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Advances in geocomputation (1996–2011)
1. What is geocomputation?

The first international conference on ‘Geocomputation’, hosted
by the School of Geography at the University of Leeds in 1996,
launched a new research agenda in geographical analysis and mod-
elling (Openshaw & Abrahart, 1996): ‘‘The art and science of solv-
ing complex spatial problems with computers’’ (GeoComputation,
2012). The interest generated in this field was established as a
yearly conference in its early stages (Otago, New Zealand, 1997;
Bristol, UK, 1998; Virginia, USA, 1999; Greenwich, UK, 2000;
Queensland, Australia, 2001), later maturing into an event every
2 years (Southampton, United Kingdom, 2003; Michigan, USA,
2005; Maynooth, Ireland, 2007; Sydney, Australia, 2009; London,
UK, 2011). The next conference will be held at Wuhan University
(China) in 2013, the first time in Asia.

Alongside the conferences, and in seeking to advance the field
conceptually, debate around a definition of ‘What is Geocomputa-
tion’ has continued. An early definition offered by Couclelis
(1998, p. 18) simply states that ‘geocomputation just means the
universe of computational techniques applicable to spatial prob-
lems’. However, Openshaw argues that such a statement is limited
in extent and that geocomputation further presents a ‘‘new para-
digm for applying science in a geographical context’’ (Openshaw,
2000, p. 5). In this sense, geocomputation is not simply about
applying computational methods to explore geographical con-
cepts; it offers an extensive toolkit for the examination and identi-
fication of new perspectives on spatial processes.

Longley describes geocomputation in terms of the unexplored
geographical processes that it allows one to examine – ‘‘The hall-
marks of geocomputation are those of research-led applications
which emphasise process over form, dynamics over statics, and
interaction over passive response’’ (Longley, 1998, p. 3). Longley
sees geocomputation as providing the framework for the execu-
tion of geocomputational science – in both advancing the state-
of-the-art in the computation of geography as well as extending
our understanding of geographical phenomena. In taking this
view, it is said that geocomputation extends geographical infor-
mation systems (GISs), with the latter offering a toolkit that al-
lows the practice of geocomputational science. Openshaw (2000,
p. 9), in agreement, suggests that the relationship between GIS
and geocomputation is important, ‘‘yet may be just as important;
for example, with computer science or numerical methods or sta-
tistics’’. Geocomputation, then, represents a broad framework,
and despite significant methodological advances since these defi-
nitions were initially offered (which have been showcased at the
geocomputation conference series), the principles of geocomputa-
tion continue to follow the vein offered by Openshaw and
Longley.
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No matter how the science of geocomputation is defined, it is
clear that a number of fundamental methods and technologies
encapsulate the majority of research within the area. Gahegan
(1999) describes this framework as consisting of four ‘enabling
technologies’ (ETs), described as core to the execution of geocom-
putational research, which are: (1) computer architecture and de-
sign; (2) search, classification, prediction and modelling; (3)
knowledge discovery (spatial data mining); and (4) visualisation.
These ETs represent the key tasks of geocomputation. They are
not mutually exclusive and in fact are highly interrelated, and
one could even argue that ET2 and ET3 differ only in the algorithms
that are used. For instance, knowledge discovery, or spatial data
mining (SDM), is defined as ‘‘the process of discovering interesting
and previously unknown, but potentially useful, patterns from
large spatial datasets’’ (Shekhar, Zhang, & Huang, 2010, p. 837).
The tasks listed under ET2 could easily be subsumed under, or seen
as logical extensions to, this definition. The progress made in spa-
tial data mining could be traced in two editions of the book edited
by Miller and Han (2001, 2009).

Visualisation (ET4) remains an important challenge and active
research area for the geocomputation community, for whom com-
plex, heterogeneous datasets, varying across space and time, are
the norm. Visualisation, and in particular visual analytics, enables
the communication of information to both experts and non-
experts and can be useful in breaking down conceptual and techni-
cal barriers in the interpretation of data analyses (Thomas & Cook,
2005). However, effective 3D visualisation of space–time data still
represents a major bottleneck in our understanding and conceptu-
alisation of space–time processes. Despite much research, the sta-
tic 2D map remains the predominant medium for displaying
spatial information. Significant challenges still exist regarding sca-
lability, interoperability, visualisation of complex space–time
structures, and the linkages between exploration and validation
(Andrienko et al., 2007). In the coming years, geovisual analytics
will need to fully embrace space–time in order to produce output
that is meaningful and interpretable.

