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Abstract 
 

Vaccinia is a widely studied member of the poxvirus family. Throughout its life cycle, 

vaccinia manipulates cellular processes of the host to aid its replication and spread. 

Early in infection vaccinia stimulates transient host cell contraction, associated with 

dynamic plasma membrane blebbing and migration, reminiscent of the RhoA-ROCK 

regulated amoeboid migration of cancer cells. Cell contraction required the expression 

of early vaccinia genes whilst subsequent re-spreading required late vaccinia genes. 

Using a virus that does not express the vaccinia protein F11, I showed that F11 was 

required for virus infection to stimulate contraction. However, using a highly attenuated 

vaccinia strain rescued with wild type F11, MVA-F11, I found that cell contraction 

additionally required other vaccinia proteins. Live cell imaging of F11-GFP revealed 

that F11 is recruited to the plasma membrane during blebbing, further supporting a role 

for F11 in regulating these membrane events. Despite previous evidence from this 

laboratory showing F11 interacts with RhoA, I found that cell contraction was 

independent of RhoA. Instead vaccinia induced contraction required RhoC to ROCK 

signalling. Furthermore, using a small siRNA screen of several Rho GTPases, I 

discovered that RhoD negatively regulates vaccinia-induced contraction. I suggest that 

RhoD can supress cell contraction in uninfected and ∆F11L-infected cells by inhibiting 

RhoC activation, and suggest that RhoD signalling is inhibited during infection to allow 

for efficient cell contraction.  
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Chapter 1. Introduction 

1.1 Rho Family GTPases 

1.1.1 Overview of Rho GTPases - history and biology 

The first rho gene was discovered by accident in the molluscs Aplysia and was 

identified as a ras-related gene (Madaule and Axel, 1985). Rho was subsequently 

found to be evolutionary conserved (with up to 70% amino acid homology) between 

molluscs, drosophila and humans, with multiple rho genes (rhoA, rhoB and rhoC) 

identified in humans (Madaule and Axel, 1985). Rac1 and Cdc42 were later identified 

as ras-related genes and Rho, Rac1 and Cdc42 were clustered as the Rho sub family, 

based on sequence identity (Didsbury et al., 1989; Hall, 1990; Shinjo et al., 1990). 

Studies with the Clostridium botulinium toxin C3 (an ADP-ribosylating enzyme) 

provided the first indication of the biological function of the Rho family of GTPases. 

Several studies had confirmed RhoA and RhoC as the substrates for C3 (Aktories et al., 

1989; Braun et al., 1989; Chardin et al., 1989). ADP ribosylation renders Rho 

biologically inactive (Paterson et al., 1990). In parallel, it was observed that actin stress 

fibres were completely abolished in Vero cells following treatment with C3 (Chardin et 

al., 1989). This led to the elucidation of specific cytoskeletal regulatory roles for RhoA, 

Rac1 and Cdc42. Microinjection of activated RhoA into mammalian cells stimulated 

stress fibres and focal adhesion assembly (Paterson et al., 1990; Ridley and Hall, 

1992). Overexpression and microinjection of activated Rac1 induced a reorganisation 

of actin to the leading edge plasma membrane to form membrane ruffles and focal 

adhesions (Ridley et al., 1992). Finally, Cdc42 was found to induce long filopodia 

(Nobes and Hall, 1995).  

 

Since the initial studies on Rho, Rac and Cdc42, the Rho GTPase family has expanded 

to encompass 22 family members with diverse biological functions. These family 

members have now been implicated is a wide range of biological functions including 

but not limited to the cytoskeleton, transcription, cell cycle, cytokinesis and membrane 

trafficking. As the work presented in this thesis is mainly concerned with the RhoA-

related subfamily of GTPases and their role in cell migration, the regulation and 

signalling of this family will be discussed in more detail.  
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Figure 1.1 The Rho GTPase cycle 
Rho GTPases cycle between GTP bound active and GDP bound inactive states. Three 
groups of proteins regulate the cycle: GEFs catalyse the exchange of GDP for GTP, 
GAPs stimulate GTP hydrolysis and GDIs sequester GDP bound Rho in the cytosol. 
GTP and GDP bound Rho are localised at membranes using isoprenoid lipid moieties 
and the polybasic region. GTP bound Rho binds to effector molecules to elicit a 
biological response.  
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1.1.2 The molecular switch and Rho GTPase structure 

1.1.2.1 The molecular switch 

Rho GTPases are 20-25kDa proteins with intrinsic GTPase activity. These proteins act 

as molecular switches that can cycle between a GTP bound active state and a GDP 

bound inactive state. In the GTP bound state Rho GTPases bind to and activate 

effector molecules to stimulate downstream signalling (Bishop and Hall, 2000). The 

activity of Rho GTPases is regulated by three sets of molecules, GEFs, GAPs and 

GDIs. Guanine nucleotide exchange factors (GEFs) catalyse the exchange of GDP for 

GTP and therefore stimulate Rho activity (Bos et al., 2007). GTPase activating proteins 

(GAPs) enhance the rate of GTP hydrolysis, which is intrinsically very slow, resulting in 

the inactive Rho state (Bos et al., 2007). Guanine dissociation inhibitors (GDIs) 

maintain a cytosolic GDP bound inactive pool of Rho GTPase (Garcia-Mata et al., 

2011).  Nearly all Rho family members are post-translationally modified at the C 

terminus CAAX box with an isoprenoid lipid, this allows Rho proteins to localise to 

membranes (Figure 1.1) (Boulter et al., 2012).  

 

1.1.2.2 Rho GTPase structure 

Rho GTPases have a conserved structural fold of a mixed six-stranded β-sheet (β1-6) 

surrounded by five α-helices (α1-5), called the G domain fold, common to all guanine 

nucleotide-binding proteins (Figure 1.2) (Vetter and Wittinghofer, 2001). Rho GTPases 

are distinguished from other GTPase proteins by a 13-residue insertion called the ‘Rho 

Insert domain’ (Valencia et al., 1991). The guanine base of the nucleotide is buried 

within a hydrophobic pocket formed by the conserved motifs GXKXDL (residues 116-

121 in RhoA) and SAK residues (106-162 in RhoA) (Ihara et al., 1998). In the GTP 

bound conformation, the triphosphate groups form 21 direct and 9 water mediated 

hydrogen bonds with residues in the switch 1 (residues 28-44 between α1 and β2 in 

RhoA) and switch 2 regions (residues 62-69 between β3 and β4 in RhoA) and the 

phosphate binding loop (P loop) (residues 13-20 in RhoA) (Figure 1.3 A) (Ihara et al., 

1998). The nucleotide binding site contains a Mg2+ ion, which co-ordinates the correct 

orientation of the P loop, switch 1 and switch 2 with β- and γ-phosphates, as such the 

Mg2+ ion is critical to nucleotide binding and GTP hydrolysis (Ihara et al., 1998; Shimizu 

et al., 2000). The switch 1 and 2 regions are flexible and exist in different structural 

conformations depending on the whether they bind GTP or GDP (Hakoshima et al., 
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2003). The GTP bound form is in a ‘loaded spring’ conformation where the γ-

phosphate oxygen atoms stabilise the main chain NH groups of Threonine 37 and 

Glycine 62. Upon hydrolysis of the bond between β- and γ-phosphates, these 

interactions are lost and switch 1 and 2 revert to a relaxed conformation (Figure 1.3 B) 

(Vetter and Wittinghofer, 2001). The conformation of the switch 1 and switch 2 regions 

determines GTPase signalling as they represent the main binding interface between 

the GTPase and effector molecules. GTPase effector molecules only bind to the GTP 

bound ‘loaded spring’ conformation (Hakoshima et al., 2003).  
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Figure 1.2 Crystal structure of RhoA 
A. The crystal structure of RhoA is made up of a six-stranded β sheet surrounded by 
five α-helices. The nucleotide-binding site is formed by the switch 1 (yellow) and switch 
2 (green) and the P loop (magenta). B. A close up of the nucleotide-binding site with 
GTPγS (orange) and Mg2+ ion (light green). The oxygen atoms of the γ-phosphate 
group of GTP hydrogen bond with the main chain NH (blue) groups of Threonine 37 
and Glycine 62. Images were created using PyMol from PBD 1S1C (Dvorsky et al., 
2004) 
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Figure 1.3 The "loaded spring" 
A. An illustration of the interactions formed between RhoA and GTPγS as determined 
from the crystal structure. Dashed lines represent hydrogen bonds. Hydrogen bonds 
can form between GTPγS and amino acid main chains (residues in rectangles) or side 
chains (residues in ovals). This figure was originally published in Journal of Biological 
Chemistry. Ihara, K et al., Crystal structure of Human RhoA in a Dominantly Active 
Form Complexed with a GTP Analogue. J Biol Chem, 273, 9656-66 © the American 
Society for Biochemistry and Molecular Biology.   B A schematic of the “loaded spring” 
conformation. The γ phosphate oxygen atoms of GTP hydrogen bond with the main 
chains of a threonine residue in switch 1 (Thr37 in RhoA) and a glycine residue in 
switch 2 (Gly 62 in RhoA). This figure was originally published in Science. Vetter and 
Whittinghofer (2001) The guanine nucleotide-binding switch in three dimensions. 
Science 294: 1299-304. Reprinted with permission from AAAS.  
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1.1.2.3 Effector binding 

The crystal structures of GTP bound RhoA, Rac1 and Cdc42 in complex with Rho 

binding domains of specific effectors have provided essential molecular insights into 

the structural elements required for effector binding (reviewed in (Dvorsky and 

Ahmadian, 2004)). The Rho binding domains (RBD) of Rho associated kinase (ROCK) 

and protein kinase N (PKN) form α-helical coiled-coil dimers to complex with RhoA. 

The RBD of ROCK binds predominantly to residues in the α2 helix, switch 1 and 2 

regions (Dvorsky et al., 2004). PKN interacts with two contacts sites within RhoA. The 

first site is formed from α1, β2/β3 and α5 regions, the second site from the C-terminal 

half switch 2, β3 and switch 1 (Maesaki et al., 1999). Meanwhile, the GTPase binding 

domains (GBD) of activated Cdc42-associated kinase (ACK), Wiskott-Aldrich 

syndrome protein (WASP) and p21 associated kinase (PAK1) interact with the Cdc42 

α1 and α5 helices and both switch regions using a β-hairpin and a C-terminal α-helix 

(Abdul-Manan et al., 1999; Morreale et al., 2000; Mott et al., 1999). Additionally the 

Cdc42/Rac–interactive binding (CRIB) motif, a feature found in these Cdc42/Rac 

effectors, forms an intermolecular β-sheet with β2 strand of the GTPase (Abdul-Manan 

et al., 1999; Morreale et al., 2000; Mott et al., 1999). The crystal structure of p67phox 

reveals a different mechanism for Rac1 binding. p67phox interacts with α1, switch 1 and 

the loop between β6 and α5 of Rac1 via four α-helical tetratrico-peptide (TPR) motifs 

(Lapouge et al., 2000). There is clearly a great divergence in the mechanism by which 

effector molecules bind to Rho GTPases, however, the majority of effectors interact 

with Rho GTPases over the switch 1 and 2 regions (reviewed in (Dvorsky and 

Ahmadian, 2004)). The switch regions experience the greatest conformational changes 

between GDP and GTP binding, therefore, specific binding of effectors to these regions 

must form the basis of GDP/GTP selectivity.  

 

Rho GTPases frequently activate effector proteins by disrupting auto inhibitory 

interactions within the effector molecule (Bishop and Hall, 2000). The PAK family of 

kinases contain a regulatory domain that binds to the kinase domain and maintains a 

closed, inactive conformation (Lei et al., 2000). This intramolecular interaction is 

disrupted upon binding to GTP bound Rac or Cdc42, which allows the kinase domain 

to bind substrates (Lei et al., 2000; Parrini et al., 2002; Tu and Wigler, 1999). PAK 

kinases can then auto-phosphorylate to release the GTPase and stabilise the active 

conformation (Jung and Traugh, 2005; Manser et al., 1994). ROCK, PKN and DRFs 

(Diaphanous related formins) also exist in an auto-inhibited conformation, which is 
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disrupted upon RhoA binding (Amano et al., 1999; Maiti et al., 2012; Watanabe et al., 

1996; Yoshinaga et al., 1999). In many cases, full activation of effectors is only 

achieved by additional signalling inputs. For example, the activation of N-WASP by 

Cdc42 is enhanced upon synergistic binding to SH3 adapter molecules and PIP2 

(Rohatgi et al., 2001; Tomasevic et al., 2007). 

 

1.1.3 Regulation of Rho GTPases 

1.1.3.1 Guanine nucleotide exchange factors (GEFs) 

Rho GTPases, as with all members of the Ras superfamily of small GTPases, have 

extremely high affinity for guanine nucleotides and as a result the half-life of nucleotide 

dissociation is in the range of one or more hours (Bos et al., 2007). This is not practical 

for molecules that act as molecular switches to transduce rapid signals. The problem is 

overcome by a family of proteins called Rho Guanine nucleotide exchange factors 

(GEFs) that catalyse nucleotide exchange. The mechanism of GEF action on Rho 

GTPases involves conformational changes within the nucleotide binding site, 

specifically within switch 1, switch 2 and the P loop, to reduce the affinity of the 

GTPase for the nucleotide (Boriack-Sjodin et al., 1998; Worthylake et al., 2000). Upon 

GTPase:GEF complex formation steric changes physically block the Mg2+ binding site 

and disrupt interactions between the Mg2+ ion and the nucleotide. Additionally, GEF 

binding disturbs the interaction between the P loop and nucleotide phosphate groups 

(Boriack-Sjodin et al., 1998; Bos et al., 2007; Rossman et al., 2002; Worthylake et al., 

2000). The GEF then stabilises the transient nucleotide free GTPase intermediate 

(Vetter and Wittinghofer, 2001). This intermediate has roughly equal affinity for either 

GTP or GDP, but the cellular concentration of former is 10 times higher and therefore 

GTP binding is favoured (Bos et al., 2007; Traut, 1994). GTP binding to the GTPase 

reduces its affinity for the GTPase for the GEF, which subsequently dissociates (Yang 

et al., 2009).  

 

Rho GEFs fall into two major groups, the conventional DH-PH family and the atypical 

DOCK180 family. The DH-PH family is the largest group, comprising 69 predicted 

members in the human genome. The minimal requirements are a Dbl homology (DH) 

domain (the GEF domain), which was first identified in Dbl, and a C terminal pleckstrin 

homology (PH) domain (Hart et al., 1991; Rossman et al., 2002). The DOCK180-
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related proteins comprise 11 members that all contain a DOCK homology region 

(DHR)-2 domain (the GEF domain) and an N-terminal DHR-1 domain (Brugnera et al., 

2002; Cote and Vuori, 2002, 2007). Rho GEFs from both families also contain 

additional domains, such as protein-protein interaction domains (PDZ, SH2 and SH3 

domains) or protein lipid interaction domains (PH, BAR and FYVE domains)(Bos et al., 

2007; Cote and Vuori, 2002; Lemmon, 2008; Yaffe, 2002). The modular structure 

means that GEFs can be tightly regulated by translocation and allosteric structural 

changes and also act to integrate multiple signalling pathways or as signalling scaffolds 

(Bos et al., 2007).  

 

1.1.3.2 GTPase activating proteins 

GTPases are actually very inefficient at hydrolysing GTP so require GTPase activating 

proteins (GAPs) to catalyse the reaction (Leonard et al., 1998; Trahey and McCormick, 

1987; Zhang et al., 1999). GAPs allows for tight control over Rho signalling, as 

downstream signalling can be turned off rapidly and in response to upstream signals. 

There are between 59-70 predicted Rho GAPs in the human genome (based on 

sequence searches for the Rho GAP domain) of which half have been characterised in 

vivo or in vitro (Peck et al., 2002; Tcherkezian and Lamarche-Vane, 2007). In 

comparison there are only 22 Rho GTPases. Therefore multiple GAPs should activate 

a single GTPase, presumably in response to specific signalling pathways in specific 

cellular locations or tissues. Rho GAPs are themselves tightly controlled by a number 

of mechanisms, including protein-protein and protein-lipid interactions, phosphorylation 

and protein degradation (reviewed in(Tcherkezian and Lamarche-Vane, 2007)). 

 

Rho GAPs catalyse GTP hydrolysis by stabilising switch 1 and 2 in a reaction transition 

state and by contributing an arginine residue (‘arginine finger’) into nucleotide-binding 

site. In the transition state the GAP arginine residue stabilises the side chain of a 

GTPase glutamine residue (Gln63 in RhoA), to co-ordinate the correct orientation of 

the nucleophilic water molecule and the β and γ phosphates of GTP (Rittinger et al., 

1997). GAP binding accelerates GTPase activity by some 105 fold (Rittinger et al., 

1997). This GAP mechanism is a general mechanism that applies to other GTPase 

families within the Ras-superfamily. This is despite strikingly little structural similarity 

between the different GAPs for different GTPase families (Bourne, 1997).  
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1.1.3.3 Post-translational modifications of Rho GTPases 

The proper subcellular localisation of Rho GTPases, namely to different membrane 

compartments, is essential for their biological function. This is achieved through post 

translation modification with the addition of isoprenoid lipid moieties (Hancock et al., 

1991b; Hancock et al., 1990; Michaelson et al., 2001). The C terminus of Rho 

GTPases is a CAAX box, where C is Cysteine, A is an aliphatic residue and X any 

residue. The CAAX box undergoes a series of post-translational modifications 

(Hancock et al., 1991a). Firstly, a farnesyl or geranylgeranyl group is covalently 

attached to the cysteine residue, catalysed by farnesyltransferase or 

geranylgeranyltransferase, respectively (Clarke, 1992). The nature of the X residue in 

the CAAX box determines the lipid moiety added to the Rho protein. When X is Leu, 

Phe, Ile or Val the protein is geranylgeranylated, when X is Gln, Cys, Ser, Thr or Ala 

the protein is farnesylated (Boulter et al., 2012). RhoA, Rac1 and Cdc42 are all 

geranylgeranylated. Subsequently, the –AAX motif is removed by the Ras converting 

enzyme 1 (Rce1) endopeptidase. Finally the isoprenylated cysteine is methylated by 

isoprenylcysteine carboxyl methyltransferase (Imct) (Clarke, 1992). This results in a 

highly hydrophobic C terminus (whereas the remainder of the protein is hydrophilic) 

that targets the Rho GTPase to hydrophobic membranes. In addition, Rho GTPases 

contain a polybasic region (PBR) immediately upstream of the CAAX box (Hancock et 

al., 1990; Wheeler and Ridley, 2004). The PBR is a stretch of positively charged 

residues that associate with negative phospholipids in the membrane to help stabilise 

the Rho GTPase at the membrane (Hancock et al., 1990).  The PBR also directs 

localisation to different membrane compartments, depending on the electrostatic 

properties of the PBR and the composition of the membrane (Boulter et al., 2012). The 

region differs significantly within the Rho family and regulates specific localisation of 

family members to distinct membrane compartments (Michaelson et al., 2001).   

 

Rho GTPase can be further regulated by the addition of post-translational modifications, 

including, phosphorylation, oxidation, and ubiquitination/degradation. Phosphorylation 

can negatively regulate specific Rho proteins. Seven of the 22 Rho proteins, including 

RhoA, Cdc42 and RhoG, have a serine residue between the CAAX motif and PBR 

(Ser188 in RhoA), which can be phosphorylated (Wheeler and Ridley, 2004). This 

weakens the association of the Rho GTPase with the membrane as it introduces a 

negative charge adjacent to the PBR, which disturbs the electrostatic interactions with 

the negatively charged phospholipids (Ellerbroek et al., 2003). In addition, 
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phosphorylation at Ser188 increases the affinity of RhoGDI for RhoA and the GTPase 

is extracted from the membrane (Boulter et al., 2012; Garcia-Mata et al., 2011) 

(Ellerbroek et al., 2003).  

 

1.1.3.4 Guanine dissociation inhibitors 

90-95% of each Rho GTPase is maintained in the cytoplasm in a soluble inactive (GDP 

bound) state by Rho guanine dissociation inhibitors (GDIs) (Boulter et al., 2010). There 

are three RhoGDI proteins (RhoGDI1-3), RhoGDI1 is the most abundant and is 

ubiquitously expressed (DerMardirossian and Bokoch, 2005). The structural basis of 

RhoGDI1 and GTPase binding was elucidated from studies with RhoA, Rac1 and 

Cdc42 (Grizot et al., 2001; Hoffman et al., 2000; Longenecker et al., 1999). In a two-

step mechanism of binding, the GDI N-terminal regulatory arm interacts with the 

GTPase switch 1 and 2 regions.  Subsequently, the GTPase isoprenoid moiety 

burrows into a geranylgeranyl hydrophobic binding pocket at the C terminus of the GDI. 

In addition, an acidic patch in the hydrophobic binding pocket interacts with the 

GTPase polybasic region (Grizot et al., 2001; Hoffman et al., 2000; Longenecker et al., 

1999).  

 

RhoGDIs are classically perceived as negative regulators of Rho GTPase, because 

they preferentially bind the GDP bound GTPase and sequester GTPase in the 

cytoplasm away from the site of activation (Leonard et al., 1992). In addition, RhoGDIs 

may also provide an additional regulatory mechanism in Rho GTPase cycle, by 

functioning as chaperones to maintain a reservoir of GTPase ready for rapid activation 

in response to stimulation (Garcia-Mata et al., 2011).  In the absence of RhoGDI1, Rho 

GTPases are rapidly degraded, as mature GTPases are insoluble as a result of the 

hydrophobic prenylated C terminus (Boulter et al., 2010). The release of GDP bound 

GTPase from RhoGDI1 can regulated by lipid or protein interactions (Rose et al., 

2005b; Takahashi et al., 1997). In addition, phosphorylation of RhoGDI1 reduces its 

affinity for Rho GTPases, conversely phosphorylation of the GTPase at Ser188 (in 

RhoA) increases the affinity of the interaction (DerMardirossian et al., 2004; Ellerbroek 

et al., 2003). At any one time the pool of RhoGDI1 is bound to multiple different Rho 

GTPases, but it is not clear how an individual Rho protein can be released from the 

GDI in response to specific signals. It has been hypothesised that this is mediated by 



Chapter 1 Introduction 

 

 25 

phosphorylation at specific sites in the GDI or by recruitment to the correct cellular 

compartments (Garcia-Mata et al., 2011). 

 

1.2 RhoA and cell migration 

There are four main types of actin structures in the mesenchymal mode of cell 

migration; lamellipodia, filopodia, focal adhesions and stress fibres (Figure 1.4) (Ridley, 

2011). Lamellipodia and filopodia drive protrusion of the plasma membrane at the front 

of the cell, the leading edge. Focal adhesions form at the basal surface of the leading 

edge to form contracts with the substratum to provide traction to pull the cell forward. 

As the cell pulls forward focal adhesions mature and grow. Stress fibres provide 

contractile force to bring the rear of the cell forward towards the leading edge, this 

force also promotes detachment from the substrate at the rear. Rho GTPases play a 

significant role in regulating these actin structures during cell migration. Rac activates 

WAVE to stimulate Arp2/3 driven actin polymerisation at the leading edge to form 

dendritic arrays of actin filaments in lamellipodia (Eden et al., 2002; Ridley et al., 1992; 

Svitkina and Borisy, 1999; Vinzenz et al., 2012). Cdc42 also stimulates Arp2/3 

dependent actin polymerisation at the leading edge, but instead uses the nucleation-

promoting factor WASP/N-WASP to drive filopodia formation (Miki et al., 1998; Nobes 

and Hall, 1995; Rohatgi et al., 2000; Rohatgi et al., 1999). RhoA drives the formation 

and contraction of actin myosin arrays in stress fibres or in the cell cortex (Paterson et 

al., 1990; Ridley and Hall, 1992). Other Rho GTPases can also regulate these 

structures and this will be discussed in more detail in later sections (1.2.5).  
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Figure 1.4 Actin structures 
Three types of actin structures that are regulated by Rho GTPases in a migrating cell. 
Filopodia are bundles of unbranched actin filaments that are induced by Cdc42 using 
VASP, Formins and Arp2/3 activation by N-WASP. Lamellipodia are formed by a 
dendritic array of branched actin driven by Rac activation of Arp2/3 actin 
polymerisation via WAVE. Stress fibres comprised of    actin and myosin II filaments 
are formed in response to RhoA signalling to ROCK and mDia.  
 
 

1.2.1 RhoA signalling and cell migration 

RhoA regulates the formation and contraction of actin stress fibres and contraction of 

the cell cortex through synergistic activation of multiple signalling pathways (Figure 1.4). 

RhoA stimulates the activity of the kinase ROCK, which then phosphorylates myosin 

light chain (MLC) and MLC phosphatase (Bishop and Hall, 2000). Phosphorylation of 

MLC leads to the activation of the non-muscle myosin II motor protein and the 

consequential contraction of actin fibres in actin-myosin bundles (Vicente-Manzanares 

et al., 2009). Additionally, ROCK activates LIM kinase (LIMK), which in turns 

inactivates cofilin leading to actin filament stabilisation (Bishop and Hall, 2000).  RhoA 

can regulate the de novo formation and elongation of actin filaments by activating the 

mammalian diaphanous formins (mDia1-3) (Goode and Eck, 2007). Each of the 

downstream signalling pathways illustrated in Figure 1.5 will now be discussed in more 

detail. Although this section specifies signalling downstream of RhoA, the same can be 

considered to be true downstream of RhoB and RhoC as the three proteins share 85% 

sequence identity and bind to ROCK and mDia1 (Ihara et al., 1998; Rose et al., 2005b).  
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Figure 1.5 RhoA signalling in stress fibre formation 
GTP bound RhoA binds to and activates ROCK and mDia. ROCK phosphorylates MLC 
and MYPT to increase the levels of phosphorylated MLC and stimulates actin myosin 
fibre assembly and contraction. ROCK also phosphorylates LIMK, which in turn 
phosphorylates cofilin and prevents cofilin from severing actin filaments. mDia 
nucleates actin filaments and remains bound to the barbed end to elongate actin 
filaments. Adapted with permission from The Biochemical Journal. Bishop, A.L., and 
Hall, A., Rho GTPases and their effector proteins. 2000; 348 Pt 2, 241-255 © the 
Biochemical Society  

 

1.2.2 RhoA and ROCK 

The two ROCK proteins, ROCKI (Rokβ/p160 ROCK) and ROCKII (Rokα/Rho kinase), 

were initially identified as RhoA interacting proteins that preferentially interact with GTP 

bound RhoA (Ishizaki et al., 1996; Leung et al., 1995; Matsui et al., 1996; Nakagawa et 

al., 1996). The two proteins possess a N-terminal serine/threonine kinase domain, a 

central α-helical coiled-coil domain with an internal Rho binding domain (RBD) and a 

C-terminal pleckstrin homology domain (PH) (Figure 1.6 A) (Fujisawa et al., 1996; 
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Ishizaki et al., 1996; Matsui et al., 1996; Nakagawa et al., 1996). ROCKI and ROCKII 

share 64% overall sequence identity with 92% identity in the kinase domains  (Leung et 

al., 1996; Nakagawa et al., 1996). ROCK is believed to exist in an inactive auto 

inhibited conformation as the C-terminal portion, containing the RBD and PH domains, 

inhibits kinase activity and deletion of the PH domain results in constitutively active 

ROCK (Amano et al., 1997; Amano et al., 1999; Ishizaki et al., 1996; Leung et al., 

1995). It has been suggested that this intramolecular interaction is disrupted upon 

binding of RhoA to the RBD (Amano et al., 1997; Amano et al., 1999; Ishizaki et al., 

1996; Leung et al., 1995) (Figure 1.6 B). The coiled-coil region mediates the 

dimerization of ROCK as a parallel dimer, and structural analysis of this region 

revealed a discontinuity in the coiled-coil dimer that could act as a hinge to allow the 

putative folded auto inhibitory conformation (Figure 1.6 B)(Shimizu et al., 2003; Tu et 

al., 2011). The RBD resides within the coiled-coil domain and binds to two RhoA 

molecules as a coiled-coil dimer using a combination of hydrophobic and electrostatic 

interactions. One face of the coiled-coil dimer interacts with the switch 1 and 2 regions 

of one RhoA molecule, while complementary interactions are formed on the opposite 

face of the dimer with a second RhoA molecule (Dvorsky et al., 2004). The minimal 

RBD of ROCK1 is a 13-residue motif (residues 998-1010), which is highly conserved 

between ROCK proteins from other organisms (Figure 1.6 A) (Dvorsky et al., 2004). In 

addition to RhoA, both RhoB and RhoC can also directly interact with ROCKII (Leung 

et al., 1996). The residues through which RhoA interacts with ROCK1 are entirely 

conserved with RhoB and RhoC, suggesting that these proteins interact with ROCK 

through the same mechanism (Dvorsky et al., 2004).  
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Figure 1.6 The activation of ROCK 
A. ROCK proteins are comprised of a kinase domain, a coiled-coil region, a Rho 
binding domain (RBD) and a pleckstrin homology domain. B. The N-terminal kinase 
domain is inhibited by the C-terminal RBD and PH domains. Auto-inhibition is relieved 
when ROCK binds to GTP bound RhoA. Both A and B are adapted with permission 
from Macmillan Publishers Ltd: Riento, K and Ridley, A. Nat Rev Mol Cell Biol. 2003 
Jun;4(6):446-56.  Copyright 2003 
 
 

1.2.2.1 ROCK and Actin myosin fibre assembly 

Stress fibres are actin myosin structures that loosely resemble the sarcomeric arrays in 

muscle cells. The fibres comprise approximately 10-30 actin filaments per fibre that are 

bundled by crosslinking proteins, such as α-actinin, and bipolar non-muscle myosin II 

filaments (Cramer et al., 1997; Verkhovsky and Borisy, 1993). α-actinin and Myosin II 

array between actin filaments in alternating bands, and α-actinin crosslinking dictates 

spacing between actin filaments to allow the insertion of myosin bundles (Langanger et 

al., 1986). The polarity of the actin filaments is generally ordered, such that the fast-

growing/barbed ends are pointed outwards (Cramer et al., 1997). Myosin filaments 

progressively walk along actin filaments towards the barbed ends in an ATP dependent 

manner to generate contractile force by dragging actin filaments of opposite polarity 
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towards each other (Figure 1.7) (Vicente-Manzanares et al., 2009). Functional myosin 

II is a complex consisting of two heavy chains, two essential light chains (ELC) and two 

regulatory light chains (MRLC or MLC). The heavy chains have a globular head 

domain, a coiled-coil rod dimerization domain and a non-helical tail. Myosin II 

molecules oligomerize using the rod domain into bipolar filaments (Vicente-

Manzanares et al., 2009). The ELC and MLC bind to the heavy chain at the neck 

region between the head and rod domains (Vicente-Manzanares et al., 2009). The 

heavy chain head is an ATPase motor domain and responsible for actin binding and 

progressive motility along the filament. The activity of myosin II is regulated by 

phosphorylation of MLC predominantly at serine 19 but additionally threonine 18 (Ikebe 

et al., 1988). Phosphorylation of MLC alters the conformation of myosin heads and 

consequently increases the ATPase activity of the motor (Amano et al., 1996a; Sellers 

et al., 1982).  Non-phosphorylated myosin II monomers do not assemble into filaments, 

as they are folded by head-head and head-tail interactions (Burgess et al., 2007). 

