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Abstract

The problem of estimating statistical parameters under equality or inequality (order) restrictions
has received considerable attention by several researchers due to its vast applications in various
physical, industrial and biological experiments. For example, the problem of estimating
the common mean of two normal populations when the variances are unknown has a long
history and is popularly known as “common mean problem”. This problem is also referred
as Meta-Analysis, where samples (data) from multiple sources are combined with a common
objective. The “commonmean problem” has its origin in the recovery of inter-block information
when dealing with Balanced Incomplete Block Designs (BIBDs) problems. In this thesis, we
study problem of estimating parameters and quantiles of two or more normal and exponential
populations when the parameters are equal or ordered from decision theoretic point of view.

InChapter 1, we give the motivation and do a detailed review of literature for the following
problems. InChapter 2, we discuss some basic definitions and decision theoretic results which
are useful in developing the subsequent chapters. In Chapter 3, the problem of estimating the
common mean of two normal populations has been considered when it is known a priori that the
variances are ordered. Under order restriction on the variances, some new alternative estimators
have been proposed including one that uses the maximum likelihood estimator (MLE). These
new estimators beat some of the existing popular estimators in terms of stochastic domination
as well as Pitman measure of closeness criterion. In Chapter 4, we have considered the
problem of estimating quantiles for k(≥ 2) normal populations with a commonmean. A general
result has been proved which helps in obtaining better estimators. Introducing the principle of
invariance, sufficient conditions for improving estimators in certain equivariant classes have
been derived. As a consequence some complete class results have been proved. A detailed
simulation study has been carried out in order to numerically compare the performances of all
the proposed estimators for the cases k = 3 and 4.A similar type of result has also been obtained
for estimating the quantile vector. In Chapter 5, we deal with the problem of estimating
quantiles and ordered scales of two exponential populations under equality assumption on
the location parameters using type-II censored samples. First, we consider the estimation of
quantiles of first population when type-II censored samples are available from two exponential
populations. Sufficient conditions for improving equivariant estimators have been derived
and as a consequence improved estimators have been obtained. A detailed simulation study
has been carried out to compare the performances of improved estimators along with some
of the existing ones. Further, we deal with the problem of estimating vector of ordered
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scale parameters. Under order restriction on the scale parameters, we derive the restricted
maximum likelihood estimator for the vector parameter. We obtain classes of equivariant
estimators and prove some inadmissibility results. Consequently, improved estimators have
been derived. Finally a numerical comparison has been done among all the proposed estimators.
In Chapter 6, the problem of estimating ordered quantiles of two exponential populations
is considered assuming equality of location parameters. Under order restriction, we propose
new estimators which are the isotonized version of some baseline estimators. A sufficient
condition for improving equivariant estimators are derived under order restriction on quantiles.
Consequently, estimators improving upon the baseline estimators are derived. Further, the
problem of estimating ordered quantiles of two exponential populations is considered assuming
equality of the scale parameters using type-II censored samples. Under order restrictions on the
quantiles, isotonized version of some existing estimators have been proposed. Bayes estimators
have been derived for the quantiles assuming order restriction on the quantiles. In Chapter 7,
we consider the estimation of the common scale parameter of two exponential populations when
the location parameters satisfy a simple ordering. Bayes estimators using uniform prior and a
conditional inverse gamma prior have been obtained. Finally all the derived estimators have
been numerically compared along with some of the existing estimators. In Chapter 8, we give
an overall conclusion of the results obtained in the thesis and discuss some of our future research
work.

Keywords: Admissibility; Bayes estimator; Common mean; Equivariant
estimator; Inadmissibility; Isotonic regression;Maximum likelihood estimator (MLE);Ordered
parameters; Quantiles; Quadratic loss ; Relative risk performance; Squared error loss; Type-II
censored samples; Uniformly minimum variance unbiased estimator (UMVUE).
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Chapter 1

Introduction

1.1 Introduction

The problem of estimating statistical parameters under equality or inequality (order) restrictions
has received considerable attention by several researchers in the recent years. For example,
the problem of estimating the common mean of two normal populations when the variances
are unknown has a long history in the literature and is popularly known as “common mean
problem”. This problem is also referred as Meta-Analysis, where samples (data) from multiple
sources are combined with a common objective. The “common mean problem” has its origin in
the recovery of inter-block information when dealing with Balanced Incomplete Block Designs
(BIBDs) problems. Here two independent unbiased estimators (intra-block and inter-block)
for the treatment contrasts are available. The target is to develop an estimator by combining
intra-block and inter-block, which may perform better than either of these. Similarly, the
problem of estimating parameters under certain inequality (order) restrictions is of considerable
interest and has been extensively studied by several researchers in the recent past. This type
of statistical models arise in various physical, agricultural, industrial, biological and medical
experiments. Below we discuss certain practical situations where modeling of the problem
leads to the assumption of equality or/and inequality restrictions on the involved parameters.

1. Suppose there are n laboratories or operators evaluating a given product. It is quite
possible to assume that the locations of the measured aspect of the product to be the same,
where as the scales may differ due to laboratory techniques or facilities. The assumption
on the distribution of the measured quantity may follow a particular location-scale family.

2. A particular type of products (electrical/mechanical) has been manufactured by different
companies and to be lunched in the market. Because of market restrictions, the minimum
guarantee periods (location) of the products may be same, whereas the average lives
(scale) may be different. The life times of the products may follow certain life-time
distributions. On the basis of prior information, one may be interested to estimate the
parameters.

3. Suppose the farmers of a country use three types of treatments to grow the crops:
treatment-I (using chemical fertilizers), treatment-II (using organic manures) and

1
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treatment-III (without using any fertilizers). Let θ1, θ2, θ3 be denote the average yields
by using the three types of treatments respectively. It is natural that θ1 ≥ θ2 ≥ θ3 and
one would be interested in estimating one or all of (θ1, θ2, θ3).

In this thesis, we have considered the problem of estimating equal or ordered parameters
when the underlying distribution is either normal or exponential. Moreover, we have focused
on estimating quantiles of these populations when the concerned or nuisance parameters are
equal or ordered. We note that for these distributions, quantiles are linear function of location
and scale parameters.

1.2 A Review of Literature

In this section we give a detailed review of literature on certain problems which are relevant
and useful for developing the chapters of thesis.

1.2.1 Estimation of Common Mean of Two Normal Populations

The problem of estimating common mean of two normal populations is an age old problem and
has a long history in the literature of statistical inference. The problem has received considerable
attention by several authors in the last few decades due to its practical applications as well
as theoretical challenges involve in it. Particularly, the problem has been well investigated
from classical as well as decision theoretic point of view when there is no order restrictions
on the variances. The problem is quite popular in the literature and is popularly known as
“common mean problem”. The problem has been originated from the study of recovery of
inter-block information while dealing with balanced incomplete block design (BIBD) problems
(see Shah ( 1964)). Probably, Yates (1940) was the first to consider the problem under normality
assumption. Let (Xi1, Xi2, . . . , Xini

); i = 1, 2 be a random sample taken from the ith normal
population N(µ, σ2

i ). The problem is to estimate the common parameter µ when the variances
are unknown and unequal with respect to the loss function

L1(d, µ) = (d− µ)2

or,

L2(d, µ) =
(d− µ

σ1

)2

,

where d is an estimator for µ. Let us define the random variables

X̄i =
1

ni

ni∑
j=1

Xij, S
2
i =

ni∑
j=1

(Xij − X̄i)
2; i = 1, 2.

2



Introduction Chapter 1

The random variables X̄i and S2
i are statistically independent and minimal sufficient for this

model. We also note that these minimal sufficient statistics are not complete.

One of the first pioneering research work in this direction was done by Graybill and Deal
(1959). They proposed a new combined estimator for the common mean µ by taking convex
combination of X̄1 and X̄2 with weights as the functions of sample variances. Their combined
estimator is given by

dGD =
n1(n1 − 1)S2

2X̄1 + n2(n2 − 1)S2
1X̄2

n1(n1 − 1)S2
2 + n2(n2 − 1)S2

1

.

They have proved that the combined estimator dGD performs better than both X̄1 and X̄2 in
terms of variances (loss function L1) when the sample sizes are at least 11. The estimator
dGD is also known as the best asymptotically normal and conditionally unbiased. After then
a lot of research work has been done in this direction by several authors using classical as
well as decision theoretic approaches. Their target has been to derive either some alternative
estimators for µ which may compete with dGD or proving some decision theoretic results like
admissibility or minimaxity. Very surprisingly still now it remains an open problem whether
dGD is admissible or inadmissible.

For small sample sizes (n1, n2 ≤ 10) Zacks (1966) proposed two classes of testimators
using F -test. Let us denote τ = σ2

2/σ
2
1. Case-1: Consider testing the hypothesis H0 : τ = 1

againstH1 : τ ̸= 1. IfH0 is accepted then use the grand mean of two samples for estimating µ,
otherwise use the Graybill-Deal estimator dGD.Mathematically the testimator is written as

d1(τ
∗) =

{
X̄1+X̄2

2
, if 1

τ∗
≤ S2

2

S2
1
≤ τ ∗

dGD, otherwise,

where τ ∗ is the critical value of the F -tests and 1 ≤ τ ∗ ≤ ∞. Case-2: Consider the testing
procedure for the three alternatives, H0 : τ = 1, H1 : τ > 1 and H2 : τ < 1. If H0 is true use
the grand mean as an estimator for µ. If either H1 or H2 holds true then use the sample mean
which has the smaller variance as the estimator for µ. This estimator can be written as

d2(τ
∗) =


X̄2, if S

2
2

S2
1
< 1

τ∗

X̄1+X̄2

2
, if 1

τ∗
≤ S2

2

S2
1
≤ τ ∗

X̄1, ifS
2
2

S2
1
> τ ∗.

Finally the author compared numerically the performances of all the estimators in these two
classes.

Mehta and Gurland (1969) considered the estimation of µ under the assumption that the
nuisance parameters follow a certain simple ordering say σ2

1 ≤ σ2
2. They have proposed the

following class of estimators.

d(ψ) = ψ(T )X̄1 + (1− ψ(T ))X̄2,

3
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where T = S2
2/S

2
1 . Depending upon the choices of ψ, the following three types of estimators

can be proposed.

(i) δ1 = d(ψ), where ψ(T ) = (c+T )
c+a+T

,

(ii) δ2 = d(ψ), where

ψ(T ) =

{
1
2
, if T < k
T

T+a
, if T ≥ k.

(iii) δ3 = d(ψ), where ψ(T ) =

√
(c+T )√

(c+T )+a
and a, c, k are specific constants to be suitably

chosen.

For the case n1 = n2, they proved that the estimator δ1 performs better than dGD for some
choices of a, c and k. Further for some choices of k they have also proved that the estimator
δ2 performs better than dGD. Finally, authors numerically compared the efficiencies of all the
above three estimators.

Zacks (1970) considered the problem of estimation of common mean µ using the decision
theoretic approach. The author proposed an equivariant class of estimators for µ which is given
by

dZ = X̄1 + (X̄2 − X̄1)ϕ(T1, T2),

where T1 = S1

(X̄1−X̄2)2
, and T2 = S2

(X̄2−X̄1)2
. This class contains estimators that was previously

proposed by Zacks (1966) andMehta and Gurland (1969). He also proved that the estimator X̄1

is minimax with respect to the loss L2. Further using a symmetric loss function, he proved that
the grand mean is minimax. Zacks also derived the generalized Bayes estimator with respect
to the Jeffrey’s prior which is known as fiducial equivariant estimators. They also proved that
these Bayes estimators are weakly admissible.

Khatri and Shah (1974) considered a general class of estimators for µ which is given by

dKS = (1− ϕ(W ))X̄1 + ϕ(W )X̄2,

where ϕ(W ) =
n2S2

1

n2S2
1+n1cS2

2
and c = (n1−3)(n2−1)

(n2−3)(n1−1)
. The estimator dKS improves on X̄1 in terms

of variance if n2 ≥ 2. Further dKS improves upon both X̄1 and X̄2 if (n1 − 7)(n2 − 7) ≥ 16.

Hence the estimator dKS can be used in certain situations where dGD fails to improve upon X̄1

and X̄2.

Cohen and Sackrowitz (1974) constructed the following class of estimators when n1 = n2 =

n(say).

dCS = (1− CnH(z))X̄1 + CnH(z)X̄2,

4
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where

Cn =

{
(n−3)2

(n+1)(n−1)
, if n is odd,

n−4
n+2

, if n is even.

and

H(z) =

{
F (1, (3− n)/2, (n− 1)/2, z), for 0 ≤ z ≤ 1,

− (n−3)
(n−1)z

F (1, (5− n)/2, (n+ 1)/2, 1/z), for z ≥ 1.

Here F is the hyper geometric function. For n ≥ 5, they have shown that the estimator dCS
improves upon X̄1 using L1. Further for the case n ≥ 10, the estimator

d∗CS = (1−H(z))X̄1 +H(z)X̄2

performs better than both X̄1 and X̄2.

Brown and Cohen (1974) proposed the following class of estimators given by,

dBC1(b) = X̄1 +
{ (bS2

1/n1(n2 − 1))(X̄2 − X̄1)

S2
1/n1(n1 + 1) + S2

2/n2(n2 + 2) + (X̄2 − X̄1)2/(n2 + 2)

}
,

where 0 < b ≤ bmax(n1, n2) = 2(n2 + 2)/n2E(max(V
−1, V −2)). Here V follows F

distribution with (n2+2) and (n1−1) degrees of freedom. The estimator dBC1(b) is unbiased for
µ.When n2 ≥ 3, they have shown that dBC1(b) performs better than X̄1. They also established
that for n2 = 2, n1 ≥ 2, the estimator dBC1(b) is not better than X̄1 for any choices of b. Further,
authors constructed a different class of unbiased estimators of the form

dBC2(p, b) = X̄1 +
{ (bS2

1/n1(n1 − 1))(X̄2 − X̄1)

p(S2
1/n1(n1 − 1) + S2

2/n2(n2 − 1)) + (1− p)(X̄2 − X̄1)2

}
,

where 0 < p < 1 and 0 < b < bmax(n1, n2 − 3). When n1 ≥ 2, n2 ≥ 3, they have proved
that there exist values of b (> 0) for which dBC2(p, b) performs better than X̄1. They have also
generalized some of their results to k(≥ 2) normal populations.

Bhattacharya (1980) proposed a class of estimators that includes the estimators proposed by
Brown and Cohen (1974) and Khatri and Shah (1974).

Sinha andMouqadem (1982) proved the admissibility of the estimator dGD in certain classes
of estimators. They defined the class D and its members D0, D1, D2 as follows.

D = {d = X̄1 + (X̄2 − X̄1)ϕ; 0 ≤ ϕ(S2
1 , S

2
2 , X̄2 − X̄1) ≤ 1},

D0 = {d = X̄1 + (X̄2 − X̄1)ϕ, 0 ≤ ϕ(
S2
2

S2
1

) ≤ 1},

D1 = {d = X̄1 + (X̄2 − X̄1)ϕ, 0 ≤ ϕ(S2
1 , S

2
2) ≤ 1},

D2 = {d = X̄1 + (X̄2 − X̄1)ϕ, 0 ≤ ϕ(
S2
1

(X̄2 − X̄1)2
,

S2
2

(X̄2 − X̄1)2
) ≤ 1}.

The loss function is taken as L1. The authors proved that the estimator dGD is admissible in the
class D0 for n1 = n2 ≥ 2 and extended admissible in D.
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Bhattacharya (1986) observed that the conclusions of Cohen and Sackrowitz (1974)
regarding improvements upon X̄1 and X̄2 are not correct. He proved that the estimator dCS
dominates X̄1 when n ≥ 7 and, both X̄1 and X̄2 when n ≥ 15.

Kubokawa (1987a) considered a general class of estimators for estimating µ which is given
by

dϕ(a, b, c) = X̄1 +
a(X̄2 − X̄1)

1 +Rϕ(S2
1 , S

2
2 , (X̄2 − X̄1)2)

,

where R = {bS2
2 + c(X̄1 − X̄2)

2}/S2
1 and ϕ is any positive real valued function. The estimator

dϕ(a, b, c) improves upon X̄1 and is also minimax with respect to the loss L2 when 0 ≤ a ≤ 2,

b ≥ c > 0. Furthermore, for the choice of ϕ = 1+d/{bS2
2 +c(X̄1− X̄2)

2}, the above estimator
is reduces to

d1(a, b, c, d) = X̄1 +
aS2

1(X̄2 − X̄1)

S2
1 + bS2

2 + c(X̄1 − X̄2) + d
.

For particular choices of a, b, c and d, the above class produces estimators which were proposed
by Graybill and Deal (1959), Khatri and Shah (1974), Brown and Cohen (1974), Bhattacharya
(1979) and Kubokawa (1987b).

Kubokawa (1989) proposed a class of estimators that dominate X̄1 in terms of Pitman
Measure of Closeness (PMC). In particular he proved that the µ̂GD dominates X̄1 and X̄2 if
the sample sizes are at least 5.

Nanayakkara and Cressie (1991) proposed a new class of estimators for the common mean
µ which is given by

dNC(r) =
(α1X̄1

Sr1
+
α2X̄2

Sr2

)
/
(α1

Sr1
+
α2

Sr2

)
, r > 0.

For the case r = 2, they have obtained necessary and sufficient condition on α1 and α2 for
which the estimator dNC(r) improves upon X̄1 and X̄2.

Kelleher (1996) considered the problem of estimating common mean for small and equal
sample sizes. The author obtained a Bayes estimator by considering a prior for the ratio of
variances σ2

1/σ
2
2 = τ.

dB(R) =

∫∞
0
τf(R|τ)dQ(τ)∫∞

0
(τ + 1)f(R|τ)dQ(τ)

.

where R = S2
2/S

2
1 . He also proved numerically that dB(R) perform better than the estimator

proposed by Zacks (1966).

Mitra and Sinha (2007) studied the common mean problem from Bayesian point of view.
He has obtained the generalized Bayes estimator with respect to Jeffrey’s prior. The prior is

6
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taken as

f(µ, σ2
1, σ

2
2) = (

√
σ2
1 + σ2

2)/(σ
2
1σ

2
2)

3/2, −∞ < µ <∞, σ2
1 > 0, σ2

2 > 0.

The estimator is given by

dMS =

∫∞
0
τn/2(τ + 1)n/(aτ 2 + bτ + c)n+1dτ∫∞

0
τn/2(τ + 1)n+1/(aτ 2 + bτ + c)n+1dτ

.

The authors also numerically compared the risk performance of dMS with the estimators
proposed by Graybill and Deal (1959), Sinha (1979) and Sinha and Mouqadem (1982).

Pal et al. (2007) have obtained variance of the maximum likelihood estimator (MLE) of µ
and the variance of dGD numerically. They have shown by using simulation that, in most of the
parameter ranges, the MLE has the smaller variance than dGD.

Tripathy and Kumar (2010) revisited the problem of estimating common mean of two
normal populations when the variances are unknown and unequal. Authors have established
some decision theoretic results using a quadratic loss function. They have also obtained an
alternative estimator for µ, by modifying the estimator proposed byMoore and Krishnamoorthy
(1997). Their estimator is given by

dTK =
X̄1

√
n1cn2S2 + X̄2

√
n2cn1S1√

n1cn2S2 +
√
n2cn1S1

where cni
=

Γ(
ni−1

2
)√

2Γ(
ni
2
)
; i = 1, 2.Authors also obtained sufficient conditions for improving certain

classes of equivariant estimators for the common mean. Through a simulation study, they have
numerically compared the risk values of all the proposed estimators and recommended for their
use. Their numerical comparison reveals that the estimator dTK compete well with the estimator
proposed by Tripathy and Kumar (2010).

1.2.2 Estimating Common Mean of Several Normal Populations (A
Generalization to k(≥ 3) Populations)

In this section we review the literature on the problem of estimating common mean of
k(≥ 3) normal populations when the variances are unknown and possibly unequal. Suppose
(Xi1, Xi2, . . . , Xini

); i = 1, 2, . . . , k, be a random sample taken from the ith normal population
N(µ, σ2

i ). Consider the problem of estimating µ with respect to the losses L1 and L2 as defined
in previous section. Let us define the random variables

X̄i =
1

ni

ni∑
j=1

Xij, S
2
i =

ni∑
j=1

(Xij − X̄i)
2, i = 1, 2, . . . , k.

Probably Norwood and Hinkelmann (1977) was the first to consider the problem for (k ≥ 2)

normal populations. In fact, the authors have generalized the estimator given by Graybill and

7
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Deal (1959) to k(≥ 2) populations and the estimator is given by

dNH =

k∑
i=1

ni(ni − 1)X̄i/S
2
i

k∑
i=1

ni(ni − 1)/S2
i

.

It has been shown that the estimator dNH performs better than each of X̄i with respect to the loss
L1 if and only if each ni ≥ 11 or one ni = 10, and all other nj ≥ 18, i ̸= j : j = 1, 2, . . . , ni

and i = 1, 2, . . . , k.

Shinozaki (1978) constructed a general class of estimators that contains dNH and derived
conditions for improving upon each X̄i. Their proposed estimator is given by

dSZ =

k∑
i=1

cini(ni − 1)X̄i/S
2
i

k∑
i=1

cini(ni − 1)/S2
i

.

The author established that the estimator dSZ performs better than each X̄i if and only if ni ≥ 8

and (ni − 7)(nj − 7) ≥ 16 for i ̸= j.

Sinha (1979) established that the estimator dNH is inadmissible with respect to a general
type of loss function, when for some i σ2

i ≤ σ2
j , i ̸= j. In fact Sinha’s result generalizes the

inadmissibility result of Mehta and Gurland (1969).

Bhattacharya (1984) developed two general inequalities and used these to obtain a better
estimator for µ. He also obtained improvements over shinozaki’s (Shinozaki (1978)) result.

Kubokawa (1987c) considered the estimation of µ for (k ≥ 2) normal populations with
respect to a symmetric loss function defined by

L(d, µ) = ψ(|d− µ|r), 0 < r <∞,

where ψ is a decreasing concave function of non negative real numbers and satisfies ψ(0) = 0.

Author proposed a general class of estimators which is given by

dK =

∑k
i=1 ci(ni − 1)X̄i/S

2
i∑k

i=1 ci(ni − 1)/S2
i

,

where cis are positive constants. Further he proved that the estimator dK is better than each X̄i

if ni ≥ 6 and cj/ci ≤ 2(nj − 5)/(ni + 1) for i ̸= j; i, j = 1, 2, . . . , k.

Sarkar (1991) extended the results of kubokawa (Kubokawa (1989)) to k normal
populations.

Moore and Krishnamoorthy (1997) constructed a new type of combined estimator for µ by
taking convex combination of X̄is with weights inversely proportinal to their standard errors

8
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which is given by

dMK =

∑k
i=1

√
ni(ni − 1)X̄i/Si∑k

i=1

√
ni(ni − 1)/Si

.

The authors numerically compared the estimator dMK with that of dNH in terms of the variances
through a simulation study. Their numerical study reveals that the estimator dMK performs
better than dNH when either the sample sizes are small or the population variances are close to
each other.

Tripathy and Kumar (2015) have investigated the problem of estimating common mean µ of
several normal populations using a decision theoretic approach with respect to a quadratic loss
function. They have modified the estimator proposed by Moore and Krishnanmoorthy (1997)
and is given by

dTK =

∑k
i=1

√
niX̄i/bni−1Si∑k

i=1

√
ni/bni−1Si

.

The authors obtained classes of affine and location equivariant estimators and proved some
inadmissibility results in these classes. As a consequence some complete class results have
been proved. In addition to these, the authors also numerically compared the risk values of
their proposed estimators with other well known estimators (including the MLE which has been
obtained numerically) for the case k = 3, 4 using the Monte-Carlo simulation method. Finally
recommendations have been made for the use of all these estimators for various choices of the
parameters.

1.2.3 Estimating Common Mean (Variance) when the Nuisance
Parameters are Ordered

The problem of estimating common mean or variance when the nuisance parameters
(parameters other than our study of interest) satisfying certain ordering has received attentions
by few researchers in the recent past. Suppose (Xi1, Xi2, . . . , Xini

); i = 1, 2 is a random
sample taken from the ith normal population N(µ, σ2

i ). The problem of interest is to estimate
the common parameter µ under the assumption that σ2

1 ≤ σ2
2.

Perhaps Sinha (1979) was the first to consider this model with equal sample sizes when the
loss function is strictly increasing in |d − µ|. He proposed a new estimator which dominates
dGD stochastically as well as universally. The proposed estimator is given by

dS =

{
dGD, if S2

1

n1−1
≤ S2

2

n2−1
X̄1+X̄2

2
, if S2

1

n1−1
>

S2
2

n2−1
.

Elfessi and Pal (1992) considered the same model and proposed new estimators for both

9
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equal and unequal sample sizes. Their estimators are given by

dEP =

{
dGD, if S2

1 ≤ S2
2

δX̄1 + (1− δ)X̄2, if S2
1 > S2

2 ,

and

dEP =

{
dGD, if S2

1

n1−1
≤ S2

2

n2−1
n1X̄1+n2X̄2

n1+n2
, if S2

1

n1−1
>

S2
2

n2−1
,

for equal and unequal sample sizes respectively, where δ = S2
1/(S

2
1 + S2

2). The authors proved
that the estimator dEP dominates dGD universally as well as stochastically when σ2

1 ≤ σ2
2. They

also obtained the percentage of risk improvement of dEP over dGD using both absolute error
loss and squared error loss, numerically.

Misra and van der Meulen (1997) generalized the results obtained by Elfessi and Pal (1992)
to k(≥ 2) normal populations. Furthermore they have proved that the proposed new estimator
dominates its old counter part (dNH , extension of Graybill-Deal estimator to the case k(≥ 2))
in terms of Pitman measure of closeness criteria.

Chang et al. (2012) considered the problem of estimating common and orderedmeans of two
normal populations assuming that the variances follow a simple ordering. They have proposed
a class of estimators for the common mean µ of the form

µ̂(γ) = γX̄1 + (1− γ)X̄2,

where γ is a function of s21, s22, x̄1 − x̄2 and 0 ≤ γ ≤ 1. Here x̄i and s2i are the sample mean and
variance of the ith population respectively. They have proved that the estimator µ̂(γ) dominates
the Graybill-Deal estimator stochastically. Similarly they have chosen two classes of plug-in
type estimators for the ordered means µ1, and µ2; µ1 ≤ µ2 as

µ̂1(γ) = min(X̄1, γX̄1 + (1− γ)X̄2) and µ̂2(γ) = max(X̄1, γX̄1 + (1− γ)X̄2),

respectively. The estimator µ̂2(γ) dominates stochastically X̄2 where as a similar type of result
does not hold true in the case of µ̂1(γ).

