 
15 -0.010 0.012 -0.010 0.012 -0.010 0.012 
16 -0-011 0.013 -0-011 0.013 -0.011 0.013 
17 -0-011 0.015 -0-010 0.015 -0-011 0.015 
18 -0-011 0.016 -0-011 0.016 -0.011 0.016 
19 -0-003 0.000 -0-003 0.000 -0.003 0.000 
20 -0.003 0.000 -0-003 0.000 -0.003 0.000 
21 -0.001 0.000 -0.001 0.000 -0.001 0.000 
22 -0.001 0.001 -0-001 0.001 -0-001 0.001 
23 -0-001 0.001 0.000 0.001 -0-001 0.001 
24 -0.001 0.001 -0-001 0.001 -0-001 0.001 
25 -0.004 0.004 -0.004 0.004 -0.004 0.004 
26 -0.004 0.004 -0.004 0.004 -0.004 0.004 
27 -0.004 0.004 -0.004 0.004 -0.004 0.004 
28 -0.004 0.005 -0.004 0.005 -0.004 0.005 
29 -0.004 0.005 -0.004 0.005 -0.004 0.005 
30 -0.004 0.006 -0.004 0.006 -0.004 0.006 
31 -0-010 0.011 -0-010 0.011 -0-010 0.011 
32 -0.011 0.012 -0-011 0.012 -0.011 0.012 
33 -0.011 0.012 -0.010 0.012 -0.011 0.012 
34 -0.011 0.013 -0-011 0.013 -0.011 0.013 
35 -0.011 0.015 -0-011 0.015 -0.011 0.015 
36 -0.012 0.016 -0.012 0.016 -0.012 0.016 
37 -0.003 0.000 -0.003 0.000 -0.003 0.000 
38 -0.003 0.001 -0-003 0.001 -0.003 0.001 
39 -0-001 0.001 -0-001 0.001 -0-001 0.001 
40 -0.001 0.001 -0-001 0.001 -0-001 0.001 
41 -0-001 0.001 -0-001 0.001 -0-001 0-001 
42 -0-001 0.001 -0-001 0.001 -0-001 0-001 
43 -0.004 0.004 -0.004 0.004 -0.004 0.004 
44 -0.004 0.004 -0.004 0.004 -0.004. 0.004 
45 -0.004 0.005 -0.004 0.005 -0.004 0.005 
46 -0.005 0.005 -0.005 0.005 -0.005 0.005 
47 -0.004 0.005 -0.004 0.005 -0.005 0.005 
48 0.001 0.006 0.001 0.006 0.001 0.006 
49 -0.011 0.011 -0-011 0.011 -0-011 0.011 
50 -0.012 0.012 -0.012 0.012 -0.012 0.012 
51 -0.011 0.012 -0-011 0.012 -0.011 0.012 
52 -0.012 0.014 -0.012 0.014 -0.012 0.014 
53 -0-012 0.015 -0.012 0.015 -0.012 0.015 
54 1 -0-013 1 0.017 1 -0-013 1 0.017 -0.013 1 0.017 
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Table 89: Simulation 1: Mean Bias (SE) in Estimated PBE FDA 
Metric for Sample Size 80 (1000 runs per simulation) 

Sim MoM 
Bias 

MoM I 
SE 

UN ý 
Bias 

UN 
SE 

I aS--IH--- 
Bias I 

T-CS H 
SE 

Substantial Missing Data 
1 -0.031 0.001 -0-003 0.000 -0-003 0.000 
2 -0.031 0.001 -0-003 0.000 -0-003 0.000 
3 -0-032 0.001 -0.001 0.000 -0.001 0.000 
4 -0-032 0.001 -0.001 0.001 -0.001 0.001 
5 -0-033 0.001 0.000 0.001 0.000 0.001 
6 -0-033 0.001 -0-001 0.001 -0-001 0.001 
7 -0-036 0.004 -0-003 0.004 -0-003 0.004 
8 -0-037 0.005 -0.004 0.004 -0.004 0.004 
9 -0.040 0.005 -0.004 0.004 -0.004 0.004 
10 -0.040 0.005 -0.004 0.005 -0.004 0.005 
11 -0.044 0.006 -0.004 0.005 -0-004 0.005 
12 -0.045 0.006 -0.005 0.006 -0-005 0.006 
13 -0.046 0.012 -0.010 0.011 -0.009 0.011 
14 -0.048 0.013 -0.010 0.012 -0.010 0.012 
15 -0-052 0.013 -0.010 0.012 -0.010 0.012 
16 -0-054 0.014 -0-011 0.013 -0-011 0.013 
17 -0.068 0.016 -0-011 0.015 -0.012 0.015 
18 -0.068 0.017 -0-013 0.017 -0.013 0.017 
19 -0.026 0.001 -0-003 0.000 -0.003 0.000 
20 -0.026 0.001 -0-003 0.000 -0.003 0.000 
21 -0.026 0.001 -0-001 0.001 -0-001 0.001 
22 -0.027 0.001 -0-001 0.001 -0-001 0.001 
23 -0.028 0.001 0.000 0.001 -0-001 0.001 
24 -0.028 0.001 -0-001 0.001 -0-001 0.001 
25 -0.031 0.005 -0-003 0.004 -0.003 0.004 
26 -0.031 0.005 -0.004 0.004 -0.004 0.004 
27 -0.034 0.005 -0.004 0.005 -0.004 0.004 
28 -0.035 0.005 -0.004 0.005 -0.004 0.005 
29 -0-039 0.006 -0.004 0.005 -0.004 0.005 
30 -0.040 0.006 -0-005 0.006 -0.005 0.006 
31 -0.041 0.012 -0-010 0.011 -0-009 0.011 
32 -0.043 0.013 -0-011 0.012 -0.011 0.012 
33 -0.047 0.013 -0.010 0.012 -0.010 0.012 
34 -0.049 0.014 -0.012 0.013 -0.012 0.013 
35 -0.063 0.016 -0.012 0.015 -0.012 0.015 
36 -0.064 0.017 -0.014 0.017 -0.014 0.017 
37 -0.014 0.001 -0-003 0.001 -0.003 0.001 
38 -0.014 0.001 -0-003 0.001 -0.003 0.001 
39 -0.015 0.001 -0-001 0.001 -0-001 0.001 
40 -0.015 0.001 -0-001 0.001 -0-001 0.001 
41 -0.016 0.001 -0-001 0.001 -0-001 0.001 
42 -0.017 0.001 -0-001 0.001 -0-001 0.001 
43 -0.019 0.005 -0-003 0.004 -0.003 0.004 
44 -0.020 0.005 -0.004 0.004 -0.004 0.004 
45 -0.023 0.005 -0.004 0.005 -0.004 0.005 
46 -0.025 0.006 -0.005 0.005 -0.005 0.005 
47 -0.028 0.006 -0.004 0.006 -0.004 0.006 
48 -0.030 0.007 -0.006 0.006 -0.006 0.006 
49 -0.030 0.012 -0.010 0.012 -0.009 0.012 
50 -0-032 0.013 -0.012 0.012 -0.012 0.012 
51 -0-036 0.013 -0.010 0.013 -0-010 0.013 
52 -0-039 0.014 -0-013 0.014 -0.013 0.014 
53 -0-052 0.016 -0.012 0.015 -0.012 0.015 
54 1 -0.054 1 0.018 -0-015 0.017 1 -0.015 1 0.017 
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Table 90: Simulation 1: Percentage of IBE Failures for Sample Size 
16 (1000 runs per simulation) 