In the following review, the development of the field of Geo-
computation over the past 15 years is detailed, with respect to
the ETs outlined by Gahegan (1999). We begin with a review of
modern computational algorithms and models in Section 2 (ET2
and ET3). The trends described here reflect the continuing ability
of geocomputation to work with and between other scientific dis-
ciplines, while focusing on the specific and unique issues intro-
duced in space and time. We focus on three key areas; statistical
approaches, machine learning approaches, and simulation, whose
applications span ET2 and ET3. It is clear that ETs 2–4 are facili-
tated by advancements in ET1. In Section 3, we proceed to review
the progress in high performance computing (ET1), and its
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consequences for geocomputational research. We do not focus spe-
cifically on ET4 in this review, but direct readers to recent reviews
(Andrienko, Andrienko, Dykes, Fabrikant, & Wachowicz, 2008;
Andrienko et al., 2007; Cheng, Haworth, Anbaroglu, Tanaksaran-
ond, & Wang, in press). In Section 4, as introduction to this special
issue, we summarise the contributions of each of the accepted pa-
pers. These papers provide a snapshot of current research in Geo-
computation. Finally, we conclude in offering some thoughts as
to the direction of geocomputation over the next 10 years in
Section 5.

2. Modern computational algorithms and models

The field of Geocomputation exists at the boundary of geogra-
phy and computational science. It has facilitated the mixture of
established theoretical/statistical models with modern computa-
tional techniques, as well as bringing a plethora of new computa-
tional methods to take advantage of a data rich environment in
order to greatly advance the field of geography. In this section,
some of the methods that have either benefitted from, or been a re-
sult of Geocomputation are reviewed.

2.1. Statistical (parametric and numerical) approaches

Statistical models are the backbone of spatial analysis. Spatial
regression models allow researchers to explore the dependency
relationships between spatially referenced variables, leading to
the creation of new knowledge about spatial processes. Geostatis-
tical models provide a framework for spatial interpolation and
forecasting. The main attraction of such methods is that they are
theoretically well founded and interpretable. The theory behind
them is not new, but the era of Geocomputation has led to great
advancements in these models in three key areas, which are de-
scribed below.

The first key advancement is in the way statistical models are
estimated and their assumptions tested. Turton and Openshaw
(1998, p. 1840) noted that ‘‘much of the quantitative technology
presently used in geography dates from the 1960s and that many
assumptions were made in an effort to minimise computation’’. Or-
dinary least squares (OLSs) regression does not provide an unbi-
ased estimator in the presence of spatial and/or temporal
autocorrelation, and methods involving maximum likelihood are
sometimes intractable or inappropriate (Griffith & Lagona, 1998).
Advances in technology have allowed researchers to use computa-
tionally intensive numerical methods to approximate model spec-
ifications. For instance, Monte Carlo simulation methods are now
widely used both to estimate spatial regression models (Gu &
Zhu, 2001; Huffer & Wu, 1998) and to test and scrutinise their
assumptions (Farber, Páez, & Volz, 2009; Fingleton, 1999; Mizruchi
& Neuman, 2008).

The second key advancement in statistical models has come in
the way we look at spatial processes. Traditional statistical models
were necessarily global in order to satisfy their assumptions and
make them computationally feasible. Advances in geocomputation
allow us to consider heterogeneity in spatial processes. Geograph-
ically weighted regression (GWR) is the prime example of this
(Brunsdon, Fotheringham, & Charlton, 1996; Fotheringham,
Brunsdon, & Charlton, 2002). It takes ideas from traditional statis-
tics (OLS), fuses them with non-parametric methods (kernel
regression), and uses computational methods (Monte Carlo simula-
tion) to test hypotheses and parameter stability. Heterogeneity can
now also be accounted for in spatial panel data models (Elhorst,
2003) and has been studied in the context of geostatistical models
(Atkinson & Lloyd, 2007), leading to the development of locally cal-
ibrated (Kleiber, Raftery, & Gneiting, 2011) and multiple-point
(Caers & Zhang, 2004) geostatistical models, amongst others. In a
different vein, Eigenvector spatial filtering (ESF) allows spatial pro-
cesses to be viewed in a new way. In ESF, Moran’s I is decomposed
into map patterns using the eigenvectors of the spatial weights
matrix. It is conceptually similar to principal components analysis
(PCA), the difference being that it uses the eigenvectors themselves
as synthetic variables rather than as coefficients (Griffith, 2003).
Crucially, OLS, a well understood method, can be used to model
the filtered data, opening up the range of standard diagnostic tests.
This is an excellent example of how geocomputation not only al-
lows us to look at space from different perspectives but also to
use modern techniques to make our analyses easier.