Gupta and Singh (1992) investigated the problem of estimating common variance of two
normal populations when it is known a priori that the means follow a simple ordering say
µ1 ≤ µ2. Under order restrictions on the means, authors established that the restricted MLEs of
the common variance and the ordered means dominate their old counter parts (the unrestricted
MLEs, that is, estimators without taking account order restrictions on the means) in terms of
Pitman measure of closeness criteria.

Tripathy et al. (2013) considered the problem of estimating common standard deviation (σ)
of two normal populations under order restrictions on the means using a scale invariant loss
function. A general minimaxity result has been proved and a class of minimax estimators is
derived. An admissibility result is proved in this class. Further a class of equivariant estimators
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with respect to a subgroup of affine group is considered and dominating estimators in this class
are obtained. The risk performance of all these proposed estimators is compared through a
simulation study.

1.2.4 Estimating Common Parameter in Exponential Populations

It is quite clear from the literature that the estimation of common parameter (common mean)
in the case of normal populations has been extensively studied by several authors in the recent
past. Along the same direction, when the distribution is two-parameter exponential, some study
has also been done by authors. In fact, the model has applications in the study of reliability, life
testing and survival analysis, hence the problem is also known as the estimation of “common
minimum guarantee time”. To be very specific, let (Xi1, Xi2, ..., Xini

) be a random sample
taken from the ith population Ex(µ, σi); i = 1, 2, . . . k. Here µ is the location parameter which
is common to all the populations, and σis are known as the scale parameters. The parameter
µ is also referred as the minimum guarantee time and σi as the mean residual life times in the
literature due to its application in reliability. The problem is to estimate the common parameterµ
when the scale parameters are unknown. Thismodel has been investigated from classical as well
as decision theoretic point of view. Below we discuss certain related results in chronological
order.

Probably, Ghosh and Razmpour (1984) were the first to consider this model and proposed
various estimators such as the maximum likelihood estimator (MLE), a modification of the
MLE (MMLE) and the uniformly minimum variance unbiased estimator (UMVUE) for µwhen
the scale parameters are unknown. They have also numerically compared the mean squared
errors and the biases of these estimators for small and large sample sizes.

Pal and Sinha (1990) considered the same model as above and compared the performances
of the MLE, MMLE and UMVUE in terms of mean squared error (MSE) and PMC criterion as
well. Further they obtained a class of estimators that performs better than the MLE with respect
to the squared error loss function and PMC criterion. Though they have observed that this class
contains some variants of the MMLE and the UMVUE, however the variant of MMLE has
been shown to be inadmissible with respect to the squared error loss function. Further, Jin and
Pal (1992) suggested a wide class of estimators that dominates the MLE using a convex loss
function.

Jin and Crouse (1998b) considered this problem of estimating common location parameter µ
of several exponential populations when the scale parameters are unknown and unequal, using
a general class of convex loss functions. Authors have derived a larger class of estimators that
contains the MMLE and the UMVUE. Latter on Jin and Crouse (1998a) proved an identity
and used it to compare the performances of the quantiles using squared error loss function.
In addition to this they have used this identity to obtain a class of estimators for the common
location parameter which dominates the MLE and the UMVUE.

11



Chapter 1 Introduction

The problem of estimation of common location parameter µ when the nuisance parameters
(σis) are known to satisfy certain simple ordering (inequality restrictions) is of special interest.
Tripathy et al. (2014) considered the estimation of the common location parameter µ when it is
known a priori that the scale parameters follow the ordering σ1 ≤ σ2. Using the affine invariant
(quadratic) loss function, they have obtained certain new estimators which dominate the MLE,
MMLE and the UMVUE under order restricted scale parameters. They have also obtained the
percentage of risk improvements of these new estimators over the old ones numerically.

The problem of estimation of common scale parameter of several exponential populations
when the location parameters are unknown and unequal has also received considerable attention
in the literature. Specifically, let (Xi1, Xi2, ..., Xini

) be a random sample taken from the ith

population Ex(µi, σ); i = 1, 2, . . . k. Here σ is the scale parameter which is common to all the
populations, and µis are known as the location parameters. Rukhin and Zidek (1985) considered
the problem of estimating the linear parametric function of the form θ =

∑k
i=1 αiµi + ησ for k

exponential populations. For η > {(nk+1)
∑k

i=1 αi}/nk or θ = α1µ1+ησ and 0 ≤ η < α1/n

they have constructed an estimator which improves upon the best affine equivariant estimator
of θ for almost all parameter values. In this case if (i) α = ej the basis vector then θ is a quantile
of the jth population, if (ii) α = 0 and η = 1 then θ = σ is the common scale parameter and if
(iii) α = (k−1, . . . , k−1) then θ = k−1

∑k
i1
µi + ησ which are very much statistical interest.

Pandey and Singh (1979) derived certain basic estimators for the common scale parameter
σ namely theMLE, the unbiased estimator and further obtained new estimators which dominate
these.

Madi and Tsui (1990) considered the estimation of common scale parameter σ with respect
to a large class of bowl shaped loss functions. Authors proved the inadmissibility of the best
affine equivariant estimator. Moreover the authors derived a class of improved estimators.
Finally they used a simulation study to numerically obtain the percentage of risk reduction.

Madi and Leonard (1996) investigated the problem of estimating common scale parameter
σ and the parametric function θ =

∑k
i=1 αiµi + ησ for k exponential populations. Authors

proposed some Bayes estimators and compared the risk of these estimators with that of the
estimators previously proposed by Rukhin and Zidek (1985) and Madi and Tsui (1990).

1.2.5 Estimating Parameters under Order Restriction

The problem of estimation when it is known apriori that they follow certain ordering is quite
interesting and has applications in industry, agriculture and medical experiments. For a detailed
review and some applications, we refer to Barlow et al. (1972), Robertson et al. (1988) and van
Eeden (2006). Below we discuss certain results which are relevant and useful for our study.

Most of the results on estimating ordered parameters deal with finding maximum likelihood
estimator or its isotonic version and these results have been well addressed in Barlow et al.
(1972), Robertson et al. (1988). Probably, Blumenthal and Cohen (1968) were the first to
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Introduction Chapter 1

consider this problem using decision theoretic approach. Suppose Xij; i = 1, 2 and j =

1, 2, . . . , n are independent random samples taken from distributions having density functions
fi(x − θi), i = 1, 2. Here θi are the location parameters. Blumenthal and Cohen (1968)
considered the estimation of (θ1, θ2) when it is known a priori that θ1 ≤ θ2. Using squared error
loss function, they derived sufficient conditions for admissibility and minimaxity of Pitman
estimator of the ordered parameters (θ1, θ2).

Kumar and Sharma (1988) considered the problem of estimating (θ1, θ2); θ1 ≤ θ2 when
the samples are taken from normal populations N(θi, σ

2
i ) with respect to the sum of squared

error loss functions. They obtained a class of minimax estimators for (θ1, θ2) and within this
an admissible class of estimators was obtained. When σ1 ̸= σ2, it is proved that some of
these estimators are improved by the MLE itself. They also obtained a sufficient condition for
the minimaxity of the analogue of Pitman estimator when the density function fi belongs to a
general location family.

Suppose there are k independent normal populations with means θ1, θ2,…, θk and common
variance unity. It is known a priori that θ1 ≤ θ2 ≤…≤ θk.Kumar and Sharma (1989) considered
the problem of estimating the ordered normal means with respect to the sum of the squared error
loss functions. They proved that the Pitman estimator δ˜p (the generalized Bayes estimator with
respect to the uniform prior in restricted parameter space) is minimax. For the case k = 2, it
is also proved that the components of δ˜p for estimating θ1 and θ2 are minimax (see Cohen and
Sackrowitz (1970)). They also pointed out that a similar type of result does not hold for the
case k = 3. They further proved the admissibility of the Pitman estimator δ˜p in a subclass of
estimators.

Kaur and Singh (1991) have considered the estimation of ordered means of two exponential
populations when the sample sizes are equal. Using isotonic regression, they have obtained
improved estimators over the usual MLE for the ordered means. The authors also obtained the
asymptotic efficiency of improved estimators over the MLE.

Vijayasree and Singh (1991) investigated the problem of simultaneous estimation of ordered
parameters from two exponential populations. They have derived a class of mixed estimators
for the ordered means. In this class, an admissible class of estimators have been obtained. They
have also studied the efficiencies of mixed estimators relative to sample means. Similar type of
results have also been obtained by Vijayasree and Singh (1993) for component wise estimation
of ordered means.

Pal and Kushary (1992) have studied the problem of estimating ordered location parameters
of two exponential populations under squared error loss function. The authors have obtained
some baseline estimators for the location parameters without assuming order restriction.
Under order restrictions, authors obtained improved estimatorrs that dominate these baseline
estimators.

Vijayasree et al. (1995) have considered the problem of estimating ordered location and scale
parameters of k exponential populations. They derived sufficient conditions for inadmissibility
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of usual estimators for location and scale parameters under order restrictions with respect to
mean squared error. As a consequence, they proposed improved estimators for the location as
well as scale parameters.

Oono and Shinozaki (2005) considered the problem of estimating ordered means and linear
function of it, for two normal populations with respect to a squared error loss function. The
authors have proposed some plug-in type estimators for ordered means and obtained necessary
and sufficient condition for this estimator to improve upon unrestrictedMLE. For linear function
of ordered means, the restricted MLE always improves upon the unrestricted MLE when the
variance is known. However, when the variance is unknown the restrictedMLE does not always
improve upon unrestricted MLE.

Kumar et al. (2005a) studied the problem of estimating order means (θ1 ≤ θ2 ≤ . . . ≤ θk)
of k normal populations. They have assumed that the variances are known and unequal. For
the case k = 3, they have shown that the components of Pitman estimator namely δp1 and δp3,
are failed to be minimax for θ1 and θ3 respectively. The authors also obtained the MLE for
(θ1, θ2, θ3) and compared the risk of it with the risk of Pitman estimator δ˜p numerically.

Kumar et al. (2005b) considered k independent normal populations with means θ1, θ2,…,
θk respectively and common variance unity. The authors proposed two well known estimators
for estimating (θ1, θ2, …, θk); θ1 ≤ θ2 ≤ …≤ θk namely the Pitman estimator (δ˜p) and the
maximum likelihood estimator δ˜MLE. Applying an argument developed by Brown (1979), they
obtained some James-Stein type estimators for ordered normal means. They observed through
simulation study that many of these estimators dominate δ˜MLE and δ˜p substantially.

Nagatsuka et al. (2009) have considered the Bayesian estimation of ordered parameters of
two exponential populations. Taking account of the prior information on ordering, they obtained
Bayes estimators for the order parameters. Through a simulation study, they have shown that
the proposed Bayes estimators perform better than the restricted MLEs.

Tripathy and Kumar (2011) considered the simultaneous estimation of quantiles of k normal
populations when the variance is common and the means follow certain ordering for equal
sample sizes. More specifically, let (Xi1, Xi2, . . . , Xin); i = 1, 2, . . . , k be random samples
taken from k normal populations with a common variance σ2 and the means µ1, µ2, . . . , µk

such that µ1 ≤ µ2 ≤ · · ·µk. Under this set up they have estimated the quantiles θi = µi + ησ.

They proved the minimaxity of the best affine equivariant estimator. For the case k = 2,

they have proposed a class of mixed estimators and proved a minimaxity results for this class.
Certain admissible estimators have been derived within the class of minimax estimators. They
also proposed certain generalized Bayes estimators and using these they obtained some heuristic
type estimators for the quantiles. Finally they numerically compared all the proposed estimators
using a simulation study.

Jana and Kumar (2015) have considered the simultaneous estimation of scale parameters
(σ1 and σ2) from two exponential populations when the location parameter is common using a
decision theoretic approach. They proposed some new estimators for ordered scale parameters
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which improve upon the usual estimators such as the MLE and the UMVUE. The percentage of
risk improvement by the new estimators over the old ones have also been obtained numerically.

Chang and Shinozaki (2015) considered the estimation of ordered means from two normal
populations when the variances are ordered and unordered using modified Pitman nearness
criterion.

Recently, Pedram and Bazyari (2017) considered the estimation of ordered means of two
normal populations when the variances are unknown and unequal. Using the squared error
loss function, they derived a necessary and sufficient condition for the plug-in type estimators
to improve upon the unrestricted MLE. They also derived improved estimators under modified
Pitman measure of closeness criterion for improving the unbiased estimators. They also noticed
that the uniform improvement is seen for unbiased estimator when the means are equal. They
have illustrated the situation with certain practical examples.

It is worth mentioning that, apart from normal and exponential distribution some study also
has been done on estimating ordered parameters in case of other distributions like gamma,
Pareto, Lomax etc. We refer to Misra et al. (2002), Meghnatisi and Nematollahi (2009),
Gunasekera (2017), Petropoulos (2017) and the refernces cited there in, for estimating ordered
parameters in case of distributions other than normal and two-parameter exponential.

1.2.6 Estimation of Quantiles

The problem of estimation of quantiles is important and has received considerable attention by
several researchers in the recent past. Needless to say, the estimators of quantiles arewidely used
in the study of reliability, life testing and survival analysis. We refer to Epstein and Sobel (1954)
and Saleh (1981) for some applications of quantiles. In most of the literature the estimation of
quantiles has been done in the case of exponential and normal distribution. Below we discuss
certain results on estimation of quantiles which are relevant for developing the chapters in this
thesis.

Probably Zidek (1969) was the first to consider the problem of estimating quantiles in
the case of normal population. To be very specific, Let X˜ = (X1, X2, . . . , Xn) and Y˜ =

(Y1, Y2, . . . , Yk) be two independent random vectors from normal populations with E(X˜ ) = 0,
E(Y˜ ) = µ, Cov(X˜ ) = σ2I and Cov(Y˜ ) = σ2I. Zidek (1969) investigated the estimation of a
quantity θ = Aµ + ησ using a quadratic loss. For particular choice of k = 1, and A = 1, the
quantity θ reduces to a quantile. He proved that the best equivariant estimator (BEE) of θ for
a given matrix A and a given vector η ̸= 0 is inadmissible whenever |η| is sufficiently large.
Latter Zidek (1971) proved that each member of a certain class of estimators of θ = µ+ ησ for
a given vector η(̸= 0) is inadmissible with respect to a quadratic loss function. The author also
proved that the BEE is inadmissible with respect to the quadratic loss function.

Rukhin and Strawderman (1982) considered the problem of estimating the quantile θ =

µ + ησ (η > 0) of an exponential population where µ and σ are the unknown location and
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scale parameters respectively. The authors established that the BEE is inadmissible whenever
0 ≤ η < 1

n
or η > 1 + 1

n
and the loss function is quadratic. Specifically, for η > 1 + 1

n
, they

have obtained an improved estimator for the quantile.
Rukhin (1983) considered the problem of estimating the quantile, θ = µ + ησ of a normal

populationN(µ, σ2).Using a differential inequality approach, he constructed a class ofminimax
estimators which dominates the BEE of θ with respect to the quadratic loss function.

Rukhin (1986) considered the problem of estimating the quantile θ = µ + ησ of an
exponential population. Author proved that the BEE is admissible against the scale invariant
squared error loss function if 1

n
≤ η ≤ 1 + 1

n
. A class of minimax estimators was also derived

for the case η > 1 + 1
n
. This class contains a generalized Bayes estimator which is shown to be

admissible.
Sharma and Kumar (1994) considered the problem of estimating quantile of the first

population when two exponential populations are available with unknown different scale
parameters σ1, σ2 and a unknown common location parameter µ. The authors have shown that
the UMVUE and the best affine equivariant estimator (BAEE), based on one population, of
the quantile can be improved by using information available from both the samples. They
obtained an inadmissibility condition for a class of affine equivariant estimators. Latter Kumar
and Sharma (1996) generalized their inadmissibility results to k (≥ 2) exponential populations.

Kumar and Tripathy (2011) considered the estimation of quantiles of two normal populations
when the mean is common and the variances are different. Authors proposed certain new
estimators of the quantile using the estimators of the common mean. They also established
that the estimators of the quantile can be improved if one can improve the estimators of either
the common mean or the variance. They have derived sufficient conditions for improving
estimators in the class of equivariant estimators. They have also numerically compared the
risk values of various proposed estimators.

Tripathy and Kumar (2017) studied the problem of estimating quantile vector for k(≥
2) exponential populations with common location parameter µ and possibly different scale
parameters σ1, σ2, . . . , σk. The authors proposed some estimators based on the MLE, MMLE
and the UMVUE. Furthermore they have also derived some inadmissibility results introducing
affine and location group of transformations to the model. Finally, through a simulation study,
authors have numerically compared all the proposed estimators with respect to the sum of
quadratic losses.

1.2.7 Estimating Parameters Using Censored Samples

The problem of estimating parameters using censored samples is quite realistic and has received
considerable attention by several researchers in the recent past. Particularly, the problem has
been studied extensively when the distribution function is a two-parameter exponential due to
the practical applications. Estimation using censored samples has wide range of applications in
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the fields of science, engineering, social sciences, public health and medicines in the study of
reliability, life testing and survival analysis. Basically, the various types of censoring schemes
available are of type-I (number of failures are random), type-II (censoring time is random)
or some modification of these. For some detailed review on estimation of parameters from
an exponential populations using these types of conventional censoring schemes we refer to
Lawless (2003), and Johnson et al. (1994). We also note that the type-II censoring scheme is
a special case of progressive type-II censoring scheme. Below we discuss some literature on
estimation of parameters from an exponential population using censored sampling scheme from
decision theoretic point of view.

Chandrasekar et al. (2002) have derived the minimum risk equivariant estimator for the
location as well as the scale parameter of an exponential population under progressive type-II
censored sampling scheme. The authors have established the results for location, scale and
location-scale models separately.

Madi (2010) has investigated the problem of estimating scale parameter of an exponential
population under progressive type-II censoring scheme. Applying Brewster-Zidek technique
(Brewster and Zidek (1974)), author obtained a smooth estimator that improves over the
minimum risk equivariant estimator. He has established the result under a large class of
bowl-shaped loss functions. For a detailed review and some recent results on estimation
of parameters under progressive type-II censored samples from a two parameter exponential
distribution, using classical as well as decision theoretic approach, we refer to Balakrishnan and
Cramer (2014) and the references cited there in. Recently, Tripathi et al. (2018) considered the
estimation of a linear parametric function of location and scale from an exponential distribution
using doubly censored sampling scheme. They have derived some decision theoretic results
using a convex loss function. More importantly, in this thesis we have concentrated on
estimation problems under type-II censored samples from exponential populations using
decision theoretic approach.

It has been observed from the literature review that most of the research works on estimating
parameters using censored samples has been studied using one population. We note that, a
little attention has been paid in estimating parameters, using censored samples from two or
more populations. Below we discuss certain results on estimation of parameters using censored
samples from two or more exponential populations.

Probably, Chiou and Cohen (1984) were the first to consider the problem of estimating
parameters using censored samples when more than one population is available. The authors
have considered two exponential populations with a common location parameter and different
scale parameters. Using type-II censored samples from these two populations, they have
obtained the UMVUE and the MLE of the common location parameter with respect to the
squared error loss function. They have also discussed certain results for k(≥ 2) populations.

Elfessi and Pal (1991) have considered the problem of estimating common scale parameter
of k(≥ 2) exponential populations under squared error loss function using type-II censored
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samples. The authors have obtained a Stein type estimator that improves upon the best affine
equivariant estimator. Further the authors estimated the vector of location parameters and
constructed some improved estimators.

Yike and Heliang (1999) considered the estimation of ordered location parameters of two
exponential populations using multiple type-II censoring scheme. Authors derived Bayes
estimators using a non-informative prior.

Tripathy (2016) has revisited the statistical model considered by Chiou and Cohen (1984)
and obtained certain decision theoretic results. Author proposed a class of affine equivariant
estimators for the common location parameter and derived sufficient conditions for improving
estimators in this class. Consequently, author proposed new estimators that improve upon the
MLE and the UMVUE. Author also compared the risk values of all these estimators numerically
using a simulation study.

Recently, Tripathy (2017) considered the same model that has been considered by Tripathy
(2016), with the prior information that the scale parameters follow a simple ordering. Utilizing
the prior information, the author has derived a sufficient condition for improving estimators
in the class of equivariant estimators. Furthermore, applying integrated expression of risk
difference (IERD) approach of Kubokawa (1994), an improved class of estimators has been
derived. The risk values of all the proposed estimators have been compared through a simulation
study using Monte-Carlo simulation method.

1.3 Objectives

From the above literature review one may see that the problem of estimation of common mean
of two or more normal populations when there is no order restrictions on the variances has been
studied extensively and various alternative estimators are available. In contrary to this, when
it is known a priori that the variances follow certain ordering a less attention has been paid, for
example, see Elfessi and Pal (1992), Misra and van der Meulen (1997) and Chang et al. (2012).
An aim will be to construct alternative estimators for the common mean when the variances
are ordered. The estimation of quantiles for two normal populations with a common mean has
been studied by Kumar and Tripathy (2011). A generalization of their results to k(≥ 2) normal
populations is quite expected. The problem of estimating quantiles of two or more exponential
populations has been considered by Sharma and Kumar (1994) and Kumar and Sharma (1996)
using full samples, however in certain situations wemay not able to observe all the samples. The
problem may also be studied using censored samples. Further estimating ordered parameters
using censored samples may be studied. In the literature, the problem of estimating ordered
location or scale parameters has been studied. Further target will be to consider the problem of
estimating function of ordered parameters.

In view of the above, in this thesis we have considered the problem of estimating equal
or ordered parameters when the underlying distribution is either normal or exponential from
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a decision theoretic point of view. Moreover, we have also focused on estimating quantiles
(which are linear function of location and scale parameters) of these populations under equality
and/or inequality restrictions on the location/scale parameters.

1.4 A Summary of the Results Obtained in the Thesis

The thesis is organized as follows. In Chapter 1, we do a detailed review of literature for
the following problems: (i) estimation of a common parameter, (ii) estimation of ordered
parameters, (iii) estimation of quantiles and (iv) estimation of parameters using censored
samples. In Chapter 2, some basic definitions and decision theoretic results have been
discussed which will be useful in developing the subsequent chapters.

In Chapter 3, we have revisited the problem of estimating a common mean ‘µ’ of
two normal populations N(µ, σ2

1) and N(µ, σ2
2) when it is known a priori that the nuisance

parameters (variances) follow the simple ordering, that is, when σ2
1 ≤ σ2

2. In order to evaluate
the performance of an estimator, we use the loss functions

L1(d, α˜) =
(
d− µ

σ1

)2

, L2(d, α˜) = |d− µ|, and L3(d, α˜) = (d− µ)2

where d is an estimator for estimating the common mean µ and α˜ = (µ, σ2
1, σ

2
2). Let X˜ =

(X1, X2, . . . , Xm) and Y˜ = (Y1, Y2, . . . , Yn) be independent random samples taken from two
normal populations N(µ, σ2

1) and N(µ, σ2
2) respectively. The minimal sufficient statistics (not

complete) for this model exists and is given by (X̄, Ȳ , S2
1 , S

2
2), where we denote

X̄ =
1

m

m∑
i=1

Xi, Ȳ =
1

n

n∑
j=1

Yj, S
2
1 =

m∑
i=1

(Xi − X̄)2, S2
2 =

n∑
j=1

(Yj − Ȳ )2.

In Section 3.2, we discuss some existing results without considering ordering of the variances
for the common mean. When there is order restriction on the variances, we propose the
restricted MLE (Maximum Likelihood Estimator) for ‘µ’ which can be obtained numerically.
Under the same set up, Elfessi and Pal (1992) proposed new estimators that dominate the well
known Graybill-Deal (see Graybill and Deal (1959)) estimator stochastically (also universally),
for equal and unequal sample sizes separately. Further these results have been extended
to the case of k(≥ 2) normal populations by Misra and van der Meulen (1997). Being
motivated by these results, we in Section 3.3, construct some new estimators that dominate
some other popular estimators for the common mean proposed by Khatri and Shah (1974),
Moore and Krishnamoorthy (1997), Tripathy and Kumar (2010) and Brown and Cohen (1974),
stochastically as well as universally for equal as well as unequal sample sizes. In Section 3.4,
we have shown that these new estimators also dominate their old counter part in terms of Pitman
measure of closeness. The concept of invariance has been introduced to our problem in Section
3.5. Sufficient conditions have been derived for improving estimators in the class of affine and
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location equivariant, under order restrictions on the variances. It has been observed that all the
well known estimators (that have been considered) fall into these classes. As a consequence
improved estimators have been obtained. Interestingly, these new estimators coincide with the
estimators proposed in Section 3.3 and 3.4 for unequal sample sizes. Finally, in Section 3.6,
we carried out a detailed simulation study in order to numerically compare the performances of
all these proposed estimators including that proposed by Elfessi and Pal (1992). Specifically,
we have calculated the percentage of risk improvements of new one over their respective old
one and the percentage of relative risk performances of all the new estimators with respect to
Graybill-Deal estimator. It has been observed that none of the estimators beat others uniformly
using these three types of loss functions.

In Chapter 4, we have considered the problem of estimating quantiles for k(≥ 2) normal
populations under equality assumption on the mean µ. Let there be k(≥ 2) normal populations,
each having a common mean and possibly different variances. To be very specific, let
(Xi1, Xi2, . . . , Xini

) be a random sample of size ni available from the ith normal population
N(µ, σ2

i ); i = 1, 2, . . . , k. Here, we assume that the parameters µ and σ2
i ; i = 1, 2, . . . , k

are unknown. The problem is to estimate the quantile, θ = µ + ησ1 of the first population,
when the other k − 1 populations are available, with respect to the quadratic loss function
L(d, µ, σ2

1) =
(
d−θ
σ1

)2

, where d is an estimate for estimating the quantile θ. Here 0 ̸= η =

Φ−1(p); 0 < p < 1 and Φ(.) denotes the cumulative distribution function of a standard normal
random variable. In Section 4.2, we have considered the estimation of quantiles of the first
population when the other k − 1, populations are available. We note that Kumar and Tripathy
(2011), considered the estimation of quantiles of two normal populations when the mean is
common, using decision theoretic approach. The main objective of this work (in Section 4.2) is
to extend some of their decision theoretic results to the case of k(≥ 2) populations. In Section
4.2.1, we prove a general result which helps in obtaining better estimators for the quantiles.
Using these results, some improved estimators have been constructed. We introduce the concept
of invariance and obtain the classes of affine and location equivariant estimators in Section 4.2.2.
Using the orbit-by-orbit improvement technique of Brewster and Zidek (1974) for improving
equivariant estimators, we derive sufficient conditions for improving estimators in these classes.
As a consequence some complete class results have been proved. In Section 4.2.3, we carry out a
detailed simulation study in order to numerically compare the performances of all the proposed
estimators for the case k = 3 and 4. Finally we conclude our remarks in Section 4.2.4 also
discuss two practical examples illustrating the use of estimators for quantiles.

