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2 D. Kristensen

1. INTRODUCTION

There is amble empirical evidence of structural changes in many economic and finan-
cial time series such as GDP (McConnell and Perez-Quiros, 2000), interest rates (Stock
and Watson, 1996), labour productivity (Hansen, 2001), and asset returns (Ang and
Kristensen, 2012). Neglecting these changes in the analysis of data can lead to spurious
conclusions. This has lead to a large literature on detection and estimation of structural
changes in time series regression models. Most studies assume a fully parametric struc-
ture of time variation in parameters. This has the advantage that the model maintains
much of its parsimonious structure. The disadvantage is that the researcher runs the risk
of choosing a misspecified model. This in turn may lead to misleading conclusions being
drawn from the fitted time-varying specification.

This paper proposes a general methodology for nonparametric estimation and testing
of time-varying coefficients, βt, in the following linear regression model,

yt = β′tXt + σtzt, (1.1)

where σt is the potentially time-varying volatility. We impose no parametric structure on
the time variation in βt and σt and instead estimate both components nonparametrically.
This way, the risk of misspecification is smaller and so more robust inference can be
conducted. We consider the null of a given (sub)set of the regression coefficients being
constant, and develop estimators under null and alternative. The estimators take the
form of simple kernel-weighted OLS estimators and so are very simple to implement in
contrast to existing parametric estimators whose implementation can be computationally
burdensome. We propose to test the null by comparing the two sets of estimators through
either generalized F or Wald test statistics. We also show how the proposed methods
can be used as guidance in the search for a parsimonious parametric model of structural
change.

We derive the asymptotic properties of the estimators and test statistics: All esti-
mators follow normal distributions in large samples. In particular, under the null, the
parametric (constant) components can be estimated with standard parametric rate, and
can be made asymptotically efficient. The proposed test statistics are also shown to follow
normal distributions under the null, and by suitable choice of weighting functions enter-
ing the tests they can be made nuisance parameter-free. These are attractive features
when compared to standard parametric estimators and test statistics that tend to suffer
from non-standard, non-pivotal distributions thereby further complicating inference in a
parametric setting.

Our framework allows for both deterministically and randomly changing parameters,
and embed a rich class of data generating processes, including random walk type dy-
namics in the parameters. As such, our estimators and tests are very robust and should
be able to detect structural change under may different scenarios. This is supported by
a simulation study that reveals that our estimators have good finite sample properties
under random walk, smooth transition and structural break specifications. Moreover, the
tests have precise size properties and exhibit strong power against all the different al-
ternatives. In fact, the nonparametric tests do not trail far behind parametric structural
break tests under correct specification of the time-variation, and clearly dominate when
the time-varying coefficients are smoothly changing.

The usefulness of the proposed methodology is demonstrated through two empirical
applications: In the first one, we investigate structural instabilities in US productivity and
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Nonparametric Detection of Structural Change 3

find strong evidence of such. We test two parametric structural breaks models against the
nonparametric alternative, and find strong support for a three-breaks model while there
is mixed evidence for only one break in the sample. In the second application, we analyze
structural changes in an affine three-factor model for the Eurodollar term structure. We
find substantial time variation in all factor loadings over the period 1971-2004 and reject
the null of constant loadings both individually and when tested in pairs. The variation
in the loadings is found to be partially explained by underlying macro factors.

There is a large literature on estimation and testing parametric forms of structural
change such as deterministic breaks (Andrews and Ploberger, 1994; Bai and Perron 1998),
smooth transition (Lin and Teräsvirta, 1994) and hidden Markov models (Hamilton, 1989;
Hansen, 1992; Nyblom, 1989). In an influential paper, Elliott and Müller (2006) show that
under regularity conditions, efficient parametric tests for a class of breaking processes
are equivalent. This seems to indicate that not much can be gained from introducing
new tests. However, they restrict themselves to breaking processes that (after scaling)
are asymptotically well-approximated by Brownian motions. While the considered class
is broad, it still rules out a number of relevant alternatives. In particular, so-called high-
frequency alternatives are excluded. A well-known limitation of parametric tests is that
they are not able to detect all such alternative; see e.g. Eubank and LaRiccia (1992) and
Fan et al (2001). In contrast, our tests can detect such high-frequency alternatives at an
optimal rate. On the other hand, within the class of breaking processes of Elliott and
Müller (2006), our test will in general be less powerful compared to parametric tests.
Thus, in terms of power, there is a trade-off between our test and existing parametric
tests. Finally, even if a given parametric test is able to detect structural changes, it
will only deliver a consistent estimator of the process βt if the parametric model of the
time-variation is correctly specified. Thus, parametric procedures will in general deliver
inconsistent estimators. An exception is the procedure of Müller and Petalas (2010); they
however restrict themselves to moderate time-variations such that the magnitude of the
instability decreases as the sample size increases.

A number of nonparametric tests have been proposed that involve integration/summation
over the changing parameters; e.g, the CUSUM test of Brown et al. and the test of Chu
et al. (1995). These tests suffer from the same problem as parametric tests, namely that
they cannot detect high-frequency alternatives very well. Moreover, they do not provide
estimates of the breaking process under the alternative and has non-standard asymptotic
distributions. Instead, our approach is based on idea originating from Robinson (1989),
who propose nonparametric estimators of βt and σt, and extended in Cai (2007). How-
ever, these studies focus solely on the estimation of changing parameters, and do not
consider estimation and testing of constant parameters.

Our testing approach is related to the work by Chen and Hong (2012), Hidalgo (1995),
Gao, Gijbels and van Bellegem (2008) and Juhl and Xiao (2005) who also develop kernel-
based tests for stability in regression models. Hidalgo (1995) and Gao et al (2008) focus on
structural change in fully nonparametric regressions, and so are more robust compared to
our tests since no asumptions are made about how the covariates enter the model. On the
other hand, their methods cannot handle models with a large number of regressors due
to the well-known curse of dimensionality of fully nonparametric estimators, while our
procedure has no such isues. Juhl and Xiao (2005) and Chen and Hong (2012) consider
linear regression models, but Juhl and Xiao (2005) focus on the case where only the
intercept is time-varying, while Chen and Hong (2012) only develop estimators and tests
under the null of all regression coefficients being constant. We here extend the results of
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4 D. Kristensen

Chen and Hong (2012) in a number of directions: First, we develop estimators and tests
under the hypothesis of time invariance for any given subset of the regression coefficients.
This is an important extension since it is often of interest to identify which regressors
have unstable coefficients (see e.g. Ang and Kristensen, 2012). Secondly, we allow for
heteroskedastic errors and modify estimators and test statistics to handle this. Thirdly,
we accommodate for non-stationary (but mixing) regressors; this is important since we
thereby can handle autoregressive models which are excluded from the theory in Chen
and Hong (2012).

The remains of the paper are organized as follows: In the next section, we introduce
our model and develop the proposed estimators and test statistics. Section 3 contains
our theoretical results, while Section 4 gives some extensions. Bandwidth selection and
bootstrapping is discussed in Section 5. The results of a simulation study and the empir-
ical applications are presented in Section 6 and 7 respectively. Section 8 concludes. All
proofs and lemmas have been relegated to the Appendix.

2. FRAMEWORK

Suppose we have observed (yt, Xt), t = 1, ..., n, from eq. (1.1) with yt ∈ R and Xt ∈ Rm.
The error normalized error term zt ∈ R satisfies

E [zt|Xt, βt, σt] = 0, E
[
z2
t |Xt, βt, σt

]
= 1. (2.2)

As such, σ2
t > 0 represents the conditional variance of yt. In a standard regression

model, it is assumed that the regression coefficients and the variance are constant over
time, βt = β and σ2

t = σ2.
We are interested in testing the hypothesis that (part of) the regression coefficients are

in fact constant over time, and also in obtaining estimates both under this null and its
alternative. To be specific, let X1,t ∈ Rm1 denote the set of regressors whose associated
coefficients we are interested in testing for time invariance. The remaining regressors are
collected in X2,t ∈ Rm2 whose regression coefficients may potentially be unstable. We
can then write the complete set of regressors as Xt = (X1,t, X2,t) with m1 + m2 = m.
With these definitions, the model can be written as:

yt = β′1,tX1,t + β′2,tX1,t + σtzt, (2.3)

and we then interested in testing he following null hypothesis,

H0 : β1,t = β1 ∈ Rm1 .

We throughout maintain the hypothesis that β2,t is potentially time-varying.
The above framework is quite standard in the literature on structural changes in regres-

sion models. However, in order to develop statistical estimators and tests, most studies
now proceed to impose parametric assumptions on the parameter sequences. One popu-
lar way of modelling βt is through deterministic breaks, see e.g. Andrews and Ploberger
(1994), Bai (1999) and Bai and Perron (1998). In the simplest case, with one break, the
dynamics of the regression coefficients are modelled as βt = β̄1I {t ≤ [πn]}+β̄2I {t > [πn]}
for some (unknown) π ∈ (0, 1) and β̄1, β̄2 ∈ Rm. Another widely used specification is the
smooth transition model of Lin and Teräsvirta (1994) where the variation is specified as
βt = β̄1F (t/n; γ)+ β̄2 [1− F (t/n; γ)] for some parametric family of cdf’s, F (t; γ). While
these two models assume deterministic changes, another approach is to model βt as a
stochastic process; see e.g. Hamilton (1989), Hansen (1992) and Nyblom (1989).
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Nonparametric Detection of Structural Change 5

We here take an alternative approach and do not impose any such parametric restric-
tions on the nature of the time-variation. However, some additional restrictions has to
be imposed on the type of time-variation in order to make any further progress since, at
the current level of generality, we have as many parameters as observations. To obtain
nonparametric identification, we impose the following rescaling on the parameters,

βt = β (t/n) , σ2
t = σ2 (t/n) , (2.4)

for some functions β : [0, 1] 7→ Rm and σ2 : [0, 1] 7→ R+ We here use β and σ2 to denote
both functions and the corresponding sequences; this should hopefully not cause any
confusion. This restriction on coefficients imply that as the sample size grows, a growing
number of observations carry information regarding the variation in the coefficients in
any given neighbourhood of the normalized time domain. This will allow us to identify
the functions and thereby the parameter sequences. Under eq. (2.4), the alternative to
H0 is then given by

HA : β1,t = β1 (t/n) for some non-constant function β1 (·) .

The assumption in eq. (2.4) is a standard one in the literature on time-varying param-
eters, and is also imposed in, for example, the analysis of structural break estimators. We
note that the class of models satisfying eq. (2.4) is rich enough to include many of the
parametric models discussed earlier, including structural break and smooth transition
models. Moreover, stochastic specifications of βt can be approximated by eq. (2.4) by
choosing the function β (·) as the corresponding continuous-time equivalent. For exam-
ple, the (rescaled) random walk model can be approximated by letting β (τ) , τ ∈ [0, 1],
be the realized trajectory of a Brownian motion.

The above rescaling was also used in Robinson (1989), who proposed to use kernel
methods to nonparametrically estimate time-varying coefficients; see Cai (2007) for some
extensions. In an autoregressive setting, the above scaling leads to so-called locally sta-
tionary models as analyzed in Dahlhaus (1997).

2.1. Estimation

We first develop estimators under HA. In order to motivate our estimators, suppose that
zt|Xt ∼ N (0, 1); we will however not impose this restriction when deriving theoretical
properties. In this case, the global likelihood takes the form

Ln(β, σ2) = − 1

2n

n∑
t=1

{
log
(
σ2
t

)
+
ε2
t (βt)

σ2
t

}
,

for any sequences
{
βt, σ

2
t : t ≥ 1

}
, where εt(β) is the residual,

εt(β) = yt − β′Xt. (2.5)

Let τ = t0/n ∈ (0, 1) denote a given (normalized) point in time. We define the local
log-likelihood at τ by

Llocal
n

(
β, σ2|τ

)
= −1

2

n∑
t=1

{
log
(
σ2
)

+
ε2
t (β)

σ2

}
Kh (t/n− τ) ,

for any constants β ∈ Rm and σ2 > 0. Here, Kh (z) = K (z/h) /h with K (·) being a
kernel and h > 0 a window width. The kernel weights Kh (t/n− τ), t = 1, ..., n, determine
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6 D. Kristensen

how we use information around the time point τ to learn about β (τ) and σ2 (τ). As the
time window shrinks to zero, h → 0, only observations very close in time to τ are used
while as h→∞, all observations are used.

We then propose to estimate
(
β (τ) , σ2 (τ)

)
by maximizing the local likelihood at τ ,

(β̂ (τ) , σ̂2 (τ)) = arg max
β∈Rm,σ2>0

Llocal
n

(
β, σ2|τ

)
.