The third advancement is in scale of the problems that we are
able to study, and in particular the exploration of space–time.
Spatio-temporal statistical models such as space–time autoregres-
sive integrated moving average (STARIMA) models and variants
have been around since the 1970s (Martin & Oeppen, 1975).
However, it is only recently that we have had access to either the
data or the computing power to make full use of them. Recent
years have seen a sharp increase in development of theory and
methods related to space–time. For instance, Huang, Wu, and Barry
(2010) extended GWR to space–time in their geographically and
temporally weighted regression (GTWR) model. They incorporate
the spatial and temporal dimensions into the weight matrix to
account for spatial and temporal nonstationarity, applying the
method to the modelling of residential housing sales in Calgary,
Canada. Moreover, space–time geostatistics is an increasingly
developed field with much research concerned with deriving
space–time covariance structures and semivariograms for the pur-
pose of space–time interpolation and forecasting (Gneiting, 2002;
Heuvelink & Griffith, 2010). The aim is to build a process that
mimics some patterns of the observed spatiotemporal variability,
without necessarily following the underlying governing equations
(Kyriakidis & Journel, 1999). Since the correlation in data cannot be
adequately described by parameters that are globally fixed spa-
tially and/or temporally (such as STARIMA), a localized STARIMA
(LSTARIMA) is developed based upon a dynamic spatial weight ma-
trix that captures the autocorrelation locally (heterogeneity) and
dynamically (unstationarity) (Cheng, Wang, Haworth, Heydecker
& Chow, 2011; 2012).

Spatio-temporal scan statistics (STSSs) is a clustering technique
that automatically detects regions of space that are ‘‘anomalous,’’
‘‘unexpected,’’ or otherwise ‘‘interesting’’ (Brunsdon & Charlton,
2011; Neill, 2008). Spatial and temporal proximities are exploited
by scanning the entire study area via overlapping space–time re-
gions (STRs). The dimensions of the STR are allowed to vary in or-
der to detect outbreaks of varying sizes. STSS was developed based
upon the Spatial Scan Statistic (Kulldorff, 1997), which was pro-
posed to overcome the multiple hypothesis testing problem
encountered in the Geographical Analysis Machine (GAM) devel-
oped by Openshaw, Charlton, Wymer, and Craft (1987). STSS has
been widely used in crime (Nakaya & Yano, 2010) and health
(Kulldorff, 2001) studies, but efforts are still needed to improve
computational efficiency and to reduce the false alarm rate, in
particular for emergence detection.

2.2. Machine learning (non-parametric) approaches

As well as enhancing and advancing the theory and application
of statistical models, one of the defining features of geocomputa-
tion has been a willingness to explore non-traditional computa-
tional methods from the fields of artificial intelligence and
machine learning. Fischer (1998, p. 1874) argued that traditional
spatial analysis techniques ‘‘overemphasize linear statistical model
designs when nonlinearities prevail in reality, they tend to neglect
rather than take into account the special nature of spatial data’’.
Machine learning methods, such as Artificial Neural Networks
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(ANNs) and Support Vector Machines (SVMs) are inherently suited
to the challenges of spatial and spatio-temporal data due to their
innate ability to model complex nonlinear relationships. As well
as being applied to the classic regression tasks of spatial analysis,
machine learning methods can be applied to a wide range of tasks
such as classification, clustering and novelty detection. ANNs are
able to learn from empirical data and can be used in cases where
the modelled phenomena are hidden, non-evident or not very well
described. This makes them particularly useful in modelling the
complex dependency structures present in spatial and spatio-
temporal data that cannot be described theoretically. Kanevski,
Timonin, and Pozdnukhov (2009) and Hsieh (2009) have applied var-
ious types of ANN to spatial and environmental modelling problems.

