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In modern agriculture, seeking eco-friendly ways to promote plant growth and enhance
crop productivity is of priority. Biostimulants are a group of substances from natural
origin that contribute to boosting plant yield and nutrient uptake, while reducing the
dependency on chemical fertilizers. Developing biostimulants from by-products paves
the path to waste recycling and reduction, generating benefits for growers, food industry,
registration and distribution companies, as well as consumers. The criteria to select
designated by-products for valorizing as biostimulant are: absence of pesticide residue,
low cost of collection and storage, sufficient supply and synergy with other valorization
paths. Over the years, projects on national and international levels such as NOSHAN,
SUNNIVA, and Bio2Bio have been initiated (i) to explore valorization of by-products for
food and agriculture industries; (ii) to investigate mode of action of biostimulants from
organic waste streams. Several classes of waste-derived biostimulants or raw organic
material with biostimulant components were shown to be effective in agriculture and
horticulture, including vermicompost, composted urban waste, sewage sludge, protein
hydrolysate, and chitin/chitosan derivatives. As the global market for biostimulants
continues to rise, it is expected that more research and development will expand the list
of biostimulants from by-products. Global nutrient imbalance also requires biostimulant
to be developed for targeted market. Here, we review examples of biostimulants derived
from agricultural by-products and discuss why agricultural biomass is a particularly
valuable source for the development of new agrochemical products.
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INTRODUCTION

Due to increasing demand for better yield and quality of food and crops, seeking eco-friendly and
sustainable ways to produce fertilization reagents of biological origins has become a major goal in
agriculture. Biostimulants are products able to act on plants’ metabolic and enzymatic processes
improving productivity and crop quality. It also assists plants to cope with abiotic stress, especially
in the early stage of plant development. European Biostimulants Industry Council (EBIC) defines
biostimulants as “substance(s) and/or micro-organisms whose function when applied to plants
or the rhizosphere is to stimulate natural processes to enhance/benefit nutrient uptake, nutrient
efficiency, tolerance to abiotic stress, and crop quality1.” The economic relevance of such products

1http://www.biostimulants.eu
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is not insignificant as the global market for biostimulants has
been projected to reach $ 2,241 million by 2018, having a
compound annual growth rate of 12.5% from 2013 to 2018 (Calvo
et al., 2014). In the European Union, the economic value of
biostimulants is estimated to be between 200 and 400 million
euros (with a yearly growth of 10%) (EBIC). Owing to the
positive effects of biostimulant on plant growth, reduction of
stress and disease prevention, the use of biostimulant contributes
to boosting plant production, yield and quality.

Over the years, several types of biostimulants have been
defined by different authors, based on source material, mode
of action and other parameters [Reviewed in (Yakhin et al.,
2016)]. For example, du Jardin (2015) categorized biostimulants
into 7 classes: humic acid (HA) and fulvic acid (FA),
protein hydrolysates (PHs), seaweed extracts, chitosan, inorganic
compounds, beneficial fungi and bacteria (du Jardin, 2015). The
primary sources of biostimulants also display various origins and
physiological characteristics. It reflects on the categorization of
biostimulants as well. For example, macroalgae and their extracts
have long been used for biostimulant production (McHugh,
2013).

The active ingredients present in different types of biomass
with potential biostimulant activity fall into a diverse range
of molecules that includes phytohormones (cytokinin, auxins,
gibberellins, brassinosteriods, ethylene, and abscisic acids)
(Letham and Palni, 1983; Mussig et al., 2006; Pimenta
Lange and Lange, 2006; Werner and Schmulling, 2009;
Wolters and Jurgens, 2009; Zhao, 2010; Pacifici et al., 2015),
amino acids (Hoque et al., 2007; Colla et al., 2015; Colla
et al., 2017), polyamine (Fuell et al., 2010), etc. In seaweed
extracts, phytohormones have been demonstrated to be
present and are considered as putative bioactive ingredients
of this category of biostimulants (Khan et al., 2009; Stirk
et al., 2014; Stirk and Van Staden, 2014). In addition to
hormones, algal extracts also contain a range of carbohydrates
such as alginate, fucoidan, betaines as well as proteins
and minerals which promote plant growth (Sharma et al.,
2014).

It should be noted that waste streams from food and
agricultural industries are equally important sources for
biostimulant development. The biostimulants generated from
waste streams are extracts from food waste, composts, manures,
vermicompost, aquaculture waste streams and sewage treatments
(Yakhin et al., 2016). PHs are commonly used biostimulants,
which are a group of polypeptides, oligopeptides, and amino
acids that are manufactured from hydrolyzed protein-rich waste
(Schaafsma, 2009).

Recycling of organic waste as biofertilizers is historically a
common practice. Manure has been and is applied to the field
as soil fertilizers across the world. However, environmental
problems occur when the local production exceeds storage
and local application capacity, resulting in careless disposal
and associated environmental spillage with consequent water
pollution, over-fertilization, ammonia toxicity, and infestation
of human pathogens, etc. (Dominguez and Edwards, 2010). To
avoid environmental contamination, finding alternative ways
to reuse such material in the agricultural production system

is necessary. The concept of circular economy emphasizes
the process of converting waste materials and products that
have reached the end of their life cycle into new sources.
A new EU regulation that entered into force on January 1,
2018 aims at boosting the use of bio-base wastes as new
types of fertilizers (European Commission, 2016a). These waste-
originated fertilizers usually contain biostimulatory substances,
and we will discuss further in this review when placing composts
as important sources of biostimulants. When a waste turns
into raw material for industrial or agricultural application,
then it is no longer waste. As the definition of “waste”
describes the material to be discarded, it is sometimes more
appropriate to label the material as by-product. A by-product
is lawfully used, not deliberately produced, of certain use,
ready for use without further processing and produced as an
integral part of the production process (European Commission,
2007).