Next, in Section 4.3 we consider the estimation of the vector quantile θ˜ = (θ1, θ2, . . . , θk),

where θi = µ+ ησi. The loss function is taken as sum of the quadratic losses,

L(d˜, θ˜) =
k∑
i=1

(di − θi
σi

)2

,

where d˜ = (d1, d2, . . . , dk) is an estimator of θ˜. In Section 4.3.1, we derive a basic result which
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helps in constructing improved estimators for quantile vector θ˜. In Section 4.3.2, we derive
affine and location equivariant estimators. Sufficient conditions for improving estimators in
these classes have been obtained for the case k = 2. In the process, two complete class results
have been proved. In Section 4.3.3, an extensive simulation study has been carried out in
order to numerically compare the relative risk performances of various proposed estimators.
We conclude in Section 4.3.4 with some examples.

In Chapter 5, we deal with the problem of estimating quantiles and ordered scales of
two exponential populations under equality assumption on the location parameter using type-II
censored samples. First, in Section 5.2, we consider the estimation of quantile θ = µ + ησ1,

when type-II censored samples are available from two exponential populations Ex(µ, σ1) and
Ex(µ, σ2). More specifically, let X(1) ≤ X(2) ≤ · · · ≤ X(r) (2 ≤ r ≤ m) and Y(1) ≤ Y(2) ≤
· · · ≤ Y(s) (2 ≤ s ≤ n) be the ordered observations taken from random samples of sizes
m and n which follows exponential distributions with a common location parameter µ and
possibly different scale parameters σ1 and σ2 respectively. We denote Ex(µ, σi) the exponential
population with probability density function

f(t, µ, σi) =
1

σi
exp{−(t− µ)/σi}, t > µ, σi > 0,−∞ < µ <∞; i = 1, 2.

The problem is to estimate the pth quantile θ = µ+ ησ1 of the first population, where 0 < η =

− log(1− p); 0 < p < 1. The loss function is taken as

L(d, α˜) =
(d− θ

σ1

)2

where d is an estimate for estimating the quantile θ and α˜ = (µ, σ1, σ2). We evaluate
the performance of an estimator for quantile with the help of the risk function R(d, α˜) =

Eµ,σ1,σ2(L(d, α˜)). The complete and sufficient statistics for this model is (U1 − Z,U2 − Z,Z),

where Z = min(X(1), Y(1)), U1 = 1
m
[
∑r

i=1X(i) + (m − r)X(r)], and U2 = 1
n
[
∑s

j=1 Y(j) +

(n − s)Y(s)]. In Section 5.2.1, we construct some basic estimators such as the MLE (dML),
a modification to it call it the modified MLE (dMM ) and the uniformly minimum variance
unbiased estimator (UMVUE) dMV . These are given by

dML = Z + ησ̂1ML, dMM = Z − 1

p̂
+ ησ̂1ML, dMV = Z +

V1V2(k − 1)

(r − 1)V2 + (s− 1)V1
+ kV1,

where σ̂1ML = m(U1 − Z)/r, σ̂2ML = n(U2 − Z)/s, p̂ = m/σ̂1ML + n/σ̂2ML, V1 = U1 −
Z and V2 = U2 − Z. In Section 5.2.2, we propose a class of estimators which contains the
UMVUE of quantiles θ and obtain estimators dominating the UMVUE, dMV . In Section 5.2.3,
we derive sufficient conditions for improving equivariant estimators and as a consequence some
complete class results have been obtained. Most importantly, in Section 5.2.4, we carry out a
simulation study to numerically compare the risk values as well as the percentage of relative risk
improvements of all the proposed estimators whichmay be useful for practical purposes. Finally
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we conclude with our remarks in Section 5.2.5. It is worth mentioning that, the theoretical
results obtained in this section generalizes the results of Sharma and Kumar (1994) where they
studied the problem for full and equal sample sizes.

Next, in Section 5.3, we deal with the problem of estimating vector σ˜ = (σ1, σ2); such that
σ1 ≤ σ2. The loss function is taken as

L(d̂˜, σ˜) =
2∑
i=1

(di − σi
σi

)2

where d̂˜ = (d1, d2) is an estimator for σ˜ = (σ1, σ2). Section 5.3.1 introduces the MLE and
the UMVUE without considering order restrictions on the scale parameters. Then under order
restriction on the scale parameters, we derive the restricted maximum likelihood estimator for
σ˜. It has been proved that the restricted MLE performs better than the MLE using the quadratic
loss function. Further we derive some complete class results in certain class of estimators.
In Section 5.3.2, we obtain classes of equivariant estimators and prove some inadmissibility
results in these classes. Using these results, we obtain improved estimators which dominate
the MLE and the UMVUE with respect to the above loss function. In Section 5.3.3, a detailed
simulation study has been carried out to numerically compare the relative risk performances of
all the proposed estimators and recommendations have been made regarding their use. Section
5.3.4 concludes the remarks with some examples.

In Chapter 6, we consider the estimation of ordered quantiles of two exponential
populations under equality restrictions on either the location or scale parameters. First, in
Section 6.2, we consider two exponential populations with a common location parameter µ
and possibly different scale parameters σ1 and σ2. Let θ1 and θ2 be the pth quantiles of the two
populations respectively. Here θi = µ + ησi; i = 1, 2, η = − ln(1 − p); 0 < p < 1. The
problem is to estimate the quantiles θi, when it is known a priori that θ1 ≤ θ2. The loss function
is taken as,

L(di, θi) =
(di − θi

σi

)2

where di is an estimator for θi; i = 1, 2. The performance of an estimator will be evaluated
using the risk function R(di, θi) = Eµ,σi{L(di, θi)}. In Section 6.2.1, we derive some
baseline estimators without assuming ordering of quantiles. Further, using isotonic version of
unrestricted MLEs, we propose some new estimators (call it restricted MLEs) for the quantiles
under order restriction. Using the existing estimators for ordered scale and common location,
we propose some new plug-in type of estimators for the ordered quantiles. In Section 6.2.2,
we consider some classes of estimators for the quantiles. Sufficient conditions for improving
estimators in this class have been proved. As a result, new estimators improving upon the
MLE, the UMVUE, a modification to the MLE and the restricted MLE have been obtained.
We note that an analytical comparison of the risk values of all these estimators is not possible.
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Hence, a detailed simulation study has been done in Section 6.2.3, to compare the percentage
of relative risk improvement of all these proposed estimators. We recommend using estimators
for quantiles under order restrictions. Finally we conclude our remarks in Section 6.2.4.

In Section 6.3, we consider two exponential populations with a common scale parameter σ
and different location parameters µ1 and µ2.We further assume that the location parameters are
non-negative (which is important from application point of view). The problem of estimating
ordered quantiles θi = µi + ησ; i = 1, 2 and θ1 ≤ θ2 is considered using quadratic loss
function when the samples drawn are type-II censored. In Section 6.3.1, we discuss some
basic estimators such as the MLE, a modification to the MLE, the UMVUE, and the best affine
equivariant, without considering ordering of the quantiles. Further, under order restrictions on
the quantiles, isotonized version of all these estimators have been proposed. In Section 6.3.2,
Bayes estimators have been derived for θ1 and θ2 assuming order restrictions on the quantiles.
For this purpose we have considered two types of priors namely the non-informative prior and
the conditional prior. In Section 6.3.3, a detailed simulation study has been carried out in order
to numerically compare the risk values of all the proposed estimators.

In Chapter 7, we consider the estimation of the common scale parameter σ of two
exponential populations when the location parameters satisfy the simple ordering µ1 ≤ µ2

and µi ≥ 0; i = 1, 2. It is noted that this model was considered by Madi and Leonard (1996)
without imposing order restriction on location parameters. The main goal of this chapter is to
derive certain Bayes estimators for the common scale parameter σ, under the assumption that
location parameters are ordered. In Section 7.1, we discuss some basic results and propose
the restricted MLE for σ. In Section 7.2, we find Bayes estimators using uniform prior and
a conditional inverse gamma prior, taking into account the order restrictions on the location
parameters. Exact expressions for these two Bayes estimators have been obtained. It seems
quite difficult to evaluate the risk values of these estimators analytically. In Section 7.3, taking
the advantages of computational facilities, we compare the performance of our estimator with
that of Madi and Leonard (1996) with respect to the quadratic loss function using Monte-Carlo
simulation method numerically. It has been revealed that the proposed estimators perform
quite satisfactorily in comparison to other estimators, when it is known apriori that the location
parameters are ordered.

In Chapter 8, we give an overall conclusions of the thesis and discuss some of our future
study.



Chapter 1 Introduction
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Chapter 2

Some Definitions and Basic Results

In this chapter we discuss certain results and definitions from classical as well as decision
theoretic point of view, and will be useful in developing chapters in the thesis. A thorough
discussion on these topic can be found in Berger (1985), Lehmann and Casella (2006), Ferguson
(1967), and Rohatgi and Saleh (2003).

SupposeX is a random variable defined on a sample spaceΩ having probability distribution
function Pθ, where θ is an unknown parameter associated to it. This θ takes values in a set
known as parameter space Θ. The goal of an estimation problem is to estimate either the
parameter θ or a measurable function of it h(θ) using the observations (X1, X2, . . . , Xn) from
X. A non-randomized decision rule d is defined as a function from the sample space Ω to the
action space A which is defined as the convex closure of the set h(Θ) = {h(θ) : θ ∈ Θ}.
Let us denote D as the class of all non-randomized decision rules. In this thesis we mostly
concentrate on finding non-randomized decision rules as it is essentially complete. Based on
the observed sample X = x, the parameter h(θ) is estimated by d(x) and due to which a loss
is incurred. Let us denote the loss by L(d(x), h(θ)). In our thesis we have considered the loss
function L(d(x), h(θ)) as non-negative and real valued in both the arguments. The average
loss is known as the risk and is defined by R (h(θ), d(x)) = Eθ {L (h(θ), d (x))} . The target
is to obtain a good estimator as there may be more than one estimator for h(θ) available. The
followings give criteria to choose a better estimator in terms of risk values.

Definition 2.0.1 An estimator d1 is said to be as good as an estimator d2, if R (θ, d1) ≤
R (θ, d2) for all θ ∈ Θ. An estimator d1 is said to perform better than another estimator d2
if R (θ, d1) ≤ R (θ, d2) for all θ ∈ Θ and strict inequality holds for some values of θ ∈ Θ.

Definition 2.0.2 Two estimators d1 and d2 are said to be equivalent if R (θ, d1) = R (θ, d2) ,
for all θ ∈ Θ.

Definition 2.0.3 An estimator d is said to be admissible if no other estimator d0 dominates it
in terms of risk. If an estimator is not admissible is known as inadmissible.

It seems from the above definition that admissibility property of an estimator is a weak
optimality criterion. Nevertheless, it is a desirable property that every estimator should enjoy.
In practice, it is difficult to obtain an estimator satisfying the admissibility criteria in the class
of all the estimators D. Hence, one must concentrate on subclasses of the class D for better
estimators. Considering this, we have the following definitions.

Definition 2.0.4 A class of estimators C is said to be complete if for any other estimator d not
belonging to C, there exists an estimator d0 belonging to C such that it dominates d.

25



Some Definitions and Basic Results

Definition 2.0.5 A class of estimators C is said to be essentially complete if for any other
estimator d not belonging to C, there exists an estimator d0 belonging to C such that it is as
good as d.

Definition 2.0.6 A class of estimators C is said to be minimal complete if the class C is complete
and no other proper subclass of C is complete.

Definition 2.0.7 A class of estimators C is said to be minimal essentially complete if the class
C is essentially complete and no other proper subclass of C is essentially complete.

We note that, to obtain good estimators one needs to concentrate only in the
minimal(essentially) complete class, as it contains all the desirable estimators. Further, when the
minimal (essentially) complete class exist, it contains all the admissible estimators. However,
these classes may not exist always. We also noticed that admissibility is a weak optimality
criteria. For example, constant estimators are admissible which of no use. Hence, one should
look for some other optimality criteria that helps in obtaining good estimators. The following
two optimality criteria are commonly used. (i) by ordering the estimators, and (ii) by restricting
the class of estimators. First we will discuss certain results which are related to the method
of ordering the estimators. Using this approach, estimators are ordered as per their worst
performances in the sense of risk function. This concept leads to the criteria of minimaxity.

Definition 2.0.8 An estimator d0 satisfying the relation

sup
θ∈Θ

R(θ, d0) = inf
d∈D

sup
θ∈Θ

R(θ, d)

is called a minimax estimator. The right hand side of the equality represents minimax risk value
of the problem.

Alternatively, a minimax estimator minimizes the maximum risks of all the estimators in
the class. Sometimes admissible estimators become minimax and vice-versa, which is given in
the following theorem.

Theorem 2.0.1 (i) A unique minimax estimator is admissible.
(ii) An admissible estimator having constant risk is minimax.

Another method for obtaining optimal estimators is due to Bayesian principle. In this
approach the parameter θ is treated as a random variable having certain probability. The
distribution of θ is known as the prior distribution denoted by π(θ) and is defined on (Θ,B(Θ)).
Here B(Θ) denotes the σ−field of subsets ofΘ. The prior distribution π is called proper if π(Θ)
is finite. It is called improper if π(Θ) = ∞, and

∫
Θ
pθ(x)dπ(θ) <∞ for almost all x (a.e. (µ)).

Here pθ(x) is the density of Pθ with respect to a σ−finite measure µ on measurable space
(X ,B(X )), where B(X ) is a σ−field of subsets of X . To find a Bayes estimator we proceed in
the following manner. First we obtain posterior distribution of θ givenX = x. It is obtained by
dividing the joint density of θ and X with the marginal distribution of X. It is given by

pθ(x)dπ(θ)∫
Θ
pθ(x)dπ(θ)

,

where the prior distribution π(θ) may be proper or improper. The posterior risk of an estimator
is obtained as ∫

Θ
L(θ, d(x))pθ(x)dπ(θ)∫

Θ
pθ(x)dπ(θ)

.
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Then we have the definition for Bayes estimator.

Definition 2.0.9 An estimator d is said to be Bayes estimator if it minimizes the posterior risk
with respect to a proper prior π. If the prior is improper, that is

∫
π(θ)dθ = ∞, then the

estimator d minimizing the posterior risk is called a generalized Bayes estimator.

It is also noted that the Bayes estimator minimizes the Bayes risk when the prior distribution
π(θ) is proper. The Bayes risk is defined by

r(π, d) =

∫
Θ

R(θ, d)dπ(θ).

Hence, for a Bayes estimator d0 with respect to a proper prior π, we have

r(π, d0) = inf
d∈D

r(π, d).

It is not difficult to observe that under a squared error loss function, the Bayes estimator becomes
the mean of the posterior distribution of θ given X. Similarly for an absolute loss function, the
Bayes estimator turns out to be the median of the posterior distribution of θ given X. Further
for a weighted squared error loss function, say

L(θ, d) = w(θ)(θ − d)2,

where w(θ) > 0 for all θ ∈ Θ, the form of Bayes estimator turns out to be

dπ =

∫
θw(θ)dπ(θ|x)∫
w(θ)dπ(θ|x)

.

In many situations the minimum Bayes risk is not obtainable, hence one may find an
estimator having risk close to it.

Definition 2.0.10 Let ϵ > 0. An estimator d0 is said to be ϵ−Bayes with respect to a prior
distribution π, if

r(π, d0) ≤ inf
d∈D

r(π, d) + ϵ.

Definition 2.0.11 An estimator d0 is said to be extended Bayes, if d0 is ϵ−Bayes with respect
to some prior distribution of θ.

Definition 2.0.12 Let dn be a Bayes estimator with respect to a sequence of prior distributions
{πn}. An estimator d0 is said to be the limit of Bayes rule if dn(x) → d0(x) in the sense of
distribution for almost all x.

Definition 2.0.13 Let Θ∗ be the class of all prior distribution on Θ. A prior distribution π∗ is
said to be least favorable, if

inf
d∈D

r(π∗, d) = sup
π∈Θ∗

inf
d∈D

r(π, d).

Hence a least favorable prior distribution tends to maximize the minimum Bayes risk. The right
hand side of the above expression is known as the lower value of an estimation problem.
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The following theorems gives the condition under which a Bayes estimator is admissible or
minimax.

Theorem 2.0.2 If a Bayes estimator with respect to a prior distribution π is unique up to
equivalence then it is admissible.

The uniqueness condition can be relaxed if the risk function is continuous, which is stated
below.

Theorem 2.0.3 LetΘ be the one dimensional Euclidean space and assume that the risk function
R(θ, d) is a continuous function of θ for all d. If the estimator d0 is Bayes with respect to some
prior π defined on Θ for which the risk is finite, and the support of π is the whole space Θ then
d0 is admissible.

Theorem 2.0.4 Let d0 be a Bayes estimator with respect to a prior π for all θ ∈ Θ and

R(θ, d0) ≤ r(π, d0),

then δ0 is minimax and π is least favorable.

Theorem 2.0.5 Let {πn} be a sequence of proper prior distributions and dn be the Bayes
estimator corresponding to πn. If

sup
θ∈Θ

R(θ, d) = lim
n→∞

r(πn, dn),

then d is a minimax estimator.

Still now we have discussed certain procedures by employing which, one can get optimal
estimators. Particularly, we have discussed the method of ordering the estimators in a given
problem. The next procedure is to restrict attention to certain classes and obtain optimal
estimators. First we concentrate on the class of unbiased estimators.

Definition 2.0.14 An estimator d for estimating h(θ) is said to be unbiased if E(d) = h(θ) for
all θ ∈ Θ.

It is easy to see that when the loss function is squared error, the risk of an unbiased estimator
turns out to be its variance. It is desirable to have an estimator that enjoys the property of
minimum risk in this class. If such an estimator exist in this class then we call it as the uniformly
minimum variance unbiased estimator (UMVUE) of h(θ). In this regard the following result is
very much useful.

Theorem 2.0.6 Let T (X) be a complete sufficient statistic for estimating h(θ), θ ∈ Θ. If we
can find some function of T, say ψ(T ), which is unbiased estimator of h(θ), then ψ(T ) is the
UMVUE of h(θ).

Another approach to obtain optimal estimators is by introducing the concept of invariance
to the estimation problem and we discuss it below in detail.

Suppose G is the group of measurable transformations whose elements are defined on the
sample space Ω. The group operation is composition. If g1 and g2 are any arbitrary elements of
G, then the composition g2g1 is defined as the transformation g2g1(x) → g2(g1(x)). If for all
g ∈ G and for all θ ∈ Θ, there exists a unique ḡ(θ) ∈ Θ such that the distribution of g(X) is
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given by Pḡ(θ), then the family of distributions {Pθ : θ ∈ Θ} is called invariant under the group
G. It is noted that Ḡ = {ḡ : g ∈ G} is the induced transformation on Θ. Since G is a group,
g−1 exists and hence Pḡ(θ)(X ∈ S) = Pθ(X ∈ g−1(B)) holds for all sets B ∈ B(Ω).

Further, a loss function L(θ, d) is said to be invariant under the groupG if for all g ∈ G and
d ∈ D, there exists a unique rule d0 ∈ D such that

L(θ, d) = L(ḡ(θ), d0)

for all θ ∈ Θ.

The group G while acting on the sample space Ω, also induces automatically another group
G̃ = {g̃ : g ∈ G} defined on action space A.We note that that the groups Ḡ = {ḡ : g ∈ G}
and G̃ = {g̃ : g ∈ G} are homomorphic images of the group G.

Definition 2.0.15 An estimation problem under the group of transformations G is said to be
invariant if the family of probability distributions Pθ and the loss function L(θ, d) are both
invariant under the group G.

For an invariant estimation problem, a non randomized estimator d ∈ D is said to be equivariant
if

d(g(x)) = g̃(d(x)),

for all x ∈ Ω and g ∈ G.

Now the two elements θ1 and θ2 are said to be equivalent if for θ1, θ2 ∈ Θ, the relation
θ1 = ḡ(θ2) holds true where ḡ be an element of Ḡ. This relation is an equivalence relation thus
partitions the setΘ into different disjoint classes known as equivalent classes. These equivalent
classes are known as the orbits of the parameter space Θ. A non-randomized equivariant
decision rule satisfies the relation,

R(ḡ(θ), d) = R(θ, d),

for all ḡ ∈ Ḡ and θ ∈ Θ. Hence on the orbits of Θ, the risk of an equivariant estimator remains
constant that is the risk is independent of parameter θ. Alternatively, one can say that the risk
of an equivariant estimator is constant if the group G is transitive.

Theorem 2.0.7 Suppose that a given decision problem is invariant under a finite group G. If
an invariant decision rule d is admissible within the class of all invariant rules, it is admissible.

Application of Brewster-Zidek Technique

It always remains an anxiety for a statistician to provide improved estimators in certain
classes, or to obtain estimators that perform better than some of the baseline estimators likeMLE
and the UMVUE. Regarding that, (Brewster and Zidek (1974)) provided an useful technique
which helps in obtaining improved estimators in the class of equivariant estimators. Though the
methodwas developed looking into only the equivarinat class, it can be used in general. Suppose
our target is to improve upon an estimator say d0. Now consider a class C which contains the
estimator d0. Suppose dθ is the minimizing choice in that class C for each θ ∈ Θ. A suitable
choice of C may leave the estimator dθ free of θ. For example, let X = (X1, X2, . . . , Xn) be a
random sample taken from a population with uniform distributionX ∼ U [0, σ]. One wishes to
estimate the parameter σ. Let us consider the loss function as the scale invariant which is given
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by

L(σ, d) =

(
σ − d

σ

)2

.

It can be seen that a complete and sufficient statistics for this problem is X(n) =
max{X1, X2, . . . , Xn}. The MLE and the UMVUE of σ are obtained as X(n) and n+1

n
X(n)

respectively. Looking at the form of these two estimators, one may choose a class of estimators
D = {aX(n), a > 0} for estimating σ. In this class the best estimator is given by d0 = n+2

n+1
X(n)

hence improve upon both the MLE and the UMVUE.
Sometimes it is not possible to obtain a classC such that dθ is free from the parameter. When

dθ does not vary significantly with respect to θ, but is different from d0, then it is possible to
improve d0. Let d0 ∈ {da : a ∈ R} with d0 = da0 . Let âθ be the choice of a that minimizes the
risk R(θ, da) for each θ. Let

a = inf
θ∈Θ

âθ and ā = sup
θ∈Θ

âθ.

If R(θ, da) is a strictly convex function of a, then the estimator da is improved by da if a > a0
and by dā if ā < a0. Further the class of estimators {da : a ≤ a ≤ ā} form a minimal complete
class.

The orbit-by-orbit improvement technique may be applied to reduce the risk of an
equivariant estimator on the orbits of some invariant statistics T. Usually a maximal invariant
statistic is preferred for the purpose. Let us consider estimators of the form dϕ(T ) where ϕ = ϕ0

gives d0. The conditional risk function of dϕ(T ) given T = t is given by

R(θ, dϕ(T )|T = t) = E{L[θ, dϕ(T )(X)] | T = t}.

Let R(θ, dϕ(T )) be a strictly convex function of ϕ(T ) and that ϕ∗
θ(T ) minimizing choice that

minimizes the risk R(θ, dϕ(T )) for each θ and for a given T = t. Further, define the sets

A1 =
{
t : ϕ(t) = inf

θ∈Θ
ϕ∗
θ(t) > ϕ0(t)

}
and A2 =

{
t : ϕ(t) = sup

θ∈Θ
ϕ∗
θ(t) < ϕ0(t)

}
.

For the equivariant estimator dϕ(T ), define the function ϕ∗(t) as,

ϕ∗(t) =


ϕ(t) if t ∈ A1,

ϕ(t) if t ∈ A2,

ϕ0(t) if elsewhere.

Then the estimator dϕ∗(T ) dominates d0 provided Pθ(A1 ∪A2) > 0 for some choices of θ ∈ Θ.



Chapter 3

Estimation of Common Mean of Two
Normal Populations with Order

Restricted Variances

3.1 Introduction
In this chapter, we have revisited the problem of estimating common mean of two normal
populations, when the variances (nuisance parameters) follow a simple ordering, say σ2

1 ≤ σ2
2.

Suppose we have two independent normal populations with a common mean µ and
possibly different variances σ2

1 and σ2
2. More specifically, let X˜ = (X1, X2, . . . , Xm) and

Y˜ = (Y1, Y2, . . . , Yn) be independent random samples taken from two normal populations
N(µ, σ2

1) andN(µ, σ2
2) respectively. The problem is to estimate the common mean µ under the

assumption that the variances follow the ordering σ2
1 ≤ σ2

2. In order to evaluate the performance
of an estimator the loss functions

L1(d, α˜) =
(
d− µ

σ1

)2

, (3.1.1)

L2(d, α˜) = |d− µ|, (3.1.2)

and

L3(d, α˜) = (d− µ)2, (3.1.3)

will be used, where d is an estimator for estimating the common mean µ and α˜ = (µ, σ2
1, σ

2
2).