Solving ∂Llocal
n

(
β, σ2|τ

)
/∂β = 0 and ∂Llocal

n

(
β, σ2|τ

)
/∂σ2 = 0, we find that they take

the form of kernel-weighted least-squares estimators,

β̂ (τ) =

[
n∑
t=1

Kh (t/n− τ)XtX
′
t

]−1 [ n∑
t=1

Kh (t/n− τ)Xtyt

]
, (2.6)

σ̂2 (τ) =

∑n
t=1Kh (t/n− τ) ε2

t (β̂t)∑n
t=1Kh (t/n− τ)

. (2.7)

The above estimator of β (τ) is identical to the one proposed by Robinson (1989), and
is similar to nonparametric estimators of varying-coefficient models in a cross-sectional
setting; see, for example, Fan and Huang (2005). The volatility estimator is akin to the
one considered in Fan and Yao (1998) except that we here employ normalized time t/n as
a regressor; see also Kristensen (2010) for a similar volatility estimator in a continuous-
time framework. For notational convenience, we here use the same bandwidth for all
regression coefficients and the volatility. There may be finite sample improvements from
using different bandwidths for the individual coefficients, see e.g. Fan and Yao (1998) and
Fan and Zhang (1999) for results on this in a i.i.d. setting. If in fact σ2

t = σ2 (t/n,Xt), the
above estimator σ̂2 (τ) will not be consistent and we should instead smooth the residuals
w.r.t. both t/n and Xt.

Next, we consider estimation of the parametric (β1) and nonparametric (β2,t) com-
ponents under H0. We propose to estimate the time-varying and constant coefficients
by partitioned regression akin to the semi-nonparametric estimators of Fan and Huang
(2005) and Robinson (1988). As is well-known in the literature on two-step semiparamet-
ric estimators, different bandwidth rules apply depending on whether the interest lies in
the estimation of the nonparametric or parametric component. This will also be the case
here, and so we here introduce an additional bandwidth b > 0. We will then reserve h for
the use in the estimation and testing of nonparametric components, while b is employed
in the estimation of parametric components.

As a first step towards an estimator of β1, treat β1 as known and estimate β2 (τ) by

β̃2 (τ, β1) = arg max
β2∈Rm2

Llocal
n

(
β1, β2, σ

2|τ
)
,

where Llocal
n

(
β1, β2, σ

2|τ
)

is on the same form as before except that we have replaced
the bandwidth h by the new bandwidth b. It is easily shown that the estimator can be
written as β̃2,t (β1) = M̂y,t − M̂ ′X1,t

β1, where for any sequence At

M̂A,t :=

[
n∑
s=1

Kb (s/n− τ)X2,sX
′
2,s

]−1 [ n∑
s=1

Kb (s/n− τ)X2,sA
′
s

]
. (2.8)

Plugging β̃2,t (β1) into the global log-likelihood together with some preliminary estimator
of σ2

t (for example, the unconstrained estimator, σ̂2
t ), a natural estimator would be the

maximizer of this w.r.t. β1.
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Nonparametric Detection of Structural Change 7

However, due to bias problems with our kernel estimators for τ close to the two bound-
aries, τ = 0 and 1, we first redefine the global likelihood function to include trimming,

Ln(β, σ2) = − 1

2n

n∑
t=1

It (a)

{
log
(
σ2
t

)
+
ε2
t (βt)

σ2
t

}
,

where It (a) = I {a ≤ t/n ≤ 1− a} for some trimming parameter a > 0. That is, we
only include observations which are observed a time distance a away from the two end
points of the sample. We will let a vanish as n→∞ such that the impact of trimming is
asymptotically negligible. As an alternative to trimming, a boundary kernel or local linear
kernel estimator could be used in the nonparametric estimation since these do not carry
any biases at the boundaries, see Kristensen (2010) for a further discussion. We would like
to emphasize that the purpose of the trimming employed here is fundamentally different
from the type of trimming introduced in other semiparametric two-step estimators such
as Robinson (1987,1988). Usually, trimming is used to handle denominator problems of
a first-step nonparametric estimator. Our nonparametric estimator does not suffer from
any denominator problems, but rather a boundary problem: That close to either τ = 0
and τ = 1, the estimator is asymptotically biased. The trimming is here used to control
this bias component.

We estimate β1 by maximizing the trimmed version of the profile log-likelihood, β̃1 =
arg maxβ1

Ln(β1, β̃2, σ̂
2). It is easily shown that β̃1 is given as

β̃1 =

[
n∑
t=1

It (a) σ̂−2
t X̂1,tX̂

′
1,t

]−1 n∑
t=1

It (a) σ̂−2
t X̂1,tŷ

′
t, (2.9)

where

ŷt = yt − M̂ ′y,tX2,t, X̂1,t = X1,t − M̂ ′X1,tX2,t.

We can substitute β̃1 back into the expression of β̃2,t (β1) to obtain an estimator of β2,t

under the null:

β̃2,t = M̂y,t − M̂ ′X1,tβ̃1, (2.10)

where M̂y,t and M̂ ′X1,t
are evaluated using the ”nonparametric” bandwidth h instead of

b, since now the interest lies in the estimation of a nonparametric component. One can
potentially update the variance estimator by replacing ε2

t (β̂t) with ε2
t (β̃t) in eq. (2.7).

While the above GLS estimator β̃1 is asymptotically efficient (see Section 3), one may
worry about its precision in samples of small and moderate sizes. In particular, the
estimator involves a preliminary estimator of the time-varying variance, σ̃2

t , which in
turn requires choosing an additional bandwidth. We therefore introduce a more general
estimator depending on weights that can be chosen in a given application,

β̃w1 =

[
n∑
t=1

It (a) ŵtX̂1,tX̂
′
1,t

]−1 n∑
t=1

It (a) ŵtX̂1,tŷ
′
t, (2.11)

where ŵt = ŵ (t/n) for some (potentially estimated) weighting function ŵ : [0, 1] 7→ R+.
With ŵt = σ̂−2

t , the efficient GLS estimator β̃1 appears, while with ŵt = 1 the standard
OLS estimator is obtained.

The resulting estimators share some similarities with the estimators in partially linear
models and regression models with heteroskedasticity of unknown form as proposed by
Robinson (1988) and Robinson (1987) respectively. The above estimator is a weighted
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8 D. Kristensen

time series version of the estimator proposed Fan and Huang (2005) who use uniform
weights, ŵt = 1, and analyze its properties in a cross-sectional setting. An alternative
estimator of β1 is obtained by simply averaging the unrestricted estimator β̂1 (τ) over

τ ∈ [0, 1], β̌1 =
∫ 1

0
ω (τ) β̂1 (τ) dτ , for any weighting function ω satisfying

∫ 1

0
ω (τ) dτ =

1. Ang and Kristensen (2012) show that β̌1 is
√
n-asymptotically normally distributed

but in general not as efficient as β̃w1 . It should be possible to obtain full efficiency by
suitable choice of ω, but the optimal weighting function will however depend on unknown
components and therefore has to be estimated. We will in the following focus on the
likelihood-based estimator β̃w1 .

2.2. Testing

We propose to test H0 by comparing the unrestricted and restricted fit of the model. We
consider two ways of doing this: The first test is a F type test that compares the sums
of squared residuals (SSR’s) associated with the unrestricted and restricted model, while
the second is a Wald type test that directly compares the restricted and unrestricted
estimator of β1 (τ).

To obtain the F statistic, we first define the residuals under H0 and HA respectively,

ε̃t = yt − β̃w′1 X1,t − β̃′2,tX2,t, ε̂t = yt − β̂′1,tX1,t − β̂′2,tX2,t,

where, as before, β̃w1 is computed using the ”semiparametric” bandwidth b while β̂t and
β̃2,t relies on the ”nonparametric” bandwidth h. The corresponding sums of (weighted)
squared residuals under null and alternative are given by

SSRw0 =

n∑
t=1

It (a) ŵtε̃
2
t , SSRwA =

n∑
t=1

It (a) ŵtε̂
2
t , (2.12)

where ŵt are some weights chosen by the econometrician (not necessarily the same used
to compute β̃w1 ). We then propose to test H0 using a generalized F statistic given by

Fn =
n

2

SSRw0 − SSRwA
SSRwA

.

The statistic Fn is similar to the generalized likelihood-ratio (GLR) test statistic proposed
in Fan et al (2001) for varying-coefficient models. In particular, with ŵt = σ̂−2

t , Fn can
be seen as a first-order approximation of the GLR based on Ln(β, σ2). For ŵt = 1, Fn is
the first-order approximation of the GLR proposed in Fan et al (2002) in a cross-sectional
setting with homoskedastic errors.

As an alternative to Fn, we also consider a generalized Wald statistic that measures
the discrepancy between the restricted and unrestricted estimator of β1 (τ):

Wn =

n∑
t=1

It (a) (β̃w1 − β̂1,t)
′Ω̂t(β̃

w
1 − β̂1,t),

for some sequence of (possibly estimated) weights, Ω̂t ≥ 0, t = 1, ..., n. One particular
choice of Ω̂t is Ω̂t = X1,tX

′
1,t, see Chen and Hong (2012), but others are possible too.

In particular, when the errors are heteroskedastic, one can include a volatility weight in
order for the test statistic to be asymptotically distribution free as we will discuss in the
next section.
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Nonparametric Detection of Structural Change 9

3. ASYMPTOTICS PROPERTIES

To derive the asymptotic properties of the above estimation testing procedure, we assume
that data has arrived from the following sequence of models,

yn,t = β′n,tXn,t + σn,tzn,t, t = 1, ..., n, (3.13)

where β′n,t and σn,t satisfy eq. (2.4). We allow the sequences {βn,t} and {σn,t} to be
random in which case all the following arguments and statements are implicitly made
conditional on the realization of these two random sequences that generated data. More-
over, the set of regressors, Xn,t, and errors, zn,t, may potentially depend on sample size
n such that structural change in their distributions are allowed for. As such, our model
resembles the one considered in Hansen (2000), except that we do not impose parametric
assumptions on the changing parameters. We will however require that the regressors,
while non-stationary, are mixing. One particular situation that our theoretical results
cover is when Xn,t includes lagged dependent variables in which case our regression
model is an autoregressive model. The simplest example is

yn,t = µ (t/n) + ρ (t/n) yn,t−1 + σ (t/n) zn,t,

in which case Xn,t = (1, yn,t−1)
′

is non-stationary when the functions µ (·) and ρ (·)
are non-constant. Under the restriction that supτ∈[0,1] |ρ (τ)| < 1, Xn,t is however still
mixing, c.f. Kristensen (2011), and our theoretical results apply.

To state our assumptions and results, we introduce some additional notation. Let Λn,t
denote the following moment matrix

Λn,t =

[
Λn,11,t Λn,12,t

Λn,21,t Λn,22,t

]
∈ Rm×m, (3.14)

where Λn,kl,t ≡ E
[
Xn,k,tX

′
n,l,t

]
∈ Rmk×ml for k, l ∈ {1, 2}. We will impose certain

smoothness conditions on the parameters of interest, and for that purpose introduce the
following function space of r times continuously differentiable functions,

Cr [0, 1] = {f : [0, 1] 7→ R|f is r times differentiable} .

We then impose the following assumptions conditional on β (·) and σ2 (·):

A.1 For all n ≥ 1: The joint sequence {Zn,t = (Xn,t, zn,t) : i = 1, ..., n} satisfies

sup
n≥1

sup
t≤n

E
[
‖Zn,t‖4+δ

]
<∞

for some δ > 0; it is β-mixing where the mixing coefficients,

bn (i) = sup
−n≤k≤n

sup
A∈Fk

n,−∞,B∈F∞n,n+i

|P (A ∩B)− P (A)P (B)| ,

satisfy bn (i) ≤ b (i), n ≥ 1, and the dominating sequence b (i) is geometrically
decreasing.

A.2 The errors zn,t is a MGD w.r.t. Fn,t = F (Xn,s, zn,s−1|s ≤ t) with E
[
z2
n,t|Xn,t

]
= 1

and λn,t := E[
(
z2
n,t − 1

)2
] <∞.

A.3 The sequences βn,t, Λn,t and σ2
n,t satisfy βn,t = β (t/n)+o (1), Λn,t = Λ (t/n)+o (1),

σ2
n,t = σ2 (t/n)+o (1) for some functions β (·), Λ (·) and σ2 (·). The elements of these

functions are in Cr [0, 1] for some r ≥ 1. For all τ ∈ [0, 1], Λ (τ) > 0 and σ2 (τ) > 0.
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10 D. Kristensen

A.4 The weighting functions ŵ (·) and Ω̂ (·) satisfy:

(i) sup
a≤τ≤1−a

|ŵ (τ)− w (τ)| = OP

(
n1/4

)
,

(ii) sup
a≤τ≤1−a

|ŵ (τ)− w (τ)| = OP

(
h1/2

)
,

(iii) sup
a≤τ≤1−a

∣∣∣Ω̂ (τ)− Ω (τ)
∣∣∣ = OP

(
h1/2

)
,

where w (·) and Ω (·) are continuous functions.

A.5 The covariance matrices Φw and Σw as defined below are non-singular:

Σw : = lim
n→∞

1

n

n∑
t=1

wtΛ11|2,t =

∫ 1

0

w (τ) Λ11|2 (τ) dτ,

Φw : = lim
n→∞

1

n

n∑
t=1

w2
t σ

2
tΛ11|2,t =

∫ 1

0

w2 (τ)σ2 (τ) Λ11|2 (τ) dτ

where Λ11|2,t ≡ Λ11,t − Λ12,tΛ
−1
22,tΛ21,t with Λkl,t, k, l = 1, 2, defined in eq. (3.14).