Through research and development of using industrial waste
for re-manufacturing, reuse and recycling, one can make
fundamental steps toward biomass optimization and resources
use efficiency and sustainability (European Commission, 2017).
Therefore, developing biostimulants from by-products provides
the innovative methods to prevent inadvertent disposal and
results in environmental-friendly solutions for waste re-use.
From a legal point of view, the European Commission is
proposing a Regulation which will ease the access of organic
and waste-based fertilizers to the EU market (European
Commission, 2016b). In this review, we give a current
view of strategies employed to turn organic wastes into
added-value products, especially in the field of biostimulant
development. A number of categories of biostimulants is
presented, providing a glimpse of biostimulant products
currently on the market.

DEFINING BIOSTIMULANT DERIVED
FROM WASTE STREAM

By-Products and Their Utilization in Food
and Feed
With the demand for larger quantities of healthy and fresh
food, the agricultural and food industry companies are faced
with tremendous amount of organic biomass, coming from the
production or processing procedures. Depending on the types
of crop and its processing, the scale of biomass production
may substantially vary. For example, fish by-product consists of
over 60% of the biomass, including head, skin, fins, frames, etc.
(Chalamaiah et al., 2012). The fishing industry produces vast
amounts of the exoskeletons of crustaceans, coming from shrimp,
crab and lobster, mounting to a global production of 5.9 Mt,
with 35–45% of it being discarded as waste (head and thorax)
(Sharp, 2013). A lot of these sources are enriched in secondary
metabolites because they originate from cells and tissues exposed
to the exterior of the organisms’ body which is developed to keep
off attackers and pathogens. For instance, potato peel is enriched
in steroidal alkaloids which are associated with defense against
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bacterial, fungal, and insect pathogens [Reviewed in (Fritsch
et al., 2017)]. In tanning industry, which treats animal skins
and hides to produce leather, it generates large quantities of by-
products: one metric ton of wet salted hides produces 200 kg of
leather and 450–600 kg solid waste, leaving more than 60% of
biomass, if not converted, will be disposed to the environment
as waste (Alexander et al., 1992; Verheijen et al., 1996). Thus, the
sheer volume of by-product is vast and the presence of a complex
mix of metabolites profile is favoring the exploitation of these
products.

Coming to terming with the problem of disposing or re-
using industrial by-products, techniques have been developed to
process fish by-products, such as enzymatic hydrolysis, autolysis
and thermal hydrolysis (Halim et al., 2016). The human health
benefits associated with fish PHs (FPHs) are demonstrated
by the commercial preparations used as healthy food and/or
nutraceuticals in many countries (Chalamaiah et al., 2012). The
antioxidant properties of FPHs are associated with protecting
the human body from oxidative stress (Chalamaiah et al., 2012).
Other positive effects on human physiology are attributed to
fish by-product as well, including the prevention of high blood
pressure (hypertension), as well as anti-cancer activity (Halim
et al., 2016). Besides development of human consumption, by-
products are also being used as animal feed. FPHs have been used
in aquaculture feed to enhance the growth and survival of fish
(Kotzamanis et al., 2007).

Another waste-turn-into-feed example comes from feather
waste that is enriched in keratin, a nutrient source for
animals and plants (Korniłłowicz-Kowalska and Bohacz, 2011).
Chicken feathers are the most common keratin waste product
with high amounts being produced in poultry slaughterhouses
(Korniłłowicz-Kowalska and Bohacz, 2011). Owing to its high
protein content, feather waste has been largely converted to
feedstock. However, the application of animal by-product used
as feedstock is declining over the years because of more stringent
regulations. Besides, valorization strategies of animal feed come
with limited financial return. On the other hand, PHs are now
accepted as components of plant biostimulants in agriculture
that increase productivity and quality of crops (Colla et al.,
2017). It should be noted that animal by-products not intended
for human consumption are potential sources of risks to the
public and to animals. An example of the problems that may
arise because of recycling animal waste is the use of certain
animal by-products that gave rise to outbreaks of foot-and-mouth
disease, bovine spongiform encephalopathy (BSE) (European
Commission, 2009).

Suitability of Waste Streams Used for
Biostimulant Development
As the first step toward developing biostimulants from organic
waste, the choice of biomass resource is critical. Various
active ingredients found in industrial waste streams and by-
products of biological origins pose the perfect opportunity to
extract molecules for better growth and pathogen resistance
of valuable crop plants. However, some understanding of
the intrinsic biochemical characteristics of raw materials is

needed, such as preserving the specific bioactive ingredients
(Povero et al., 2016). The environmental and economic
evaluation must be carried out as well, to assess whether
a new biostimulant product has good prospect to become
successful. To assess if the raw material is suitable for the
development of biostimulants, several factors must be taken into
consideration.

Absence of Pesticides
It is expected that during conventional pest management,
pesticides have been used to safeguard crop production. By-
product derived from plant species that has been treated with
pesticides could potentially cause problems for biostimulants
production, as it no longer will be seen as a “natural” product
and will be considered as an alternative preparation of the
regulated agrochemical. In most EU member states, it is
specified that biostimulant-like substances are different from
plant protection products and they must not harm the wellbeing
of humans, animals and the environment (La Torre et al.,
2016). Hence, contamination by pesticides should be prevented
with maximal measures when obtaining the source material.
Even the smallest amount of contamination with pesticides
may cause problems with the legislation. Since during the
extraction procedure, solvents (e.g., n-hexane) may selectively
solubilize and concentrate pesticides from water matrices (Zayats
et al., 2013). To this end, the source of plant biostimulants
should not contain pesticides that otherwise leads to problems
with the registration and permission to use in sustainable
agriculture.