Phosphorylation of MLC disrupts the folding and enables the formation of filaments 

comprising 14-20 myosin molecules that can interact with actin (Li et al., 2000; Vicente-

Manzanares et al., 2009). Several kinases can phosphorylate MLC including ROCK 

and myosin light chain kinase (MLCK) (Amano et al., 1996a). ROCK can also indirectly 

increase MLC phosphorylation as it phosphorylates and inhibits the myosin 

phosphatase-targeting subunit 1 (MYPT1), of the major myosin light chain 

phosphatase, on Thr696 and Thr853 (Kawano et al., 1999). To further exert control 

over the system, ROCK phosphorylates and activates myosin light chain phosphatase 

inhibitor CPI-17 (Kitazawa et al., 2000). In addition, ROCK phosphorylates ZIPK, which 

in turn phosphorylates CPI-17, MLC and MYPT (Hagerty et al., 2007).  
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Figure 1.7 Actin stress fibres 
Myosin II molecules (with phosphorylated MLC) assemble into bipolar bundles. In 
stress fibres, the actin filaments are arranged in an antiparallel fashion, with barbed 
ends directed outwards.  The globular head domains of the myosin II bind to F-actin 
filaments and move progressively, in an ATP-dependent manner, towards the barbed 
end of actin filaments (the direction of travel is shown by green arrows), this drags 
antiparallel actin filaments towards each other resulting in contractile force (direction of 
actin filament contraction is represented by red arrows). Adapted with permission from 
Macmillan Publishers Ltd: Vicente-Manzanares, M., Ma, X., Adelstein, R.S., and 
Horwitz, A.R. Nat Rev Mol Cell Biol. 2009 10:778-790.  Copyright 2003 

1.2.2.2 ROCK and the stabilisation of actin filaments 

Monomeric actin (G-actin) is an ATP/ADP interacting globular protein of 42kDa, which 

can assemble into filamentous polymers (F-actin) (Dominguez and Holmes, 2011). F-

actin comprises two chains of G-actin that are twisted into a helical filament. F-actin 

exhibits structural polarity with a barbed end and a pointed end, as defined from the 

appearance of filaments decorated with Heavy meromyosin subfragment 1 by electron 

microscopy (Huxley, 1963; Woodrum et al., 1975). G-actin monomers preferentially 

associate with the barbed end of the filament (Dominguez and Holmes, 2011). Upon 

binding of G-actin to the barbed end of the filament ATP is hydrolysed to ADP and Pi, 

following which Pi slowly dissociates and is released (Dominguez and Holmes, 2011). 

Release of Pi alters the local structural properties of the filament and facilitates the 

dissociation of ADP bound actin monomers from the pointed end (Dominguez and 

Holmes, 2011).  

 

Cofilin-1 is the ubiquitously expressed member of actin depolymerizing factor 

(ADF)/cofilin family. Cofilin associates with actin filaments by binding to ADP-actin. 

There are two proposed activities of cofilin. Firstly, cofillin is proposed to increase the 

rate of dissociation of G-actin at the pointed end by facilitating the release of Pi. This 

increases the concentration of free G-actin available for ADP:ATP exchange and 
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subsequent addition to the barbed end, indirectly stimulating filament growth (Carlier et 

al., 1997). Secondly, cofillin binding to ADP bound actin alters the intrinsic twist of the 

filament resulting in a weakened filament more susceptible to severing; leading to more 

free barbed ends available for growth (Ichetovkin et al., 2002; McGough et al., 1997). 

Filaments servered by cofilin are good substrates for Arp2/3 dependent actin 

polymerisation (Ichetovkin et al., 2002). Cofilin activity can be regulated by 

phosphorylation and subsequent de-phosphorylation (Arber et al., 1998; Moriyama et 

al., 1996). The LIM kinases, LIMK1 and LIMK2, phosphorylate cofilin on serine 3, this 

inhibits F-actin binding and the actin severing activity by cofilin (Arber et al., 1998; 

Moriyama et al., 1996). The RhoA effector ROCK phosphorylates LIMK1 and LIMK2 on 

a conserved threonine to stimulate kinase activity (Amano et al., 2001; Sumi et al., 

2001; Sumi et al., 1999). Increased LIMK activity results in increased stress fibre 

formation, focal adhesions and membrane blebbing, all structures implicated in Rho-

ROCK signalling (Sumi et al., 2001; Sumi et al., 1999). In these actin structures, cofilin 

activity may be detrimental and a stable actin filament is preferential to dynamic 

branched actin networks.  

 

1.2.3 RhoA and DRF 

The formin family comprises 15 members in mammals, and is subdivided into seven 

groups, the Diaphanous formins (mDia), the formin-related proteins identified in 

leucocytes (FRL/FMNL), the dishevelled-associated activators of morphogenesis 

(DAAM), Delphilin, the inverted formins (INF), the formin homology domain-containing 

proteins (FHOD) and the original namesake formins (FNM) (Goode and Eck, 2007). 

The common defining features of the formin family are a C-terminal 400-residue 

Formin homology-2 (FH2) domain and an adjacent proline-rich FH1 domain 

(Campellone and Welch, 2010). The DRFs, which include the mDia, DAAM and FRL 

subfamilies, are the best-studied members of the formin family (Goode and Eck, 2007). 

DRFs exist in an auto-inhibited conformation through an intramolecular interaction 

between the C-terminal Diaphanous autoinhibitory domain (DAD) and the N-terminal 

regulatory domain, which consists of a Rho binding domain (RBD) and a Diaphanous-

inhibitory domain (DID) (Alberts, 2001; Li and Higgs, 2005; Rose et al., 2005a). In 

mDia1, the DAD interacts with the N-terminal diaphanous inhibitor domain (DID), which 

occludes the actin binding surfaces of the FH2 domain (Maiti et al., 2012). Active Rho 

binds to the GBD domain, and directly occludes the DAD binding site whilst also 
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altering the conformation of the GBD and neighbouring DID (Figure 1.8) (Nezami et al., 

2006; Rose et al., 2005a). This interaction is not completely sufficient to activate DRFs 

raising the possibility that other co-operative signals are required (Maiti et al., 2012). 

Outside of the FH1 and FH2 domains the formin family are quite divergent but the 

auto-inhibition mechanism seems to be well conserved (Campellone and Welch, 2010). 

Formins nucleate actin filaments as a dimer using these FH1 and FH2 domains 

(Pruyne et al., 2002; Sagot et al., 2002). The FH2 domains homo-dimerise to form a 

donut structure that encircles the actin dimer or growing actin filament and each FH2 

domain binds to an actin monomer (Otomo et al., 2005; Xu et al., 2004). The FH1 

domain binds to profilin:actin dimers to direct and orient G-actin towards the FH2 dimer 

and actin filament (Figure 1.8) (Paul and Pollard, 2008). Formins can nucleate 

filaments and promote filament elongation, as they remain progressively bound to 

barbed ends of actin filament. This has an additional benefit of protecting the barbed 

ends from capping proteins and facilitates the generation of long, unbranched filaments 

(Kovar and Pollard, 2004; Pruyne et al., 2002; Zigmond et al., 2003).  

 

 
Figure 1.8 The domain structure of mDia1 
A. Formins exist as a dimer and contains a Rho binding domain (RBD), a Diaphanous 
inhibitory domain (DIF), a dimerization domain (DD), coiled coil domain and two formin 
homology domains (FH1 and FH2). The FH2 domains homo-dimerise in a donut 
conformation. The DID and DAD interact in an auto-inhibited conformation, this is 
disrupted upon binding of Rho to the RBD. B. The FH1 domains orient profilin:actin 
complexes towards the FH2 donut and growing actin filament. The FH2 donut encircles 
the growing filament and stays associated with the barbed end as the filament grows. 
Adapted with permission from Macmillan Publishers Ltd: Chesarone, M. et al., (2010). 
Nat Rev Mol Cell Biol. 2010 Jan;11(1):62-74. Copyright 2010 
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1.2.4 Cortical contraction and blebbing 

In addition to their role in stress fibre contraction, actin and myosin II play an important 

role in the cell cortex beneath the plasma membrane, which is a thin actin mesh 

intrinsically linked to the membrane with linker proteins. The mesh is under tension due 

to myosin II driven actin contraction, this exerts hydrostatic pressure on the cell to 

maintain cell shape or drive cell shape changes required for various biological 

functions such as cytokinesis and locomotion (Bray and White, 1988; Charras et al., 

2006; Morone et al., 2006). The cortex can become highly contractile under Rho-

ROCK signalling and force the cell into a rounded morphology. The previous section 

highlighted the four types of actin structures that contribute to mesenchymal cell 

migration; lamellipodia, filopodia, stress fibres and focal adhesions. In contrast, 

rounded migration (also often called amoeboid migration) is dependent on membrane 

bleb protrusions that are formed by myosin II dependent contraction of the actin cortex 

(Friedl and Wolf, 2003; Lorentzen et al., 2011; Pinner and Sahai, 2008a; Wolf et al., 

2003). This section will focus on membrane blebbing during cell contraction and its 

contribution to cell migration in vivo. 

 

1.2.4.1 Plasma membrane blebbing 

Membrane blebs are transient spherical membrane protrusions filled with cytosol and 

initially devoid of actin cortex. The bleb life cycle consist of four distinct steps, 

nucleation, growth, stabilisation and retraction. The nucleation of a bleb occurs when 

the membrane splits from the underlying actin cortex or through localised rupture of the 

cortex itself (Figure 1.9) (Charras et al., 2005; Keller et al., 2002; Paluch et al., 2005). 

In both cases, bleb nucleation results from an intracellular pressure build up induced by 

actin myosin II dependent cell contraction (Charras et al., 2008; Tinevez et al., 2009). 

The hydrostatic pressure is not equalised quickly enough throughout the cell and a 

bleb forms by rupture or tearing at sites of localised pressure build up (Charras et al., 

2005). Blebs can also nucleate at points where the cortex or membrane-actin adhesion 

is weak, suggesting that the properties of the cortex are not uniform (Paluch et al., 

2006). The site of nucleation only becomes a bleb if it reaches a threshold size. This is 

dependent on the extent of cortical tension, the strength of actin-membrane adhesion 

and membrane rigidity (Charras et al., 2008). Following nucleation, cytosol is forced 
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though the rupture point by cortical contraction. The bleb membrane grows to 

accommodate cytosol movement using a bulk flow of lipids to the bleb membrane and 

additional tearing away from the cortex at the bleb neck. The force of bleb expansion is 

opposed by extracellular osmotic pressure and membrane rigidity. The bleb membrane 

is initially devoid of cell cortex and therefore has low rigidity (Charras et al., 2006). Bleb 

expansion slows and stops when a new actin cortex assembles beneath the plasma 

membrane, which lends rigidity to the membrane. Bleb expansion will also slow when 

intracellular local hydrostatic pressure no longer exceeds the opposing forces (Charras 

et al., 2008). The actin cortex reassembles sequentially. Initially actin membrane 

linkers such as ezrin and moesin are recruited to the bleb membrane. Actin is then 

recruited, quickly followed by actin crosslinking proteins α-actinin, tropomyosin and 

coronin to form a layered actin mesh beneath the bleb membrane (Charras et al., 

2006). It is not yet known how actin filaments form in the new cortex. Arp2/3 and 

mDia1 are not localised to the bleb membrane so perhaps it is not through de novo 

actin polymerisation, although mDia2 may play a role (Charras et al., 2006; Eisenmann 

et al., 2007). Finally, myosin II arrives and drives contraction of the newly formed actin 

cortex. The membrane wrinkles during retraction due to crumpling of the underlying 

actin cortex. This is mediated by increasing recruitment of myosin II motors during 

retraction. In addition, to allow cortex crumpling, localised spots of the actin mesh must 

collapse because of the transient loss and reattachment of actin bundling proteins 

(Charras et al., 2008).  
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Figure 1.9 The lifecycle of a bleb 
The four steps of the bleb lifecycle are nucleation, growth, stabilisation and retraction. 
Blebs nucleate following localised detachment of the membrane from the actin cortex 
(left hand image) or localised rupture of the actin cortex (right hand image). Taken with 
permission from Macmillan Publishers Ltd: Charras, G and Paluch, E. Nat Rev Mol Cell 
Biol. 2008 Sep;9(9):730-6. Copyright 2008 
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1.2.4.2 Cell contraction and blebbing in vivo 

Cancer cell migration in vivo is highly heterogeneous with migrating cells adopting a 

variety of shapes and modes of migration from mesenchymal to rounded (Friedl and 

Wolf, 2010). Mesechymal is the classically defined mode of migration where the 

migratory protrusive force is provided by Arp2/3 dependent lamellipodia formation. 

Cells are tightly adhered to the substrate and require ventral stress fibres to contract 

the cell body as the cell moves forward. This type of migration requires degradation of 

the surrounding extracellular matrix (ECM) by matrix metalloproteases (MMPs) (Friedl 

and Wolf, 2003; Sahai and Marshall, 2003). Lamellipodia require WAVE dependent 

activation of Arp2/3, therefore mesenchymal migration often correlates with high Rac 

activity (Bergert et al., 2012; Sanz-Moreno et al., 2008). Rounded migration in contrast 

is characterised by little adherence to the extracellular substrate, a rounded 

morphology and plasma membrane blebbing (Friedl and Wolf, 2010). This mode of 

migration is driven by RhoA-ROCK activation of myosin II mediated contraction of the 

cortex (Gutjahr et al., 2005; Pinner and Sahai, 2008b; Sahai and Marshall, 2003; Sanz-

Moreno et al., 2008). Rounded migration is independent of proteolytic degradation of 

the ECM (Wolf et al., 2003). This is because, in contrast to lamellipodia in 

mesenchymal migration, the flexible, actin-devoid blebs are able to squeeze through 

small gaps in the ECM. In order to drive directional cell migration in vivo blebbing must 

be polarised. Polarisation of blebbing can be established by altering the local 

properties of the cortex, because bleb nucleation is influenced by the strength of 

membrane cortex attachments (Charras et al., 2008). Ezrin is an essential membrane-

actin linker protein. The overexpression of activated ezrin can prevent bleb nucleation. 

In contrast, the FERM domain of ezrin and dominant negative ezrin can induce 

frequent large distended blebs (Charras et al., 2008; Charras et al., 2006; Diz-Munoz 

et al., 2010). In cancer cells lines that exhibited persistent movement, ezrin was 

frequently localised to the rear of the cell while the leading edge was relatively devoid 

of ezrin. These cells displayed polarised cell blebbing in areas devoid of ezrin, 

presumably because membrane attachment to the cortex is weaker here (Lorentzen et 

al., 2011; Rossy et al., 2007). Alternatively, polarised blebbing might also occur 

through localised weakening of the actin cortex, as blebs can also nucleate by cortex 

rupture (Tinevez et al., 2009).  Polarisation of blebbing could also be mediated by 

localised changes in intracellular hydrostatic pressure, membrane rigidity or 
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extracellular osmolality (Charras et al., 2005). A polarised blebbing leading edge is 

propagated because the newly formed cortex and membrane attachments are weak, 

as highlighted by the appearance of blebs on blebs or new blebs in close proximity to 

an earlier bleb (Charras and Paluch, 2008; Charras, 2008).   

 

As mentioned, numerous studies attribute mesenchymal migration or rounded 

migration to Rac or Rho signalling, respectively (Gutjahr et al., 2005; Pinner and Sahai, 

2008b; Sahai and Marshall, 2003; Sanz-Moreno et al., 2008). However, it is often not 

as simple as this as the distinction between mesenchymal and rounded migration 

methods is blurred. For example, cells moving by rounded migration can form 

lamellipodia, or highly adherent cells can bleb at the leading edge. It is also apparent 

that cells can switch migration modes to adapt to the extracellular environment or in 

response to a change in upstream signalling (Bergert et al., 2012; Sahai and Marshall, 

2003). This is very important for metastatic cancer cells, as during the processes of 

extravasation and subsequent colonisation of new tissues the migrating cell will 

encounter very different extracellular environments (Friedl and Wolf, 2010).  
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1.3 Rho GTPase subfamilies 

Since the discovery of the first Rho protein, the family has expanded to encompass 22 

members. The Rho family is divided into smaller subfamilies based on sequence 

homology, structure and biological function; Rho-A related subfamily, Rac1-related 

family, Cdc42-related family, the Rnd family, the Rho BTB subfamily, and the Miro 

subfamily and an additional three proteins, Rif, RhoD and RhoH that do not fall into a 

particular family (Wennerberg and Der, 2004). This next section will describe the 

subfamilies and their biological function with particular reference to cell migration.  

 

 
 
Figure 1.10 The phylogenetic tree of Rho GTPases 
The 22 members of the Rho GTPases family are divided into six sub families based on 
amino acid sequence; RhoA-related family (dark blue), Rac1-related family (red), 
Cdc42-related family (yellow), Rnd family (green), RhoBTB family (light blue) and Miro 
family (purple). RhoH, Rif and RhoD are sufficiently different that they do not fall into a 
specific subfamily. Reproduced with permission from Journal of Cell Science 
Wennerberg, K., and Der, C.J. (2004). J Cell Sci 117, 1301-1312. 
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1.3.1.1 RhoA-related proteins  

RhoA, RhoB and RhoC share 85% amino acid sequence identity (Figure 1.11) 

(Wheeler and Ridley, 2004). The three Rho proteins likely arose by gene duplication, 

but have diverged and so are not functionally redundant. The three proteins only differ 

substantially in the C terminus around the PBR and the CAAX box (Figure 1.11) 

(Wheeler and Ridley, 2004). RhoA and RhoC are geranylgeranylated, which directs 

plasma membrane localisation upon release from Rho GDI (Adamson et al., 1992a; 

Michaelson et al., 2001). In contrast, RhoB can be geranylgeranylated or farnesylated 

(Adamson et al., 1992a). In addition RhoB has additional cysteine residues upstream 

of CAAX that permits palmitoylation (Adamson et al., 1992a). RhoB is localised to late 

endosomes, lysosomes and the plasma membrane (Adamson et al., 1992b). This is 

dependent on the isoprenoid modification, as the proportion of RhoB within different 

subcellular compartment changes if the farnesyltransferase is inhibited (Wherlock et al., 

2004).  

 

Differential localisation alone will determine how Rho proteins are regulated and their 

downstream biological functions. However, the principle way Rho proteins mediate 

different effects is by specific regulation by GEFs and GAPs and binding to different 

effectors molecules. Therefore, it is important to understand how regulatory molecules 

and effectors distinguish RhoA, RhoB and RhoC. GEFs and GAPs interact with Rho 

GTPases via the switch 1. In this region, the three proteins have almost identical 

sequences, with only a single change for each of RhoB (Q29E) and RhoC (V43I) 

(Figure 1.11) (Wheeler and Ridley, 2004). This small change may affect binding 

specificities for regulatory proteins and therefore, may allow for specific signalling. 

Structural analysis of RhoA in complex with the LARG, PDZ-RhoGEF, or p63RhoGEF 

revealed that Val43 participates in van der Waals interactions at the GTPase:GEF 

interface (Chen et al., 2010; Kristelly et al., 2004; Lutz et al., 2007; Oleksy et al., 2006). 

A bulkier isoleucine residue at this point could sterically block the interaction between 

the GTPase and GEF. Indeed, GEF XPLN interacts with RhoA and RhoB but not RhoC, 

the distinguishing feature being the isoleucine residue at position 43 in RhoC (Arthur et 

al., 2002; Sloan et al., 2012).  

 

As with GEFs and GAPs, Rho effectors bind over the switch 1 and 2 of Rho. The X-ray 

crystal structures of PKN1 or ROCK1, in complex with activated RhoA (G14V mutation 

or with the GTP mimic, GppNHp), and mDia1 in complex with GppNHp bound RhoC 
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indicated the specific residues required for effector binding (Dvorsky et al., 2004; 

Maesaki et al., 1999; Rose et al., 2005a). The Rho residues that mediate binding to 

ROCK1 and mDia1 are entirely conserved between RhoA, RhoB and RhoC (Dvorsky 

et al., 2004; Rose et al., 2005a), suggesting that RhoA-related family bind effectors in 

the same way. However, Val43 in RhoA contributes to the interaction with PKN1 

(Maesaki et al., 1999). The importance of this residue for PKN binding is yet to be 

determined as the possibility of a direct interaction between PKN1 and RhoC has not 

been studied (Amano et al., 1996b; Watanabe et al., 1996). More recently, the 

structure of RhoC with two GTP analogues (GppNHp or GTPγS) was determined (Dias 

and Cerione, 2007). This analysis revealed that RhoC had two putative activation 

conformations; a partially active conformation where only switch 2 is moved relative to 

RhoC:GDP and a fully active conformation which is analogous to the available RhoA 

GTP bound structure (Dias and Cerione, 2007; Ihara et al., 1998). If these two distinct 

conformations exist in vivo then this could form the basis of effector specificity for RhoA 

and RhoC. However, this variation could be an artefact of the different GTP analogues 

used (Dias and Cerione, 2007; Ihara et al., 1998). In addition, a full comparison 

between RhoA and RhoC is not possible because structural analysis of RhoA with both 

GTP analogues has not been conducted (Ihara et al., 1998).  

 

Historically, it has been difficult to discern the individual effects of the three proteins, 

because many of the early studies focused on RhoA only, or used non-specific 

reagents such as the C3 enzyme (which targets all three proteins) and constitutively 

active mutants. These methods assigned the general functions of cell contraction, 

stress fibre formation and focal adhesion regulation to this family (Aktories et al., 1989; 

Aktories and Hall, 1989; Aspenstrom et al., 2004; Ridley and Hall, 1992). However, 

more recent studies have begun to delineate specific functions of RhoA, RhoB or RhoC 

with regards to cell migration and cancer.  
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Figure 1.11 Sequence alignment of RhoA-related subfamily 
The conserved residues between the three proteins are in white, while any differences 
are highlighted in yellow. The Val43Ile substitution is shown by the black box. The α 
helices are highlight by green lines, β strands by orange lines. The P loop, switch 1 and 
switch 2 regions are highlighted in blue (Ihara et al., 1998). Black stars show the 
residues that participate in ROCK1 binding (Dvorsky et al., 2004). Boxed in red are the 
residues that can be mutated to give constitutively active and dominant negative 
mutants. 
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1.3.1.1.1 RhoA and RhoC 

The loss of either RhoA or RhoC, either by genetic ablation or siRNA-mediated 

depletion, reduces the ability of cancer cell lines in culture to migrate and invade 

(Hakem et al., 2005; Kitzing et al., 2010; Sahai and Marshall, 2003; Vega et al., 2011). 

While, the overexpression of either RhoA or RhoC in tumour cells significantly 

increased invasion in vitro (Horiuchi et al., 2003; Iiizumi et al., 2008). This indicates that 

RhoA and RhoC are important for cancer cell migration and unsurprisingly, RhoA and 

RhoC are associated with metastatic potential of tumours (Iiizumi et al., 2008; Kamai et 

al., 2003a). Of the three Rho proteins, RhoC is most often associated with migration 

and invasion of tumours. RhoC up-regulation has been shown to correlate with highly 

metastatic cells, following in vivo selection of metastases derived from a poorly 

metastatic cell line (Clark et al., 2000). In contrast, RhoA expression was unchanged in 

the selected cell lines. In addition, ectopic expression of RhoC, but not RhoA, drives 

metastasis (Clark et al., 2000). High RhoC expression has been shown in a variety of 

human cancers including breast and head and neck cancers (Islam et al., 2009; 

Rosenthal et al., 2012). In other tumour types, high RhoC correlates with high ROCK 

expression, and this indicates poor prognosis (Abe et al., 2008; Kamai et al., 2003b). 

RhoA mRNA and protein levels are also elevated in certain cancers, and this is 

associated with muscle invasion and metastasis (Kamai et al., 2003a). Therefore, 

mRNA levels of RhoA and RhoC could be a useful prognostic markers (Horiuchi et al., 

2003; Kamai et al., 2003a).  

 

RhoA presumably regulates migration and invasion through the mechanisms described 

previously, such as ROCK and mDia1 signalling. RhoC also interacts directly with 

ROCK and mDia1 and so is likely to regulate migration through the same mechanisms 

(Leung et al., 1996; Rose et al., 2005a).  RhoA and RhoC appear to have many 

overlapping functions with regards to cell migration, but some examples of their unique 

functions have been uncovered. Depletion of RhoA or RhoC in the prostate cancer cell 

line, PC3, caused distinctive cell morphologies and had differential effects on migration 

and invasion in cell culture models (Vega et al., 2011). Loss of RhoA induced an 

elongated morphology of cells and increased migration and invasion, this was 

phenocopied by the loss of both ROCK1 and ROCK2 (Vega et al., 2011). In contrast, 

siRNA of RhoC induced cell spreading and inhibited cell migration and invasion. These 

effects were mediated by newly identified specific effector for RhoC, FMNL3, but did 

not involve ROCK1 or ROCK2 (Vega et al., 2011). However, the independence of 
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ROCK in this RhoC phenotype is not universal. ROCK interacts more strongly with 

RhoC than with RhoA. This appears to be particularly important in ROCK mediated 

disruption of adherens junctions, where RhoC is more effective than RhoA in regulating 

ROCK activity (Sahai and Marshall, 2002). Another formin family member, FMNL2, 

interacts with RhoC only and is proposed as another specific effector of RhoC, driving 

amoeboid invasion in vitro (Kitzing et al., 2010).  

 

Invasive cancer cell lines in cell culture form protrusive F-actin structures called 

invadopodia that have capacity to degrade the local basement membrane matrix 

(reviewed in (Murphy and Courtneidge, 2011)). These structures are believed to aid 

invasion and intravasation in vivo. Both RhoA and RhoC can regulate the ability of 

invadopodia to degrade the matrix, albeit by different mechanisms, therefore this might 

represent another mechanism by which the proteins regulate cancer cell invasion 

(Sakurai-Yageta et al., 2008). RhoA regulates IQGAP1 and exocyst mediated delivery 

of matrix metalloproteases (MMPs) to the invadopodia tip (Bravo-Cordero et al., 2011; 

Sakurai-Yageta et al., 2008). In contrast, RhoC can spatially restrict invadopodia 

formation by activating ROCK and LIMK signalling to inhibit cofilin mediated actin-

severing ability. This improves the efficiency of invadopodia protrusion (Bravo-Cordero 

et al., 2011).  

 

1.3.1.1.2 RhoB 

RhoB has the most diverse function in the RhoA-related subfamily. RhoB has a crucial 

pro-apoptotic role in response to DNA damage and mitotic block in transformed cells 

(Liu et al., 2001; Liu et al., 2011). RhoA and RhoC activity is predominantly regulated 

by GEFs, GAPs and post-translational modifications (Wheeler and Ridley, 2004). In 

contrast, RhoB levels are endogenously low and the protein has a short half-life, this 

allows for the regulation of RhoB activity mainly at the level of transcription (Zalcman et 

al., 1995). RhoB expression is quickly activated in response to UV, cytokines, growth 

factors and DNA damaging agents to mediate apoptosis (reviewed in (Huang and 

Prendergast, 2006)).  

 

Several studies have implicated RhoB in cell migration. RhoB-/- macrophages exhibit 

reduced adhesion and cell spreading (Wheeler and Ridley, 2007). RNAi mediated loss 

of RhoB, resulted in small, rounded cells that were less well adhered to the substrate 
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and displayed abnormal focal adhesion dynamics (Vega et al., 2012). In both situations, 

this phenotype was attributed to the role of RhoB in endosome trafficking (Vega et al., 

2012; Wheeler and Ridley, 2007). RhoB is recruited to endosomes with its putative 

effectors mDia1 and PKN1 (Fernandez-Borja et al., 2005; Mellor et al., 1998). It has 

been shown that RhoB regulates EGF receptor trafficking by linking actin 

polymerisation to endosomes through mDia1 (Fernandez-Borja et al., 2005; Mellor et 

al., 1998). Loss of RhoB results in decreased cell surface expression of β1, β2 and β3 

integrins as a result of reduced membrane trafficking (Vega et al., 2012; Wheeler and 

Ridley, 2007). Therefore, RhoB indirectly regulates cell adhesion, spreading and 

migration by regulating membrane trafficking. In cancer, RhoB acts as a migration 

suppressor and decreased expression often correlates with increased invasion and 

metastasis (Forget et al., 2002; Mazieres et al., 2004).  
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Figure 1.12 Sequence alignment of all members of the Rho GTPase family 
The Rho proteins sequences were aligned by ClustalW. Highlighted in light blue are 
the residues that are important for GTP hydrolysis. The Rho insert domain is in red. 
The CAAX boxes are highlighted in yellow, blue and green for proteins that are 
geranylgeranylated, farnesylated or geranylgeranylated and farnesylated, respectively.  
Only the sequences that align with the rest of the family are shown for RhoBTB-1, 
RhoBTB-2, Miro-1 and Miro-2. Reproduced with permission from Journal of Cell 
Science Wennerberg, K., and Der, C.J. (2004). J Cell Sci 117, 1301-1312. 
  



Chapter 1 Introduction 

 

 47 

1.3.1.2 Rac1-related proteins 

This sub family comprises Rac1, Rac2, Rac3 and RhoG. Many of the functions 

attributed to this family arise principally from studies on Rac1. Rac1-3 have 88% 

sequence identity, with the differences between the proteins occurring in the PBR and 

CAAX boxes (Figure 1.12). RhoG is more divergent with 72% sequence identity to 

Rac1 (Vincent et al., 1992; Wennerberg and Der, 2004). The overexpression of 

constitutively active mutants of all four proteins can stimulate lamellipodia (Aspenstrom 

et al., 2004; Didsbury et al., 1989). Rac1 stimulates actin nucleation for lamellipodia by 

activating the WAVE complex (WRC) (Eden et al., 2002). It is assumed that the other 

Rac proteins are also capable of activating the WRC to induce lamellipodia formation 

(Aspenstrom et al., 2004). Rac1 is ubiquitously expressed and the genetic knockout in 

mice is embryonic lethal, because of motility and adhesion defects in the germ layers 

during gastrulation (Sugihara et al., 1998). In contrast, Rac2 is only expressed in cells 

of a haematopoietic lineage (Roberts et al., 1999). Rac2 knockout mice develop 

normally but are susceptible to infection and have haematopoietic cell defects, 

including reduced neutrophil migration and NADPH oxidase function (Roberts et al., 

1999). Rac1 and Rac2 have an actin independent role as both proteins can bind to and 

activate the NADPH oxidase complex via the p67phox component (Dorseuil et al., 1996). 

Rac2 is believed to be the main interacting GTPase as it has a higher affinity for 

p67phox than Rac1 and also because it is expressed in the cells where superoxide 

production is most required (Dorseuil et al., 1996). Combined conditional knockout of 

Rac1 and Rac2 exacerbated haematopoietic cell defects in adhesion and migration 

(Gu et al., 2003). Rac3 is mainly expressed in the brain. There is no obvious defect in 

the development of Rac3 knockout mice (Corbetta et al., 2005). However, combined 

neuronal specific knockout of Rac1 and Rac3 led to defective development of the 

central nervous system (Corbetta et al., 2009). Rac3 can also be up regulated and 

hyperactive in breast cancers leading to increased cell migration and gene transcription 

of pro-growth and pro-migration genes (Walker et al., 2011). RhoG is highly expressed 

in lymphocytes (Vigorito et al., 2004). There is no obvious defect in the lymphocyte 

development in RhoG knockout mice (Vigorito et al., 2004). This is despite the fact that 

overexpression of active RhoG can dramatically induce lamellipodia, ruffles and 

filopodia (Gauthier-Rouviere et al., 1998). RhoG can regulate migration by activating 

the Rac and Cdc42 specific DOCK180 GEF (Katoh et al., 2006; Katoh and Negishi, 

2003; Meller et al., 2008). There is controversy over whether RhoG has a specific role 

in regulation of cell migration. The major differences in the extent of RhoG mediated 
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effects vary between studies using activation mutants of RhoG or genetic knockout/ 

depletion (Katoh et al., 2006; Katoh and Negishi, 2003; Meller et al., 2008).  