A.6 The ”semiparametric” bandwidth b satisfies nb2r → 0, log2 (n) /
(
nb2
)
→ 0 and

n1−εb7/4 → ∞ for some ε > 0. The trimming parameter a > 0 satisfies a/b → 0
and
√
na→ 0.

The assumption of β-mixing in (A.1) is not required for all our results, but is imposed
throughout for simplicity. Some results hold under the weaker assumption of α-mixing,
but for the semiparametric estimation and testing, we will rely on U -statistics results
that only exist for β-mixing sequences. The assumption of geometrically decaying mixing
coefficients is only imposed to make proofs and remaining conditions simpler, and could
most likely be weakened. We do not assume stationarity in (A.1) and as such allow for
situations where Xn,t contains structural breaks; in particular, our framework includes
unstable autoregressive models where Xn,t contains lagged values of yn,t. In a time-
varying AR(q)-model where Xn,t = (yn,t−1, ..., yn,t−q)

′
, (A.1) is satisfied if the roots of

the characteristic polynomial θ (τ, z) = β1 (τ) z+ ...+βq (τ) zq are inside of the unit circle
for all τ ∈ [0, 1] and the errors zn,t are i.i.d. with a continuous distribution. Sufficient
conditions for (A.1) when Xn,t solves a nonlinear model can be found in Kristensen
(2011) and Subba Rao (2006).

Assumption (A.2) rules out correlated errors and heteroskedasticity on the form σ2
t =

σ2 (Xt). We conjecture that our results can be extended to allow for autocorrelation
and more general heteroskedasticity, but our asymptotic results and their proofs would
become more complicated and burdensome, see e.g. Cai (2007) for some results in this
direction.

The smoothness conditions imposed on the coefficients in (A.3) rule out jumps in
the coefficients. Following the arguments in Gijbels (2003), it is easily shown that if
β (τ) jumps at some τ̄ such that β (τ̄−) 6= β (τ̄+), then the proposed estimator is biased
asymptotically at this point, E [β (τ̄)] = (β (τ̄−) + β (τ̄+))/2 + o (1) as h → 0. However,
as discussed in the conclusion, by suitable adjustments of the estimators, jumps can be
consistently estimated. Moreover, we expect that the asymptotic results for the semi-
parametric estimators and the test statistics remain valid when a finite number of jumps
are present since these happen with measure zero. The assumption of r times differen-
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Nonparametric Detection of Structural Change 11

tiability is assumed for technical convenience, and could most likely be weakened to the
assumption that the functions are Lipschitz; see Kristensen (2010).

The two conditions on the estimated weighting functions imposed in (A.4) are made
to ensure that their estimation errors do not affect the properties of the parametric
estimators and test statistics. The first condition, (A.4.i), is used when deriving the
asymptotics of β̃, while (A.4.ii)-(A.4.iii) are needed in the analysis of the test statistics.
The two conditions are satisfied in the case ŵ (τ) = σ̂−2 (τ) since this satisfies σ̂2 (τ) =
σ2 (τ) + OP (hr) + OP (

√
log (n) / (nh)) uniformly on τ ∈ (1, a− 1), c.f., Fan and Yao

(1998).
The rank condition in Assumption (A.5) is employed to ensure identification and

asymptotic normality of β1 under H0. It is similar to the condition imposed for identifi-
cation and estimation of partially linear models in Robinson (1988).

Restrictions on the bandwidth and trimming sequences used for the semiparametric
estimators are imposed in (A.6). In general, undersmoothing is required (that is, b should
be chosen to converge faster than the optimal bandwidth minimizing MSE of the non-
parametric estimators). The restrictions on the trimming parameter are on the other
hand quite weak since this is only used to handle boundary issues.

Finally, we need to impose some regularity conditions on the kernel K:

K(r) There existsB,L <∞ such that either (i)K (u) = 0 for ‖u‖ > L and |K (u)−K (u′)| ≤
B ‖u− u′‖, or (ii) K (u) is differentiable with |∂K (u) /∂u| ≤ B and, for some ν > 1,
|∂K (u) /∂u| ≤ B ‖u‖−ν for ‖u‖ ≥ L. Also, |K (u)| ≤ B ‖u‖−ν for ‖u‖ ≥ L. For
some r ≥ 2:

∫
RK (z) dz = 1,

∫
R z

iK (z) dz = 0, i = 1, ..., r−1, and
∫
R |z|

r
K (z) dz <

∞.

The assumptions are satisfied by most kernels. In particular, for r = 2 the Gaussian
kernel satisfies the condition. The order of the kernel, r ≥ 2, is used in conjunction with
the smoothness conditions imposed on the relevant functions in (A.3) to control the bias
of the kernel estimators which will be of order O (hr). Some of our results will rely on
higher-order kernels with r > 2 in order for the bias of the kernel estimators to vanish at
a sufficiently fast rate. However, we believe higher-order kernels are only for needed for
technical reasons in the theoretical proofs, and recommend the use of standard second
order kernels in practice.

The first result states the pointwise asymptotic distribution of the unrestricted non-
parametric estimators:

Theorem 3.1. Assume that (A.1)-(A.3) hold. Then, for any τ ∈ (0, 1), as h → 0,
nh→∞ and nh1+2r → 0:

√
nh(β̂ (τ)− β (τ))→d N

(
0, ‖K‖2 Λ−1 (τ)σ2 (τ)

)
,

where Λ (τ) is defined in (A.3) and ‖K‖2 =
∫
K2 (z) dz.

Theorem 3.1 is a generalization of the result in Robinson (1989, Eq. 15.12) to allow
for time varying volatility and non-stationary regressors. In particular, we allow Xt to
include lagged values of yt. The result tells us how pointwise confidence bands of the
regression coefficients can be computed. A simple estimator of the asymptotic variance
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12 D. Kristensen

can be obtained by substituting in σ̂2 (τ) together with:

Λ̂ (τ) =

n∑
i=1

Kh (t/n− τ)XtX
′
t. (3.15)

The confidence bands can be used as inputs in the initial analysis of whether there is any
time variation in the individual elements of β (τ) and σ2 (τ). This can, for example, be
done by plotting the individual estimators as functions of time together with confidence
bands. This eyeballing test should of course be followed by the proposed formal statistical
tests which are analyzed below.

The asymptotic distributional result in Theorem 3.1 is standard for nonparametric
estimators. It reveals an important advantage of our estimation and testing strategy over
alternative methods as proposed in Gao et al (2008) and Hidalgo (1995), namely that
there is no curse of dimensionality present here: The convergence rates of the estimators
remain

√
nh irrespectively of the number of regressors included since we only smooth

over the time variable t. On the other hand, our estimators will be inconsistent if the
regression model is not linear in Xt.

The next theorem states the asymptotic distribution of the estimators under H0:

Theorem 3.2. Assume that (A.1)-(A.4,i) and (A.5)-(A.6) hold. Under H0:
√
n(β̃w1 − β1)→d N

(
0,Σ−1

w ΦwΣ−1
w

)
, (3.16)

where Φw and Σw are given in (A.5). Moreover, for any τ ∈ (0, 1), as h → 0, nh → ∞
and nh1+2r → 0:

√
nh(β̃2 (τ)− β2 (τ))→d N

(
0, ‖K‖2 Λ−1

22 (τ)σ2 (τ)
)
, (3.17)

The above theorem is essentially a time-series version of the asymptotic result obtained
for semi-varying coefficient models in Fan and Huang (2005) where in addition we allow
for time-varying volatility. The theorem and its proof reveals that our estimator is first-
order asymptotically equivalent to the weighted least-squares estimator of the infeasible
regression ȳt = β′1X̄1,t + εt, where ȳt = yt −M ′y,tX2,t, X̄1,t := X1,t −M ′X1,t

X2,t, and

MA,t is the asymptotic limit of M̂A,t defined in eq. (2.8). The asymptotic variance terms
can be consistently estimated by

Φ̂w =
1

n

n∑
t=1

It (a) ŵtX̂1,tX̂
′
1,t, Σ̂w =

1

n

n∑
t=1

It (a) ŵtX̂1,tX̂1,tε̃
2
t .

The asymptotic variance of β̃2 (τ) can be estimated using estimators similar to those
given in eq. (2.7).

When the weighting function is chosen as ŵ (τ) = σ̂−2 (τ), we see that

Φw = Σw =

∫ 1

0

σ−2 (τ) Λ11|2 (τ) dτ,

in which case
√
n(β̃w1 −β1)→d N

(
0,Σ−1

w

)
. We conjecture that for this choice of weighting

function, our estimator is semiparametrically efficient. The theory on semiparametric
efficiency in time series models is currently not fully developed, and so we are not able
to verify this conjecture in the general case. Instead, we restrict ourselves to the case
where (X, z) are i.i.d.: Treating τt := t/n as i.i.d. draws from a uniform distribution

c© Royal Economic Society 2012



Nonparametric Detection of Structural Change 13

which is independent of (Xt, zt), our model then fits into the framework of Chamberlain
(1992) with his moment condition here being on the form ρ (y,X, β1, β2 (τ)) := y−β′1X1−
β2 (τ)X2. We can now apply the results of Chamberlain (1992) stating that the efficiency
bound is

I0 = E
[
E
(
D′0Σ−1

0 D0|τ
)
− E

(
D′0Σ−1

0 H0|τ
)
E
(
H ′0Σ−1

0 H0|τ
)−1

E
(
H ′0Σ−1

0 D0|τ
)]
,

where, in our case,

D0 (X, τ) = E

[
∂ρ (y,X, β1, β2 (τ))

∂β1

∣∣∣∣X, τ] = −X ′1,

Σ0 (X, τ) = E
[
ρ2 (y, x, β1, β2 (τ))

∣∣X, τ] = σ2 (τ) ,

H0 (X, τ) = E

[
∂ρ (y, x, β1, β2 (τ))

∂β2

∣∣∣∣X, τ] = −X ′2.

Substituting these into the expression of I0, we obtain that I0 =
∫
σ−2 (τ) Λ11|2 (τ) dτ ,

which matches up with Σw when the weighting function satisfies w = σ−2. As such our
estimator extends the semiparametric estimator and results of Fan and Huang (2005)
to allow for heteroskedastic errors and time series dependence: They show that the un-
weighted version (wt = 1) of our estimator is semiparametric efficient in a cross-sectional
setting when errors are homoskedastic.

Next, we analyze the asymptotic properties of the two test statistics, Fn and W1,n.
First, consider the test statistic Fn:

Theorem 3.3. Assume that (A.1)-(A.6) hold and: nh2r+1 → 0, nh3/2/ log (n)
2 → ∞,

a/h→ 0 and
√
ha→ 0. Then under H0,

Fn − µFn√
νFn

→d N (0, 1) ,

where, with (K ∗K) (z) =
∫
K (v)K (z + v) dv,

µFn =
m1

[
K (0)− 1

2κ2

]
h

, νFn =
2m1

h

∫ 1

0
w2 (v)σ4 (v) dv{∫ 1

0
w (τ)σ2 (τ) dτ

}2 ×
∥∥K − 1

2 (K ∗K)
∥∥2
.

The asymptotic distribution of the normalized test statistic, Fn, follows a standard
Normal distribution under the null hypothesis. The distribution is similar to the ones
found for the Generalized Likelihood Ratio (GLR) test statistics in Fan et al. (2001). In

particular, using the notation that rλn
a∼ χ2

bn
for a random sequence λn that satisfies

(rλn − bn) /
√

2bn →d N (0, 1), we observe that the above theoretical result also can be

written as rFKFn
a∼ χ2

rFKµ
F
n

, where

rFK :=
K (0)− 1

2κ2∫ [
K (z)− 1

2 (K ∗K) (z)
]2
dz

{∫ 1

0
w (τ)σ2 (τ) dτ

}2

∫ 1

0
w2 (τ)σ4 (v) dτ

.

However, it is important to note here that the distribution does depend on nuisance
parameters in general, except in the case where the weighting function is chosen as

w (τ) = σ−2 (τ), in which case rFK :=
(
K (0)− 1

2κ2

)
/
∫ [
K (z)− 1

2 (K ∗K) (z)
]2
dz. So

in general, one has to obtain a consistent estimator of the volatility process in order for
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14 D. Kristensen

the test statistic to enjoy the so-called Wilks phenomenon. This is not special to the
time series setting, and is also the case in the cross-sectional setting where Fan et al.
(2001) show that only in the case of homoskedastic errors (in which case one can choose
w (τ) = 1) will their GLR test be nuisance parameter free.

For the power analysis, consider the following class of local alternatives:HA,n : β1,n (τ) =
β1 + gn (τ), where gn (τ) is a smooth function. For simplicity, assume that the distribu-
tion of Xt does not change under HA,n; this rules out autoregressive models, but we
conjecture that our results extend to this type of regression models. By inspection of Fan
et al (2001, Proof of Theorem 7), it is easily seen that their arguments can be extended
to a time series setting in the same way that Theorem 3.3 extends Fan et al (2001, The-
orem 6). We are therefore able to conclude that the GLR test statistic is asymptotically
optimal in the sense that it can detect the above class of local alternatives with optimal
rate.