Sim MoM I UN RIS 
Complete Data Set 

1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 0 0 0 
6 5.7 0.4 0.3 
7 80.3 78 68.7 
8 94 92.9 88.7 
9 42.4 57.5 57 
10 75.9 86 88.4 
11 18.2 30.4 47.5 
12 63.4 72.6 89 
13 68.7 82.3 97.7 
14 88.1 94.8 99.5 
15 42.5 58.4 91.7 
16 75.9 86 98.1 
17 15.8 26.1 73.8 
18 62.3 70.6 94.6 
19 3 1.6 2.1 
20 10 5.1 5.2 
21 8.7 5.3 5.6 
22 38.8 25.5 25.6 
23 15.7 11.1 9.9 
24 63.5 49 46.4 
25 95.7 97.3 95.3 
26 98.9 99.1 98.4 
27 62.9 79.8 87.3 
28 86.2 93.9 96.5 
29 30.6 49.7 73.5 
30 71.2 82.1 93.9 
31 75.5 89 99 
32 92.5 96.4 99.7 
33 50.2 67.4 94.8 
34 80.4 89.4 98.7 
35 19.6 31.1 81.1 
36 63.1 74.6 96 
37 100 100 100 
38 100 100 100 
39 100 100 100 
40 100 100 100 
41 100 100 100 
42 100 100 100 
43 100 100 100 
44 100 100 100 
45 100 100 100 
46 99.8 100 190 
47 95.4 98.9 100 
48 98.3 99.4 100 
49 98.3 99.8 100 
50 99.6 99.9 100 
51 91.3 97 100 
52 1 96.9 99 99.9 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
RIS: Constrained REML Estimation, Asymptotic Inference 
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Table 90: Simulation 1: Percentage of IBE Failures for Sample Size 
16 (1000 runs per simulation) 

Sim mom UN RIS 
53 57.7 77.2 99.2 
54 84.8 92.3 99.4 

Substantial Missing Data 
1 100 0.1 0 
2 100 0.2 0 
3 100 0.1 0 
4 100 2.3 1.6 
5 100 1.3 0.5 
6 100 12.5 9 
7 100 87.3 83.2 
8 100 93.5 91.8 
9 100 86.3 78.8 
10 100 93.3 90.6 
11 98.4 71.2 72.5 
12 98.6 88.2 88.4 
13 99.3 93.5 97.7 
14 99.8 96.5 98.4 
15 97.7 87.1 95.3 
16 98.4 93.3 97.9 
17 84.4 68.4 87.2 
18 92.2 87.2 94.6 
19 100 18.5 22.3 
20 100 27 30 
21 100 26.6 31.4 
22 100 45.7 48.2 
23 100 36.2 36.5 
24 100 63.4 60.1 
25 100 95.1 93.9 
26 100 98.3 96.7 
27 100 90.7 88.3 
28 100 96.1 93.8 
29 99.1 79.7 83.2 
30 99.1 91.3 92.2 
31 99.5 93.9 98.4 
32 99.9 97.5 99.3 
33 98 88.6 96.5 
34 98.7 94.8 98.9 
35 85.6 71.1 89 
36 93.9 88.3 95.1 
37 100 99.5 100 
38 100 99.6 100 
39 100 100 100 
40 100 100 100 
41 100 99.8 100 
42 100 100 100 
43 100 99.8 100 
44 100 99.9 100 
45 100 100 100 
46 100 99.8 100 
47 100 98.5 99.9 
48 100 99 99.8 
49 100 99.2 100 
50 1 100 99.1 100 

Mom: Method-of-Moment Estimation, CIT Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
RIS: Constrained REML Estimation) Asymptotic Inference 
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Table 90: Simulation 1: Percentage of IBE Failures for Sample Size 
16 (1000 runs per simulation) 

Sim mom UN RIS 
51 99.3 97.4 100 
52 99.9 98.8 99.9 
53 94.1 88.7 98.7 
54 

1 
97.2 94.4 98.3 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
RIS: Constrained REML Estimation, Asymptotic Inference 
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Table 91: Simulation 1: Percentage of IBE Failures for Sample Size 
24 (1000 runs per simulation) 

Sim MoM I UN I RIS 
Complete Data Set 

1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 0 0 0 
6 0 0 0 
7 68.5 67.3 56.2 
8 91.3 91.5 84.4 
9 19.5 29.9 37.8 
10 63 70.7 87.6 
11 5 7.2 27.7 
12 43.2 51.1 88.3 
13 52 62.3 97.4 
14 81.4 87.6 99.9 
15 19.5 29.9 88.7 
16 63 70.7 98.8 
17 4.1 6.1 59.6 
18 41 48.2 96.1 
19 0.2 0.1 0.2 
20 1.8 1.1 1.3 
21 1.5 0.6 0.8 
22 20 13.7 13.9 
23 3.8 2.9 2.3 
24 47.4 35.3 32.9 
25 95.2 97.5 96.1 
26 99.2 99.6 98.8 
27 47.7 61.9 81.9 
28 80.2 87 96.3 
29 12.8 20.1 62.7 
30 57.9 66.2 94.2 
31 64 76 99.1 
32 87.6 91.6 100 
33 29.3 41.8 94.4 
34 70.4 77.7 93.3 
35 5.5 8.6 70.9 
36 45.3 53.4 96.6 
37 100 100 100 
38 100 100 100 
39 100 100 100 
40 100 100 100 
41 100 100 100 
42 100 100 100 
43 100 100 100 
44 100 100 100 
45 99.9 100 100 
46 99.9 100 100 
47 95.2 98.6 100 
48 98.4 99.6 100 
49 99.4 99.8 100 
50 99.9 99.9 100 
51 89.2 95.9 100 
52 96 98.3 100 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
RIS: Constrained REML Estimation, Asymptotic Inference 
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Table 91: Simulation 1: Percentage of IBE Failures for Sample Size 
24 (1000 runs per simulation) 

Sim mom UN RIS 
53 40.3 55.9 99.1 
54 77.4 84.5 99.9 

Substantial Missing Data 
1 100 0 0 
2 100 0 0 
3 100 0 0 
4 100 0 0 
5 100 0 0 
6 100 1.1 0.6 
7 100 77.5 67.8 
8 100 91.8 86 
9 95.6 51 54.7 
10 98.1 80.5 87.9 
11 75.5 24.2 45.3 
12 90.1 65.1 88.6 
13 93.1 76.1 97.3 
14 97.7 91.6 99.6 
15 78.2 51.4 91.6 
16 90.4 80.5 98.5 
17 40.9 21.4 71.3 
18 74.7 63.2 94.3 
19 100 2.3 2.6 
20 100 6.5 6.9 
21 100 5 4.9 
22 100 25.3 25 
23 100 10.2 7.9 
24 100 46.1 43.3 
25 100 96.7 95 
26 100 98.5 97.6 
27 98.5 73.2 86.2 
28 99.6 90.8 96.2 
29 85.1 42.2 70 
30 94 76.5 93.8 
31 95.6 84 98.3 
32 98.3 95 99.7 
33 83.3 60.1 95.4 
34 93.3 85 98.8 
35 47.2 25.7 77.9 
36 77.7 66.5 95.1 
37 100 100 100 
38 100 100 100 
39 100 100 100 
40 100 100 100 
41 100 100 100 
42 100 100 100 
43 100 100 100 
44 100 100 100 
45 100 99.9 100 
46 100 99.8 100 
47 99.8 99.4 100 
48 99.8 99.6 100 
49 99.9 99.8 100 
50 1 99.9 99.8 99.9 

Mom: Method-of-Moment Estimation7 CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
RIS: Constrained REML Estimation, Asymptotic Inference 
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Table 91: Simulation 1: Percentage of IBE Failures for Sample Size 
24 (1000 runs per simulation) 