Low Cost of Collection and Storage
The initial economic value of the waste material should be low
and it preferably requires additional processing to dispose of at
a financial cost. The reason for this is that the yield increase
attributed to biostimulant application is typically in the range
of 5–10% and this limits the profitability of biostimulant sales.
The economic burden of a by-product resource can be broken
down into three main components: collection, conservation and
storage, and transport. Taking the example of fish by-products,
the intrinsic value for the production of food and animal feed,
coupled with the high cost to preserve fish biomass at low
temperature, all lead to the recovery of by-products for further
valorization unprofitable. To achieve the recovery of by-product,
some fish species are often brought ashore for processing, in
order to overcome limited preservation space of by-product
while at sea [reviewed in (Olsen et al., 2014)]. Despite the
complexity of organizing the logistic of storage for perishable
biomass, agricultural production is typically linked with seasonal
production activities and poor conservation methods may in
addition result in deterioration of the material that could affect
the stability of bioactive ingredients. Many natural products are
unstable and undergo chemical modification when exposed to
heat, light or oxygen, and result in loss of bioactivity (Turek
and Stintzing, 2013). A sound business model that addresses the
logistic problems of collection and storage of resources is more
likely to become successful if it is derived from a stable source
material.
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Sufficient Availability
An effective agrochemical product is preferably available in
sufficient quantities to accommodate the market demand. It is
therefore critical that the biomass from which a biostimulant
product is derived is available in large quantities and readily
available for processing. A good example of an abundant
waste product, yet highly perishable, is the heads and shells
of crustaceans that are a source of chitin. It should also be
avoided to develop biostimulants derived from by-products
which are prone to perturbation, i.e., the material that strongly
varies in composition or for which the supply is uncertain. An
abundant product has, in addition, the advantage of attracting
further valorization and development for other usage. The ample
quantity and diversified applications can be demonstrated in the
case of seaweed. As an essential source of biostimulants with
already commercialized products, the seaweed industry provides
an annual input of 7.5–8 million tons of wet seaweed, which
is used for food, fertilizers, feed, biofuel, and cosmetics, etc.
(McHugh, 2013). Among them, brown algae are the groups of
seaweed having large tonnage whose extracts are exploited widely
as a source of biostimulants. For sewage sludge, less exploited
but with great potential for nutrient recovery, the annual flux
is around 9.5 million tons in EU member states (Buckwell
and Nadeu, 2016). Taken these issues into consideration, it
is advised that a careful selection of materials is necessary
for generating new types of biostimulant: from processing,
extraction, formulation to marketing and distribution.

Positive and Negative Impact of Competing Use:
A Double-Edged Sword
If different valorization strategies applied to the same waste
stream are in competition with each other, which may turn
out to have a negative impact on the development of a
biostimulant product. This is because biostimulants are typically
less valuable than animal feed and much less than valorization
through the isolation of fine chemicals as pharmaceutical agents.
Consequently, to be suitable as biostimulant source, the waste
source is preferably not intensively used for feed or other higher
value uses. An overview of the biomass value pyramid has
been presented by Meyer (2017) in the context of developing
bio-based economy (Meyer, 2017). Although there’s no clear
prioritization of different sectors of biomass use, it is most
valuable when biomass is used as pharmaceuticals or fine
chemicals to benefit health and lifestyle (Meyer, 2017). The waste-
derived biostimulants currently on the market originate from
only a few sources (e.g., plant- and animal-derived PHs). Further
valorization through development of biostimulants from the
same sources may be difficult due to intellectual property issues.

However, on the other hand, when a biomass is being used
for other purposes, development of a new biostimulant from
that source remains an option. To avoid the competition, it
requires high compatibility of the two processing technologies,
and when integration is feasible, it may even generate greater
benefit. Such synergistic situations are currently still rare and
further maturing of the biostimulant research is likely to generate
opportunities for process integration. This is for example the
case for various seaweeds that are now well accepted to harbor

biostimulatory activity, as dozens of manufacturers around the
world have launched formulated seaweed products specifically
tailored for various crops (Sharma et al., 2014). In olive oil
industry, 95% of olive by-product are currently consumed as low-
value uses (energy generation, composting), with the remaining
5% as animal feed (Berbel and Posadillo, 2018). However, it
doesn’t hamper the processing development of olive biomass
for high-value uses such as extraction of bioactive compounds
(i.e., phenol) (Berbel and Posadillo, 2018). Consequently, there
are both positive and negative aspects to consider when a
given biomass is used in diversified sectors. Researchers and
entrepreneurs are suggested to carry out a SWOT analysis,
identifying the pros and cons when developing biostimulants
from material that is being exploited for different purposes
already.

VALORIZATION OF ORGANIC WASTES:
EXAMPLES OF CROSS-REGIONAL
FUNDED PROJECTS

Valorization is the process of converting by-products to high
value substances. The development of novel tools to secure crop
yield are objectives that are of high importance on the agenda
of the research funding bodies across Europe and worldwide.
On the other hand, increasing price of oil directly affects the
cost of fertilizers, which urges farmers to look for novel ways to
reduce the input cost. The concept of circular economy creates
opportunities for the agricultural and food sector aiming at
valorizing by-products. Indeed, recycling raw organic material
from waste is a first step toward reducing energy and material
input cost in the production process. Besides feedstocks, by-
products can be converted to bio-based chemicals, biostimulants
and soil amendments, as well as value-added products in
biomaterial industries (e.g., bioplastic, lignin and alginate) (De
Corato et al., 2018).