Next, we turn to the minimum-distance statistic. For this, the following asymptotic
distributional result holds:

Theorem 3.4. Assume that (A.1)-(A.6) hold and: nh2r+1 → 0, nh3/2/ log (n)
2 → ∞,

a/h→ 0 and
√
ha→ 0. Then under H0,

Wn − µWn√
νWn

d→ N (0, 1) , (3.18)

where

µWn =
κ2

h

∫ 1

0

σ2 (τ) tr
{

Λ−1
11 (τ) Ω (τ)

}
dτ,

νWn =
2

h

∫
σ4 (τ) tr

{
Ω (τ) Λ−1

11 (τ) Ω (τ) Λ−1
11 (τ)

}
dτ × ‖K ∗K‖2

As with the GLR-statistic, we can express the above result on the form rWKWn
a∼

χ2
rWK µW

n
, where

rWK :=
κ2

‖K ∗K‖2

{∫ 1

0
σ2 (τ) tr

{
Λ−1

11 (τ) Ω (τ)
}
dτ
}2

∫
σ4 (τ) tr

{
Ω (τ) Λ−1

11 (τ) Ω (τ) Λ−1
11 (τ)

}
dτ
.

Again, the asymptotic distribution of the MD-statistic depends in general on nuisance
parameters. However, by choosing the weighting matrix Ωt as Ωt = Λ11,tσ

−2
t , we obtain

rWK := m1κ2/ ‖K ∗K‖2, and the limiting distribution is nuisance parameter free. In
comparison to Fn, the location and scale sequences associated with Wn are different. For
general choices of the weighting functions wt and Ωt, it is not clear which of the two tests
dominates. However, in the case where w (τ) = σ−2 (τ) and Ωt = Λ11,tσ

−2
t , it can be

shown by following the arguments in Chen and Hong (2012) that Wn is asymptotically
more efficient in the sense of Pitmann; see also Hong and Lee (2008). We conjecture that
the minimum-distance statistic will share the optimality of the GLR statistic for local
alternatives.
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4. SOME EXTENSIONS

We here extend the above results to two additional hypotheses which should be of general
interest: First, we consider the situation where the researcher has tested and accepted
the null that a subset of the coefficients are constant, and then wishes to test for time
invariance of a set of the remaining (potentially) time-varying coefficients. This is for
example of relevance in order to develop a recursive procedure testing the constancy of
each coefficient one at a time. Second, we analyze the problem of testing a parametric
specification of (some of the) time-varying parameters against a nonparametric alter-
native. This is of interest if one has rejected the null of constant parameters, and now
wishes to find a parsimonious parametric specification of the time-varying parameters.

We start out by assuming that the following (maintained) model is correct:

yt = α′Wt + γ′1,tZ1,t + γ′2,tZ2,t + σtzt. (4.19)

We then wish to test the following null hypothesis against this model, H1 : γ1,t = γ1. We
proceed as in the testing of H0: We first obtain estimators under null and alternative,
and the compare the estimators through either an F or a Wald-type test. The model
under the alternative can be written on the form of the model under H0 with X1,t = Wt,

X2,t =
(
Z ′1,t, Z

′
2,t

)′
, β1 = α and β2,t =

(
γ′1,t, γ

′
2,t

)′
. Thus, the estimators under the

alternative are given by:

α̂w =

[
n∑
t=1

It (a) ŵtŴtŴ
′
Z,t

]−1 n∑
t=1

It (a) ŵtŴtŷ
′
t, γ̂t = M̂h,t (y)− M̂h,t (W )

′
α̂, (4.20)

where Ât = At − M̂ ′A,tZt, and

M̂A,t =

[
n∑
s=1

Kb (s/n− t/n)ZsZ
′
s

]−1 [ n∑
s=1

Kb (s/n− t/n)ZsA
′
s

]
.

Similarly, under H1, with X1,t :=
(
W ′t , Z

′
1,t

)
, X2,t := Z2,t, β1 := (α, γ1) and β2,t := γ2,t,

we recognize the model as being on the same form as the one under H0. Thus, the
estimators, which we denote α̃w, γ̃w1 and γ̃2,t, can again be written on the form of the
estimators analyzed in the previous section. It now follows directly from Theorem 3.2
that both α̂, α̃ and γ̃1 are

√
n-asymptotically normally distributed under H1.

To test H1 against the maintained hypothesis, we proceed as before: Letting ε̂t and
ε̃t denoting the residuals under the alternative and under the null, we can compute
(weighted) Sum of Squared Residuals, and use these to construct an F -test, which we de-
note F1,n, while the Wald test is defined as W1,n =

∑n
t=1 It (a) (γ̃w1 − γ̂1,t)

′
Ω̂t (γ̃w1 − γ̂1,t).

By using the exact same arguments as in the proofs of Theorems 3.3-3.4, we now obtain
that under the same conditions as stated in these theorems:

F1,n − µF1,n√
νF1,n

→d N (0, 1) ,
W1,n − µW1,n√

νW1,n

→d N (0, 1) (4.21)

where µF1,n, νFn , µW1,n and νW1,n are on the same form as the corresponding location and
scale parameters in Theorems 3.3-3.4 except that m1 should be replaced by the dimension
of γ1.

To develop parametric tests of the functional form of varying coefficients, we now
wish to test H2 : γ1,t = γ1 (t/n; θ) against the maintained hypothesis that eq. (4.19)
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16 D. Kristensen

holds and now. The parametric specification γ1 (t/n; θ) could for example be a structural
break specification or a smooth transition model. Assuming that an estimator of θ, θ̃, is
available under H2,1 such that

√
n(γ1(τ ; θ̃)−γ1 (τ)) = OP (1) uniformly in τ ∈ [0, 1], one

can easily show that the corresponding F - and Wald test statistics of H2 still satisfy eq.
(4.21).

5. IMPLEMENTATION

In the previous sections, we analyzed the asymptotic properties of the proposed estima-
tors and tests. In particular, for these results to hold the bandwidths have to converge at
suitable rates as sample size grows. The stated conditions and results are however silent
about the appropriate choice of the bandwidths in finite samples, and, as is well-known in
the literature, kernel-based estimators and tests tend to be quite sensitive to the chosen
bandwidths.

There are two bandwidth selection issues involved in the estimation and testing. We
have to choose one bandwidth, h, for the point estimates of the nonparametric com-
ponents, and a different bandwidth, b, for the parametric component. The use of two
different bandwidths are necessary because in our theoretical framework the bandwidth
selection rules differ depending on whether the interest lies in the estimation of the
non- or fully parametric component. In particular, the asymptotic results suggest that
for parametric estimators undersmoothing is necessary; that is, b should in general be
chosen smaller than h.

While there is a large literature on bandwidth selection for fully nonparametric kernel
estimators, there has been done little on how to choose bandwidths in semiparametric
estimation problems since the impact of the bandwidth in the latter case is a lot more
difficult to analyze. Similarly, very little work has been done on bandwidth selection
for non- and semiparametric testing. Our proposed solution to this problem is to first
determine the bandwidth h that minimize the (an estimated version of) mean-square
error of the nonparametric estimators, and then choose b by adjusting h in a suitable
manner. We have no theoretical justification for the proposed selection rule for b, but our
simulation study reveals that it does an acceptable job. We focus on global bandwidth
selection procedures. In situations where the type of time-variation in the parameters
change over the sample, local bandwidth selection rules will probably perform better. The
procedures suggested below are straightforward to adjust to allow for local bandwidths
if that is of interest.

To estimate h, we employ a plug-in method. We here focus on the estimation of βt
under the alternative; the following arguments are easily adapted to the case of estimation
of β2,t under the null. First, we note that from the proof of Theorem 3.1, we find that
the bias and variance when a second order kernel (r = 2) is employed are given by

Bias(β̂ (τ)) = h2b (τ) + o
(
h2
)

with b (τ) := µ2β
(2) (τ) , (5.22)

and

Var(β̂ (τ)) =
1

nh
v (τ) + o (1/ (Th)) with v (τ) = ‖K‖2 Λ−1 (τ)σ2 (τ) , (5.23)

1It is outside of the scope of this paper to analyze this more general semiparametric estimation problem,
but we conjecture that the natural two-step estimator, obtained in the same fashion as the semiparametric

estimator of the constant specifiction, β̃w, could be shown to be
√
n-consistent by following the proof

strategy used for Theorem 3.2.
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where µ2 :=
∫
K (z) z2dz. Thus, the optimal bandwidth that minimizes the integrated

MSE is

h∗ =

[
||V ||
||B||2

]1/5

n−1/5, (5.24)

where V =
∫
v (τ) dτ and B =

∫
b (τ) dτ are the integrated time-varying variance and

bias components. In order to make the above bandwidth selection rule operational, we
propose to obtain preliminary estimates of these through the following two-step method:2

Step 1: Assume that Λt = Λ and σt = σ are constant, and βt = a0 + a1t + ... + apt
p

is a polynomial. We then obtain parametric least-squares estimates Λ̂, σ̂2 and β̄t =

ā0 + ā1t + ... + āpt
p. Compute V̂1 = ‖K‖2 Λ̂−1 ⊗ σ̂2 and B̂1 = µ2

1
n

∑n
t=1 β̄

(2)
t ,where

β̄
(2)
t = 2ā2 + 6ā3t + ... + p (p− 1) āpt

p−2. Then, using these estimates we compute the
first-pass bandwidth

ĥ1 =

[
||V̂1||
||B̂1||2

]1/5

× n−1/5.

Step 2: Given h1, compute the kernel estimators β̂t = Λ̂−1
t n−1

∑n
s=1Kĥ1

((s− t) /n)Xsys,

where Λ̂t and σ̂t are computed as in eqs. (2.7) and (3.15) with h = ĥ1. We use these to

obtain V̂2 = ‖K‖2 1
n

∑n
t=1 Λ̂−1

t ⊗ σ̂2
t and B̂2 = µ2

1
n

∑n
t=1 β̂

(2)
t , where β̂

(2)
t is the second

derivative of the kernel estimator with respect to t. These are in turn used to obtain a
second-pass bandwidth:

ĥ2 =

[
||V̂2||
||B̂2||2

]1/5

× n−1/5. (5.25)

One could alternatively use cross-validation (CV) procedures to choose the bandwidth.
These procedures are completely data driven and, in general, yield consistent estimates
of the optimal bandwidth. However, it is well-known that cross-validated bandwidths
may exhibit very inferior asymptotic and practical performance even in a cross-sectional
setting (see, for example, Härdle, Hall, and Marron, 1988). This problem is further en-
hanced when CV procedures are used on time-series data as found in various studies
(Hart, 1991; Opsomer, Wang and Yang, 2001).

The ”semiparametric” bandwidth b should ideally be chosen to minimize the mean-
squared error E[||β̃w1 −β1||2]. Unfortunately, this would require a higher-order expansion
of the MSE since the leading variance term does not depend on b. This is a general issue
with semiparametric estimators and outside of the scope of this paper. We instead simply
propose to scale down the nonparametric bandwidth h appropriately, b = ĥ2×n−1/(1+2r)

with r = 2 corresponding to a standard kernel being the leading choice.
In small and moderate sample sizes, the asymptotic distributions of estimators and test

statistics derived in the previous section may deliver a poor finite-sample approximation.
To improve on the finite-sample inference, we therefore propose to use a Wild bootstrap
procedure that we expect will yield better confidence bands for the time-varying coeffi-
cients and critical values for the test statistic. Let β̆t and σ̆t be (either nonparametric or

2Ruppert, Sheather and Wand (1995) discuss in detail how this can done in a standard kernel regression
framework.
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semiparametric) estimators of the regression coefficients and volatility (under the rele-
vant hypothesis). We then proceed as in Franke, Kreiss and Mammen (2002) and propose

the following bootstrap procedure: (i) Compute residuals ε̆t = yt− β̆′tXt, t = 1, ..., n; (ii)

resample the dependent variable by y∗t = β̆′tXt + ε∗t , t = 1, ..., n, where ε∗t = ε̆tη
∗
t and

η∗t are i.i.d. (0, 1) satisfying E∗[|η∗t |
4
] <∞; (iii) compute estimators and/or test statistic

given the bootstrap sample (y∗t , Xt), t = 1, ..., n; (iv) repeat Steps (ii)-(iii), B ≥ 1 times,
and use the empirical distributions to obtain confidence intervals and/or critical values.

While it is outside of the scope to establish formally the validity of this bootstrap
procedure, we expect that consistency can be shown along the lines of Franke et al (2002),
You and Chen (2006), and Li (2005) for the estimators and test statistics respectively.