 

1.3.1.3 Cdc42-related proteins 

The five members of this subfamily are Cdc42, TCL, TC10, Wrch-1, Wrch-2. Every 

member is believed to regulate the formation of filopodia (Abe et al., 2003; Aspenstrom 

et al., 2004; Nobes and Hall, 1995). Cdc42 induces filopodia formation by activating the 

actin nucleators N-WASP and mDia2 (Miki et al., 1998; Rohatgi et al., 2000; Rohatgi et 

al., 1999). Cdc42 has two isoforms that arise from the same gene as a result of slight 

variation in exon splicing (Nicole et al., 1999).  The two variants differ only in the last 10 

amino acids. Cdc42a is ubiquitously expressed and has been most highly studied, 

while Cdc42b is only expressed in the brain (Nicole et al., 1999). TC10 and TCL have 

overlapping functions with Cdc42, probably because TC10 and TCL can bind similar 

effectors to Cdc42. In the GTP bound active forms both TC10 and TCL bind to CRIB 

domains in effector molecules (Vignal et al., 2000);(Neudauer et al., 1998). In contrast 

to Cdc42, which is only geranylgeranylated, TC10 and TCL can be geranylgeranylated 

or farnesylated, which may provide some specificity in their function by directing their 

recruitment to specific cellular locations (Munemitsu et al., 1990; Vignal et al., 2000) 

(Neudauer et al., 1998). TC10 is also palmitoylated, which prevents any interaction 

with RhoGDI1, and eliminates one mode of regulation (Neudauer et al., 1998). 

However, despite overlapping functions it is clear that Cdc42 has essential specific 

functions, as Cdc42 knock out mice are embryonic lethal (Chen et al., 2000). TC10 has 

an important role in glucose uptake by adipocytes in response to insulin as it is 

activated upon insulin signalling and regulates GLUT4 containing vesicle trafficking to 

the plasma membrane and GLUT4 vesicle fusion (Chang et al., 2007; Kanzaki and 

Pessin, 2003). Cdc42, TC10 and TCL have been implicated in neurite extension by 

activating N-WASP (Abe et al., 2003). In addition, TC10 is believed activate neurite 

extension by an N-WASP independent exocyst mediated mechanism (Pommereit and 

Wouters, 2007).  

 

Wrch-1 and Wrch-2 are very divergent from the other three members of the family, 

having only 52 to 57% sequence identity with Cdc42 (Shutes et al., 2006; Tao et al., 

2001). Both Wrch-1 and Wrch-2 have extended N and C terminal sequences flanking 

the GTPase domain (Wennerberg and Der, 2004). In addition, Wrch-2 lacks a 
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functional CAAX box and membrane targeting is instead mediated by palmitoylation at 

a C-terminal cysteine residue (Chenette et al., 2006). Wrch-1 mainly exists in a GTP 

bound conformation, not because of a lack of GTPase activity but because it has an 

extremely high intrinsic GTP exchange activity (Saras et al., 2004). Both proteins can 

induce filopodia formation (Ruusala and Aspenstrom, 2008). Wrch-1 can interact with 

the Rho GTPase activating proteins ARHGAP30 and cdGAP, but these interactions do 

not regulate its own activity. ARHGAP30 displays GAP activity towards Rac1 and 

RhoA, suggesting Wrch-1 may mediate some biological functions via Rho GTPase 

crosstalk (Naji et al., 2011). Activated Wrch-2 can bind to the PAK kinase and N-WASP, 

and is proposed to regulate filopodia formation by a similar mechanism to Cdc42 

(Aspenstrom et al., 2007). 

1.3.1.4 The Rnd subfamily 

This subfamily comprises three members Rnd1, Rnd2, RhoE (Rnd3). Rnd proteins are 

always bound to GTP. This is for two reasons, firstly Rnd proteins do not possess 

intrinsic GTPase activity as they lack conserved glycine and glutamine residues 

required for GTP hydrolysis (G14 and Q63 in RhoA) (Foster et al., 1996). Secondly, 

Rnd proteins have approximately 100 times higher affinity for GTP than GDP, and 

there is approximately 10 times more GTP than GDP in the cell, which reduces the 

possibility of GDP binding (Nobes et al., 1998; Traut, 1994). Rnd proteins have 

between 45-49% sequence identity with RhoA. The additional differences arise in an 8-

18 amino acid N-terminal extension and a 30-32 amino acid C-terminal extension 

(Wennerberg and Der, 2004). The N-terminal region is important for Rnd localisation to 

the membrane. An additional difference is that Rnd proteins are farnesylated rather 

than geranylgeranylated at the C terminus (Foster et al., 1996; Nobes et al., 1998). As 

these proteins are always GTP bound, GEFs and GAPS have no role in regulating Rnd 

activity. In addition, Rnd proteins do not interact with RhoGDI1 and are predominantly 

associated with membranes (Oinuma et al., 2012). Rnd protein activity is modified by 

other modes of regulation including regulation of expression and phosphorylation. 

These will be briefly discussed with particular reference to RhoE, as it is the most 

highly studied member of this family. RhoE is regulated at the level of transcription by 

several different signalling pathways. RhoE is up regulated in response to cAMP levels 

via PKA (Collett et al., 2012). RhoE mRNA can be down regulated in colorectal cancer 

as it is targeted by the micro RNA mi-17 (Luo et al., 2012). In hypoxic conditions RhoE 

can be up regulated through hypoxia-inducible factor (HIF)-1α binding to hypoxia 
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responsive element (HRE) in the RhoE promoter (Zhou et al., 2011). In addition, RhoE 

is up regulated in response to UV radiation and DNA damaging chemotherapy drugs 

(Chardin, 2006). Rnd1 and RhoE, but not Rnd2, overexpression results in a dramatic 

loss of focal adhesions and stress fibres, indicating an antagonism with RhoA family 

signalling (Nobes et al., 1998). All three Rnd proteins can interact with p190 RhoGAP, 

however only Rnd1 and RhoE can inhibit RhoA activity by increasing the GAP activity 

towards RhoA (Wennerberg et al., 2003). This activity of Rnd1 and RhoE is regulated 

by specific localisation to lipid rafts through a KERRA motif in the N-terminal extension; 

Rnd2 lacks this motif, which could explain the lack of effect over RhoA with Rnd2 

(Oinuma et al., 2012). In addition, RhoE antagonises RhoA signalling by binding to the 

kinase domain of ROCK1 and inhibiting its kinase activity (Komander et al., 2008; 

Riento et al., 2003). ROCK in turn regulates RhoE through phosphorylation at multiple 

residues. Two of the ROCK phosphorylation sites in RhoE, serine 11 and serine 240, 

are located in regions that mediate binding to the membrane. It is likely that RhoE 

phosphorylation reduces its affinity for the negative membrane, and in turn its 

localisation. Phosphorylated RhoE is exclusively in the cytosol, while non-

phosphorylated RhoE is membrane bound (Riento et al., 2005). RhoE activity can 

additionally be regulated through competition with PDK1 for ROCK binding. The 

presence of PDK1 prevents RhoE binding to ROCK and allows ROCK downstream 

signalling (Pinner and Sahai, 2008b).  

1.3.1.5  RhoD 

RhoD is a widely expressed member of the Rho family that is most highly related to Rif, 

with 48% sequence similarity between the two GTPases (Murphy et al., 1996). RhoD 

has a 14 residue N-terminal extension relative to Rho, Rac and Cdc42 family proteins 

(Wennerberg and Der, 2004). It is believed that RhoD and Rif derive from a common 

ancestral gene and RhoD arose by gene duplication of Rif (Boureux et al., 2007). 

RhoD is localised to the plasma membrane and early endosomes (Murphy et al., 1996). 

RhoD regulates endosome dynamics via a GTP dependent interaction with the DRF 

formin hDia2C, a novel splice variant of hDia2 (mDia3) (Gasman et al., 2003). This is 

dependent on hDia2C activation of Src. The RhoD/hDia2C/Src pathway is important for 

the association of Rab5 positive early endosomes to actin filaments, which may 

regulate the balance between actin and microtubule transport of endosomes (Gasman 

et al., 2003).  Very recently, RhoD was found to signal through another DRF family 

member, mDia1, to regulate centrosome duplication (Kyrkou et al., 2012). hDia2C and 
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mDia1 are currently the only confirmed effectors of RhoD (Gasman et al., 2003; Kyrkou 

et al., 2012). Overexpression of active RhoD induces long peripheral actin rich 

protrusions. Although resembling filopodia, these structures are longer and thinner 

(Aspenstrom et al., 2004; Murphy et al., 1996) and so are distinct from the Cdc42 

controlled structures. Overexpression or microinjection of wild type or active RhoD 

causes disassembly of focal adhesions at the cell periphery concomitant with a loss of 

actin myosin stress fibres. In agreement, expression of active RhoD led to suppression 

cell migration in vitro (Tsubakimoto et al., 1999). The disruption of actin stress fibres by 

RhoD is suggested to act via antagonism of RhoA signalling, as active RhoD reduces 

LPA or active RhoA induced stress fibre formation (Tsubakimoto et al., 1999). This 

hypothesis has not been further studied or confirmed, but alludes to an interesting 

mechanism for Rho crosstalk (see 1.3.2).  Rho GTPases can regulate the activity of 

other Rho proteins. As a specific example Rac1 can supress RhoA activity through the 

inactivation of RhoA GEFs by the Rac effector PAK kinases.  RhoD has been shown to 

bind PAK5 and localise it to endosomes (Wu and Frost, 2006). PAK5 has not been 

shown to contribute to RhoA suppression (Wells and Jones, 2010). However, if RhoD 

can interact with other PAK family members, it could provide a mechanism for RhoA 

suppression.  

 

1.3.1.6 Rif 

Rif (RhoF) is most closely related to Rac2 and RhoD, with 49 and 48% sequence 

similarity, respectively. Rif localises to the plasma membrane (Ellis and Mellor, 2000). 

Rif overexpression stimulates the formation of thin peripheral and apical actin rich 

protrusions (Ellis and Mellor, 2000). Expression of dominant negative components of 

the Cdc42/WASP/Arp2/3 pathway blocked filopodia induced by Cdc42 but not Rif, 

which indicate these structures can arise by distinct modes of actin regulation 

(Pellegrin and Mellor, 2005).  Rif can directly interact with two formins, mDia1 and 

mDia2, in vitro (Fan et al., 2010; Goh et al., 2011; Pellegrin and Mellor, 2005). mDia1 

and mDia2 have been independently implicated in Rif induced filopodia, and are 

localised at the tip and along the filopodia length (Goh et al., 2011; Pellegrin and Mellor, 

2005). Overexpression of Rif stimulates the formation of actin stress fibres in a ROCK 

and mDia1 dependent manner. This is presumably through the interaction between Rif 

and mDia1, and a hypothesised interaction with ROCK (Fan et al., 2010). Rif induced 
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stress fibres were independent of RhoA, but this study does not rule out RhoB or RhoC 

(Fan et al., 2010). 

 

1.3.1.7 RhoH 

RhoH is an atypical, haematopoietic specific Rho GTPase (Li et al., 2002). Despite 

sequence similarity within the switch 1 and switch 2 regions and the presence of a 

CAAX box and PBR, RhoH is not regulated by GAP activity as it is GTPase deficient. 

This is because the residues required for GTP hydrolysis, G14 and Q63 in RhoA, are 

not conserved in RhoH (Li et al., 2002). RhoH is instead regulated at the level of 

transcription or via localisation through interactions with RhoGDIs (Li et al., 2002). 

Initially, RhoH was not implicated in regulation of the actin cytoskeleton (Aspenstrom et 

al., 2004). However, this appears to be cell context dependent, as it is now apparent 

that RhoH can regulate cell migration and cell-ECM interactions in haematopoietic cell 

lineages (Gu et al., 2005; Troeger et al., 2012). 

 

1.3.1.8 The RhoBTB subfamily 

This is another atypical sub group of the Rho family that consists of three family 

members, RhoBTB-1, RhoBTB-2, RhoBTB-3. The RhoBTB family have additional 

domains following the GTPase domain, these include a proline rich region, a tandem 

repeat of the broad-complex, tramtrack, bric a brac (BTB) domain and a long C-

terminus (Wennerberg and Der, 2004). The GTPase domain in RhoBTB-3 is very 

poorly conserved and is therefore not usually included in the Rho family (Gu et al., 

2005). Rho BTB-1 and 2 do not have the conserved glycine and glutamine (G14 and 

Q63 in RhoA) required for GTP hydrolysis, it is therefore unlikely that they can 

hydrolyse GTP, and may not bind GTP at all (Chang et al., 2006). RhoBTB may 

instead be regulated by protein-protein interactions as BTB domains mediate homo 

and heteromeric associations with other proteins containing BTB domains (Berthold et 

al., 2008). The overexpression of RhoBTB-1 or 2 had no effect on the actin 

cytoskeleton (Aspenstrom et al., 2004; Berthold et al., 2008). Instead, these proteins 

may have a role in vesicle trafficking (Aspenstrom et al., 2004; Berthold et al., 2008). 

Rho BTB-2 was initially identified as a gene deleted in cancer and a putative tumour 

suppressor. Consistent with this, RhoBTB proteins negatively regulate cell proliferation 

(Berthold et al., 2008).  
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1.3.1.9 The Miro subfamily 

Miro-1 and Miro-2 were initially characterised as atypical members of the Rho family. 

Miro proteins are 60% identical to each other and contain two GTPase domains and 

two EF-hand motifs (Fransson et al., 2003). Only the N-terminal GTPase domain has 

similarity to Rho GTPases. Miro proteins do not contain a CAAX box but use an 

intrinsic C-terminal trans-membrane domain to localise to the outer mitochondrial 

membrane (Fransson et al., 2006). Miro proteins regulate mitochondrial 

morphogenesis and trafficking (Fransson et al., 2006). Overexpression of Miro-1 had 

no effect on the actin cytoskeleton (Aspenstrom et al., 2004). Given the sequence and 

functional diversity, these proteins now form a separate GTPase family (Reis et al., 

2009). 

 

1.3.2 Crosstalk between Rho GTPases 

Some of the previous sections have alluded to examples of cross talk between different 

Rho GTPases, where one GTPase can activate or inhibit the activity of another. 

Crosstalk can take place at the level of GEFs and GAPs, expression and protein 

stability or downstream signalling (Guilluy et al., 2011). Rho GTPase cross regulation 

can have positive or negative outcomes on the downstream signalling.  

 

There are many biological examples of negative crosstalk between Rho GTPases. The 

first mechanism is by Rho GTPase mediated activation of GAP activity. RhoA can 

decrease Rac activity through the effector ROCK, which phosphorylates the Rac 

specific GAP filGAP to increase the GAP activity towards Rac (Ohta et al., 2006). 

ROCK can also activate the Rac GAP ARHGAP22 to inhibit Rac (Sanz-Moreno et al., 

2008). Rnd1 and RhoE bind to p190RhoGAP to localise it to specific compartments 

and increase its catalytic GAP activity towards RhoA (Oinuma et al., 2012; Wennerberg 

et al., 2003). Rac1 can bind directly to p190RhoGAP to negatively regulate RhoA 

activity (Bustos et al., 2008). Rac can also indirectly increase the activity of this GAP, 

through the regulation of ROS production, which leads to increased GAP catalytic 

activity (Nimnual et al., 2003). The second negative cross talk mechanism occurs 

through the inhibition of GEFs. It is well documented that Rac inhibition of RhoA can 

also proceed through the inactivation of Rho GEFs. The predominant mechanism is 
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through the Rac effectors, the PAK family kinases. PAK1 and PAK4 phosphorylate 

multiple RhoA-related family GEFs including; p115 RhoGEF, GEF-H1, PDZ-RhoGEF 

and the RhoA specific Net1 (Alberts et al., 2005; Barac et al., 2004; Rosenfeldt et al., 

2006; Zenke et al., 2004). Phosphorylation of GEFs either inhibits exchange activity, 

alters protein stability or causes mis-localisation. Finally, negative crosstalk can occur 

at the level of effectors and targets. For example, RhoE further antagonises RhoA 

signalling by binding to and inhibiting ROCK1 (Komander et al., 2008; Riento et al., 

2003). A major output of RhoA-ROCK signalling is increased phosphorylation of MLC, 

PAK1 has been shown to antagonise MLC phosphorylation by negatively regulating 

MLC kinase (MLCK) (Sanders et al., 1999). 

 

There are fewer examples of positive crosstalk between Rho GTPases, and the only 

characterised examples are via GEFs or at the level of downstream effectors. RhoG 

can enhance Rac1 activity by localising the ELMO:DOCK180 complex (a Rac specific 

GEF) to the membrane (Katoh and Negishi, 2003). Rac can activate RhoA activity 

through an interaction with the PH domain of the GEF Dbs, which increases GEF 

activity towards RhoA (Cheng et al., 2004). Rac and RhoA can in some cases 

positively regulate the same target molecules. A specific example of this is the 

synergistic activation of LIMK by Rac-PAK1 and RhoA-ROCK mediated 

phosphorylation (Edwards et al., 1999; Sanders et al., 1999). 

 

The RhoGDI family regulate Rho GTPase signalling by sequestering inactive GDP 

bound Rho GTPase in the cytoplasm (Boulter et al., 2010). Additionally, RhoGDIs 

protect GTPases from degradation and therefore enhance protein stability (see 1.1.2.4). 

RhoGDI1 is ubiquitously expressed and binds to most typical Rho GTPases. It has 

been suggested that RhoGDI1 protein levels are equal to the combined protein levels 

of Rac1, Cdc42 and RhoA (Michaelson et al., 2001). This would suggest that there is a 

limited supply of GDI to act as a stability reservoir to Rac, Cdc42 and RhoA 

(Michaelson et al., 2001). When a Rho GTPase is individually overexpressed the 

concentration of this protein vastly exceeds the pool of GDI in the cell. This leads to a 

competition for GDI occupancy and a consequential decrease in the stability of other 

Rho GTPases (Boulter et al., 2010). In contrast, siRNA of one Rho GTPase can lead to 

an increase in the protein levels of others (Boulter et al., 2010). Specifically this has 

been observed with the RhoA-related subfamily (Giang Ho et al., 2011).  
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Figure 1.13 Potential mechanisms of Rho GTPase crosstalk 

A. The possible modes of Rho GTPase cross talk. The right hand scheme illustrates 

negative regulation. Rho GTPase 1 can inhibit GEFs, activate GAPs or alter GDI 

occupancy of GTPase 2. Additionally, GTPase 1 can inhibit effectors and downstream 

targets of GTPase 2. Positive regulation (left hand side) could theoretically proceed by 

the opposite mechanism although specific examples only exist for inhibition of GAPs 

and synergistic activation of downstream targets (Guilluy et al., 2011). Adapted from 

Trends in Cell Biology, 21, Guilluy, C., Garcia-Mata, R., and Burridge, K., Rho protein 

crosstalk: another social network?, 718-726 Copyright (2011), with permission from 

Elsevier 
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1.4 Vaccinia virus 

1.4.1 Poxviruses 

Viruses within the Poxviridae family (Poxviruses) are double strand DNA viruses. The 

poxvirus genomes encode their own replication and transcription enzymes and as a 

consequence can replicate entirely within the cytoplasm of the host cell. The genomes 

are between 130-360kb in size and encode more than 150 genes (Lefkowitz et al., 

2006; Upton et al., 2003). The poxvirus intracellular life cycle is complex and produces 

three forms of infectious progeny virus particles: intracellular mature virus (IMV), cell 

associated extracellular virus (CEV) and extracellular enveloped virus (EEV). The 

Poxviridae family is subdivided into two subfamilies; Entomopoxvirinae and 

Chordopoxvirinae, which can infect invertebrates and vertebrates, respectively 

(Hughes et al., 2010). Eight different genera make up the Chordopoxvirinae subfamily; 

Orthopoxvirus, Parapoxvirus, Avipoxvirus, Capripoxvirus, Leporipoxvirus, Suipoxvirus, 

Molluscipoxvirus and Yatapoxvirus (Table 1) (Poxvirus Bioinformatics Resource Center 

www.poxvirus.org).  

 

Table 1 The viruses within the Poxviridae family 

Subfamily Genus Species
Chordopoxvirinae Orthopoxvirus Variola

Vaccinia
Camelpox
Cowpox
Ectromelia
Monkeypox

Parapoxvirus Orf
Avipoxvirus Fowlpox
Capripoxvirus Sheeppox
Leporipoxvirus Myxoma
Suipoxvirus Swinepox
Molluscipoxvirus Molluscum contagiosum virus
Yatapoxvirus Yaba like disease virus

Entomopoxvirinae Entomopoxvirus A Melolontha melolontha virus
Entomopoxvirus B Amsacta moorei virus
Entomopoxvirus C Chironomus luridus virus  
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The Orthopoxvirus genus (OPV) has been very highly studied because of the 

pathogenicity and interesting biology of some of its members. The OPV genus is made 

up of Variola, Vaccinia, Cowpox, Camelpox, Ectromelia and Monkeypox (Table1) 

(Poxvirus Bioinformatics Resource Center www.poxvirus.org). Variola virus caused the 

devastating disease Smallpox, which is estimated to have killed more than 500 million 

people in the 20th Century. Fortunately, smallpox was officially eradicated in 1980 

largely due to a global vaccination program organized by the World Health 

Organization (http://www.who.int/mediacentre/factsheets/smallpox/en/). This was made 

possible by almost 200 years of research, which was initiated by Edward Jenner and 

his innoculation of milkmaids with Cowpox. Vaccinia virus was eventually used in the 

WHO eradication program as the live vaccine to mediate immunity against variola 

virus. Despite the eradication of smallpox, vaccinia virus is still widely studied for a 

variety of reasons. Firstly, there is a perceived threat of bioterrorism that could 

originate from known stocks of variola, of which there are only two held by WHO 

collaborating laboratories in the USA and Russian Federation (Mayr, 2003). Secondly, 

the monkeypox virus has recently caused outbreaks of fatal human disease (Hutin et 

al., 2001; Learned et al., 2005). Thirdly, vaccinia virus and derivatives are in 

development as oncolytic viruses (Thorne, 2008). As vaccinia virus is only rarely 

pathogenic to humans, it is studied to give insights into the mechanism of other 

members of the Chordopoxvirus subfamily and OPV genus, including variola virus and 

monkeypox. In addition vaccinia virus is a useful tool to study host cell biology, as it 

manipulates host cell processes, is genetically tractable and easy to visualize.  

 

1.4.2 Vaccinia virus 

Vaccinia virus is an extremely large brick shaped particle with dimensions of 350 x 270 

x 250nm (Cyrklaff et al., 2005). The virus genome, virus transcription factors and 

enzymes are surrounded by a protein core, which is altogether enveloped by host cell 

derived membrane. There are multiple strains of vaccinia virus including Western 

Reserve (WR), Chorioallantois vaccinia virus Ankara (CVA) and Copenhagen (Herrlich 

and Mayr, 1957; Parker et al., 1941). WR in the most frequently used in laboratories 

and throughout this thesis wild type vaccinia virus will be referred to as WR. During the 

efforts to eradicate smallpox the highly attenuated vaccinia strains, MVA (derived from 

CVA) and NYVAC (derived from Copenhagen), were created by serial passage 

through chicken embryo fibroblasts or targeted deletions in the genome, respectively 
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(Mayr et al., 1978) (Tartaglia et al., 1992). The genomes of 16 different vaccinia virus 

strains have been sequenced and are between 178-212kb in size 

(http://poxvirus.org/viruses.asp). Comparison of the genomes reveals a highly 

conserved central 100kb portion flanked by variable inverted terminal repeated regions 

(Wittek, 1982). The conserved region encodes approximately 90 genes that are 

conserved in all members of the Chordopoxvirus family (Gubser et al., 2004; Upton et 

al., 2003). These genes are essential for replication and morphogenesis, while the 

terminal regions encode proteins responsible for virulence and immune evasion in 

specific hosts (Smith and Law, 2004). Interestingly, the genome terminates in hairpins, 

therefore, the genome is a self-complementary circular strand of DNA (Figure 1.14) 

(Baroudy and Moss, 1982; Goebel et al., 1990). Vaccinia virus strain Copenhagen was 

the first strain sequenced and encodes 263 predicted open reading frames (ORFs). 

Vaccinia gene nomenclature is derived from the HindIII restriction map of Copenhagen, 

which is comprised of 16 fragments named A-P according to decreasing size. ORFs 

are named according to the HindIII fragment and additionally by the direction of 

transcription (Right or Left), as both DNA strands are used for transcription (Goebel et 

al., 1990). To use an example, E2L is the 2nd ORF from the 5’ end of the E HindIII 

fragment and is transcribed towards the left (Figure 1.14). Vaccinia genes do not 

contain introns and each gene is under transcriptional control from its own promoter, 

which usually occurs within 30 bases upstream of the initiating ATG. As the genome is 

very tightly packed, the promoter for one gene may overlap with the upstream gene 

(Broyles, 2003; Davison and Moss, 1989a, b). Vaccinia promoter sequences and 

transcription factors are well conserved in the poxvirus family and it is possible to 

express a poxvirus gene, controlled by the endogenous promoter, during infection with 

another poxvirus (Dodding and Way, 2009).  

 

Vaccinia genes fall into three categories depending on the promoter sequence and 

expression kinetics within the vaccinia replicative cycle: early, intermediate and late 

(Assarsson et al., 2008; Broyles, 2003).  Early, intermediate and late gene mRNA is 

detected from 20, 100, and 140 minutes post infection in HeLa cells, respectively 

(Baldick and Moss, 1993). The early class of genes is further sub categorised into 

immediate-early and early. Additionally, a group of genes, called early/late, have 

elements of early and late promoters and are transcribed at the same time as other 

early genes but have sustained expression throughout infection (Assarsson et al., 

2008).  Early genes are functionally associated with DNA replication, intermediate gene 
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transcription, nucleotide biosynthesis and immune evasion. Intermediate and late 

genes are associated with virus morphogenesis (Assarsson et al., 2008). Vaccinia 

gene expression is regulated at the level of transcription and control achieved by a 

cascade mechanism, whereby intermediate gene transcription factors are early 

proteins, late transcription factors are intermediate proteins and early transcription 

factors are late proteins (and are required to initiate transcription in the subsequent 

infected cell) (Figure 1.14). In addition to the expression of early genes, intermediate 

and consequently late gene expression is dependent on DNA genome replication and 

newly synthesised RNA polymerase from early genes (Assarsson et al., 2008; Broyles, 

2003; Moss, 2007; Rubins et al., 2008).  

 
Figure 1.14 The vaccinia virus genome 
A. The vaccinia virus genome is a self-complementary circular strand of DNA. Each 
terminus is a hairpin loop of 101 nucleotides. The ITRs are comprised of tandem 
repeat sequences. The core of the genome is very well conserved within the 
Chordopoxvirus subfamily. Dashed lines indicate the HindIII restriction sites. The 16 
fragments that arise from HindIII digest are labeled A-P. B. The E HindIII fragment 
consists of 11 genes represented by red or blue arrows. The direction of the arrows 
indicates the direction of transcription. C. A schematic to illustrate the gene expression 
cascade that occurs during vaccinia infection.  

Early Gene 
Expression

Intermediate 
Gene Expression

Late Gene 
Expression

DNA Genome 
Replication

B

C

A BC DEF G HIP ONM K L J

E1L E2L E3L E4L E5R E6R E7R E8R E9R E10R E11L

HindIII HindIII

5’ 3’

90 genes conserved in ChorodopoxvirinaeInverted 
terminal 
repeat

Inverted 
terminal 
repeat

Hairpin 
loop

Hairpin 
loop

A



Chapter 1 Introduction 

 

 60 

1.4.3 Vaccinia life cycle 

1.4.3.1 Entry 

The entry of vaccinia virus into the host cell cytoplasm is mediated by virus and host 

membrane fusion (Figure 1.15). The virus core is subsequently released into the 

cytoplasm. Poxvirus entry is complicated by the fact that there are two distinct 

infectious virus particles, the intracellular mature virus (IMV) and extracellular 

enveloped virus (EEV), which are enveloped by one or two membranes, respectively. 

The external membranes of the two particles contain different subsets of virus proteins 

that are available to mediate virus attachment and entry. IMVs and EEVs are therefore, 

structurally and antigenically different and enter the host cell by distinct mechanisms 

(Mercer and Helenius, 2008; Schmidt et al., 2011; Schmidt et al., 2012). IMVs attach to 

the cell plasma membrane using four vaccinia proteins that interact with different 

plasma membrane glycoproteins/glycolipids; A27 and H3 bind to heparin sulphate, A26 

to laminin and D8 to chondroitin sulphate (Chiu et al., 2007; Chung et al., 1998; Hsiao 

et al., 1999; Lin et al., 2000). It is not clear how EEVs attach to host cells, but it has 

been suggested that unknown virus proteins bind to cell membrane 

glycosaminoglycans (GAG). IMVs and EEVs enter the cell either through direct fusion 

of the virus membrane with the plasma membrane (Armstrong et al., 1973; Carter et al., 

2005), or after endocytosis through fusion with the endocytic membrane (Huang et al., 

2008; Townsley et al., 2006). The main route of entry for both IMVs and EEVs is likely 

to be through macropinocytosis, a specific form of endocytosis (Laliberte and Moss, 

2009; Mercer and Helenius, 2008; Sandgren et al., 2010). IMV and EEV particles are 

enveloped at the plasma membrane by large actin dependent membrane blebs, which 

involves Rac1 and PAK1 signalling to promote the required actin rearrangements 

(Laliberte and Moss, 2009; Mercer and Helenius, 2008; Schmidt et al., 2011). IMV 

uptake is stimulated by phosphatidylserine in the virus membrane, a phospholipid that 

is normally associated with apoptotic bodies (Mercer and Helenius, 2008). At the 

plasma membrane or following uptake into macropinosomes, the entry-fusion complex 

(EFC) mediates the fusion of the IMV membrane with the host cell membrane 

(Laliberte et al., 2011). The EFC is a multi-meric protein complex made up of trans-

membrane and membrane associated vaccinia proteins (A16, A21, A28, F9, G3, G9, 

H2, J5, L1, L5 and O3) (Laliberte et al., 2011; Moss, 2012; Senkevich et al., 2005; 

Wolfe et al., 2012). As EEV particles possess one additional membrane, cell entry of 

EEVs particles presents a topological problem. It has been suggested that acidification 
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of the endosome disrupts the outer EEV membrane, resulting in an IMV particle that 

may fuse with the macropinosome membrane by a similar mechanism to IMVs 

(Schmidt et al., 2011).   

1.4.3.2 Replication and assembly 

After entry into the cell cytoplasm, vaccinia virus cores are transported within the cell to 

sites of transcription on microtubules, using as yet unknown cellular motors and 

vaccinia core proteins (Carter et al., 2003; Mallardo et al., 2001). Early gene 

transcription factors are enclosed in the virus core and direct early gene expression. It 

has been suggested that the complete transcription machinery is assembled onto early 

gene promoters during viral morphogenesis (Broyles, 2003). This could allow for 

immediate early gene expression upon infection of the host cell (Baldick and Moss, 

1993). Early mRNAs are synthesised within a partially disrupted core and extruded into 

the cytoplasm from the core (Mallardo et al., 2001). Early proteins then mediate core 

uncoating to allow DNA release and subsequent replication (Moss, 2007). DNA 

replication of the vaccinia genome is apparent, using microscopy, by the appearance of 

DNA positive structures (early virus replication sites) in the cytoplasm. These early 

DNA sites first appear in the periphery of the cell and over time grow and accumulate 

in the perinuclear region of the cell to form the mature virus factory (Domi and Beaud, 

2000; Schepis et al., 2006). The virus factory is devoid of cellular organelles and 

almost completely enclosed by an ER derived membrane (Tolonen et al., 2001). 

