
Multi-Objective Optimization for Railway Maintenance Plans1

Daniel Peralta, Ph.D.1, Christoph Bergmeir, Ph.D.2, Martin Krone3, Marta Galende, Ph.D.4,2

Manuel Menéndez5, Gregorio I. Sainz-Palmero, Ph.D.6, Carlos Martinez Bertrand7, Frank3

Klawonn, Ph.D.8, and Jose M. Benitez, Ph.D.94

1(Corresponding Author) Post-doctoral researcher, Department of Applied Mathematics,5

Computer Science and Statistics, Ghent University, Ghent, Belgium; Data Mining and Modelling6

for Biomedicine group, VIB Center for Inflammation Research, Ghent, Belgium. e-mail:7

daniel.peralta@irc.vib-ugent.be8

2Post-doctoral researcher, Faculty of Information Technology, Monash University, Melbourne,9

Australia10

3Ph.D. Student, Department of Computer Science, Ostfalia University, Wolfenbüttel, Germany11

4Post-doctoral researcher, CARTIF Centro Tecnológico, Parque Tecnológico de Boecillo,12

Boecillo, Valladolid, Spain13

5Vías Y Construcciones, S.A. (Grupo ACS), Spain14

6Professor, Dept. of Systems Engineering and Control, University of Valladolid, Valladolid,15

Spain; CARTIF Centro Tecnológico, Parque Tecnológico de Boecillo, Valladolid, Spain16

7CEO, Ingeniería INSITU, Las Rozas, Madrid, Spain17

8Full professor, Department of Computer Science, Ostfalia University, Wolfenbüttel, Germany18

9Professor, Department of Computer Science and Artificial Intelligence, CITIC-UGR. University19

of Granada, Granada, Spain20

ABSTRACT21

Railway track maintenance is a critical problem for any railway administrator. More precisely,22

preventive maintenance scheduling is an NP-hard problem, which additionally involves multiple23
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objectives such as economical cost, maximumcapacity, serviceability, safety and passenger comfort.24

This paper proposes a multi-objective optimization approach to this problem, combined with a track25

deterioration model that takes into account the degradation caused by maintenance operations. The26

track behavior is simulated by an exponential deteriorationmodel based on a two-level segmentation.27

The maintenance schedule is built using a Pareto-based algorithm with two objectives (cost and28

delay) and three constraints, on top of an initialization heuristic based on expert knowledge. The29

proposed approach has been tested with two different algorithms (NSGA-II and AMOSA), over a30

model of a real track, to create schedules for different horizons ranging between three and twenty31

years. The solutions obtained by AMOSA outperform those designed by human experts both in32

terms of time delay and economical cost, demonstrating the capability of the proposal to produce33

near-optimal long-term maintenance schedules.34

INTRODUCTION35

Railway track maintenance represents an important challenge for stakeholders in the railway36

sector, such as railway contractors and infrastructure administrators, both in terms of money,37

resources and safety (Ferreira and López-Pita 2015). The economical cost of railway infrastructure38

maintenance is up to $150 000 per kilometer, two thirds of which are associated with the track39

maintenance. Additionally, the non-redundancy of railway tracks implies that maintenance has a40

direct impact on the level of service and safety that can be provided by the trains. Therefore, the41

elaboration of feasible maintenance plans is a critical issue for railway infrastructure administrators.42

Traditionally, track maintenance can be corrective or preventive. Preventive maintenance is43

sought after by the maintenance policies in the industry world, and can lead to smaller costs44

and better quality of the track, while providing a higher flexibility and better management of the45

resources (Kong and Frangopol 2003). However, the preventive maintenance scheduling problem46

is NP-hard (non-deterministic polynomial-time hard) (Budai et al. 2006; Gustavsson 2015). A47

problem H belongs to the NP-hard family when every NP problem (this is, problems for which a48

solution can be verified in polynomial time) can be reduced in polynomial time to H, meaning that49

H is at least as complex as any NP problem (Garey and Johnson 1979). In practice, this implies50
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that a globally optimal preventive maintenance schedule cannot be computed in a feasible time.51

Moreover, the difficulty of this task increases along with the time span of the schedule. Therefore,52

it is crucial to develop algorithms that can find near-optimal approximate solutions to this problem53

in an acceptable time.54

An adequate preventivemaintenance requires an accurate track deteriorationmodel to anticipate55

future failures and demands. The specialized literature includes several proposals to model the56

track based on the workload of the rails and the ballast, either using linear (Esveld 2001; Ramos and57

Fonseca 2011b; Wen et al. 2016) or non-linear models (Jovanovic 2004; Zhao et al. 2006; Andrade58

and Teixeira 2016). Other works describe how maintenance operations affect the degradation rate59

of the track (Ramos and Fonseca 2013; Audley and Andrews 2013; Andrade and Teixeira 2016).60

Traditional optimization algorithms aim at finding the solution that minimizes (or maximizes)61

the value of a function for a given problem. However, many real-world problems involve several62

objective functions. Multi-objective algorithms have been an important research topic for the last63

decades, as they attempt to optimize several objective functions altogether, allowing to handle a set64

of non-dominated solutions (Deb 2001; Deb et al. 2002; Bandyopadhyay et al. 2008).65

Multi-objective algorithms have been successfully applied on the railway maintenance schedul-66

ing problem. In Caetano and Fonseca 2013, the authors optimize the track life-cycle cost and the67

track availability for scheduling the renewal strategy. In Ramos and Fonseca 2011a, a biobjective68

approach optimizes the economical cost and railway capacity after applying a maintenance plan,69

while complying with some constraints. Some authors propose a different way to tackle a similar70

problem, translating all the objectives into terms of economical cost (Higgins et al. 1996; Arasteh71

Khouy et al. 2014). Another multi-objective approach is presented in Podofillini et al. 2006, based72

on risks and on a Markov model to model the inspection operations. Finally, Caetano and Teixeira73

2016 apply multi-objective algorithm to schedule tamping operations. However, the authors have74

been unable to find in the literature any attempt to combine a multi-objective strategy with a track75

deterioration model that involves the degradation caused by both tamping and renewal operations.76