Further the risk of an estimator d is defined by R(d, µ) = Eα˜{Li(d, µ)}; i = 1, 2, 3.
It is worth mentioning that, the problem of estimating the common mean of two or more

normal populations, without taking account the order restrictions on the variances, is quite
popular and has a long history in the literature of statistical inference. In fact, the origin of
the problem has been in the recovery of inter-block information in the problems of balanced
incomplete block designs, which probably was revealed by Yates (1940). Moreover, the
problem has been attended by several pioneer researchers in the last few decades, due to its
practical applications as well as the challenges involve in it. This well known problem arises
in situations, where two or more measuring devices in a laboratory are used to measure certain
quantity, several independent agencies are employed to test the effectiveness of certain new
drugs produced by an industry, two or more different methods have been used to evaluate the
performance of certain characters. Under these circumstances, if it is assumed that, the samples
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drawn follow normal distributions, then the task boils down to draw inference on the common
mean when the variances are unknown and probably unknown and unequal. We refer to Chang
and Pal (2008), Lin and Lee (2005) and Kelleher (1996) for applications as well as examples
of such situations. We note that, when there is no order restrictions on the variances, one of the
first attempts in estimating the common mean µ was made by Graybill and Deal (1959). They
have obtained a combined estimator by taking convex combination of two sample means with
weights as the functions of sample variances. They established that their proposed combined
estimator performs better than the samplemeans in terms ofmean squared error when the sample
sizes are at least 11. Since then it has been a great interest for researchers to find some decision
theoretic as well as classical results in this direction. In fact, their main goal has been to obtain
either some competitors to Graybill-Deal estimator or some other alternative estimators which
may perform better than both the sample means. Also few attempts have been made to prove the
admissibility or inadmissibility of the Graybill-Deal estimator. For a detailed literature review
with some applications and recent updates on estimating the common mean of two or more
normal populations, we refer to Khatri and Shah(1974), Brown and Cohen (1974), Cohen and
Sackrowitz (1974), Moore and Krishnamoorthy (1997), Pal et al. (2007), Tripathy and Kumar
(2010), Tripathy and Kumar (2015) and the references cited therein.

On the other hand, a little attention has been paid in estimating the common mean µ when it
is known a priori, that the variances follow certain ordering, say, σ2

1 ≤ σ2
2. Probably Elfessi and

Pal (1992) was the first to consider this model with some justification and propose an estimator
which performs better than the Graybill-Deeal (Graybill and Deal (1959)) estimator. In fact,
their proposed estimator performs better than the Graybill-Deal estimator in terms of stochastic
domination as well as universally. Latter on their results have been extended to the case of a
general k(≥ 2) normal populations by Misra and van der Meulen (1997). Chang et al. (2012)
considered the same model and obtained a class of improved estimators. In particular, their
class contains the estimators previously proposed by Elfessi and Pal (1992). However, it is
also essential to compare all the improved estimators and see their performances for practical
purposes. It should be noted that, Tripathy and Kumar (2010) considered several well known
estimators for the common mean without taking account the order restrictions on the variances.
Their numerical study reveals that, none of the estimators including that of Graybill-Deal
dominates others completely in the whole parameter space in terms of the risk values. In fact,
all the existing estimators compete well with each others. This fact motivates us to study the
performances of all the proposed estimators for the common mean µ under order restrictions on
the variances. Being motivated from the above works, we in this paper study the problemwhich
focuses on the following directions. Our first goal is to propose some specific estimators which
may perform better than the estimators proposed byMoore and Krishnamoorthy (1997) , Khatri
and Shah (1974), Brown and Cohen (1974), Tripathy and Kumar (2010) under order restrictions
on the variances. Second is to obtain a class inadmissible estimators under order restrictions
on the variances. Third is to compare the performances of all the proposed estimators which is
very much essential from application point of view.

The rest of the work is organized as follows. In Section 3.2, we have discussed some basic
results and propose a new plug-in type restricted MLE for the common mean µ, which has
been obtained numerically. In Section 3.3, we have constructed some alternative estimators
for the common mean when it is known a priori that the variances are ordered. It has also
been shown that the proposed estimators dominate some of the existing well known estimators
including that proposed byMoore and Krishnamoorthy (1997) , Khatri and Shah (1974), Brown
and Cohen (1974), Tripathy and Kumar (2010) stochastically as well as universally. Moreover,
in Section 3.4 we have proved that these new estimators also dominate their respective old
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counter parts in terms of Pitman (see Pitman (1937)) measure of closeness criteria. The
concept of invariance has been introduced in Section 3.5, and derived some inadmissibility
results under order restrictions on the variances. Particularly, the sufficient conditions for
improving estimators which are invariant under affine and location group of transformations
have been derived. Consequently, improved estimators have been derived. Interestingly these
new improved estimators turns out to be the same as obtained in Section 3.2 as well as proposed
by Elfessi and Pal (1992). We also note that it is difficult to compare all the proposed estimators
analytically. Utilizing the computational facilities available now-a-days, we have compared
the risk values of all the proposed estimators numerically with respect to the loss function
(3.1.1) in Section 3.6 through the Monte-Carlo simulation method. The percentage of risk
improvements have also been noted which is quite significant. Finally the percentage of relative
risk performances of all the estimators have been evaluated with respect to the Graybill-Deal
estimator and the conclusions have been made regarding their performances which is not been
done so far in the literature. This is a major contribution to the chapter as well as to the current
literature.

3.2 Some Basic Results

In this section, we consider the model and propose some alternative estimators for the common
mean µ when it is known apriori that the variances follow the ordering σ2

1 ≤ σ2
2.

Let X˜ = (X1, X2, . . . , Xm) and Y˜ = (Y1, Y2, . . . , Yn) be independent random samples
taken from two normal populations with a common mean µ and possibly different variances
σ2
1 and σ2

2 respectively. Let N(µ, σ2
i ) be the normal population with mean µ and variance σ2

i ;
i = 1, 2. The target is to derive certain estimators of the common mean µ when it is known a
priori that the variances are ordered that is σ2

1 ≤ σ2
2 or equivalently σ1 ≤ σ2. We note that a

minimal sufficient statistics (not complete) for this model exists and is given by (X̄, Ȳ , S2
1 , S

2
2)

where,

X̄ =
1

m

m∑
i=1

Xi, Ȳ =
1

n

n∑
j=1

Yj, S
2
1 =

m∑
i=1

(Xi − X̄)2, S2
2 =

n∑
j=1

(Yj − Ȳ )2. (3.2.1)

We also note that, X̄ ∼ N(µ, σ2
1/m), Ȳ ∼ N(µ, σ2

2/n), S
2
1/σ

2
1 ∼ χ2

m−1, and S2
2/σ

2
2 ∼ χ2

n−1.
When there is no order restrictions on the variances, a number of estimators have been proposed
by several researchers in the recent past. Let us consider the following well known estimators
for the common mean µ when there is no order restriction on the variances.

dGD =
m(m− 1)S2

2X̄ + n(n− 1)S2
1 Ȳ

m(m− 1)S2
2 + n(n− 1)S2

1

( Graybill and Deal (1959)),

dKS =
m(m− 3)S2

2X̄ + n(n− 3)S2
1 Ȳ

m(m− 3)S2
2 + n(n− 3)S2

1

( Khatri and Shah (1974)),

dMK =
X̄
√
m(m− 1)S2 + Ȳ

√
n(n− 1)S1√

m(m− 1)S2 +
√
n(n− 1)S1

(Moore and Krishnamoorthy (1997)),

dTK =
X̄
√
mcnS2 + Ȳ

√
ncmS1√

mcnS2 +
√
ncmS1

( Tripathy and Kumar (2010)),

33



Chapter 3 Estimation of Common Mean of Two Normal Populations

dBC1 = X̄ +
{ (Ȳ − X̄)b1S

2
1/m(m− 1)

S2
1/m(m− 1) + S2

2/(n(n+ 2)) + (Ȳ − X̄)2/(n+ 2)

}
,

dBC2 = X̄ + (Ȳ − X̄)
{ b2n(n− 1)S2

1

n(n− 1)S2
1 +m(m− 1)S2

2

}
( Brown and Cohen (1974)),

dGM =
mX̄ + nȲ

m+ n
(grand mean),

where cm =
Γ(m−1

2
)√

2Γ(m
2
)
, cn =

Γ(n−1
2

)√
2Γ(n

2
)
, 0 < b1 < bmax(m,n), 0 < b2 < bmax(m,n − 3),

and bmax(m,n) = 2(n + 2)/nE(max(V −1, V −2)). Here V is a random variable having
F -distribution with (n+ 2) and (m− 1) degrees of freedom.

Finally we consider the MLE of µ whose closed form does not exist. The MLEs of µ can
be obtained numerically by solving the following system of three equations in three unknowns
µ, σ2

1, and σ2
2 as,

µ =

m
σ2
1
x̄+ n

σ2
2
ȳ

m
σ2
1
+ n

σ2
2

, (3.2.2)

σ2
1 =

s21
m

+
( nσ2

1

nσ2
1 +mσ2

2

)2

(x̄− ȳ)2, (3.2.3)

σ2
2 =

s22
n

+
( mσ2

2

nσ2
1 +mσ2

2

)2

(x̄− ȳ)2. (3.2.4)

Here (x̄, ȳ, s21, s22) denotes the observed values of (X̄, Ȳ , S2
1 , S

2
2). Let the solution of the above

system of equations be µ̂ML, σ
2
1ML, and σ2

2ML. These are the MLEs of µ, σ2
1 and σ2

2 respectively,
when there is no order restrictions on the variances.

Next we discuss some basic results when it is known a priori that the variances are ordered,
that is when σ2

1 ≤ σ2
2. Let us define β =

n(n−1)S2
1

m(m−1)S2
2+n(n−1)S2

1
. Under order restrictions on the

variances that is when σ2
1 ≤ σ2

2, Elfessi and Pal (1992) proposed a new estimator, call it d̂EP ,
and is given by

d̂EP =

{
(1− β)X̄ + βȲ , if S2

1

m−1
≤ S2

2

n−1

β∗X̄ + (1− β∗)Ȳ , if S2
1

m−1
>

S2
2

n−1
,

where

β∗ =

{
β, ifm = n
m

m+n
, ifm ̸= n.

In the above definition of d̂EP for the case m = n, when β∗ = β, we mean β as well as the
conditions must be simplified form = n.

It is well known that the estimator d̂EP dominates dGD stochastically as well as universally
when σ2

1 ≤ σ2
2. Further Misra and van der Meulen (1997) extended these dominance results to

the case of k(≥ 2) normal populations and also shown that the estimator d̂EP performs better
than dGD in terms of Pitman measure of closeness criteria. The MLE of µ has been obtained by
solving the system of equations numerically as shown above (see equations (3.2.2) to (3.2.4))).
Under order restriction on the variances, that is, when σ2

1 ≤ σ2
2, using the isotonic regression
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we obtain plug-in type restricted MLEs (numerically) of σ2
1 and σ2

2 respectively as,

σ2
1R =

{
σ2
1ML, if σ2

1ML ≤ σ2
2ML

1
2
(σ2

1ML + σ2
2ML), if σ2

1ML > σ2
2ML,

and

σ2
2R =

{
σ2
2ML, if σ2

1ML ≤ σ2
2ML

1
2
(σ2

1ML + σ2
2ML), if σ2

1ML > σ2
2ML.

Substituting these estimators in (3.2.2), we get a plug-in type restricted MLE, (call it dRM ) of
µ as

dRM =
mσ2

2RX̄ + nσ2
1RȲ

mσ2
2R + nσ2

1R

.

Further using the grand mean of the two populations, one gets another plug-in type restricted
MLE of µ call it d̂RM and is given by,

d̂RM =

{
µ̂ML, if σ2

1ML ≤ σ2
2ML

mX̄+nȲ
m+n

, if σ2
1ML > σ2

2ML.

Tripathy and Kumar (2010) pointed out that a theoretical comparison of all the estimators is
quite impossible and hence only numerical comparison is possible. They have also mentioned
that the estimators dMK and dTK compete with each other and perform better than dGD when the
variances are not far away from each other. It has also been noticed that for small values of the
ratios of the variances the estimator dKS compete with dGD. It is quite evident that one needs to
find alternative estimators for µ that will compete with dMK , dTK , and dKS, when σ2

1 ≤ σ2
2 or

equivalently σ1 ≤ σ2. In the next section, we construct some estimators which dominate these
estimators stochastically as well as universally. Now onwards for convenient we will denote
d̂GD in place of d̂EP .

Remark 3.2.1 One can construct another plug-in type estimator for µ by replacing the
estimators σ2

1R and σ2
2R in dRM by σ2

1R = min(σ2
1ML,

mσ2
1ML+nσ

2
2ML

m+n
) and σ2

2R =

max(σ2
2ML,

mσ2
1ML+nσ

2
2ML

m+n
) respectively when m ̸= n. It has been revealed from our numerical

study (Section 3.6) that it acts as a competitor of dRM .

Remark 3.2.2 The estimators dRM and d̂RM are seen to perform equally good, which has been
checked by using a numerical study in Section3.6. Hence we only include d̂RM for numerical
comparison purpose.

3.3 Stochastic Domination under Order Restriction on the
Variances

In this section we propose some alternative estimators for the common mean µ when there is
order restriction on the variances that is when it is known apriori that σ2

1 ≤ σ2
2 or equivalently

σ1 ≤ σ2. Further we will prove that these alternative estimators dominate stochastically some of
the existing well known estimators proposed byMoore and Krishnamoorthy (1997) , Khatri and
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Shah (1974), Brown and Cohen (1974) and Tripathy and Kumar (2010) under order restriction
on the variances.

Let β1 =
√
n(n−1)S1√

m(m−1)S2+
√
n(n−1)S1

, β2 =
√
ncmS1√

mcnS2+
√
ncmS1

, and β3 =
n(n−3)S2

1

m(m−3)S2
2+n(n−1)S2

1
, β4 =

b2S2
1

S2
1+S

2
2
.We propose the following estimators for the commonmean µ,when the variances known

to follow the ordering σ2
1 ≤ σ2

2.

d̂MK =


(1− β1)X̄ + β1Ȳ , if

√
n−1S1√
m−1S2

≤
√

n
m

β∗
1X̄ + (1− β∗

1)Ȳ , if
√
n−1S1√
m−1S2

>
√

n
m
,

where

β∗
1 =

{
β1, ifm = n,
m

m+n
, ifm ̸= n.

d̂TK =


(1− β2)X̄ + β2Ȳ , if S1

S2
≤

√
n
m
cn
cm

β∗
2X̄ + (1− β∗

2)Ȳ , if S1

S2
>

√
n
m
cn
cm
,

where

β∗
2 =

{
β2, ifm = n,
m

m+n
, ifm ̸= n.

d̂KS =


(1− β3)X̄ + β3Ȳ , if S

2
1

S2
2
≤ m−3

n−3

β∗
3X̄ + (1− β∗

3)Ȳ , if S
2
1

S2
2
> m−3

n−3
,

where

β∗
3 =

{
β3, ifm = n,
m

m+n
, ifm ̸= n.

Finally we define only for equal sample sizes,

d̂BC2 =


(1− β4)X̄ + β4Ȳ , if S2

2 ≥ (2b2 − 1)S2
1

β4X̄ + (1− β4)Ȳ , if S2
2 ≥ (2b2 − 1)S2

1 .

In the above definitions of the estimators d̂MK , d̂TK , d̂KS for the case m = n, when β∗
i = βi;

i = 1, 2, 3 we also mean that both βi and the corresponding conditions must be simplified by
puttingm = n.

To proceed further we need the following concepts and definitions which will be very much
handy in developing the sections. Let d1 and d2 be any two estimators of the unknown parameter
say θ.

Definition 3.3.1 The estimator d1 is said to dominate another estimator d2 stochastically if
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Pθ[(d2 − µ)2 ≤ c] ≤ Pθ[(d1 − µ)2 ≤ c], ∀ c > 0.

Definition 3.3.2 Let the loss function L(d, θ) in estimating θ by d be a non-decreasing function
of the error |d− θ|. An estimator d1 is said to dominate another estimator d2 universally if

EL(|d1 − θ|) ≤ EL(|d2 − θ|),

over the parameter space for all L(, ) non-decreasing. Further it was shown by Hwang (1985)
that d1 dominates d2 universally if and only if d1 dominates d2 stochastically.

Next, we prove the following results for estimating the common mean µ, under order
restriction on the variances that is when it is known a priori that, σ2

1 ≤ σ2
2 or equivalently

σ1 ≤ σ2.

Theorem 3.3.1 Let the loss function L(.) be a non-decreasing function of the error |d − µ|.
Further assume that the variances are known to follow the ordering σ2

1 ≤ σ2
2. Then for

estimating the common mean µ we have the following dominance results.

(i) The estimator d̂MK dominates dMK stochastically and hence universally.

(ii) The estimator d̂TK dominates dTK stochastically and hence universally.

(iii) The estimator d̂KS dominates dKS stochastically and hence universally.

(iv) The estimator d̂BC2 dominates dBC2 stochastically and hence universally.

Proof 3.3.1 (i)First we will prove the result for the case of equal sample sizes that is form = n.
Consider the estimator d̂MK , which is given by

d̂MK =


(1− β1)X̄ + β1Ȳ , if S1 ≤ S2,

β1X̄ + (1− β1)Ȳ , if S1 > S2.

Our target is to show that,

P [(d̂MK − µ)2 ≤ c] ≤ P [(dMK − µ)2 ≤ c], ∀ c > 0. (3.3.1)

We note that,

P [(d̂MK − µ)2 ≤ c] = P [(dMK − µ)2 ≤ c|S1 ≤ S2]P (S1 ≤ S2)

+ P [(d̂MK − µ)2 ≤ c|S1 > S2]P (S1 > S2), ∀ c > 0.

Thus the above inequality (3.3.1) is reduced to,

P [(dMK − µ)2 ≤ c|S1 > S2] ≤ P [(d̂MK − µ)2 ≤ c|S1 > S2], ∀ c > 0.

Let us denote X∗
1 = (1− β1)X̄ + β1Ȳ and X∗

2 = β1X̄ + (1− β1)Ȳ . With these notations, the
above inequality is further equivalent to prove,

P [−
√
c ≤ X∗

1 − µ ≤
√
c|S1 > S2] ≤ P [−

√
cX∗

2 − µ ≤
√
c|S1 > S2], ∀ c > 0.
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It is easy to observe that, X∗
1 − µ ∼ N(0, σ2), where σ2 = (1 − β1)

2 σ
2
1

m
+ β2

1
σ2
2

m
. Further

X∗
2 follows a normal distribution with mean 0 and variance σ2

∗ = β2
1
σ2
1

m
+ (1 − β1)

2 σ
2
2

m
. Thus

incorporating al these information the above inequality reduces to,∫ ∫
s1>s2

[2Φ
(√

c
σ

)
− 1]g1(s1)g2(s2)ds1ds2

P (S1 > S2)
≤

∫ ∫
s1>s2

[2Φ
(√

c
σ∗

)
− 1]g1(s1)g2(s2)ds1ds2

P (S1 > S2)
, ∀ c > 0,

where Φ(.) denotes the cumulative distribution function of a standard normal random variable
and g1, g2 denote the probability density function of the random variables S1, S2 respectively.
This is further equivalent to say that,

Φ
(√c
σ

)
≤ Φ

(√c
σ∗

)
, ∀ c > 0 and S1 > S2. (3.3.2)

The inequality (3.3.2) is equivalent to show that, σ2 > σ2
∗, when S1 > S2. The inequality is true

as, σ2 − σ2
∗ = ((1 − β2

1) − β2
1)(σ

2
1 − σ2

2) =
(S2

2−S2
1)(σ

2
1−σ2

2)

(S1+S2)2
> 0, when σ2

1 ≤ σ2
2 and S1 > S2.

The proof is completed when the sample sizes are equal, that is for the casem = n.

Next we will prove the result for the case of unequal sample sizes that is form ̸= n. To prove
the result let us denote V1 =

√
m
m−1

S1 and V2 =
√

n
n−1

S2. With these notations, the estimator
d̂MK is seen to be,

d̂MK =


dMK , if V1 ≤ V2

mX̄+nȲ
m+n

, if V1 > V2.

Proceeding as before, one needs to show that,

P [(dMK − µ)2 ≤ c|V1 > V2] ≤ P [(d̂MK − µ)2 ≤ c|V1 > V2], ∀ c > 0,

which is equivalent to show that,

P [−
√
c ≤ dMK − µ ≤

√
c|V1 > V2] ≤ P [−

√
c ≤ d̂MK − µ ≤

√
c|V1 > V2], ∀ c > 0.

It is easy to observe that givenS1, S2 the random variable dMK−µ follows a normal distribution
with mean 0 and variance ν2 = (m−1)s22σ

2
1+(n−1)s21σ

2
2

(
√
m(m−1)s2+

√
n(n−1)s1)2

.Also givenS1 andS2, d̂MK−µ follows

normal distribution with mean 0 and variance ν2∗ =
mσ2

1+nσ
2
2

(m+n)2
. Utilizing these information, the

above inequality after some simplification, reduces to

Φ
(√c
ν

)
≤ Φ

(√c
ν∗

)
, ∀ c > 0.

This is further equivalent to show that ν2 > ν2∗ , ∀ c > 0 when V1 > V2. This is equivalent to
show that,

Φ
(√c
ν

)
≤ Φ

(√c
ν∗

)
, ∀ c > 0.
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This is equivalent to,

σ2
1 + σ2

2λ
2

(
√
m+

√
nλ)2

>
mσ2

1 + nσ2
2

(m+ n)2
, ∀ c > 0, σ1 ≤ σ2,

where we denote λ =
√
n−1S1√
m−1S2

. Denote, h(λ) =
σ2
1+σ

2
2λ

2

(
√
m+

√
nλ)2

, and our target is to show that,

h(λ) > h(
√

n
m
), for λ >

√
n
m
. It is easy to check that dh

dλ
≤ 0, if λ ≤

√
n
m

σ2
1

σ2
2
≤

√
n
m
, as

σ2
1/σ

2
2 ≤ 1. Also dh

dλ
> 0, when λ >

√
n
m
. Hence the function h(λ) is increasing in the interval

[
√

n
m
,∞). Further universal dominance follows from Definition 3.3.2. This proves (i) of the

theorem for both equal and unequal sample sizes. The proofs of (ii), (iii) and (iv) are very
much similar to the proof of (i) and hence have been omitted for brevity. This completes the
proof of the Theorem 3.3.1.

Remark 3.3.1 It should be noted that, for the case of unequal sample sizes, one can construct
an estimator which may dominate the estimator dBC2 stochastically as well as universally,
however the conditions will be more restrictive.

3.4 Pitman Measure of Closeness

In this section, we prove that the new proposed estimators d̂MK , d̂TK , d̂KS, d̂BC2, perform better
than their old counter parts in terms of Pitman measure of closeness when it is known a priori
that the variances follow the ordering σ2

1 ≤ σ2
2 or equivalently σ1 ≤ σ2. To prove the main

results of this section, we need the following concepts. Let δ1 and δ2 be any two estimators of
a real parametric function say ψ(θ). Pitman (1937) proposed a measure of relative closeness to
the parametric function ψ(θ) for comparing two estimators in the following fashions.

Definition 3.4.1 The estimator δ1 should be preferred to δ2 if for every θ,

PMCθ(δ1, δ2) = Pθ(|δ1 − ψ(θ)| < |δ2 − ψ(θ)||δ1 ̸= δ2) ≥
1

2
,

and with strict inequality for some θ.

The following lemma will be useful for proving the main results of this section, which was
proposed by Peddada and Khattree (1986).

Lemma 3.4.1 Suppose the random vector (X,Y ) has a bivariate normal distribution with
E(X) = E(Y ) = 0 and E(X2) < E(Y 2). Then P (|X| < |Y |) > 1

2
.

Let α˜ = (µ, σ2
1, σ

2
2) and ΩR = {α˜ = (µ, σ2

1, σ
2
2) : −∞ < µ < ∞, 0 < σ2

1 ≤ σ2
2 < ∞}.We

prove the following theorem.

Theorem 3.4.1 For estimating the common mean µ of two normal populations we have the
following dominance results.

(i) PMC(d̂MK , dMK) >
1
2
, ∀ α˜ ∈ ΩR.

(ii) PMC(d̂TK , dTK) >
1
2
, ∀ α˜ ∈ ΩR.

(iii) PMC(d̂KS, dKS) >
1
2
, ∀ α˜ ∈ ΩR.
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(iv) PMC(d̂BC2, dBC2) >
1
2
, ∀ α˜ ∈ ΩR.

Proof 3.4.1 (i) We prove the result for equal and unequal sample sizes separately. Let the
sample sizes be equal that ism = n.We note that the conditional distributions of d̂MK −µ and
µ̂MK − µ given S1 and S2 follows normal distribution with a common mean 0 and variances
σ2
∗ and σ2 respectively as given in the proof of the Theorem 3.3.1. It has also been shown there

that, σ2
∗ ≤ σ2 whenever σ1 ≤ σ2 and S1 > S2. Thus we have,

E[(d̂MK − µ)2|(S1, S2)] ≤ E[(µ̂MK − µ)2|(S1, S2)],

whenever σ1 ≤ σ2 and S1 > S2. Now using Lemma 3.4.1, and the above inequality, it follows
that,

PMC(d̂MK , µ̂MK) >
1

2
, ∀ α˜ ∈ ΩR.

To prove for unequal sample sizes, we observe that the conditional distributions of d̂MK−µ and
µ̂MK −µ given S1 and S2 follows normal distribution with a common mean 0 and variances ν2∗
and ν2 respectively. Further using that, ν2∗ ≤ ν2, when σ1 ≤ σ2, and λ >

√
n
m
. Thus we have

also in the case of unequal sample sizes,

PMC(d̂MK , µ̂MK) >
1

2
, ∀ α˜ ∈ ΩR.

The proofs of (ii), (iii) and (iv) are similar to the proof of (i) and hence has been omitted. This
completes the proof of the theorem.

In the next section we will introduce the concept of invariance to our problem and prove
some inadmissibility results in the classes of equivariant estimators for the common mean.

3.5 Inadmissibility Results under Order Restrictions on the
Variances

In this section we introduce the concept of invariance to the model problem and derive some
inadmissibility results for both affine and location equivariant estimators under order restriction
on the variances. As a consequence, improved estimators dominating the popular estimators
without order restriction on the variances have been derived.

Affine Class

Let us introduce the concept of invariance to our problem. More specifically, consider the
affine group of transformations, GA = {ga,b : ga,b(x) = ax + b, a > 0, b ∈ R}. Under the
transformation ga,b, Xi → aXi + b, Yj → aYj + b, and consequently the sufficient statistics
X̄ → aX̄ + b, Ȳ → aȲ + b, S2

i → a2S2
i , µ → aµ + b, σ2

i → a2σ2
i and the family of

distributions remains invariant. The problem remains invariant if we choose the loss function
as (3.1.1). The form of an affine equivariant estimator for estimating µ, based on the sufficient
statistics (X̄, Ȳ , S2

1 , S
2
2) is obtained as

dΨ = X̄ + S1Ψ(T˜), (3.5.1)
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where T˜ = (T1, T2), T1 =
Ȳ−X̄
S1

, T2 =
S2
2

S2
1
and Ψ is any real valued function.