6. A SIMULATION STUDY

In this section, we examine the finite-sample performances of our estimators and test
statistics. We consider a bivariate model,

yt = β1,tX1,t−1 + β2,tX2,t−2 + σtzt,

where Xt solves a VAR(2), Xt = AXt−1 + ηt with A chosen to be in the stationary
range. We are interested in testing the hypothesis H0 : β1,t = β1, and will investigate
both size and power of our tests. The main goal is to demonstrate that the developed
tools indeed can detect and track time-varying parameters in most cases and are com-
petitive with standard, parametric methods. We investigate the performance under four
different DGP’s for the time-varying parameters: We first consider the scenario where the
coefficients either follow Random Walks (RW’s) or a Smooth Transitions (ST’s). Next,
we compare the performance of our methods with parametric tests when the coefficients
either exhibit breaks or are smooth. Importantly, the RW and break specifications are
not covered by our asymptotic theory since the parameter paths in these cases are dis-
continuous and so one could worry that the nonparametric estimators and tests would
perform poorly. As we shall see, however, they are still able to detect and the time vari-
ation and are competitive with parametric structural break tests. In fact, under smooth
alternatives, our tests clearly outperform parametric structural break tests.

6.1. Performance under RW and ST Specifications

We here examine the performance of the proposed estimators and tests under the follow-
ing two specifications:

RW : β2,t = β2,t−1 + ηβ,t, ηβ,t ∼ i.i.d.N
(
0, v2

β

)
, β2,0 = 1;

ST : β2,t = β2,0 + αΦ

(
t/n− µ

σ

)
, Φ (·) = cdf of N (0, 1) ,

where vβ = 0.05, α = 0.5, and µ = σ = 1. This allows us to investigate how smoothness of
the parameter trajectories affect the estimators and tests. The volatility DGP is specified
as a stochastic volatility model,

log σ2
t = log σ2

t−1 + ησ,t, ησ,t ∼ i.i.d.N
(
0, v2

σ

)
, log σ2

0 = 0.1,

where vσ = 0.05. Finally, throughout we let the rescaled errors of the regression model
be i.i.d. normally distributed, zt ∼ N (0, 1). We note that the RW specification is ruled
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Figure 1. Simulation study, performance of estimator when β2,t follows a random walk,
n = 250 and 1000.

out by Assumption A.3 and so the formal asymptotic results for the estimators and test
statistics do not apply to this case. It is worth pointing out though that under the RW
specification, β2,[τn]/

√
n weakly converge towards a Brownian motion whose trajectories

are almost surely continuous, and so, in large samples, the RW specification satisfies A.3.
Similarly for the RW specification of the log-volatility.

For the implementation of estimators and tests, we choose K as a Gaussian kernel
and the bandwidths h and b according to the plug-in rule described in Section 5. The
semiparametric estimators and test statistics are computed with both ŵt = 1 and ŵt =
σ̂−2
t , and their critical values are evaluated using the Wild bootstrap outlined in Section 5.

We consider sample sizes of n = 250, 500 and 1000. In order to compare the performance
across different sample sizes and simulations, we compute one (random) trajectory of β2,t

and σ2
t and keep those fixed throughout. This mimicks the theoretical results in the paper

which are developed conditional on the particular trajectories of the varying coefficients.
We first investigate the performance when the null is true such that β1,t is constant.

Figures 1 and 2 report the performance of the fully nonparametric estimators of β2,t, β̃2,t

given in eq. (2.10), under the RW and ST specifications. From Figure 1 we see that while
the estimator, by its nature, cannot completely track the discontinuous RW specification,
it still captures the overall structural change in the parameter quite precisely. It is also
worth noting that the estimator works well even for small sample sizes (n = 250) and
most of the improvement as the sample size grows is in terms of variance. Similar findings
are reported in Figure 2 where β2,t follows a smooth transition. The overall bias is
significantly smaller compared to Figure 1 though since the trajectory now is a smooth
function of time.

Table 1 reports biases, standard deviations and root-MSE’s (RMSE’s) of the un-
weighted (wt = 1) and weighted (wt = σ̃−2

t ) semiparametric estimators of β1. For com-
parison, we also report results for the infeasible OLS estimator which assumes knowledge
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Figure 2. Simulation study, performance of estimator when β2,t follows a smooth transi-
tion, n = 250 and 1000.

of β2,t and σt. As expected the infeasible estimator clearly dominates the two semipara-
metric estimators in finite samples. But, as the theory predicts, as sample size grows these
differences vanish. The semiparametric estimators are doing very well for all sample sizes
with small biases and variances. Moreover, as also predicted by theory, the weighted
version does better in terms of variance compared to the unweighted one in all cases,
except for the ST specification with n = 1000 . We have no good explanation for why
the unweighted estimator performs best in this scenario.

β2,t RW β2,t ST
n Infeasible Unweighted Weighted Infeasible Unweighted. Weighted

-0.93 -0.64 -1.96 -0.87 -1.65 -1.50
250 28.06 46.61 41.04 29.50 42.60 31.48

28.07 46.62 41.08 29.51 42.65 31.53
0.12 0.57 -0.57 -0.21 -0.88 -0.91

500 19.67 31.46 27.57 20.52 30.10 24.38
19.67 31.47 27.58 20.52 30.12 24.39
0.06 -0.70 -0.52 0.05 -0.31 -0.65

1000 14.40 22.32 18.97 14.89 20.30 21.48
14.40 22.33 18.98 14.89 20.30 21.48

Table 1: Bias, standard deviation and RMSE of semiparametric estimators.
Notes: In each cell, bias, standard deviation and RMSE are reported.

All numbers have been scaled up by a factor 103.

Finally, we consider how the tests perform. In Table 2, we report sizes for the bootstrap
tests based on weighted and unweighted statistics respectively. As we see, in terms of
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size, none of the two tests dominate the other with both having good size properties. As
expected, the size in general improves as sample size grows. It is also noteworthy, that
size is better for the random walk model compared to the smooth transition one; we have
no explanation for this.

To examine the power of the test, we implement the tests with both β1,t and β2,t

are either random walks or smooth transitions. In Table 3, the rejection probabilites
of the two tests are reported for the two different specification. We see that they have
good power for moderate and large samples with the rejection rates increasing with
sample size. As expected, the weighted test has significantly better power compared to
the unweighted test. The power depends on the underlying data-generating mechanism
and the tests do better at detecting the random walk specification despite the fact that
the non- and semiparametric estimators are better at tracking the parameters under the
smooth transition DGP. This is probably due to the fact that the realized variation of
β1,t in the random walk specification is larger (between -1 and 2) compared to the one
of the smooth transition specification (between 0 and 0.5).

To conclude, the non- and semiparametric estimators perform well for both small,
moderate and large sample sizes with small biases and variances. The tests also show
good performance with precise size and good power properties. In general, the weighted
versions outperforms the unweighted ones which is in accordance with theory.

β2,t random walk β2,t smooth transition
n p = 1% p = 5% p = 10% p = 1% p = 5% p = 10%
250 1.4 5.9 8.4 2.2 7.7 13.2

1.9 4.8 6.9 2.0 7.4 15.1
500 1.3 4.8 8.6 2.3 5.5 10.7

1.2 4.1 8.1 1.8 5.8 10.9
1000 1.1 4.7 9.0 1.4 5.5 11.3

1.0 4.1 9.7 1.3 5.4 11.2

Table 2: Size of nonparametric F test using weighted and unweighted statistics.
Note: In each cell, the top and bottom number is size

of weighted and unweighted test respectively.

β1,t and β2,t random walk β1,t and β2,t smooth transition
n p = 1% p = 5% p = 10% p = 1% p = 5% p = 10%
250 35.8 48.0 59.4 26.6 34.1 43.5

30.2 44.8 56.4 20.8 27.4 35.7
500 51.0 58.7 66.1 32.9 42.6 55.1

44.9 50.3 59.8 25.6 33.2 48.4
1000 69.0 77.5 83.2 49.1 66.7 75.3

57.6 58.7 70.7 38.3 54.3 65.8

Table 3: Power of nonparametric F test using weighted and unweighted statistics.
Note: In each cell, the top and bottom number is power

of weighted and unweighted test respectively.
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Figure 3. Simulation study, performance of β̃2 (τ) when β2,t follows the SB specification,
n = 1000.

6.2. Comparison with Alternative Tests

The purpose of this part of the simulation study is to compare the size and power of
our tests with those of parametric structural break (SB) test and the CUSUM test. We
do this under the following two scenarios, where either the change is discontinuous or
smooth:

SB : β1 (τ) = −0.5× [3τ ] + 2, β2 (τ) = −0.9× [3τ ] + 4,

SS : β1 (τ) = 16× exp

(
− (τ − 1/2)

2

200

)
+ 2, β2,t = 20× exp

(
− (τ − 1/2)

2

200

)
+ 4,

where [z] denotes the nearest integer smaller than z. Since standard structural break
tests do not accommodate for changing volatility, we here set σt = σ constant.

We first examine how our semiparametric estimator of β1 and nonparametric estimator
of β2 (τ) are affected by the discontinuities in β2 (τ) under the SB specification when
H0 : β1,t = β1 is true and n = 1000 (similar results were obtained for n = 250 and 500).

In Figure 3, we see that the estimator β̃2 (τ) is biased at the jump points but is still
able to track the parameter paths fairly well. Moreover, the semiparametric estimator
of β1, β̃w1 , does surprisingly well with a bias of 0.23× 10−3 and a standard deviation of
16.99 × 10−3 which are comparable with the results reported in Table 1. We conclude
that the semi-nonparametric estimators perform well even in the presence of jumps.

Next, we compare our nonparametric test with parametric structural break (SB) tests.
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We focus on the null of both coefficients being constant, H0 : β1,t = β1 and β2,t = β2,
since the implementation of SB tests for partially time-varying coefficients can be quite
delicate. Under the alternative, both β1,t and β2,t follows SB specifications. As noted
earlier, our estimators are in this case inconsistent around the break points. At the same
time, the SB specification falls within the framework of the structural break tests. Taking
these two features together, we would expect the structural break tests to outperform
our test. Table 3 and 4 report size and power of our tests relative to the supF test of
Andrews (1993), the expF test of Andrews and Ploberger (1994) and the CUSUM test.
First, in terms of size, all tests are comparable. Second, the power performance of the
structural break tests is very good, but so is the one of our nonparametric tests which
is only lagging slightly behind the parametric one. In contrast, the CUSUM test does a
poor job; this is not surprising since it is well-known that the CUSUM test is only able
to detect changes in the intercept, c.f. Ploberger and Krämer (1992). In conclusion, even
under correct specification, our nonparametric test is competitive with SB tests, while
CUSUM tests are not recommended.

supF expF CUSUM nonpar F
n 1000 500 250 1000 500 250 1000 500 250 1000 500 250

p = 1% 1 1.8 3.1 1.1 1.9 2.6 1.1 1.3 1.7 1.3 1.5 1.9
p = 5% 5.6 7 8.9 5.1 7.5 8.8 4.4 5.9 7.2 6.1 6.1 6
p = 10% 11.9 13.2 14.6 10.8 13.1 13.5 7.9 10.2 12.9 11.1 10.9 10.5

Table 3: Size comparison of tests under SB specification

supF expF CUSUM nonpar F
n 1000 500 250 1000 500 250 1000 500 250 1000 500 250

p = 1% 27.2 14.4 9.4 29.6 15.7 8.7 0.9 1.1 1.5 29.2 12.5 6.2
p = 5% 50.5 32.1 21.3 55.8 33.9 24 4.1 5.3 6.7 51.4 30.3 16.9
p = 10% 63.9 43.7 31.5 68.5 46.2 35 8.3 10.5 13.7 65.2 42.1 29.4

Table 4: Power comparison of tests under SB Specification

Next, we consider the SS specification. Under the null, the DGP is the same as in the
SB case, and so the size results reported in Table 3 carry over to the SS specification.
Next, we consider the power performance. Here, in contrast to the SB specification, the
SS one favours our test since it is smooth and has a spiky shape. As is demonstrated
in a number of different studies on power comparisons of nonparametric and parametric
tests, the former are better at detecting spiky (high-frequency) alternatives (see Eubank
and LaRiccia, 1992). This is confirmed by the power results reported in Tables 5: The
power of the nonparametric F test is between 2-10 times better than the ones of the
parametric tests, and so clearly dominates when the time variation falls outside of the
SB framework.
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supF expF CUSUM nonpar F
n 1000 500 250 1000 500 250 1000 500 250 1000 500 250

p = 1% 8.5 5.9 4.1 8.8 5.4 3.6 2.1 2.5 3.3 86.4 43.3 14.8
p = 5% 26 16.8 11.5 27.3 17.8 12.4 5.4 9.2 11.9 95.4 68.8 36.4
p = 10% 40.3 26.9 20.6 44.6 27.8 21.3 10.8 15.4 20 97.6 79.7 49.8

Table 5: Power comparison of tests under SS specification

7. EMPIRICAL APPLICATIONS

We employ the nonparametric techniques developed in the previous sections to investi-
gate whether structural changes occurred in US productivity and the Eurodollar term
structure. For an application to Fama-French type factor models for stock returns, we
refer to Ang and Kristensen (2012).

7.1. US Productivity

Hansen (2001) analyzed structural changes in US productivity within the framework of
parametric structural break models. He found evidence of one significant break in 1992
with the possibility of two more breaks in 1963 and 1982 respectively. The aim here is to
see whether these findings are supported by the nonparametric estimators and tests. For
comparison, we use the same data set for US productivity as in Hansen (2001) and refer
to this paper for a more detailed description of data. Here, it suffices to say that the data
is monthly over the period of 1947 to 2001 giving us a total of n = 651 observations.