Intermediate and late gene expression occurs in virus factories after DNA replication 

(Broyles, 2003), following which the assembly of immature progeny virus particles can 

begin. This is characterised by the appearance (by electron microscopy) of a crescent 

of lipid and virus protein. The crescent encloses newly synthesised virus cores and 

DNA genome to form a barrel shaped immature virion (IV) (Rodriguez et al., 1998; 

Zhang and Moss, 1992). There has been considerable controversy in the field 

regarding the derivation of the IV membrane and whether one or two membranes 

enclose the progeny virus particles. It is now clear that a single lipid bilayer surrounds 

the particle and this derives from de novo membrane biogenesis (Carter et al., 2005; 

Heuser, 2005; Hollinshead et al., 1999). IVs mature to form brick-shaped IMVs through 

condensation, proteolytic processing and reorganisation of the core proteins (Roberts 

and Smith, 2008). For the majority of virus particles this is where the life cycle finishes 

and these particles are released from the infected cell upon cell lysis. 
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1.4.3.3 Release 

A small proportion of IMVs are transported from the virus factory to sites where the 

particles become wrapped by an additional double membrane derived from the trans-

Golgi or endosomal network to form intracellular enveloped virus (IEV) (Figure 1.15) 

(Hiller and Weber, 1985; Schmelz et al., 1994; Tooze et al., 1993). Therefore, three 

membranes envelop IEV particles. The outer IEV membranes contain IEV specific 

integral membrane proteins A33, A34, A36, A56 and B5 and membrane associated 

proteins E2, F12 and F13, nearly all of which are required for IEV formation and/or 

transport to the cell periphery on microtubules (Roberts and Smith, 2008). Two of the 

IEV proteins, F12 and A36, have been suggested to mediate IEV transport to the 

periphery via kinesin-1 dependent microtubule movement (Herrero-Martinez et al., 

2005; Rietdorf et al., 2001; Ward and Moss, 2004). However, recently it has been 

shown that F12 is also required for the earlier event of IMV membrane wrapping to 

form IEVs, in association with E2, while A36 is absolutely required for microtubule 

movement through a direct interaction with kinesin light chain (Dodding et al., 2009; 

Ward and Moss, 2004). In addition to direct movement along microtubules, virus 

proteins stimulate increased peripheral microtubule dynamics and a coincidental 

increase in the frequency with which microtubule tips reach the cell periphery. Upon 

reaching the cell periphery, virus particles negotiate the dense network of cortical actin 

by altering actin dynamics. Both of these peripheral processes are dependent on F11 

and will be discussed in more detail in later sections (see 1.4.7) (Arakawa et al., 2007a; 

Arakawa et al., 2007b). IEV particles exit the infected cell through fusion of the outer 

most IEV membrane and the plasma membrane in a process that resembles 

exocytosis (reviewed in (Roberts and Smith, 2008)). Virions are released from the cell 

as EEVs or can remain associated with the plasma membrane, as CEV. EEVs are 

thought to mediate long-range dissemination in vivo. CEVs can stimulate the formation 

of an actin tail beneath the particle to propel particles towards neighbouring cells to 

mediate local cell-to-cell spread (Cudmore et al., 1995; Doceul et al., 2010). CEVs 

locally activate Src and Abl family kinases beneath the virus particle (Newsome et al., 

2004). This family of kinases phosphorylate the cytoplasmic domain of the integral 

membrane protein A36 at two tyrosine residues Y112 and Y132 (Newsome et al., 

2006). The phosphorylation of A36 mediates the release of kinesin-1 from CEVs 

(Newsome et al., 2004). After kinesin-1 release, phosphotyrosine residues on A36 

recruit a complex of Nck, Grb2, WIP (WASP-interacting protein) and N-WASP to 
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stimulate actin polymerisation via the Arp2/3 complex (Frischknecht et al., 1999; 

Moreau et al., 2000; Scaplehorn et al., 2002).  

 
 
Figure 1.15 The vaccinia replicative cycle 
1. IMV and EEV attach to the cell and stimulate macropinocytosis. 2. The virus 
membrane fuses with the macropinocytic membrane and the virus core is released into 
the cytoplasm. 3. Virus cores move to the perinuclear region on microtubules. 4. In the 
virus factory, crescents of lipid and virus protein form, which encloses newly made 
virus core and genome to form IVs. IVs mature to IMVs. 5. IMVs can become wrapped 
by a double membrane from the TGN or endosomal network to form IEVs. 6. IEVs 
move to the periphery on microtubules. 7. IEVs move through the cortical actin layer to 
reach the plasma membrane. 8. The outer IEV membrane fuses with the plasma 
membrane. 9. CEVs stimulate outside-in signalling to form an actin tail beneath the 
particle. (Roberts and Smith, 2008). Adapted from Trends in Microbiology, 16, Roberts, 
K.L., and Smith, G.L., Vaccinia virus morphogenesis and dissemination. 472-479, 
Copyright (2008), with permission from Elsevier. 
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1.4.4 Virus induced migration 

Upon vaccinia virus infection, in addition to the previously described local changes in 

the actin cytoskeleton, dramatic changes in cell morphology occur. This was first 

documented with cell contraction at early stages of infection, followed by sequential re-

spreading, cell migration and extension of peripheral long, thin projections (Figure 

1.16) (Bablanian et al., 1978; Sanderson and Smith, 1998; Schepis et al., 2006; 

Schramm et al., 2006).   

 
 

Figure 1.16 Sequential cell morphology changes during vaccinia infection 

 

 

Early stage cell contraction (also called cell rounding) and cell migration requires virus 

transcription and subsequent protein expression, as inactivation of the virus particle 

with UV or inhibition of protein synthesis with cycloheximide completely blocks cell 

contraction (Bablanian et al., 1978; Sanderson and Smith, 1998; Schepis et al., 2006). 

More specifically, cell contraction and migration requires the expression of early genes 

as preventing intermediate and late gene expression, by blocking DNA replication, had 

no aberrant effect on cell contraction (Sanderson et al., 1998). Dynamic microtubules 

are necessary for cell contraction (Schepis et al., 2006). In contrast, F-actin, rather 

than microtubules, is required for cell re-spreading (Sanderson et al., 1998).  

 

At later stages of infection cells become stellate, due to the extension of multiple 

lamellipodia that laterally collapse to form thin long neurite-like projections. F-actin and 

microtubule bundles extend throughout the projection and are associated with focal 

adhesions in the lamellipodium at the end of the projection (Sanderson et al., 1998). 

Uninfected Contraction Re-spreading Migration Formation of 
projections

0hpi 16hpi

Early gene expression
Genome replication

Late gene expression
Virus morphogenesis
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Additional thin projections are formed through vaccinia-induced cell migration as the 

cell is unable to retract the rear end (Valderrama et al., 2006). Rear end retraction in 

migrating cells is mediated through contraction of stress fibres and proteolysis of focal 

adhesions, usually stimulated by Rho and ROCK signalling (see 1.2.2). Similar 

phenotypes are observed when Rho or ROCK are inhibited, suggesting that defective 

rear end retraction is due to vaccinia inhibition of Rho and ROCK (Totsukawa et al., 

2004; Valderrama et al., 2006; Vega et al., 2011; Worthylake et al., 2001). These cell 

projections cannot form if intermediate and late gene expression is blocked. 

Additionally, projections do not form when actin polymerisation is inhibited or if 

microtubules dynamics are disrupted (Sanderson et al., 1998). 

 

It is not clear if or how cell morphology changes contribute to vaccinia replication and 

spread. Co-ordinated changes in cell morphology are suggested to enhance vaccinia 

spread: cell contraction disrupts cell-cell adhesions early in infection to enable infected 

cells to migrate, form multiple new adhesions and increase the frequency of 

encountering uninfected cells (Cordeiro et al., 2009; Morales et al., 2008; Sanderson et 

al., 1998). Cell contraction may also aid intracellular virus replication, as it has been 

hypothesised that contraction can coalesce peripheral DNA factories and cellular 

organelles to the perinuclear region to establish an efficient zone for vaccinia 

replication and morphogenesis (Schepis et al., 2006; Schramm et al., 2006). However, 

this hypothesis was formed by blocking cell contraction with microtubule 

depolymerising drugs, which could have a vast range of additional deleterious effects 

on virus replication that are quite distinct from contraction.  

 

1.4.5 MVA versus WR 

It is important to note that the studies mentioned have been conducted with the WR 

strain of vaccinia virus. Modified vaccinia Ankara (MVA) is a highly attenuated vaccinia 

strain, derived from Chorioallantois vaccinia virus Ankara (CVA) after approximately 

570 passages in chicken embryo fibroblasts (Mayr et al., 1978). This serial passage 

has led to multiple genomic deletions or point mutations and approximately one third of 

the genome is not expressed. Analysis of the MVA genome revealed six major 

deletions within the terminal regions, relative to CVA. In addition, there are numerous 

small deletions and point mutations within MVA (Antoine et al., 1998; Meisinger-

Henschel et al., 2007). As a result MVA cannot replicate in human cells (Wyatt et al., 
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1998). IV particles can form in HeLa cells but these do not mature to become IMVs 

(Gallego-Gomez et al., 2003; Sancho et al., 2002). Several studies have shown that 

MVA does not stimulate cell contraction, migration or the formation of projections 

(Gallego-Gomez et al., 2003; Morales et al., 2008; Schepis et al., 2006; Schramm et al., 

2006; Valderrama et al., 2006). This would suggest that genes deleted or mutated in 

the MVA genome with reference to CVA and WR are required to induce cell 

morphology changes seen during WR infection (Gallego-Gomez et al., 2003).  

 

1.4.6 F11 and cell migration 

It was hypothesised that by examining the differences between WR and MVA it would 

be possible to identify vaccinia proteins involved in cell migration and the formation of 

projections. To this end, Ferran Valderrama and colleagues used a series of 

recombinant MVA strains, rescued with portions of the parental (CVA) genome, to 

identify proteins required for virus induced cell migration (Valderrama et al., 2006; 

Wyatt et al., 1998). This approach identified that the viral gene F11L, which is 

fragmented in MVA, was required for cell migration (Antoine et al., 1998; Valderrama et 

al., 2006). F11 can rescue the formation of cellular projections when it is 

overexpressed in cells infected with MVA (Valderrama et al., 2006). F11 expression 

from its endogenous promoter in a recombinant MVA virus (MVA-F11L) can also 

rescue cell migration (Zwilling et al., 2010). Additionally, F11 is required for the cell 

contraction that is observed when vaccinia virus spreads through confluent monolayer 

of cells, and for the disruption of cell-cell contacts (Cordeiro et al., 2009; Morales et al., 

2008). In uninfected and MVA-F11 infected cells the expression of F11 causes a loss 

of stress fibres (Valderrama et al., 2006; Zwilling et al., 2010). This is similar to the 

phenotype seen in WR infection (Valderrama et al., 2006). Conversely, infection with a 

recombinant WR strain that does not express F11 (ΔF11L) maintains stress fibre 

formation, confirming that F11 is required to disrupt stress fibres (Cordeiro et al., 2009). 

The loss of stress fibres is characteristic of the inhibition of Rho proteins (Chardin et al., 

1989; Valderrama et al., 2006). Consistent with this, F11 was found to bind and inhibit 

RhoA, but not Rac or Cdc42 (Cordeiro et al., 2009; Valderrama et al., 2006). The 

interaction between F11 and RhoA mimics the interaction between ROCK and RhoA, 

as F11 contains five conserved residues with the Rho binding motif of ROCK1 (Figure 

1.17) (Dvorsky et al., 2004; Valderrama et al., 2006). Mutation of a valine and lysine in 

this motif (F11-VK mutant) completely abrogated RhoA binding (Figure 1.17) Like 



Chapter 1 Introduction 

 

 67 

ROCK, F11 preferentially binds activated RhoA. In addition, F11 can dimerise, which is 

consistent with ROCK forming a coiled coil to bind RhoA (Cordeiro et al., 2009; 

Dvorsky et al., 2004; Valderrama et al., 2006). F11 has very little sequence similarity 

with any human proteins or any conserved functional domains, outside of the RhoA 

binding motif (Valderrama et al., 2006).  F11L is, however, very highly conserved 

amongst the Orthopoxvirus genus (Kato et al., 2004). Secondary structural predictions 

suggest that F11 is globular and has a predominantly β-sheet N terminal domain (1-

222) and a α-helical C terminus (223-348) (Joao Cordeiro, unpublished data).  

 
Figure 1.17 Sequence alignment of F11 and ROCK1 
A. F11 has five conserved residues with the Rho binding domain of ROCK1. The 
conserved residues are highlighted in black. Mutation of a valine and lysine residues 
forms the Rho binding mutant of F11, F11-VK (residues highlighted in red). Adapted 
from Cordeiro, J.V. (2008). Modulation of Rho GTPase signalling during vaccinia virus 
infection (UCL). B. A schematic of the RhoA-ROCK1 interface. ROCK1 dimerises 
through a coiled coil motif (blue and green ribbons) and uses this motif to bind the 
switch 1 and switch 2 motifs in RhoA. The highlighted residues are those known to 
participate in the RhoA-ROCK1 interaction. The lines indicate hydrophobic (black) and 
electrostatic (red) interactions. This figure was originally published in Journal of 
Biological Chemistry: Dvorsky, R et al., (2004). Structural insights into the interaction of 
ROCKI with the switch regions of RhoA. J Biol Chem 279, 7098-7104.© the American 
Society for Biochemistry and Molecular Biology   
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1.4.7 The role of F11 in virus release and spread 

Newly assembled vaccinia IEV particles travel on microtubules to the cell periphery 

(Herrero-Martinez et al., 2005; Rietdorf et al., 2001; Ward and Moss, 2004). The 

efficiency of this process is augmented by dynamic peripheral microtubules that 

increase the delivery of virus particles to the cell cortex. F11 has been shown to 

enhance microtubule dynamics and peripheral targeting of microtubule tips (Arakawa 

et al., 2007b). F11 inhibition of RhoA signalling is responsible for increased microtubule 

dynamics, by inhibiting RhoA signalling to the formin mDia1 (Arakawa et al., 2007b). 

On reaching the cell cortex, IEV must negotiate the dense mesh of cortical actin to 

reach the plasma membrane. Virus particles have similar dimensions to exocytic 

vesicles (Cyrklaff et al., 2005). Reorganisation of the actin cortex facilitates exocytic 

vesicle trafficking to the cell periphery (Eitzen, 2003; Malacombe et al., 2006). Due to 

the large size of IEV particles, it is likely that cortical actin changes are also required to 

facilitate virus release (Arakawa et al., 2007a). F11 regulates local cortical actin, once 

again by inhibiting RhoA signalling to mDia1 (Arakawa et al., 2007a). F11-dependent 

inhibition of RhoA signalling therefore promotes virus release through modulation of 

microtubule and actin dynamics at the cell periphery (Arakawa et al., 2007a; Arakawa 

et al., 2007b; Cordeiro et al., 2009). 

 

The role of F11 in virus spread was investigated in cell culture plaque assays and an in 

vivo mouse model of vaccinia infection. The spread of WR in a confluent monolayer of 

cells forms a large plaque with a clearance in the centre due to loss of cell-cell 

adhesion and cell migration away from the centre of the plaque (Cordeiro et al., 2009). 

Consistent with the role of F11 in virus release, the absence of F11 attenuated virus 

spread in the plaque assay and the characteristic plaque clearance was not observed 

(Cordeiro et al., 2009). The WR F11 protein also greatly enhances virus spread, in 

confluent monolayers, when it is introduced into the Leporipoxvirus Myxoma genome, 

which lacks a functional F11L gene (Irwin and Evans, 2012). In an in vivo model, WR 

infection in C57/BL6 mice resulted in acute sequential infection of the trachea, lungs 

and spleen followed by 100% mortality after 8 days. In the absence of F11, virus 

infection was restricted to the trachea and there was limited mortality (Cordeiro et al., 

2009). The spread of F11-VK, the RhoA binding mutant, in confluent monolayers of 

cells and in vivo, was intermediate to WR and ∆F11L infection (Cordeiro et al., 2009). 

Taken together, the plaque assay and in vivo data suggest that RhoA independent F11 
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functions are required for efficient virus spread from cell-cell and through the infected 

host (Cordeiro et al., 2009).  

 

1.5 The aims of this thesis 

F11 is required for vaccinia induced cell contraction, cell migration and the formation of 

cellular projections (Morales et al., 2008; Sanderson et al., 1998; Valderrama et al., 

2006). However, we lack molecular understanding of the host cell mechanisms 

involved in vaccinia induced cell morphology changes. The aim of this thesis was to 

characterise vaccinia induced cell contraction in more detail, elucidate the vaccinia 

proteins required and to understand which host cell mechanisms are required for 

vaccinia induced cell contraction. Ultimately, the aim is to use vaccinia virus as a tool to 

understand cell contraction in other pathogenic situations.  
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Chapter 2. Materials & Methods 

2.1 General buffers and culture media 

Routine media and buffers used in this thesis were prepared by Cell Services at the 

LRI, the recipes for which are listed below. The use of additional solutions or buffers is 

described within the relevant protocols. 

2.1.1 General Buffers 

Phosphate Buffered Saline A (PBSA) 

8.00 g NaCl 

0.25 g KCl 

1.43 g Na2HPO4 

0.25 g KH2PO4, 

 

These reagents were dissolved in distilled water; adjusted to pH 7.2 before the solution 

was adjusted to a total volume of 1L. The solution was autoclaved to sterilise. 

 

10x Tris Buffered Saline (TBS) 

88.0 g NaCl 

2.0   g KCl 

30.0 g Tris Base 

 

These reagents were dissolved in distilled water, the solution adjusted to pH 7.2 and 

made to a total volume of 1L. The solution was autoclaved to sterilise.  

 

2.1.2 Cell Culture Media 

Versene Solution 

8.00 g NaCl 

0.20 g KCl 

1.15 g Na2HPO4 

0.20 g KH2PO4, pH 7.2 

0.20 g EDTA 

1.50 ml 1% (w/v) Phenol red solution 



Chapter 2 Materials and Methods 

 

 71 

 

Versene solution was made by dissolving the above reagents in distilled water, the pH 

was adjusted to 7.2 with HCl and the solution was made up to 1L and autoclaved to 

sterilise.  

 

Trypsin Solution 

0.25% in Tris Saline  

 

Tris Saline (TS) 

8.00 g NaCl 

2.00 ml 19% (w/v) KCl solution 

0.10 g Na2H2PO4 

1.00 g D-Glucose 

3.00 g Trizma Base 

1.50 ml 1% (w/v) Phenol red solution 

0.06 g Penicillin 

0.10 g Streptomycin 

 

The Tris Saline reagents were dissolved in distilled water, adjusted to pH 7.7 and made 

to a total volume of 200 ml. Penicillin and streptomycin were then added. 2.5g of 

trypsin (Difco 1:250) was dissolved up to a total volume of 200 ml in distilled water (pH 

7.7). The trypsin was added to Tris saline and made to a final volume of 1L with 

distilled water. The final solution was filter sterilised through a 0.22µm filter.  

 

To make a 0.05% trypsin solution for cell culture, 0.25% trypsin was diluted 1:5 in 

versene and filter sterilised through a 0.22µm filter.  

 

Minimal Essential Medium (MEM) 

9.68g MEM powder 

3.70g Sodium bicarbonate (NaHCO3) 

 

MEM powder and sodium bicarbonate were dissolved in 10 L of distilled water and 

adjusted to pH 7.0 with carbon dioxide (CO2). The final solution was filter sterilised 

through a 0.22µm filter 
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2.1.3 Bacteriological Media 

Luria-Bertani (LB) Medium 

10 g Bacto-tryptone 

5   g Bacto-yeast extract 

10 g NaCl 

 

The above reagents were dissolved in distilled water, the solution adjusted to pH 7.2 

with 1M NaOH and made to a total volume of 1L. The solution was autoclaved to 

sterilise. Ampicillin was added to 100µg/ml if required. 

 

LB Agar plates 

15 g of Bacto-agar was dissolved in 1L of LB medium and autoclaved. To make LB 

agar plates, LB Agar was melted in a microwave and allowed to cool to 50ºC, following 

which ampicillin was added at 100µg/ml. 

 

2.2 Cell culture 

2.2.1 Cell culture and freezing stocks 

Cell lines were maintained in 10cm2 cell culture dishes in the indicated media at 5% 

CO2/37°C (Table 2). Cells were sub-cultured by washing once with PBSA, adding 

0.05% trypsin/versene solution and incubating at 37°C for 5 minutes. Trypsinised cells 

were re-suspended in warm media and sub-cultured at the indicated ratio or counted 

using a haemocytometer and seeded at the appropriate cell density. For microscopy-

based assays, cells were seeded onto fibronectin-coated dishes. To coat a dish, 

fibronectin was diluted 1:500 in PBSA and added to cell culture dish for 1 hour at room 

temperature, after which the dish was washed three times with PBSA. 
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Table 2 Cell lines and culture conditions 
 

Cell Line Species Media Sub-culture ratio Supplements 

HeLa Human MEM 1 1:3-1:6  
10% FBS4 
Pen/Strep5  

HEK 293 Human 
DMEM  

1:10-1:20 
10% FBS4 

High 
glucose2 Pen/Strep 

BS-C-1 
African 
Green 
Monkey 

DMEM  
1:5-1:10 

10% FBS4 
Low 
glucose3 Pen/Strep5 

U-2 OS Human 
DMEM  

1:5-1:10 
10% FBS4  

High 
glucose2 Pen/Strep5 

Ptk2 Rat 
Kangaroo 

DMEM  
1:5-1:10 

10% FBS4  
High 
glucose2 Pen/Strep5 

MEF Mouse 
DMEM  

1:5-1:10 
10% FBS4  

High 
glucose2 Pen/Strep5 

 
Notes 

1 Minimal essential medium provided by CRUK media services 

2  Dulbecco’s modified eagle medium 1000mg/l Sigma (D6046) 

3  Dulbecco’s modified eagle medium 4500mg/l Sigma (D6429) 

4  Fetal Bovine Serum PAA laboratories (A15-101) 

5  100 units/ml penicillin, 100 µg/ml streptomycin from 100x stock, Invitrogen (15140-122) 

 

 

To prepare cells for liquid nitrogen storage, cells were trypsinised as above, re-

suspended in warm culture media and then centrifuged at 120g for 5 min at room 

temperature. The cell pellet was then re-suspended in FBS plus 5% DMSO, aliquoted 

into cryo vials and transferred to the -80°C freezer. Several days later the frozen cells 

were transferred to liquid nitrogen. Cells were recovered by re-suspending the frozen 

pellet in warm media. Eight hours later media was replaced with fresh warm media. 

 

2.2.2 Transfection 

The method of transfection varied depending on the assay and nucleic acid. Fugene6 

(Roche) and HiPerfect (Qiagen) were frequently used and are described here. 
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Lipofectamine2000 (Invitrogen) and calcium phosphate mediated transfections were 

also used in specific cases and these are described in the appropriate section. 

2.2.2.1  Fugene 6 

Fugene 6 (Roche) was used, according to the manufacturers instructions, to transfect 

HeLa cells with GFP-tagged genes of interest in CB6 vectors for confocal or wide field 

microscopy. Briefly, HeLa cells were seeded at 1.5x104 cells per well in a fibronectin 

coated 12 well dish. After eight hours, Fugene 6 reagent and cDNA were added at a 

ratio of 3µl:1µg to 100µl Opti-MEM, briefly vortexed and incubated for 15 minutes at 

room temperature. The transfection mixture was added dropwise to cells. Imaging 

began 14-24 hours after transfection. 

2.2.2.2  HiPerfect 

HiPerfect (Qiagen) was used, according to the manufacturer’s fast forward protocol, to 

transfect HeLa cells with siRNA oligonucleotides for RNA mediated interference. In 

summary, 6µl of HiPerfect reagent and 1µl of 20µM siRNA were diluted in 100µl MEM, 

briefly vortexed and incubated for 5 minutes. Meanwhile, 1ml of HeLa cells was seeded 

into a well of a fibronectin coated 12 well dish at a density of 1x104 cells per ml. 

Immediately after seeding, the transfection mixture was added to the HeLa cells. 72 

hours after transfection, HeLa cells were infected with vaccinia virus and imaged, or 

collected for immuno blotting or mRNA extraction.  
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Table 3 Target sequences of siRNA oligos 

Gene Target sequence Dharmacon Cat No. 
RHOA AUGGAAAGCAGGUAGAGUU D-003860-01 

  GAACUAUGUGGCAGAUAUC D-003860-02 
  GAAAGACAUGCUUGCUCAU D-003860-03 
  GAGAUAUGGCAAACAGGAU D-003860-04 

RHOC GGAGAGAGCUGGCCAAGAU D-008555-01 
  AUAAGAAGGACCUGAGGCA D-008555-02 
  GGAUCAGUGCCUUUGGCUA D-008555-03 
  GAGAGCUGGCCAAGAUGAA D-008555-04 

RHOD UGAACAAGCUCCGAAGAAA D-008940-01 
  GAUUGGAGCCUGUGACCUA D-008940-02 
  CCGAACAGCUUUGACAACA D-008940-03 
  AGACGUCGCUGCUGAUGGU D-008940-04 

ARHE (RHOE) GAACGUGAAAUGCAAGAUA D-007794-02 
  GAAAUUAUCCAGCAAAUCU D-007794-03 
  UAGUAGAGCUCUCCAAUCA D-007794-04 
  AGAAUUACACGGCCAGUUU D-007794-05 

RHOF (RIF) GGGAGAAUGUGGAGGACGU D-008316-04 
  CGGCCGGGCAAGAAGACUA D-008316-05 
  AGAUCGUGAUCGUGGGCGA D-008316-06 
  ACGACAACGUCCUCAUCAA D-008316-07 

ROCK1 GCCAAUGACUUACUUAGGAUU D-003536-05 
ROCK2 GCAAAUCUGUUAAUACUCGUU D-004610-05 

Non-targeting AllStars Negative Control Qiagen 
 

2.2.3 Generation of stable cell lines 

Two HeLa cell lines that stably expressed fluorescent proteins were generated for this 

thesis, Lifeact-cherry and MLC2-RFP. Each gene was sub-cloned into the pLVX puro 

vector (ClonTech) (see 2.3.4), which contains a puromycin resistance cassette and all 

the necessary elements for the production of infectious but non-replicative lentivirus. 

 

HEK 293t cells were seeded at a density of 2x106 cells in a 6cm dish. The following 

day the media was replaced with 3.5ml of fresh warm complete MEM. Three hours 

later, 5ug each of pLVX vector, pRRE, pREV and pVSV-G were mixed in a total 

volume of 500µl 250mM CaCl2. DNA/CaCl2 mixture was then added dropwise to an 

equal volume of HBS (280mM NaCl, 10mM KCl, 1.5mM Na2HPO4, 12mM glucose and 

50mM HEPES) whilst slowly vortexing to agitate and incubated for 15 minutes. The 

transfection mix was added dropwise to HEK293t cells. The following day the media 
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was replaced with complete MEM supplemented with 10mM Sodium Butyrate, this was 

then replaced with normal media 8 hours later. The next day, the media was removed 

and passed through a 0.45µM filter. The infectious media was added to sub confluent 

HeLa cells in a 12 well dish. Two days later, the media was replaced with complete 

MEM supplemented with 1µg/ml puromycin. After 24 hours incubation with puromycin, 

the cells were sub-cultured and subsequently analysed for Cherry/RFP fluorescence.  

 

2.3 Molecular Biology 

2.3.1 General Buffers/Methods 

10 x DNA Loading Buffer 

0.25% (w/v) Bromophenol Blue 

30% (v/v) Glycerol 

 

5 x TBE 

445mM Tris Base  

445mM Boric Acid 

10mM  EDTA  

 

2.3.1.1  Ethanol precipitation of DNA 

DNA was precipitated with 0.3M sodium acetate and 2.5 volumes of ice cold 100% 

ethanol and incubated at -20°C for 20 minutes. DNA was pelleted by centrifugation at 

13,00rpm at 4°C and washed with 70% ethanol. The DNA pellet was vacuum dried and 

re-suspended in dH2O or EB buffer (Qiagen). 

2.3.2 Expression vectors 

The CB6 vector and pLVX vectors (Clontech) were used to express protein in 

mammalian cells using a CMV promoter (Reckmann et al., 1997). 
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Table 4 Expression vectors used in the thesis 

Vector Used in figure Created by 
pCB6 GFP-RhoC WT  5.5A J. Cordeiro 
pCB6 GFP-RhoC T19N 5.5A J. Cordeiro 
pCB6 GFP-RhoD G26V 5.9A J. Cordeiro 
pCB6 GFP-RhoD T31N 5.9A J. Cordeiro 
pCB6 GFP. 5.5A M. Way 
pLVX hygro GFP-RhoD WT siRNA Res 5.8A C. Durkin 
pLVX hygro GFP-RhoD G26V siRNA Res 5.8A C. Durkin 
pLVX hygro GFP-RhoD T31N siRNA Res 5.8A C. Durkin 
pLVX puro Lifeact Cherry 3.9 C. Durkin 
pLVX puro MLC2 RFP 3.9 C. Durkin 
pBS II F11-GFP WT targeting vector 3.8 C. Durkin 

 

2.3.3 Polymerase chain reaction 

PCR reactions were used to amplify DNA from vaccinia genomic DNA or DNA vectors. 

A standard 100µl PCR reaction contained 0.5µM of each primer, 1mM dNTP mix 

(0.25mM each nucleotide), 1 x Phusion HF buffer, 20U/ml Phusion High Fidelity DNA 

Polymerase (NEB) and up to 100ng of template DNA. PCR reactions were performed 

using Applied Biosystems GeneAmp PCR machine using the following conditions.  

 

95°C 5 min 

---------------------- 

Denaturation 95 °C 30 sec  

Annealing 55 °C 30 sec   25 cycles 

Extension 72 °C 1   min  

---------------------- 

72 °C 10 min 

---------------------- 

12 °C ∞ 

 

Reactions were resolved on a 1% (w/v) agarose gel (made up in 1x TBE) containing 

1:10,000 SYBR safe DNA Gel Stain (Invitrogen) and visualized at 470nm using a Safe 

Imager (Invitrogen). 
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2.3.4 Sub-cloning 

Insert and vector plasmids were digested at a ratio of approximately 3µg:1µg in 

separate 20µl reactions containing 10-20U restriction enzyme (NEB) and 1 x NEBuffer 

at 37ºC for 1 hour. The digestion reaction was resolved on a 1% agarose gel (made in 

TBE) with 1:10,000 SYBR safe DNA Gel Stain (Invitrogen) and visualised at 470nm 

using a Safe Imager (Invitrogen) and cut out from the gel. DNA was purified in 30µl 

H2O using Qiagen QIAquick gel extraction kit. Insert DNA was vacuum dried and re-

suspended in 7µl H2O. Insert was added to 1µl vector DNA, 1x T4 ligase buffer and 

200U T4 ligase (NEB) and incubated for 30 minutes at room temperature. Ligation 

reaction was transformed into chemically competent XL-10 cells (2.3.6). 

2.3.5 Chemically competent E.Coli 

A 5ml preculture of XL-10 gold Escherichia coli was incubated overnight in LB media at 

37°C at 220 rpm. 2ml of the preculture was subsequently added to 500ml of LB with 

constant shaking at 37 ºC until an OD600 of 0.5 was reached. The culture was then 

centrifuged for 12 min at 2500 rpm. The pellet was re-suspended in 20 ml of cold RF1 

buffer, incubated on ice for 15 min and centrifuged for 9 min at 2500 rpm. Finally, the 

pellet was re-suspended in 7 ml cold RF2 buffer, divided into 100µl aliquots, snap 

frozen and stored at -80ºC. 

 

RF1 Buffer 

12.00 g Rubidium chloride, RbCl 

9.00 g Manganese chloride, MnCl2 

2.94 g Potassium acetate 

150.00 g Glycerol 

 

Dissolved in 1L of H2O made to a final pH of 5.8 with acetic acid and sterilized through 

a 0.22µm filter. 
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RF2 Buffer 

2.09 g 3-(N-morpholino)propanesulfonic acid (MOPS) 

1.20 g Rubidium chloride, RbCl 

11.00 g Calcium chloride, CaCl2 

150.00 g Glycerol 

 

Dissolved in 1L of H2O made to a final pH of 6.8 with sodium hydroxide and sterilized 

through a 0.22µm filter. 