Kernel methods are another set of machine learning algorithms
that are growing in popularity in the geocomputation community.
The strength of kernel methods lies in their use of the kernel trick,
whereby observations are mapped to a higher (possibly infinite)
dimensional feature space without the need to explicitly compute
the mapping. Linear algorithms can be applied in the feature space
to find solutions that are nonlinear in the input space. The most
widely used kernel method is the Support Vector Machine (SVM
for classification, SVR in the regression case) (Boser, Guyon, & Vap-
nik, 1992). The key to its strong performance is that the learning
task is formulated as a convex optimisation problem meaning that,
for a given set of parameters, the solution is globally optimal pro-
vided one can be found. Therefore, SVMs avoid the problems of lo-
cal minima which are traditionally associated with ANNs. SVMs
have been applied to reservoir porosity and Caesium contamina-
tion prediction (Kanevski et al., 2009) and, more recently, to spa-
tio-temporal avalanche forecasting (Pozdnoukhov et al., 2011).
The approach involves incorporating the outputs of simple physics
based and statistical approaches to interpolate meteorological and
snowpack related data over a digital elevation model of the region.
This study highlights another feature of geocomputation, which is
the hybrid combination of statistical and machine learning
methods.

2.3. Simulation

While statistical and machine learning methods are enabling an
important development of our insight into the nature and function
of existing geographical systems, there remains a need to explore
how spatial systems develop and evolve over time, and how future
influences upon an environment may subsequently affect any
underlying systems. Over recent years, the simulation approaches
of Cellular Automata and, later, Agent-based Modelling have
emerged as key methods in achieving this. While the two ap-
proaches differ in a number of respects, they are united in their
treatment of the individual entity, exploring how the actions and
interactions of constituent elements result in the formation of
complex geographic phenomena. This section will describe both
approaches as well as their application in describing geographical
systems.

Cellular Automata (CA) models are simplified representations of
spatial systems, where space is discretised into an environment of
grid cells, and time represented across time steps. Within a CA sim-
ulation, at each time step, a cell state is updated according to the
set of predefined rules governing all behaviour (known as transi-
tion rules) that make reference to the status of other cells around
it (known as the cell neighbourhood). Through the interaction of
neighbouring cells according to a specified set of rules, this simple
arrangement – consisting of only four design elements – is capable
of generating complex macroscopic patterns. The nature of the ap-
proach means that considerably complex results, unintelligible at
the system scale, may emerge from an initial system state of a sin-
gle root cell (Batty, 2007).
These principles have been extended widely to demonstrate
emergence in a range of real world systems. The discretisation of
space in CA lends itself well to exploring wide scale geographic
development, and so has been extensively used in the develop-
ment of land-use and urban growth models (Almeida, Gleriani,
Castejon, & Soares-Filho, 2008; Batty, 2007; Clarke, Hoppen, &
Gaydos, 1997; White, Engelen, & Uljee, 1997). Social processes may
be explored similarly at a higher level of abstraction, as demon-
strated by work on dynamic social processes in cities (Schelling,
1978; Yeh & Li, 2002). The approach has been extended to spatio-
ecological processes, where predator–prey networks (Resnick,
1994) and forest dynamics (Grimm et al., 2005) have been simulated.

Agent-based Modelling (ABM) represents a conceptual develop-
ment that extends CA by introducing greater flexibility and indi-
vidual autonomy to the simulation environment. Rather than
constraining behaviour and interactions to a grid-like structure,
individual entities (known as agents) are able to move throughout
the environment and interact with others (according to a given set
of rules). ABM enables a more sophisticated description of individ-
ual behaviour than is possible using CA, as well as the incorpora-
tion of different types of agent, defined by distinct rule sets. In
their most advanced form, agent behaviour may be represented
in considerable detail, describing cross-population heterogeneity
in goals, preference, knowledge and perspective. Agent rules may
describe both physical and mental processes. Like CA, the nature
of the simulation conditions allows global phenomena to emerge
through individual interactions and in response to new conditions,
yet according to a more sophisticated set of rules governing agent
behaviour. The platform represents a natural method of simulation
for many spatial phenomena (Bonabeau, 2002).