Let us define a new function Ψ0 for the affine equivariant estimator dΨ as,

Ψ0(t˜) =


n
n+m

min(t1, 0), if Ψ(t˜) < n
n+m

min(t1, 0),

Ψ(t˜), if n
n+m

min(t1, 0) ≤ Ψ(t˜) ≤ n
n+m

max(t1, 0),

n
n+m

max(t1, 0), if Ψ(t˜) > n
n+m

max(t1, 0).

(3.5.2)

The following theorem gives a sufficient condition for improving estimators in the class of
affine equivariant estimators of the form (3.5.1), under the order restrictions on the variances.

Theorem 3.5.1 Let dΨ be an affine equivariant estimator of the form (3.5.1) for estimating the
common mean µ and the loss function be the affine invariant loss (3.1.1). The estimator dΨ
is inadmissible and is improved by dΨ0 if P (Ψ(T˜) ̸= Ψ0(T˜)) > 0, for some choices of the
parameters α˜; σ1 ≤ σ2.

Proof 3.5.1 The theorem can be proved by using a well known technique for improving
equivariant estimators proposed by Brewster and Zidek (1974). To proceed, let us consider
the conditional risk function of dΨ given T˜ = t˜ :

R(α˜, dΨ|t˜) = 1

σ2
1

E{(X̄ + S1Ψ(T˜)− µ)2|T˜ = t˜}.
The above risk function is convex in Ψ(t˜) and attains its minimum value at

Ψ(t˜, α˜) = E{(µ− X̄)S1|T˜ = t˜}
E{S2

1 |T˜ = t˜} . (3.5.3)

To evaluate the conditional expectations involved in the above expression, we use the following
transformations. Let us define V1 =

√
m(X̄−µ)
σ1

, V2 =
√
m(Ȳ−µ)
σ1

, W1 =
S2
1

σ2
1
and W2 =

S2
2

σ2
2
and

ρ =
σ2
2

σ2
1
. With this substitution the expression for Ψ(t˜, α˜) then reduces to,

Ψ(t˜, ρ) = −
E(V1W

1
2
1 |T˜ = t˜)√

mE(W1|T˜ = t˜) . (3.5.4)

These conditional expectations have been evaluated in Tripathy and Kumar (2010) and are
given by,

E(W1|T˜ = t˜) = m+ n− 1

λ
,

and

E(V1W
1
2
1 |T˜ = t˜) = −n

√
m(m+ n− 1)t1
(n+mρ)λ

,

where λ =
mnt21
n+mρ

+ t2
ρ
+ 1, and where ρ =

σ2
2

σ2
1
≥ 1, as σ2

1 ≤ σ2
2. Substituting these expressions
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in (3.5.4), we get the minimimizing choice of Ψ(t˜, ρ) as,
Ψ̂(t˜, ρ) = nt1

n+mρ
.

In order to prove the inadmissibility result of the theorem, we need the supremum and infimum
value of Ψ̂(t˜, ρ) with respect to ρ for fixed values of T˜ = t˜.We consider the following two casesto obtain the supremum and infimum of Ψ̂(t˜, ρ).Case-I: Let t1 ≥ 0. Now the function Ψ̂(t˜, τ) is decreasing with respect to ρ ≥ 1. Hence, we
obtain

inf
ρ≥1

Ψ̂(t˜, ρ) = lim
ρ→∞

Ψ̂(t˜, ρ) = 0 and sup
ρ≥1

Ψ̂(t˜, ρ) = lim
ρ→1

Ψ̂(t˜, ρ) = nt1
n+m

.

Case-II: Let t1 < 0. The function Ψ̂(t˜, ρ) is an increasing function of ρ. So, in this case we
obtain,

inf
ρ≥1

Ψ̂(t˜, ρ) = lim
ρ→1

Ψ̂(t˜, ρ) = nt1
n+m

and sup
ρ≥1

Ψ̂(t˜, ρ) = lim
ρ→∞

Ψ̂(t˜, ρ) = 0.

Combining the Case-I and Case-II, it is easy to define the function Ψ0(t˜) as given in (3.5.2).
Utilizing the function Ψ0(t˜) and as an application of Theorem 3.3.1 (in Brewster and Zidek
(1974)), we getR(α˜, dΨ0) ≤ R(α˜, dΨ), when σ1 ≤ σ2. This completes the proof of the theorem.

Next we will apply Theorem 3.5.1, to obtain some improved estimators for the common
mean µ, under the assumption that σ2

1 ≤ σ2
2. It is easy to observe that all the estimators

discussed in Section 3.2, for the common mean µ without considering order restriction on
the variances, except the MLE dML (whose closed form does not exist) fall in the class
dΨ = X̄ + S1Ψ(T˜). We apply Theorem 3.5.1 to get their corresponding improved estimators
under the assumption that σ2

1 ≤ σ2
2. Let us first consider the estimator dGD = X̄ + S1Ψ(T˜),

where Ψ(T˜) = n(n−1)T1
m(m−1)T2+n(n−1)

.We observe that Ψ(t˜) > n
m+n

max(0, t1), when s21
m−1

>
s22
n−1

.
Hence the estimator dGD is imported and the improved estimator is obtained as,

daGD =


m(m−1)S2

2X̄+n(n−1)S2
1 Ȳ

m(m−1)S2
2+n(n−1)S2

1
, if S2

1

m−1
≤ S2

2

n−1

mX̄+nȲ
m+n

, if S2
1

m−1
>

S2
2

n−1
.

Similarly one can get the estimators which improve upon dKS, dMK , dTK , dBC1, and dBC2,
respectively as,

daKS =


m(m−3)S2

2X̄+n(n−3)S2
1 Ȳ

m(m−3)S2
2+n(n−3)S2

1
, if S2

1

m−3
≤ S2

2

n−3

mX̄+nȲ
m+n

, if S2
1

m−3
>

S2
2

n−3
,

daMK =


√
m(m−1)S2X̄+

√
n(n−1)S1Ȳ√

m(m−1)S2+
√
n(n−1)S1

, if S1√
m−1

≤ S2√
n−1

mX̄+nȲ
m+n

, if S1√
m−1

> S2√
n−1

,
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daTK =


√
mcnS2X̄+

√
ncmS1Ȳ√

mcnS2+
√
ncmS1

, if S1

S2
≤

√
n
m
cn
cm

mX̄+nȲ
m+n

, if S1

S2
≤

√
n
m
cn
cm
,

daBC1 =


dBC1, if S

2
2

S2
1
+ n( Ȳ−X̄

S1
)2 > n+2

m(m−1)
[b1(m+ n)− n]

mX̄+nȲ
m+n

, if S
2
2

S2
1
+ n( Ȳ−X̄

S1
)2 ≤ n+2

m(m−1)
[b1(m+ n)− n],

daBC2 =


dBC2, if m(m−1)S2

2

n(n−1)S2
1
≥ b2(1 +

m
n
)− 1

mX̄+nȲ
m+n

, if m(m−1)S2
2

n(n−1)S2
1
< b2(1 +

m
n
)− 1.

Remark 3.5.1 It is interesting to note that, for unequal sample sizes that is m ̸= n, the
estimators daGD = d̂GD, d

a
KS = d̂KS, d

a
MK = d̂MK , d

a
TK = d̂TK , d

a
BC2 = d̂BC2. However,

for equal sample sizes, application of the Theorem 3.5.1 produces different estimators.

Location Class

A larger class of estimators than the class considered above is the class of location equivariant
estimators. Let GL = {gc : gc(x) = x + c,−∞ < c < ∞} be the location group of
transformations. Under the transformation gc, we observe that, X̄ → X̄ + c, Ȳ → Ȳ + c,
S2
1 → S2

1 , S2
2 → S2

2 , and the parameters µ → µ + c, σ1 → σ1. The family of probability
distributions is invariant and consequently the estimation problem is also invariant under the
loss (3.1.1). Based on the minimal sufficient statistics (X̄, Ȳ , S2

1 , S
2
2) the form of a location

equivariant estimator for estimating the common mean µ is thus obtained as,

dψ = X̄ + ψ(U˜), (3.5.5)

where U˜ = (T, S2
1 , S

2
2), T = Ȳ − X̄, and ψ is a real valued function. Let us define a function

ψ0 for the location equivariant estimator dψ as

ψ0(t˜) =


n
n+m

min{t, 0}, if ψ(u˜) < n
m+n

min{t, 0},

ψ(u˜), if n
n+m

min{t, 0} ≤ ψ(u˜) ≤ n
n+m

max{t, 0},

n
n+m

max{t, 0}, if ψ(u˜) > n
n+m

max{t, 0}.

(3.5.6)

The following theorem gives a sufficient condition for improving location equivariant
estimators under the condition that the variances follow the ordering σ2

1 ≤ σ2
2.

Theorem 3.5.2 Let dψ be a location equivariant estimator of the common mean µ and the
loss function be (3.1.1). Let the function ψ0(u˜) be as defined in (3.5.6). The estimator dψ
is inadmissible and is improved by dψ0 if Pα˜(ψ(U˜) ̸= ψ0(U˜)) > 0 for some choices of the
parameters α˜; σ2

1 ≤ σ2
2.
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Proof 3.5.2 The proof of the theorem is similar to the proof of the Theorem 3.5.1, and hence
has been omitted for brevity.

Remark 3.5.2 We also observe that all the estimators discussed in Section 3.2, except the
MLE dML (closed form does not exist) belong to the class dψ(U˜) = X̄ + ψ(U˜). Hence as
an application of the Theorem 3.5.2, produces improved estimators. However, it has been seen
that these improved estimators are same as that obtained by applying Theorem 3.5.1 under
order restrictions on the variances.

Remark 3.5.3 The performances of all the improved estimators which has been proposed in
Section 3.2 as well as in this section by applying Theorem 3.5.1, will be evaluated in Section
3.6, using the affine invariant loss function L1. Further the percentage of risk improvements
upon their respective old counter parts also has been noted.

Remark 3.5.4 We note that the estimator dGM , also belongs to the classes given in (3.5.1)
and (3.5.5). However, the conditions in Theorem 3.5.1 and Theorem 3.5.2 for improving it, do
not satisfied. Hence the estimator could not be improved by applying either Theorem 3.5.1 or
Theorem 3.5.2, under σ2

1 ≤ σ2
2.

3.6 A Simulation Study

It should be noted that, in Section 3.2 we have constructed the plug-in type restricted MLE d̂RM
for the common mean µ, taking into account the order restriction on the variances. Moreover,
in Sections 3.3 and 3.4 we have also constructed some alternative such as d̂MK , d̂TK , d̂KS,
and d̂BC2 and proved theoretically that these estimators dominate their old counterparts in
terms of stochastic domination as well as Pitman measure of closeness criterion. Further in
Section 3.5, we have derived the estimators namely daGD, daKS, daMK , d

a
TK , d

a
BC1, d

a
BC2 as an

application of Theorems 3.5.1 and 3.5.2. In addition to these estimators, we have also included
the improved estimator proposed by Elfessi and Pal (1992) which we denote by d̂GD for the
convenience. However, from an application point of view, it is very much essential to see
their performances among themselves as well as to see how much they improve upon their
old counterparts. It seems quite impossible to compare the risk functions of all these improved
estimators analytically. Taking advantages of the computational facilities available now-a-days,
we in this section try to compare the performances of all these improved estimators numerically,
which may be handy for practical purposes. For the purpose of numerical comparison, we have
generated 20, 000 random samples of sizesm and n respectively from N(µ, σ2

1) and N(µ, σ2
2),

with the condition that σ2
1 ≤ σ2

2. For comparing the performances of all the improved estimators
we use the affine invariant loss function (3.1.1). However the percentage of risk improvements
of an improved estimator with respect to its old counter part all the three loss functions have
been used. In order to simulate the risk values the well known Monte-Carlo simulation
method have been employed. The accuracy of the simulation has been checked and the error
has been checked which is seen up to 10−3. To proceed further, we define the percentage
of risk improvement of all the improved estimators over their old counter parts as follows.
P1 =

(
1 − R(d̂GD,µ)

R(dGD,µ)

)
× 100, P2 =

(
1 − R(d̂KS ,µ)

R(dKS ,µ)

)
× 100, P3 =

(
1 − R(d̂MK ,µ)

R(dMK ,µ)

)
× 100, P4 =(

1 − R(d̂TK ,µ)
R(dTK ,µ)

)
× 100, P5 =

(
1 − R(daGD,µ)

R(dGD,µ)

)
× 100, P6 =

(
1 − R(daKS ,µ)

R(dKS ,µ)

)
× 100, P7 =(

1− R(daMK ,µ)

R(dMK ,µ)

)
× 100, P8 =

(
1− R(daTK ,µ)

R(dTK ,µ)

)
× 100, P9 =

(
1− R(d̂RM ,µ)

R(dML,µ)

)
× 100.
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Next we define the percentage of relative risk performances of all the improved estimators
with respect to the estimator dGD as follows. R1 =

(
1− R(d̂GD,µ)

R(dGD,µ)

)
×100, R2 =

(
1− R(d̂KS ,µ)

R(dGD,µ)

)
×

100, R3 =
(
1− R(d̂MK ,µ)

R(dGD,µ)

)
×100, R4 =

(
1− R(d̂TK ,µ)

R(dGD,µ)

)
×100, R5 =

(
1− R(daGD,µ)

R(dGD,µ)

)
×100, R6 =(

1 − R(daMK ,µ)

R(dGD,µ)

)
× 100, R7 =

(
1 − R(daBC1,µ)

R(dGD,µ)

)
× 100, R8 =

(
1 − R(daBC2,µ)

R(dGD,µ)

)
× 100, R9 =(

1− R(d̂RM ,µ)
R(dGD,µ)

)
× 100.

It is easy to observe that the risk values of all the estimators are functions of τ with respect
to the loss function L1 as given in (3.1.1), where we denote τ = σ2

1/σ
2
2.We note that, when the

sample sizes are unequal the estimators d̂GD = daGD, d̂KS = daKS, d̂MK = daMK , d̂TK = daTK .

Further we see that for equal sample sizes the estimators d̂GD = d̂KS and d̂MK = ˆTK. In
our simulation study we have taken b1 = 1

2
bmax(m,n) and b2 = 1

2
bmax(m,n − 3), where

the values of bmax(m,n) have been used from the tables given in Brown and Cohen (1974).
Moreover we observe that for b2 = 1, the estimator dGD = dBC2 and for b2 = 0, it reduces to
X̄. The percentage of risk improvements of daBC1 over dBC1, d

a
BC2 over dBC2 and d̂BC2 upon

dBC2 are seen to be very marginal and hence have not been tabulated. The simulation study
has been done for various combinations of sample sizes and many ranges of the parameter
space. For illustration purpose we have presented the percentage of risk improvements as well
as the percentage of relative risk improvements of all the estimators for some choices of sample
sizes in Tables 3.6.1 - 3.6.7. In Tables 3.6.1and 3.6.2 we have presented the percentage of
risk improvements of all the estimators for equal and unequal sample sizes with respect to the
loss (3.1.1). In Table 3.6.1, the percentage of risk improvements of all the estimators have
been presented for the sample sizes (5, 5), (12, 12), (20, 20) and (30, 30). The first and seventh
column represent the values of τ and the rest of the columns represents the percentage of
risk improvements of all the estimators. In each cell corresponding to one value of τ there
corresponds three values of percentage of risk improvements that gives for three different
sample sizes (5, 5), (12, 12) and (20, 20) respectively. Table 3.6.2, is divided into two parts,
specifically the first half (column second to sixth) represents the percentage of risk performances
for all the estimators with sample sizes (5, 10), (12, 20) and the second part (column seventh
to eleventh) represents for the sample sizes (10, 5) and (20, 12). In this table the first column
also gives the values of τ and the columns second to eleven represents the percentage of
risk improvements of all the estimators with respect to their old counter parts. In this table
each cell contains two values of percentage of risk improvements which correspond to one
value of τ in the cell of the first column. In a very similar fashion the percentage of risk
improvements of all the estimators have been presented in Tables 3.6.3 to 3.6.5 for equal and
unequal sample sizes with respect to the losses (3.1.2) and (3.1.3). The percentage of relative
risk performances of all the improved estimators with respect to dGD (denoted asRi; i = 1, 2, 7)
have been presented in Tables 3.6.6 and 3.6.7 for equal and unequal sample sizes respectively.
Specifically in Table 3.6.6 we have presented the percentage of relative risk performances of
all the improved estimators for the sample sizes (5, 5), (12, 12) and (20, 20). The Table 3.6.6
consists of eight columns and each column have several cells. Corresponding to each value of
τ in the first column there corresponds three values of percentage of relative risk values from
columns second to eight. These three values correspond to three sample sizes (5, 5), (12, 12)
and (20, 20) respectively. In a very similar way we have presented the percentage of relative
risk improvements of all the improved estimators for the unequal sample sizes (5, 10), (12, 20),
(10, 5) and (20, 12) in Table 3.6.7. Moreover, we have also plotted the risk values of all the
improved estimators with respect to the loss function (3.1.1) against the choices of τ in the
Figure 3.6.1. Specifically Figure 3.6.1 (a)-(b) gives the plot for equal sample sizes where as
Figure 3.6.1 (c)-(f) gives the plot for the unequal sample sizes. We note that the estimators
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d̂GD, d̂KS, d̂MK , d̂TK , d̂RM , d
a
GD, d

a
MK , d

a
BC1, d

a
BC2 have been denoted by GDI, KSI, MKI,

TKI, RML, GDA, MKA, BC1A and BC2A respectively in the Figure 3.6.1 (a)-(f).
The following observations have been made during our simulation study as well as from the

tables, which we discuss separately for equal and unequal sample sizes.
Case I:m = n.

• (a) The percentage of risk improvements as well as the risk values of all the new estimators
upon their respective old estimators decreases as the sample sizes increases for fixed
values of the parameters, with respect to the loss functions L1, L2 and L3.

• (b) Let the loss function be L1. The percentage of risk improvement of d̂GD over dGD (see
P1) is seen maximum up to 12%, daGD over dGD (see P5) is seen maximum up to 10%,
d̂MK over dMK (P3) is seen maximum up to 7%, daMK over dMK (P6) is seen maximum
up to 6%, where as for d̂RM over dML (P9) is seen maximum up to 20%.

• (c) Let the loss function be L2. The maximum percentage of risk improvement d̂GD, daGD,
d̂MK , d

a
MK , and d̂RM over their respective old counter parts are seen near to 6%, 5%, 4%,

3% and 7% respectively. The maximum percentage of risk improvement is seen in the
case of d̂RM for small sample sizes and when σ2

1 and σ2
2 very very close to each other.

• (d) Let the loss function be L3. The maximum percentage of risk improvement of d̂GD,
daGD, d̂MK , d

a
MK , and d̂RM upon their respective old estimators are seen respectively as

11%, 10%, 7%, 5% and 20%. The maximum percentage of risk improvement has been
seen for small sample sizes and when the variances are close to each other.

• (e) Here we note that, the percentage of risk improvements of all the new estimators upon
their respective old estimators are approximated values only which have been obtained
numerically and hence it may vary with sample sizes.

• (f) The above numerical results (b) − (d) validates the theoretical findings in Sections
3.3, 3.4, and 3.5.

• (f) The simulated risk values of all the estimators such as d̂GD, daGD, d̂MK , d
a
MK , d

a
BC1,

daBC2, and d̂RM ,) decrease as the sample sizes increase. Further for the fixed sample sizes,
as the values of τ varies from 0 to 1, the risk values of all the estimators decrease. It has
been noticed that, for small values of τ (say approximately 0 < τ < 0.25), the percentage
of relative risk improvement of daBC1 is maximum seen up to 15%, that is when the
variance of first population is much smaller than second population, (σ2

1 <<< σ2
2). For

the values of τ near to 1, (say for the range 0.50 < τ < 1) the estimators d̂MK and daMK

have almost same percentage of relative risk improvements. Formoderate values of τ (say
0.50 < τ < 0.75), the estimators d̂MK and daMK perform equally well, however as the
sample sizes increases from moderate to large, the performance of these two estimators
decrease and compete well with d̂GD. In fact the dominance region of d̂MK and daMK

over d̂GD decreases. We also noticed that the estimators d̂GD and daGD, d̂MK and daMK ,
and daBC1 and daBC2 compete well with each other.

Case II:m ̸= n.

• (a) The percentage of risk improvements of all the new estimators decreases as the sample
sizes increases for fixed values of σ2

1 and σ2
2 with respect to the loss functions L1, L2 and

L3.
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• (b) Let us first consider the loss function L1. The percentage of risk improvement of d̂GD
upon dGD (denoted as P1) is seen maximum up to 16%, the maximum percentage of
risk improvement of d̂KS over dKS (denoted as P2) is seen near to 8%. The maximum
percentage of risk improvement of d̂MK and d̂TK over their corresponding old estimators
are seen near to 14% and 13% respectively. The maximum risk improvement of d̂RM over
dML is seen up to 15%.We also note that, these maximum risk improvements have been
noticed whenm > n for all the estimators.

• (c) Let us consider the loss function L2. The maximum percentage of risk improvement
of d̂GD over dGD is seen up to 7%. The maximum percentage of risk improvement of d̂KS
over dKS is seen near to 4%. The maximum percentage of risk improvement of d̂MK over
dMK is seen near to 7%. The maximum percentage of risk improvement of d̂TK over dTK
is seen near to 7%. The maximum percentage of risk improvement of d̂RM over dML is
seen near to 13%.

• (d) Consider the loss function L3. The maximum percentage of risk improvement of d̂GD
over dGD is seen up to 13%. The maximum percentage of risk improvement of d̂KS over
dKS is seen near to 8%. The maximum percentage of risk improvement of d̂MK over dMK

is seen near to 13%. The maximum percentage of risk improvement of d̂TK over dTK is
seen near to 13%. The maximum percentage of risk improvement of d̂RM over dML is
seen near to 36%.

• (e) Here we note that, the percentage of risk improvements of all the new estimators upon
their respective old estimators are approximated values only which have been obtained
numerically and hence it may vary with sample sizes, however the trends remain the same.

• (f) The above numerical results (b)−(d) also validates the theoretical findings in Sections
3.3, 3.4, and 3.5.

• (g) The simulated risk values of all the estimators such as d̂GD, d̂KS, d̂MK , d̂TK , d
a
BC1,

daBC2, and d̂RM , decrease as the sample sizes increase. It has been noticed that, for
small values of τ (say approximately 0 < τ < 0.15), the percentage of relative risk
improvements of daBC1 and daBC2 are maximum seen up to 12%, that is when the variance
of first population is much smaller than the second population (σ2

1 <<< σ2
2). For the

values of τ near to 1, (say 0.75 < τ < 1) the estimator d̂KS (for m < n) and d̂MK , d̂TK
(when m > n) has maximum percentage of relative risk improvements. For moderate
values of τ, the estimators d̂MK and d̂TK perform equally well, however as the sample
sizes increase from moderate to large the performance of these two estimators decrease
and the estimators d̂GD and d̂KS starts performing better.

From the above discussions and also from our simulation study the following conclusions
can be drawn regarding the use of the proposed estimators in practice.