2.3.6 Transformation of bacteria 

Chemically competent XL-10 cells were thawed on ice and then incubated with DNA on 

ice for 20 minutes. Cells were heat shocked at 42°C for 45 seconds, incubated on ice 

for 2 minutes, and then incubated at 37°C with constant shaking for 45 minutes in 

100µl LB media. The bacteria solution was spread onto LB-agar plates containing 

ampicillin and incubated at 37°C overnight.  

2.3.7 Colony screening by PCR 

Colony screening by PCR was performed to identify XL-10 colonies containing the 

insert of interest, following the transformation of cloning ligation reactions. Colonies 

were picked with a pipette tip and transferred to a 25µl PCR reaction containing 1x 

PCR buffer, 1.5mM MgCl2, 0.5µM of each primer, 1mM dNTP mix (0.25mM each 

nucleotide) and 50 U/ml Simpler Red DNA Polymerase (Thermo Scientific). PCR 

reactions were analyzed as before (2.3.3). 

 

95°C 10 min 

---------------------- 

Denaturation 95 °C 30 sec  

Annealing 55 °C 30 sec   30 cycles 

Extension 72 °C 1   min  

---------------------- 

72 °C 10 min 

---------------------- 

12 °C ∞ 
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2.3.8 Plasmid DNA purification 

DNA was purified from XL-10 cultures using Plasmid Miniprep and Midiprep Kits 

(Qiagen) according to the manufacturers instructions. XL-10 cultures derived from a 

single colony and were grown overnight at 37°C and 220rpm in LB-ampicillin. DNA was 

purified from 5ml or 50ml of XL-10 for Miniprep or Midiprep, respectively. 

2.3.9 DNA sequencing 

To sequence regions of interest in purified plasmid DNA or PCR products from vaccinia 

genomic DNA, primers were designed to match DNA sequence flanking the region on 

sense or antisense strand and every 500 bases throughout the region of interest. The 

20µl sequencing PCR reaction contained 3.2 pmole primer, 8µl BDTv3.1 reaction mix 

(Big Dye Terminator Cycle sequencing kit) and 200ng of plasmid DNA or 60ng-100ng 

of 3kb-4kb PCR product. 

 

95°C 1 min 

---------------------- 

Denaturation 95 °C 10 sec  

Annealing 55 °C 5 sec  25 cycles 

Extension 60 °C 4 min  

---------------------- 

12 °C ∞ 

 

PCR products were purified with DyeEx columns (Qiagen) and vacuum dried. 

Sequencing was performed by the LRI equipment park. 

2.3.10 Site directed mutagenesis 

Point mutations were introduced into genes of interest using a protocol based on 

QuikChange site-directed mutagenesis (Agilent Technologies/Stratagene). Forward 

and reverse complimentary primers were designed to introduce single or multiple point 

mutations. The point mutation was in the centre of the primer with at least 15 bases on 

either side. The site-directed mutagenesis PCR was performed in a 100µl reaction 

containing 125ng of each primer, 1mM dNTP mix (0.25mM each nucleotide), 1 x 

Phusion HF buffer, 20U/ml Phusion High Fidelity DNA Polymerase (NEB) and up to 

50ng of template/parental DNA, using the following conditions. 
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95°C 5 min 

---------------------- 

Denaturation 95 °C 30 sec  

Annealing 55 °C 30 sec   12-18 cycles 

Extension 68 °C 1 min per kb plasmid  

---------------------- 

72 °C 10 min 

---------------------- 

12 °C ∞ 

 

The number of cycles varied between 12 cycles for a single point mutation and 18 for 

multiple amino acid changes. Following the PCR, the reaction was incubated with 20U 

Dpn1 (NEB) to digest methylated/hemi-methylated parental DNA, for 1 hour at 37°C. 

DNA was then ethanol precipitated and re-suspended in 5µl H2O. The DNA was 

transformed into XL-10 cells. XL-10 clones were cultured and the DNA was purified by 

Miniprep. DNA carrying the desired mutation was confirmed by sequencing. 

 

2.4 Vaccinia virus 

The wild type virus used in this thesis is the Western Reserve strain (WR). The 

recombinant viruses generated in this study are in a WR genomic background. The 

attenuated virus modified vaccinia Ankara (MVA) was also used. The viruses used in 

this study are listed below. 

 

Table 5 Viruses used in the thesis 

Virus name Generated by/received from Genomic 
backbone 

ΔF11L Y. Arakawa WR 
F11 VK J. Cordeiro WR 
F11 IV-KNS J. Cordeiro WR 
F11 VK/IV-KNS J. Cordeiro WR 

MVA G. Sutter (Zwilling et al., 
2010)   

MVA F11 J. Zwilling (Zwilling et al., 
2010) MVA 

F11-GFP C. Durkin WR 
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2.4.1 General buffers for virology 

Tris buffer 

10mM Tris-HCl pH 9  

2mM   MgCl2  

in distilled water and filter sterilised using a 0.22µm filter. 

 

Sucrose cushion 

35% sucrose (w/v) in Tris buffer 

 

Crystal violet  

0.1% crystal violet (w/v) 

20% ethanol 

 

Virus lysis buffer 

10mM Tris-HCl pH 9 

10mM KCl 

3mM   Mg(CH3COO)2 

in distilled water and filter sterilised using a 0.22µm filter. 

 

2.4.2 Sucrose Purification of vaccinia virus  

HeLa cells were grown in 15cm2 culture dishes to a confluency of 90%. The cells were 

infected with 0.1 multiplicity of infection (MOI) of vaccinia virus and left to grown for 48-

72 hours until all cells displayed obvious cytopathic effect (CPE).  The infected cell 

media was removed and cells were harvested in 10ml of PBSA and centrifuged for 7 

minutes at 1,700rpm. The cell pellet was washed once in PBSA. Subsequently, 

infected cells were re-suspended in 7mls of Tris Buffer and sheared by 15 strokes of a 

7ml Dounce homogeniser (Wheaton). The resulting solution was clarified at 1,700rpm 

for 7 minutes, to remove nuclei and cell membrane, and the supernatant was saved 

and stored at -20ºC overnight. The virus supernatant was layered onto an 8ml 35% 

sucrose cushion in Beckman SV40 ultracentifuge tubes, made to a total of 25ml with 

Tris buffer and centrifuged at 24,000rpm in a Beckman Optima L-100 XP ultracentifuge 

for 30 mins. The pellet was re-suspended in Tris buffer and stored in 100µl aliquots  at 

-80°C. 
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2.4.3 Virus titre 

BS-C-1 cells were grown to a confluent monolayer in 6 well dishes. The virus 

preparation was serially diluted 1:10 in 1ml of serum free MEM. The culture media was 

removed from the BS-C-1 cells and replaced with 10-5, 10-6 and 10-7 dilutions of virus. 

After 1 hour the media was removed and replaced with an overlay of 1 x MEM, 5% 

FBS and 0.9% agarose. Following a two day incubation, the cells were fixed with 4% 

paraformaldehyde (PFA) in PBSA for 1 hour, the overlay was removed and cells were 

stained with crystal violet solution for 30 mins. Virus titre or plaque forming unit per ml 

(PFU/ml) was determined by counting the number of virus plaques within the virus 

dilution where plaques are both discernible and isolated.  

2.4.4 Infection 

The multiplicity of infection (MOI) for an experiment was calculated from the PFU of the 

virus stock and the number of cells in the particular experiment. A MOI of 5 was used 

for all experiments unless otherwise stated. Prior to infection, the virus aliquot was 

sonicated in a water bath for 30 seconds. Cells were washed with serum free media 

and the appropriate volume of virus was added to the cells in serum free media. Cells 

were incubated for 20 mins with virus at 37°C after which the media was replaced for 

complete media. Cells were incubated at 37°C until the termination of the experiment. 

2.4.5 Drug treatments during infection 

HeLa cells were treated with inhibitors for the indicated time prior to infection and 

throughout infection, at the indicated concentrations.   

Table 6 List of inhibitors 

Compound  Concentration Incubation time 
prior to infection Reference 

Z-VAD-fmk 10µM 30 minutes  (Postigo and Way, 2012) 

Y27632 10µM 30 minutes   (Sanz-Moreno et al., 2008) 

H1152 5µM 30 minutes   (Sanz-Moreno et al., 2008) 

GSK429286A 5µM 30 minutes   (Nichols et al., 2009) 

C3 0.5µg/ml 1 hour Cytoskeleton Inc. 
AraC 50µM 0   

Psoralen 5µg/ml -  (Tsung et al., 1996) 
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2.4.6 UV irradiation of vaccinia 

4x104 plaque forming units (PFU) of virus was suspended in 500µl of serum free media 

in a 6 well dish. 5µg/ml Psoralen was added to the virus solution and this was then 

exposed to 0.4J/cm-2 ultraviolet (UV) light. The 500µl solution was used to infect one 

well HeLa cells in a 12 well dish.  

2.4.7 Preparation of vaccinia genomic DNA 

Vaccinia genomic DNA was prepared from one 100µl aliquot of sucrose-purified virus 

or alternatively from the post-nuclear supernatant of infected cell lysates, which was 

prepared as follows. A 10cm2 dish of infected cells was collected in PBS, centrifuged at 

1,700rpm for 5 minutes and washed with PBS. The cell pellet was re-suspended in 

100µl virus lysis buffer, sheered and centrifuged at 1,700rpm for 5 minutes. The 100µl 

of virus containing supernatant was used for DNA preparation.  Virus preparations 

were incubated at 37°C for 4 hours with 0.5mg/ml Proteinase K and 0.5% SDS. DNA 

was then isolated by phenol/chloroform extraction. Briefly, the virus preparation was 

added to an equal volume of phenol:chloroform, incubated with rotating for 5 minutes 

and centrifuged at 13,000rpm for 5 minutes. The top supernatant was again added to 

phenol:chloroform and the previous steps were repeated twice. The DNA was then 

purified by ethanol precipitation and the pellet was re-suspended in 20µl of H2O. 

 

2.4.8 Amplification of vaccinia DNA 

2.4.8.1 Touch-down PCR 

Touch down PCR was used to amplify DNA from vaccinia genomic DNA. 

Approximately 1µl of vaccinia genomic DNA was added to a standard PCR mix (2.3.3) 

and the PCR reaction was performed using the following conditions. 
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95°C 1 min 

---------------------- 

Denaturation 95 °C 20 sec  

Annealing 65 °C 20 sec    - 1°C per cycle for 10 cycles 

Extension 72 °C 1   min  

---------------------- 

Denaturation 95 °C 20 sec  

Annealing 55 °C 20 sec   25 cycles 

Extension 72 °C 1   min  

---------------------- 

72 °C 10 min 

---------------------- 

12 °C ∞ 

 

2.4.8.2 Analytical PCR from plaque picks 

The picked focus was re-suspended in 100µl serum free media and freeze/thawed 

three times. 8µl of this suspension was incubated with 40µg/ml proteinase K, 3µl of 10x 

Simpler Red DNA polymerase PCR buffer (Thermo Scientific) in a 25µl volume for 20 

minutes at 56°C followed by 10 minutes at 85°C. The mixture was then supplemented 

with 1mM dNTPs, 0.5µM of each primer, 1.5mM MgCl2 and 50 U/ml Simpler Red DNA 

polymerase. The PCR reaction was performed as (2.3.3) using the following conditions 

and the reaction product was analysed on a 1% agarose gel as before. 

 

95°C 10 min 

---------------------- 

Denaturation 95 °C 30 sec  

Annealing 55 °C 30 sec   30 cycles 

Extension 72 °C 1   min  

---------------------- 

72 °C 10 min 

---------------------- 

12 °C ∞ 
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2.4.9 Generation of recombinant F11-GFP virus 

The F11-GFP virus was generated by homologous recombination between a targeting 

vector and ΔF11L virus. The targeting vector consisted of F11-GFP between two arms 

of recombination; which mimic the flanking regions of the F11L locus within the WR 

genome (Figure 3.8A). 

 

The targeting vector for the F11-GFP viruses was created as follows. F11 was cloned 

into a pE/L vector using BglII and Not1. GFP was amplified by PCR, with an additional 

30bp (encoding GAAAWGGGGW) upstream of the GFP start codon to generate a 

flexible linker between F11L and GFP, and added to the C terminus of F11L with Not1 

and BamH1 restriction sites. The final 25bp of F11L sequence was re-codonised to 

prevent recombination with the F10L promoter using site directed mutagenesis. The 

left and right arms of recombination were generated by touchdown PCR from purified 

WR genomic DNA. First, the left arm comprised the 600bp upstream of F11L start 

codon (F12L coding sequence) and was cloned into the targeting vector using BglII 

restriction sites. Subsequently, the right arm comprised the terminal 25bp of F11L (the 

F10L promoter) and a further 575bp downstream of F11L (F10L coding sequence), and 

was cloned using BamH1 restriction sites.  

 

HeLa cells were seeded into a 35mm2 culture dish at 90% confluency. Cells were 

infected with ΔF11L virus at MOI 0.1. At 2hpi cells were transfected with the 4µg of 

targeting vector using Lipofectamine 2000 (Qiagen), according to the manufacturer’s 

protocol. Briefly, 10µl of Lipofectamine 2000 was added to 250µl Opti-MEM, whilst 

separately 4µg DNA was added to 250µl Opti-MEM and both solutions were incubated 

for 5 mins. The two solutions were mixed, incubated for 20 mins and added dropwise 

to the cells. At one day post infection, the media was removed and cells were scraped 

into 500µl of virus lysis buffer. The infected cell lysate was then freeze/thawed three 

times in liquid nitrogen/37°C incubator. Confluent monolayers of BS-C-1 cells in 35mm2 

dishes were infected with 1:10 serial dilutions of the infected cell lysate in serum free 

media, and then overlayed with agarose (2.4.3). At 24 hours post infection, the cells 

were observed on a widefield microscope using phase contrast to search for plaques 

and fluorescence to identify GFP positive plaques. Plaques were ‘picked’ with a p1000 

pipette tip into 250µl virus lysis buffer, which was then freeze/thawed as before. For the 

second round of plaque purification 50µl of the picked plaque solution was used to 

infect BS-C-1 as before. Plaque purification continued until only fluorescent plaques 



Chapter 2 Materials and Methods 

 

 87 

could be seen. Recombinant virus purity was confirmed by analytical PCR using 

primers pairs that amplified the target region and distinguished between parental and 

recombinant virus, by size or by the presence/absence of a PCR product. 

 

2.5 Biochemistry 

2.5.1 2 x Final sample buffer (FSB) 

125mM Tris HCl pH6.8 

4%  SDS 

20%  Glycerol 

10%  B-mercaptoethanol 

+ a pinch of Bromophenol blue  

 

  

2.5.2 SDS-PAGE 

For antibody tests and assessing the efficiency of siRNA knockdown, cells were lysed 

directly into 2 x FSB. Samples were boiled for 10 minutes at 95ºC. Samples were 

loaded onto 4-12% Bis-Tris or 8% Tris-actetae NuPAGE pre cast gels (Invitrogen), with 

reference to SeeBluePlus2 protein standards (Invitrogen) and resolved for 1 hour at 

150V.  

2.5.3 Immuno blotting 

2.5.3.1 ECL immuno blotting 

Proteins resolved by SDS-PAGE were transferred onto nitrocellulose membranes 

using the iBlot semi-dry transfer system (Invitrogen) at 23V for 7 minutes or 20V for 9 

minutes for large proteins. Successful transfer onto the membrane was observed with 

Ponceau S staining (Pierce). The membrane was incubated in blocking buffer 

consisting of 5% BSA or 5% Milk in TBS-T (Tris-buffered saline + 0.1% Tween20) for 

30 minutes and then incubated overnight with primary antibody in blocking buffer at 

4ºC. The membrane was washed four times with TBS-T, and then incubated with HRP 

conjugated secondary antibody (Jackson ImmunoResearch) diluted to 1:5000 in 

blocking buffer for 30 minutes at room temperature. The membrane was washed as 
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before. Finally, the membrane was incubated in ECL reagent (Amersham Biosciences) 

for 1 minute and exposed on Hyperfilm-ECL (Amersham Biosciences).  

2.5.3.2 Quantitative infra red immuno blotting 

For quantitative immuno blot, membranes were blocked and antibodies diluted in 

Odyssey blocking buffer (LiCor). All immuno blotting steps were performed as above, 

until secondary antibody incubation where the membrane was incubated with Infrared 

secondary antibody (Rockland) diluted to 1:5000 for 1 hour. The membrane was 

washed as before and visualised on the Odyssey Infrared scanner (LiCor).  

 

Table 7 Primary antibodies used in immuno blotting 

Antibody	
   Raised	
  in	
   Concentration	
   Blocking	
   Supplier	
  
GST	
  (G-­‐7781)	
   Rabbit	
   1:2000	
   Milk	
   Sigma	
  
ROCK1	
  (C8F7)	
   Rabbit	
   1:1000	
   BSA	
   Cell	
  signalling	
  
ROCK2	
  (D1B1)	
   Rabbit	
   1:1000	
   BSA	
   Cell	
  signalling	
  
RhoA	
  (67B9)	
   Rabbit	
   1:1000	
   BSA	
   Cell	
  signalling	
  
RhoC	
  (D40E4)	
   Rabbit	
   1:1000	
   BSA	
   Cell	
  signalling	
  
RhoD	
   Rabbit	
   1:1000	
   Milk	
   AnboBio	
  

F11-­‐N	
   Rabbit	
   1:2000	
  
SuperBlock	
  (Thermo	
  
Scientific)	
  

C.	
  Durkin	
  and	
  Y.	
  
Handa	
  

F11-­‐C	
   Rabbit	
   1:2001	
  
SuperBlock	
  (Thermo	
  
Scientific)	
   C.	
  Durkin	
  

P14/A27L	
   Mouse	
   1:1000	
   Milk	
  
	
  A36	
   Mouse	
   1:2000	
   Milk	
   S.	
  Cudmore	
  

Actin	
  (ac-­‐74)	
   Mouse	
   1:2000	
   Milk	
   Sigma	
  
α-­‐Tubulin	
   Mouse	
   1:2000	
   Milk	
   Sigma	
  
Grb2	
   Mouse	
   1:1000	
   Milk	
   BD	
  Transduction	
  
GFP	
  (3E12)	
   Mouse	
   1:2000	
   Milk	
   In	
  House	
  CRUK	
  
N1	
   Rabbit	
   1:1000	
   Milk	
   A.	
  Postigo	
  

 

Table 8 Secondary antibodies used in immuno blotting 

Antibody	
   Raised	
  in	
   Label	
   Supplier	
  
Mouse	
   Goat	
   HRP	
   Jackson ImmunoResearch 
Rabbit	
   Goat	
   HRP	
   Jackson ImmunoResearch 
Mouse	
   Rabbit	
   IRDye800CW	
   Rockland 
Rabbit	
   Goat	
   IRDye800CW	
   Rockland 
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2.5.4 Rhotekin Pull down assays 

2.5.4.1 Rho activity in infected cells 

U-2 OS cells were seeded into a 15cm2 to achieve 80% confluency on the day of the 

assay. Cells were infected with WR or ∆F11L at an MOI 5 in serum free DMEM for 30 

minutes, after which the media was replaced for complete DMEM. At 3hpi, cells were 

washed with 10ml of ice-cold TBS, lysed in 750µl 1x Mg2+ lysis buffer (MLB) (Millipore) 

on ice and clarified at 13,000rpm for 3 minutes. The lysate was incubated with 15µl of 

Rho assay reagent (Rhotekin RBD agarose, Millipore) for 1 hour at 4ºC whilst rotating. 

The beads were washed three times with MLB, and boiled in FSB. The bound and 

input samples were resolved by SDS-PAGE and analysed by quantitative infrared 

immuno blot using anti-RhoA or anti-RhoC antibodies (Table 7). The proportion of 

Rho.GTP in the cell lysate was determined by normalising the intensity of bands in the 

bound sample to the input, using LiCor Odyssey software. Each sample was further 

normalised to the mean of the uninfected control.  

2.5.4.2 RhoC activity in cells expressing GFP-RhoD 

U-2 OS cells were transfected with pCB6 GFP or pCB6 GFP-RhoD. Six hours later, the 

media was replaced with serum free DMEM. 24 hours after starvation, cells were 

stimulated in 20% FBS for 3 minutes. Cells were lysed and assay performed as above. 

2.5.5 Generation of polyclonal F11 antibodies 

2.5.5.1  Generation of bleeds 

Peptides with a free sulfhydryl group were synthesised by the peptide synthesis facility 

at the LRI and conjugated to maleimide-activated mariculture Keyhole limpet 

hemocyanin (mcKLH) (Thermo Scientific) according to the manufacturer’s instructions. 

Briefly, 2mg of the peptide was dissolved in 500µl of conjugation buffer, mixed with 

2mg of maleimide-activated mcKLH (reconstituted in 200µl dH2O) and incubated for 2 

hours at room temperature. The peptide-KLH conjugate was applied to a desalting 

column (Thermo Scientific) and eluted with 0.5ml aliquots of purification buffer (Thermo 

Scientific). Aliquots that contained eluted peptide were identified by absorbance 

measurements at OD280 and these were pooled and made up to a total volume of 4.2ml 

in sterile PBSA. The immunogen solution was separated into six 1.2ml aliquots, one 

double strength aliqout and the remaining five diluted 1:1 with PBSA. Immunogen 
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aliquots were sent to Pettingill Technologies for injection into two rabbits over a 77-day 

schedule. The ability of the resulting antisera to detect F11 was tested by immuno blot 

analysis on HeLa cell lysates infected with WR or ΔF11L.  

 

Table 9 Peptides used to generate polyclonal antibodies. 

Name Region Sequence Immuno blot IF 
F11-C 323-334 CGGNFITKEIKNRDK Yes No 
F11-N 101-120 PDIKLDAVLDRDGNFRPADC Yes No 

 

2.5.5.2  Coupling peptides to SulfoLink column 

Peptides were coupled to a SulfoLink column (Thermo Scientific) according to the 

manufacturer’s instructions. Briefly, 1mg of peptide was dissolved in 2 ml of Coupling 

buffer and incubated for 30 minutes at room temperature. The peptide was added to 

the prepared and washed SulfoLink column and the column washed three times. 

Finally, non-specific sites in the coulumn were blocked by the addition of 50mM L-

Cysteine.HCl and washed three times with PBSA.  

2.5.5.3 Affinity purification 

The affinity column was prepared by sequential washing with 20ml of the following 

buffers; 100mM Triethylamine (TEA) pH 11.5, PBSA, 100mM Glycine pH 2.5 and 

finally PBSA +250mM NaCl. The antisera from the two rabbits were pooled and 

centrifuged for 15 minutes at 2500rpm, the supernatant was filtered through a Millex-

HV 0.45µm filter and then diluted 1:1 in PBSA +250mM NaCl. The diluted antiserum 

was passed through the column three times. The column was washed once with PBSA 

+250mM NaCl and PBSA. Bound antibody was eluted using 1 ml aliquots of glycine 

and then 1ml aliquots of TEA. Elutions were immediately neutralised with 1M Tris.HCl 

pH 8.8, then measured for absorbance at OD280 to detect the fractions that contained 

antibody. These fractions were tested as before and those with similar specificity were 

pooled and stored either at 4°C or diluted 1:1 with glycerol at -20°C. 
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2.6 Microscopy 

2.6.1 Cell contraction assay 

Hela cells were seeded onto 6 well dishes at a density of 3x104 cells per well one day 

prior to infection. Hela cells were infected at a MOI of 5 in serum free MEM. The media 

was replaced at 20 minutes post infection with complete MEM supplemented with 

40mM HEPES. Imaging started at 40 minutes post infection and images were acquired 

every 5 minutes for 10 hours.  

 

Images were acquired using a Plan-Apochromate 10x/0.25 Ph1 lens and a 

Photometrics Cool Snap HQ cooled CCD camera on a Zeiss Axiovert 200 Microscope. 

The system was controlled by MetaMorph software version 6.3r7 (Universal Imaging 

Corporation Ltd). The average area of infected cells was determined at 1 hour intervals 

post acquisition using MetaMorph software version 6.3r7. The average cell area at 

each time point was normalized to the original mean and in all experiments is 

represented as the percentage of the original cell area. 

2.6.2 Cell blebbing assays 

HeLa cells (and stable cell lines expressing RFP tagged cortical components) were 

seeded onto fibronection coated 35mm2 Matek dishes. Depending on the experiment, 

cells were transfected using Fugene6 with pCB6 GFP or pLVX RFP 8 hours later. The 

following day cells were infected at a MOI of 5. Live cell imaging was started at 3hpi 

using a Plan-Achromat 63x/1.40 Ph3 M27 Oil lens (Carl Zeiss, Germany) and an 

Evolve 512 camera (Photometrics, AZ) on an Axio Observer Microscope controlled by 

Slidebook (3i intelligent imaging innovations, USA). Images were collected at 1.0Hz or 

3.7Hz as indicated. Cell blebbing movies were analysed by David Barry in ImageJ. The 

perimeter of the cell was determined from the GFP or RFP cytoplasmic signal, which 

allowed for accurate segmentation of the cell from the background.  The membrane 

protrusion velocity at every point on the cell perimeter was determined, by following the 

temporal change in pixel intensity, using an ImageJ plugin created by David. This 

plugin was based on work by Dobereiner et al., (Dobereiner et al., 2006). The cell 

perimeter was then used as a reference to determine the fluorescence intensity of 

LifeAct-cherry, MLC-RFP or F11-GFP at the plasma membrane.  
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2.6.3 Immunofluorescence (IF) 

2.6.3.1  Buffers for IF 

Blocking buffer 

1% BSA 

2% FCS 

 

Mowiol 

2.4g Mowiol and 6g glycerol were dissolved in 6 ml distilled water and the mix was 

incubated for 2 hours at room temperature with constant stirring. Subsequently, 12 ml 

of 200mM Tris-HCL (pH8.5) was added and the solution incubated at 55ºC until Mowiol 

was dissolved. Finally the solution was clarified at 4000rpm for 20 minutes.  

 

4% Paraformaldehyde (PFA) 

PBSA was pre-heated to 50ºC. 4% PFA (w/v) and one NaOH pellet were added and 

the solution was stirred until fully dissolved. The solution was adjusted to a final pH of 

7.5 and the solution was passed through a 0.22µm filter. 

2.6.3.2  Fixation and staining 

HeLa cells were seeded at 4x104 onto fibronectin coated glass coverslips in a 6 well 

dish. 8 hours later cells were transfected with pCB6/pLVX GFP of pCB6/pLVX GFP-

RhoD. 24 hours post transfection HeLa cells were washed once with PBSA, fixed with 

4% PFA for 10 minutes at room temperature and washed three times with PBSA. Cells 

were permeabilised with 0.1% saponin in PBSA for 5 minutes, following which the 

coverslips were three times with PBSA. Coverslips were incubated in blocking buffer 

for 20 minutes, washed three times with PBSA and incubated in 568-phalloidin 

(Molecular probes, Invitrogen) diluted to 1:1000 in blocking buffer for 20 minutes. 

Coverslips were washed again before incubation in 300nM DAPI, diluted in PBS, for 5 

minutes. Finally coverslips were washed in PBS then H2O and affixed to microscope 

slides using Mowiol.  

 

Fixed samples were imaged using a Zeiss Axioplan2 equipped with a Photometrics 

Cool Snap HQ cooled CCD camera, external Prior Scientific filter wheels (DAPI; FITC; 

Texas Red; Cy5) and a 63x/ 1.4 Plan Apochromat objective. The system was 

controlled by MetaMorph software version 6.3r7 (Universal Imaging Corporation Ltd). 
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2.6.4 Statistical analysis of microscopy data 

In all graphs the data is the mean value from at least three independent experiments 

(unless stated). Error bars represent the standard error of the mean. Statistical analysis 

was determined using Prism 5.0 (GraphPad Software, CA). A Student’s T-test was 

used to compare two data sets. When more than two data sets were analyzed a One 

Way ANOVA test was performed followed by Tukey post test to compare all pairs of 

samples. A P value of >0.05 is not considered statistically significant. * indicates 

P<0.05, ** indicates P<0.01 and *** indicates P<0.001. 
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Chapter 3.  

Vaccinia stimulates F11 dependent cell contraction and 
blebbing 

3.1 Introduction 

Several groups have previously documented the changes in host cell morphology 

during vaccinia infection. Briefly, infected cells contract early in infection, re-spread, 

migrate and extend actin-rich peripheral projections (Bablanian et al., 1978; Sanderson 

et al., 1998; Schramm et al., 2006; Valderrama et al., 2006). Originally, this lab 

documented a role for F11 in vaccinia induced cell migration and cell projections. 

Subsequent studies with two different ΔF11L viruses suggested that F11 was 

additionally involved in cell contraction and/or loss of cell-cell adhesion (Cordeiro et al., 

2009; Morales et al., 2008). However, we now lack molecular understanding of the host 

cell mechanisms involved in cell contraction. Using live cell imaging and a combination 

of different inhibitors, recombinant viruses and cell lines, I sought to characterise 

vaccinia induced cell contraction and the involvement of F11 in more detail.  

3.2 Results 

3.2.1 Vaccinia stimulates temporal cell contraction and blebbing. 

I sought to confirm the occurrence of vaccinia stimulated cell contraction and to 

characterise the temporal nature of this phenotype. Previous observations have 

suggested that cell contraction and associated membrane blebbing occurs early in 

vaccinia infection (Morales et al., 2008; Sanderson et al., 1998). I decided to 

synchronise vaccinia infection in HeLa cells to ensure contractile events happened 

simultaneously. This method had the additional benefit of enabling time-lapse 

microscopy to start as early as 40 minutes post infection to capture very early events. 

Synchronised infection is obtained by adding a high number of virus particles per cell 

(termed multiplicity of infection or MOI) to HeLa cells for a period of 20 minutes (this is 

in contrast to previous published methods from this laboratory where the virus is added 

for 1-2 hours). I infected HeLa cells at an MOI of 5 with the Western Reserve (WR) wild 

type vaccinia strain and followed cell morphology changes from 40 minutes post 

infection (pi) until 10 hours 40 minutes pi using phase time-lapse microscopy with a 
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10X objective lens (Figure 3.1A).  I measured cell contraction by quantifying the cell 

area at 1 hour intervals, and normalising to the average cell area at the start of 

acquisition. In all experiments the change is cell area is expressed as a percentage of 

the original cell area. All subsequent cell contraction experiments were conducted in 

this manner unless otherwise stated. Cell contraction started as early as 1 hour post 

infection (hpi) and rapidly continued to increase until it reached maximal contraction at 

3:40hpi, with the normalised average cell area at 25.3 ± 0.48% (Figure 3.1 B). The 

decrease in cell area was associated with transient plasma membrane blebbing (83% 

cells bleb between 2:40-3:40hpi, 86% between 3:40-4:40hpi) (Figure 3.1 C). From 

4:40hpi onwards cells started to re-spread, this was associated with a gradual 

reduction in the number of cells making plasma membrane blebs (Figure 3.1 C). To 

follow plasma membrane blebbing at a higher resolution, I infected HeLa cells with WR 

and imaged infected cells at 3:40hpi on a spinning disc microscope with a 63X 

objective. Infected cells were unpolarised and exhibited multiple membrane blebs 

around the whole cell perimeter. Occasionally, long distended blebs and blebs on blebs 

were observed (Figure 3.1 D) 

 

Host cell plasma membrane blebbing has been observed upon vaccinia attachment 

and entry (Mercer and Helenius, 2008). Although, cell contraction and associated 

blebbing occurs several hours after initial infection, I wondered whether it was 

associated with virus entry. To determine whether vaccinia induced contraction is 

dependent on the expression of viral genes or is a cellular response to virus 

attachment and entry, I infected HeLa cells with inactivated virus, which is unable to 

express vaccinia genes. To inactivate the virus I treated virus solutions with ultraviolet 

light (UV) and psoralen, a chemical that intercalates into and crosslinks DNA upon 

exposure to UV. This method inactivates the viral nucleic acids whilst preserving the 

antigenicity of the virus and its ability to enter the host cell (Tsung et al., 1996). The 

irradiation of vaccinia with UV alone blocked the expression of the vaccinia early gene 

N1L but not A36R, as shown by the immuno blot analysis performed by Antonio 

Postigo (Figure 3.2 A). Treatment with psoralen coupled with UV irradiation effectively 

blocked expression of both N1L and A36R (Figure 3.2 A). UV irradiation and psoralen 

treatment should therefore render the virus non-replicative (Tsung et al., 1996). To 

verify this, I performed plaque assays to measure the number of replication competent 

vaccinia virions following treatment with UV and psoralen. I infected confluent 

monolayers of BS-C-1 cells with 4x104 plaque forming units (PFU) of irradiated or non-
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irradiated virus. The PFU used in the plaque assay is equivalent to the PFU used in the 

cell contraction assay when infecting HeLa cells at an MOI of 5. Infected cells were 

overlaid with agarose, fixed at 48hpi and stained with crystal violet. The agarose 

overlay prevents virus spread through the media and only allows for direct cell-cell 

spread. Therefore, a single plaque will derive from a single infected cell. The number of 

clearances (plaques) in the crystal violet stained monolayer is the measure of the 

number of replicative vaccinia virions (Figure 3.2 B upper panel). No plaques were 

observed in monolayers infected with irradiated virus (Figure 3.2 B lower panel). Taken 

together this indicates that UV and psoralen treatment efficiently blocks gene 

expression and hence genome and virus replication. I then infected HeLa cells with UV 

and psoralen irradiated virus. Cells infected with irradiated virus did not contract, 

indicating that the expression of vaccinia genes is required for cell contraction. 