ABM has been applied in the simulation of a wide range of geo-
graphic phenomena. As seen with CA, these have included land-
use, housing and regional models (Bretagnolle & Pumain, 2010;
Xie, Batty, & Zhao, 2007), yet have been extended to other urban
phenomena, most notably transportation systems. ABM has been
shown to represent a strong paradigm for the simulation of pedes-
trian movement patterns, including the formation of patterns in
crowd activity (Batty, 2007; Helbing & Molnar, 1995; Torrens,
2012). The approach has also been employed in the replication of
traffic flows in urban systems (Chen & Cheng, 2010). Recent work
has demonstrated a link between individual choice and behaviour
in the formation of urban road congestion (Manley & Cheng, 2011).

3. High performance computing

3.1. HPC

One of the defining features of Geocomputation has been an
eagerness to exploit the potential of high performance computing
(HPC). Prior to the 1990s, a lack of computational resources con-
strained much of the progress being made in the geographic field
to theoretical and experimental research. The advent of HPC
opened up new ways of conducting science in areas too complex
to be handled by other means or where the data volume was too
large to be handled in a traditional computing environment (Tur-
ton & Openshaw, 1998). HPC has facilitated a shift from deductive
science to inductive, data driven science, and has gone hand in
hand with the willingness to explore techniques and methods from
computational science (Armstrong, 2000).

Within HPC there are two main paradigms. The first is grid (dis-
tributed) computing, whereby computing resources are distributed
widely and opportunistically used whenever available. Since the
turn of the century, there has been considerable public investment
in grid computing, termed e-Science in the UK (NeSC, 2012) and
Cyberinfrastructure in the US (Office of Cyberinfrastructure,
2012). This has enabled researchers to begin to tackle hard



484 Editorial / Computers, Environment and Urban Systems 36 (2012) 481–487
problems in physics, biology, engineering and geosciences,
amongst others, facilitating collaboration across distance and disci-
plines and enabling scientific breakthroughs that would not have
been possible otherwise (Wright & Wang, 2011). A closely related
service is cloud computing, which is the delivery of computing ser-
vices over the internet. This area has seen growth recently, with
online services such as AmazonEC2 providing businesses and
researchers with access to powerful computing facilities without
the need for hardware investment.

The second paradigm is cluster computing, whereby a large
number of processors are located in close proximity, the classic
form of the supercomputer. This type of architecture is now being
replicated in single processors with multiple cores, such as multi-
core central processing units (CPUs) and graphical processing units
(GPUs), the latter of which gives access to many hundreds of cores
inside a desktop workstation. The goal of both is the same; massive
parallelisation of computationally intensive tasks.

3.2. Parallel geocomputation

Geography as a discipline stands to benefit greatly from HPC for
two reasons. Firstly, it encompasses a diverse range of complex
processes and interactions, both human and physical. Secondly,
the sheer amount of data being collected with spatial and temporal
dimensions exceeds the limits of traditional computing techniques.
Consequently, a select few geographers were forward thinking in
adopting HPC methods. In the early 1990s, parallel GIS was identi-
fied as a technology whose time would come, and two research
avenues were opened; the parallelisation of existing algorithms
and the exploration of new analytical methods made possible
through HPC (Clematis, Mineter, & Marciano, 2003). It was the
work of Stan Openshaw and colleagues at the University of Leeds
in particular that pioneered this second direction, believing in
the potential to simulate whole societies and model the previously
unmodellable (Turton & Openshaw, 1998).

These days, HPC is more accessible to geographers than ever,
and this is due in no small part to a general trend within science
and research towards parallelisation. Parallel implementations of
key mathematical operations such as matrix multiplications and
inversions, as well as interfaces to parallel computing architec-
tures, are now available in many of the software that geographers
use. For example, R statistical package (R) now has support for
multicore, GPU and distributed computing (McCallum & Weston,
2011). Additionally, many universities and research institutes
now have access to e-Science infrastructure as well as their own,
dedicated supercomputers which can be used with very little
training.