This paper describes a multi-objective optimization approach for preventive track maintenance77
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scheduling. Two objective functions (cost and delay) and three sets of constraints (one for safety78

and two for resources) are defined to model the problem. Two multi-objective algorithms are79

considered, to obtain a non-dominated set of maintenance plans that satisfy all constraints while80

minimizing both cost and delay. Two possible initializations of the solution set, based on expert81

knowledge, are proposed. Each candidate solution to the problem is encoded into a binary vector82

that represents the maintenance plan of a track over an arbitrary number of trimesters. A non-linear83

deterioration model that simulates the behavior of a real track under the effects of time, tamping84

and renewal operations underlies the entire optimization process.85

This manuscript is structured as follows. First, the background information about railway track86

maintenance and multi-objective algorithms is presented. Then, the proposal is described. The87

experiments performed and their results are then detailed. Finally, the conclusions that can be88

reached through the study carried out are explained.89

BACKGROUND90

Railway maintenance91

In compliance with the European standard (European Committee for Standardization 2010),92

there are two possible reactions to insufficient track quality: lowering the maximum speed of93

service, and carrying out maintenance operations. Although the former is cheaper in the short-94

term, eventually the quality would decrease under the minimum allowed by the law and the safety95

constraints. The quality of the service could also be deteriorated. Additionally, lowering the speed96

lowers the maximum capacity of the track. Therefore, an adequate maintenance plan aims at finding97

a trade-off between maintenance costs and service capacity loss. This trade-off strongly depends98

on the particular perspective of the decision maker: maintenance subcontractors pursue a low cost,99

while in general train companies seek to maximize the capacity.100

The specialized literature shows two groups of methods to optimize railway maintenance101

operations (Budai 2009). The first approach starts from a fixed set of necessary operations and aims102

at organizing them in an optimal schedule, taking into account resource restrictions (technological,103

production-related, human and organizational) (Budai et al. 2006; Macedo et al. 2017). The second104
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approach is more complex, as it also involves modeling the deterioration process and computing105

the necessary operations before doing the scheduling (Vale and Ribeiro 2014; Wen et al. 2016).106

Therefore, both themaintenance operations and their scheduling have to be computed and optimized107

as a whole. The research carried out in this paper falls within the second category. Some recent108

proposals tackle the problem of scheduling the railwaymaintenance and traffic altogether (Lidén and109

Joborn 2017; Luan et al. 2017). However, in practice they fall very often under the responsibility of110

different agents (namely the maintenance contractor and the railway operator). This paper focuses111

on the maintenance scheduling, and takes into account an estimation of the total train delays that112

arise from this scheduling in combination with the track deterioration.113

Table 1 shows an overview of the different maintenance operations and how they are triggered114

(Patra et al. 2009). The operations that are performed on a time or failure basis do not need any115

special considerations to be scheduled; therefore, this paper focuses on operations that are triggered116

by a certain condition: this involves tamping, ballast cleaning and component renewal.117

The effect of tamping has already been modeled in previous research (Jovanovic 2004; Zhao118

et al. 2006). This modeling is based on geometric data gathered from the tracks, which must119

be properly align prior its use (Xu et al. 2015). However, modeling the exact effect of renewal120

operations that only involve certain components of the infrastructure proves to be more difficult121

(Lévi 2001). Following the approach of other work on the topic, in this paper a single renewal122

operation is assumed for all the elements of the track, which leaves it in an as-good-as-new condition123

(Ramos and Fonseca 2011a). Consequently, the remainder of this paper considers two maintenance124

operations: tamping and renewal.125

In this context, the aim of a maintenance schedule is to determine when and where to perform126

tamping and renewal operations in an optimal way. This optimality can depend on many criteria127

that may be contradictory of conflicting, and the exact criterion remains in hands of the final128

decision maker, which is usually the railway administrator. It is not desirable to automatically build129

a schedule that optimizes a single criterion, or even a fixed combination of them. The next section130

describes how multi-objective algorithms can overcome this problem.131

5 Peralta, October 25, 2017



Multi-objective algorithms132

Let S be the set of all possible solutions to a given problem. Single-objective optimization133

consists of looking for a solution S∗ ∈ S that yields the best value of a function f , which can134

be the minimum or the maximum, depending on the context (Deb 2001). Hence the problem is135

called minimization or maximization, respectively. For the sake of simplicity, this paper focuses136

on minimization problems (Equation 1).137

f (S∗) ≤ f (S) ∀S ∈ S (1)

On the other hand, a multi-objective problem involves a set of n objective functions F =138

{ f1, ..., fn}. Thus, the optimization becomes much more difficult, especially when these functions139

have conflicting behaviors, as it happens in most cases. Considering a single objective at a time is140

not feasible: the remaining objectives would get extremely bad values. There are two main ways141

to achieve multi-objective optimization (Deb 2001):142

• Aggregating the objectives into a single function, thus converting the problem to a single-143

objective one.144

• Looking for non-dominated solutions. A solution Sa dominates Sb if fi (Sa) ≤ fi (Sb), ∀ fi ∈145

F . In that case, Sb can be safely discarded because Sa is undoubtedly better. However,146

if a solution Sc is better than Sa for some functions but not for all of them, Sc and Sa do147

not dominate each other and none of them can be said to be better than the other. A set of148

non-dominated solutions is called a Pareto front.149

Some proposals use the first approach to model the railway maintenance problem. For example,150

in Arasteh Khouy et al. 2014 all the objective functions are translated into an overall cost CT that is151

optimized. Although this simplifies the handling of the objectives, it forces to establish a balance152

factor between the objectives prior the execution of the algorithm, fixing their priority. However,153

the decision criteria for railway maintenance can change according to many factors, and such an154

approach could avoid reaching potentially interesting solutions (Das and Dennis 1997). Therefore,155
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this paper focuses on approaches that use a Pareto front, which have been proven to yield good156

results in similar problems (Caetano and Teixeira 2016; Aminbakhsh and Sonmez 2017). The main157

advantage of this alternative is the flexibility of the result: a set of solutions is made available under158

different balances of the objectives, and the decision maker can select one of them according to159

their specific needs.160

Many real-world problems include constraints that restrict the solution space. A solution that161

does not comply with the constraints is said to be non-feasible, and in general terms should not162

be taken into account as a valid solution for the problem. Algorithms based on Pareto front163

usually include the constraints into the dominance criterion, so that a feasible solution always164

dominates a non-feasible one, independently of the value of the objective functions (Deb et al.165

2002; Bandyopadhyay et al. 2008).166

The number of objectives is one of many categorizations that can be done of optimization167

algorithms. Another popular manner to group them is according to how many solutions they168

handle at a time (Blum and Roli 2003). On the one hand, trajectory-based algorithms start from169

a single solution and modify it looking for improvements in the objective function(s). One of170

the most well-known algorithms in this category for multi-objective optimization is AMOSA171

(Bandyopadhyay et al. 2008). On the other hand, population-based algorithms maintain a pool of172

solutions and generate new solutions from them, increasing the diversification of the search. One173

of the most used ones is NSGA-II (Deb et al. 2002).174

AMOSA175

Simulated Annealing (SA) (Kirkpatrick et al. 1983) is one of the most popular trajectory-based176

algorithms. It starts with a randomly generated solution Sc. Then, a new solution S′c is generated177

by modifying slightly Sc. If S′c is better than Sc it is selected as current solution; otherwise, it can178

still be picked according to a certain probability based on a temperature value, which is gradually179

reduced as the search goes on until it reaches a minimum value, signaling the end of the search.180