1. (a) First consider that the sample sizes are equal, that is m = n. When the variance of
the first population is much smaller compare to the second, we recommend to use daBC1.
When the variance of both the populations are close to each other, we recommend to use
either d̂MK or daMK , as they compete with each other. In other cases, that is neither the
variances differ too much nor close enough, the estimators d̂MK and daMK can be used for
small sample sizes (saym,n ≤ 10), and d̂MK or d̂GD for moderate to large sample sizes.
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2. (b) Next, consider that the sample sizes are unequal, that is, m ̸= n.When the variance
of the first population is much smaller smaller than the second, we recommend to use
either the estimator daBC1 or daBC2.When the variances of both the populations are close
to each other, the estimators d̂KS or d̂TK (for m < n) and d̂TK or d̂MK (for m > n) can
be recommended for use. However for moderate ranges of τ, the estimators d̂MK or d̂TK
(form < n) and the estimators d̂KS, d̂GD, d̂RM or d̂TK (form > n) can be recommended
as they all perform equally well.
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Table 3.6.1: Percentage of risk improvements of all the proposed estimators
using the loss L1 for the sample sizes (m,n) = (5, 5), (12, 12), (20, 20), (30, 30)

τ ↓ P1 P5 P3 P6 P9 τ ↓ P1 P5 P3 P6 P9
2.49 1.53 0.95 0.53 17.90 9.67 8.76 5.84 4.33 12.03

0.05 0.00 0.00 0.00 0.00 0.00 0.55 3.96 2.82 2.11 1.29 3.56
0.00 0.00 0.00 0.00 0.00 1.14 0.77 0.58 0.34 0.87
0.00 0.00 0.00 0.00 0.00 0.73 0.45 0.37 0.21 0.50
4.61 2.83 2.05 1.16 13.01 10.54 9.82 6.48 4.93 13.42

0.10 0.07 0.04 0.03 0.02 0.05 0.60 3.76 2.83 2.02 1.28 3.59
0.00 0.00 0.00 0.00 0.00 1.80 1.26 0.93 0.56 1.43
0.00 0.00 0.00 0.00 0.00 0.91 0.57 0.46 0.26 0.62
6.20 4.03 3.06 1.80 10.36 8.85 9.51 5.48 4.58 12.71

0.15 0.13 0.07 0.06 0.03 0.19 0.65 4.83 3.68 2.62 1.68 4.48
0.00 0.00 0.00 0.00 0.00 1.78 1.35 0.92 0.59 1.51
0.00 0.00 0.00 0.00 0.00 0.76 0.56 0.39 0.24 0.60
7.68 5.00 4.01 2.36 10.51 7.73 9.41 4.70 4.38 12.75

0.20 0.36 0.20 0.16 0.09 0.31 0.70 3.72 3.47 2.02 1.48 4.21
0.01 0.00 0.00 0.00 0.00 2.40 1.87 1.25 0.81 2.13
0.00 0.00 0.00 0.00 0.00 1.32 0.93 0.68 0.41 1.00
8.56 5.74 4.56 2.74 11.03 6.14 8.75 3.81 4.03 11.13

0.25 0.43 0.25 0.20 0.11 0.36 0.75 2.88 3.17 1.55 1.29 3.93
0.09 0.05 0.04 0.02 0.05 1.97 1.76 1.03 0.72 1.98
0.00 0.00 0.00 0.00 0.00 1.30 1.07 0.67 0.44 1.17
9.54 6.67 5.32 3.29 11.38 4.80 8.68 3.04 3.87 11.30

0.30 0.90 0.55 0.44 0.24 0.77 0.80 3.10 3.79 1.72 1.52 4.57
0.09 0.05 0.04 0.02 0.07 2.61 2.40 1.37 0.99 2.69
0.01 0.00 0.00 0.00 0.00 1.67 1.41 0.87 0.58 1.51
9.63 7.16 5.49 3.52 10.81 2.69 8.04 1.76 3.45 10.91

0.35 1.44 0.92 0.72 0.42 1.17 0.85 2.51 3.79 1.38 1.45 4.69
0.38 0.23 0.19 0.11 0.26 2.05 2.50 1.09 0.95 2.82
0.04 0.02 0.02 0.01 0.02 1.62 1.56 0.84 0.62 1.70
8.83 6.87 5.10 3.40 10.25 2.43 8.18 1.49 3.36 10.74

0.40 1.84 1.19 0.93 0.54 1.53 0.90 1.55 3.68 0.87 1.29 4.60
0.53 0.32 0.26 0.15 0.38 0.69 1.95 0.35 0.62 2.25
0.15 0.08 0.08 0.04 0.09 0.77 1.43 0.40 0.48 1.58
9.94 7.93 5.80 3.94 11.81 1.36 7.91 0.74 3.12 10.39

0.45 2.33 1.62 1.23 0.74 2.11 0.95 1.86 4.57 1.03 1.61 5.68
0.98 0.61 0.49 0.28 0.71 1.67 2.74 0.90 0.98 3.10
0.30 0.16 0.15 0.08 0.17 0.15 1.37 0.08 0.39 1.51
10.98 9.12 6.51 4.55 13.06 0.74 8.37 0.44 3.26 10.78

0.50 3.23 2.26 1.71 1.03 2.92 1.00 0.03 3.78 0.01 1.13 4.81
1.10 0.71 0.56 0.32 0.85 0.78 2.73 0.44 0.87 3.11
0.44 0.26 0.22 0.12 0.27 0.10 1.60 0.06 0.45 1.76
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Table 3.6.2: Percentage of risk improvements of all the proposed estimators
using the loss function L1 for unequal sample sizes

τ ↓ (m,n) = (5, 10), (12, 20) (m,n) = (10, 5), (20, 12)
P1 P2 P3 P4 P9 P1 P2 P3 P4 P9

0.05 0.00 0.07 0.00 0.00 0.83 2.29 1.14 2.13 1.93 9.64
0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.10 0.05 0.28 0.00 0.00 1.62 3.99 1.92 4.26 3.88 8.94
0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.03 0.03 0.00

0.15 0.32 0.98 0.02 0.02 1.49 4.84 2.34 5.51 4.97 8.99
0.01 0.01 0.00 0.00 0.01 0.03 0.01 0.14 0.13 0.01

0.20 0.44 1.61 0.04 0.04 2.16 5.60 2.44 6.66 6.03 6.79
0.01 0.02 0.00 0.00 0.01 0.10 0.06 0.45 0.42 0.07

0.25 0.76 2.48 0.03 0.04 3.01 8.54 4.20 9.06 8.32 10.33
0.06 0.09 0.00 0.00 0.1 0.30 0.20 0.94 0.88 0.20

0.30 1.12 3.12 0.07 0.10 3.53 8.28 3.92 9.56 8.73 9.12
0.09 0.16 0.00 0.00 0.20 0.47 0.32 1.28 1.20 0.27

0.35 1.65 4.26 0.13 0.16 3.94 9.21 4.58 10.44 9.59 10.79
0.27 0.41 0.00 0.00 0.55 1.25 0.91 2.33 2.22 0.75

0.40 1.63 4.54 0.10 0.13 3.81 10.27 5.25 11.24 10.37 10.52
0.36 0.55 0.01 0.01 0.58 1.14 0.83 2.50 2.37 0.86

0.45 2.10 5.04 0.22 0.26 4.25 11.20 5.71 11.86 10.97 12.99
0.51 0.79 0.02 0.02 0.94 1.60 1.13 3.31 3.15 1.21

0.50 2.62 6.31 0.18 0.22 5.22 11.02 5.56 11.68 10.80 10.47
0.69 1.03 0.02 0.02 1.16 1.99 1.49 3.46 3.30 1.68

0.55 2.64 6.19 0.26 0.32 5.01 11.62 6.08 11.86 10.98 12.85
1.07 1.49 0.05 0.06 1.59 2.51 1.94 4.09 3.91 2.25

0.60 3.14 7.23 0.27 0.32 6.27 12.50 6.46 12.25 11.35 11.94
1.46 1.97 0.08 0.08 2.09 2.76 2.05 4.31 4.13 2.64

0.65 3.01 6.31 0.28 0.34 5.26 11.73 5.84 11.44 10.61 13.05
1.40 1.92 0.07 0.08 2.08 2.85 2.13 4.26 4.09 2.51

0.70 3.04 6.68 0.31 0.36 5.00 12.36 6.27 11.74 10.90 13.57
1.82 2.40 0.14 0.15 2.71 3.19 2.42 4.49 4.31 2.83

0.75 2.85 6.18 0.25 0.32 4.69 13.42 7.44 12.08 11.26 14.79
1.63 2.20 0.09 0.09 2.51 3.99 3.11 4.88 4.71 3.77

0.80 3.48 7.06 0.37 0.43 5.59 11.77 5.94 10.35 9.57 13.6
1.92 2.52 0.11 0.12 2.54 3.55 2.74 4.38 4.20 3.37

0.85 3.55 7.18 0.43 0.50 5.77 11.96 6.28 10.26 9.53 13.35
2.17 2.82 0.13 0.14 2.94 4.62 3.72 4.74 4.58 4.44

0.90 3.87 7.43 0.48 0.56 5.73 12.15 6.63 9.61 8.90 13.8
2.16 2.81 0.14 0.15 2.91 5.29 4.23 5.24 5.07 5.12

0.95 3.57 7.02 0.41 0.47 5.47 13.31 7.39 10.53 9.81 14.67
1.95 2.58 0.10 0.11 2.83 3.44 2.65 3.28 3.14 3.44

1.00 3.35 6.97 0.19 0.24 5.10 11.82 6.37 8.82 8.19 14.16
2.22 2.83 0.19 0.20 3.02 5.00 4.03 4.36 4.21 5.05
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Table 3.6.3: Percentage of risk improvements of all the proposed estimators
using the L2 and L3 loss functions

(m,n) ↓ (σ2
1 , σ

2
2) ↓ L2 − Loss L3 − Loss

P1 P5 P3 P6 P9 P1 P5 P3 P6 P9
(0.05, 0.10) 4.97 4.07 3.08 2.11 5.45 9.17 7.95 5.41 3.90 10.82
(0.05, 0.30) 2.29 1.39 1.24 0.69 2.87 6.76 4.42 3.37 1.99 10.46
(0.05, 0.50) 1.60 0.87 0.83 0.43 3.01 4.79 2.95 2.15 1.22 12.01
(0.05, 0.70) 0.96 0.49 0.45 0.23 2.79 3.44 2.20 1.43 0.83 12.99
(0.05, 1.00) 0.75 0.39 0.35 0.18 3.28 1.46 0.92 0.55 0.32 18.28
(1.00, 1.10) 0.88 4.18 0.59 1.67 5.36 2.14 8.09 1.31 3.31 9.77
(1.00, 1.50) 3.46 3.97 2.04 1.83 5.34 8.31 9.62 5.14 4.61 12.56

(5, 5) (1.00, 2.00) 4.92 3.91 2.96 1.99 5.18 9.68 8.28 5.78 4.09 11.66
(1.00, 2.50) 4.53 3.49 2.70 1.80 4.98 10.03 7.77 5.76 3.81 11.32
(1.00, 3.00) 4.33 2.96 2.51 1.52 4.54 10.07 7.30 5.60 3.56 11.80
(2.00, 2.10) 0.13 3.74 0.06 1.37 4.59 1.65 9.11 1.14 3.80 10.62
(2.00, 2.30) 1.80 4.69 1.21 2.06 5.83 3.19 8.64 1.76 3.53 11.07
(2.00, 2.50) 2.02 4.00 1.30 1.77 5.04 4.14 8.42 2.53 3.67 10.99
(2.00, 2.70) 3.41 4.45 2.03 2.01 5.80 7.71 9.95 4.85 4.74 11.83
(2.00, 3.00) 4.34 4.77 2.80 2.33 6.13 8.76 9.31 5.34 4.50 12.07
(0.05, 0.10) 1.54 1.00 0.85 0.48 1.19 3.07 2.19 1.61 0.99 2.84
(0.05, 0.30) 0.06 0.03 0.03 0.01 0.07 0.16 0.10 0.07 0.04 0.21
(0.05, 0.50) 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.23
(0.05, 0.70) 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
(0.05, 1.00) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(1.00, 1.10) 0.60 1.76 0.31 0.57 2.15 0.45 3.35 0.23 1.06 4.23
(1.00, 1.50) 1.56 1.42 0.84 0.59 1.73 3.87 3.21 2.10 1.42 3.95

(12, 12) (1.00, 2.00) 1.15 0.90 0.59 0.39 1.09 2.78 1.97 1.46 0.89 2.58
(1.00, 2.50) 0.76 0.52 0.40 0.24 0.67 1.91 1.24 0.96 0.56 1.54
(1.00, 3.00) 0.62 0.35 0.32 0.17 0.44 1.04 0.68 0.52 0.30 0.91
(2.00, 2.10) 0.50 1.95 0.33 0.67 2.39 0.73 3.80 0.41 1.23 4.74
(2.00, 2.30) 1.19 2.02 0.67 0.76 2.48 1.10 3.28 0.60 1.10 4.17
(2.00, 2.50) 1.55 1.90 0.86 0.77 2.29 2.66 3.56 1.45 1.38 4.41
(2.00, 2.70) 1.52 1.58 0.77 0.64 1.90 3.21 3.34 1.79 1.41 4.14
(2.00, 3.00) 1.46 1.34 0.79 0.57 1.55 2.99 2.82 1.60 1.18 3.49
(0.05, 0.10) 0.55 0.33 0.29 0.16 0.38 0.83 0.55 0.42 0.24 0.62
(0.05, 0.30) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05, 0.50) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05, 0.70) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05, 1.00) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(1.00, 1.10) 0.50 1.10 0.29 0.37 1.24 1.67 2.51 0.90 0.92 2.85
(1.00, 1.50) 0.96 0.79 0.50 0.34 0.89 2.16 1.59 1.12 0.70 1.81

(20, 20) (1.00, 2.00) 0.53 0.30 0.27 0.15 0.33 1.17 0.73 0.59 0.34 0.82
(1.00, 2.50) 0.24 0.14 0.13 0.07 0.16 0.50 0.30 0.25 0.14 0.33
(1.00, 3.00) 0.10 0.06 0.04 0.02 0.07 0.24 0.14 0.11 0.06 0.16
(2.00, 2.10) 0.05 1.18 0.02 0.35 1.39 1.62 2.86 0.87 1.01 3.30
(2.00, 2.30) 0.90 1.21 0.49 0.46 1.37 1.66 2.24 0.89 0.83 2.55
(2.00, 2.50) 0.91 0.97 0.50 0.39 1.09 1.43 1.77 0.75 0.66 1.98
(2.00, 2.70) 1.09 0.92 0.56 0.39 1.02 2.79 2.20 1.47 0.96 2.48
(2.00, 3.00) 1.08 0.79 0.57 0.35 0.87 1.91 1.43 0.99 0.62 1.59
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Table 3.6.4: Percentage of risk improvements of all the proposed estimators
using the L2 and L3 loss functions

(m,n) ↓ (σ2
1 , σ

2
2) ↓ L2 − Loss L3 − Loss

P1 P2 P3 P4 P9 P1 P2 P3 P4 P9
(0.05, 0.10) 1.24 2.77 0.12 0.14 2.32 2.60 5.90 0.24 0.29 5.36
(0.05, 0.30) 0.11 0.44 0.00 0.01 0.57 0.30 1.15 0.01 0.01 2.23
(0.05, 0.50) 0.04 0.13 0.00 0.00 0.28 0.11 0.35 0.01 0.01 2.07
(0.05, 0.70) 0.01 0.05 0.00 0.00 0.31 0.01 0.12 0.00 0.00 1.33
(0.05, 1.00) 0.00 0.02 0.00 0.00 0.25 0.00 0.12 0.00 0.00 2.06
(1.00, 1.10) 1.90 3.70 0.16 0.19 3.02 3.24 6.78 0.27 0.32 5.33
(1.00, 1.50) 1.66 3.51 0.16 0.20 2.51 3.00 6.63 0.26 0.33 4.77

(5, 10) (1.00, 2.00) 1.19 2.91 0.10 0.13 2.06 2.28 5.62 0.19 0.23 3.96
(1.00, 2.50) 0.84 2.11 0.07 0.09 1.42 1.80 4.54 0.12 0.16 2.99
(1.00, 3.00) 0.68 1.76 0.05 0.06 1.22 1.35 3.88 0.11 0.14 2.80
(2.00, 2.10) 1.52 3.27 0.10 0.12 2.04 3.03 6.51 0.25 0.29 4.12
(2.00, 2.30) 1.55 3.42 0.10 0.13 2.17 3.46 7.04 0.29 0.35 4.62
(2.00, 2.50) 1.92 3.66 0.27 0.31 2.65 3.24 6.95 0.27 0.33 4.31
(2.00, 2.70) 1.93 3.94 0.20 0.24 2.51 3.40 6.94 0.38 0.46 4.41
(2.00, 3.00) 1.31 2.96 0.10 0.12 1.92 2.94 6.62 0.26 0.32 4.41
(0.05, 0.10) 0.34 0.49 0.02 0.02 0.51 0.76 1.09 0.03 0.04 1.27
(0.05, 0.30) 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.04
(0.05, 0.50) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05, 0.70) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05, 1.00) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(1.00, 1.10) 1.12 1.47 0.07 0.07 1.49 2.26 2.90 0.20 0.20 3.02
(1.00, 1.50) 0.73 1.01 0.02 0.03 1.04 1.75 2.30 0.13 0.14 2.46

(12,20) (1.00, 2.00) 0.41 0.55 0.02 0.02 0.59 0.77 1.10 0.03 0.03 1.19
(1.00, 2.50) 0.14 0.22 0.00 0.00 0.21 0.32 0.51 0.01 0.01 0.66
(1.00, 3.00) 0.04 0.07 0.00 0.01 0.08 0.15 0.25 0.01 0.01 0.28
(2.00, 2.10) 1.21 1.54 0.08 0.08 1.65 2.00 2.51 0.17 0.18 2.62
(2.00, 2.30) 0.93 1.23 0.05 0.06 1.23 2.20 2.83 0.12 0.13 3.14
(2.00, 2.50) 0.99 1.28 0.06 0.06 1.39 2.05 2.72 0.08 0.09 2.79
(2.00, 2.70) 0.92 1.20 0.05 0.06 1.26 2.11 2.74 0.19 0.20 2.88
(2.00, 3.00) 0.65 0.87 0.05 0.06 0.97 1.62 2.15 0.11 0.12 2.23
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Table 3.6.5: Percentage of risk improvements of all the proposed estimators
using the L2 and L3 loss functions

(m,n) ↓ (σ2
1 , σ

2
2) ↓ L2 − Loss L3 − Loss

P1 P2 P3 P4 P9 P1 P2 P3 P4 P9
(0.05, 0.10) 4.43 2.19 5.05 4.62 3.62 11.47 6.06 11.74 10.85 8.67
(0.05, 0.30) 1.78 0.82 2.53 2.27 0.62 6.29 3.18 6.74 6.17 1.95
(0.05, 0.50) 0.99 0.43 1.39 1.24 0.30 3.91 1.98 4.20 3.81 0.84
(0.05, 0.70) 0.68 0.30 0.97 0.87 0.28 2.35 0.85 2.62 2.34 2.83
(0.05, 1.00) 0.19 0.06 0.42 0.36 1.39 3.07 1.58 2.14 1.98 24.67
(1.00, 1.10) 5.93 3.12 5.04 4.67 6.44 10.66 5.34 8.59 7.93 12.20
(1.00, 1.50) 6.06 3.23 6.12 5.68 7.53 12.23 6.60 11.40 10.59 16.63

(10, 5) (1.00, 2.00) 4.98 2.50 5.69 5.25 8.86 11.51 6.25 11.62 10.77 22.51
(1.00, 2.50) 4.14 1.96 5.12 4.68 10.14 10.22 5.15 10.96 10.11 27.65
(1.00, 3.00) 3.70 1.82 4.76 4.34 12.64 8.63 4.17 9.61 8.81 36.34
(2.00, 2.10) 5.55 2.85 4.56 4.21 6.90 12.12 6.39 9.53 8.86 15.36
(2.00, 2.30) 5.99 3.18 5.20 4.82 7.89 11.81 6.17 9.83 9.10 17.69
(2.00, 2.50) 6.17 3.23 5.57 5.18 8.36 13.98 7.94 12.20 11.40 19.99
(2.00, 2.70) 5.71 3.00 5.40 4.98 8.43 12.80 6.70 11.76 10.95 19.95
(2.00, 3.00) 5.19 2.55 5.15 4.74 8.41 12.32 6.60 11.49 10.67 21.59
(0.05, 0.10) 0.85 0.61 1.73 1.65 0.65 2.20 1.64 3.86 3.69 1.79
(0.05, 0.30) 0.04 0.02 0.10 0.10 0.02 0.03 0.01 0.24 0.22 0.01
(0.05, 0.50) 0.00 0.00 0.01 0.01 0.00 0.02 0.01 0.05 0.04 0.00
(0.05, 0.70) 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05, 1.00) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00
(1.00, 1.10) 2.25 1.81 2.30 2.22 2.16 4.09 3.16 4.12 3.97 3.96
(1.00, 1.50) 1.28 0.96 2.00 1.91 1.10 2.89 2.15 4.31 4.14 2.76

(20,12) (1.00, 2.00) 0.95 0.72 1.85 1.76 0.81 2.22 1.69 3.76 3.60 2.22
(1.00, 2.50) 0.64 0.47 1.30 1.24 0.56 1.17 0.84 2.48 2.35 1.16
(1.00, 3.00) 0.33 0.24 0.81 0.76 0.35 0.80 0.60 1.77 1.67 2.54
(2.00, 2.10) 2.38 1.90 2.30 2.22 2.29 4.32 3.40 3.91 3.77 4.27
(2.00, 2.30) 2.34 1.83 2.53 2.45 2.29 4.89 3.94 4.82 4.66 4.80
(2.00, 2.50) 1.90 1.47 2.34 2.25 1.80 3.75 2.91 4.37 4.21 3.62
(2.00, 2.70) 1.95 1.51 2.40 2.31 1.82 4.09 3.19 4.89 4.73 3.72
(2.00, 3.00) 1.35 1.02 1.98 1.89 1.24 3.41 2.59 4.78 4.60 3.30
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Table 3.6.6: Percentage of relative risk improvements of all the proposed estimators
using L1 loss function for equal sample sizes

τ ↓ (m,n) = (5, 5), (12, 12), (20, 20)
R1 R5 R3 R6 R7 R8 R9
2.49 1.53 -38.62 -39.2 12.58 11.38 0.05

0.05 0.00 0.00 -43.12 -43.12 1.61 1.45 1.21
0.00 0.00 -42.78 -42.78 0.41 0.35 0.32
6.20 4.03 -6.72 -8.10 10.83 7.61 1.37

0.15 0.13 0.07 -18.0 -18.03 2.20 1.78 1.19
0.00 0.00 -20.08 -20.08 1.08 0.94 0.50
8.56 5.74 3.51 1.67 8.45 3.27 3.97

0.25 0.43 0.25 -7.41 -7.51 0.22 -0.19 0.49
0.09 0.05 -9.66 -9.68 -0.06 -0.06 0.20
9.63 7.16 9.89 8.01 0.60 -7.41 5.28

0.35 1.44 0.92 -1.11 -1.42 0.04 -0.92 0.65
0.38 0.23 -3.84 -3.92 -0.45 -0.34 0.05
9.94 7.93 12.84 11.12 -5.11 -15.28 5.37

0.45 2.33 1.62 2.63 2.15 -3.45 -4.32 0.78
0.98 0.61 -0.36 -0.58 -1.56 -1.29 0.27
9.67 8.76 13.66 12.28 -7.56 -18.95 6.32

0.55 3.96 2.82 5.01 4.21 -4.41 -4.89 1.73
1.14 0.77 1.06 0.82 -3.37 -2.98 0.42
8.85 9.51 15.23 14.42 -15.55 -29.57 6.79

0.65 4.83 3.68 6.89 5.99 -5.67 -5.98 2.54
1.78 1.35 2.84 2.51 -3.39 -2.95 0.90
6.14 8.75 14.04 14.23 -20.20 -35.89 6.05

0.75 2.88 3.17 6.36 6.11 -10.87 -11.26 1.79
1.97 1.76 4.00 3.71 -6.07 -5.22 1.27
2.69 8.04 12.00 13.52 -27.25 -45.30 4.80

0.85 2.51 3.79 6.63 6.69 -12.13 -12.67 2.65
2.05 2.50 4.15 4.02 -5.53 -4.49 2.07
1.36 7.91 11.57 13.70 -31.84 -50.84 4.84

0.95 1.86 4.57 6.78 7.33 -13.05 -13.47 3.38
1.67 2.74 4.23 4.30 -7.46 -6.29 2.35
0.74 8.37 11.08 13.60 -33.81 -53.79 5.15

1.00 0.03 3.78 5.46 6.53 -14.72 -14.89 2.70
0.78 2.73 4.32 4.74 -8.38 -6.99 2.24
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Table 3.6.7: Percentage of relative risk improvements of all the proposed
estimators using the L1 loss function for unequal sample sizes

τ ↓ (m,n) = (5, 10), (12, 20), (10, 5), (20, 12)
R1 R2 R3 R4 R7 R8 R9
0.00 -8.40 -22.10 -24.25 3.97 3.47 -3.99

0.05 0.00 -0.45 -29.81 -30.50 0.35 0.27 0.33
2.29 6.96 -65.90 -61.52 10.61 10.11 7.68
0.00 0.30 -58.05 -56.91 0.81 0.78 0.66
0.32 -6.71 -0.89 -1.90 0.28 -0.72 -3.97

0.15 0.00 -0.72 -8.51 -8.86 0.02 -0.02 -0.09
4.84 8.73 -24.02 -22.02 10.93 8.69 9.80
0.03 0.62 -30.95 -30.27 1.83 1.55 1.27
0.76 -2.54 5.40 4.90 -8.43 -9.70 -3.33

0.25 0.06 -0.30 0.16 -0.03 -2.79 -2.68 -0.88
8.54 11.22 -6.86 -5.77 12.74 9.56 11.50
0.30 0.91 -17.54 -17.10 2.15 1.70 1.43
1.65 1.04 8.13 7.93 -12.74 -14.36 -2.05

0.35 0.27 -0.06 2.79 2.66 -3.44 -3.19 -0.84
9.21 10.33 2.58 3.15 9.34 4.57 10.56
1.25 1.69 -9.74 -9.45 2.24 1.70 1.79
2.10 3.97 9.30 9.37 -21.76 -23.55 -1.47

0.45 0.51 0.57 4.40 4.34 -7.00 -6.60 -0.70
11.20 11.11 8.95 9.24 8.29 2.04 11.46
1.60 1.86 -3.97 -3.80 1.07 0.67 1.65
2.64 5.46 9.10 9.27 -27.05 -29.09 0.66

0.55 1.07 1.42 4.94 4.93 -8.75 -8.11 0.12
11.62 10.64 11.50 11.65 5.30 -2.01 10.53
2.51 2.46 0.97 1.06 -0.51 -1.02 2.08
3.01 7.05 9.06 9.42 -36.55 -38.42 0.51

0.65 1.40 1.97 4.48 4.51 -12.67 -11.52 0.80
11.73 10.04 13.25 13.31 3.21 -5.23 10.69
2.85 2.57 3.13 3.16 -1.54 -2.32 2.34
2.85 7.75 8.60 9.07 -40.76 -42.88 0.90

0.75 1.63 2.42 4.04 4.12 -15.96 -14.17 1.28
13.42 11.18 15.97 15.96 2.32 -7.23 11.77
3.99 3.54 5.17 5.19 -2.28 -3.05 3.29
3.55 8.41 8.11 8.62 -48.20 -49.50 1.58

0.85 2.17 2.97 4.18 4.27 -17.86 -15.29 1.79
11.96 9.08 14.53 14.51 -2.59 -14.01 10.09
4.62 4.11 6.32 6.32 -2.58 -3.29 3.71
3.57 9.03 7.13 7.77 -56.52 -58.42 2.38

0.95 1.95 2.86 2.98 3.11 -22.16 -19.13 1.78
13.31 10.47 15.94 15.91 -2.05 -13.87 11.33
3.44 2.89 5.46 5.45 -5.24 -5.98 2.74
3.35 9.04 6.75 7.40 -61.01 -62.06 1.03

1.00 2.22 3.09 2.89 3.02 -23.97 -20.07 2.14
11.82 8.46 14.89 14.85 -5.57 -18.70 9.86
5.00 4.52 6.49 6.49 -3.18 -3.88 4.43
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3.7 Conclusions
In this chapter we have reinvestigated the problem of estimating the common mean of two
normal populations, when the variances are known to follow certain ordering say σ2

1 ≤ σ2
2. It

should be noted that, Elfessi and Pal (1992) considered this problem and obtained an estimator
which dominates the well known Graybill-Deal (Graybill and Deal (1959)) estimator in terms
of stochastic domination as well as Pitman measure of closeness criterion. In a very similar
fashion, in Sections 3.2, 3.3, and 3.4 we have proposed some new estimators which beats some
of the well known estimators proposed by Khatri and Shah (1974), Moore and Krishnamoorthy
(1997), Tripathy and Kumar (2010), Brown and Cohen (1974) and the MLE (closed form
does not exist) respectively, in terms of stochastic domination as well as Pitman measure of
closeness criteria under the assumption that the variances are ordered. In addition to this, we
have also derived sufficient conditions for improving estimators in the classes of equivariant
estimators. As a consequence improved estimators have been derived using the affine invariant
loss (3.1.1). More interestingly it has been seen that, the estimators obtained are turning out
to be the same as proposed in Section 3.2 including the estimator proposed by Elfessi and
Pal (1992). In order to evaluate the performances of all the improved estimators, we have
compared numerically the risk values of all these estimators through the simulation study using
the Monte-Carlo simulation method. It has been seen that the percentage of risk improvements
for all the improved estimators are quite significant which further strengthens the findings in
Sections 3.2, 3.3, and 3.4. It has also been concluded that, like in the case of without restrictions
on the variances, none of the estimators completely dominates others in terms of the risk values.
Finally we have recommended for the use of these improved well structured estimators in
practice under order restriction on the variances which lacks in the literature. We hope the
present study in the chapter certainly add more value to the current literature on “common
mean problem” as well and fills the gap.
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Figure 3.6.1: (a) − (f) Comparison of risk values of several estimators for common mean
µ using the loss L1 for sample sizes (5, 5), (12, 12), (5, 10), (10, 5), (12, 20) and (20, 12)
respectively.
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Chapter 4

Estimating Quantiles of Several Normal
Populations with a Common Mean

4.1 Introduction

In the previous chapter (Chapter 3), we have considered two normal populations with a common
mean ‘µ’ and different variances σ2

1, and σ2
2. In fact, we have re-investigated the problem of

estimating the common mean under the assumption that, the variances follow certain simple
ordering say σ2

1 ≤ σ2
2. In the present chapter we intend to investigate the problem of estimating

quantiles in several normal populations with a common mean, however without assuming any
restrictions on the variances.