As in Hansen (2001), we model US productivity, yt, by a time-varying AR(k) model,

yt = µt +

k∑
i=1

ρi,tyt−i + σtzt.

We start out with k = 3 lags, and test for whether the 2nd and 3rd lags are significant
using the bootstrapped version of the GLR test; we accept the null of H0 : ρ2,t = ρ3,t = 0
at a 5 and 10% level with a p-value of 18.3%. In the following, we therefore maintain an
AR(1) model. For the AR(1) model, we examine how the fully nonparametric estimators
of µt and ρt = ρ1,t perform in comparison to the one- and three-breaks AR(1) models
estimated in Hansen (2001). In Figures 4-5, the nonparametric estimates of the parameter
trajectories are plotted together with corresponding structural break estimates when
allowing for one and three breaks, respectively. As an informal test of whether the two
parametric models are consistent with our nonparametric estimates, we have also included
pointwise 95% confidence intervals for the nonparametric estimators. Figure 4 shows the
trajectory of the intercept, µt, and we see that the nonparametric estimator supports
the three break model with the red trajectory staying within the 95% confidence interval
for the whole sample period. The one-break model on the other hand lies outside during
the period 1985-1995. The same picture appears when examining the variation in ρt as
plotted in Figure 5: Again, the 3-break parametric model appears to be consistent with
the nonparametric estimates while there is some evidence that the one-break model is not
fully adequate in describing the parameter variation. It is also worth noting that while
the nonparametric estimator is not able to capture the potential time-variation of the
intercept very precisely, as the wide confidence intervals in Figure 1 indicate, it performs
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Figure 4. Estimates of structural change in µ, 1950-2000.
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Figure 5. Estimates of time variation in ρ, 1950-2000.

well for the AR coefficient with much tighter confidence intervals (note different scale of
the y-axis for the two figures).

To formally test the structural break models against the nonparametric alternative, we
implement the proposed bootstrap tests with the two nulls being that βt = (µt, ρt)

′
either

follows the one- or three-break model. For the one-break model, we obtain Fn = 16.25
with the 5% critical value being 17.33; thus we only just accept the null with a p-value of
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7.0%. This is in accordance with the plots that showed that the one-break model lead to
parameter trajectories that were not fully supported by the nonparametric estimators.
In contrast, for the three-breaks model, the test yields F1 = 1.86 with a 5% critical
value of 16.48, and so we overwhelmingly accept the null of a three break model; the
corresponding p-value is 96.5%. Our findings complement the analysis of Hansen (2001)
who finds ”a structural break in 1994, and possibly breaks in Dec. 1963 and Jan. 1982,”
and reports that the two latter break time points are very imprecisely estimated. Our
nonparametric analysis shows that both models are supported by data, but that the
one-break model is close to being rejected.

As can also be seen from the nonparametric estimates and their confidence intervals,
there is not very strong support for breaks in the intercept while there appears to be
strong evidence for breaks in the AR coefficients. We therefore now test the hypothe-
sis that µt = µ is constant against the nonparametric alternative using our semipara-
metric estimators. Under the null we obtain µ̂ = 4.37 with 95% confidence interval
being (3.10, 5.14). Comparing the nonparametric and semiparametric model, we obtain
F1 = 11.33 with a 5% critical value of 8.93 and a p-value of 1.25%. Thus, we reject at
a 5% level but not at a 1% level. In comparison, we strongly reject the hypothesis that
ρt = ρ is constant with F1 = 47.61 and a 1% critical value of 14.85.

In conclusion, our nonparametric approach supports the findings of Hansen (2001) that
a 3-breaks model adequately captures the time-variation in the regression coefficients,
while a 1-break model may be too simple. Moreover, our techniques also shows that most
of the time-variation is found in the AR coefficient while there is not as strong support
for time-variation in the intercept.

7.2. Eurodollar Term Structure

Affine factor models are widely used in empirical finance to describe the dynamics of
the yield curve. Within this class of models, the short-term interest rate is driven by a
linear combination of factors where the factors in turn solve a VAR model with constant
coefficients; see Duffie and Kan (1996). However, there is amble empirical evidence that
affine models are unstable over time. These instabilities have major implications for
forecasting the yield curve and for bond pricing. Most studies examining time-variation
in affine models take a parametric approach using, for example, Markov switching or
random walk models to describe the possible time variation (see Ang and Bekaert, 2002;
Bhansal and Zhou, 2002). Due to the numerical complications involved in estimating
dynamic models with latent variables, most studies have confined themselves to single-
factor models despite consensus that multiple factors are needed to adequately describe
the yield curve dynamics. In contrast, the nonparametric techniques developed in this
paper are straight-forward to implement even in a multi-factor setting.

To estimate the affine model, we first extract the factors from yield curve data. As
demonstrated in Joslin, Singleton and Zhu (2011), for any set of d yields, yt (1) , ..., yt (d),
the factors can be chosen as any linear combinations of those. With Yt ∈ Rd denoting a
given linear combination, the resulting affine model with time-varying coefficients take
the form

rt = b0,r + b′1,rYt, ∆Yt = B0,t +B1,tYt−1 + eY,t,

with eY,t ∼i.i.d. N (0,ΣY,t). In our application, we estimate a three factor model using a
data set of yields from the so-called Eurodollar term structure. The data set consists of
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Figure 6. Time series plot of the level, slope and curvature factor, 1971-2004.

n = 8669 daily observations of the 1, 3, and 6 months Eurodollar yield for the period 1971-
2004. We can freely rotate the yields and here choose our factors as the so-called level,
slope and curvature of the yield curve. With yt (1), yt (3) and yt (6) denoting the three
observed yields, the factors are constructed as Y1,t = yt (1) (”level”), Y2,t = yt (6)−yt (1)
(”slope”), and Y3,t = yt (1) + yt (6)− 2yt (3) (”curvature”). This rotation helps to give a
natural interpretation of the factors which at the same time are close to being orthogonal,
see Litterman and Scheinkman (1991). The resulting demeaned factors are plotted in
Figure 6. All three series appear to be somewhat unstable over time with particularly
the so-called Fed Experiment of the early 1980’s having a large impact on their dynamics.

We estimate the VAR dynamics of the three factors allowing all coefficients to be
time-varying. We focus in the following on dynamics of the level factor, ∆Y1,t = b0,t +
b′1,tYt−1 + εt; results for the two other factors are available upon request. The kernel
estimates of the loadings b1,t = (b1,t (1) , b1,t (2) , b1,t (3)) are shown in Figures 7-9. For
comparison, we also report the OLS estimates for each of the factor loadings in the
three figures. These estimates deliver an informal rejection of the null of constant VAR
coefficients with all three exhibiting substantial variation over time. In particular, the Fed
Experiment changed the yield curve dynamics quite dramatically. In the same period, the
volatility of the short-term interest rate increased substantially which explains the wider
pointwise confidence bands for the estimates in this period. Another interesting feature
is that from 1995 and onwards, the loadings for the level and slope factors have stabilized
and (based on the pointwise confidence intervals) we cannot reject that these two are
constant for this period. Moreover, we cannot reject that the level factor is insignificant
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Figure 7. Estimated level factor loading with pointwise 95% confidence bands, 1971-2004.

from 1994 and onwards. On the other hand, the curvature loading exhibits a significant
change in the early 1990’s and shows pronounced variation through the latter period.

We carry out a battery of tests regarding the time-variation in the loadings based on
the test statistics proposed in the paper. First, we test the three hypotheses that any pair
of the regression coefficients are constant; we strongly reject all three nulls with p-values
well below 1%. Next, we test whether any of the coefficients individually is constant;
again, we heavily reject the three nulls. Finally, the null of all coefficients being constant
is strongly rejected. We conclude that there is strong evidence of time-variation in all
regression coefficients. If on the other hand, we conduct the test for the subperiod of
1994-2004, we accept the null of no time-variation in the coefficients for the level and
slope factor. The corresponding test for the curvature factor is rejected on the other
hand. Thus, a reasonable model for the recent Eurodollar term structure has constant
coefficients for the the level and slope variables, while the curvature factor’s coefficients
remains time-varying.

To see whether the estimated variation in the coefficients is driven by underlying macro
factors, the reported NBER recessions within the sample period are shown in Figures
7-9 together with the estimates. There appears to be some correlation between whether
the economy is in a recession and changes in the coefficients, but the sign is not clear.
In addition, other macro factors may also influence the variation. We therefore carry
out an informal regression analysis where we treat the estimated parameter paths as
observed dependent variables and regress them onto the NBER recession indicator, US
productivity and US inflation; a similar two-step procedure in a continuous-time setting
was proposed and analyzed in Kanaya and Kristensen (2010). The three chosen macro
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Figure 8. Estimated slope factor loading with pointwise 95% confidence bands, 1971-2004.

regressors are only observed at a monthly frequency, but this causes no problems since we
can estimate the factor loadings at any given frequency. The results of those second stage
regressions are reported in Table 4. In general, the NBER recession and inflation are good
predictors of the variation in the coefficients while US productivity is less informative.
It should be noted though that the reported standard errors do not take into account
the estimation error in the factor loading, and so the results probably over estimate the
significance of the macro variables. The over all R2 is ranges between 36%-51% and so
substantial parts of the estimated variation in the coefficients are explained by underlying
macro factors. Looking at the individual regression coefficients, we see that recessions
tend to increase the loadings for all three factors, while inflation and productivity have
negative impacts on the level and curvature loadings of the yield curve, but positive
impact on the slope coefficient.
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Figure 9. Estimated curvature factor loading with pointwise 95% confidence bands, 1971-
2004.

Factor loadings
level slope curvature

NBER recession
0.5056
(0.0701)

0.4037
(0.5989)

3.4020
(1.0456)

US inflation
-0.1564
(0.0110)

1.1966
(0.0603)

-2.3476
(0.1144)

US productivity
-0.0036
(0.0028)

0.0518
(0.0216)

-0.0747
(0.0490)

R2 0.466 0.510 0.362

Table 6: Second-stage regression of factor loadings onto macro variables.
Note: All regression coefficients and SE’s have been scaled up by a factor 102.

8. CONCLUSION

A general theory has been developed for the semi-nonparametric estimation and testing
of partially time-varying regression models. The theory is however silent about how to
choose bandwidths required for the semiparametric estimators and test statistics in finite
samples. These need to vanish at non-standard rates and so standard methods cannot be
used. Data-driven bandwidth selection procedures for these are currently not available,
and it would be highly useful to develop and analyze such.

The proposed estimators are not able to consistently detect jumps in the parameter
paths. By adjusting the estimators along the lines of Gijbels (2003) and Gijbels, Lam-
bert and Qiu (2007) who develop jump-preserving kernel smoothers in a cross-sectional
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setting, we expect that the asymptotic theory developed in the present work will still go
through with only minor modifications. The formal analysis of jump-preserving estima-
tors and associated test statistics in a time series setting is left for future research.

We have throughout assumed that the regressors are (locally) stationary. However, it
is well-known that it is difficult to separate the effects of structural change from those of
unit root-type behaviour. It would therefore be relevant to examine how our estimators
and tests perform under unit-root type dynamics to see if they remain consistent.

It would also be of interest to extend the results to nonlinear models with time-varying
parameters. It is easily seen that the proposed estimators and test statistics are straight-
forward to extend to nonlinear models whose time-invariant parameters can be character-
ized as minimizers of an objective function taking the form of a (time-varying) population
moment. In this class of models, estimators of the time-varying parameters can be de-
fined as minimizers of a kernel-weighted version of the corresponding sample moment;
see Robinson (1991) and Fryzlewicz, Sapatinas, and Subba Rao (2008) for estimation in
some particular models within this general class.
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APPENDIX A: PROOFS

In the following we will for notational convenience often suppress the dependence of the
variables on n and for example write Xt for Xn,t.

Proof of Theorem 3.1: With Kt,τ = Kh (t/n− τ), we have

β̂ (τ)−β (τ) =

[
n∑
t=1

Kt,τXtX
′
t

]−1 n∑
t=1

Kt,τXtX
′
t {βt − β (τ)}+

[
n∑
t=1

Kt,τXtX
′
t

]−1 n∑
t=1

Kt,τXtεt.