AMOSA (Bandyopadhyay et al. 2008) is a multi-objective adaptation of SA. Instead of using a181

single current solution, it maintains a so-called “Archive” of non-dominated solutions. Therefore,182
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theArchive is the Pareto front of the search. First, theArchive is randomly initialized, a hill-climbing183

algorithm is applied to its members, and only the non-dominated solutions are kept. Then, a random184

solution is picked and SA is applied, introducing the domination criterion. In addition to the basic185

domination definition described earlier, AMOSA defines an amount of domination, which takes into186

account the numeric difference between the values of the objective functions. When the Archive187

gets too large, a similar solutions are clustered to reduce its size.188

The main advantage of AMOSA is its capability to intensify the search towards promising areas189

of the search space. This is achieved first by the hill-climbing algorithm, which quickly improves190

the fitness of the initial solutions. Then, SA is also based on a hill-climbing procedure, although191

allowing for more exploratory capabilities thanks to the probability generated by the temperature.192

NSGA-II193

Evolutionary algorithms use a population of solutions (called individuals) that evolve together.194

New individuals are obtained by combining (crossing) several individuals (generally two) and195

introducing random mutations. A number of muti-objective evolutionary algorithms have been196

suggested in the literature (Knowles and Corne 2000). One of the most well-known of them is197

NSGA-II (Deb et al. 2002).198

NSGA-II is based on the concept of nondominated sorting: when a new population is generated,199

the individuals are grouped into fronts according their domination. The first front corresponds to200

the Pareto front; the second one includes the solutions that would form the Pareto front if the first201

front was removed, and so forth. The following steps summarize the NSGA-II algorithm (for the202

full description, please refer to the original publication (Deb et al. 2002)):203

1. Population initialization: with N randomly generated individuals.204

2. Binary tournament: select N random pairs of individuals and pick the best of each pair.205

3. Crossover: the N selected individuals are grouped in pairs. Each pair is combined by a206

crossover operator that generates two new individuals, for a total of N new individuals.207

4. Mutation: each new individual suffers a random mutation with a given probability.208
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5. Evaluation: of the new individuals.209

6. Nondominated sorting: sort old and new individuals together.210

7. Selection of the new population: the fronts are included into the new population in order,211

until size N is reached. If the last selected front does not fit entirely, select the individuals212

so that they are as spread as possible across the front.213

8. Go to step 2, until a stop criterion (typically a fixed number of generations) is met.214

The algorithm design is focused on reducing the computational complexity of the nondominated215

and crowding sorting. NSGA-II favors a wide exploration of the search space rather than a deep216

intensification towards already known areas. This makes NSGA-II especially powerful when217

dealing with problems of which little knowledge is possessed, or where the structure of the search218

space is unknown or highly complex (El-Abbasy et al. 2017).219

PROPOSAL220

This section describes our proposal for building maintenance plans using optimization based221

on multi-objective algorithms, including a modeling of track to simulate the whole maintenance222

process, the encoding of the generated maintenance plans, the evaluation of the cost and delay223

functions and the safety and resources constraints that are used to model the problem, the so-224

lution initialization process, the operators and other particular considerations for the design and225

implementation of the algorithms and the proof that the problem is NP-hard.226

Railway modeling227

The core of a good optimization framework for any real-world problem is an adequate represen-228

tation. In this case, it must simulate the response of the track over time and the different maintenance229

operations that are performed upon it. This section describes the railway segmentation process, the230

deterioration model and the modeling of maintenance operations used in this paper.231

Railway segmentation232

The behavior of the track depends on a wide variety of factors such as curvature, traffic, ballast233

type and previously applied maintenance. Thus, the track cannot be modeled as a whole: it must234
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be segmented and each segment must be treated separately (Jovanovic 2004). There are two main235

types of segmentation strategies: static segmentation divides the track into segments of the same236

length, and dynamic segmentation takes into account the factors that affect its behavior.237

This paper describes a two-level segmentation procedure that combines both approaches. First,238

the track is dynamically divided into sections, according to the curvature, age and type of the track,239

previously applied maintenance operations, and the presence of elements such as switches, bridges240

or tunnels. This design ensures that the characteristics of quality, deterioration and maximum241

allowed speed remain constant within each section. Then, each section is statically divided into242

segments of lengths between 25 and 100 meters. This approach allows to accurately model a243

real track where tamping and renewal operations have different ranges: tamping is carried out244

throughout a segment, whilst the renewal is performed on an entire section. Note that the number245

of segments within each section is variable because there is no constraint on the length of the246

sections.247

Deterioration model248

Deterioration models can be categorized into mechanistic and stochastic approaches (Cárdenas-249

Gallo et al. 2017). Mechanistic models are based on a simulation of the track geometry taking into250

account physical factors such as ballast and sleeper type, weather conditions, workload and wheel251

geometry. These models provide insight into the behavior of different components of the railway252

infrastructure from a physical point of view; however, their use for predictive modeling is hindered253

by large uncertainties (Nguyen et al. 2016). Stochastic approaches produce a model from data254

measured from the tracks themselves. These can be broadly classified into linear (Esveld 2001;255

Ramos and Fonseca 2011b; Wen et al. 2016) and non-linear models (Jovanovic 2004; Zhao et al.256

2006; Andrade and Teixeira 2016). The latter assume the deterioration of the track to be inversely257

proportional to the current quality, which reflects the behavior measured from the tracks more258

accurately (Hummitzsch 2009). Furthermore, maintenance operations also affect this degradation259

rate (Ramos and Fonseca 2013; Audley and Andrews 2013; Andrade and Teixeira 2016).260

In our approach, we consider an exponential fitting model (Hummitzsch 2009), combined261
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with a mixed maintenance model where tamping operations restore the quality of the track while262

increasing the deterioration rate and renewals restore the track to its maximum quality, as suggested263

in Ramos and Fonseca 2011a. This is shown in Equation 2, where Q0 is the initial quality, b is the264

deterioration rate, and t is the time expressed in days. Although all track segments are based on the265

same exponential model, the parameters Q0 and b are different for each segment. These parameters266

can be estimated from geometric auscultation data.267

dQ(t)
dt

= b · Q(t) ⇔ Q(t) = Q0 · ebt (2)

This work considers the standard deviation of longitudinal level D1 (σ) as the quality mea-268

sure, following European regulations (European Committee for Standardization 2010). Therefore,269

Equation 3 gives the quality σi j k of segment j of section i in trimester k, considering that no270

maintenance operations have been performed in that time period. Figure 1 shows the exponential271

behavior of a segment between successive tamping operations.272

σi j k = σi j0 · ebi jk (90t) (3)

Maintenance operations modeling273

When the quality level attains a certain threshold, maintenance operations are performed in order274

to take it to an appropriate value. This introduces a break in the model, as the quality is changed.275

Moreover, maintenance operations also change the deterioration rate (Ramos and Fonseca 2013;276