To promote the research and development toward valorizing
organic wastes, a few funded projects are published within
European Commission. The NOSHAN Project (Functional and
Safe Feed from Food Waste, EU FP7 Grant No. 312140)
investigated food waste processing and technologies to use for
feed production at low cost. Food waste has good nutritional
value provided it is treated and conserved correctly2. An example
is pectin that has been characterized in 26 different food waste
streams. The NOSHAN project revealed that the pectin structures
and yield are highly diverse (Muller-Maatsch et al., 2016).
Furthermore, the study provides insight into using pectin as
food additive from a variety of waste source material (Muller-
Maatsch et al., 2016). SUNNIVA focused on reducing waste
by providing valorization strategies in vegetable processing3.
It envisioned optimizing strategies to exploit by-product from
food production and develop fertilizers from waste (field and
storage) and processing side-flow. For instance, vegetable waste
and side-flow were assessed for their use as organic fertilizers.

2http://noshan.eu/index.php/en/
3http://sunnivaproject.eu/
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The raw material fractions were tested to identify their effects on
plant growth and defense and their suitability to host beneficial
microorganisms. Within Bio-Based Industries Joint Undertaking
(BBI-JU), operating under H2020 Framework Projects, one of the
key areas is to find solutions for waste reduction and strategies to
valorize waste. In this regard, AgriMax4, FUNGUSCHAIN5, and
NEWFERT6 focus on recovering organic waste, filling the gaps of
nutrient cycle for the food and fertilizer industries. It is postulated
that waste and by-products from potato, tomato, cereals and
olive have great potential to be valorized on the EU market
as food additives, agricultural materials, packaging materials
and biofertilizers (Fritsch et al., 2017). Figure 1 illustrates the
valorization chain starting from the suppliers of waste material
to end users, illustrating the economic potential of biostimulants
from waste streams.

4http://www.agrimax-project.eu
5http://www.funguschain.eu
6http://newfert.org

TACKLING MODES OF ACTION OF
BIOSTIMULANTS FROM ORGANIC
WASTE

“Mode of action” implies the detailed biochemical and
physiological changes of the plants upon application of
biostimulants. Despite the strong interest in developing new
biostimulants, few well-characterized products with reliable
performance are on the market. Generally there is limited
insight into the mode of action, largely due to the diversity of
source material and the complexity of the resulting product
which is typically complex and chemically poorly characterized
(Brown and Saa, 2015). Especially when material comes
from living microbial cultures, macro and micro-algae, PHs,
vermicompost and other types of industrial wastes, complexity
is extremely high and multiple components are likely to be
involved (Brown and Saa, 2015). Despite the complexity of the
substance mixture, attempts to characterize bioactive ingredients
are highly relevant to gain trust and reliability of the product

FIGURE 1 | Possible scenario in valorization chain of biostimulants from waste streams. Food industries and growers generate substantial amount of waste material
and they are seeking methods to valorize as it costs to process the by-products. Food industries have the capacity to transport the by-product out of sites. Growers,
however, usually lack the logistic means to process the by-products. Thus, a limiting factor for growers to valorize the crop residues is the cost of transport. As the
first step toward valorization, Company a has the expertise in extraction and formulation from by-products. Company C–E, and G are heavily involved in the
production and marketing of biostimulant products and they invest in registration and distribution. In spite of the ability to produce bioactive ingredients, these
companies might still need assistance from Company a in extraction and formulation. Company C–E are also selling biostimulants to intermediate companies
(Company F), who produce seeds, substrates or fertilizers. It is likely that one new biostimulant will be marketed as substrate, soil improvers or seed-coating. The
ultimate target groups of biostimulants are crop growers. The proved efficacy of one biostimulant from growers will inspire the identification of chemical structure by
Company B, carrying out synthesis of analogs. Consequently, it provides further knowledge into the valorization chain since the extraction and formulation can be
designed to isolate the targeted bioactive ingredients.
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marketed. Furthermore, subsequent stages of action in the
plants after application also need to be taken into account:
penetration into tissues, reaction with plant metabolites and
chemical stability, binding to metabolic enzymes and impact
of the compound on the plant’s physiology and modulation of
gene expression (Yakhin et al., 2016). It requires a systematic and
multidisciplinary approach whereby various technologies in the
fields of chemistry, biology and genomics need to be combined
(Povero et al., 2016).

The investigation of the mode of action of a biostimulant
requires two consecutive steps: determination of active
ingredient(s) and its/their mode of action on plants. Omics
approaches are routinely employed in modern life science and
they involve high-throughput technologies that are capable of
measuring global changes in the abundance of mRNA transcripts
(transcriptome), proteome, and metabolome in complex
biological systems as a result of biochemical stimulations or
perturbation. They provide reliable and informative tools to
unveil the mode of action of biostimulants and hence mode-
of-action studies rely heavily on omics tools. A transcriptomic
study revealed that HS extracted from vermicompost modified
plant physiology and metabolism by regulating expression levels
of genes involved in cell cycle and meristem and cytoskeleton
organization (Trevisan et al., 2011). Similarly, proteomic data
showed that chitosan modulates protein abundance belonging
to primary metabolism pathways in grape (Ferri et al., 2014).
We have recently embarked on a project with the objective
to identify biostimulants and biopesticides from agricultural
waste streams7. The project “Bio2Bio” investigates material from
organic waste streams and by-products from food industries
in Flanders, creating a library of formulated extracts. With the
help of a bioassay screening platform, promising extracts and
fractions are being characterized. The screening platform gathers
the expertise from a variety of in vitro, greenhouse and field
tests to score the materials for biostimulatory activity. Most
importantly, Bio2Bio aims to determine bio-active ingredients
and studies their mode of action. The impact of the project lies in
the discovery of potentially new bioactive compounds of natural
origin. The new ideas from the research part of the project
will provide valuable leads for the agrochemical companies to
develop new biostimulant products, benefiting the different
target groups. The valorization potential can also be benefited
from the mode of action studies.