Therefore, cell contraction and membrane blebbing is not associated with the similar 

membrane events seen during vaccinia entry (Mercer and Helenius, 2008)(Figure 

3.2C).  

 

Vaccinia genes are categorised as early, intermediate and late genes, depending on 

when their expression begins in the vaccinia life cycle. Intermediate and late gene 

expression is dependent on the expression of early genes and vaccinia DNA genome 

replication (Broyles, 2003). It is likely that cell contraction and re-spreading are 

temporally regulated by the onset of expression of a specific subset of genes. To block 

intermediate and late gene expression, I treated HeLa cells with arabinosyl cytosine 

(AraC), an inhibitor of DNA synthesis, at the start of infection. Treatment of cells with 

AraC blocked the expression of the late gene A27L, but not the early gene F11L 

(Figure 3.3 C). Infected HeLa cells that were treated with AraC contracted as robustly 

as DMSO treated cells, but did not re-spread after 4:40hpi (Figure 3.3 A and B). Taken 

together my results demonstrate that WR induced cell contraction is a transient event 

that is dependent on the expression of virus early genes whilst re-spreading requires 

intermediate and/or late gene expression after genome replication. 
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Figure 3.1 WR stimulates temporal cell contraction 
A Representative still images from a phase time-lapse movie following HeLa cells 
infected with WR. The movie starts at 40 minutes post infection and continues for 10 
hours.   B A graph showing the change in average area of HeLa cells (normalised to 
cell area at the start of acquisition) during the course of infection. Cell area was 
quantified using MetaMorph software from the time-lapse movies described in A. Data 
is from three independent experiments, in which a total of 60 cells were analysed. 
Errors bars represent standard error of the mean (SEM).  C A graph showing the 
percentage of cells that bleb during 1 hour time intervals in time lapse movies 
described in A and B. D Stills from a phase time-lapse movie of HeLa cells infected 
with WR at 3:40hpi. Time is indicated in seconds. The white arrow indicates long 
distended blebs, the yellow arrow indicates secondary blebs forming on a primary bleb 
and the red arrow indicates sites where multiple blebs protrude simultaneously. 
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Figure 3.2 The expression of vaccinia genes is required for cell contraction 
A Immuno blot analysis showing the expression of A36 and N1, which are expressed 
early during vaccinia infection, at 6 hpi with UV, UV/psoralen treated or untreated WR.   
B Representative images of vaccinia plaque analysis in confluent monolayers of BS-C-
1 cells. Cells were infected with UV/psoralen treated or untreated WR, then fixed and 
stained with the cell stain crystal violet at 48 hpi. White regions represent vaccinia 
plaques. C A graph showing the change in average area of HeLa cells during the 
course of infection with UV/psoralen treated or untreated WR. Data is from three 
independent experiments, in which 78 and 80 cells respectively were analysed. Error 
bars represent SEM. 
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Figure 3.3 Vaccinia late genes are required for re-spreading but not contraction 
A Still images from a phase time-lapse movie following HeLa cells infected with 
vaccinia virus in the presence of DMSO or AraC.  B A graph showing the change in 
average area of HeLa cells during the course of infection with WR in the presence of 
DMSO or AraC. Data is from three independent experiments in which 70 cells in each 
condition were analysed. Error bars correspond to SEM. C Immuno blot analysis of the 
expression of F11 (an early viral protein) and A27 (a late viral protein) in the presence 
of either DMSO or AraC. F11 was detected with an antibody raised against a peptide 
corresponding to amino acids 323-334. Grb2 was used as an endogenous loading 
control. 
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3.2.2 F11 is necessary for cell contraction  

It has previously been suggested that the vaccinia protein F11 is required for the loss 

of cell-cell attachment but not for cell contraction and migration in Ptk2 cells. This study 

used a combination of WR, Modified vaccinia Ankara (MVA) and a recombinant WR 

virus that does not express F11L (Morales et al., 2008), but a lack of quantification and 

direct comparisons makes it difficult to be fully confident in the results. I decided to re-

evaluate the contribution of F11 to vaccinia-induced contraction. A previous lab 

member, Yoshiki Arakawa, generated an alternative recombinant virus that does not 

express F11 (ΔF11L), due to deletion of the F11L gene (Cordeiro et al., 2009). I 

infected HeLa cells with ΔF11L and investigated the extent of cell contraction. In 

contrast to the previously published observations, I found that F11 is required for cell 

contraction in HeLa cells. Infected cells contracted to 25.3 ± 0.48% and 91.5 ± 4.0% at 

3:40hpi during infection with WR or ΔF11L, respectively (Figure 3.4 A, B). There is very 

little change in cell area over the course of infection with the ΔF11L virus, although 

there was obvious and dynamic peripheral membrane ruffling. (Figures 3.4 A, B). The 

difference in results between my work and Morales et al., could be due to the cell type. 

To investigate this possibility, I infected a variety of cell lines derived from different 

animals with WR and ΔF11L viruses. I used U-2-OS, a human osteosarcoma cell line, 

Ptk2, rat kangaroo (also known as the long-nosed potoroo) kidney cells, and mouse 

embryonic fibroblasts (MEFs) (Figure 3.5). All the cell lines contracted when infected 

with WR. U-2-OS and MEFs did not contract upon infection with ΔF11L virus as in 

HeLa cells. However, in agreement with Morales et al., Ptk2 cells contracted upon 

infection with both viruses, although neither virus induced a loss in cell-cell 

attachments as recorded previously (Morales et al., 2008). Ptk2 cells contracted into 

dense clumps of cells, as a result it was not possible to accurately quantify the cell 

area changes over time. By visual observations, it appeared that cell contraction was 

more robust and prolonged with WR in comparison to ΔF11L in this cell line. Therefore, 

it is possible that there is more than one vaccinia determinant required for cell 

contraction and in PtK2 cells the contribution of F11 is less important.  
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Figure 3.4 The vaccinia protein F11 is required for cell contraction 
A Still images from a phase time-lapse movie following HeLa cells infected with WR or 
ΔF11L (a virus lacking the F11L gene).  B The graph shows the change in average 
area of HeLa cells infected with either WR or ΔF11L. Data is from three independent 
experiments. A total of 60 and 68 cells were analysed respectively. Error bars 
represent SEM. 
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Figure 3.5 F11 is required for virus induced contraction in U-2 OS and MEFs but 

not Ptk2 cells 
A Still images from a phase time-lapse movie following U-2 OS cells infected with WR 
or ∆F11L.  B A graph showing the change in average area of U-2 OS cells infected 
with either WR or ΔF11L. Data is from three independent experiments. A total of 107 
and 110 cells were analysed respectively. Error bars represent SEM. C Still images 
from a time-lapse movie following Ptk2 cells infected with WR or ∆F11L. D Still images 
from a time-lapse movie following mouse embryo fibroblasts (MEFs) infected with WR 
or ∆F11L. The movie began at 1 hour post infection and continued for 20 hours. 
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3.2.3 Generation of F11 antibodies  

To follow the dynamics of F11 protein levels over the course of infection, I generated 

two F11 specific antibodies. F11-N was generated against a peptide spanning amino 

acids 101-120 and F11-C was generated against a peptide corresponding to residues 

323-334 (Figure 3.6 A). These particular peptide sequences were selected based on 

predicted solubility. To test whether F11 specific antibodies were present in the 

terminal bleeds, I performed immuno blot analysis with HeLa cell lysates infected with 

WR or ΔF11L. Serum from all rabbits detected a protein at the estimated molecular 

weight of F11 (40kDa) in the WR infected lysate only, however there were also 

numerous non-specific bands (Figure 3.6 B and C left panels). I pooled the serum from 

rabbits immunised with the same peptide and affinity purified the serum through a 

SulfoLink column coupled to the corresponding peptide. I tested the elutions that 

showed absorbance at 280nm by immuno blot. For F11-N, the TEA elution number 3 

was highly specific to F11L and did not detect non-specific bands (Figure 3.6 B). For 

F11-C, the glycine elutions 2-6 were highly immunogenic to F11, but all detected bands 

at 20kDa and 28kDa, however this was far enough away from the predicted molecular 

weight of F11 to be a useful antibody (Figure 3.6 C).  I used these antibodies to 

investigate the temporal nature of F11 expression. In immuno blot analysis of a time 

course of WR infected HeLa lysates, F11 could be detected from 2 hpi onwards. F11 

protein levels peak between 3-4 hpi and then decrease from 5 hpi onwards (Figure 3.6 

C). Thus, F11 protein levels coincide strikingly with the onset and termination of cell 

contraction and blebbing. This suggests that a threshold level of F11 is required for cell 

contraction. Previous data indicated that the expression of intermediate or late genes is 

required for re-spreading (Figure 3.3 B). Interestingly, the level of F11 in cells treated 

with AraC did not decrease as dramatically from 5 hpi onwards suggesting that the 

expression of a late vaccinia protein could direct the decline in F11 protein levels 

(Figure 3.3 C). This data could explain why AraC treated cells remain contracted, as 

levels of F11 have not dropped sufficiently below the threshold to permit re-spreading 

(Figure 3.3 B).  I used the F11-N and F11-C antibodies to investigate whether the 

decrease in protein levels from 5hpi onwards was due to cleavage of F11. Both 

antibodies showed a similar protein pattern by immuno blot. The molecular weight of 

the proteins did not visibly change and there were no observed bands at a lower 

molecular weight (not shown). This would suggest that the loss in protein that occurs 

from 5hpi onwards is not due to F11 cleavage (Figure 3.6 D).  
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Figure 3.6 Purification of F11 antibodies 
A The peptide sequences used to generate F11 antibodies. B Immuno blot analysis of 
HeLa cell lysates infected with WR or ∆F11L showing the purification of an antibody 
raised against a peptide corresponding to amino acids 101-120 in F11. The serum from 
the terminal bleeds of two rabbits immunized with F11 101-120 was tested for F11 
specific antibodies. Following affinity purification with the F11 101-120 peptide, elutes 
that contained protein were tested for F11 specific antibodies. F11 has a predicted 
molecular weight of 40kDa.   C Immuno blot analyses, as above, for the peptide 
corresponding to amino acids 323-334 in F11.  D Immuno blot analysis showing the 
levels of F11 over the course of infection in HeLa cells. F11 was detected with F11-N 
(101-120) and F11-C (323-334) antibodies. A36 was used as a control for vaccinia 
infection and Grb2 was used as an endogenous loading control.  
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3.2.4 F11 is necessary but not sufficient for cell contraction  

Modified Vaccinia Ankara (MVA) is a strain of vaccinia derived from the Chorioallantois 

vaccinia virus Ankara (CVA) strain, which has been highly attenuated for human 

infection by passaging 570 times in chicken embryo fibroblasts (Meyer et al., 1991). 

Genomic analysis of MVA revealed six major deletions within the terminal fragments, 

relative to CVA. In addition, there are numerous short deletions and point mutations 

within MVA (Antoine et al., 1998; Meisinger-Henschel et al., 2007). The open reading 

frame of F11 is fragmented in MVA, due to 15 and 16bp deletions in the centre of the 

ORF (Antoine et al., 1998; Zwilling et al., 2010). HeLa cells infected with MVA do not 

contract (Figure 3.6 A, B) (Schepis et al., 2006). I was interested if F11 could rescue 

cell contraction in MVA infected cells.  To do this, I made use of a MVA recombinant 

virus where the WR F11L coding sequence has been rescued (MVA-F11L) and was 

introduced under the control of the WR F11L endogenous promoter. However, F11 is 

not re-introduced between F12L and F10L, instead it is inserted into the MVA deletion 

III region (Zwilling et al., 2010). When HeLa cells were infected with MVA-F11L cell 

contraction is partially rescued. However, in comparison to WR, MVA-F11L stimulated 

cell contraction was not as robust or prolonged. During MVA-F11 infection, HeLa cells 

contracted to 54.2% ± 4.0 and 48.4% ± 2.0 at 1:40hpi and 2:40 hpi, respectively, 

before re-spreading. This is in contrast to the degree of cell contraction in WR infection; 

41.9% ± 6.8, 31.8% ± 2.5 and 34.4% ± 5.0 at time points 2:40hpi, 3:40hpi and 4:40hpi 

respectively. The difference between MVA-F11 and WR infection indicates F11 is 

required but not sufficient for virus induced cell contraction and that another protein or 

proteins, which are also lost in MVA, also contribute to efficient cell contraction. 

Interestingly, F11 protein levels do not decrease in cells infected with MVA-F11L 

(Figure 3.6C). As the cells do not contract as efficiently when infected with MVA-F11L, 

it is difficult to interpret the contribution of F11 levels to re-spreading. As many genes 

are lost in MVA, the late proteins I assume control F11 levels may not be expressed, 

explaining the steady levels of F11L throughout the time course. Alternatively, 

expressing F11L from an alternative locus in the genome may effect expression. 
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Figure 3.7 F11 is necessary but not sufficient for cell contraction 
A Still images from a time lapse movie following HeLa cells infected with vaccinia virus 
strains WR, MVA or MVA-F11L. B A graph showing the change in average area of 
HeLa cells infected with WR, MVA or MVA-F11L. Data is from three independent 
experiments. A total of 78, 68 and 73 cells were analysed, respectively. C Immuno blot 
analysis following F11 protein levels over the course of infection. F11 was detected 
with F11-C. Grb2 was used as an endogenous loading control. 
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3.2.5 F11 localises to the cortex 

After determining that F11 was necessary but not sufficient for vaccinia induced cell 

contraction, I was interested in studying the localisation of F11 during this phenotype. 

The F11 antibodies that I generated (Figure 3.6) were extensively tested for suitability 

in detecting F11 by immunofluorescence. I tried multiple fixation methods; 4% 

paraformaldehyde (PFA), methanol, acetone and finally, sequential PFA and methanol. 

On cells fixed with PFA I tried several permeabilisation methods using 0.01% Triton X-

100, 0.1% saponin or PHEM + 0.05% Triton X-100. However, neither antibody was 

able to detect endogenous F11 in infected cells (data not shown). I decided to make a 

recombinant vaccinia virus that expressed F11 conjugated to GFP, to ascertain the 

localisation F11. The fluorescent virus would have the additional benefit of enabling live 

analysis of F11 localisation. The generation of the F11-GFP virus in the ∆F11L 

backbone is described in section 2.4.9 and Figure 3.8 A. To confirm that F11 was 

rescued in the recombinant virus, I collected HeLa cell lysates at 1 hour intervals 

during infection with the F11-GFP virus and analysed the lysates by immuno blotting 

with GFP. The GFP antibody detected a product at 65kDa, the expected molecular 

weight of F11 with a GFP tag (Figure 3.8 B). The 65kDa protein was also detected by 

the F11-C antibody (data not shown). F11-GFP was expressed with the same temporal 

dynamics as F11 in WR infection (Figure 3.6 D, Figure 3.8 B). From 6hpi onwards a 

lower band, migrating with the 28kDa marker, emerged. The lower band was not 

detected by the F11-C antibody, which suggests it could be cleavage of GFP from F11-

GFP (data not shown). I additionally analysed the levels of the early vaccinia protein 

A36 to ensure that virus gene expression was not affected in the recombinant virus. 

The kinetics of A36 expression is not changed relative to WR infection (Figure 3.6 D 

and Figure 3.8 B).  

 

To gain an understanding of the localisation of F11, I infected HeLa cells expressing 

RFP, as a cytoplasmic marker, with F11-GFP and imaged at 3hpi. In cells that were 

contracted and blebbing, F11-GFP localises to the plasma membrane and cortex 

(Figure 3.8 C). Previous studies on plasma membrane blebbing have shown that actin, 

MLC2 and ezrin are recruited to the membrane at different stages during the bleb life 

cycle, and this is indicative of the re-formation of the cortex beneath the plasma 

membrane (Charras et al., 2006). I wanted to study the localisation of F11 with 

reference to actin (using LifeAct) and MLC2. I generated HeLa cells stably expressing 

LifeAct-Cherry, and MLC2-RFP, using a lentivirus system to incorporate the gene of 
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interest into the genome of the HeLa cells.  The use of stable cells lines overcomes 

various problems related to transient expression such as heterogeneity in expression 

levels, poor transfection efficiency and cytotoxicity from transfection methods. I 

confirmed that Cherry/RFP fluorescence in the resulting stable cell lines corresponded 

to the localisation of the protein of interest by immunofluorescence using phalloidin for 

comparison with LifeAct-cherry or a MLC2 antibody for comparison with MLC2-RFP 

(Figure 3.9A). In addition I confirmed that the cell lines expressed Cherry/RFP tagged 

proteins at the correct molecular weight by immuno blot analysis (Figure 3.9B).  
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Figure 3.8 The generation of recombinant F11-GFP virus 
A An illustration of the method used to introduce F11-GFP into ∆F11L. The F12L, F11L 
and F10L locus is depicted in the WR and ∆F11L virus genomes. F11-GFP was 
knocked in to the genome of ∆F11L by homologous recombination using 600bp arms 
of recombination identical to the C-terminus of F12L (left arm) and the N-terminus of 
F10L (right arm). The right arm includes 50bp upstream of the F10L start codon 
(including the C terminal 25bp of F11L), which contains the F10L promoter. The 25bp 
region that was mutated in F11-GFP is highlighted in red.  B Immuno blot analysis of 
F11-GFP, actin and A36 at 1 hour intervals post infection during infection with F11-
GFP virus. * indicates the appearance of a smaller band as infection progressed. C A 
representative HeLa cell expressing RFP and infected with F11-GFP at 3hpi. F11-GFP 
appears to localises to the plasma membrane and cortex. 
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Figure 3.9 The generation of Cherry/RFP stable cell lines  
A Immunofluorescence of LifeAct-Cherry and MLC2-RFP stable HeLa cells. LifeAct-
Cherry HeLa were stained with 488 Phalloidin, while MLC2-RFP HeLa were stained 
with a MLC2 antibody. B Immuno blot analysis of lysates from the indicated stable cell 
lines. The overexpressed proteins were detected with an RFP antibody, which 
additionally recognises Cherry, albeit more weakly than RFP. The approximate 
molecular weights of the LifeAct-cherry and MLC2-RFP and are 26kDa and 47kDa, 
respectively. 
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3.2.6 F11 is recruited to the plasma membrane during blebbing 

I infected HeLa cells expressing RFP with F11-GFP or the Cherry/RFP stable cell lines 

expressing GFP with WR. At 3hpi, when cells were contracted and blebbing, I acquired 

images at 1 (F11-GFP) or 3.7 (Cherry/RFP stables) frames per second in both 

fluorescent channels. The strength of F11-GFP signal was far lower than LifeAct or 

MLC2, therefore it was necessary to acquire F11-GFP images at a higher exposure 

and consequently a lower frame rate. In collaboration with a post-doctoral researcher, 

David Barry, we analysed the fluorescence intensity of F11-GFP, LifeAct-Cherry and 

MLC2-RFP at the membrane and the velocity of membrane bleb protrusion and 

retraction (Figures 3.10 and 3.11). We determined the mean membrane velocity and 

the mean rate of change in membrane velocity based on an analysis of 435 blebs in 29 

cells (Figure 3.11 A, B). The bleb membrane protrudes with increasing velocity for 

approximately 3 seconds, following which the membrane extends with decreasing 

velocity for an additional 10 seconds. Bleb extension ceases approximately 13 seconds 

after initiation and the membrane then begins to retract. F11-GFP, LifeAct-Cherry and 

MLC2-RFP are lost from the membrane at bleb initiation. However, this appears as a 

gradual decline in fluorescent signal because of a combination of the application of 

noise reduction (smoothing) to the data, the cytosolic F11/LifeAct/MLC signals and the 

analysis of a 3D event in 2D (Figures 3.10 and 3.11). We can determine when each 

protein is recruited back to the membrane from the point where the rate of change in 

signal intensity becomes positive. Because of the smoothing referred to above, caution 

is advised in assigning specific time-points to protein recruitment. However, it is clear 

that F11-GFP is recruited first relative to LifeAct and MLC (Figure 3.11 A, B). In 

previous work investigating the assembly of the cortex during membrane blebbing, the 

only cortical component that was recruited to the membrane prior to actin was Ezrin, an 

actin-membrane linker protein that tethers the actin cortex to the membrane (Charras 

et al., 2006). The fact that F11-GFP re-localises to the membrane prior to the cortical 

components actin and MLC, suggests that F11 might function in the upstream 

regulation of actin and myosin recruitment or cortical contraction. The dynamics of F11 

localisation with respect to LifeAct and MLC2 presented here should however be 

interpreted with caution, as the signal strength of F11-GFP was relatively low, resulting 

in a narrow dynamic range. The lower signal-noise-ratio necessitated a lower frame 

rate, which may have contributed to the differences in F11 signal dynamics relative to 

LifeAct and MLC2 evident in Figure 3.11B. Considerable efforts will be made in the 

future to improve the signal of F11-GFP.  
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Figure 3.10 The loss and recovery of LifeAct from the membrane during blebbing 
A. The velocity heat map from a representative movie of a HeLa cell expressing 
LifeAct-Cherry and GFP and infected with WR, at 3hpi. The velocity heat map (left 
hand side) illustrates membrane velocity as a function of the position on the cell 
perimeter (y-axis) and time (s) (x-axis), where green = positive/protrusive velocity and 
red = negative/retractive velocity.  The LifeAct signal map represents the signal 
intensity as a function of the position on the cell perimeter (y-axis) and time (s) (x-axis). 
The zoomed in areas highlight a single bleb over the lifetime of the bleb. (Analysis by 
David Barry). B. The top panel shows still images of the LifeAct-Cherry expressing cell 
from A. The bottom panel illustrates the cell edge, as determined from the GFP 
fluorescence. The edge is colour coded according to the membrane velocity. The 
images are taken at the times indicated by black lines in A. White and coloured arrows 
indicate the bleb of interest. 
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Figure 3.11 The recovery of F11-GFP, LifeAct-Cherry and MLC2-RFP to the 

membrane during blebbing 
A. The graphs show the relationship between the membrane velocity of a bleb 
(µm/min) (Left hand y-axis) and the fluorescence intensity of F11-GFP, LifeAct-Cherry 
or MLC2-RFP (arbitrary units) (right hand y-axis) at the membrane as a function of time 
(s).  B. The graphs show the rate of change in membrane velocity or signal intensity 
over time. The time point where the rate of change in signal intensity of F11-GFP, 
LifeAct-Cherry or MLC2-RFP crosses the x-axis represents the onset of recovery of the 
signal at the membrane. In both A and B the error bars represent the 95% confidence 
interval. The purple line is the mean membrane velocity of 435 blebs from 29 cells. Red, 
blue and green lines are the mean fluorescence intensities of 211 blebs from 17 cells, 
224 blebs from 12 cells and 174 blebs from 13 cells, respectively. (Analysis by David 
Barry). 
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3.3 Summary 

The work presented in this chapter confirms previous suggestions that vaccinia virus 

stimulates host cell contraction and blebbing during early vaccinia infection. I confirmed 

that gene expression is required for cell contraction, using UV inactivated virus. In 

contrast, cell re-spreading following contraction is dependent on the expression of 

vaccinia late genes. Using a virus that cannot express F11, I showed that F11 is 

necessary for cell contraction. However, I also showed that F11 is not sufficient, as the 

rescue of F11 in the attenuated virus MVA does not fully rescue cell contraction. I also 

suggest that the concentration of F11 protein must decrease sufficiently for re-

spreading to occur. F11-GFP (expressed by a recombinant virus) localises to the 

plasma membrane during cell contraction and blebbing. Expanding bleb membranes 

are initially devoid of F11-GFP, which is then recruited back to the bleb membrane 

prior to actin and MLC, further indicating a role for F11 in regulating cell contraction. 
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Chapter 4.  

Vaccinia induced cell contraction is dependent on 
ROCK but not RhoA 

4.1 Introduction 

Cell contraction and associated plasma membrane blebbing is often associated with 

RhoA and ROCK signalling (Gutjahr et al., 2005; Pinner and Sahai, 2008b; Sahai and 

Marshall, 2003; Sanz-Moreno et al., 2008). Briefly, RhoA activates the kinase activity of 

ROCK, which then controls the phosphorylation of MLC, either directly or through 

multiple downstream substrates. MLC phosphorylation activates myosin II mediated 

contraction of the actin cortex, which can result in plasma membrane blebbing as 

membrane ruptures from the cortex.  I have shown that vaccinia induced cell 

contraction is dependent on F11. Previous work from this laboratory has shown that 

F11 can interact with RhoA through a motif highly similar to the Rho binding domain in 

ROCK (Valderrama et al., 2006). Through this interaction F11 suppresses the activity 

of RhoA at 8hpi (Cordeiro et al., 2009). In this chapter I explore the contribution of 

RhoA and ROCK signalling to vaccinia induced contraction. 

 

4.2 Results 

4.2.1 Cell contraction is blocked by ROCK inhibition 

The kinase activity of ROCK can be effectively blocked with small molecule inhibitors 

(Davies et al., 2000). Y27632 and H1152 compounds have been used in a variety of 

studies to investigate the biological effect of ROCK and are classical ROCK inhibitors. 

However, both molecules can inhibit other kinases as potently as ROCK. In vitro, 

Y27632 inhibits PRK2 (IC50 800nM) and LRRK2 (IC50 1uM) with a similar potency to 

ROCK2 (IC50 800nM), even though there is limited sequence identity within the kinase 

domain of these proteins. Additionally Y27632 is less potent but still active towards 

MSK1 (IC50 8.3uM) and PHK (IC50 19uM) (Davies et al., 2000; Nichols et al., 2009). 

Similarly, H1152 inhibits PRK2, with similar potency to ROCK2, and LRRK2, albeit 3 

fold more weakly than ROCK2. H1152 can also inhibit the in vitro activity of Aurora B 

and Aurora C (Bain et al., 2007; Nichols et al., 2009). The compound GSK429286A is 
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more specific to ROCK, with the only additional target being MSK1 (Nichols et al., 

2009). It is recommended that three or more structurally independent small molecule 

kinase inhibitors should be used to accurately interpret the biological function of the 

kinase of interest (Cohen, 2010). To investigate whether ROCK was required for 

vaccinia-induced contraction, I treated infected cells with GSK429286A, H1152 and 

Y27632. All inhibitors significantly blocked WR induced cell contraction at 3:40hpi  

(71.0 ± 4.7, 92.0 ± 6.5, 85.5 ± 0.7% following treatment with GSK429286A, H1152 or 

Y27632 respectively relative to DMSO alone 25.5 ± 0.2%) (Figures 4.1 B). The effect of 

the ROCK inhibitors is due to a block in cell contraction rather than a block in virus 

entry, as treatment with these inhibitors did not block the efficiency of virus infection 

(Figure 4.1 A).  Cell contraction and membrane blebbing is often characteristic of 

apoptosis, as caspase mediated cleavage of ROCK can render the kinase 

constitutively active (Sebbagh et al., 2001). The infected cell phenotype is transient so 

is unlikely to be apoptotic cell death. Nevertheless, to exclude a role for caspase 

mediated activation of ROCK in WR induced cell contraction, I treated HeLa cells with 

Z-VAD-fmk (pan-caspase inhibitor) prior to infection with WR (Postigo and Way, 2012).  

There was no difference in cell contraction in infected cells treated or untreated with Z-

VAD-fmk (Figure 4.1 C), indicating that vaccinia induced cell contraction and blebbing 

is not dependent on the same pathway as apoptotic cell blebbing.  

 

4.2.2 Cell contraction is dependent on ROCK 1 and ROCK 2 

There are two isoforms of ROCK, ROCK1 and ROCK2. These kinases have 64% 

overall sequence identity, with 92% identity in the kinase domains (Leung et al., 1996; 

Nakagawa et al., 1996). It is not clear whether GSK429286A, H1152 and Y27632 have 

any preference for ROCK1 or ROCK2, as many of the in vitro kinase assays with these 

inhibitors were performed for ROCK2 only (Bain et al., 2007; Davies et al., 2000; 

Nichols et al., 2009).  I was interested to see if individual or both ROCK proteins were 

required for vaccinia-induced contraction. I performed siRNA mediated knockdown of 

each protein individually and simultaneously and followed the efficiency of knockdown 

by immuno blot. ROCK1 and ROCK2 proteins were not detected in cell lysates 

following siRNA knockdown, and simultaneous knockdown was as efficient as 

individual knockdown (Figure 4.2 A). I infected HeLa cells that had been transfected 

with siRNA oligos for 72 hours with WR.  Individual knockdown of either gene had no 

significant effect on cell contraction at 3:40hpi, whilst simultaneous knockdown of 
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ROCK1 and ROCK2 blocked contraction (27.7 ± 9.8, 26.1 ± 2.4, 39.4 ± 9.3, 62.6% ± 

8.9 for non-targeting control, ROCK1, ROCK2 and both, respectively) (Figure 4.2 B 

and C). Taken together, the siRNA and inhibitor results suggest that ROCK activity is 

required for vaccinia induced cell contraction and that ROCK1 and ROCK2 are 

functionally redundant in this pathway. However, cells lacking both ROCK isoforms did 

contract later in infection, to 37% of initial cell area at 5:40hpi (Figure 4.2 D). The delay 

in cell contraction in these cells could be due to residual kinase from inefficient RNAi 

knockdown, or due to a ROCK independent pathway though which vaccinia stimulates 

cell contraction. (From this point on any reference to ROCK signifies both ROCK1 and 

ROCK2.) 
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Figure 4.1 The inhibition of ROCK signalling blocks cell contraction  
A Immuno blot shows that the three ROCK inhibitors GSK429286A, H1152 or Y27632 
do not inhibit the expression of A36 at the indicated times post infection. Grb2 was 
used as an endogenous loading control. B A graph showing the normalised cell area of 
HeLa cells treated with DMSO or ROCK inhibitors at 3.40hpi with WR. Data is from 
three independent experiments in which a total of 94, 89, 83 and 83 cells were 
analysed, respectively. Error bars represent SEM.* P<0.05, ** P <0.01, *** P<0.01 as 
determined by one-way Anova. C A graph showing the normalised area of infected 
cells treated with z-vad 30 minutes prior to and throughout WR infection. Data is from 
three independent experiments.  
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Figure 4.2 RNAi mediated knockdown of ROCK delays cell contraction  
A Immuno blot analysis shows the efficiency of RNAi knockdown of ROCK1 and 
ROCK2 in HeLa cells that have been transfected with the indicated siRNA oligos for 72 
hours.  B Still images from a phase time-lapse movie following WR infection in HeLa 
cells that had been transfected with the indicated RNAi oligos for 72 hours.  C A graph 
showing the area of HeLa cells in B (normalised to cell area at the start of acquisition) 
at 3:40hpi. Error bars represent SEM. The statistical significance was determined by a 
one-way Anova and indicated by *** for P value <0.001 or ns for P>0.05.  D A graph 
showing the change in area of HeLa cells transfected with the indicated RNAi oligos 
over the course of infection. The data in C and D is from three independent 
experiments in which a total 85 cells were analysed in each condition.  
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4.2.3 RhoA is not required for cell contraction 

As ROCK is involved in vaccinia stimulated cell contraction, it is highly likely that RhoA 

is also required. Previous investigations have shown there is a direct interaction 

between F11 and RhoA, which is abrogated by mutating a valine and lysine residue in 

a conserved RhoA binding motif in F11 and ROCK1 (F11-VK mutant) (Cordeiro et al., 

2009; Valderrama et al., 2006). The requirement of this interaction for cell contraction 

was investigated by infecting HeLa cells with a recombinant virus expressing F11-VK. 