Sim mom UN RIS 
51 98.2 96.9 100 
52 99.3 98.9 99.9 
53 76.1 69.8 99.6 
54 91.1 89.1 99.5 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
RIS: Constrained REML Estimation, Asymptotic Inference 
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Table 92: Simulation 1: Percentage of IBE Failures for Sample Size 
34 (1000 runs per simulation) 

Sim MoM I UN I RIS 
Complete Data Set 

1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 0 0 0 
6 0 0 0 
7 55.2 52.8 42.3 
8 89.1 88.2 81.3 
9 8.7 12.1 22.7 
10 48.8 55.9 85 
11 1.3 1.5 14.1 
12 27.1 31.5 85.5 
13 34.7 42.1 97.1 
14 73.6 80 99.7 
15 8.7 12.1 85.5 
16 48.8 55.9 98.5 
17 1 1.1 46.2 
18 24.4 28.8 96.5 
19 0.1 0 0 
20 0.3 0.1 0.1 
21 0.1 0.1 0.1 
22 9.2 5.5 5.3 
23 0.3 0.2 0.2 
24 31.4 25.1 24.1 
25 94.7 96.7 95.7 
26 98.6 99.8 99.4 
27 31.1 41.9 77.6 
28 73.4 79.3 96.9 
29 5.1 6.7 50.1 
30 43.1 49.2 94.2 
31 51.7 61.8 99.3 
32 82.8 88.4 100 
33 15.5 21.1 93.7 
34 58.7 66.3 99.2 
35 1.6 1.9 60.1 
36 30 35.6 97.7 
37 100 100 100 
38 100 100 100 
39 100 100 100 
40 100 100 100 
41 100 100 100 
42 100 100 100 
43 100 100 100 
44 100 100 100 
45 100 100 100 
46 100 100 100 
47 95 98.2 100 
48 99.2 99.9 100 
49 99.1 99.8 100 
50 100 100 100 
51 86.7 92.9 100 
52 1 96.7 98.1 100 

Mom: Method-of-Mornent Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
RIS: Constrained REML Estimation, Asymptotic Inference 
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Table 92: Simulation 1: Percentage of IBE Failures for Sample Size 
34 (1000 runs per simulation) 

Sim mom UN RIS 
53 25 36.3 99.7 
54 69.9 77.8 100 

Substantial Missing Data 
1 100 0 0 
2 100 0 0 
3 100 0 0 
4 100 0 0 
5 99.9 0 0 
6 99.8 0.1 0 
7 99.6 63.7 53.7 
8 99.9 90.2 85.5 
9 81.5 22.8 35.5 
10 94.5 64.2 85.6 
11 40.4 4 23.6 
12 74 43.7 86.2 
13 82.6 55.8 97.1 
14 94.8 84.3 99.4 
15 50.7 22.8 88 
16 79.1 64.2 98.2 
17 11.1 3.5 55.6 
18 52.3 41.5 95.5 
19 100 0.1 0.1 
20 100 0.9 0.9 
21 100 0.6 0.6 
22 100 10.3 10.1 
23 100 1.3 1.4 
24 100 31.3 29.7 
25 99.9 95.3 95.3 
26 100 99.5 98.8 
27 92.6 54.5 80.4 
28 98.1 81.9 95.8 
29 57.8 15.4 58.4 
30 83.6 59.2 92.6 
31 88.3 69.1 98.8 
32 97.3 91 100 
33 61 33.6 94.1 
34 85.6 72.1 98.7 
35 15.6 5.8 67.7 
36 56.7 46.5 96.3 
37 100 100 100 
38 100 100 100 
39 100 100 100 
40 100 100 100 
41 100 100 100 
42 100 100 100 
43 100 100 100 
44 100 100 100 
45 100 100 100 
46 100 99.9 100 
47 99.6 97.3 100 
48 99.7 99.4 100 
49 99.9 99.7 100 
50 1 99.9 100 100 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
RIS: Constrained REML Estimation, Asymptotic Inference 
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Table 92: Simulation 1: Percentage of IBE Failures for Sample Size 
34 (1000 runs per simulation) 

Sim MOM UN RIS 
51 95.8 93 100 
52 99 97.7 100 
53 58.3 49.2 99.4 
54 84.7 80.1 100 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation) Asymptotic Inference 
RIS: Constrained REML Estimation, Asymptotic Inference 

423 



Table 93: Simulation 1: Percentage of IBE Failures for Sample Size 
80 (1000 runs per simulation) 

Sim MoM I UN I RIS 
Complete Data Set 

1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 0 0 0 
6 0 0 0 
7 16.4 14.1 8.8 
8 80.3 80.4 72.5 
9 0 0 1 
10 15.3 17.2 76.8 
11 0 0 0.1 
12 2.3 2.6 77.9 
13 5.3 6.4 95.4 
14 48.6 52.9 100 
15 0 0 64 
16 15.3 17.2 99.6 
17 0 0 12.4 
18 1.6 1.8 96.4 
19 0 0 0 
20 0 0 0 
21 0 0 0 
22 0 0 0 
23 0 0 0 
24 3.2 2.4 2.2 
25 94.5 95.7 96.1 
26 99.2 99.5 99.8 
27 4.6 6.4 52.4 
28 48.2 53.3 98.3 
29 0 0 15.1 
30 10.7 12 96 
31 17 20.7 99.8 
32 67.2 71.5 100 
33 0.3 0.8 87.8 
34 25.4 33.1 99.8 
35 0 0 25.6 
36 2.9 3.3 98.5 
37 100 100 100 
38 100 100 100 
39 100 100 100 
40 100 100 100 
41 100 100 100 
42 100 100 100 
43 100 100 100 
44 100 100 100 
45 100 100 100 
46 100 100 100 
47 95.2 97.2 100 
48 99.6 99.6 100 
49 99.7 99.9 100 
50 100 100 100 
51 78.4 84.4 100 
52 1 97.7 98.4 100 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
RIS: Constrained REML Estimation, Asymptotic Inference 
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Table 93: Simulation 1: Percentage of IBE Failures for Sample Size 
80 (1000 runs per simulation) 

Sim mom UN RIS 
53 2.4 4.3 99ý5- 
54 43.5 48.1 100 

Substantial Missing Data 
1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0.6 0 0 
5 0 0 0 
6 6.1 0 0 
7 91 18.3 14.1 
8 99 82.4 74.3 
9 8 0.1 2.4 
10 50.1 21.4 76.6 
11 0.2 0 0.8 
12 14.4 4.1 78.8 
13 23.3 9.8 96.4 
14 70.2 55.2 99.9 
15 1.2 0.1 67.6 
16 30.5 21.4 99.5 
17 0 0 16 
18 5.2 3.3 96.7 
19 100 0 0 
20 100 0 0 
21 99.2 0 0 
22 99.8 0.1 0 
23 87.9 0 0 
24 98.4 2.8 3.2 
25 99.7 95.6 95.9 
26 99.9 99.4 99.8 
27 36.7 9.1 57.3 
28 81.3 55.6 98.4 
29 1.1 0 19.6 
30 30.4 15.2 95.4 
31 44.2 25.6 99.7 
32 85.4 73.7 99.9 
33 4.9 1.4 89.3 
34 43.5 30.5 99.8 
35 0 0 30.6 
36 9 5.2 98.5 
37 100 100 100 
38 100 100 100 
39 100 100 100 
40 100 100 100 
41 100 100 100 
42 100 100 100 
43 100 100 100 
44 100 100 100 
45 100 100 100 
46 100 100 100 
47 98.2 97.6 100 
48 99.8 99.7 100 
49 99.8 99.8 100 
50 1 100 100 100 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
RIS: Constrained REML Estimation, Asymptotic Inference 
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Table 93: Simulation 1: Percentage of IBE Failures for Sample Size 
80 (1000 runs per simulation) 