The extent to and ease with which an algorithm can be paralle-
lised depends on the nature of the problem. Conveniently, many
problems in geographical research have the ‘‘embarrassingly paral-
lel’’ property that a single large problem involving n locations can
be divided into n small problems, each of which can be solved
independently of the n � 1 others. Harris, Singleton, Grose,
Brunsdon, and Longley (2010) showed how this type of problem
could be tackled in the context of geographically weighted regres-
sion (GWR) using a combination of R and the UKs National Grid
Service (National e-Infrastructure Service, 2012). This type of
problem requires little modification to be parallelised and can be
run on a grid or computer cluster. In other problems, the challenge
lies in identifying specific parts of an algorithm that can be paral-
lelised in this way. For example, Guan, Kyriakidis, and Goodchild
(2011) developed a parallel approach to geostatistical interpolation
by recognising the fact that the computation of each entry of the
covariance matrix is independent of the other entries.

A more difficult set of problems arises when the division of the
geographic space is nontrivial. Parallel algorithms must balance
the amount of data sent to each processor (data parallelism) with
the partitioning of tasks across the processors (task parallelism).
In irregular and heterogeneous data, regular partitioning of geo-
graphic space is inappropriate (Guan & Clarke, 2010). Furthermore,
when the inputs/outputs of each of the problems being executed in
parallel are not independent of each other a message passing inter-
face (MPI) must be used. Tomlin’s (1990) classification of map
algebra divides the scope of such problems into local, neighbour-
hood, regional and global. In global scope problems, each spatial
location requires information from the whole of the geographic
space at each evaluation. In iterative algorithms, this leads to chal-
lenges in developing communications systems between different
processors. These types of problems require what Turton and
Openshaw (1998, p. 1842) termed ‘‘thinking in parallel’’, which is
important but hard.

It is a major challenge in geocomputation to get everyone think-
ing in parallel and to make HPC the norm rather than the excep-
tion. Computing technology in general is moving towards
parallelism and it is vital that this shift can be harnessed. Arguably
the current work with the most wide reaching significance is that
which makes use of GPU technology. GPUs with multiple processor
cores are included as standard in most modern desktop worksta-
tions, making HPC possible without grids or supercomputers. Even
the latest CPU processor cannot match the potential speedup pro-
vided by a modest GPU with a few hundred cores. However, de-
spite significant advances, parallelism is far from being common
practice in geography and falls short of the lofty ambitions of
Openshaw and others.

4. Geocomputation 2011 and this special issue

The 11th International Conference on Geocomputation 2011
was held at University College London (UCL) on 20th–22nd July
2011. Scholars from 19 countries and regions joined the conference
– from Australia, Austria, Canada, China, Finland, Iran, Ireland, Is-
rael, Japan, Malta, Portugal, The Netherlands, Spain, Slovenia, Swe-
den, Switzerland, Turkey, UK and USA. The Local Organising
Committee received 104 submissions which were each reviewed
by a minimum of two reviewers. There were 78 papers scheduled
for full paper presentation at the conference, following revisions
made in the light of reviewer comments.

The strength and breadth of geocomputation is reflected in the
16 paper sessions of the 2011 Conference. Eight sessions present
advances in algorithms and models: ‘‘Agent-based Modelling)’’
(two sessions), ‘‘Genetic Algorithms & Cellular Automata Modelling’’,
‘‘Geographically Weighted Regression’’, ‘‘Geostatistics’’, ‘‘Machine
Learning’’, and ‘‘Space–Time Modelling and Analysis)’’ (two sessions).
Four sessions contribute to important domain specific applications
of geocomputation: ‘‘Geodemographics’’, ‘‘Network Complexity’’,
‘‘Location-Based Services’’, and ‘‘GeoVisual and Terrain Analysis’’, with
two further sessions with more general focus on environmental
and urban studies. The broader environment to geocomputation
provides the focus for two other sessions – one on ‘‘Uncertainty
and Accuracy’’, and the other on cloud computation – ‘‘VGI and
Computational Infrastructure’’. One poster session consisting of 14
papers was also included.

Five world-renowned scholars kindly gave keynotes at the Con-
ference. They addressed ‘Digital Environments and Real World Geog-
raphies’ (Peter Nijkamp, Free University Amsterdam); ‘Does
Visualization with Geocomputation Offer Anything We Didn’t Know
Already?’ (Jo Wood, City University London); ‘Geographically
Weighted Regression and Geocomputation: an Overview of Recent
Developments’ (Stewart Fotheringham, National University of
Ireland at Maynooth); and ‘The Future of Geocomputation’ (Keith
Clarke, University of California, Santa Barbara, USA). Another key-
note presentation – ‘Visualising Space–Time Dynamics: Graphs and
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Maps, Plots and Clocks’ was contributed by Mike Batty, UCL, as a
joint event with the ISPRS-sponsored International Symposium
on Spatio-Temporal Analysis and Data Mining, which ran immedi-
ately before the Conference at the same location. This session was
intended as a forum to foster closer dialogue between these two
groups.