CURRENT EXAMPLES OF
BIOSTIMULANTS FROM ORGANIC
WASTE AND BY-PRODUCTS

One of the important valorization strategies for by-products
is to exploit bioactive compounds to improve plant growth
and resistance to pathogens. Several classes of organic
wastes or by-products that are currently valorized as plant
biostimulants, which are claimed to render better plant

7http://www.horticell.ugent.be/project/bio2bio-biological-waste-streams-
biostimulants-and-biopesticides

growth and increased pest tolerance. In this section, we are
introducing the biostimulant substances processed or extracted
from different classes of source material that are considered
to be wastes and by-products in the agriculture and food
sectors, including substances from composting, PH, chitin
and chitosan, and other by-products from biological origins.
According to EBIC definition, compost doesn’t fall into the
category of the biostimulants and adheres better to biofertilizers.
However, compost is a source for agrochemicals or microbes
that potentially display biostimulant properties, such as HS,
phytohormones, amino acids and other substances that can
be extracted from it. These substances function by interacting
with plant signaling processes and reducing negative response
to stress, rather than by virtue of these substances (Brown and
Saa, 2015). Typical biostimulant effects have been ascribed to
composts, including enhancement of nutrient uptake, improved
pathogen defense, etc. Moreover, the application methods,
whether foliar spray or adding to soil, do not determine
whether a product display biostimulatory activity or not. To
this end, composted material exemplifies waste-derived sources
of biostimulants, as various biostimulant-related studies have
utilized active ingredients from compost to promote plant
growth and protect against disease. In addition, composting is
conforming to the concept of circular bio-economy.

Biostimulants From Vermicompost
Vermicompost is the organic matter processed by earthworms.
The techniques of vermicomposting have been widely applied to
reduce the volume of plant organic waste, manure, paper, food
and sewage sludge (Dominguez and Edwards, 2010; Allardice
et al., 2015). Vermicomposting helps to eliminate the occurrence
of human pathogens present in manure, including fecal
coliforms, Salmonella species, enteric viruses and helminthes
(Eastman et al., 2001; Edwards and Subler, 2010). It can also be
used as a substitute for peat, which is usually mined in unique
wetland ecosystems, in potting media with biostimulatory effects
on seedling performance, altering fruit quality (Zaller, 2007).
As a result, the process of vermicomposting brings about more
sustainable waste management strategies that may otherwise pose
health risks, contaminating our living environment (Eastman
et al., 2001; Edwards and Subler, 2010).

Biostimulants can be extracted from vermicompost, which
are utilized in plant growth media and soil amendment,
alleviating of nutrient deficiency and abiotic stress (Aremu
et al., 2012; Chinsamy et al., 2013; Aremu et al., 2014).
The biostimulatory effects of vermicompost are attributed
to the presence of substances with phytohormonal activity.
A mixture of plant growth regulators (PGRs), cytokinins, auxins,
abscisic acid, gibberellins, and brassinosteroids were shown to
occur in leachate of commercially produced vermicomposted
garden waste (Aremu et al., 2015). Also HA and FA are
present and are potentially responsible for the biostimulant
activities of vermicompost. The composting process provides
more stable and mature organic material, and in term results
in enrichment of humic substances (HS) (Provenzano et al.,
2001). The direct effect of HS on plant growth is suggested
to come from its interaction with the plant membrane
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transporters. This supposedly increases nutrient uptake and
trigger membrane-associated signal transduction cascades which
regulate growth and development (Canellas et al., 2015). Most
reported beneficial effects of HS correlate with changes in
root architecture. HS enhances the H+ efflux activity in the
elongation and differentiation root zone which has a stimulatory
effect on nutrient uptake and lateral root emergence and
root hair [Reviewed in (Canellas et al., 2015)]. In maize
(Zea mays L.), a single application of HS, which is extracted
from vermicomposted cattle manure, decreases the leaf total
carbohydrate content, fructose and glucose contents, while
increases starch content, indicating a role in N and C metabolism
(Canellas et al., 2013). The application of HS isolated from
vermicompost, in combination with diazotrophic endophytic
bacterial inoculation was shown to strongly promote plant
growth (Canellas et al., 2015).

There are several beneficial implications of vermicomposting
in sustainable agriculture and nutrient recycling.
Vermicomposting is a cost-effective and sustainable waste
management tool that can be readily scaled up (Pathma and
Sakthivel, 2012; Yadav and Garg, 2013). It circumvents many
of the challenges associated with handling raw organic wastes
(Dominguez and Edwards, 2010). Importantly, vermicomposting
allows growers to recycle wastes from their own farming activities
(e.g., plant materials and animal manure), as well as turning
suitable wastes into effective organic fertilizers that improve crop
production yield, while improving soil fertility at the same time
(Brown et al., 2004; Laossi et al., 2010; Van Groenigen et al.,
2014).

Biostimulants From Other Types of
Compost
Composting of organic material is the aerobic degradation
through a series of microbial reactions transforming the organic
material to molecules of smaller size. Suitable as a source of plant
biostimulant, composted municipal solid waste are useful for
HA extraction (Jindo et al., 2012). When amended with bulking
agents, it improves the growth of ornamental plants (Zhang et al.,
2013; Zhang et al., 2014). Compost of municipal organic waste
was also shown to improve Fe uptake of pear trees and augmented
fruit quality (i.e., size, soluble solid concentration) (Sorrenti
et al., 2012). In another report, the small molecule size of the
composted garden waste was proposed to allow faster uptake by
the tomato plants and improved the productivity (Sortino et al.,
2014). Depending on the anaerobic or aerobic pre-treatment,
urban organic waste is a source of different products (Massa
et al., 2016). It is however recommended that such material
be tailored to address the needs of specific plant species or
cultivation conditions. The composition of bioactive ingredients
varies in different composted organic waste, as HS extracted from
composts of a number of organic waste sources (i.e., residues
from artichoke, funnel, tomato, and cauliflower) were evaluated
to harbor different biostimulant capacities (Monda et al., 2018).
Most recently, composted olive mill waste water, a by-product
from the olive oil industry, is used for HS extraction (Palumbo
et al., 2018). Furthermore, although the mechanism remains
elusive, the combinatory application of composted organic waste

and Trichoderma stimulates the level of antioxidant enzyme
in planta (Bernal-Vicente et al., 2015). This type of synergic
biostimulatory capability between microorganisms and compost
(or vermicompost) has also been reported previously, such as
Herbaspirillum seropedicae and HS induced growth and pathogen
resistance, possibly by auxin-like and membrane H+-ATPase
activities (Canellas et al., 2013).