(A.1)
By Lemma B.10, we obtain n−1

∑n
t=1Kt,τXiX

′
i = Λ (τ) + oP (1), while

E

[∥∥∥∥ 1

n

∑n

t=1
Kt,τXtX

′
t {βt − β (τ)}

∥∥∥∥] ≤ C sup
t:|t/n−τ |<Bh

‖β (t/n)− β (τ)‖ = O (hr) ,

(A.2)
where we have used the smoothness assumption imposed on β (t). Thus, the following
representation holds uniformly over τ ∈ (a, 1− a):

β̂ (τ)− β (τ) = Λ−1 (τ)
1

n

n∑
t=1

Kt,τXtεt +OP (hr) (A.3)
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To complete the proof, we show that
∑n
t=1 un,t/

√
n →d N

(
0,
∥∥K2

∥∥Λ (τ)σ2 (τ)
)

as

nh→∞, where un,t =
√
hKt,τXtεt is a MGD w.r.t. Ft = F (Xt, zt, Xt−1, zt−1, ...). This

is done by verifying the conditions of Lemma B.13: As nh→∞,

1

n

n∑
t=1

E
[
un,tu

′
n,t

]
=
h

n

n∑
t=1

K2
t,τσ

2
tΛt + o (1) (A.4)

=
1

h

∫
K2

(
s− τ
h

)
σ2 (s) Λ (s) ds+ o (1) (A.5)

=
∥∥K2

∥∥σ2 (τ) Λ (τ) + o (1) , (A.6)

1

n1+δ/2

n∑
t=1

E
[
‖un,t‖2+δ

]
=
h1+δ/2

n1+δ/2

n∑
t=1

K2+δ
t,τ σ2+δ

t E
[
‖Xt‖2+δ |zt|2+δ

]
(A.7)

= C
1

(nh)
δ/2

σ2+δ (τ)

∫
K2+δ (z) dz = o (1) . (A.8)

2

Proof of Theorem 3.2: First note that, once we have shown eq. (3.16), we can treat
β1 as known, when deriving eq. (3.17) since it converges with

√
n-rate. But we can then

employ the same arguments as in the proof of Theorem 3.1 to obtain eq. (3.17).
To show eq. (3.16), define for any two sequences At and Bt and any weighting function

w,

SwA,B =
1

n

n∑
t=1

It (a)wtAtB
′
t, (A.9)

where It (a) = I {a ≤ t/n ≤ 1− a}, and let SwA = SwA,A. We may then write β̃w1 and the

corresponding estimator based on known weights, say β̄w1 , as

β̃w1 = (Sŵ
X1−X̂1

)−1Sŵ
X1−X̂1,y−ŷ

, β̄w1 = (Sw
X1−X̂1

)−1Sw
X1−X̂1,y−ŷ

. (A.10)

We write β̃w1 − β1 =
{
β̄w1 − β1

}
+ {β̃w1 − β̄w1 }, and now show that:

√
n
{
β̄w1 − β1

}
→ dN

(
0,Σ−1

w ΦwΣ−1
w

)
, (A.11)

√
n{β̃w1 − β̄w1 } = oP (1) . (A.12)

Proof of eq. (A.11): Define Vt := X1,t−ξt, where ξt := M ′X1,t
X2,t, and, for any random

sequence At, MA,t := E
[
X2,tX

′
2,t

]−1
E [X2,tA

′
t]. We then have

E [X2,ty
′
t] = E

[
X2,tX

′
1,t

]
β1 + E

[
X2,tX

′
1,t

]
β2,t, (A.13)

such that My,t = MX1,tβ1 + β2,t and

yt −M ′y,tX2,t = β′1
[
X1,t −M ′X1,tX2,t

]
+ εt = β′1Vt + εt (A.14)

Furthermore, X̂1,t = ξ̂t + V̂t and ŷt = β′1X̂1,t + β̄′2,tX2,t + ε̂t, where

β̄2,t =

[
n∑
s=1

Ks,tX2,sX
′
2,s

]−1 n∑
s=1

Ks,tX2,sX
′
2,sβ2,t, (A.15)
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such that X1,t − X̂1,t = {ξt − ξ̂t}+ {Vt − V̂t} and

yt − ŷt = β′1

[
X1,t − X̂1,t

]
+
[
β2,t − β̄2,t

]′
X2,t + εt − ε̂t. (A.16)

In total,

Sw
X1−X̂1

= SwV + Sw
V̂

+ Sw
ξ−ξ̂ + 2Sw

V,ξ−ξ̂ + 2Sw
V̂ ,ξ−ξ̂ + 2Sw

V,V̂
(A.17)

Sw
X1−X̂1,y−ŷ

= Sw
X1−X̂1

β1 + Sw
X1−X̂1,[β2−β̄2]

′
X2

+ Sw
X1−X̂1,ε

+ Sw
X1−X̂1,ε̂

, (A.18)

where

Sw
X1−X̂1,[β2−β̄2]

′
X2

= Sw
ξ−ξ̂,[β2−β̄2]

′
X2

+ Sw
V,[β2−β̄2]

′
X2
− Sw

V̂ ,[β2−β̄2]
′
X2
, (A.19)

Sw
X1−X̂1,ε

= Sw
ξ−ξ̂,ε + SwV,ε − SwV̂ ,ε, Sw

X1−X̂1,ε̂
= Sw

ξ−ξ̂,ε̂ + SwV,ε̂ − SwV̂ ,ε̂. (A.20)

It follows from Lemmas B.1-B.6 that SwV →P Σw,
√
nSwV,ε →d N (0,Φw), while all others

of the above terms are negligible. This yields the desired result.

Proof of eq. (A.12): Observe that

β̃w1 = β1 + (Sŵ
X1−X̂1

)−1

[
Sŵ
X1−X̂1,[β2−β̄2]

′
X2

+ Sŵ
X1−X̂1,ε

+ Sŵ
X1−X̂1,ε̂

]
, (A.21)

β̄w1 = β1 + (Sŵ
X1−X̂1

)−1

[
Sw
X1−X̂1,[β2−β̄2]

′
X2

+ Sw
X1−X̂1,ε

+ Sw
X1−X̂1,ε̂

]
, (A.22)

c.f. the proof of eq. (A.11). We therefore have

β̃w1 − β̄w1 = (Sŵ
X1−X̂1

)−1

[
Sŵ
X1−X̂1,[β2−β̄2]

′
X2
− Sw

X1−X̂1,[β2−β̄2]
′
X2

]
(A.23)

+(Sŵ
X1−X̂1

)−1
[
Sŵ
X1−X̂1,ε

− Sw
X1−X̂1,ε

]
(A.24)

+(Sŵ
X1−X̂1

)−1
[
Sŵ
X1−X̂1,ε̂

− Sw
X1−X̂1,ε̂

]
(A.25)

+
[
(Sŵ
X1−X̂1

)−1 − (Sw
X1−X̂1

)−1
] [
Sw
X1−X̂1,[β2−β̄2]

′
X2

+ Sw
X1−X̂1,ε

+ Sw
X1−X̂1,ε̂

]
(A.26)

= : B̂−1(Â1 −A1) + B̂−1(Â2 −A2) + B̂−1(Â3 −A3) + (B̂−1 −B−1)A4 (A.27)

First note that, from the proof of eq. (A.11), A4 = OP (1/
√
n). Next, by a second order

Taylor expansion of B̂−1 around B−1, B̂−1 = B−1 − B−1(B̂ − B)B−1 + O(||B̂ − B||2),
where, with ∆̂ := supa≤τ≤1−a |ŵ (τ)− w (τ)|,

||B̂ −B|| ≤ ∆̂× 1

n

n∑
t=1

It (a) (X1,t − X̂1,t)
′(X1,t − X̂1,t) = ∆̂× tr{SX1−X̂1

} = OP (∆̂),

(A.28)
where we have used that, by the same reasoning as in the proof of eq. (A.11) (with wt =
1), SX1−X̂1

= OP (1). This implies that ||B̂−1−B−1|| = OP (∆̂) and B̂−1 = B−1 +oP (1).
Similarly, employing the same the arguments as in the proofs of Lemmas B.2 and B.5,

||Â1 −A1|| ≤ ∆̂× sup
a≤τ≤1−a

∥∥β2,t − β̄2,t

∥∥× 1

n

n∑
t=1

It (a) ||X1,t − X̂1,t|| ‖X2,t‖ (A.29)

= ∆̂× sup
a≤τ≤1−a

∥∥β2,t − β̄2,t

∥∥×OP (1) , (A.30)
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Next,

Â2 −A2 =
1

n

n∑
t=1

It (a)
(
ŵ2
t − w2

t

)
(X1,t − X̂1,t)

′εt =
1√
n
{Zn (ŵ)− Zn (w)} , (A.31)

where

Zn (f) :=
1√
n

n∑
t=1

It (a) f (t/n) (X1,t − X̂1,t)
′εt f ∈ F , (A.32)

and F =
{
f : [0, 1] 7→ R| sup0≤τ≤1 |f (τ)| ≤ F

}
is a compact function space for some fixed

bound F > 0. From Lemmas B.2, B.4 and B.6, Zn (f) →d Z (f) for any f ∈ F , where
{Z (f) : f ∈ F} is a Gaussian process. Furthermore, Zn (f) − Zn (g) = Zn (f − g) =

Sf−g
X1−X̂1,ε

for any f, g ∈ F . By the same arguments employed in the proofs of Lemmas

B.2, B.4 and B.6, one can show that for some constant C > 0,

E
[
‖Zn (f)− Zn (g)‖2

]
= E[||Sf−g

X1−X̂1,ε
||2] ≤ C × sup

0≤τ≤1
|f (τ)− g (τ)|2 , (A.33)

which implies that Zn (f) is stochastically equicontinuous. It now follows that Zn (·)→d

Z (·) on F , c.f. Pollard (1990, Theorem 10.2), which in turn implies that

Zn (ŵ)− Zn (w) = {Zn (ŵ)− Z (ŵ)} − {Zn (w)− Z (w)}+ {Z (w)− Z (ŵ)} = oP (1) .
(A.34)

This shows that Â2 − A2 = oP (1/
√
n). By similar arguments, it can be shown that

Â3 −A3 = oP (1/
√
n). 2

Proof of Theorem 3.3: Let F̄n denote the test statistic with wt known, and define
for any sequence β = {βt} the corresponding SSR,

SSRw (β) =

n∑
t=1

It (a)wt (yt − β′tXt)
2
. (A.35)

We note for future use that the following expansion holds:

SSRw(β)− SSRw(β0) =
∂SSRw(β0)

∂β
(β − β0) +

1

2
(β − β0)

′ ∂
2SSRw(β0)

∂β∂β′
(β − β0) (A.36)

= −2

n∑
t=1

It (a)wtεtX
′
t(βt − β0,t) +

n∑
t=1

It (a)wt(βt − β0,t)
′XtX

′
t(βt − β0,t)

In particular, SSRw(β̂)/n =
∫ 1

0
w (τ)σ2 (τ) dτ + oP (1), c.f. Lemma B.7, such that

F̄n =
n

2

SSRw(β̃)− SSRw(β̂)

SSRw(β̂)
=

SSRw(β̃)− SSRw(β̂)

2
∫ 1

0
w (τ)σ2 (τ) dτ + oP (1)

, (A.37)

where

SSRw(β̃)− SSRw(β̂) =
{
SSRw(β̃)− SSRw(β0)

}
−
{
SSRw(β̂)− SSRw(β0)

}
(A.38)

= : ∆SSR1 −∆SSR2. (A.39)

Combining the expansion in eq. (A.36) (with β = β̂) and the representation given in eq.
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(A.3), we obtain

∆SSR2 = − 2

n

n∑
t=1

n∑
u=1

It (a)wtεtX
′
t

[
Λ−1
t Kt,uX

′
uεu +OP (hr)

]
+

1

n2

n∑
s=1

n∑
t=1

n∑
u=1

It (a)wt
[
εsX

′
sKs,tΛ

−1
t +OP (hr)

]
XtX

′
t

[
Λ−1
t Kt,uX

′
uεu +OP (hr)

]
= : −∆SSR2,1 + ∆SSR2,2,

By Lemma B.13, OP (hr)×
∑n
t=1 It (a)wtεtX

′
t = OP (hr

√
n) = oP (1/

√
h). Thus, we can

ignore this term, and decompose the remaining terms in ∆SSR2,1 into

∆SSR2,1 '
2K (0)

nh

n∑
t=1

It (a)wtε
2
tX
′
tΛ
−1
t Xt +

2

n

∑
t6=u

It (a)wtεtX
′
tKt,uΛ−1

t Xuεu, (A.40)

where the average in the first term satisfies

E

[
1

n

n∑
t=1

It (a)wtε
2
tX
′
tΛ
−1
t Xt

]
=

1

n

n∑
t=1

It (a)wtσ
2
tE
[
X ′tΛ

−1
t Xt

]
= m

∫ 1

0

w (s)σ2 (s) ds+o (1) ,

(A.41)
and, due to the mixing conditions, Var

[
1
n

∑n
t=1 It (a)wtε

2
tX
′
tΛ
−1
t Xt

]
= O

(
n−1+ε

)
for

some small ε > 0. The terms in ∆SSR2,2 involving OP (hr) are again of lower order and
can be ignored, while the remaining terms can be written as

∆SSR2,2 '
1

n2

n∑
s=1

n∑
t=1

It (a)wtε
2
sX
′
sK

2
s,tΛ

−1
t XtX

′
tΛ
−1
t Xs

+
1

n2

∑
s6=u

n∑
t=1

εsX
′
sKs,tIt (a)wtΛ

−1
t XtX

′
tΛ
−1
t Kt,uXuεu

= : ∆SSR2,21 + ∆SSR2,22. (A.42)

By Lemma B.8, ∆SSR2,21 ' mκ2

h

∫ 1

0
w (s)σ2 (s) ds, while ∆SSR2,22 is a third-order U-

statistic. We proceed as in Aı̈t-Sahalia et al (2009, Proof of Theorem 1, Claim (a)): By
standard symmetrization arguments and Hoeffding’s decomposition, we can write

∆SSR2,22 =
1

n

∑
s 6=u

Is (a)wsεsX
′
sΛ
−1
s (K ∗K)s,uXuεu +

1

n2

∑
s 6=t6=u

Φs,t,u, (A.43)

where Φs,t,u = ϕ∗s,t,u−ϕ∗s,t−ϕ∗s,u−ϕ∗t,u, ϕ∗s,t,u = ϕs,t,u+ϕs,u,t+ϕt,s,u+ϕt,u,s+ϕu,t,s+ϕs,u,t
is a symmetric kernel,

ϕs,t,u = εsX
′
sKs,tIt (a)wtΛ

−1
t XtX

′
tΛ
−1
t Kt,uXuεu, (A.44)

and ϕ∗s,t =
∫
ϕs,t,udFt. Here, Ft is the marginal distribution of (X∗t , ε

∗
t ) which is an

independent copy of (Xt, εt). By verifying the conditions of Gao and King (2004, Lemma
C.2), we obtain under the mixing and moment conditions imposed that

1

n2

∑
s6=t 6=u

Φs,t,u = OP

(
1√
nh5

)
= oP

(
1√
h

)
. (A.45)
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In total,

∆SSR2 '
m

h
[κ2 − 2K (0)]

∫ 1

0

w (τ)σ2 (τ) dτ+
1

n

∑
t6=u

Is (a)wtεtX
′
tΛ
−1
t

[
(K ∗K)t,u − 2Kt,u

]
Xuεu.