The F11-VK mutant stimulated cell contraction as efficiently as WR (25.3 ± 0.48 and 

31.4% ± 5.6 at 3:40hpi with WR or F11-VK, respectively) (Figure 4.3 A and B). These 

data suggest that the interaction between F11 and RhoA is not important for vaccinia-

induced cell contraction. To further investigate a potential role for RhoA, I performed 

siRNA mediated knockdown of RhoA in HeLa cells.  RhoA protein expression was very 

efficiently blocked in HeLa cells that had been transfected with a pool of four RhoA 

siRNA oligos for 72 hours, as shown by immuno blot (Figure 4.4 A). HeLa cells 

depleted of RhoA were infected with WR  (Figure 4.4 B and C). There was no 

significant difference in cell contraction between cells with or without RhoA (21.9 ± 2.5 

compared to 32.1 ± 9.2%), indicating that RhoA is not required for contraction.  

 

Previous work has shown that RhoA activity is supressed by F11 expression, at 8 

hours post infection (Cordeiro et al., 2009; Valderrama et al., 2006). In contrast, other 

work has suggested that RhoA activity is supressed by F11 at 3hpi and subsequently 

recovers by 8hpi (Morales et al., 2008). To exclude the possibility that RhoA was 

involved in cell contraction I performed RhoA activation assays at 3hpi with WR and 

F11L.  I used Rhotekin assays to measure the activity of RhoA, where the Rho binding 

domain of Rhotekin is immobilised on beads and selectively interacts with only GTP 

bound RhoA in the cell lysate. For this assay I used U-2 OS cells, which also contract 

with WR but not ΔF11L infection (Figure 3.5 A and B), because the detection of RhoA 

in U-2 OS lysates is more reproducible compared to HeLa lysates. RhoA activity was 

decreased in vaccinia-infected cells in comparison to uninfected cells, and this was 

independent of F11 expression because RhoA activity was similarly suppressed in 

ΔF11L infection (28.4 ± 9.2 and 35.9 ± 5.9 % for WR and ΔF11L, respectively, 

normalised to uninfected) (Figure 4.4 D). Taken together, these results suggest that 

RhoA is not required for vaccinia induced cell contraction.  
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Figure 4.3 F11 binding to RhoA is not required for virus induced cell contraction  
A Still images from a time-lapse movie of HeLa cells infected with WR, F11-VK or 
∆F11L. B A graph to show the normalised cell area over the course of infection with 
WR, F11-VK or ∆F11L. The data is from three independent experiments, in which a 
total of between 60 and 70 cells were analysed. Error bars represent SEM. 
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Figure 4.4 RhoA is not required for vaccinia induced cell contraction  
A Immuno blot analysis shows the efficiency of RNAi mediated knockdown of RhoA. 
The cellular loading control was α-tubulin. B Still images from a time lapse movie 
following WR infection in HeLa cells that have been transfected with a pool of four 
RNAi oligos against RhoA for 72 hours, compared with non targeting control oligos. C 
The graph shows the change in average area of HeLa cells, transfected with the 
indicated RNAi oligos during the course of infection with WR. The data is from three 
independent experiments, in which a total of between 80 and 90 cells were analysed. 
Error bars represent SEM.  D Rhotekin pull down assay was used to measure that ratio 
of GTP bound RhoA compared to total RhoA, in U-2 OS cells infected with WR or 
∆F11L at 3hpi. Error bars represent SEM from four independent experiments. The 
immuno blot illustrates a representative assay. The statistical significance was 
determined by a one-way Anova, indicated by * for P value <0.05 or ns for P>0.05.  
  

25

50

75

100

125

N
o

rm
a

li
s
e

d
 c

e
ll
 a

re
a

Non Targetting 

RhoA siRNA

Time post infection (Hours)

1 2 3 4 5 6 7 8 9 10 110

NT RhoA 

RhoA

Į�WXEXOLQ

RhoA.GTP

Total RhoA

Mock WR ¨)��/

N
o

rm
a

li
s
e

d
 B

o
u

n
d

/T
o

ta
l

100

50

150
*

ns

C

B

D

A
00:40 03:40

N
o

n
-t

a
rg

e
tt

in
g

R
h

o
A

 s
iR

N
A



Chapter 4 Results 

 

 123 

4.2.4 Other Rho GTPases are required for cell contraction 

Despite no observable role for RhoA, it is possible that other Rho GTPases, particularly 

RhoB and RhoC, are involved in vaccinia-induced cell contraction. To investigate a 

potential role for other Rho GTPases, I treated HeLa cells with the Clostridium 

botulinium toxin C3 prior to infection with WR. The C3 transferase toxin is a good tool 

to study Rho mediated effects as it renders RhoA, RhoB and RhoC biologically inactive 

by ADP ribosylating asparagine 41 (Aktories et al., 1989; Braun et al., 1989; Chardin et 

al., 1989; Paterson et al., 1990). C3 transferase blocked cell contraction when added to 

infected cells (64.5 ± 5.1 compared to control 26.25 ± 3.2%) (Figure 4.5 A and B). C3 

treatment does not affect virus entry as shown by immuno blot analysis of A36 

(vaccinia protein) expression and so is a specific effect on cell contraction (Figure 4.5 

C). This would indicate that although vaccinia-induced cell contraction is independent 

of RhoA, the other sub family members RhoB or RhoC may be involved. Furthermore, 

it is clear that the target of C3 is not RhoA, because in cells depleted of RhoA the 

difference in area between C3 treatment and no treatment is the same as when RhoA 

is present (Figure 4.5 D). C3 does not affect the biological activity of Rac1 or Cdc42, 

but the effect of C3 on other Rho GTPases, such as RhoD, Rif or RhoE, has not yet 

been studied.  

 

4.3 Summary 

 

The work presented in this chapter aimed to identify some of the cellular proteins 

required for vaccinia induced cell contraction. Using small molecule inhibitors and 

siRNA mediated knockdown I was able to confirm that ROCK1 and ROCK2 were 

required for cell contraction in vaccinia infection. I hypothesised that RhoA might be 

required because of the previously reported interaction between F11 and RhoA. 

However, using a recombinant F11 mutant virus, I found this interaction was not 

required. Furthermore, using siRNA and Rhotekin activity assays I showed that 

vaccinia induced cell contraction was independent of RhoA. However, the Rho 

subfamily inhibitor C3 blocked cell contraction, which indicates other Rho GTPase 

could be involved in vaccinia-induced cell contraction. 
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Figure 4.5 C3 blocks cell contraction  
A Still images from time lapse movie of HeLa cells treated with cell permeable Rho A, 
B, C inhibitor C3 for 1 hour prior to and throughout infection with WR. B The graph 
shows the normalised cell area of WR infected HeLa cells with or without C3 treatment 
at 3.40hpi. The error represents SEM from three independent experiments, in which 
100 cells were quantified. The statistical significance was determined by a Students t-
test, indicated by ** for P <0.01.  C Western blot analysis to show the levels of A36 
expressed in infected HeLa cells with or without C3 treatment at 0, 1, 2 and 3hpi. D 
The graph shows the normalised cell area of WR infected HeLa cells at 3.40hpi with or 
without C3 treatment, following transfection with the indicated RNAi oligos for 72 hours. 
The error represents SEM from three independent experiments, in which approximately 
80 cells were quantified. The statistical significance was determined by a one-way 
Anova, indicated by *** for P value <0.001 or ns for P>0.05. 
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Chapter 5.  

F11 inhibits RhoD to promote RhoC dependent cell 
contraction 

5.1 Introduction 

I have found that vaccinia induced cell contraction requires F11 and ROCK but is 

independent of RhoA. The inhibition of contraction by the Rho inhibitor C3, however, 

suggests a requirement for other Rho GTPases. A previous PhD student, Joao 

Cordeiro, discovered that F11 binds additional Rho GTPases including RhoC, RhoD, 

RhoE and Rif but not RhoB (Figure 5.1 A). Furthermore, in contrast to RhoA, these 

Rho proteins were pulled down equally well by F11-VK and F11-WT (Figure 5.1 A, B). 

Each of these Rho proteins has documented roles in regulating the host actin 

cytoskeleton. RhoC, which can bind and activate ROCK, can mediate similar effects to 

RhoA (1.1.6.1). RhoD is believed to antagonise RhoA mediated phenotypes such as 

stress fibre formation, but it is not yet understood how this happens (1.1.6.5). It is well 

documented that RhoE can inhibit RhoA signalling by activating the RhoA GAP, 

p190RhoGAP, and inhibiting ROCK (1.1.6.4). Rif can induce filopodia and stress fibre 

formation (1.1.6.6). Given these documented roles on the actin cytoskeleton I 

wondered whether these other Rho proteins that can bind F11 are involved in vaccinia 

induced cell contraction. In this chapter, I investigate this hypothesis using siRNA and 

overexpression approaches. 
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Figure 5.1 F11 and F11-VK bind to multiple Rho GTPases  
A Immuno blot analysis of a glutathione pull down from infected HeLa cell lysates that 
expressed GST-F11 and GFP-Rho GTPases. B Immuno blot analysis of a glutathione 
pull down from infected HeLa cell lysates that expressed GST-F11 or GST-F11-VK and 
GFP-Rho GTPases.  Both experiments were performed by João Cordeiro and are 
published in his PhD thesis Cordeiro, J.V. (2008). Modulation of Rho GTPase 
signalling during vaccinia virus infection (UCL). This figure has been removed in the 
electronic copy of this thesis.  
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5.2 Results 

5.2.1 siRNA of Rho GTPases 

To investigate whether RhoC, RhoD, RhoE and Rif are required for cell contraction, I 

performed siRNA-mediated knockdown of these proteins (with pools of four siRNA 

oligos) prior to infection with WR. The efficiency of knockdown of RhoA and RhoC was 

assessed by immuno blot analysis, which showed extremely efficient depletion of both 

proteins 72 hours after siRNA treatment (Figure 5.2 A).  The loss of RhoA expression 

by siRNA treatment led to a marked increase in RhoC protein levels. To circumvent the 

possibility that a phenotype from RhoA siRNA treatment could be masked by the 

increase in RhoC levels, I performed simultaneous knockdown of both proteins. The 

simultaneous knockdown of RhoA and RhoC was as efficient as individual knockdowns  

(Figure 5.2 A). As I lacked the antibodies at the time that worked well for immuno 

blotting for RhoD, RhoE and Rif, I measured the efficiency of knockdown by quantifying 

mRNA levels using RT-qPCR. The level of mRNA of the gene of interest was 

normalised to GAPDH (glyceraldehyde-3-phosphate dehydrogenase), and 

subsequently normalised to non-targeting control samples using the comparative Ct 

method (Schmittgen and Livak, 2008). Following siRNA treatment for 72 hours the 

levels of RhoD, RhoE or Rif mRNA that remained, relative to the control sample, were 

7.9%, 6.4% and 35.0% respectively (Figure 5.2 B).  
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Figure 5.2 RNAi mediated knockdown of Rho GTPases  
A Immuno blot analysis showing efficient knockdown of RhoA and/or RhoC following 
72 hour treatment with a pool of four siRNA oligos. α-tubulin was used as the cellular 
loading control.  B-D The percentage of remaining RhoD, RhoE or Rif mRNA following 
treatment for 72 hours with siRNA against the indicated proteins. mRNA levels were 
measured by reverse transcription quantitative PCR (RT-qPCR). The level of mRNA of 
the gene of interest (GOI) was normalised to GAPDH mRNA and the normalised GOI 
mRNA in knockdown samples was compared to NT sample using the comparative Ct 
method.  NT= non-targeting siRNA. Error bars represent SEM from two independent 
experiments.  
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5.2.2 RhoC is required for efficient cell contraction 

HeLa cells were infected with WR 72 hours after siRNA treatment against RhoA, RhoC, 

RhoD, RhoE or Rif. The change in cell area was followed for 11 hours post infection, 

which represents a complete replication cycle (Figure 5.3. A-E). Of the five GTPases, 

knockdown of RhoC substantially altered cell contraction. RhoC depleted cells 

contracted to 56.2 ± 8.09% of the original area in comparison to non-targeting control 

treated cells, which contracted to 23.8 ± 2.57% (Figure 5.3 B, F). However, like ROCK 

siRNA, RhoC depleted cells do eventually contract at 6:40hpi and do not re-spread 

during the course of imaging (Figure 5.3 B). The simultaneous knock down of RhoA 

and RhoC did not additionally block cell contraction over RhoC alone (59.0 ± 7.48% 

and 56.2 ± 8.09%, respectively), this indicated that of the two GTPases only RhoC was 

required for vaccinia-induced cell contraction (Figure 5.3 A, B and F). The involvement 

of RhoC in vaccinia-induced cell contraction is perhaps not surprising, as it binds 

ROCK. A requirement for RhoC could easily explain the observed inhibition of 

contraction by C3 (Figure 4.5 B). Consistent with this, the target of C3 in vaccinia-

induced contraction was not RhoA, as addition of C3 to RhoA depleted cells blocked 

cell contraction as efficiently as C3 treatment in control cells (Figure 4.5 D and 5.4 A). 

In contrast, C3 treatment did not further block cell contraction in comparison to DMSO 

treatment in RhoC depleted cells, where the cell area was 54.75 ± 6.93 and 51.85 ± 

2.88% of the original area at 3:40hpi, respectively (Figure 5.4 A).  It is very likely that 

RhoC is the cellular target of C3 in vaccinia-induced cell contraction.  
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Figure 5.3 Depletion of RhoC reduces the efficiency of vaccinia-induced 

contraction  
A-E Graphs showing the change in area of WR infected HeLa cells that were treated 
with the indicated pool of four RNAi oligos for 72 hours prior to infection. Error bars 
represent SEM from four independent experiments, in which approximately 90 cells 
were analysed. F A graph showing the normalised area of HeLa cells, transfected for 
72 hours with the indicated pool of four siRNA oligos, at 3:40hpi with WR. Error bars 
represent SEM from four independent experiments, in which approximately 90 cells 
were analysed in each condition. The statistical significance was determined by a one-
way Anova, indicated by ** for P value <0.01. 
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Figure 5.4 Cell contraction is dependent on RhoC-ROCK signalling  

A The graph shows the normalised cell area of WR infected HeLa cells at 3.40hpi with 
or without C3 treatment, following transfection with the indicated siRNA oligos for 72 
hours prior to infection. The error represents SEM from three independent experiments, 
in which approximately 80 cells were quantified. The statistical significance was 
determined by a one-way Anova, indicated by *** for P value <0.001 or ns for P>0.05.  
B The graph shows the normalised cell area of WR infected HeLa cells at 3:40hpi 
following transfection with the indicated RNAi oligos for 72 hours. This data is from a 
single experiment. 
 
 
To further investigate whether RhoC was in the same pathway as ROCK, I performed 

simultaneous siRNA mediated knockdown of RhoC and ROCK. At 3:40hpi with WR, 

cells depleted of RhoC, ROCK or RhoC and ROCK contracted to 54.7%, 64.5% or 

65.8% of the original cell area, compared to 28.9% in control cells. RhoC and ROCK 

appear to be in the same signalling pathway, as depletion of RhoC and ROCK was no 

more efficient at blocking cell contraction than depletion of ROCK only (Figure 5.4 B). 

This data is from a single experiment and must be repeated to gain more confidence in 

the result. 

 
The previous results suggest that HeLa cells must express RhoC for efficient vaccinia 

induced cell contraction to proceed. Therefore, I was interested whether RhoC 

activation was required. The expression of constitutively active and dominant negative 

point mutants of Rho GTPases can be used to address this question. In the 
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constitutively active mutant of RhoA-related subfamily a valine residue replaces glycine 

14 (Rho G14V). Glycine 14 is within the nucleotide-binding pocket and the substitution 

of a small glycine side chain for the bulky valine side chain sterically hinders GTP 

hydrolysis and therefore, Rho GTPase inactivation (Ihara et al., 1998). In the dominant 

negative mutant, the threonine residue at position 19 is mutated to arginine (Rho 

T19N). This mutant (or the corresponding mutant in Ras) acts as a dominant negative 

because it binds GEFs with higher affinity than wild type, but the GEF is not displaced 

because the mutant has low affinity for guanine nucleotides (see 1.1.2). Therefore, the 

mutant sequesters GEFs and prevents activation of the endogenous Rho GTPase 

(reviewed in (Feig, 1999)). I transfected HeLa cells with GFP tagged RhoC wild type 

(WT), G14V and T19N prior to infection with either WR or ΔF11L. It was not possible to 

examine the effect of G14V as it caused cytotoxicity. In WR infection, there was a slight 

but insignificant change in the extent of cell contraction in cells expressing GFP-RhoC 

WT compared to GFP (43.5 ± 0.50 and 35.7 ± 3.00%, respectively). In contrast, RhoC 

T19N blocked cell contraction as cells expressing GFP-RhoC T19N only contracted to 

77.5 ± 4.00% of the original cell area (Figure 5.5 A). Cell contraction was partially 

induced in HeLa cells infected with ΔF11L and expressing GFP-RhoC WT (63.1 ± 

1.90), but not GFP or GFP-RhoC T19N (89.6 ± 5.11 and 92.1 ± 3.41, respectively) 

(Figure 5.5 B).  Taken together, these results suggest that RhoC must be active in WR 

infection for cell contraction to occur. Furthermore, the expression of RhoC in cells 

infected with ∆F11L partially rescues cell contraction, this might indicate that in WR 

infection F11 can activate RhoC. I conducted RhoC Rhotekin assays in HeLa cells 

infected with WR or ΔF11L to investigate the activation status of RhoC during cell 

contraction (at 3:40hpi). Infection with both WR and ΔF11L leads to a reduction in GTP 

bound RhoC levels to 42.2 ± 2.90 and 42.8 ± 9.75% of those seen in uninfected, 

respectively (Figure 5.5 C). This would suggest RhoC is inhibited during infection, but 

the inhibition is independent of F11 expression. The siRNA, drug inhibition and 

overexpression experiments all disagree with this result. Moreover, Rhotekin assays 

must be interpreted with caution because they measure the activity of RhoC on a 

global level, which might not be relevant to localised events at the plasma membrane 

and cortex. However, given that siRNA mediated loss of RhoC, C3 inhibition of RhoC 

and overexpression of RhoC cDNA complement each other I suggest that RhoC is 

required for vaccinia-induced cell contraction. 
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Figure 5.5 RhoC is required for efficient cell contraction  
A and B The graphs shows the normalised cell area of HeLa cells expressing GFP, 
GFP-RhoC WT or GFP-RhoC T19N at 3:40hpi with WR (A) or ∆F11L (B). Error bars 
represent SEM from four independent experiments in which approximately 60 cells 
were analysed. The statistical significance was determined by a one-way Anova, 
indicated by ** for P value <0.01. C Rhotekin pull down assays were used to measure 
that ratio of GTP bound RhoC compared to total RhoC, in U-2 OS cells infected with 
WR or ∆F11L at 3hpi. Error bars represent SEM from three independent experiments. 
The immuno blot illustrates a representative assay. The statistical significance was 
determined by a one-way Anova, indicated by ** for P value <0.01 or ns for P>0.05.  
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5.2.3 RhoD negatively regulates cell contraction 

The previous experiments attempted to identify positive regulators of vaccinia-induced 

cell contraction (Figure 5.3). However, this experiment did not consider the possibility 

that the Rho GTPases may negatively regulate this phenotype. To investigate this 

possibility, I performed siRNA mediated knockdown of the same five Rho GTPases 

and infected HeLa cells with ΔF11L virus. I expected the knockdown of a negative 

regulator to promote cell contraction with this normally contraction deficient virus. Of 

the five GTPases, only siRNA of RhoD promoted contraction of ∆F11L-infected cells 

(Figure 5.6 A-F). Furthermore, depletion of RhoD induced transient cell contraction with 

temporal dynamics similar to that seen in WR infection, albeit not as robust (Figure 3.1, 

Figure 5.6 C).  

 

The knockdown of the Rho GTPases is performed using a pool of four siRNA oligos. I 

was concerned that off target siRNA effects of one or multiple siRNA oligos might have 

caused the cell contraction phenotype. To rule this out, I treated HeLa cells with two 

individual RhoD siRNA oligos. Following siRNA transfection with oligo 1, oligo 2 or the 

pool of four, the level of RhoD mRNA that remained was 10.7, 5.3 and 3.7%, 

respectively, normalised to a non-targeting siRNA control sample (Figure 5.7 A). HeLa 

cells transfected with RhoD oligos 1 or 2 were able to contract as efficiently as cells 

treated with the pool of four oligos during ΔF11L virus infection (infected cells 

contracted to 49.0 ± 2.67, 53.0 ± 1.44, 49.2  ± 7.58% of the original area, respectively, 

compared to non targeting control of 79.6 ± 3.98) (Figure 5.7 A, B).  

 

In addition, I overexpressed siRNA resistant RhoD in cells depleted of RhoD by siRNA. 

If ΔF11L induced cell contraction is due to the loss of RhoD expression, then 

overexpressing RhoD in siRNA treated cells should inhibit cell contraction. I generated 

siRNA resistant GFP tagged RhoD wild type (WT), constitutively active (G26V) and 

dominant negative (T31N) mutants using site directed mutagenesis to change the 

bases within the complimentary region to oligo 2, without altering the amino acid 

sequence. The G26V and T31N mutants of RhoD correspond to G14V and T19N 

mutants of RhoC, respectively (Figure 1.12). In cells depleted of RhoD, RhoD WT 

expression blocked cell contraction during ∆F11L infection (cells area was 82.3 ± 

6.25% compared to 44.0 ± 4.90% in non-transfected RhoD depleted cells) (Figure 5.8 

A, B). The expression of constitutively active RhoD G26V also blocked ΔF11L induced 

cell contraction (88.8 ± 4.91%). In contrast, dominant negative RhoD T31N did not 
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block contraction (51.00 ± 2.22%) (Figure 5.8 A, B). Taken together, these results 

confirm that ΔF11L induced cell contraction in RhoD siRNA treated cells is due to the 

loss of RhoD. Furthermore, it indicates that RhoD must be inactivated for cell 

contraction to occur. If this is the case, then what effect do the RhoD mutants have on 

cell contraction during WR infection? I expressed GFP-Rho G26V and T31N during 

WR infection and analysed the extent of cell contraction at 3:40hpi. Activated RhoD 

prevented WR induced cell contraction while dominant negative RhoD had no effect 

relative to GFP (59.5 ± 5.45, 30.0 ± 2.69 and 28.69 ± 4.41%, respectively) (Figure 5.9 

A and B). My overexpression and siRNA studies with RhoD clearly indicate that RhoD 

activity is inhibitory to vaccinia induced cell contraction. RhoD activity must be turned 

off during vaccinia infection to allow efficient cell contraction.  
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Figure 5.6 Loss of RhoD promotes cell contraction in ∆F11L infection   
A-E Graphs showing the change in area of ∆F11L infected HeLa cells that were treated 
with the indicated pool of four RNAi oligos for 72 hours prior to infection. Error bars 
represent SEM from four independent experiments, in which approximately 90 cells 
were analysed. F The graph shows the normalised area of HeLa cells, treated for 72 
hours with the indicated pool of four siRNA oligos, at 3:40hpi with ∆F11L. Error bars 
represent SEM from four independent experiments, in which approximately 90 cells 
were analysed. The statistical significance was determined by a one-way Anova, 
indicated by *** for P value <0.001. 
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Figure 5.7 ∆F11L can stimulate contraction in cells depleted of RhoD  

A The efficiency of RNAi mediated knockdown of RhoD was measured by RT-qPCR. 
The level of mRNA of the gene of interest was normalised to GAPDH and relative 
mRNA was calculated using the comparative CT method. Error bars represent SEM 
from two independent experiments. B The normalised area of HeLa cells at 3:40hpi 
with ∆F11L, following treatment with the indicated siRNA oligos for 72 hours prior to 
infection. C Stills from a time-lapse movie of HeLa cells infected with ∆F11L, following 
treatment with the indicated siRNA oligos for 72 hours prior to infection. NT = non-
targeting oligo. Error bars represent SEM from three independent experiments, in 
which approximately 60 cells were analysed. The statistical significance was 
determined by a one-way Anova, indicated by * for P value <0.05. 
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Figure 5.8 RhoD expression blocks ∆F11L stimulated cell contraction  

A The graph shows the normalised area of HeLa cells, treated with RhoD siRNA, 
expressing the indicated GFP-RhoD protein and infected with ∆F11L at 3:40hpi. Error 
bars represent SEM from three independent time-lapse movies in which approximately 
60-70 cells were analysed. The statistical significance was determined by a one-way 
Anova, indicated by * P<0.05 and **P<0.01. B Representative immunofluorescence 
images of HeLa cells expressing the indicated GFP-RhoD protein and infected with 
∆F11L at 3:40hpi. F-actin and DNA are stained with phalloidin and DAPI, respectively. 
White arrows indicate early DNA virus factories. 
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Figure 5.9 Active RhoD blocks WR induced cell contraction  
A The graph shows the normalised area of HeLa cells expressing the indicated GFP-
RhoD protein and infected with WR at 3:40hpi. Error bars represent SEM from three 
independent time-lapse movies in which approximately 60-70 cells were analysed. The 
statistical significance was determined by a one-way Anova, indicated by **P<0.01. B 
Representative immunofluorescence images HeLa cells expressing the indicated GFP-
RhoD protein and infected with WR at 3:40hpi. F-actin and DNA are stained with 
phalloidin and DAPI, respectively. White arrows indicate early DNA virus factories. 
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5.2.4 How does RhoD repress cell contraction? 

Inactivation of RhoD, either by siRNA mediated knockdown or dominant negative 

mutation, promotes efficient ∆F11L induced cell contraction. To confirm that the cell 

contraction that resulted from the loss of RhoD expression during ΔF11L infection was 

through the same signalling mechanism as in WR infection, I treated cells with the 

ROCK inhibitor, H1152, and Rho inhibitor, C3. To inhibit ROCK I used the inhibitor that 

was the most efficient at blocking WR induced cell contraction (Figure 4.1 B). In cells 

depleted of RhoD, H1152 treatment blocked cell contraction in comparison to DMSO 

treatment (87.9 ± 10.47 and 48.7 ± 0.83%, respectively) (Figure 5.10 A). This is similar 

to the result I obtained in WR infected cells (Figure 4.1 A and B). In addition, treatment 

of RhoD depleted cells with C3 blocked ΔF11L-stimulated contraction compared to 

untreated cells (108.1 ± 6.30 and 47.01 ± 3.94, respectively) (Figure 5.10 B). Both 

results suggest that ΔF11L induced cell contraction, in cells depleted of RhoD, also 

proceed via Rho and ROCK. Again, taking into consideration that C3 can inhibit RhoA, 

RhoB and RhoC, I performed simultaneous knockdown of RhoD and RhoC prior to a 

ΔF11L infection. siRNA mediated knockdown of both RhoC and RhoD efficiently 

reduced the expression of both proteins (Figure 5.10 C). RhoD protein levels were 

observed with a newly available antibody specific for RhoD. The RhoD antibody 

confirms my previous RT-qPCR result (Figure 5.2). It is worth noting that depletion of 

RhoC leads to a large increase in RhoD protein levels. This is likely due to increased 

RhoGDI1 available for RhoD stability in the absence of RhoC (Guilluy et al., 2011). In 

comparison to siRNA of RhoD alone, little cell contraction was observed in cells treated 

with siRNA against RhoD and RhoC (39.4 ± 3.40 and 74.0 ± 1.51, respectively) (Figure 

5.10 D). Overall, this data demonstrates that ΔF11L stimulated cell contraction in RhoD 

depleted cells is dependent on RhoC and ROCK.  

 

My data indicates that inhibition of RhoD signalling and activation of RhoC-ROCK 

signalling is required for WR induced cell contraction. However, it is not clear whether 

these molecules act in two parallel, independent pathways controlled by F11 that are 

antagonistic to each other, or if RhoD, RhoC and ROCK are in a single linear pathway 

(Figure 5.11A). RhoD is suggested to antagonise RhoA signalling but not by interfering 

with the interaction between RhoA and ROCK (Nguyen et al., 2002; Tsubakimoto et al., 

1999). Therefore, it is not clear from these studies whether RhoD is upstream or 

downstream of RhoA. Yutaka Handa, a post-doctoral researcher in the lab, discovered 

that overexpression of G26V RhoD reduces the level of RhoA bound to GTP. As RhoA 
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and RhoC share approximately 85% sequence identity, I decided to test whether the 

same was true for RhoC. I measured the levels of RhoC bound to GTP in uninfected U-

2 OS cells expressing GFP, GFP-RhoD G26V or GFP-RhoD T31N. The relative 

amount of GTP bound RhoC in each condition was normalised to the GFP control. 

Overexpression of dominant negative RhoD T31N, led to a 58% increase in the levels 

of RhoC bound to GTP relative to the GFP control (although this was not significant) 

(Figure 5.11 B). This indicates that active RhoD antagonises RhoC activity. 

Confusingly, the transfection of constitutively active RhoD mutant only led to small and 

insignificant decrease in RhoC activity. Perhaps RhoC activity is sufficiently supressed 

by endogenous RhoD that additional RhoD activity has no further effect. The effects of 

a dominant negative RhoD mutant must be interpreted with caution because dominant 

negative GTPases bind and sequester GEFs. As Rho GEFs can sometimes act on 

multiple Rho GTPases, RhoD T31N may additionally inactive other Rho GTPases.  It 

may be that in this assays dominant negative RhoD antagonises RhoC activity by 

sequestering RhoC GEFs. However, it is not known whether RhoC and RhoD share 

GEFs and the two proteins are sufficiently different that this is unlikely. To confirm this 

result, I could perform the same RhoC activity assays in cells depleted of endogenous 

RhoD and investigate whether depletion of RhoD leads to an increase in RhoC activity. 

During his doctoral studies, João Cordeiro found that F11 binds multiple Rho GTPases 

in infected cells (Figure 5.1). Furthermore, he found that bacterially expressed purified 

GST-F11 interacts directly with purified His-RhoD but not RhoC (data not shown). 

However, correct folding of RhoC was not confirmed as no positive control was used. 

In conjunction with suspected RhoD antagonism of RhoC activity, the direct interaction 

of F11 with RhoD but not RhoC is more consistent with a linear pathway involving 

RhoD, RhoC and ROCK for F11 induced cell contraction. I hypothesise that F11 binds 

to and inhibits RhoD signalling, this relieves the inhibition of RhoC activity by RhoD and 

allows ROCK mediated cell contraction. 