We note that, the problem of estimating quantiles for any distribution function is certainly
important due to its real life applications and also the challenges involve in it. Particularly,
the application of quantiles for exponential populations are seen in the study of reliability,
life testing, survival analysis and related fields. We refer to Epstein and Sobel (1954) and
Saleh (1981) for some practical applications of quantiles. The problem of estimating quantiles
of normal population was probably first considered by Zidek (1969, 1971) from a decision
theoretic point of view. In fact, he estimated a general function of mean and standard deviation,
which in particular case reduces to a quantile θ = µ+ησ.He established some interesting results
including inadmissibility of the best affine equivariant estimator under certain conditions on |η|
using a quadratic loss function. Further Rukhin (1983) derived a class of minimax estimators
for the quantile θ, each of which improves upon the best equivariant estimator when only
one population is available. Lately, Kumar and Tripathy (2011) considered the estimation of
the quantiles of the first population with a common mean when two normal populations are
available using a quadratic loss from a decision theoretic point of view. For a detailed review
and recent updates on estimation of quantiles on normal populations we refer to Kumar and
Tripathy (2011) and the references cited there in.

The model under consideration is quite popular in the literature and has many applications
in real life situations. For validity and some application of our model (assuming equality of
mean/location parameter), we refer to Hahn and Nelson (1970), Vazquez et al. (2007) and has
been well addressed by Chang and Pal (2008) and Tripathy and Kumar (2015). Under such
situations, one may wishes to draw inference on either common mean or quantiles, assuming
that the data follow a normal distribution.

The problem considered in this chapter is of great interest and also quite challenging, as it
uses the information for common mean to draw inference on the quantiles. To be very specific,

0The content of this chapter has been published in Communications in Statistics - Theory and Methods, 2017,
Vol. 46, No. 11, Pages 5656 - 7671.
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for the case k = 2, Kumar and Tripathy (2011) established that, improving the estimators
of a common mean, one can certainly improve estimators of the quantiles. They also derived
some inadmissibility conditions for estimators belonging to some equivariant classes. For some
recent results on estimating common mean of two normal populations we refer to Tripathy and
Kumar (2010), where as for the case (k ≥ 3) we refer to Tripathy and Kumar (2015) and the
references cited there in. Our main target in this chapter is to generalize some of the results of
Kumar and Tripathy (2011) to k(≥ 3) normal populations. The rest of the chapter is organized
as follows. In Section 4.2, we consider several (k ≥ 3) normal populations with a common
mean and the variances are different. We have considered the estimation of the pth quantile of
the first population using the quadratic loss. In Section 4.2.1, we prove a general result which
helps in obtaining better estimators for the quantiles. We introduce the concept of invariance to
the model in Section 4.2.2 and derive sufficient conditions for improving estimators which are
equivariant under affine and location group of transformations. Consequently, two complete
class results are obtained for estimating the quantiles. More importantly, in Section 4.2.3, we
carry out a detailed simulation study (for the cases k = 2 and k = 3) in order to numerically
compare the risk performances of all the proposed estimators. Finally, we recommend using
estimators for quantiles in certain situations, which may be of great interest for practical
purposes. In Section 4.2.4, we give our conclusions and also discuss two practical examples
illustrating the use of estimators for quantiles.

It is also important to note that, in the literature most of the results on quantile estimation
are for a single parameter, θ = µ+ησ. In Section 4.3, we consider the problem of simultaneous
estimation of a vector θ˜ = (θ1, θ2, . . . , θk) of k(≥ 2) quantiles. Thismodel is certainly important
from theoretical as well as application point of view. For some results on simultaneous
estimation of location and scale parameters with application, we refer to Bai and Durairajan
(1998), Alexander and Chandrasekar (2005) and Tsukuma (2012). In Section 4.3.1, we derive
a basic result which helps in constructing certain improved estimators for the quantile vector θ˜.In Section 4.3.2, we derive affine and location equivariant estimators. Sufficient conditions for
improving estimators in the class of affine and location equivariant class have been derived for
the case k = 2. In the process, two complete class results have been proved there. In Section
4.3.3, a detailed simulation study has been done in order to numerically compare the relative risk
performances of some of our proposed estimators. We conclude with some practical examples
in Section 4.3.4.

4.2 Estimating Quantiles of Normal Population with a
Common Mean

Let there be k(≥ 2) independent normal populations, each having a commonmean and possibly
different variances. To be very specific, let (Xi1, Xi2, . . . , Xini

) be a random sample of size ni
available from the ith normal population N(µ, σ2

i ); i = 1, 2, . . . , k. Here, we assume that the
parameters µ and σ2

i ; i = 1, 2, . . . , k are unknown. The problem is to estimate the quantile,
θ = µ+ ησ1 of the first population with respect to a quadratic loss function,

L(d, µ, σ2
1) =

(d− θ

σ1

)2

, (4.2.1)

where d is an estimate for estimating the quantile θ. Here 0 ̸= η = Φ−1(p); 0 < p < 1 and
Φ(.) denotes the cumulative distribution function of a standard normal random variable. For
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the case η = 0, the problem boils down to estimating the common mean of k(≥ 2) normal
populations and it has been recently dealt by Tripathy and Kumar (2015). It should be noted
that, for the case k = 2, the problem of estimation for quantile θ, has been well investigated by
Kumar and Tripathy (2011). The main objective of this section is two fold. First, to generalize
some of their decision theoretic results, to a general k(≥ 2) normal populations. Second, an
attempt is to compare the relative risk performances of some of our proposed estimators for
quantiles numerically, specifically for the case k = 3 and k = 4, which may be handy for
practical purposes.

4.2.1 Some Improved Estimators for Quantiles

Suppose that there are k(≥ 2) independent normal populations with a common unknown mean
µ and possibly unknown different variances σ2

i ; i = 1, 2, . . . , k respectively are available.
Specifically, let (Xi1, Xi2, . . . , Xini

) be a random sample of size ni available from the ith
normal population N(µ, σ2

i ); i = 1, 2, . . . , k. We are interested to estimate the quantiles,
θ = µ + ησ1 of the first population when other k − 1 normal populations are available
with respect to the loss function (4.2.1). A minimal sufficient statistic for our model is
(X̄1, . . . , X̄k, S

2
1 , . . . , S

2
k), where we define the random variables,

X̄i =
1

ni

ni∑
j=1

Xij, S
2
i =

ni∑
j=1

(Xij − X̄i)
2, i = 1, 2, . . . , k.

It is easy to observe that, X̄i ∼ N(µ, σ2
i /ni) and S2

i ∼ σ2
i χ

2
ni−1; i = 1, 2, . . . , k. All these

random variables are mutually independent.
The model permits to take advantage of µ being common and utilize all the results available

for common mean to estimate quantiles θ. On the other hand, as the sufficient statistic is not
complete, it is hard to derive the UMVUE (uniformly minimum variance unbiased estimator).
Also the MLE (maximum likelihood estimator) is not obtainable in closed form (see Pal et al.
(2007)). Further, to proceed we follow the arguments of Kumar and Tripathy (2011), and
consider the baseline estimator for quantile θ as d1 = X̄1 + ηbn1S1, where

bξ =
Γ( ξ

2
)

√
2Γ( ξ+1

2
)
, ξ = 2, 3, . . . . (4.2.2)

It should be noted that the estimator d1 is the best affine equivariant and also minimax based on
the sufficient statistic (X̄1, S

2
1).

To continue with, below (Theorem 4.2.1, 4.2.2), we prove some results which directly
generalize the results obtained in Section 2 of Kumar and Tripathy (2011) to k(≥ 2) normal
populations. First we borrow their results (Theorem 2.1, Remark 2.1, 2.2) which also remains
valid for k(≥ 2) populations.

Theorem 4.2.1 Let dM be an estimator of the common mean µ, and dS be an estimator of σ1.
Consider the estimator of θ = µ+ ησ1 of the form d = dM + ηdS. Also, assume that, given dS,
the estimator dM is conditionally unbiased for µ, that is,

E(dM |dS) = µ. (4.2.3)
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Then we have,

E(d− θ)2 = E(dM − µ)2 + η2E(dS − σ1)
2. (4.2.4)

Proof 4.2.1 The left hand side of (4.2.4) is given by

E(d− θ)2 = E(dM − µ)2 + η2(dS − σ1)
2 + 2ηE(dM − µ)(dS − σ1). (4.2.5)

Now the term E(dM − µ)(dS − σ1) = 0 by the condition E(dM |dS) = µ. Hence we have the
result.

Remark 4.2.1 The condition (4.2.3) holds if, in particular we choose dM as unbiased estimator
for common mean µ and dS to be independent of dM . For example, one can choose dM = X̄1

and dS = cS1, for some suitable constant c.

Remark 4.2.2 It is clear from above Theorem 4.2.1, that to construct a good estimator for
the quantile θ, it is sufficient to have a good estimator for the common mean µ and/or a good
estimator for σ1.

To proceed further, we define, S˜ = (S1, . . . , Sk) and dψ = ψ1(S˜)X̄1 + ψ2(S˜)X̄2 + . . . +

ψk(S˜)X̄k, such that,
∑k

i=1 ψi(S˜) = 1.We have the following remark.

Remark 4.2.3 Taking dM = dψ, and dS = bS1/η (η ̸= 0), in Theorem 4.2.1, we have proved
the following theorem.

Theorem 4.2.2 Let dψ be an estimator of the common mean µ. Consider an estimator of θ as
dψ(b) = dψ + bS1. Then dψ(b) has smaller risk than d1(b) = X̄1 + bS1 with respect to the
quadratic loss function (4.2.1) if and only if dψ has smaller risk than X̄1 for estimating common
mean µ.

Proof 4.2.2 To prove the result, let us consider the risk difference of dψ(b) and d1(b). Let

△ = R(dψ(b), θ)−R(d1(b), θ)

=
1

σ2
1

{E(dψ(b)− θ)2 − E(d1(b)− θ)2}

=
1

σ2
1

{E(dψ − µ)2 − E(X̄1 − µ)2}

= R(dψ, µ)−R(X̄1, µ).

Hence the risk difference △ = R(dψ(b), θ) − R(d1(b), θ) ≤ 0, is equivalent to say that
R(dψ, µ)−R(X̄1, µ) ≤ 0. This proves the theorem.

Remark 4.2.4 Take dM = dψ, and dS to be the best affine equivariant estimator of σ1, that is
dS = bn1S1. Then using Theorem 4.2.1, we prove the following theorem.

Theorem 4.2.3 For estimating quantile θ = µ + ησ1 with respect to the scale invariant loss
function (4.2.1), the estimator dψ(b) has minimum risk if we choose b = ηbn1 .
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Proof 4.2.3 Let us consider the risk function of dψ(b) :

R(dψ(b), θ) =
1

σ2
1

{E(dψ − µ)2 + E(bS1 − ησ1)
2 + 2E(dψ − µ)(bS1 − ησ1)}.

Now using Theorem 4.2.1, the termE(dψ−µ)(bS1−ησ1) = 0. Further it is easy to observe that
the above risk is a convex function in b, hence its minimizing choice is obtained by differentiating
it with respect to b and equating to zero. Thus the minimizing choice is given by b = ησ1E(S1)

E(S2
1)

.

Now utilizing the fact that E(S1) =
σ1

√
2Γ(

n1
2
)

Γ(
n1−1

2
)

and E(S2
1) = (n1− 1)σ2

1 , and substituting in the

above we get the choice of b for which the risk will be minimum as ηΓ(
n1
2
)

√
2Γ(

n1+1
2

)
. This proves the

theorem.

From the above discussion it is clear that, in order to construct a better estimator than d1 =
X̄1 + ηbn1S1, for quantile θ = µ+ ησ1, one needs to replace X̄1 in d1 by improved estimators
of common mean of the form dψ. Below, we construct some estimators for quantiles θ, which
are better than d1, in which X̄1 is being replaced by estimators of common mean µ proposed by
Norwood and Hinkelmann (1977), Shinozaki (1978), Moore and Krishnamoorthy (1997) and
Tripathy and Kumar (2015) and finally using the grand mean. It should be noted that the well
known popular estimator proposed Graybill and Deal (1959) for k = 2, has been extended to
k ≥ 3 by Norwood and Hinkelmann (1977).

dNH = µ̂NH + ηbn1S1,

where

µ̂NH =

∑k
i=1 ni(ni − 1)X̄i/S

2
i∑k

i=1 ni(ni − 1)/S2
i

, Norwood and Hinkelmann (1977),

dSZ = µ̂SZ + ηbn1S1,

where

µ̂SZ =

∑k
i=1 ni(ni − 3)X̄i/S

2
i∑k

i=1 ni(ni − 3)/S2
i

, Shinozaki (1978),

dMK = µ̂MK + ηbn1S1,

where

µ̂MK =

∑k
i=1

√
ni(ni − 1)X̄i/Si∑k

i=1

√
ni(ni − 1)/Si

, Moore and Krishnamoorthy (1997),

dTK = µ̂TK + ηbn1S1,
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where

µ̂TK =

∑k
i=1

√
niX̄i/(bni−1Si)∑k

i=1

√
ni/(bni−1Si)

, Tripathy and Kumar (2015),

and finally the estimator based on the grand sample mean,

dGM = µ̂GM + ηbn1S1,

where

µ̂GM =

∑k
i=1 niX̄i∑k
i=1 ni

.

The following two theoretical comparisons are immediate, which follows directly from
the results given in Norwood and Hinkelmann (1977) and Shinozaki (1978) where they have
obtained the results for common mean.

Theorem 4.2.4 For estimating the quantiles, θ = µ + ησ1 with respect to the loss function
(4.2.1), the estimator

(i) dNH has smaller risk than d1 if and only if, the sample sizes ni ≥ 11 or one of the ni = 10
and all other nj ≥ 18 where i is different from j.

(ii) dSZ has smaller risk than d1 if and only if (n1 − 1) ≥ 7 and (n1 − 7)(nj − 7) ≥ 16 for
any j ̸= 1.

Proof 4.2.4 The proof is trivial after using Theorem 4.2.1 and the results of Norwood and
Hinkelmann (1977) and Shinozaki (1978) for estimating a common mean.

Remark 4.2.5 In Section 4.2.3, we carry out a detailed simulation study to numerically
compare all these estimators for the case k = 3 and k = 4 populations, which validate the
theoretical results.

4.2.2 Inadmissibility Results for Equivariant Estimators
In this section we introduce the concept of invariance to our problem of estimating quantiles
and prove some inadmissibility results for estimators which are equivariant under affine and
location group of transformations.

Let us introduce the affine group of transformations, GA = {ga,b(x) = ax + b, a > 0, b ∈
R} to our problem. Under this group of transformations, X̄i → aX̄i + b, S2

i → a2S2
i , i =

1, 2, . . . , k. The parameters µ → aµ + b, σi → aσi, i = 1, 2, . . . , k, and θ → aθ + b, where
θ is the quantile. The problem becomes invariant if we choose the loss function (4.2.1). The
decision rule d must satisfy the relation,

d(aX̄1 + b, · · · , aX̄k + b, a2S2
1 , , · · · , a2S2

k) = ad(X̄1, · · · , X̄k, S
2
1 , · · · , S2

k) + b.

Now choosing b = −aX̄1 where a = 1/S1, and simplifying we obtain the form of an affine
equivariant estimator as,

dΨ = X̄1 + S1Ψ(T˜, R˜), (4.2.6)
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where Ψ is any real valued function, T˜ = (T2, T3, . . . , Tk), R˜ = (R2, R3, . . . , Rk), Ti = (X̄i −
X̄1)/S1, and Ri = S2

i /S
2
1 ; i = 2, 3, . . . , k.

Let us denote,

Ψ1(t˜, r˜) =


ηb2n+3, if ti ≥ 0; i = 2, 3, . . . , k

ηb2n+3 +
∑k

i=2 ti, if ti < 0; i = 2, 3, . . . , k
ηb2n+3 +

∑p
j=2 tlj , if Case 2 (given in the proof) holds

ηb2n+3 +
∑k

j=p+1 tlj , if Case 3 (given in the proof) holds

(4.2.7)

and

Ψ2(t˜, r˜) =


ηb2n+3, if ti < 0; i = 2, 3, . . . , k

ηb2n+3 +
∑k

i=2 ti, if ti ≥ 0; i = 2, 3, . . . , k
ηb2n+3 +

∑p
j=2 tlj , if Case 5 (given in the proof) holds

ηb2n+3 +
∑k

j=p+1 tlj , if Case 6 (given in the proof) holds,

(4.2.8)

where (l2, l3, . . . , lk) is a permutation of numbers (2, 3, . . . , k) and 2 ≤ p ≤ k.

Now for an affine equivariant estimator dΨ of the quantile θ, as given in (4.2.6), we define
functions Ψ10 and Ψ20 as follows.

Ψ10(t˜, r˜) = max(Ψ(t˜, r˜),Ψ1(t˜, r˜)), (4.2.9)

and

Ψ20(t˜, r˜) = min(Ψ(t˜, r),Ψ2(t˜, r˜)). (4.2.10)

Let us denote α˜ = (µ, σ2
1, σ

2
2, . . . , σ

2
k). Next we prove a theorem regarding inadmissibility of

estimators which are equivariant under affine group of transformations.

Theorem 4.2.5 Let dΨ be an affine equivariant estimator of the form (4.2.6) for estimating the
quantile θ, and the loss function be (4.2.1) or the squared error. Let the functions Ψ10(t˜, r˜) andΨ20(t˜, r˜) be defined as in (4.2.9) and (4.2.10) respectively.

(i) When η > 0, the estimator dΨ is improved by dΨ10 , if there exist some values of parameters
α˜ such that, Pα˜(Ψ(T˜, R˜) ̸= Ψ10(T˜, R˜)) > 0.

(ii) When η < 0, the estimator dΨ is improved by dΨ20 , if there exist some values of parameters
α˜ such that, Pα˜(Ψ(T˜, R˜) ̸= Ψ20(T˜, R˜)) > 0.

Proof 4.2.5 The proof of the theorem can be done by applying the orbit-by-orbit improvement
technique for improving equivariant estimators proposed by Brewster and Zidek (1974). The
proof can be done easily by putting θ in place of µ in the proof of Theorem 2.1 in Tripathy and
Kumar (2015).

Consider the conditional risk function of dΨ given (T˜, R˜) :
R(dΨ, α˜|(T˜, R˜)) = 1

σ2
1

E{(X̄1 + S1Ψ(T˜, R˜)− θ)2|(T˜, R˜) = (t˜, r˜)}. (4.2.11)

It can be easily seen that the above risk function (4.2.11) is a convex function in Ψ, hence the
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minimizing choice of Ψ is obtained as,

Ψ(t˜, r˜) = −
E((X̄1 − θ)S1|(T˜, R˜) = (t˜, r˜))

E(S2
1 |T˜, R˜) = (t˜, r˜)) . (4.2.12)

Let us introduce the new variables Vi =
√
n1(X̄i−µ)
σ1

and Wi =
S2
i

σ2
i
; i = 2, . . . , k. Also denote

τi =
n1σ2

i

niσ2
1
, i = 2, 3, . . . , k. The above expression (4.2.12), reduces to

Ψ(t˜, r˜, τ˜) = −
E{V1

√
W1|(T˜, R˜) = (t˜, r˜)}√

n1E(W1|(T˜, R˜) = (t˜, r˜)) + ησ1
E{

√
W1|(T˜, R˜) = (t˜, r˜)}

E(W1|(T˜, R˜) = (t˜, r˜)) , (4.2.13)

where τ˜ = (τ2, τ3, . . . , τk). The conditional expectations in the right hand side of (4.2.13) have
been computed in Tripathy and Kumar (2015) and are given by

E{W1|(T˜, R˜)} =
2(n+ 1)

λ
, (4.2.14)

E{
√
W1|(T˜, R˜)} =

2(n+ 1)b2n+3√
λ

, (4.2.15)

and

E{V1
√
W1|(T˜, R˜)} = −

2
√
n1(n+ 1)

τλ

k∑
i=2

ti
τi
, (4.2.16)

where n = 3k+n1−6
2

+
∑k

i=2
ni−3
2
, λ = 1 +

∑k
i=2

n1t2i
τi

+
∑k

i=2
n1ri
niτi

− n1

τ
(
∑k

i=2
ti
τi
)2, and τ =

1 +
∑k

i=2
1
τi
. Substituting all these values and simplifying we get the minimizing choice as,

Ψ(t˜, r˜) = 1

τ

k∑
i=2

ti
τi

+ η
√
λb2n+3. (4.2.17)

To apply orbit-by-orbit improvement technique of Brewster and Zidek (1974), we need to find
the upper and lower bounds of Ψ(t˜, r˜) for fixed choices of (t˜, r˜) and η.
Case 1: Let η > 0, and ti ≥ 0, i = 2, 3, . . . , k. In this case we obtain,

infΨ(t˜, r˜, τ˜) = ηb2n+3, supΨ(t˜, r˜, τ˜) = +∞. (4.2.18)

Case 2: η > 0, and let (l2, l3, . . . , lk) be a permutation of (2, 3, . . . , k) such that tl2 < 0, tl3 < 0,
. . . , tlp < 0, and tlp+1 ≥ 0, tlp+2 ≥ 0, . . . , tlk ≥ 0, 2 ≤ p ≤ k.

infΨ(t˜, r˜, τ˜) ≥ ηb2n+3 +

p∑
j=2

tlj , supΨ(t˜, r˜, τ˜) = +∞. (4.2.19)

Case 3: η > 0, and let (l2, l3, . . . , lk) be a permutation of (2, 3, . . . , k) such that tl2 ≥ 0, tl3 ≥ 0,
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. . . , tlp ≥ 0, and tlp+1 < 0, tlp+2 < 0, . . . , tlk < 0, 2 ≤ p ≤ k.

infΨ(t˜, r˜, τ˜) ≥ ηb2n+3 +
k∑

j=p+1

tlj , supΨ(t˜, r˜, τ˜) = +∞. (4.2.20)

Case 4: η < 0, and let ti < 0, i = 2, 3, . . . , k. In this case we obtain,

infΨ(t˜, r˜, τ˜) = −∞, supΨ(t˜, r˜, τ˜) = ηb2n+3. (4.2.21)

Case 5: η < 0, and let (l2, l3, . . . , lk) be a permutation of (2, 3, . . . , k) such that tl2 < 0, tl3 < 0,
. . . , tlp < 0, and tlp+1 ≥ 0, tlp+2 ≥ 0, . . . , tlk ≥ 0, 2 ≤ p ≤ k.

infΨ(t˜, r˜, τ˜) = −∞, supΨ(t˜, r˜, τ˜) ≤ ηb2n+3 +
k∑

j=p+1

tlj . (4.2.22)

Case 6: η < 0, and let (l2, l3, . . . , lk) be a permutation of (2, 3, . . . , k) such that tl2 ≥ 0, tl3 ≥ 0,
. . . , tlp ≥ 0, and tlp+1 < 0, tlp+2 < 0, . . . , tlk < 0, 2 ≤ p ≤ k.

infΨ(t˜, r˜, τ˜) = −∞, supΨ(t˜, r˜, τ˜) ≤ ηb2n+3 +

p∑
j=2

tlj . (4.2.23)

Now combining all the Cases 1-6, we can define functionsΨ1(t˜, r˜),Ψ2(t˜, r˜) as defined in (4.2.7)and (4.2.8) respectively. Using these functions, it is easy to define Ψ10(t˜, r˜) and Ψ20(t˜, r˜) asgiven in (4.2.9) and (4.2.10) respectively. An application of Theorem 3.1 (in Brewster and
Zidek (1974)) we have,

R(dΨ10 , α˜) ≤ R(dΨ, α˜),
provided Pα˜(Ψ10 ̸= Ψ) > 0 for some choices of α˜, when η > 0. Further,

R(dΨ20 , α˜) ≤ R(dΨ, α˜),
provided Pα˜(Ψ20 ̸= Ψ) > 0 for some choices of α˜, when η < 0. This completes the proof of the
theorem.

All the estimators for quantiles θ = µ+ ησ1, constructed in Section 4.2.1, can be expressed
in the form (4.2.6). We write these estimators in the form (4.2.6) as below.

dNH = X̄1 + S1ΨNH(T˜, R˜)
where

ΨNH(T˜, R˜) = ηbn1 +

∑k
i=2 ni(ni − 1)Ti/Ri

n1(n1 − 1) +
∑k

i=2 ni(ni − 1)/Ri

.

dSZ = X̄1 + S1ΨSZ(T˜, R˜),
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where

ΨSZ(T˜, R˜) = ηbn1 +

∑k
i=2 ni(ni − 3)Ti/Ri

n1(n1 − 3) +
∑k

i=2 ni(ni − 3)/Ri

.

dMK = X̄1 + S1ΨMK(T˜, R˜),
where

ΨMK(T˜, R˜) = ηbn1 +

∑k
i=2

√
ni(ni − 1)Ti/

√
Ri√

n1(n1 − 1) +
∑k

i=2

√
ni(ni − 1)/

√
Ri

.

dTK = X̄1 + S1ΨTK(T˜, R˜),
where

ΨTK(T˜, R˜) = ηbn1 +

∑k
i=2

√
niTi/(bni−1

√
Ri)

√
n1/bn1−1 +

∑k
i=2

√
ni/(bni−1

√
Ri)

.