Audley and Andrews 2013), which makes the modeling problem much more difficult, in particular277

with respect to the estimation of Q0 and b.278

Previous works in the literature consider that tamping induces a constant change in the first279

derivative of the exponential deterioration model curve (Hummitzsch 2009). This model starts280

from the first derivative of σ in trimester k = 0 (Equation 4) and assumes a constant ratio c between281

this value before and after a tamping (Equation 5). Then, it estimates σi j (k+1) with a linear fitting282

using the age of the track, so that the new deterioration rate is given by Equation 6.283
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σ′i j0 = σi j0 · bi j0 (4)

σ′i j (k+1) = c · σ′i j k (5)

bi j (k+1) =
σ′i j (k+1)

σi j (k+1)
(6)

Figure 1 depicts an example of the quality of a segment over the years after successive tamping284

operations, for two slightly different quality thresholds. It can be seen that the more tampings are285

performed, the faster the track deteriorates, and the smaller the quality gain is. Moreover, the small286

difference in the threshold causes serious disturbances of the degradation forecast for large time287

horizons. This highlights the difficulty of the tackled problem: decisions that are made for early288

stages of the scheduling might have important long-term effects on the track behavior.289

The modeling of a renewal operation is simpler. It is considered to be applied to a whole section290

of the track, whose quality is restored to some level Qbest , with a certain deterioration rate bbest .291

This operation resets the deterioration model to the optimal state of a new track.292

Solution modeling293

Maintenance operations can be encoded as a vector of binary values that indicate if the operation294

is performed or not at a certain time and location. Focusing on tamping operations, the vector is295

of the form x = {xi j k }, where i denotes the track section, j is the segment within a section and k is296

the trimester. Likewise, complete renewal operations are represented as a vector y = {yik }.297

The length of these vectors is NgNk and Ns Nk respectively, where Ns, Ng and Nk are the number298

of sections, segments and trimesters. Each solution to the scheduling problem is represented by the299

concatenation of x and y, as shown in Figure 2, where Ni is the number of segments in section i. Note300

that each section can be split into a different number of segments, according to the segmentation301

procedure previously described. This gives an overview of the difficulty of the problem, which302

involves a very high dimensionality. More precisely, the size of the search space is 2Nk (Ns+Ng) ,303

making brute-force or even exact approaches not feasible.304
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Objective functions and constraints305

The proposed approach to the optimization of maintenance plans uses two different objective306

functions: economical cost of the maintenance and time delay of the trains. This design complies307

with other approaches (Patra et al. 2009; Ramos and Fonseca 2011a). Other secondary objectives308

are considered to be included within these, such as the durability of the track (reflected as a higher309

cost), or level of service (which reflects the deterioration state in the same way as the delay).310

However, two more factors must be taken into account: safety and resources. These have been311

implemented as constraints, so that a solution that violates any constraint is said to be non-feasible.312

Cost313

The economical cost of railway maintenance includes costs of track inspection and maintenance314

operations. In the literature, various approaches to assess these costs can be found (Patra et al. 2009;315

Guler 2013), which involve duration and length of the operations and cost of the workforce and316

equipment. Based upon the cost functions defined in Patra et al. 2009; Guler 2013, the maintenance317

cost is defined as the sum of tamping cost (CT ) and renewal cost (CR) for all sections, segments and318

trimesters, as shown in Equation 7, where Ct is the cost of a tamping operation per meter, Li j is the319

segment length, Cr is the renewal cost per meter, Li is the section length and r is the discount rate320

(which models the economic impact of the investment). Equation 7 is the first objective function321

for the modeling of the problem, and it is to be minimized.322

f1(x, y) = CT + CR =
∑

k

∑
i j

(
Ct · Li j · xi j k

)
+

∑
i

(
Cr · Li · yik

)
(1 + r)k (7)

Delay323

The other main objective for railway maintenance is the maximization of the track availability324

and capacity. Usually, maintenance operations are performed when no trains are scheduled, so325

that the availability is not affected. As for the capacity, it can be translated into terms of overall326

time delay of the trains (Ramos and Fonseca 2011a). Table 2 shows the maximum speed of the327

track depending on its measured quality, according to European standards (European Committee328
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for Standardization 2010).329

In order to calculate the delay, the maximum permissible nominal speed smax
i of section i is330

defined as the minimum speed across every segment j within the section, considering that the331

track is in perfect condition, and depends mainly on the curvature of the track. Accordingly, the332

maximum speed that a train t, whose average speed is smean
t , can attain within section i is denoted333

st
i . Equation 8 presents the maximum speed for a train t in section i and trimester k, where334

sik (σik ) is the maximum speed in the section taking into account the deterioration state of the track335

(σik = max
j
{σi j k }), as defined in Table 2.336

st
ik = min{st

i, sik (σik )}, st
i = min{smax

i , smean
t }, smax

i = min
j
{smax

i j } (8)

Based on these equations, the second objective function is defined by calculating the overall337

delay in hours, as detailed in Equation 9, where Nt is the number of trains and Li is the length of338

the section. Note that x and y are not explicitly shown, but they are used to calculate σik . For each339

train, each trimester and each section, the time difference is calculated with respect to the same340

track in perfect conditions. Therefore, the time delay would be zero in such a case where all σik341

are low enough to allow sik (σik ) ≥ st
i ∀i, k, t.342

f2(x, y) =
∑
ik

Nt∑
t=1

Li

1000

(
1
st

i
−

1
st

ik

)
(9)

Safety and resource constraints343

Even though a low quality of the track can be palliated by reducing the speed, each segment344

has to be kept above the acceptable minimum determined by the legal and technical normative for345

safety reasons. Table 2 shows the quality limit values for each speed in the experiments, which346

were extracted from European Committee for Standardization 2010. Thus, the safety constraint347

can be represented as shown in Equation 10.348

1 −
σi j k

max{LQN3}
≥ 0 ∀i, j, k (10)
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The other constraint to be included into the model refers to the available resources. In particular,349

the limits of the resources for tamping and renewal operations (Equations 11 and 12, respectively)350

are modeled by establishing a maximum extent of operations per trimester (maxt and maxr ,351

respectively), measured in meters.352

1 −

∑
i j

Li j xi j k

maxt
≥ 0 ∀k (11)

1 −

∑
i

Liyik

maxr
≥ 0 ∀k (12)

Proof that railway maintenance planning is NP-hard353

The problem defined above can be proven to be NP-hard. Let us consider a simplification of354

the problem that involves only tamping operations (y = 0,Cr = 0), the cost function f1 with no355

discount rate (r = 0) as a single objective, and a deterioration model where tamping does not356

change the deterioration rate (c = 1). With these conditions, the safety constraint is held if and only357

if the period between two consecutive tampings on the same segment is kept under a threshold Ti j .358

This simplification can be expressed as an integer linear programming problem with a binary359

decision variable x (Equation 13). As integer programming problems are known to be NP-hard360