 

RhoD interacts with F11 through a small motif that shares sequence identity with one 

of the only known RhoD effectors, hDia2C (mDia3). João Cordeiro found that mutating 

the five conserved residues in F11 abrogated RhoD binding (F11 IV-KNS mutant) 

(Figure 5.12 A and B). I wondered whether the interaction between F11 and RhoD was 

important for cell contraction. I infected cells with recombinant viruses that expressed 

F11 IV-KNS or F11 VK/IV-KNS (RhoD binding mutants generated by João Cordeiro) in 

comparison to WR. HeLa cells infected with F11 IV-KNS were able to contract, but not 
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as robustly as during infection with WR. There was a small but significant increase in 

cell area at 3:40hpi between cells infected with F11 IV-KNS or F11 VK/IV-KNS and WR 

(36.7 ± 2.2, 40.8 ± 3.35 and 25.3 ± 0.48, respectively) (Figure 5.12 C and D). This 

would suggest that the interaction between F11 and RhoD is not required for cell 

contraction.  

 

 

5.3 Summary 

In this chapter I investigated the roles of RhoC and RhoD in vaccinia induced cell 

contraction. In agreement with published data that RhoC activates ROCK, I found that 

RhoC was required for cell contraction and suggest that RhoC and ROCK lie in the 

same signalling pathway downstream of F11. I discovered that RhoD activity negatively 

regulates cell contraction and RhoD activity must be inhibited to allow efficient WR 

induced cell contraction. I hypothesis that RhoD negatively regulates RhoC activity in 

∆F11L infection, while the presence of F11 during WR infection relieves this inhibition. 

F11 can bind RhoD, however, this interaction is only partially required for cell 

contraction. It remains to be determined how F11 inhibits RhoD activity, and how RhoD 

antagonises RhoC.  
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Figure 5.10 Inhibition of ROCK and RhoC blocks ∆F11L induced contraction in 

RhoD depleted cells  

A, B The graph shows the average area of RhoD depleted HeLa cells, with or without 
H1152 (A) or C3 (B) treatment, and infected with ∆F11L at 3:40hpi. Error bars 
represent SEM from three independent experiments in which approximately 70 cells 
were counted. Statistical significance was determined by a one-way Anova, indicated 
by * P<0.05, ** P<0.01 and *** P<0.001. C Immuno blot analysis of RhoD, RhoC and 
actin protein levels in HeLa that have been transfected with the indicated siRNA for 72 
hours. D The graphs shows the average area of HeLa cells depleted of RhoD or RhoD 
and RhoC. Error bars represent SEM from three independent experiments in which 
approximately 65 cells were counted in each condition. Statistical significance was 
determined by a one-way Anova, indicated by *** P<0.001. 
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Figure 5.11 Inactivation of RhoD leads to an increase in RhoC activity  

A A schematic of F11 stimulating cell contraction through two independent antagonistic 
pathways or a linear pathway of RhoD, RhoC and ROCK. B Rhotekin pull down assays 
were used to measure that ratio of GTP bound RhoC compared to total RhoC, in 
uninfected U-2 OS that had been transfected with GFP, GFP-RhoD G26V or GFP-
RhoD T31N. U-2 OS cells were serum starved for 24 hours and stimulated with 20% 
FBS for 5 minutes prior to cell lysis. Error bars represent SEM from four independent 
experiments. The immuno blot illustrates a representative assay.  
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Figure 5.12 The F11 RhoD binding mutant stimulates cell contraction  

A The alignment of F11 and the Rho binding domain of the RhoD effector hDia2C 
(mDia3). B Glutathione pull down from infected HeLa cell lysates expressing GST-F11 
mutants and GFP-RhoD. The mutation of IV-KNS abrogated RhoD binding. Both A and 
B are reproduced from the PhD thesis of João Cordeiro. Cordeiro, J.V. (2008). 
Modulation of Rho GTPase signalling during vaccinia virus infection (UCL). Parts A and 
B of this figure have been removed in the electronic copy of this thesis.  
C Still phase images from a time-lapse movie of HeLa cells infected with the indicated 
virus strains. D The graph shows the changes in cell area over time post infection with 
WR, F11-IV-KNS, F11-VK/IV-KNS. Error bars represent SEM from three independent 
in which a total of approximately 70 cells were analysed for each virus.  Statistical 
significance was determined by a one-way Anova, indicated by * P<0.05.  
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Chapter 6. Discussion 

The aim of this thesis was to characterise vaccinia induced cell contraction and 

elucidate the vaccinia and cellular components required. I confirmed that cell 

contraction occurs early during infection and was associated with dynamic plasma 

membrane blebbing. Using a virus that does not express the vaccinia protein F11, I 

showed that F11 was required for virus infection to stimulate contraction. However, 

using the highly attenuated virus rescued with wild type F11, MVA-F11, I found that cell 

contraction additionally required other vaccinia proteins. Despite previous evidence 

showing F11 interacts with RhoA, I found that cell contraction was independent of 

RhoA and instead required RhoC to ROCK signalling. In addition, I discovered that 

RhoD negatively regulates vaccinia-induced contraction, most likely by inhibiting RhoC 

activation, and suggest that RhoD signalling is inhibited during infection to allow for 

efficient cell contraction.  

 

6.1 F11 induced cell contraction 

F11 is a vaccinia protein that is expressed early in infection. Previous work from our 

laboratory showed that F11 binds to RhoA, using a small region of homology with the 

RhoA binding domain of ROCK (Valderrama et al., 2006). At 8hpi, F11 inhibits RhoA 

signalling to mDia1 to facilitate the release of progeny virus particles (Arakawa et al., 

2007a; Arakawa et al., 2007b; Cordeiro et al., 2009).  F11 enhances the spread of WR 

in vivo, and in confluent monolayers of cells in culture (Cordeiro et al., 2009). F11 also 

augments the spread of MVA and Myxoma virus (Irwin and Evans, 2012; Zwilling et al., 

2010).  Initial studies have associated F11 with loss of cell-cell adhesion, cell 

contraction and cell migration (Cordeiro et al., 2009; Morales et al., 2008; Valderrama 

et al., 2006). However, there are discrepancies in the potential role for F11 in cell 

contraction. In a study following vaccinia plaque formation by live cell imaging, cell 

contraction and loss of cell-cell adhesions was dependent on F11 (Cordeiro et al., 

2009). In contrast, sparse Ptk2 cells contracted early in vaccinia infection regardless of 

F11 expression, however, F11 was required for disrupting cell-cell contracts (Morales 

et al., 2008). I found that F11 is required for cell contraction in HeLa cells. In 

agreement with Morales et al., however, I find both WR and ∆F11L viruses induce Ptk2 

cell contraction (Morales et al., 2008). In part, the observed differences between HeLa 

and Ptk2 cells might be due to the cell type specificity. Cell contraction could be 
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caused by more than one vaccinia protein, and perhaps in Ptk2 cells the F11 induced 

mechanism is not necessary. Indeed, Ptk2 cells are smaller and more phase bright 

prior to infection, indicating cell contraction signalling pathways may have a higher 

basal activity, superseding the requirement for F11. In support of the possibility that 

more than one vaccinia protein is required, the rescue of F11 into the genome of the 

attenuated virus MVA (MVA-F11L) only partially rescues HeLa cell contraction. 

Therefore, F11 is necessary but not sufficient for contraction in HeLa cells, but is not 

required in Ptk2 cells. Other vaccinia proteins must have a dominant role in Ptk2 cells 

over F11 to account for contraction in the absence of F11. Another possibility that has 

not been explored is that cell contraction in Ptk2 cells is actually apoptosis. I have ruled 

this out in HeLa cells because they respread, WR expresses multiple inhibitors of 

apoptosis and contraction is not blocked by caspase inhibition (Figure 4.1C). However, 

in my hands, Ptk2 cells infected with either WR or ∆F11L do not re-spread. It would be 

interesting to explore whether cell contraction in Ptk2 cells is actually apoptotic cell 

death induced in response to infection. Investigating if caspase inhibition blocks cell 

contraction would easily address this.  

 

Although my work has identified one protein required for contraction, future work to 

identify other virus components would be important. As F11 cannot fully rescue cell 

contraction in MVA, other vaccinia proteins must be required, that are also absent in 

MVA. The MVA-F11L virus would be a useful tool to screen for the other proteins. 

Adding back small portions of the CVA genome (the wild type vaccinia strain from 

which MVA was derived) to MVA-F11L and screening for efficient contraction, could 

narrow down which proteins are required. This method was used to initially identify 

F11L (Valderrama et al., 2006). It is essential to use MVA-F11 for this approach; 

because it is likely the other proteins are necessary but not sufficient so these would 

only become apparent in conjunction with F11.  

 

6.2 RhoC is required for cell contraction  

The cell contraction phenotype during vaccinia infection is reminiscent of rounded cell 

migration of cancer cells. We thought that activation of RhoA might be involved, 

especially given that previous work has shown F11 interacts with GTP bound RhoA 

(Cordeiro et al., 2009). Interestingly, I found F11-induced cell contraction was 

independent of RhoA (Figure 4.3-4.5). Instead, the highly related RhoC is required for 
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cell contraction (Figure 5.2-5.5). Surprisingly, using Rhotekin assays I found that the 

levels of active RhoC are reduced at 3hpi in vaccinia infection (Figure 5.5C). However, 

this was the case in the presence and absence of F11, so it is unlikely to be indicative 

of the signalling that occurs during vaccinia induced cell contraction. Furthermore, 

Rhotekin assays measure the global level of GTP-bound RhoC averaged across 

thousands of cells. This may not be relevant to the localised events that happen at the 

plasma membrane during cell contraction. An alternative method is to study the spatio-

temporal activity of RhoC by Förster (Fluorescence) resonance energy transfer (FRET) 

using a RhoC biosensor. The RhoC biosensor comprises of the GTPase, a donor and 

acceptor fluorophore (eg, CFP and YFP or GFP and RFP) and the Rho binding domain 

(RBD) of a suitable effector molecule. Upon activation the GTPase and RBD interact, 

which brings the donor and acceptor into proximity to allow resonance energy transfer. 

FRET has been useful to study the spatial and temporal activation of RhoA, Rac and 

Cdc42 during cell migration (Kurokawa and Matsuda, 2005; Machacek et al., 2009; 

Pertz et al., 2006). Classically, RhoA is believed to mediate contraction of the cell body, 

while Rac regulates events at the leading edge. However, in non-stimulated migrating 

cells FRET revealed RhoA activation at the leading edge during membrane protrusion 

prior to Rac activation (Heasman et al., 2010; Kurokawa and Matsuda, 2005; 

Machacek et al., 2009; Pertz et al., 2006). This tight spatial regulation would be 

impossible to detect with a global Rhotekin pull down assay. Recently, a biosensor was 

used to describe tight spatial regulation of RhoC activity surrounding, but not within, the 

core of invadopodia (Bravo-Cordero et al., 2011). This biosensor might give us more 

accurate information regarding the activation of RhoC at the plasma membrane during 

WR induced cell contraction. It would also be interesting to study spatial RhoC 

activation in RhoD depleted cells that are infected with ∆F11L, to see whether this 

replicates the WR situation.  

 

6.2.1 RhoC and ROCK? 

My results in Chapter 4 indicate that ROCK is required for cell contraction. This was 

expected because it is very well established that ROCKI/II activate myosin II mediated 

cortical contraction (Amano et al., 1996a; Hagerty et al., 2007; Kawano et al., 1999; 

Kitazawa et al., 2000). The depletion of the individual ROCK proteins has no significant 

effect on vaccinia-induced contraction. Instead it was necessary to deplete both genes 

(Figure 4.2). Therefore, it is probable that ROCKI and ROCKII are functionally 
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redundant in this phenotype. It is not clear if the three ROCK inhibitors used in this 

study have different specificities towards ROCKI or ROCKII. Given the 92% identity in 

the kinase domains it is likely that the compounds inhibit both proteins, especially as 

they can target several unrelated kinases (Bain et al., 2007; Davies et al., 2000; Leung 

et al., 1996; Nakagawa et al., 1996; Nichols et al., 2009). From my siRNA data, I have 

concluded that both ROCK proteins are involved in cell contraction. It is worth noting 

that siRNA of ROCKII alone has a slightly greater effect than ROCKI (Figure 4.2). This 

could simply be due to more efficient depletion of ROCKII compared with ROCKI, 

although this is not discernable by immuno blot. Or perhaps, activating cell contraction 

through ROCKII is the preferred mechanism but in its absence, vaccinia can still induce 

cell contraction via ROCKI, albeit less efficiently.  

 

I have assumed that in vaccinia-induced cell contraction, ROCK is the main effector of 

RhoC. My results certainly suggest they are in the same pathway because depletion of 

RhoC and ROCK does not have an additive affect in blocking cell contraction (Figure 

5.4). Although ROCK is the obvious effector of RhoC in vaccinia-mediated cell 

contraction, it would be interesting to see if there is any role for specific RhoC effectors. 

Recently, the formins FMNL2 and FMNL3 were identified as putative RhoC specific 

effectors (Kitzing et al., 2010; Vega et al., 2011). FMNL2 and FMNL3 both interacted 

with RhoC, not RhoA and RhoB, and were shown to mediate RhoC specific cell 

morphology changes (Kitzing et al., 2010; Vega et al., 2011). Interestingly, FMNL2 was 

important for RhoC driven amoeboid cell migration in 3D invasion assays (Kitzing et al., 

2010). Like other members of the formin family, FMNL3 can drive actin nucleation and 

polymerisation from actin monomers via the FH2 domain (Heimsath and Higgs, 2012). 

This has not yet been examined for FMNL2. From several functional studies, it has 

been suggested that other members of the formin family (mDia2, FMNL1 and FHOD1) 

might mediate the assembly of actin in the cortex (Eisenmann et al., 2007; Han et al., 

2009; Hannemann et al., 2008). The studies by Kitzing et al., and Vega et al., suggest 

that RhoC mediates cell contraction by regulating actin cortex assembly through 

FMNL2 and/or FMNL3. It would be interesting to examine if FMNL2 and FMNL3 

participate in vaccinia-induced cell contraction. This could initially be done by RNAi-

mediated silencing of FMNL2 and FMNL2 then possibly extended to the entire formin 

family.  
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6.2.2 Do F11 and RhoC interact? 

We have previously suggested that F11 binds to RhoA by mimicking the ROCK 

LxxTxxVxKL motif in the RhoA binding domain (Valderrama et al., 2006). In pull downs 

from infected cell lysates, mutation of the valine and second lysine in this motif of F11 

abrogates binding with RhoA. While under the same conditions, F11 and F11-VK can 

both interact with RhoC (Figure 5.1) (Cordeiro, 2008). However, this does not 

necessarily predict direct interactions. Indeed, João Cordeiro performed binding assays 

with purified recombinant protein and was unable to show a direct interaction between 

F11 and RhoC. However, F11 was able to directly interact with RhoA, RhoD, RhoE and 

Rif (Cordeiro, 2008). This would suggest that in contrast to RhoA, F11 must interact 

with RhoC indirectly via other proteins. However, this experiment lacked a control to 

show that RhoC was correctly folded when expressed in E.coli and under the particular 

assay conditions. A suitable positive control would be the Rho binding domain of 

ROCK.  

 

If we assume that F11 and F11-VK both directly interact with RhoC (in agreement with 

the pull down from cell lysates), this would mean that F11 adopts an alternative 

mechanism to bind RhoC compared to RhoA. Understanding how would give important 

insights into the possible mechanisms mediating the specificity of RhoA and RhoC. 

The crystal structure of RhoA in complex with ROCK1 revealed that the Rho amino 

acids P36, V38, F39, E40, Q63, D65, Y66, R68, L69 and L72 mediate interactions with 

ROCK (Dvorsky et al., 2004). These residues are entirely conserved between RhoA 

and RhoC so it is likely that RhoC interacts with and activates ROCK in the same 

manner, although the crystal structure for RhoC and ROCK has yet to be determined. 

This is also true of regions involved in GEF and GAP binding (Figure 1.11). The one 

exception is at residue 43, which is valine (Val) in RhoA, but isoleucine (Ile) in RhoC. 

Structural studies have shown that Val43 participates in the interactions of RhoA with 

some GEFs or the effector PKN1, but not ROCK1 (Dvorsky et al., 2004; Maesaki et al., 

1999; Sloan et al., 2012). Substitution of Val43 for Ile showed that the identity of this 

residue confers specificity of GEFs towards RhoA or RhoC (Sloan et al., 2012). As Ile 

has a bulkier hydrophobic side chain compared to Val, it is possible that Ile could 

disrupt binding to certain effectors and GEFs or alternatively mediate RhoC specific 

binding as this side chain could plug deeper into hydrophobic pockets. Perhaps Ile43 in 

RhoC is important for mediating an interaction with F11 outside of the LxxTxxVxKL 

motif. F11 only mimics ROCK within a very small region, otherwise there is no 
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additional sequence similarity. In contrast to the RhoA:ROCK complex, additional 

contact sites may exist between F11 and Rho. In binding to RhoA, these sites may 

provide a minor role compared to the LxxTxxVxKL contact site. Perhaps the additional 

sites are more important for F11 and RhoC interactions and compensate for the loss of 

VK within LxxTxxVxKL. RhoA and RhoC are more divergent towards their C-terminus, 

which might provide some difference in their binding strength with F11. 

 

If the in vitro binding assay performed by João Cordeiro does represent the correct 

result, then F11 does not interact with RhoC. RhoC must therefore be in complex with 

F11 via intermediate proteins. The same question exists, why can F11 bind RhoA but 

not the extremely similar RhoC? Again, the difference in binding between RhoA and 

RhoC could be accounted for by the valine to isoleucine substitution or the C-terminus. 

In either circumstance the conundrum of F11 interactions with RhoA and RhoC 

warrants further investigation as this could help understand how the very similar 

proteins mediate different biological phenotypes during vaccinia infection. It is clear 

that the difference between RhoA and RhoC binding to F11 is an important 

determinant for why RhoC, and not RhoA, is required for cell contraction. Future work 

should concentrate first on confirming if and how F11 and RhoC interact, and if this 

interaction is important for F11 mediated cell contraction. Ultimately a full molecular 

understanding of the specificity of F11 for RhoA and RhoC will only come from solving 

the structure of F11 with each Rho protein. 

 

6.3 RhoD and cell contraction 

In Chapter 5 I investigated a potential role for RhoD in cell contraction (Figures 5.6-

5.12). In cells depleted of RhoD, the ∆F11L virus can induce cell contraction in a 

temporal manner reminiscent of WR-induced contraction. Rescuing RNAi treated cells 

with constitutively active or wild type, but not dominant negative RhoD, reversed this 

phenotype. Expression of constitutively active RhoD in WR infected cells also blocked 

cell contraction. Taken together, the results indicate that RhoD inhibits cell contraction 

and suggest that RhoD signalling must be shut down to allow WR-induced cell 

contraction.  
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6.3.1 How does RhoD antagonise RhoC? 

In cells depleted of RhoD, cell contraction during ∆F11L infection is dependent on 

ROCK and RhoC signalling. This led me to hypothesise that RhoD antagonises 

RhoC/ROCK in uninfected cells as well as during ∆F11L infection. In uninfected cells 

the expression of dominant negative RhoD (T31N) leads to increased levels of RhoC 

bound to GTP (Figure 5.11). However, the effects of the RhoD T31N mutant must be 

interpreted with caution because this mutant could bind and sequester GEFs that act 

towards multiple Rho GTPases. For example, it is not known if any GEFs stimulate 

nucleotide exchange in both RhoC and RhoD. If this were the case then the observed 

increase in RhoC-GTP levels could be an artefact of RhoD T31N sequestering RhoC 

GEFs. Confidence in a true antagonism of RhoC by RhoD could be verified by 

investigating RhoC-GTP levels in cells depleted of RhoD. 

 

If RhoD does antagonise RhoC, this raises the question of how crosstalk between the 

two proteins occurs. There are many examples of crosstalk between members of the 

Rho GTPase family (see 1.2.6). This can occur at the level of GEFs and GAPs. The 

upstream Rho GTPase can either modulate the activity of these regulatory proteins by 

direct interactions or via its effector molecules. (Guilluy et al., 2011). As an example, 

Rac1 and RhoE can antagonise RhoA activity by binding to and relieving the auto-

inhibition of the p190RhoGAP (Bustos et al., 2008; Wennerberg et al., 2003). As 

p190RhoGAP can also inactivate RhoC, RhoD might employ a similar antagonistic 

mechanism (Bravo-Cordero et al., 2011). Alternatively, if RhoC and RhoD can be 

activated by the same GEFs, RhoD could suppress RhoC activity by competitive 

interactions with the GEF. Currently, there are very few confirmed RhoD effectors 

(Figure 6.1A). RhoD is proposed to signal through mDia1 and a splice variant of mDia3 

(hDia2C), to regulate centrosome duplication and endosome dynamics, respectively 

(Gasman et al., 2003; Kyrkou et al., 2012). In addition, RhoD can interact with and 

regulate the localisation of PAK5. Constitutively active RhoD binds particularly well to 

PAK5 (Wu and Frost, 2006). This raises the possibility that PAK5 is also an effector of 

RhoD. A post-doctoral researcher in our group, Yutaka Handa, investigated whether 

RhoD can interact with members of the PAK family, PAK1-6. In pull down experiments 

from cell lysates, RhoD could bind PAK1 and PAK4-6. It would be interesting to 

investigate whether these kinases are bona fide effectors of RhoD, by looking for direct 

interactions that are specific to GTP bound RhoD. There are several known examples 

of crosstalk between Rac1 and RhoA that involve PAK1 and/or PAK4. Particularly, 
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PAK1 and PAK4 phosphorylate p115 RhoGEF, GEF-H1, PDZ-RhoGEF and Net1 

(Alberts et al., 2005; Barac et al., 2004; Rosenfeldt et al., 2006; Zenke et al., 2004). 

Phosphorylation inhibits GEFs by mis-localisation or reducing their nucleotide 

exchange activity. Although, these studies only investigate PAK1 and PAK4 mediated 

antagonism of RhoA, these GEFs (with the exception of Net1) additionally regulate 

RhoB and RhoC activity. Therefore, PAK1 and PAK4 are undoubtedly able to 

antagonise RhoC.  

 

Combining the evidence that RhoD binds PAK family kinases and PAK1/4 are already 

known to inactivate RhoC GEFs, RhoD antagonism of RhoC via PAK family kinase is 

the most likely mechanism for crosstalk (Figure 6.1A). Future work will concentrate on 

characterising the interactions between RhoD and PAK family members and examining 

a role for PAK in supressing RhoC. In addition we will investigate the effects on 

vaccinia induced cell contraction by depleting PAK proteins in the presence or absence 

of F11.  

 
 
 
Figure 6.1 The potential mechanisms for RhoD mediated antagonism of RhoC 
1) Competitive binding of RhoD with a RhoC GEF. 2) RhoD binds and activates a Rho 
GAP by relieving intrinsic auto-inhibition. 3) RhoD activates a member of the PAK 
family, which phosphorylates a GEF to inhibit its activity towards RhoC. 
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6.3.2 F11 inhibits RhoD to promote RhoC dependent cell contraction 

In his PhD studies, João Cordeiro, found that F11 directly interacts with RhoD. This 

interaction is mediated by an IV-KNS motif, which is also present in a splice variant of 

mDia3 (hDia2C) that binds RhoD (Figure 5.12). João found that F11 preferentially 

binds GDP bound RhoD. In addition, João developed a RhoD activation assay, using 

the RhoD binding motif of mDia3, and found that F11 activates RhoD at 8hpi (Cordeiro, 

2008). In contrast, my results indicate that RhoD signalling must be turned off at 3hpi, 

as it is inhibitory to vaccinia-induced cell contraction. Because cell contraction in the 

absence of F11 can only occur when RhoD is depleted, and based on the direct 

interaction between the two proteins, I suggest that F11 could inhibit RhoD in WR 

infection at 3hpi. This should be confirmed using João‘s RhoD activation assay.  F11 

could inhibit RhoD by binding to and sequestering GDP bound RhoD to prevent its 

activation. However, cell contraction is still induced by the F11-IV-KNS recombinant 

virus, although it is less efficient than WR. This indicates that an interaction between 

the two proteins is not required. Perhaps during cell contraction, F11 does not 

physically inhibit RhoD, rather it protects RhoC from inhibition by RhoD. F11 could do 

so by recruiting a RhoD specific GAP to the plasma membrane to locally inactivate 

RhoD in the vicinity. The G26V mutant of RhoD is resistant to GAP mediated GTP 

hydrolysis, therefore, this mutant is able to supress cell contraction even when F11 is 

present.  

 

RhoC is required for cell contraction but it is not clear whether RhoC activation is 

actually mediated by F11. During ∆F11L infection, cell contraction does not occur, 

presumably because RhoD suppresses RhoC activation. When RhoD is depleted 

RhoC-dependent vaccinia-induced cell contraction can occur. If preventing RhoD 

inhibition of RhoC was the only contributing factor to vaccinia-induced cell contraction, 

then surely RhoD depleted cells would be constitutively contracted regardless of 

vaccinia infection. However, this is not the case as infection with ∆F11L stimulates 

temporal contraction, indicating a temporal activation of RhoC. Therefore, it is likely 

that another vaccinia protein activates RhoC, and that sufficient activation to drive cell 

contraction is only achieved in addition to RhoD suppression.  From studies with MVA-

F11, I know that at least one other protein contributes to cell contraction with F11. In 

this virus perhaps F11 inhibits RhoD to prevent antagonism of RhoC, but robust cell 

contraction cannot occur because the protein that fully activates RhoC is not expressed.  

 



Chapter 6. Discussion 

 

 155 

6.3.3 Working model  

From the results in this thesis I suggest the following model for vaccinia induced cell 

contraction. Early in infection, F11 localises to the plasma membrane where it recruits 

a RhoD GAP and locally inhibits RhoD activity (Figure 6.2 B). Additionally, F11 recruits 

RhoC to the vicinity where it is protected from RhoD antagonism and is activated by 

another vaccinia protein. RhoC activates ROCK activity to stimulate myosin II driven 

contraction of the actin cortex. When F11 is not present, RhoD antagonises RhoC 

activity using PAK mediated inactivation of RhoC GEFs.  

 

 

 
 

 

 

Figure 6.2 A hypothetical model of F11-RhoD-RhoC signalling  
1) F11 localises to the plasma membrane and recruits a RhoD GAP. This GAP locally 
supresses RhoD activity. 2) F11 recruits RhoC to areas where RhoD is supressed. 3) 
An unidentified vaccinia protein (Vaccinia X) activates RhoC. 
 

 

 

The work presented in this thesis concentrates on the signalling pathways that lead to 

vaccinia induced cell contraction but does not consider how the subsequent re-
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vaccinia late proteins (Figure 3.3). As yet we do not know the identity of the vaccinia 

protein/s or how these proteins stimulate re-spreading.   

 

There are two possible mechanisms for re-spreading. Firstly, the expression of late 

vaccinia proteins could activate a signalling pathway that promotes re-spreading. Rac 

dependent signalling is a likely mechanism, as Rac can inhibit RhoA signalling (which 

is presumably also true of RhoC) and induce lamellipodia and cell spreading (Ridley et 

al., 1992). Treating WR infected cells at 3hpi with Rac inhibitors and measuring the 

ability of the contracted cells to re-spread could easily test this. Similarly, a candidate 

based small molecule screen could be conducted to identify additional host proteins 

required for re-spreading.  

 

Alternatively, the second possible mechanism is that cell re-spreading is not induced 

but rather cell contraction is turned off. Intriguingly, the levels of F11 protein, as 

detected by immuno blotting, coincide strikingly with the onset and termination of cell 

contraction and blebbing (Figure 3.6). The protein is detected from 1:30hpi, most 

abundant between 3-4hpi and begins to decrease form 5hpi onwards. This could 

suggest that a threshold level of F11 is required to induce and maintain cell contraction. 

Indeed, when late gene expression is blocked the level of F11 does not significantly 

decrease (Figure 3.3). This might explain why when late protein expression is blocked, 

cell contraction is sustained. It raises the possibility that vaccinia late proteins direct the 

reduction in F11 levels possibly through degradation or proteolytic cleavage. 

 

6.4 What is the role of contraction in vaccinia spread? 

In this thesis I have studied vaccinia-induced cell contraction in cells in culture. 

Although the purpose of my work was to use vaccinia virus as a tool to understand 

novel cellular mechanisms that can lead to cell contraction it would be interesting to 

understand how this contributes to vaccinia infection in vivo.  

 

Previous data shows that F11 significantly contributes to virus spread in culture and in 

vivo (Cordeiro et al., 2009; Irwin and Evans, 2012; Zwilling et al., 2010). However, my 

work now shows that F11 probably has two different functions during vaccinia infection. 

At early stages of infection F11 stimulates cell contraction, whilst at later stages F11 

facilitates virus release by modulating actin cortex and MT dynamics (Arakawa et al., 
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2007a; Arakawa et al., 2007b; Cordeiro et al., 2009). Therefore, it is difficult to 

delineate the contribution of each F11 function to virus spread. The F11-VK virus is a 

useful tool to help us separate F11 functions. F11-VK stimulates efficient cell 

contraction but virus release is equally impaired during F11-VK and ∆F11L infections. 

F11-VK spreads better than ∆F11L in plaque assays and in vivo, and this potentially 

highlights a contribution for cell contraction in virus spread. An alternative approach 

would be to temporally separate F11 functions. It would interesting to generate a 

recombinant virus where F11 is expressed from a late vaccinia promoter rather than 

the endogenous early promoter. If this virus did not stimulate cell contraction, but virus 

release was not impaired relative to WR then this virus could be used to understand 

what contribution F11 stimulated cell contraction made to F11 mediated virus spread.  

 

My study does not allow us to determine whether cell contraction is a physiologically 

relevant mechanism for virus spread and it possible that it is entirely an artefact of cell 

culture substrates, culturing conditions and/or cell lines used. Cell contraction and 

associated plasma membrane blebbing has been observed in many cancer cell lines in 

culture and is thought to contribute to a proteolytic-independent mode of migration in 

vivo (Friedl and Wolf, 2003, 2010; Wolf et al., 2003). Given the visual similarity and its 

dependence on ROCK signalling it is possible that vaccinia-induced contraction is 

necessary to facilitate the 3D migration of infected cells in tissues and thereby increase 

virus spread. However, this is just a hypothesis and we do not have adequate assays 

to test the relevance of cell contraction, if any, to virus spread.  Currently, we can either 

image virus spread through confluent monolayers of cells seeded onto plastic, or 

measure the virus titre in different organs following intranasal inoculation of mice 

(Cordeiro et al., 2009). Both assays have significant limitations, the first assay is too 

artificial to give us physiological relevant information, while the second does not allow 

us to gain any information about infection on a single cell level. It would be useful to 

develop an organotypic cell culture assay that represents the site of vaccinia infection, 

such as the trachea epithelium or skin (Buller and Palumbo, 1991), while allowing for 

the imaging resolution required to visualise cell morphology changes.  

 

6.5 Future perspectives  

The working model for F11-stimulated cell contraction is based on my results in 

conjunction with evidence from the literature (Section 6.3.3). But many of the 
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suggested steps require experimental confirmation. This presents several avenues for 

future research. If F11 inhibits RhoD activity it is clearly not through a direct interaction, 

this warrants exploration to identify the mediating regulatory protein. Currently, the 

regulatory molecules acting on RhoD are not known, therefore solving this could have 

wider implications in the understanding of the cellular function of RhoD. Potentially 

RhoD supresses RhoC activity, immediate future work should concentrate on validating 

this hypothesis and identifying the molecular players. Given that RhoD can bind 

members of the PAK family, we suspect that PAK mediated inhibition of RhoC GEFs is 

important. RhoC and ROCK expression often correlate with the metastatic potential of 

tumours and poor prognosis. If RhoD is a true suppressor of RhoC, is there any 

evidence that RhoD expression inversely correlates with RhoC in cancers? My work 

has started to explore the regulatory mechanism for WR induced cell contraction but 

have not addressed how contraction is turned off. It would be interesting to identify the 

mechanisms behind cell re-spreading and elucidate how the same cell can display 

such strikingly different morphologies at different points in vaccinia infection. Answers 

to this question could contribute to the understanding of how cancer cells achieve 

similar morphology switches when they encounter different extracellular environments.  
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