Sewage sludge is the left-over residue generated at centralized
wastewater treatment plants (Harrison et al., 2006). Although
sewage sludge is used widely in agriculture to recycle mineral
nutrients, the presence of heavy metals, organic contaminants
and pathogenic bacteria may create risks (Zuloaga et al.,
2012). Thus, an EU Directive prohibits the use of untreated
sludge for agricultural land applications, and demands the
removal of heavy metal and contaminants before using it
as biofertilizer (European Commission, 1986). Composting is
the main approach to stabilize the sewage sludge for use in
sustainable agriculture. Composted sewage sludge (CSS) has
been evaluated for the cultivation of vegetable species (Cai
et al., 2010). CSS is tested as potting media for lettuce, to
replace peat (Jayasinghe, 2012). Biostimulant substances can be
found in CSS as well. HS extracted from CSS has been shown
to promote root growth and proton pump activity in maize
vesicles (Jindo et al., 2012).. In addition, two sanitized sewage
sludge streams are used to improve growth and yield of pepper
(Capsicum annuum L. cv. Piquillo), possibly by promoting
rhizosphere microorganism activity and HS (Pascual et al., 2010).
As these studies demonstrate the utility of sewage sludge as
biofertilizer or source of plant biostimulants, the focus should
be on finding solutions for the potential contamination with
pathogenic microbes and toxic chemicals, in order to rule out all
health risks.

Protein Hydrolysates
PHs are mainly produced from the chemical and/or enzymatic
hydrolysis of proteins from by-products from the agriculture
industries, both animal- and plant- origins [reviewed in (Colla
et al., 2014)]. The production process and protein source are the
major factors determining the chemical properties of PHs (Colla
et al., 2015). PHs of animal origin are chemically hydrolyzed
by acids and alkalis which increases their salinity (Colla et al.,
2015). Considered to be more environmental-friendly, PHs of
plant origin are produced by enzymatic hydrolysis, which results
in mixture of amino acids and peptides of different lengths
with low salinity (Colla et al., 2015). The sources of PHs are
diverse, including animal epithelial or connective tissues, animal
collagen and elastin, carob germ proteins, alfalfa residue, wheat-
condensed distiller solubles, Nicotiana cell wall glycoproteins and
algal proteins [Reviewed in (Calvo et al., 2014)].

PHs converted from organic waste have been widely promoted
as plant biostimulants. Typically, insoluble and soluble fractions
are obtained by alkaline hydrolysis. Different material sources
are used, such as the remaining biomass from tomato plants at
the end of cropping seasons (Baglieri et al., 2014), by-product
extracts from apple seeds, rapeseeds, and rice husks (Donno
et al., 2013). The enzymatic process to produce amino acids and
proteins from carob germs, the by-products of carob fruit, and
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its positive impact on tomato growth parameters, has also been
described (Parrado et al., 2008). PHs from enzymatic extract of
vegetable by-products, together with the phytohormone (auxins,
gibberellins, cytokinins), improved the anthocyanin levels in
grapes (Parrado et al., 2007). Moreover, to avoid heavy metal
precipitations, the hydrolysis of sewage sludge has been reported
to consist of peptides and free amino acids, and it has potentially
biostimulatory effects (Tejada et al., 2013;Tejada et al., 2016). On
the other hand, it contributes to alleviating the negative effects
on soil enzymatic activities and microbial diversity imposed by
herbicide application (Rodríguez-Morgado et al., 2014;Tejada
et al., 2014).

When it comes to PHs of animal origin, waste management
from the tanning industry turns PHs into a product that was
shown to have biostimulants activity (Ertani et al., 2013a;Vaskova
et al., 2013). PHs derived from chicken feather result in increased
maize yield (Tejada et al., 2018). Siapton, a product from animal
PH, acts as an alleviator of salt stress (Mladenova et al., 1998).
Another PH with great potential as plant biostimulants is fish
PHs. Fish PHs can be derived from fish skin, a rich source of
collagen and gelatin (Chalamaiah et al., 2012). Other by-products
from the fish processing industries include fish head, muscle,
viscera, liver, bone, frame, and roe/egg [Reviewed in (Chalamaiah
et al., 2012)]. Fish by-products are enriched in proteins, fat,
amino acids (after hydrolysis), antioxidant, which are already
valorized as food or feed (Halim et al., 2016). It is expected that
they can equally provide nutrient sources, increase immunity
for crops as well. A recent study suggested that FPHs act to
promote lettuce growth and stomatal conductance (Xu and Mou,
2017).

Currently, most PHs are from chemically hydrolyzed leather
waste (Colantoni et al., 2017). In terms of energy use and
environmental impact, animal-derived PHs (e.g., leather by-
product) showed higher ecological footprint than plant-derived
PHs (Colantoni et al., 2017). As a result, for building sustainable
farming, it is preferred to generate biostimulants by enzymatically
hydrolyzing plant proteins over animal by-products. By switching
to plant-based PHs, it also avoids risks of possible contamination
with pathogens.