(Garey and Johnson 1979), this simplified version of railway maintenance scheduling is also NP-361

hard, and so is the full non-linear multi-objective problem that is tackled in this paper.362

Minimize : Ct

∑
i j k

Li j xi j k (cost function)

Subject to:
Nk−Ti j∑
k=l+1

xi j k ≥ 1 ∀l = 0, ..., Nk (safety constraint)

∑
i j

Li j xi j k ≤ maxt ∀k = 1, ..., Nk (resource constraint)

(13)

363
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Solution initialization364

The search space of the tackled optimization problem has two main difficulties: its very high365

dimensionality (Nk (Ns + Ng) dimensions), and its complexity due to the constraints that restrict366

the feasibility of the solutions. Moreover, the objectives of a maintenance plan differ depending on367

the horizon of the schedule: a short-term scheduling usually prioritizes tamping operations, while368

a long-term approach must make an adequate use of renewal operations.369

On the other hand, there are experts on railwaymaintenance scheduling that possess information370

about how to build good maintenance plans. Therefore, this proposal does not use a randomly371

generated initial set of solutions. Instead, those solutions are generated following certain heuristic372

rules given by experts, to conform an initial set of feasible and reasonably good solutions. Then,373

it falls upon the algorithm to improve those solutions and obtain maintenance plans that are better374

than those designed by the experts. This design ensures that the quality of the obtained solutions375

to the problem will be at least as high as that of the human-designed initial set. Furthermore, the376

improvement can be measured by simply evaluating the differences between the initial solution set377

and the final Pareto front.378

When considering short-term scheduling, each solution is initialized as follows:379

1. For the first trimester, tamping is programmed in the segments whose deterioration is above380

the threshold (max{LQN3}).381

• If the tamping capacity is insufficient, a renewal is performed in the section with the382

largest number of segments needing action.383

• Otherwise, and if there is some remaining tamping capacity, a random number of384

tampings are programmed in the segments with worst quality among those that do385

not have tamping scheduled.386

The same operation is performed for the remaining renewal capacity.387

2. After the maintenance of the first trimester has been scheduled, the deterioration model388

simulates the quality for the second trimester, and the operations are scheduled following389
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step 1. This procedure is iteratively applied for the whole simulation time span.390

3. If no renewal is planned, it is randomly determined if a single renewal should be introduced391

into the solution.392

This procedure aims at ensuring the generation of feasible solutions. Note that there may be393

cases in which the track is in such a bad state that the available resources do not suffice to mend394

it within a single trimester. This situation can also arise when the first trimesters are assigned a395

low amount of tampings and renewals. In extremely bad quality tracks, feasible solutions might be396

entirely non-existent. However, this kind of solutions could also be interesting as a starting point397

for the algorithm, because they introduce diversity into the search. Eventually, as non-feasible398

solutions are dominated by feasible ones, these solutions will disappear from the population, but399

their information could have been used to generate new promising solutions.400

Different rules apply for long-term horizons, as renewal must often be preferred over tamping401

in order to obtain feasible schedules. Therefore, a different initialization heuristic was used:402

1. The total number of renewals is randomly fixed between the maximum and half of the403

maximum.404

2. These operations are randomly distributed among all the trimesters in the schedule.405

3. For each trimester:406

1. The deterioration model is applied.407

2. If this trimester had a renewal operation scheduled, it is performed over the most408

deteriorated section in terms of dQ(t)/dt (see Equation 2).409

3. Tamping is applied over any section above the threshold (max{LQN3}).410

4. If there is any remaining tamping capacity, a random fraction of it is used to schedule411

tamping over the sections with worst quality.412
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Operators and implementation particularities413

NSGA-II uses single-point crossover and bitwise mutation, as suggested in the original paper414

for binary problems (Deb et al. 2002). AMOSA uses only the bitwise mutation, as it does not415

involve any crossover operations.416

The main difference in the implementation with respect to the originally published algorithms417

lies in the hill-climbing technique for AMOSA. Although the same algorithm was implemented, an418

additional criterion was added to allow for handling such a high dimension problem (note that the419

number of dimensions is 2Nk (Ns + Ng), see Table 5 for the dimensionality of the track evaluated420

in this paper). Instead of performing the hill-climbing procedure until no improvement is reached,421

the procedure is interrupted when the solution has been improved more than than a fixed number422

of times maxHC . Otherwise, the search space for the hill-climbing procedure would be too large to423

be used as initial greedy algorithm to improve the solutions.424

EXPERIMENTS AND RESULTS425

Case study and parameters426

Two multi-objective algorithms have been used for the experimental framework of this paper:427

NSGA-II and AMOSA. Both algorithms have been executed up to a total of 500 000 evaluations of428

the objective functions, and the corresponding parameters have been set up accordingly (Table 3).429

The horizon of the prediction was 3 years, which corresponds to an average contract period for430

maintenance contractors. Both algorithms started from the same set of initial solutions. The431

value for maxHC was chosen so as to invest approximately 2 000 evaluations for the hill-climbing432

procedure, and the remaining evaluations for the simulated annealing optimization.433

The experiments have been performed upon a model of a real railway track from the Swedish434

IronOre Line, which is 152 km long and runs in the northern part of Sweden, subject to temperatures435

between−40◦Cand 25◦Cand heavy snowfalls duringwinter. A total of 19 geometrical auscultations436

with a resolution of 25cm performed between 2007 and 2012 are available. These data were437

spatially aligned to match the measurements taken at different points in time, using correlation-438

based alignment on the curvature. This information was used to estimate the initial Q0 and b for439
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every segment of the track by an exponential fitting. Tables 4 and 5 contain the parameters that440

define the track modeling and the solutions to the problem for this case study, respectively.441

To complete the study and give an overview of the potential of the proposed multi-objective442

approach, a complementary study is presented in a subsequent section, with horizons longer than 3443

years for the maintenance plans, namely 5, 10 and 20 years. Due to the computational constraints,444

the number of evaluations was reduced to 20 000 for these tests.445

Scheduling for 3 Years446

Tables 6 and 7 present a summary of the solutions in the final Pareto fronts obtained by NSGA-II447

and AMOSA, respectively. These show clearly that renewal and tamping operations increase the448

maintenance cost and decrease the time delay. They also reflect that renewal improves the track449

quality more than tamping, allowing for a higher nominal speed.450

Table 7 shows the flexibility provided by the Pareto front. The difference between the two451

extremes of the Pareto (first and last rows of the table) states that the delay can be reduced by 55%452

by increasing the cost by around 23%. However, railway maintenance companies may be more453

interested in the intermediate results, seeking a trade-off between cost and delay. The approach454

proposed in this paper allows to consider a wide set of non-dominated solutions that provides a rich455

decision support for railway maintenance companies.456

Figure 3 depicts the initial population and the final Pareto fronts of NSGA-II and AMOSA.457