Sim mom UN RIS 
51 89.6 84.8 100 
52 98.5 98 100 
53 8.4 6.1 99.9 
54 

. 
55.6 51.9 100 

Mom: Method-of-Moment Estimation, CIF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
RIS: Constrained REML Estimation, Asymptotic Inference 
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Table 94: Simulation 1: Percentage of PBE Failures for Sample 
Size 16 (1000 runs per simulation) 

Sim MoM UN CSH 
Complete Data Set 

1 31.6 0 0 
2 32 0.4 0.4 
3 14.8 0 0 
4 21.3 1.5 1.5 
5 5.3 0.2 0.3 
6 11.7 3.1 3.1 
7 47.9 4.2 4.6 
8 48.1 8.2 8.6 
9 24.5 1.8 2.4 
10 31.9 8.3 8.4 
11 12 0.8 1.3 
12 19.1 7.6 7.7 
13 37.9 2.7 3.7 
14 40.6 8.5 8.7 
15 24.5 1.8 2.4 
16 31.9 8.3 8.4 
17 10.1 0.7 1.1 
18 17.1 6.9 7 
19 97.9 83 85.1 
20 97.8 85.4 86.5 
21 91.8 76.8 79.8 
22 88.1 83.2 83.9 
23 65.3 57.8 61.2 
24 67 68.1 68.4 
25 61.8 11.2 14 
26 58.4 20.2 20.9 
27 37.5 6.6 8.1 
28 39.8 17.4 17.9 
29 17.3 3.4 4.1 
30 26.2 14.6 14.8 
31 44.1 4.9 5.9 
32 44 12 12.2 
33 28.8 3.3 4.5 
34 35.5 11.6 11.8 
35 11.8 1.3 2.1 
36 19.7 8.9 9.1 
37 100 100 100 
38 100 100 100 
39 100 100 100 
40 100 100 100 
41 100 100 99.8 
42 100 100 99.9 
43 99.5 97.6 97.7 
44 98.8 97 97.1 
45 95.7 91.2 91.9 
46 92.3 91 91.1 
47 81.4 75.8 78.9 
48 78.5 79.7 79.9 
49 77.2 43.9 47.3 
50 73.7 54.4 55 
51 63.4 32.9 35.7 
52 1 62.5 46.8 47.3 

Mom: Method-of-Moment Estimation, CIF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
CSH: Constrained REML Estimation, Asymptotic Inference 

427 



Table 94: Simulation 1: Percentage of PBE Failures for Sample 
Size 16 (1000 runs per simulation) 

Sim mom UN CSH 
53 32.8 16.2 18.2 
54 39.9 32.5 32.8 

Substantial Missing Data 
1 100 5.9 6.9 
2 100 9.4 10 
3 100 7 8.6 
4 99.9 14.8 16.5 
5 99.8 5.7 7.2 
6 99.5 19 19.2 
7 89.2 23.8 30 
8 87.8 33.1 36.9 
9 82.9 20 25.2 
10 81.4 31.5 35.2 
11 73 14.3 18.1 
12 72.5 27.3 29.3 
13 75.6 22.9 28.5 
14 73.8 32.5 36.6 
15 69 19.9 25 
16 68.7 31.5 35.1 
17 53.8 13.8 16.2 
18 53.7 26.5 27.6 
19 100 83.7 89 
20 100 84.8 89.6 
21 100 79.3 85 
22 100 83.2 87.2 
23 100 69.9 74.8 
24 99.9 75.1 76.1 
25 91.6 35.7 44.4 
26 92.3 43.7 49.5 
27 87.1 30.5 38.1 
28 84.5 42.6 45.8 
29 77.3 23.1 27.6 
30 75.5 36.2 38.2 
31 78 27 33.3 
32 77.1 36.6 40.4 
33 70.9 22.6 28.2 
34 71.4 36 39.2 
35 56 15.2 18.4 
36 54.3 29.3 30 
37 100 99.5 99.6 
38 100 99.6 99.5 
39 100 100 99.4 
40 100 100 99.8 
41 100 99.8 98.2 
42 100 100 98.1 
43 99.4 95.8 97.7 
44 99.3 95 96.8 
45 98.3 89.8 93.6 
46 97.2 91.2 92.7 
47 94.8 80.4 85.9 
48 92.8 84.8 86.8 
49 89.9 61.8 70.4 
50 1 87.8 1 67.7 71.9 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
CSH: Constrained REML Estimation, Asymptotic Inference 
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Table 94: Simulation 1: Percentage of PBE Failures for Sample 
Size 16 (1000 runs per simulation) 

Sim mom UN CSH 
51 84.2 54.6 62.7 
52 82.2 64.4 68.8 
53 69.9 40.6 47 
54 

1 
68.5 54.7 56.5 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
CSH: Constrained REML Estimation, Asymptotic Inference 
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Table 95: Simulation 1: Percentage of PBE Failures for Sample 
Size 24 (1000 runs per simulation) 

Sim MOM7 -U-F [ CSH 
Complete Data Set 

1 4.4 0 0 
2 5.7 0 0 
3 0.9 0 0 
4 3.4 0.1 0.1 
5 0.2 0 0 
6 1.5 0.3 0.3 
7 10.1 0.1 0.1 
8 14 1.1 1.1 
9 3.1 0 0 
10 7.7 1.6 1.6 
11 0.7 0 0 
12 3.8 0.8 0.8 
13 6.5 0.1 0.1 
14 11.6 1.2 1.4 
15 3.1 0 0 
16 7.7 1.6 1.6 
17 0.4 0 0 
18 3.2 0.8 0.8 
19 96.7 75.3 77.1 
20 95.4 79.1 79.4 
21 82.4 64 66.7 
22 81 72.5 72.8 
23 43.2 33 35.6 
24 49.1 48.8 48.9 
25 20.6 1 1.5 
26 24.8 4.5 4.7 
27 7.4 0.3 0.4 
28 14.2 3.8 3.8 
29 2.4 0.2 0.2 
30 7 2.7 2.8 
31 9.2 0.2 0.3 
32 14 1.9 2.2 
33 4.6 0 0.1 
34 9.8 2.4 2.5 
35 0.6 0 0 
36 4 1.2 1.3 
37 100 100 100 
38 100 100 100 
39 100 100 100 
40 100 100 100 
41 100 100 100 
42 100 100 99.8 
43 98.5 92.6 93.1 
44 96.6 91.6 91.6 
45 89.5 78.8 80 
46 85.6 82.1 82.3 
47 65.5 55.9 57.9 
48 67.3 66.1 66.1 
49 48.1 17.2 18.1 
50 48.3 26.1 26.1 
51 28.7 10.3 11.3 
52 1 36.2 1 21.1 21.2 

Mom: Method-of-Moment Estimation, CIF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
CSH: Constrained REML Estimation, Asymptotic Inference 
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Table 95: Simulation 1: Percentage of PBE Failures for Sample 
Size 24 (1000 runs per simulation) 