This special issue consists of seven papers that were accepted
from selected papers presented in the Geocomputation 2011 con-
ference. They are substantially revised and extended for resubmis-
sion to this special issue; each paper was reviewed by a minimum
of three blind reviewers. We hope this process is fully reflected in
the quality of this special issue. These seven papers cover most
themes of Geocomputation 2011, which also reflects the broad
applications of Geocomputation, in location-based services (Jacob,
Winstanley, Togher, Roche, & Mooney, in press), traffic survey
(Bolbol, Cheng, Tsapakis, & Haworth, in press; Horner, Zook, & Downs,
in press), traffic prediction (Haworth & Cheng, in press), crime
(Malleson & Birkin, in press), and community resource management
(Guise and Crooks, in press). They also show the breadth of compu-
tational methods: statistical analysis (Horner, Zook, Downs, in
press; Mack, Malizia, & Rey, in press), machine learning (SVM and
Kernel-based) based reasoning (Bolbol et al., in press; Haworth &
Cheng, in press), and agent-based simulation (Malleson & Birkin,
in press; Guise and Crooks, in press). All these papers deal with
data with spatio-temporal dimensions, which requires seamless
and simultaneous integration of space and time. Specifically, this
special issue includes the following papers:

‘‘Where were you? Development of a time-geographic approach for
activity destination re-construction’’ (Horner, Zook, & Downs, in
press) presents a framework and basic computational approach
for exploring unlocateable activity locations inherent to travel sur-
veys, based upon a network-based probabilistic time geography.
‘‘Population Shift Bias in Tests of Space–Time Interaction’’ (Mack
et al., in press) quantifies and compares the population shift bias
present in the results of the Knox, Mantel, and Jacquez tests of
space–time interaction. It illustrates that population shift bias
can be a serious problem for short study periods whenever spa-
tially heterogeneous population change is identified within a study
area. In ‘‘Pedestrian navigation using the sense of touch’’ (Jacob et al.,
in press), haptics is implemented in four distinct prototypes for
mobile pedestrian navigation. The prototypes are classified based
on the user’s navigation guidance requirements, the user type
(based on spatial skills), and overall system complexity.

‘‘Inferring hybrid transportation modes from sparse GPS data using
a moving window SVM classification’’ (Bolbol et al., in press), solves a
classification problem of GPS data into hybrid transportation
modes (i.e. car, walk, cycle, underground, train and bus) based on
Support Vector Machines (SVMs) classification. In ‘‘Non-parametric
regression for space–time forecasting under missing data’’ (Haworth
& Cheng, in press), a non-parametric spatio-temporal kernel
regression model is developed to forecast the future unit journey
time values of road links in central London, UK, under the assump-
tion of sensor malfunction.

In ‘‘Analysis of crime patterns through the integration of an agent-
based model and a population microsimulation’’ (Malleson & Birkin,
in press), microsimulation is combined with agent-based simula-
tion to understand crime variations at progressively finer spatial
scales, right down to individual streets or even houses. In ‘‘Agent-
based modeling for community resource management: Acequia-based
agriculture’’ (Wise & Crooks, in press), an agent-based model is con-
structed to investigate the significant interaction and cumulative
impact of the physical water system, local social and institutional
structures which regulate water use, and the real estate market
on the sustainability of traditional farming as a lifestyle in the
northern New Mexico area.
5. Summary and outlook