At first sight, it is observed that the AMOSA Pareto front outperforms that of NSGA-II. This458

behavior arises because the initial local search performed by AMOSA proves to be crucial for459

the algorithm convergence. The initial population of solutions is not random; quite oppositely,460

it has been generated according to directions and constraints given by experts, so they all have a461

reasonable quality. AMOSA’s local search focuses on further improving these solutions, rather than462

exploring entirely new areas of the search space for unknown solutions to the problem, which is the463

strategy followed by NSGA-II. Thus, AMOSA starts its exploratory search from a set of already464

optimized solutions, which yields far better results, as demonstrated by the distance between the465

initial population and the Pareto front in Figure 3: the solution of minimal cost is reduced from466

19 Peralta, October 25, 2017



about 6.2Meto 5.7Me, and that with minimal delay is improved from 100 hours to 62. Moreover,467

it is able to explore solutions with different amounts of renewals than initially provided in the468

expert-based solutions, demonstrating a considerable diversification of the search as well. Note469

that the solutions with the lowest delays, which involve 10 renewal operations, also involve a high470

number of tampings; this highlights the heavy maintenance that would be required to keep the track471

at an optimal quality at all times. On the other hand, it can be seen that the combinations of existing472

solutions favored by NSGA-II do not suffice to reach the performance of AMOSA.473

To further illustrate this behavior, Figure 4 gives an overall view of all the 500 000 solutions474

explored by AMOSA. It shows that even though AMOSA focuses on improving the good solutions,475

a good deal of exploration effort is made. This plot also shows the structure of the problems:476

each of the vertical stripes represents a certain number of renewals (the three stripes with solutions477

in the Pareto correspond respectively and from left to right 8, 9 and 10), and each additional478

renewal increases the cost of the maintenance plan, but reduces the delay. It can be seen that the479

search explored feasible maintenance plans with 11 renewals, but they did not yield better delays480

than solutions with 10 renewals. Some plans with 7 or 6 renewals and a very low cost were also481

generated, but they did not comply with the constraints and therefore were not included into the482

final set of solutions.483

To summarize, the proposed approach has been shown to greatly improve the quality of solutions484

in both objectives. In addition, by design the obtained solutions will never be worse than those485

obtained by human experts. While metaheuristics have no guarantee for quality assurance, they are486

usually better than other simpler methods. In addition, due to the large budgets of the maintenance487

contracts, the improvement in solutions easily leads to large economical savings.488

Long-term scheduling489

It is well-known that models and solutions for long-term horizons are subject to important490

uncertainties and therefore cannot be considered as an exact forecast (Ramos and Fonseca 2011b).491

However, the results presented in this complementary study are useful to illustrate the behavior492

of the multi-objective approach, and they represent the long-term point of view of the railway493
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owner. A similar study is presented in Ramos and Fonseca 2011a, in which a small custom track494

is simulated over 30 years; the authors are able to generate nine non-dominated feasible solutions.495

Nevertheless, the results cannot be compared to those obtained in this paper because they do not496

take into account the deterioration caused by tamping operations, which simplifies the problem and497

the search space they consider.498

This section presents the results obtained after additional executions of the algorithms for a499

simulation of the track over 5, 10 and 20 years. This is reflected in a linear increase in the size500

of the solutions and therefore an exponential growth of the search space. The initialization rules501

for the population are also different, as human experts follow different scheduling patterns for such502

long-term situations. Due to the higher computational cost of the objective and constraint functions,503

only 20 000 evaluations of the objective functions were performed for each horizon and algorithm.504

Note that the difficulty of the problem is such that NSGA-II did not obtain any improvement with505

respect to the initial population; therefore, only the results from AMOSA are presented hereby.506

Figure 5 represents the initial populations and the Pareto fronts obtained by AMOSA, in terms507

of average cost and delay per year. For the sake of simplicity, only feasible solutions are shown508

in the initial populations. The plot shows great improvements on both objectives for all three509

horizons. The initial solutions are in general worse for distant horizons because the complexity of510

the scheduling (which is an NP-hard problem) increases greatly as the horizon grows.511

However, the Pareto fronts surprisingly follow the opposite behavior: the larger the horizon, the512

better the final Pareto front of solutions. This means that the proposed scheduling procedure works513

best with more distant horizons than with small ones, despite the exponential growth of the search514

space. This behavior arises because for long-term simulations, the cost of the renewal operations515

can be amortized over the years, yielding better quality railways at lower costs per year, which in516

turn leads to lower average delays. In this manner, our approach has been able to improve altogether517

two objectives that are a-priori opposed to each other. Furthermore, it implies an improvement of518

the average track quality after applying the computed maintenance schedules with respect to the519

current state of the tracks, which is the result of a maintenance plan carefully designed by experts.520
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The case with the largest horizon is especially illustrative: both the average cost per year and the521

average delay are reduced by a factor of at least 20. This reflects the advantages of the proposed522

metaheuristics over human-designed approaches and assesses the quality of the obtained solutions.523

The limiting factors for most optimization algorithms are the size of the solution space and the524

number of evaluations. The results in this paper demonstrate that the proposal is able to explore525

very large solution spaces and reach good solutions in very few iterations. As an example, the526

number of possible solutions for the considered railway along 20 years is more than 1035000, and527

the proposal is able to provide high-quality solutions after evaluating only 20 000 of them.528

CONCLUSIONS529

In this paper, a multi-objective approach has been described to tackle the railway track mainte-530

nance scheduling problem. Two objective functions have been considered (maintenance costs and531

train delays), as well as three sets of constraints that model safety limits and resources. The proposal532

includes a deterioration model based on exponential fitting and a two-level segmentation, that takes533

into account the variations in the deterioration curve caused by tamping and renewal operations.534

Two multi-objective algorithms (AMOSA and NSGA-II) have been applied to the problem, starting535

from an initial population of solutions generated heuristically according to expert knowledge.536

The described approach has been tested over a model of a real railway from northern Sweden537

to generate a maintenance schedule for 3 years. Both algorithms have been run with equivalent538

parameters and started from the same initial population. Then, an additional set of experiments for539

longer horizons (namely 5, 10 and 20 years) has been performed.540

As for the results obtained, AMOSA outperformed NSGA-II due to its stronger intensification541

strategy. Furthermore, both the Pareto front and the solution space explored by AMOSA showed542

that a wide range of solutions were analyzed, providing the decision maker with a fair variety of543

possible maintenance schedules. All the solutions provided in the Pareto front for the three years544

horizon were non-constrained, which stresses the adequacy of the proposed scheme. Moreover, the545

results obtained for long-term horizons show a very important decrease of the cost and delay, and546

this decrease is higher for more distant horizons, assessing the capabilities of the proposed scheme547
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to schedule railway maintenance plans.548