Several PH biostimulant products have demonstrated activity
in enhancing N and C metabolism in plants. For example, a
plant-derived PH “Trainer R©” was used to evaluate the plant
growth promoting effects (Colla et al., 2014). The application
of Trainer R© on maize coleoptiles and dwarf pea induced auxin-
and gibberellin-like activities, respectively (Colla et al., 2014).
It promotes elongation of maize coleoptiles and shoot length
of gibberellin-deficient dwarf pea (Colla et al., 2014). Moreover,
it also improves dry weight of shoots and roots, total biomass,
cholorphyll content and leaf N content in tomato plants (Colla
et al., 2014). The treatment of maize seedlings with one PH
derived from hydrolyzed tanning residues resulted in decrease
NO3−, PO4

3−, and SO4
2− concentrations (Ertani et al., 2013a).

The decreased level of these ions is due to changes of transcripts
of genes involved in N metabolism (nitrate reductase, glutamine
synthetase, glutamate synthase and asparate aminotransferase)
and TCA cycle (malate dehydrogenase, isocitrate dehydrogenase
and citrate synthase) (Ertani et al., 2013a).

Chitin and Chitosan
Chitin, a biopolymer from crustaceans shells, and chitosan,
the deacetylated form of chitin, have potential applications in
food, cosmetics and industrial processes [Reviewed in (Olsen
et al., 2014)]. Chitin and chitosan are co-polymers of N-acetyl-
d-glucosamine and d-glucosamine, where the ratio of each
monomer in the polymer chain defines its physical, chemical
and biological properties (Pichyangkura and Chadchawan, 2015).
The binding of chitin and chitosan to cell receptors induces
physiological changes, triggering an oxidative burst reaction with
H2O2 accumulation and Ca2+ leakage into the cell which are
similar to signaling of stress response and in the developmental
regulation (du Jardin, 2015). Phenylalanine ammonia-lyase (PAL)
is a key plant defense enzyme induced upon contact with chitin
molecules, leading to the accumulation of phenolic compounds.
Most plant species respond in a similar manner including papaya
(Carica papaya L.), sweet basil (Ocimum basilicum L.), sunflower
(Helianthus annuus L.), litchi (Litchi chinensis Sonn.), grape (Vitis
vinifera L.), etc. [Reviewed in (Pichyangkura and Chadchawan,
2015)]. The cellular response to chitosan involves also NO,
and the phytohormone regulators jasmonic acid (JA), abscisic
acid (ABA), and phosphatidic acid (PA), which all relate to
abiotic stress gene regulation (Pichyangkura and Chadchawan,
2015). By proteomic approach, a recent study uncovered that
enzymes involved in phenylpropanoids biosynthesis in grapes
were accumulated in response to chitosan (Lucini et al., 2018).

Due to its potency to induce defense mechanisms and stress
response pathways, chitin and chitosan are used to improve
crop resilience to pathogen attack and abiotic stress conditions.
Chitosan, for example, has been found to be effective against
biotrophic and necrotrophic pathogens (Sharp, 2013). Moreover,
fungal infection may be affected directly by oligochitosan as
the endomembrane system of Phytophthora capsici is disrupted,
especially the integrity of vacuoles (Xu et al., 2007). The activity
can also be indirect, as it involves chitinolytic microbes which
form mutualistic relationship with plants by producing chitinase
enzymes that degrade chitin-rich tissues from other organism
(Sharp, 2013). In terms of yield, preharvest application of
chitosan increases fruit yield at harvest (Bautista-Baños et al.,
2006). The yield of tomato increases by applying chitosan to
soil with F. oxysporum f. sp. radicis-lycopersici fungal inoculation
(Lafontaine and Benhamou, 1996; Bautista-Baños et al., 2006).
Chitosan could reduce post-harvesting disease as well, as
indicated by several studies showing that chitosan effectively
prevents postharvest decay during storage and delays microbial
infection [Reviewed in (Bautista-Baños et al., 2006)].

Other Types of By-Products
Several other types of by-products enhancing plant production
and food quality have been reported in recent years. Sugarcane
vinasse, a by-product mainly of the sugar-ethanol industry,
has been evaluated as a nutrient source for microorganisms
to detoxify or remove xenobiotics from the environment,
promoting bioremediation of the soil (Christofoletti et al., 2013).
Vine shoots generated during the pruning process, have been
shown to contain phenolic, volatile and mineral compounds
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that were applied as grapevine biostimulant and foliar fertilizer
(Sánchez-Gómez et al., 2014; Sanchez-Gomez et al., 2017).
Aqueous extracts of by-products from fennel, lemon and barley
grains were shown to enhance tomato yield and fruit quality
(Abou Chehade et al., 2018). Furthermore, it’s not surprising that
HS extracted from the by-products of rape, castor oil and flax
showed bioactivity in maize plantlet growth, attributed to the
phytohormone-like activity (Ertani et al., 2013b).

Aquaponics is an integrated system combining hydroponic
crop cultivation with fish cultivation, using the same water for
both systems [Reviewed in (Tyson et al., 2011)]. The nutrient
by-products generated by the aquaculture could have potential
biostimulatory properties, although relative reports are scarce
and there’s no solid evidence to substantiate the biostimulatory
effects. It is speculated that boosted nutrient uptake of crops was
connected with biostimulant elements in the aquaponic water
supplemented with macro-nutrients (Nicoletto et al., 2018). It
might be due to microorganisms and organic matter dissolved in
water that are responsible for the biostimulatory effects (Delaide
et al., 2016).