(A.46)
To analyze ∆SSR1, first note that by Theorem 3.2, β̃1 − β1 = OP (1/

√
n) such that

we can replace the estimator with β1 in ∆SSR1. Moreover, by the same arguments used
to show eq. (A.3), β̃2,t − β2,t = Λ−1

22,t
1
n

∑n
s=1Ks,tX2,sεs +OP (hr) uniformly in t, and so

∆SSR1 ' −
1

n

n∑
t=1

n∑
u=1

It (a)wtεtX
′
2,tΛ

−1
22,sX

′
2,uKs,uεu (A.47)

+
1

n2

n∑
s=1

n∑
t=1

n∑
u=1

It (a)wtεsX
′
2,sKs,tΛ

−1
22,tX2,tX

′
2,tΛ

−1
22,tKt,uX

′
2,uεu

= : −∆SSR1,1 + ∆SSR1,2.

The two terms ∆SSR1,1 and ∆SSR2,2 are on a similar form as ∆SSR2,1 and ∆SSR2,2,
and by the same arguments as before,

∆SSR1 '
m2

h
[κ2 − 2K (0)]

∫ 1

0

w (s)σ2 (s) ds (A.48)

+
1

n

∑
s 6=u

Is (a)wsεsX
′
2,s

[
(K ∗K)s,u − 2Ks,u

]
Λ−1

22,uX2,uεu. (A.49)

Combining the expressions of ∆SSR1 and ∆SSR2, we now have

F̄n '
m1

[
K (0)− 1

2κ2

]
h

+
n−1

∑
s 6=t φ1,n (us, ut)

2
∫ 1

0
w (τ)σ2 (τ) dτ

, (A.50)

where ut =
(
t/n, εt, X̄t

)
with X̄t := X ′1,t − ωtX2,t, Λ11.2,t := Λ11,t − ωtΛ21,t and ωt :=

Λ12,tΛ
−1
22,t, while

φ1,n (us, ut) := wtεtεu

[
2Kt,u − (K ∗K)t,u

]
X̄ ′tΛ̄

−1
t X̄t. (A.51)

It now follows by Lemma B.9 that

F̄n − µFn
νFn

'
n−1

∑
s6=t φ1,n (us, ut)

V1,n
→d N (0, 1) , (A.52)

Finally, we demonstrate that the estimation of wt does not affect the result. We write
Fn − µFn = {F̄n − µFn }+ {Fn − F̄n}, where

Fn − F̄n =
F̃n(ŵ − w)

2
∫ 1

0
w (τ)σ2 (τ) dτ + oP (1)

, F̃n(f) = SSRf (β̃)− SSRf (β̂), (A.53)

and SSRf (β) is the SSR with weighting function f . Since the limiting distribution
of F̄n was derived for any given continuous function w, we know that for any con-

tinuous function f : [0, 1] 7→ R,
√
h
[
F̃1,n(f)− qn (f)

]
= OP (1), where q1,n (f) :=
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m
h [κ2 − 2K (0)]

∫ 1

0
f (τ)σ2 (τ) dτ . Moreover,

√
h
[
F̃n(f1)− qn (f1)

]
−
√
h
[
F̃n(f2)− qn (f2)

]
=
√
h
[
F̃n(f1 − f2)− qn (f1 − f2)

]
,

(A.54)
where, by using the same arguments as above

E

[∣∣∣[F̃n(f1 − f2)− qn (f1 − f2)
]∣∣∣2] ≤ C

h
sup
τ∈[0,1]

|f1 (τ)− f2 (τ)|2 . (A.55)

Thus, using that supτ |ŵ (τ)− w (τ)| = oP (
√
h),∣∣Fn − F̄n∣∣√

νFn
≤ C
√
h
∣∣∣F̃n(ŵ − w)− qn(ŵ − w)

∣∣∣+
√
h |qn(ŵ − w)| (A.56)

≤ sup
‖f‖∞≤C

√
h

∣∣∣F̃n(f)− qn(f)
∣∣∣√

νFn
+
√
h |qn(ŵ − w)| = oP (1). (A.57)

2

Proof of Theorem 3.4: Let W̄n denote the test statistic with known Ωt. Write

W̄n =

n∑
t=1

It (a) ({β̃w1 − β1} − {β̂1,t − β1})′Ωt({β̃w1 − β1} − {β̂1,t − β1}) (A.58)

=

n∑
t=1

It (a) (β̂1,t − β1)′Ωt(β̂1,t − β1) +

n∑
t=1

It (a) (β̃w1 − β1)′Ωt(β̃
w
1 − β1) (A.59)

−2

n∑
t=1

It (a) (β̃w1 − β1)′Ωt(β̂1,t − β1) (A.60)

= : W̄1,n + W̄2,n + W̄3,n. (A.61)

The second and third term satisfy

W̄2,n =
√
n(β̃w1 − β1)′

{
1

n

n∑
t=1

It (a) Ωt

}
√
n(β̃w1 − β1) = OP (1) , (A.62)

∣∣W̄3,n

∣∣ ≤ 2
√
n||β̃w1 − β1||

∥∥∥∥∥ 1√
n

n∑
t=1

It (a) Ωt(β̂1,t − β1)

∥∥∥∥∥ (A.63)

where,

1√
n

n∑
t=1

It (a) Ωt(β̂1,t−β1) ' 1√
n

n∑
t=1

It (a) ΩtΛ
−1
t X ′tεt+OP

(√
nhr

)
= OP (1)+OP

(√
nhr

)
.

(A.64)
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Following the same arguments as in the proof of Theorem 3.3, the first term satisfies

W̄1,n '
1

n2

n∑
s=1

n∑
t=1

n∑
u=1

It (a) εsX
′
1,sKs,tΛ

−1
11,tΩtΛ

−1
11,tKt,uX1,uεu (A.65)

' 1

n2

n∑
t=1

n∑
u=1

It (a) ε2
uX
′
1,uΛ−1

11,tΩtΛ
−1
11,tK

2
t,uX1,u (A.66)

+
1

n2

∑
s6=u

εsX
′
1,s

n∑
t=1

{
It (a)Ks,tΛ

−1
11,tΩtΛ

−1
11,tKt,u

}
X1,uεu (A.67)

' µWn +
1

n

∑
s6=t

φ2,n (us, ut) , (A.68)

where

φ2,n (us, ut) := εsX
′
1,sΛ

−1
11,sΩsΛ

−1
11,s (K ∗K)s,tX1,tεt. (A.69)

It now follows by Lemma B.9 that

W̄n − µWn√
νFn

'
n−1

∑
s6=u φ2,n (Ws,Wu)

V2,n
→d N (0, 1) . (A.70)

One can show that W̄n and Wn have the same asymptotic distribution by the same
arguments as in the proof of Theorem 3.3. 2

APPENDIX B: LEMMAS

The following lemmas are used in the proofs of the main theorems. Proofs of the results
are available from the author upon request.

Lemma B.1. Swg−ĝ = OP
(
h2r
)

+OP (log (n) / (nh)) for g = β′2X2 and ξ.

Lemma B.2.
√
nSwg−ĝ,e = OP

(
h2r
√
n
)

+ OP (log (n) / (
√
nh)) for g = β′2X2, ξ and e =

ε, V .

Lemma B.3. Swε̂ = OP
(
h2r
)

+OP (log (n) / (nh)), Sw
V̂

= OP
(
h2r
)

+OP (log (n) / (nh)),

Sw
ε̂,V̂

= OP
(
h2ν
)

+OP (log (n) / (nh)).

Lemma B.4.
√
nSwe,ê = OP

(√
nh2r

)
+OP (log (n) / (

√
nh)), for e = ε, V .

Lemma B.5. Sw
g−ĝ,Û = oP

(
n−1/2

)
for g = β′2X2, ξ and U = ε, V .

Lemma B.6. SwV →P Σw and
√
nSwV,ε →d N (0,Φw).

Lemma B.7. With SSRw (β) defined in eq. (2.12): SSRw(β̂)/n =
∫ 1

0
w (s)σ2 (s) ds +

oP (1) as a, h→ 0 and log (h) / (nh)→∞.
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Lemma B.8. The term ∆SSR2,21 defined in eq. (A.42) satisfies

∆SSR2,21 =
mκ2

h
×
∫
w (τ)σ (τ) dτ×[1 +OP (a) +OP (hr)]+OP

(
1√

n1−ε/2h(2+2δ)/(2+δ)

)
.

(B.1)

Lemma B.9. With φ1,n (us, ut) and φ2,n (us, ut) defined in eq. (A.51) and (A.69):

n−1
∑
s6=t φi,n (us, ut)√

Vi,n
→d N (0, 1) , i = 1, 2, (B.2)

where V1,n = m1

h

∫
w2 (τ)σ4 (τ) dτ ×

∥∥K − 1
2 (K ∗K)

∥∥2
and

V2,n =
2

h

∫
σ4 (τ) tr

{
Ω (τ) Λ−1

11 (τ) Ω (τ) Λ−1
11 (τ)

}
dτ × ‖K ∗K‖2 . (B.3)

Let in the following {un,t} be an absolutely regular triangular array with mixing coef-
ficients βn (t) that satisfy βn (t) ≤ Bt−β for some B, β > 0.

Lemma B.10. Assume that there exists a function m ∈ Cr ([0, 1]) such that E [un,t] =
m (t/n) + o (1) and that supn≥1 sup1≤t≤nE [‖un,t‖s] <∞ for some s > 2. Then m̂ (τ) =∑n
t=1Kh (t/n− τ)un,t satisfies for any sequence a→ 0 satisfying h/a→ 0:

sup
a≤τ≤1−a

|m̂ (τ)−m (τ)| = OP (hr) +OP

(√
log (n)/

√
(nh)

)
(B.4)

Lemma B.11. Assume that β > (2− ε) (2 + δ) /δ for some δ, ε > 0. Then for any sym-
metric function φn (un,s, un,t), the following decomposition holds:

1

n2

n∑
s,t=1

φn (un,s, un,t) = θn +
2

n

n∑
t=1

[
φ̄n (un,t)− θn

]
+Rn, (B.5)

where θn =
∑
s<tE [φn (un,s, un,t)] /n

2, φ̄n (u) = E [φn (u, un,t)], and E
[
R2
n

]1/2
= O

(
n−1+ε/2 × sn,δ

)
with sn,δ = sups6=tE

[
|φn (un,s, un,t)|2+δ

]1/(2+δ)

.

Lemma B.12. For any function φ with E
[
|φ (un,s, un,t)|1+δ

]
<∞:∣∣E [φ (un,s, un,t)]− E

[
φ
(
u∗n,s, u

∗
n,t

)]∣∣ ≤ 4 max {Mn,1,Mn,2} |βn (|s− t|)|δ/(1+δ)
, (B.6)

where u∗n,t is an independent sequence with same marginal distribution as un,t, Mn,1 =

E
[
|φ (un,s, un,t)|1+δ

]
and Mn,2 = E

[∣∣φ (u∗n,s, u∗n,t)∣∣1+δ
]
.

Lemma B.13. Assume that un,t is a MGD satisfying n−1
∑n
t=1E

[
u2
n,t

]
→ σ2 > 0 and,

for some δ > 0, n−1−δ/2∑n
t=1E

[
|un,t|2+δ

]
→ 0. Then

∑n
t=1 un,t/

√
n→P N

(
0, σ2

)
.
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