The main limitation of the proposal is the computational complexity of simulating of the549

degradation model for each generated schedule, which limits the number of evaluations that can550

be carried out during the optimization algorithm. Therefore, even though the obtained solutions551

were of very high quality, it would be of interest to develop new approaches that can make use of552

parallel computing infrastructures to solve this problem, which would allow us to deal with longer553

railways (which would have an impact on the dimensionality of the search space and the complexity554

of the problem). Another possibility of extending the work consists of considering more complex555

maintenance schedules, including availability of human and material resources and time slots.556

ACKNOWLEDGMENTS557

Thisworkwas supported by the projectsOPTIRAIL (FP7-GA314031), P12-TIC-2958, TIN2013-558

47210-P, TIN2016-81113-R.559

REFERENCES560

Aminbakhsh, S. and Sonmez, R. (2017). “Pareto Front Particle Swarm Optimizer for Discrete561

Time-Cost Trade-Off Problem.” Journal of Computing in Civil Engineering, 31(1), 04016040.562

Andrade, A. R. and Teixeira, P. F. (2016). “Exploring Different Alert Limit Strategies in the563

Maintenance of Railway Track Geometry.” Journal of Transportation Engineering, 142(9),564

04016037.565

Arasteh Khouy, I., Larsson-Kråik, P.-O., Nissen, A., Juntti, U., and Schunnesson, H. (2014). “Op-566

timisation of track geometry inspection interval.” Proceedings of the Institution of Mechanical567

Engineers, Part F: Journal of Rail and Rapid Transit, 228(5), 546–556.568

Audley, M. and Andrews, J. D. (2013). “The effects of tamping on railway track geometry degrada-569

tion.” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid570

Transit, 376–391.571

Bandyopadhyay, S., Saha, S., Maulik, U., and Deb, K. (2008). “A simulated annealing-based multi-572

objective optimization algorithm: AMOSA.” IEEE Transactions on Evolutionary Computation,573

12(3), 269–283.574

23 Peralta, October 25, 2017



Blum, C. and Roli, A. (2003). “Metaheuristics in Combinatorial Optimization: Overview and Con-575

ceptual Comparison Metaheuristics in Combinatorial Optimization.” ACM Computing Surveys,576

35(3), 268–308.577

Budai, G. (2009). “Operations research models for scheduling railway infrastructure maintenance.”578

Ph.D. thesis, Erasmus University Rotterdam, Rotterdam, Nederlands.579

Budai, G., Huisman, D., and Dekker, R. (2006). “Scheduling preventive railway maintenance580

activities.” Journal of the Operational Research Society, 57(9), 1035–1044.581

Caetano, L. F. and Fonseca, P. (2013). “Availability approach to optimizing railway track renewal582

operations.” Journal of Transportation Engineering, 139(9), 941–948.583

Caetano, L. F. and Teixeira, P. F. (2016). “Predictive Maintenance Model for Ballast Tamping.”584

Journal of Transportation Engineering, 142(4), 04016006.585

Cárdenas-Gallo, I., Sarmiento, C. A., Morales, G. A., Bolivar, M. A., and Akhavan-Tabatabaei, R.586

(2017). “An ensemble classifier to predict track geometry degradation.” Reliability Engineering587

& System Safety, 161, 53–60.588

Das, I. and Dennis, J. (1997). “A closer look at drawbacks of minimizing weighted sums of objec-589

tives for Pareto set generation in multicriteria optimization problems.” Structural Optimization,590

14(1), 63–69.591

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. John Wiley & Sons.592

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). “A fast and elitist multiobjective593

genetic algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation, 6(2), 181–197.594

El-Abbasy, M. S., Elazouni, A., and Zayed, T. (2017). “Generic Scheduling OptimizationModel for595

Multiple Construction Projects.” Journal of Computing in Civil Engineering, 31(4), 04017003.596

Esveld, C. (2001). Modern railway track. MRT-productions Zaltbommel.597

European Committee for Standardization (2010). “European Standard EN 13848-5: Railway ap-598

plications: Track - Track geometry quality - Part 5: Geometric quality levels.599

Ferreira, P. and López-Pita, A. (2015). “Numerical modelling of high speed train/track system for600

the reduction of vibration levels and maintenance needs of railway tracks.” Construction and601

24 Peralta, October 25, 2017



Building Materials, 79, 14–21.602

Garey, M. R. and Johnson, D. S. (1979). Computers and intractability : a guide to the theory of603

NP-completeness. W.H. Freeman.604

Guler, H. (2013). “Decision support system for railway track maintenance and renewal manage-605

ment.” Journal of Computing in Civil Engineering, 27(3), 292–306.606

Gustavsson, E. (2015). “Scheduling tamping operations on railway tracks usingmixed integer linear607

programming.” EURO Journal on Transportation and Logistics, 4, 97–112.608

Higgins, A., Kozan, E., and Ferreira, L. (1996). “Optimal scheduling of trains on a single line609

track.” Transportation Research Part B: Methodological, 30(2), 147–161.610

Hummitzsch, R. (2009). “For the Predictability of Track Quality Behaviour - Statistical Analysis611

of Track Behaviour for the Creation of a Prediction Model.” Ph.D. thesis, Technische Universität612

Graz, Graz, Austria.613

Jovanovic, S. (2004). “Railway track quality assessment and related decision making.” IEEE614

International Conference on Systems, Man and Cybernetics, Vol. 6, IEEE, 5038–5043.615

Kirkpatrick, S., Gelatt Jr., C. D., and Vecchi, M. P. (1983). “Optimization by simulated annealing.”616

Science, 220(4598), 671–680.617

Knowles, J. D. and Corne, D. W. (2000). “Approximating the nondominated front using the Pareto618

archived evolution strategy.” Evolutionary computation, 8(2), 149–172.619

Kong, J. S. and Frangopol, D. M. (2003). “Evaluation of expected life-cycle maintenance cost of620

deteriorating structures.” Journal of Structural Engineering, 129(5), 682–691.621

Lévi, D. (2001). “Optimization of track renewal policy.” World Congress on Railway Research,622

Cologne.623

Lidén, T. and Joborn, M. (2017). “An optimization model for integrated planning of railway624

traffic and network maintenance.” Transportation Research Part C: Emerging Technologies, 74,625

327–347.626

Luan, X., Miao, J., Meng, L., Corman, F., and Lodewijks, G. (2017). “Integrated optimization on627

train scheduling and preventive maintenance time slots planning.” Transportation Research Part628

25 Peralta, October 25, 2017



C: Emerging Technologies, 80, 329–359.629

Macedo, R., Benmansour, R., Artiba, A., Mladenović, N., and Urošević, D. (2017). “Scheduling630

preventive railwaymaintenance activities with resource constraints.” Electronic Notes in Discrete631

Mathematics, 58, 215–222.632

Nguyen, K., Villalmanzo, D. I., Goicolea, J. M., and Gabaldon, F. (2016). “A computational633

procedure for prediction of ballasted track profile degradation under railway traffic loading.”634

Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid635

Transit, 230(8), 1812–1827.636

Patra, A. P., Söderholm, P., andKumar, U. (2009). “Uncertainty estimation in railway track life-cycle637

cost: A case study from Swedish National Rail Administration.” Proceedings of the Institution638

of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(3), 285–293.639

Podofillini, L., Zio, E., andVatn, J. (2006). “Risk-informed optimisation of railway tracks inspection640

and maintenance procedures.” Reliability Engineering and System Safety, 91(1), 20–35.641

Ramos, A. and Fonseca, P. (2011a). “Biobjective optimization model for maintenance and renewal642

decisions related to rail track geometry.” Transportation Research Record, 2261, 163–170.643

Ramos, A. and Fonseca, P. (2011b). “Uncertainty in rail-track geometry degradation: Lisbon-644

Oporto line case study.” Journal of Transportation Engineering, 137(3), 193–200.645

Ramos, A. and Fonseca, P. (2013). “Hierarchical Bayesian modeling of rail track geometry degra-646

dation.” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and647

Rapid Transit, 364–375.648

Vale, C. and Ribeiro, I. M. (2014). “Railway condition-based maintenance model with stochastic649

deterioration.” Journal of Civil Engineering and Management, 20(5), 686–692.650

Wen, M., Li, R., and Salling, K. (2016). “Optimization of preventive condition-based tamping for651

railway tracks.” European Journal of Operational Research, 252(2), 455–465.652

Xu, P., Sun, Q., Liu, R., Souleyrette, R. R., and Wang, F. (2015). “Optimizing the Alignment of653

Inspection Data from Track Geometry Cars.” Computer-Aided Civil and Infrastructure Engi-654

neering, 30(1), 19–35.655

26 Peralta, October 25, 2017



Zhao, J., Chan, A. H. C., Stirling, A. B., andMadelin, K. B. (2006). “Optimizing policies of railway656

ballast tamping and renewal.” Transportation Research Record, 1943, 50–56.657

27 Peralta, October 25, 2017



List of Tables658

1 Maintenance operations and their triggers . . . . . . . . . . . . . . . . . . . . . . 29659

2 Maximum speed and minimum quality values according to EN13848-5 . . . . . . 30660

3 Parameters for the optimization algorithms . . . . . . . . . . . . . . . . . . . . . . 31661

4 Parameters concerning the considered track . . . . . . . . . . . . . . . . . . . . . 32662

5 Parameters concerning the solutions . . . . . . . . . . . . . . . . . . . . . . . . . 33663

6 Summary of the Pareto front obtained by NSGA-II . . . . . . . . . . . . . . . . . 34664

7 Summary of the Pareto front obtained by AMOSA . . . . . . . . . . . . . . . . . . 35665

28 Peralta, October 25, 2017



TABLE 1. Maintenance operations and their triggers

Maintenance operation Trigger
Rail grinding
Rail lubrication Time
Track inspection
Tamping
Ballast cleaning
Rail renewal Condition
Ballast renewal
Sleeper renewal
Fasteners renewal
Rail replacement Failure
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TABLE 2. Maximum speed and minimum quality values according to EN13848-5

Standard deviation in Speed (km/h) LQN3
longitudinal level D1 (mm)

2.3 to 3.0 s ≤ 80 3.1
1.8 to 2.7 80 < s ≤ 120 2.7
1.4 to 2.4 120 < s ≤ 160 2.2
1.2 to 1.9 160 < s ≤ 230 2.0
1.0 to 1.5 230 < s ≤ 300 1.7

30 Peralta, October 25, 2017



TABLE 3. Parameters for the optimization algorithms

Algorithm Parameter Value
Size of the population 104

NSGA-II Number of generations 4810
Crossover probability 0.6
Mutation probability 0.3
HL 104
SL 104
γ 1

AMOSA α 0.9183544
maxHC 20
Initial temperature 500
Minimum temperature 0.1
Iterations per temperature 5000
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TABLE 4. Parameters concerning the considered track

Parameter Description Value
Ct Tamping cost 10
Cr Renewal cost 150
maxt Maximum tamping (meters) 5100
maxr Maximum renewal (meters) 12 000
smean

t Average speed of train Between 60 and 135
r Discount rate 0.03
Ns Number of sections 24
Ng Number of segments 1435
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TABLE 5. Parameters concerning the solutions

Parameter Description Horizon
3 years 5 years 10 years 20 years

Nk Number of trimesters 12 20 40 80
NgNk Length of x 17 220 28 700 57 400 114 800
Ns Nk Length of y 288 480 960 1920
Nk (Ns + Ng) Length of the solution 17 508 29 180 58 360 116 720
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TABLE 6. Summary of the Pareto front obtained by NSGA-II

Cost (e) Delay (hours) Tampings Renewals
6 215 034 334.01 501 9
6 224 578 263.46 517 9
6 235 872 239.43 536 9
6 251 445 212.07 551 9
6 259 503 207.73 568 9
6 259 854 178.66 556 9
6 287 670 172.05 608 9
6 293 251 164.96 601 9
6 299 343 159.31 618 9
6 305 647 158.21 629 9
6 305 650 148.29 631 9
6 318 460 148.12 648 9
6 326 540 138.54 667 9
6 329 879 127.06 672 9
6 345 281 121.64 695 9
6 362 485 100.86 725 9
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TABLE 7. Summary of the Pareto front obtained by AMOSA

Cost (e) Delay (hours) Tampings Renewals
5 689 494 137.98 665 8
5 690 557 126.63 667 8
6 286 985 126.63 623 9
6 289 973 126.14 625 9
6 293 171 119.84 630 9
6 293 924 118.34 630 9
6 297 452 116.68 636 9
6 299 088 113.50 640 9
6 321 768 110.84 663 9
6 323 540 110.83 666 9
6 325 447 109.16 670 9
6 325 871 103.03 669 9
6 326 664 100.72 668 9
6 335 103 99.06 680 9
6 339 205 99.03 689 9
6 343 664 96.25 691 9
6 345 849 93.09 694 9
6 347 311 91.43 696 9
6 350 716 89.45 699 9
6 351 128 86.29 702 9
6 364 458 86.26 723 9
6 364 458 86.26 724 9
6 369 357 84.75 729 9
6 382 535 84.68 758 9
6 393 818 81.53 774 9
6 397 428 78.81 780 9
6 996 854 72.01 839 10
7 006 133 68.85 852 10
7 007 671 62.06 855 10
7 007 671 62.06 856 10
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Fig. 1. Example of quality simulation with the deterioration model. Both lines simulate the same
segment, with a slightly different quality threshold for tamping.

37 Peralta, October 25, 2017



Fig. 2. Representation of a single solution to the maintenance scheduling problem.
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Fig. 3. Initial population and Pareto fronts of NSGA-II and AMOSA
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Fig. 4. All the solutions generated by AMOSA
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Fig. 5. Feasible solutions of the initial populations andAMOSAPareto fronts for the three long-term
horizons tested.
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