THE USE OF BIOSTIMULANTS
COMPLEMENTS CONVENTIONAL
FERTILIZERS

The increasing use of organic fertilizers is driven by the awareness
to quest for organic food industry, replacing conventional
farming methods relying heavily on chemical fertilizers. In
terms of yield, organic farming performs differently with
conventional farming. A 21-year study of agronomic and
ecological performance of organic and conventional farming
systems revealed that legume-based crop rotations to fertilize
the soil organically reduces the input of fertilizer at an expense
of 20% lower crop yield compared to conventional fertilization
systems (Mader et al., 2002). A comprehensive synthesis of
scientific literature on organic farming found that the average
organic yield is 25% lower than conventional farming (Seufert
et al., 2012). However, the performance of organic farming
systems varies substantially depending on the contexts and crops
cultivated. Organic fruits and oilseed crops, for instance, are
most often as profitable as conventional cultivation (Seufert et al.,
2012). The organic systems show efficient resource utilization,
increased soil fertility and enhanced floral and faunal diversity
(Mader et al., 2002; Diacono and Montemurro, 2011). Another
study also indicates that the population of Trichoderma species,
thermophilic microorganism and enteric bacteria were in greater
numbers in organic soil amendment (i.e., composted organic
waste) (Bulluck et al., 2002). Meanwhile, in other cases, the yield
drop was compensated by the application of vermicompost when
applied under specific growing conditions (Arancon et al., 2004;
Arancon et al., 2005; Gutiérrez-Miceli et al., 2007). It indicates
that by using composts as sources of biostimulants, it can
increase yield and decrease loss due to infestation. These findings
demonstrate that biostimulants or biofertilizers are relevant
components of sustainable agriculture and have the potential
to tip the balance in favor of organic cultivation methods, in

addition to the fact that comparing yield between different
systems is highly subject to contexts. As variations in waste being
used to generate vermicompost and biostimulants are a complex
mixture of substances showing batch differences that may
influence performance, studies to optimize the robustness are
needed to avoid variability in the effectiveness of biostimulants
products.

The fertilization of soil containing microbial biomass is
pH dependent, meaning that urea and ammonium input can
lower soil pH over time, posing negative effects on beneficial
soil microorganism and crop yield (Geisseler and Scow, 2014).
Thus, chemical fertilizers should be applied considering the
impact on the environment. Biostimulants could play an
important role in improved nutrient uptake by the crop,
hereby increase yield, which in turn reduces the dependence
on traditional fertilizers. In a study of hydroponically grown
rocket (Eruca sativa Mill.), biostimulant Actiwave R© was added
to the nutrient solution of plants grown in floating system
(Vernieri et al., 2006). The result showed that Actiwave R©

increased nutrient uptake and nutrient use efficiency, reduced
leaf nitrate content and increased chlorophyll and carotenoids
contents (Vernieri et al., 2006). GroZyme R©, a microbial
fermentation product, enriched Zn concentration in the phloem
and xylem/collenchyma region of the petiole vascular bundle
in sunflower (H. annuus L.) (Tian et al., 2014). Field trials
of GroZyme R© have shown the positive growth effects and
elevated K translocation and other nutrient elements, possibly
by the microbial extracts forming meal complexes that enhance
mineral uptake or mobility (Tian et al., 2014). HS extract,
HA7 has been found to stimulate plant growth and leaf
chlorophyll content by enhancing N, C and S assimilation in
rapeseed (Brassica napus) (Jannin et al., 2012). Taken together,
sustainable food production and security with minimal impact
on the environment will require a combination of organic and
conventional cropping systems, which take benefit from the fact
that biostimulant application improves mineral absorption by
modifying plant innate metabolic pathways and compensates
for the reduced use of chemical fertilizers. An important notice
is however, that yield increase in organic farming usually
takes years to be detected (Bulluck et al., 2002; Seufert et al.,
2012).

CONCLUSION AND PERSPECTIVES

Under the framework of circular economy, the development
of biostimulants from organic waste has important valorization
potential. One of the drivers of market development is the
companies in research and development contributing to the
expanding list of biostimulants, as well as production and
formulation processes (du Jardin, 2015). Currently, there have
been some studies on biostimulants originated from organic
waste streams, including vermicompost, composted urban waste,
sewage sludge. PHs, chitin and chitosan represent the group of
biostimulants generated from organic waste. However, a broader
profile encompassing molecular and physiological impact of
biostimulant on targeted plants is needed. By mode of action
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analysis, novel groups of compounds with biostimulant activities
will be discovered from a variety sources of feedstocks.

The European Commission has proposed to revise EU
legislation on waste to set clear targets to establish a long-term
goal for waste management (European Commission, 2017). It is
expected that the prospect of a circular economy require more
research and technology development, focusing on bringing up
sustainable products onto the market. Biostimulants extracted
from waste streams provides a path for research and industrial
partners, from lab research, prototyping, to commercialization
and benefit the crop growers and consumers. Eventually, it
creates incentives for the society to involve in the sustainable
development scheme. Higher relevance to growth parameters
(e.g., biomass, SPAD index, plant height, and growth index)
can lead to better selection of biostimulatory components from
source material, as these components (e.g., soluble or insoluble
PH) offer better value and development potentials (Massa et al.,
2016).

Agricultural nutrient imbalance is substantial with economic
development, from inadequate input to maintain soil fertility
in sub-Saharan Africa, to excessive surpluses in many areas in
the more developed world (Vitousek et al., 2009). As a result,
the use of biostimulants, as an element to increase nutrient use
efficiency, should also consider the geo-economic differences
across different areas around the world. Monitoring tools for
the efficacy of biostimulants are needed to adapt to local and
temporal use of biostimulants in agriculture and horticulture

(du Jardin, 2015). It is expected that, with the trend of replacing
chemical fertilizers, biostimulant derived from by-products will
be more commonly used if valorization chain is well established
and mode of action is further investigated.
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