Sim mom UN CSH 
53 8.4 3.9 4.1 
54 17.2 12.2 12.2 

Substantial Missing Data 
1 98.9 0 0 
2 98.2 0.1 0.1 
3 96.6 0.1 0.2 
4 94.7 1 1 
5 89.2 0.1 0.1 
6 85.7 1.4 1.4 
7 61 2.2 2.6 
8 60.1 5.5 5.7 
9 45.3 1.1 1.3 
10 46.6 4.8 4.8 
11 28.6 0.6 0.7 
12 32.9 3.8 3.8 
13 38.8 1.9 1.9 
14 39.8 5.4 5.5 
15 28.1 1.1 1.3 
16 29.8 4.8 4.8 
17 10.7 0.5 0.5 
18 15.8 3.9 3.9 
19 100 79.7 82.5 
20 100 82.6 83.9 
21 99.7 69.7 73.5 
22 99.4 76.5 77.1 
23 97.9 44.7 47.9 
24 95.8 58.6 58.8 
25 70.2 5.8 6.2 
26 69.2 12 12.3 
27 56.4 4.2 4.5 
28 55.2 10.5 10.6 
29 36.1 2.3 2.6 
30 40 7.5 7.6 
31 42.6 2.9 3 
32 43.7 7.1 7.4 
33 31.9 2 2.2 
34 34.2 6.7 6.7 
35 13.9 0.5 0.6 
36 18.6 4.6 4.6 
37 100 100 100 
38 100 100 100 
39 100 100 99.9 
40 100 100 100 
41 100 100 99.9 
42 100 100 99.7 
43 98.1 91.9 92.2 
44 97.6 92.8 93 
45 93.4 82.3 83.8 
46 91.4 84.8 85 
47 83.2 65.4 68.4 
48 80.5 71.7 72.4 
49 70.4 27.6 31.8 
50 1 70.6 1 38.1 38.7 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
CSH: Constrained REML Estimation, Asymptotic Inference 

431 



Table 95: Simulation 1: Percentage of PBE Failures for Sample 
Size 24 (1000 runs per simulation) 

Sim mom UN CSH 
51 60 19.7 22.4 
52 60.6 32.6 33.2 
53 32.8 9.5 10.3 
54 37.1 22.3 1) rl 22.5 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
CSH: Constrained REML Estimation, Asymptotic Inference 
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Table 96: Simulation 1: Percentage of PBE Failures for Sample 
Size 34 (1000 runs per simulation) 

Sim MoM UN CSH 
Complete Data Set 

1 0.1 0 0 
2 0.3 0 0 
3 0.1 0 0 
4 0.2 0 0 
5 0 0 0 
6 0.1 0 0 
7 0.5 0 0 
8 1.9 0 0 
9 0.1 0 0 
10 1.3 0 0 
11 0 0 0 
12 0.6 0.1 0.1 
13 0.2 0 0 
14 1.7 0 0 
15 0.1 0 0 
16 1.3 0 0 
17 0 0 0 
18 0.6 0.1 0.1 
19 94.1 67.9 69.7 
20 93.7 71.3 72 
21 71.5 48.5 50.6 
22 71.2 59.1 59.1 
23 24.3 16.9 18.6 
24 32.4 31.7 31.8 
25 3.1 0 0 
26 6.8 0.1 0.1 
27 0.4 0 0 
28 3 0.3 0.4 
29 0.1 0 0 
30 1.5 0.5 0.5 
31 0.6 0 0 
32 2.2 0 0 
33 0.1 0 0 
34 1.7 0 0 
35 0 0 0 
36 0.8 0.1 0.1 
37 100 100 100 
38 100 100 100 
39 100 100 100 
40 100 100 100 
41 100 100 100 
42 100 100 100 
43 96.2 86.4 86.9 
44 95 88.1 88.2 
45 80.6 66.8 68.2 
46 80.6 72.4 72.4 
47 47.9 37.8 39.6 
48 52 48.9 49 
49 19.9 4.5 5.2 
50 24.7 11.4 11.4 
51 9.5 1.6 1.9 
52 1 16.4 1 7.8 7.8 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 

_CSH: 
Constrained REML Estimation, Asymptotic Inference 
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Table 96: Simulation 1: Percentage of PBE Failures for Sample 
Size 34 (1000 runs per simulation) 

Sim mom UN CSH 
53 1.2 0.2 0.2 
54 5.7 4 4 

Substantial Missing Data 
1 85.8 0 0 
2 86.7 0 0 
3 73.6 0 0 
4 72.2 0 0 
5 51.3 0 0 
6 52.5 0.1 0.1 
7 24.6 0 0 
8 25.8 0.2 0.2 
9 12.1 0 0 
10 14.6 0.3 0.3 
11 4.9 0 0 
12 6.1 0.4 0.4 
13 9.2 0 0 
14 10.6 0.1 0.1 
15 5.3 0 0 
16 6.7 0.3 0.3 
17 0.7 0 0 
18 2.4 0.4 0.4 
19 99.3 72 74.2 
20 99.4 74.2 74.8 
21 97.2 53.7 55.8 
22 96.3 64.7 64.9 
23 85.9 23.6 25.3 
24 85.8 38.7 38.8 
25 37.2 0.2 0.3 
26 37.6 1.5 1.5 
27 20.1 0.1 0.1 
28 22.2 1.9 1.9 
29 7.7 0 0 
30 11.1 1.1 1.1 
31 11.7 0.1 0.1 
32 14.1 0.3 0.3 
33 6.3 0 0 
34 9.1 0.6 0.6 
35 1.2 0 0 
36 2.4 0.7 0.7 
37 100 100 100 
38 100 100 100 
39 100 100 100 
40 100 100 100 
41 100 100 100 
42 100 100 100 
43 96.6 87.3 88 
44 96.1 88.1 88.2 
45 86.9 69.8 71.9 
46 86.5 76.2 76.2 
47 66.2 43.2 45.5 
48 65.6 55.3 55.4 
49 43.1 8.6 9.4 
50 1 45.2 1 15.9 15.9 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
CSH: Constrained REML Estimation, Asymptotic Inference 
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Table 96: Simulation 1: Percentage of PBE Failures for Sample 
Size 34 (1000 runs per simulation) 

Sim mom UN CSH 
51 28.7 5.1 5.5 
52 32.1 11.8 11.9 
53 8.9 1.1 1.2 
54 13.7 6.9 6.9 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
CSH: Constrained REML Estimation, Asymptotic Inference 
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Table 97: Simulation 1: Percentage of PBE Failures for Sample 
Size 80 (1000 runs per simulation) 

Sim MoM UN CSH 
Complete Data Set 

1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 0 0 0 
6 0 0 0 
7 0 0 0 
8 0 0 0 
9 0 0 0 
10 0 0 0 
11 0 0 0 
12 0 0 0 
13 0 0 0 
14 0 0 0 
15 0 0 0 
16 0 0 0 
17 0 0 0 
18 0 0 0 
19 81 41.3 42 
20 79.4 47.2 47.4 
21 31.3 12.2 12.8 
22 36 23.7 23.7 
23 0.7 0.5 0.5 
24 4.7 4.2 4.2 
25 0 0 0 
26 0 0 0 
27 0 0 0 
28 0 0 0 
29 0 0 0 
30 0 0 0 
31 0 0 0 
32 0 0 0 
33 0 0 0 
34 0 0 0 
35 0 0 0 
36 0 0 0 
37 100 100 100 
38 100 100 100 
39 100 100 100 
40 100 100 100 
41 100 100 100 
42 100 100 100 
43 86.4 65.4 66.5 
44 83.2 68.5 68.5 
45 45.7 27.2 28.3 
46 48.5 37.7 37.7 
47 8.3 4 4.4 
48 16 12.4 12.4 
49 0.1 0 0 
50 0.5 0 0 
51 0 0 0 
52 1 0.1 0 0 