This review, along with the breadth and quality of contributions
to this special issue, has demonstrated that great progress has been
made in the development of algorithms and methods along the
lines of Longley’s vision for ‘‘applications which emphasize process
over form, dynamics over statics, and interaction over passive re-
sponse’’ (Longley, 1998, p. 3). The field of Geocomputation
stemmed from dissatisfaction with the status quo in geographical
research in the early 1990s, where restrictive statistical methods
that originated from the data poor, computation poor 1960s and
1970s were still the norm. Since that time, the era of geocomputa-
tion has heralded new ways of analysing and interacting with geo-
spatial data that have advanced geography into the data rich 21st
century. Nowadays, along with autocorrelation, heterogeneity is
fundamental to our observation (or our empirical test) of reality,
and is accounted for in an increasing range of models. Furthermore,
as we begin to analyse massive spatio-temporal datasets, the chal-
lenge now is how to calibrate, explain and validate space–time
models. Quantifying spatio-temporal autocorrelation and hetero-
geneity presents greater challenges than examining the spatial
and temporal dimensions in isolation, and the field is still in its in-
fancy. Although models have been developed to represent higher
order spatial autocorrelation, but their pitfalls are also obvious in
terms of complexity of computation and calibration (LeSage &
Pace, 2011). We also think that the statistical distributions widely
used in most spatial analysis are hardly approvable which reduce
our confidence in using these models, though we have deep trust
rooted on statistical analysis in the past (Cheng et al., in press).

Due to their ability to deal with multi-dimensional, nonlinear
data, machine learning methods have always been at the forefront
of the Geocomputation movement. Among others, ANNs, SVMs and
other kernel-based approaches have been widely used with excel-
lent results. However, they do not represent a magic wand and still
often fail to provide the explanatory power and interpretability
that make traditional statistical methods so appealing. Indeed, sta-
tistical modelling remains the mainstay of GeoComputation. How-
ever, as we increasingly begin to analyse massive spatio-temporal
datasets, accurate forecasting will supersede interpretability in
time-critical applications. Often, it is found that hybrid frameworks
combining both statistical and machine learning approaches can
offer the best compromise (Cheng, Wang, & Li, 2011).

A relatively new phenomenon that is providing fresh avenues
for Geocomputational research is the rapid growth in volunteered
geographic information (VGI). Goodchild (2007, p. 212) describes
VGI as ‘‘the widespread engagement of large numbers of private
citizens, often with little in the way of formal qualifications, in
the creation of geographic information’’. VGI mapping sources such
as OpenStreetMap provide alternatives to those provided by na-
tional mapping agencies, and are often timelier and of very high
quality (Haklay, 2010). These data look to provide significant scope
for research in the coming years (Sui, Elwood, & Goodchild, 2012).
In the context of Geocomputation, the challenge lies in extracting
meaningful patterns and developing new theories based on VGI.
In particular, social media data from services such as Twitter and
Facebook allow us to look at how social networks are constructed
and evolve in time. We can also look at how people’s interactions
on social networks lead to manifest effects in geographic space
during times of crisis, such as the Arab spring and London riots
of 2011.

However, VGI can be noisy, biased, and incomplete. New meth-
ods and theory are needed to deal with missing and incomplete
data in ways that are applicable in real time (Haworth & Cheng,
in press; Marks, 2012), and to evaluate the quality of the data
(Brunsdon & Comber, 2012; Haklay, 2010). These issues are closely
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linked with the notion of trust in VGI, which will be fostered by the
development of standards for its collection, validation and mainte-
nance. Furthermore, theory and methods need to be developed to
extract meaningful patterns from VGI and put them under the
framework of networks such as transport and social-networks that
made up of those individuals. More importantly, the dynamics of
interactions and movements among individuals should be consid-
ered in mining spatio-temporal patterns. This is challenging that
we are facing in modelling network complexity, especially in
detecting emergence and non-recurrent patterns.

STDM will play an ever increasing role as we look to develop
new methods for analysing data of massive spatio-temporal reso-
lution in order to elicit new knowledge on spatio-temporal pro-
cesses, mobility patterns and spatial networks. Technically, grid
computation and cloud computation, which allows geocomputa-
tion to be implemented at multiple computer sources, will facili-
tate research in this area. Even so, when the data volume is
increased, the capacity of software and hardware is still limited.
How to scale algorithms to larger networks will always be a chal-
lenge for Geocomputation given the increase of data volume is far
quicker than the improvement in the performance of data proces-
sors. This is a challenge that goes hand in hand with a need to shift
thinking towards ‘‘thinking in parallel’’.

Looking ahead, we should be confident that Geocomputation
will be as active as it has been in the past 15 years. Its on-going
integration with network and complexity theory, spatio-temporal
data mining, and parallel computation is needed to promote fur-
ther prosperity the Geocomputation community.
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