M om: Me thod-of -Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
CSH: Constrained REML Estimation, Asymptotic Inference 
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Table 97: Simulation 1: Percentage of PBE Failures for Sample 
Size 80 (1000 runs per simulation) 

Sim mom UN CSH 
53 0 0 0 
54 0 0 0 

Substantial Missing Data 
1 5.3 0 0 
2 5 0 0 
3 1 0 0 
4 1.4 0 0 
5 0.2 0 0 
6 0.2 0 0 
7 0 0 0 
8 0 0 0 
9 0 0 0 
10 0 0 0 
11 0 0 0 
12 0 0 0 
13 0 0 0 
14 0 0 0 
15 0 0 0 
16 0 0 0 
17 0 0 0 
18 0 0 0 
19 88.8 44.3 45.3 
20 88.9 50.7 50.9 
21 61.1 14.2 15.7 
22 60 26.3 26.3 
23 19.2 1 1 
24 23.2 4.4 4.4 
25 0.1 0 0 
26 0.1 0 0 
27 0 0 0 
28 0 0 0 
29 0 0 0 
30 0 0 0 
31 0 0 0 
32 0 0 0 
33 0 0 0 
34 0 0 0 
35 0 0 0 
36 0 0 0 
37 100 100 100 
38 100 100 100 
39 100 100 100 
40 100 100 100 
41 100 100 100 
42 100 100 100 
43 87.1 67.1 68 
44 85.3 70.5 70.6 
45 55.7 29.6 30.6 
46 54.7 38.4 38.4 
47 14.7 4.8 5.1 
48 20.4 13.7 13.7 
49 0.7 0 0 
50 1.5 0 0 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
CSH: Constrained REML Estimation, Asymptotic laýý 
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Table 97: Simulation 1: Percentage of PBE Failures for Sample 
Size 80 (1000 runs per simulation) 

Sim mom UN CSH 
51 0.1 0 0 
52 0.3 0 0 
53 0 0 0 
54 0.1 0 0 

Mom: Method-of-Moment Estimation, CF Inference 
UN: Unstructured REML Estimation, Asymptotic Inference 
CSH: Constrained REML Estimation, Asymptotic Inference 
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Table 98: Findings from Bridging Simulations (500 Runs per Sim- 

ulation) 

Sim 5 

Bias SE 

6T 
2 
R 

Bias 

ol 

a R 

SE 
FDA 
Bias 

FDA 
SE 

KLD 
Bias 

KLD 
SE 

1 -0.005 0.001 0.058 0.017 0.168 0.019 0.59 0.051 
2 -0.005 0.001 0.058 0.017 1.646 0.323 6.863 0.789 
3 -0-005 0.001 0.058 0.017 4.969 0.871 19.8 2.154 
4 -0.007 0.002 0.117 0.035 0.297 0.038 0.448 0.028 
5 -0-007 0.002 0.117 0.035 1.647 0.35 3.804 0.442 
6 -0-007 0.002 0.117 0.035 4.878 0.899 10-99 1.167 
7 -0-011 0.003 0.351 0.105 0.817 0.113 0.57 0.054 
8 -0-011 0.003 0.351 0.105 1.846 0.447 1.909 0.282 
9 -0-011 0.003 0.351 0.105 4.85 1.01 5.22 0.649 
10 -0.041 0.011 0.059 0.017 0.168 0.019 0.59 0.051 
11 -0.041 0.011 0.059 0.017 0.147 0.027 0.606 0.064 
12 -0.041 0.011 0.059 0.017 0.167 0.039 0.75 0.092 
13 -0-054 0.014 0.117 0.035 0.297 0.038 0.448 0.028 
14 -0.054 0.014 0.117 0.035 0.26 0.044 0.432 0.038 
15 -0.054 0.014 0.117 0.035 0.268 0.057 0.496 0.056 
16 -0.086 0.023 0.351 0.105 0.817 0.113 0.57 0.054 
17 -0.086 0.023 0.351 0.105 0.739 0.118 0.523 0.058 
18 -0-086 0.023 0.351 0.105 0.719 0.13 0.527 0.068 
19 -0.001 0.001 0.021 0.01 0.078 0.011 0.266 0.024 
20 -0.001 0.001 0.021 0.01 0.669 0.19 2.953 0.396 
21 -0.001 0.001 0.021 0.01 1.899 0.496 8.336 1.077 
22 -0.002 0.001 0.042 0.02 0.137 0.022 0.202 0.01 
23 -0.002 0.001 0.042 0.02 0.665 0.21 1.615 0.226 
24 -0.002 0.001 0.042 0.02 1.852 0.519 4.554 0.588 
25 -0.004 0.002 0.127 0.06 0.368 0.063 0.256 0.029 
26 -0.004 0.002 0.127 0.06 0.743 0.279 0.789 0.165 
27 -0.004 0.002 0.127 0.06 1.819 0.602 2.083 0.36 
28 -0.01 0.008 0.021 0.01 0.079 0.011 0.266 0.024 
29 -0.01 0.008 0.021 0.01 0.078 0.018 0.286 0.033 
30 -0.01 0.008 0.021 0.01 0.09 0.026 0.355 0.048 
31 -0.017 0.011 0.042 0.02 0.137 0.022 0.202 0.01 
32 -0.017 0.011 0.042 0.02 0.128 0.028 0.203 0.02 
33 -0.017 0.011 0.042 0.02 0.135 0.037 0.233 0.031 
34 -0.033 0.017 0.127 0.06 0.368 0.063 0.256 0.029 
35 -0.033 0.017 0.127 0.06 0.341 0.07 0.239 0.034 
36 -0.033 0.017 0.127 0.06 1 0.334 1 0.08 1 0.241 1 0.041 1 
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Table 99: Parametric and Nonparametric Bootstrapped Lower and 
a2 

Upper Bounds for 6 and -4 
(500 Runs per Simulation) OrR 

Sim Mean 1 Mean I SE 1 SE Med I Med I 5th Q 1 5th Q 95th Q 1 95th Q I 
P NP 

- 
P NP P NP P NP P NP 

L ower B o und of 6 
1 -0.06 -0.05 0.03 0.03 -0-06 -0-05 -0-11 -0-11 0.00 0.00 
2 0.35 0.35 0.03 0.03 0.35 0.35 0.29 0.29 0.40 0.40 
3 0.63 0.64 0.03 0.03 0.63 0.64 0.58 0.58 0.69 - 0.69 
4 -0-08 -0-07 0.04 0.04 -0-08 -0-07 -0.15 -0.14 -0.01 0.00 
5 0.33 0.34 0.04 0.04 0.33 0.34 0.26 0.27 0.40 0.41 
6 0.62 0.62 0.04 0.04 0.62 0.63 0.55 0.56 0.69 0.70 
7 -0-13 -0.11 0.07 0.07 -0.12 -0.11 -0.24 -0.22 -0.01 0.01 
8 0.28 0.30 0.07 0.07 0.28 0.30 0.16 0.19 0.40 0.41 
9 0.57 0.59 0.07 0.07 0.57 0.59 0.45 0.47 0.69 0.70 
10 -0.48 -0.44 0.26 0.26 -0-48 -0-43 -0.91 -0-89 -0.04 -0.01 11 -0.08 -0.03 0.26 0.26 -0-07 -0-03 -0.51 -0.48 0.37 0.40 
12 0.21 0.25 0.26 0.26 0.22 0.26 -0.22 -0.19 0.65 0.69 
13 -0.62 -0.55 0.34 0.33 -0-60 -0-54 -1.17 -1.09 -0-05 0.02 
14 -0.22 -0.15 0.34 0.33 -0.20 -0-14 -0.76 -0.69 0.36 0.43 
15 0.07 0.14 0.34 0.33 0.09 0.15 -0.48 -0.40 0.65 0.72 
16 -1.01 -0.86 0.56 0.54 -1.00 -0-85 -1.93 -1.75 -0-05 0.05 
17 -0-60 -0.46 0.56 0.54 -0-59 -0-44 -1.52 -1-35 0.35 0.45 
18 -0-31 -0.17 0.56 0.54 -0-30 -0.15 -1.23 -1.06 0.64 0.74 
19 -0.04 -0.04 0.02 0.02 -0.04 -0.04 -0.08 -0.08 0.00 0.00 
20 0.37 0.37 0.02 0.02 0.36 0.37 0.33 0.33 0.41 0.41 
21 0.65 0.66 0.02 0.02 0.65 0.65 0.61 0.62 0.69 0.70 
22 -0.05 -0.05 0.03 0.03 -0-05 -0-05 -0-10 -0-10 0.00 0.00 
23 0.35 0.36 0.03 0.03 0.35 0.36 0.30 0.31 0.41 0.41 
24 0.64 0.65 0.03 0.03 0.64 0.64 0.59 0.60 0.69 0.70 
25 -0-08 -0.08 0.05 0.05 -0-08 -0-08 -0.16 -0.16 0.00 0.01 
26 0.32 0.33 0.05 0.05 0.32 0.33 0.24 0.25 0.41 0.41 
27 0.61 0.62 0.05 0.05 0.61 0.62 0.53 0.54 0.69 0.70 
28 -0.32 -0-30 0.19 0.19 -0.33 -0-31 -0.63 -0-61 0.01 0.02 
29 0.09 0.10 0.19 0.19 0.07 0.09 -0.22 -0.20 0.42 0.43 
30 0.38 0.39 0.19 0.19 0.36 0.38 0.06 0.09 0.70 0.71 
31 -0.41 -0-38 0.24 0.24 -0.42 -0.39 -0.81 -0.78 0.01 0.03 
32 0.00 0.02 0.24 0.24 -0.02 0.01 -0.40 -0.37 0.42 0.43 
33 0.29 0.31 0.24 0.24 0.27 0.30 -0-11 -0.08 0.71 0.72 
34 -0-66 -0.61 0.39 0.39 -0.66 -0.62 -1.29 -1.25 0.01 0.06 
35 -0.25 -0.20 0.39 0.39 -0.26 -0.21 -0.89 -0.84 0.42 0.47 
36 0.04 0.09 0.39 1 0.39 1 0.03 1 0.08 -0.60 -0.55 1 0.71 0.76 

U pper Bound of J 
1 0.05 0.04 0.03 0.03 0.05 0.04 0.00 -0-01 0.11 0.10 
2 0.46 0.45 0.03 0.03 0.46 0.45 0.40 0.40 0.51 0.51 
3 0.74 0.74 0.03 0.03 0.74 0.74 0.69 0.68 0.80 0.79 
4 0.06 0.06 0.04 0.04 0.06 0.06 -0-01 -0-01 0.13 0.13 
5 0.47 0.46 0.04 0.04 0.47 0.46 0.40 0.39 0.54 0.53 
6 0.76 0.75 0.04 0.04 0.76 0.75 0.69 0.68 0.83 0.82 
7 0.10 0.09 0.07 0.07 0.10 0.09 -0-01 -0.02 0.21 0.20 
8 0.51 0.49 0.07 0.07 0.51 0.49 0.40 0.38 0.62 0.60 
9 0.80 0.78 0.07 0.07 0.80 0.78 0.68 0.67 0.90 0.89 
10 0.40 0.36 0.26 0.26 0.40 0.36 -0.02 -0.07 0.85 0.81 
11 0.81 0.76 0.26 0.26 0.81 0.76 0.38 0.33 1.26 1.22 
12 1.09 1.05 0.26 0.26 1.10 1.05 0.67 0.62 1.54 1.50 
13 0.51 0.44 0.34 0.33 0.51 0.45 -0-05 -0-10 1.08 1.02 
14 0.92 0.85 0.34 0.33 0.92 0.85 0.36 0.30 1.48 1.42 
15 1.21 1.14 1 0.34 1 0.33 1.20 1 1.14 1 0.64 0.59 1 

_ 
1.77 171 

P: Parametric, NP: Nonparametric Percentile 
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Table 99: Parametric and Nonparametric Bootstrapped Lower and 
a2 

Upper Bounds for 6 and -4 
(500 Runs per Simulation) 

CR 

Sim Mean Mean SE SE Med Med 5th Q 5th Q 95th Q 95th Q 
P NP P NP P NP P NP P NP 

16 0.84 0.69 0.56 0.54 0.84 0.71 -0.07 -0.20 1.69 1.58 
17 1.24 1.10 0.56 0.54 1.24 1.11 0.33 0.21 2.09 1.99 
18 1.53 1.38 0.56 0.54 1.53 1.40 0.62 0.49 2.38 2.28 
19 0.04 0.04 0.02 0.02 0.04 0.04 0.00 0.00 0.08 0.08 
20 0.44 0.44 0.02 0.02 0.44 0.44 0.40 0.40 0.48 0.48 
21 0.73 0.73 0.02 0.02 0.73 0.73 0.69 0.69 0.77 0.77 
22 0.05 0.04 0.03 0.03 0.05 0.04 0.00 0.00 0.10 0.10 
23 0.45 0.45 0.03 0.03 0.45 0.45 0.40 0.40 0.51 0.50 
24 0.74 0.74 0.03 0.03 0.74 0.74 0.69 0.69 0.79 0.79 
25 0.07 0.07 0.05 0.05 0.07 0.07 -0.01 -0-01 0.16 0.15 
26 0.48 0.47 0.05 0.05 0.48 0.47 0.40 0.39 0.57 0.56 
27 0.77 0.76 0.05 0.05 0.77 0.76 0.68 0.68 0.85 0.85 
28 0.30 0.28 0.19 0.19 0.29 0.28 -0.01 -0.02 0.63 0.61 
29 0.70 0.69 0.19 0.19 0.69 0.69 0.40 0.38 1.04 1.02 
30 0.99 0.98 0.19 0.19 0.98 0.97 0.68 0.67 1.33 1.30 
31 0.37 0.35 0.25 0.25 0.37 0.35 -0-03 -0.04 0.80 0.78 
32 0.78 0.76 0.25 0.25 0.78 0.75 0.38 0.37 1.21 1.19 
33 1.07 1.04 0.25 0.25 1.06 1.04 0.67 0.65 1.50 1.47 
34 0.59 0.54 0.40 0.40 0.58 0.52 -0.08 -0.12 1.29 1.23 
35 0.99 0.95 0.40 0.40 0.98 0.93 0.33 0.29 1.69 1.64 
36 1.28 1 1.24 0.40 0.40 1 1.27 1.21 0.61 0.58 1.98 1.93 

Lower Bound of O'FI' 
a,, 

1 0.23 0.15 0.16 0.12 0.19 0.12 0.06 0.03 0.51 0.37 
2 0.23 0.15 0.16 0.12 0.19 0.12 0.06 0.03 0.51 0.37 
3 0.23 0.15 0.16 0.12 0.19 0.12 0.06 0.03 0.51 0.37 
4 0.46 0.31 0.32 0.25 0.37 0.24 0.13 0.07 1.01 0.74 
5 0.46 0.31 0.32 0.25 0.37 0.24 0.13 0.07 1.01 0.74 
6 0.46 0.31 0.32 0.25 0.37 0.24 0.13 0.07 1.01 0.74 
7 1.37 0.92 0.96 0.74 1.12 0.73 0.38 0.20 3.04 2.21 
8 1.37 0.92 0.96 0.74 1.12 0.73 0.38 0.20 3.04 2.21 
9 1.37 0.92 0.96 0.74 1.12 0.73 0.38 0.20 3.04 2.21 
10 0.23 0.15 0.16 0.12 0.19 0.12 0.06 0.03 0.51 0.37 
11 0.23 0.15 0.16 0.12 0.19 0.12 0.06 0.03 0.51 0.37 
12 0.23 0.15 0.16 0.12 0.19 0.12 0.06 0.03 0.51 0.37 
13 0.46 0.31 0.32 0.25 0.37 0.24 0.13 0.07 1.01 0.74 
14 0.46 0.31 0.32 0.25 0.37 0.24 0.13 0.07 1.01 0.74 
15 0.46 0.31 0.32 0.25 0.37 0.24 0.13 0.07 1.01 0.74 
16 1.37 0.92 0.96 0.74 1.12 0.73 0.38 0.20 3.04 2.21 
17 1.37 0.92 0.96 0.74 1.12 0.73 0.38 0.20 3.04 2.21 
18 1.37 0.92 0.96 0.74 1.12 0.73 0.38 0.20 3.04 2.21 
19 0.28 0.23 0.12 0.11 0.26 0.22 0.12 0.10 0.50 0.43 
20 0.28 0.23 0.12 0.11 0.26 0.22 0.12 0.10 0.50 0.43 
21 0.28 0.23 0.12 0.11 0.26 0.22 0.12 0.10 0.50 0.43 
22 0.55 0.47 0.24 0.21 0.52 0.44 0.24 0.19 1.01 0.85 
23 0.55 0.47 0.24 0.21 0.52 0.44 0.24 0.19 1.01 0.85 
24 0.55 0.47 0.24 0.21 0.52 0.44 0.24 0.19 1.01 0.85 
25 1.66 1.41 0.71 0.64 1.55 1.31 0.73 0.58 3.03 2.55 
26 1.66 1.41 0.71 0.64 1.55 1.31 0.73 0.58 3.03 2.55 
27 1.66 1.41 0.71 0.64 1.55 1.31 0.73 0.58 3.03 2.55 
28 0.28 0.23 0.12 0.11 0.26 0.22 0.12 0.10 0.50 0.43 
29 0.28 0.23 0.12 0.11 0.26 0.22 0.12 0.10 0.50 0.43 
30 0.28 0.23 0.12 0.11 0.26 0.22 0.12 0.10 0.50 0.43 
31 0.55 1 0.47 1 0.24 1 0.21 0.52 1 0.44 1 0.24 1 0.19 1.01 0.85 

P: Parametric, NP: Nonparametric Percentile 
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Table 99: Parametric and Nonparametric Bootstrapped Lower and 
a2 Upper Bounds for 5 and -4 

(500 Runs per Simulation) O'R 

Sim Me-an Mean SE SE Med Med 5th Q 5th Q 95th Q 95th Q 
P NP P NP P NP P NP P NP 

32 0.55 0.47 0.24 0.21 0.52 0.44 0.24 0.19 1.01 0.85 
33 0.55 0.47 0.24 0.21 0.52 0.44 0.24 0.19 1.01 0.85 
34 1.66 1.41 0.71 0.64 1.55 1.31 0.73 0.58 3.03 2.55 
35 1.66 1.41 0.71 0.64 1.55 1.31 0.73 0.58 3.03 2.55 
36 1 1.66 1 1.41 1 0.71 1 0.64 1.55 1.31 1 0.73 1 0.58 3.03 2.55 

Upper Bound of 0,:, 
1 1.91 1.13 1.33 0.80 1.55 0.91 0.53 0.30 4.22 2.49 
2 1.91 1.13 1.33 0.80 1.55 0.91 0.53 0.30 4.22 2.49 
3 1.91 1.13 1.33 0.80 1.55 0.91 0.53 0.30 4.22 2.49 
4 3.82 2.25 2.67 1.59 3.10 1.81 1.05 0.60 8.45 4.98 
5 3.82 2.25 2.67 1.59 3.10 1.81 1.05 0.60 8.45 4.98 
6 3.82 2.25 2.67 1.59 3.10 1.81 1.05 0.60 8.45 4.98 
7 11.45 6.76 8.00 4.78 9.31 5.44 3.16 1.81 25-34 14.94 
8 11.45 6.76 8.00 4.78 9.31 5.44 3.16 1.81 25-34 14.94 
9 11.45 6.76 8.00 4.78 9.31 5.44 3.16 1.81 25.34 14.94 
10 1.91 1.13 1.33 0.80 1.55 0.91 0.53 0.30 4.22 2.49 
11 1.91 1.13 1.33 0.80 1.55 0.91 0.53 0.30 4.22 2.49 
12 1.91 1.13 1.33 0.80 1.55 0.91 0.53 0.30 4.22 2.49 
13 3.82 2.25 2.67 1.59 3.10 1.81 1.05 0.60 8.45 4.98 
14 3.82 2.25 2.67 1.59 3.10 1.81 1.05 0.60 8.45 4.98 
15 3.82 2.25 2.67 1.59 3.10 1.81 1.05 0.60 8.45 4.98 
16 11.45 6.76 8.00 4.78 9.31 5.44 3.16 1.81 25.34 14.94 
17 11.45 6.76 8.00 4.78 9.31 5.44 3.16 1.81 25.34 14.94 
18 11.45 6.76 8.00 4.78 9.31 5.44 3.16 1.81 25-34 14.94 
19 1.14 0.90 0.49 0.40 1.06 0.84 0.50 0.39 2.08 1.70 
20 1.14 0.90 0.49 0.40 1.06 0.84 0.50 0.39 2.08 1.70 
21 1.14 0.90 0.49 0.40 1.06 0.84 0.50 0.39 2.08 1.70 
22 2.28 1.81 0.98 0.80 2.13 1.68 1.00 0.78 4.16 3.39 
23 2.28 1.81 0.98 0.80 2.13 1.68 1.00 0.78 4.16 3.39 
24 2.28 1.81 0.98 0.80 2.13 1.68 1.00 0.78 4.16 3.39 
25 6.83 5.43 2.94 2.41 6.38 5.04 3.00 2.33 12.47 10-17 
26 6.83 5.43 2.94 2.41 6.38 5.04 3.00 2.33 12.47 10.17 
27 6.83 5.43 2.94 2.41 6.38 5.04 3.00 2.33 12.47 10.17 
28 1.14 0.90 0.49 0.40 1.06 0.84 0.50 0.39 2.08 1.70 
29 1.14 0.90 0.49 0.40 1.06 0.84 0.50 0.39 2.08 1.70 
30 1.14 0.90 0.49 0.40 1.06 0.84 0.50 0.39 2.08 1.70 
31 2.28 1.81 0.98 0.80 2.13 1.68 1.00 0.78 4.16 3.39 
32 2.28 1.81 0.98 0.80 2.13 1.68 1.00 0.78 4.16 3.39 
33 2.28 1.81 0.98 0.80 2.13 1.68 1.00 0.78 4.16 3.39 
34 6.83 5.43 2.94 2.41 6.38 5.04 3.00 2.33 12.47 10-17 
35 6.83 5.43 2.94 2.41 6.38 5.04 3.00 2.33 12.47 10.17 
36 6.83 5.43 2.94 2.41 6.38 1 5.04 1 3.00 1 2.33 1 12.47 1 10-17 

P: Parametric, NP: Nonparametric Percentile 
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