Finally, we have the estimator based on the grand mean,

dGM = X̄1 + S1ΨGM(T˜, R˜),
where

ΨGM(T˜, R˜) = ηbn1 +

∑k
i=2 niTi∑k
i=1 ni

.

Next we propose an estimator for quantiles θ = µ+ ησ1 based on the maximum likelihood
estimator for common mean. It should be noted that the closed form of the MLE of common
mean is not obtainable. To get the MLE of the common mean µ for k(≥ 2) populations, one
needs to solve numerically the system of k+1 equations in k+1 variables (µ, σ2

1, σ
2
2, . . . , σ

2
k).

Specifically we obtain the MLE for k = 3 and k = 4 populations numerically. Let µ̂ML be
the MLE for µ obtained by solving the system of equations. Using this estimator for common
mean we propose an estimator for the quantile θ = µ+ ησ1 as

dML = µ̂ML + ηbn1S1.

Remark 4.2.6 It is interesting to see that, all the proposed estimators for the quantiles which
are based on some popular estimators for common mean fall into the class (4.2.6). However,
it has been seen using a simulation study, none of these estimators could be improved by using
Theorem 4.2.5. It is also interesting to note that, the choices of Ψ for all these estimators lie
inside the interval [Ψ1,+∞) (when η > 0) and (−∞,Ψ2] (when η < 0) with probability 1.
It can be also noted that, all these estimators form a complete class. We carry out a detailed
simulation study in Section 4.2.3 , to numerically compare all these well structured estimators.

Next we consider a smaller group (that is location group) of transformations which will
give rise to a larger class of estimators. Also we derive a sufficient condition for improving
estimators which are equivariant under this group of transformations.
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Let us introduce the location group of transformationsGL = {gc(x) = x+ c, c ∈ R} to our
problem. Under this transformation, X̄i → X̄i + c, S2

i → S2
i , i = 1, 2, . . . , k. The parameters

µ→ µ+c, σi → σi and the quantile θ → θ+c. The problem remains invariant if we choose the
loss function (5.2.1), and the form of a location equivariant estimator dmust satisfy the relation,

d(X̄1 + c, · · · , X̄k + c, S2
1 , · · · , S2

k) = d(X̄1, · · · , X̄k, S
2
1 , · · · , S2

k) + c.

Now choosing c = −X̄1, and simplifying, we obtain the form of a location equivariant estimator
as,

dϕ = X̄1 + ϕ(U˜ , S˜), (4.2.24)

where U˜ = (U2, U3, . . . , Uk), Ui = X̄i − X̄1, i = 2, 3, . . . , k, and S˜ = (S1, . . . , Sk).
To proceed further, let us denote

ϕ1(u˜, s˜) =


0, if uj ≥ 0; j = 2, 3, . . . , k∑k
j=2 uj, if uj < 0; j = 2, 3, . . . , k∑p
j=2 ulj , if Case 2 (given in the proof) holds∑k
j=p+1 ulj , if Case 3 (given in the proof) holds

(4.2.25)

and

ϕ2(u˜, s˜) =


0, if uj < 0; j = 2, 3, . . . , k∑k
j=2 uj, if uj ≥ 0; j = 2, 3, . . . , k∑k
j=p+1 ulj , if Case 5 (given in the proof) holds∑p
j=2 ulj , if Case 6 (given in the proof) holds,

(4.2.26)

where (l2, l3, . . . , lk) is a permutation of numbers (2, 3, . . . , k) and 2 ≤ p ≤ k.

To prove the next result (Theorem 4.2.6), we define two functions ϕ10(u˜, s˜) and ϕ20(u˜, s˜)for location equivariant estimator dϕ as,

ϕ10(u˜, s˜) = max(ϕ(u˜, s˜), ϕ1(u˜, s˜)) (4.2.27)

and

ϕ20(u˜, s˜) = min(ϕ(u˜, s˜), ϕ2(u˜, s˜)). (4.2.28)

Next we have the result, which helps in proving inadmissibility of estimators which are
equivariant under location group of transformations.

Theorem 4.2.6 Let dϕ be a location equivariant estimator as given in (4.2.24) and the loss
function be the quadratic loss as given in (4.2.1) or any squared error loss. Let the functions
ϕ10 and ϕ20 be defined as in (4.2.27) and (4.2.28) respectively.

(i) When η > 0, the location equivariant estimator dϕ is inadmissible and is improved by
dϕ10 , if there exist some values of parameters α˜, such that Pα˜(ϕ(U˜ , S˜) ̸= ϕ10(U˜ , S˜)) > 0.

(i) When η < 0, the location equivariant estimator dϕ is inadmissible and is improved by
dϕ20 , if there exist some values of parameters α˜, such that Pα˜(ϕ(U˜ , S˜) ̸= ϕ20(U˜ , S˜)) > 0.

Proof 4.2.6 The proof is similar to the proof of the Theorem 3.1 of Tripathy and Kumar (2015),
where one needs to replace µ by θ. However, for the sake of completeness, we give the details.
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Consider the conditional risk function of dϕ given (U˜ , S˜) :
R(dϕ, α˜|(U˜ , S˜)) = 1

σ2
1

E{(X̄1 + ϕ(U˜ , S˜)− θ)2|(U˜ , S˜)}.
It is easy to see that the above risk function is a convex function of ϕ. Therefore minimizing
choice of ϕ is obtained as,

ϕ(u˜, s˜) = θ − E{X̄1|(U˜ , S˜) = (u˜, s˜)}.
The conditional expectation in the right hand side has been evaluated in Tripathy and Kumar
(2015). Utilizing their expression and substituting above the minimizing choice reduces to

ϕ(u˜, s˜) = ησ1 +
1

τ

k∑
j=2

uj
τj
, (4.2.29)

where τ = 1 +
∑k

i=2
1
τi
, and τj =

n1σ2
j

njσ2
1
.

In order to apply orbit-by-orbit improvement technique of Brewster and Zidek (1974), we
need to obtain the supremum and infimum of ϕ(u˜, s˜) with respect to τ˜ = (τ2, τ3, . . . , τk), for
fixed values of u˜, s˜and η. Analyzing the right hand side term in (4.2.29), we obtain the following
results.

Case 1: Let η > 0, and uj ≥ 0, j = 2, 3, . . . , k. In this case, we obtain,

infϕ(u˜, s˜) = 0, supϕ(u˜, s˜) = +∞.

Case 2: Let η > 0, and (l2, . . . , lk) be a permutation of (2, . . . , k) such that, ul2 < 0, ul3 < 0,
. . . , ulp < 0, ulp+1 ≥ 0, ulp+2 ≥ 0, . . . , ulk ≥ 0; 2 ≤ p ≤ k. Then the supremum and infimum
of ϕ(u˜, s˜) is obtained as,

infϕ(u˜, s˜) ≥
p∑
j=2

ulj , supϕ(u˜, s˜) = +∞.

Case 3: Let η > 0, and (l2, . . . , lk) be a permutation of (2, . . . , k) such that, ul2 ≥ 0, ul3 ≥ 0,
. . . , ulp ≥ 0, ulp+1 < 0, ulp+2 < 0, . . . , ulk < 0; 2 ≤ p ≤ k. Then the supremum and infimum
of ϕ(u˜, s˜) is obtained as,

infϕ(u˜, s˜) ≥
k∑

j=p+1

ulj , supϕ(u˜, s˜) = +∞.

Case 4: Let η < 0, and uj ≥ 0, j = 2, 3, . . . , k. In this case, we obtain,

infϕ(u˜, s˜) = −∞, supϕ(u˜, s˜) = 0.

Case 5: Let η < 0, and (l2, . . . , lk) be a permutation of (2, . . . , k) such that, ul2 < 0, ul3 < 0,
. . . , ulp < 0, ulp+1 ≥ 0, ulp+2 ≥ 0, . . . , ulk ≥ 0; 2 ≤ p ≤ k. Then the supremum and infimum
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of ϕ(u˜, s˜) is obtained as,
infϕ(u˜, s˜) = −∞, supϕ(u˜, s˜) ≤

k∑
j=p+1

ulj .

Case 6: Let η < 0, and (l2, . . . , lk) be a permutation of (2, . . . , k) such that, ul2 ≥ 0, ul3 ≥ 0,
. . . , ulp ≥ 0, ulp+1 < 0, ulp+2 < 0, . . . , ulk < 0; 2 ≤ p ≤ k. Then the supremum and infimum
of ϕ(u˜, s˜) is obtained as,

infϕ(u˜, s˜) = −∞, supϕ(u˜, s˜) ≤
p∑
j=2

ulj .

Combining all the above Cases 1-6, we define the functions,

ϕ1(u˜, s˜) =


0, if uj ≥ 0; j = 2, 3, . . . , k∑k
j=2 uj, if uj < 0; j = 2, 3, . . . , k∑p
j=2 ulj , if Case 2 holds∑k
j=p+1 ulj , if Case 3 holds

(4.2.30)

and

ϕ2(u˜, s˜) =


0, if uj < 0; j = 2, 3, . . . , k∑k
j=2 uj, if uj ≥ 0; j = 2, 3, . . . , k∑k
j=p+1 ulj , if Case 5 holds∑p
j=2 ulj , if Case 6 holds.

(4.2.31)

as given in (4.2.25) and (4.2.26). Utilizing these functions, it is easy to define the functions
ϕ10(u˜, s˜) and ϕ20(u˜, s˜) as given in (4.2.27) and (4.2.28) respectively. An application of Theorem3.1 (in Brewster and Zidek (1974)) we have,

R(dϕ10 , α˜) ≤ R(dϕ, α˜),
provided Pα˜(ϕ10 ̸= ϕ) > 0 for some choices of α˜, when η > 0. Further,

R(dϕ20 , α˜) ≤ R(dϕ, α˜),
provided Pα˜(ϕ20 ̸= ϕ) > 0 for some choices of α˜, when η < 0. This completes the proof of the
theorem.

Remark 4.2.7 It can be also noted that, all the estimators discussed in Section 4.2.1, belong
to the class (4.2.24). Unfortunately, none of these could be improved by using Theorem 4.2.6.
In fact, the choices of ϕ for all these estimators lie inside the interval [ϕ1,+∞) (when η > 0)
and (−∞, ϕ2] (when η < 0) with probability 1. However, all these estimators form a complete
class.

4.2.3 A Simulation Study
In Section 4.2.1 , we have constructed various estimators for the quantiles θ = µ+ ησ1, which
are better than the baseline estimator d1 = X̄1 + ηbn1S1, under some conditions on sample
sizes. Further it has been shown in Section 4.2.2, that these well structured estimators form a
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complete class except dML whose closed form does not exist. We have also given an analytical
comparison of the risk values of estimators d1 with dNH and dSZ . However, for practical point
of view, we need estimators that can be used in practice. It seems impossible to analytically
compare all these popular estimators. Taking advantage of computational resources, in this
section, we carry out a detailed simulation study to numerically compare all these estimators.
To be more specific, we consider the estimators d1, dNH , dSZ , dMK , dTK , dGM and dML for
comparison purpose, which are based on the estimators for common mean as given in Section
4.2.1, for the case k(> 2). Numerically comparing all these estimators for a general k(≥ 2) is
quite impossible. So for simplicity, we consider only the case k = 3 and k = 4. It should be
noted that for k = 2, Kumar and Tripathy (2011) carried out a detailed simulation study and
numerically compared some of their proposed estimators for quantile θ.

In order to numerically compare all these estimators for quantiles θ, we have generated
20,000 random samples of different sizes each from k (3 or 4) normal populations, with a
common mean µ and different variances σ2

i ; i = 1, 2, 3, 4 respectively. The loss function is
taken as (4.2.1). It is easy to see that, with respect to the loss function (4.2.1), the risk values
of all the estimators for quantiles θ are functions of ρ2, ρ3 ( for the case k = 3) and ρ2, ρ3, ρ4
(for the case k = 4), where ρi = σi/σ1; i = 2, 3, . . . , k only, when the sample sizes and η
being fixed. The simulation study has been carried out for wide range of the values of ρi, but
results for selected values are reported here. The risk value of d1 is constant and is obtained
as 1/n1 + η2(1− (n1 − 1)b2n1

). A high level of accuracy has been achieved for our simulation
in the sense that the standard error of simulation is small. It has been checked that the error
is of the order 10−3. In fact for the case k = 3 populations the standard error of simulation is
seen to vary between 0.0001 and 0.0018 whereas for the case k = 4, it is seen to vary between
0.001 and 0.008. It is also noticed that as the number of populations increase the simulation
error increases. To proceed further, we define the percentage of relative risk performances of
all the estimators with respect to d1 as following.

PR1 =
Risk(d1)−Risk(dNH)

Risk(d1)
× 100, PR2 =

Risk(d1)−Risk(dSZ)

Risk(d1)
× 100,

PR3 =
Risk(d1)−Risk(dMK)

Risk(d1)
× 100, PR4 =

Risk(d1)−Risk(dTK)

Risk(d1)
× 100,

PR5 =
Risk(d1)−Risk(dGM)

Risk(d1)
× 100, PR6 =

Risk(d1)−Risk(dML)

Risk(d1)
× 100.

For illustration purpose, we have presented the percentage of relative risk values of all the
estimators in Tables 4.2.1-4.2.3 (for k = 3). The risk value of all estimators is also a function
of |η|. For presentation purpose, we choose η = 1.960. To make the simulation study more
impact, we study the case k = 3 and k = 4 separately in detail. In Table 4.2.1 we present
the percentage of relative risk values, for equal sample sizes (10, 10, 10), and (30, 30, 30). It
can be also observed that, for equal sample sizes and for fixed η, the estimators dMK = dTK
and dSZ = dNH . In each tables, the first column gives the values of ρ2 and the second column
gives the values of ρ3. In each cell corresponding to one value of ρ2 there corresponds seven
(7) values of ρ3. A pair of values (ρ2, ρ3) corresponds four values of percentage of relative risk
improvements of estimators. In Tables 4.2.2-4.2.3, we present the relative risk performances
of estimators for unequal sample sizes (10, 15, 20), and (40, 30, 20) respectively. A detailed
numerical comparison for k = 4 population has also been done, however we only present the
comments and omit the tables for brevity.

The simulated risk values of dNH and dSZ decrease and converge to the risk value of d1

72



Estimating Quantiles of Several Normal Populations with a Common Mean Chapter 4

as ρis increase, whereas the risk values of dMK , dTK and dGM diverge from the risk value of
d1 when ρis increase. It is also noticed that the estimator dML seems to converge to the risk
value of d1 as the sample sizes and ρis increase. As the sample sizes increase the the risk values
of all the estimators decrease. Also it can be noted that as |η| increases, the risk values of all
the estimators increase for fixed sample sizes. The following observations can be made from
our simulation study and the Tables 4.2.1-4.2.3. We discuss separately, the case for k = 3 and
k = 4.

1(a) Consider the case of equal sample sizes (k = 3).

For small sample sizes and for small values of ρi (0 < ρi < 0.5), the estimator dML

performs the best, and the percentage of relative risk improvement is noticed as high
as 33.50%. For ρi = 1, the estimator dML has the highest percentage of relative risk
improvement and it is around 21.74%.When the values of ρi are in the neighborhood of
1, the estimator dML seems to compete with either dMK or dGM . For large values of ρi
none of the estimators perform well, even worse than d1.

For moderate to large sample sizes, and for small values of ρi, the estimator dML has the
best percentage of relative risk performance. It is noticed as high as 34.75%. For values of
ρi = 1, the estimator dML performs the best. The percentage of relative risk performance
is noticed as high as 23.35%. For values of ρi in the neighborhood of 1, the estimator
dMK and dML compete each other. For large values of ρi, the estimator dNH seems to
compete with dML. In this case, other estimators such as dGM and dMK does not even
perform better than d1.

2(a) Consider the case of unequal sample sizes (k = 3).

For small sample sizes and for small values of ρi (0 < ρi < 0.5), the estimators dNH
and dSZ compete with dML. For ρi = 1, the estimator dGM has the highest percentage
of relative risk performance and it is noticed around 24.63%. For values of ρi in the
neighborhood of 1, the estimator dML compete with either dMK or dTK . For large values
of ρi, the estimators dNH , dML and dSZ perform equally well.

For moderate to large sample sizes, and for small values of ρi (0 < ρi < 0.5), the
estimator dML seems to compete with either dNH or dSZ . For ρi = 1, the estimator
dGM has the best performance and the percentage of relative risk improvement is noticed
around 19.27%. For values of ρi in the neighborhood of 1, the estimator dML compete
with either dMK or dTK . For large values of ρi the estimators dNH , dSZ and dML are good
competitors of each other. In this case other estimators do not even perform better than
d1.

1(b) Consider that the sample sizes are equal (k = 4).

For small sample sizes and for small values of ρi (0 < ρi < 0.5), the estimator dML

compete well with dNH .When the values of ρi, are in the neighborhood of 1, the estimator
dML seems to compete with dTK . For large values of ρi, the estimators dNH and dML

perform equally well. However as the ρis increase further none of the estimators perform
well, even does not compete with d1.

Formoderate to large sample sizes, and for small values of ρi (0 < ρi < 0.5), the estimator
dML seems to compete with dNH . For values of ρi in the neighborhood of 1, the estimator
dML seems to compete with either dMK or dNH . For large values of ρi, the estimator dNH
and dML perform equally well, whereas other estimators do not perform better than d1.
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2(b) Consider that the sample sizes are unequal (k = 4).

For small sample sizes, and for small values of ρi (0 < ρi < 0.5), the estimator dML seems
to compete with either dNH or dSZ . For moderate values of ρi, that is in the neighborhood
of 1, the estimators dMK and dTK compete with dML. For large values of ρi, none of the
estimators perform better than d1.

For moderate to large sample sizes, and for small values of ρi (0 < ρi < 0.5), the
estimator dML performs the best. For ρi = 1, the estimator dTK performs the best and
the percentage of relative risk performances is noticed as high as 24.45%. For values of
ρi in the neighborhood of 1, the estimators dSZ and dTK compete with each other. For
large values of ρi, the estimators dSZ , dML and dNH compete each other.

From the above discussion, we conclude the following regarding the use of estimators for
practical purposes.

(i) It is interesting to note that, none of the estimators for estimating quantiles θ, out perform
in terms of risk values for all values of parameters with respect to the loss (4.2.1). It
has been observed that as the values of |η| increases the percentage of relative risk
performances of all the estimators decreases.

(ii) Consider the case of equal sample sizes. For small sample sizes and for small values of
ρi (0 < ρi < 0.5), we recommend to use either dML or dNH . For moderate values of ρi
(0.5 < ρi < 1.5), the estimator dMK or dML may be used. For particular cases k = 2, 3
and ρi = 1, the estimator dGM or dML may be used preferably. When the number of
populations increase that is when k > 3, the performance of the estimator dGM decreases
and even perform badly for the case ρi = 1. For large values of ρi (> 3), none of the
estimators perform better than d1.

For moderate to large sample sizes and when the values of ρis are either small (0 < ρi <
0.5) or large (ρi > 3) we recommend using either dML or dNH , whereas for moderate
values of ρi, the estimator dMK or dML may be used.

(iii) Consider the case of unequal sample sizes. For small sample sizes and for small values of
ρi (0 < ρi < 0.5), we recommend using either dNH or dSZ (for k = 3). Also it has been
noticed that, for the case k > 3 the estimator dML compete well with either dSZ or dNH .
So any one of the estimator can be used. For moderate values of ρi (0.5 < ρi < 1.5),
we recommend using either dMK , dTK or dML except for the case k = 2, 3 and ρi = 1,
where dGM can be preferred. For large values of ρi, none of the estimators perform better
than d1.

For moderate to large sample sizes, and for small values of ρi one may use the estimator
dML. For large values of ρi we recommend to use any one of the three estimators dSZ ,
dML or dNH as they perform equally well. For moderate values of ρi (0.5 < ρi < 1.5),
we recommend using either dML or dSZ . For particular cases, k = 2, 3 and for ρi = 1,
one may use dGM .

(iv) A similar type of observations were made for other combinations of sample sizes and η.
It has also been noticed that, as the value of |η| increases, the risk values increase and the
percentage of relative risk performances of all the estimators with respect to d1 decrease.
The results of simulation study also validate the theoretical findings obtained in Section
4.2.1 .
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4.2.4 Conclusions
In this section, we have considered the problem of estimating quantiles θ = µ + ησ1, of the
first normal population, when other k − 1, (k ≥ 2) normal populations are available with a
common mean µ and different variances σ2

i ; i = 1, 2, . . . , k. It should be noted that, for the
case k = 2, the problem has been well investigated by Kumar and Tripathy (2011). We have
generalized some of their decision theoretic results (Theorems 2.1, 3.1 and 4.1 in Kumar and
Tripathy (2011)) to a general k(≥ 2) normal populations. Many of their results is a particular
case of our results, which is a major contribution to the literature. We have made an attempt
to numerically compare the risk values of some of our proposed estimators for the case k = 3
and k = 4. We also recommend using these estimators in practice in certain situations. Next
we consider two examples below to illustrate the use of estimators for quantiles θ.

Example 4.2.1 We have taken the data reported in Meier (1953) and analyzed by Jordan and
Krishnamoorthy (1996). The data are about the percentage of albumin in plasma protein in
human subjects. From their paper, we have n1 = 12, n2 = 15, n3 = 7, n4 = 16, x̄1 = 62.3,
x̄2 = 60.3, x̄3 = 59.5, x̄4 = 61.5 and s21 = 142.846, s22 = 109.76, s23 = 200.598, and s24 =
277.695. It seems that the variances are not significantly different from each other. Let us choose
η = 3.0 The various estimates for quantiles are computed as d1 = 72.86823, dNH = 71.56313,
dSZ = 71.56824, dMK = 71.54019, dTK = 71.53802, dGM = 71.62023, dML = 71.54409. In
this situation we recommend to use dML.

Example 4.2.2 The second data set are taken from Eberhardt et al. (1989), who reported
the data on selenium in non-fat milk power by combining the results of four independent
measurement methods. From their paper we have, n1 = 8, n2 = 12, n3 = 14, n4 = 8,
x̄1 = 105.00, x̄2 = 109.75, x̄3 = 109.50, x̄4 = 113.25 and s21 = 599.977, s22 = 228.228,
s23 = 35.477, and s24 = 235.48. Let us choose η = 3.0 The various estimates for quantiles
are computed as d1 = 131.8028, dNH = 136.4049, dSZ = 136.393, dMK = 136.4621,
dTK = 136.4641, dGM = 136.2314, dML = 136.3778. This is the case where the variances
differ significantly and the sample sizes are small. It is clearly seen that none of the estimators
are good in comparison to d1.
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Table 4.2.1: Relative risk performances of various estimators
for quantiles with η = 1.960

(n1, n2, n3) → (10,10,10) (30,30,30)
ρ2 ↓ ρ3 ↓ PR1 PR3 PR5 PR6 PR1 PR3 PR5 PR6
0.25 0.25 30.98 30.84 28.19 31.76 31.81 31.61 28.63 33.86

0.75 29.41 28.81 25.69 31.64 31.82 31.15 27.82 31.38
1.00 30.75 29.79 25.14 30.76 31.83 30.96 26.26 31.22
1.25 30.61 29.37 22.75 30.99 31.38 30.19 23.25 33.37
2.00 30.27 28.65 13.65 30.61 32.89 31.54 16.10 31.28
3.00 29.36 27.56 -5.09 31.30 31.50 29.55 -4.99 31.78
4.00 30.63 28.56 -29.64 31.03 31.94 30.14 -30.33 34.16

0.75 0.25 30.85 30.15 26.93 32.03 31.99 31.10 27.41 31.81
0.75 22.67 23.31 23.22 24.61 26.75 26.88 26.53 26.87
1.00 22.11 22.63 22.28 21.34 25.43 25.57 25.21 24.70
1.25 23.24 23.75 22.81 21.63 23.17 22.89 21.49 26.76
2.00 20.06 19.34 11.54 21.28 23.51 22.42 14.69 22.97
3.00 20.07 18.37 -5.23 20.65 21.41 18.88 -6.64 22.58
4.00 19.79 17.29 -30.76 20.64 21.31 18.15 -31.82 20.39

1.00 0.25 30.55 29.43 24.69 29.49 31.53 30.54 25.59 31.33
0.75 22.74 23.45 23.34 22.99 25.03 25.13 24.74 23.82
1.00 18.82 20.16 20.74 21.02 20.93 21.39 21.59 23.35
1.25 18.38 19.74 19.99 17.20 21.47 21.85 21.63 20.23
2.00 15.97 16.23 11.13 15.78 17.95 17.12 10.98 19.00
3.00 15.44 13.86 -7.29 14.83 17.80 15.48 -6.53 17.98
4.00 14.53 11.45 -34.26 15.90 17.16 13.48 -34.54 20.24

1.25 0.25 30.66 29.56 23.31 30.21 31.30 30.01 23.02 31.35
0.75 20.81 21.32 20.46 20.73 24.55 24.36 23.071 24.43
1.00 18.89 20.07 20.11 16.84 21.11 21.32 20.94 19.03
1.25 16.79 18.15 18.31 15.86 17.24 17.66 17.47 16.12
2.00 14.09 14.41 10.06 11.93 14.36 13.55 08.36 14.12
3.00 11.30 09.33 -10.40 12.55 14.31 11.88 -8.70 13.09
4.00 10.54 07.99 -33.22 11.54 14.09 10.04 -35.59 13.82

2.00 0.25 31.01 29.59 15.34 29.55 31.73 30.24 14.46 30.90
0.75 20.15 19.65 12.66 19.10 22.27 21.13 13.22 21.10
1.00 16.06 15.99 10.29 15.00 18.76 18.15 12.38 17.60
1.25 13.21 13.47 08.96 12.20 15.07 14.48 09.59 14.52
2.00 08.42 07.48 00.62 08.70 11.69 09.41 01.45 09.50
3.00 04.81 01.27 -18.56 07.50 08.82 03.72 -18.27 06.75
4.00 05.66 -1.11 -43.86 05.21 07.43 00.24 -44.79 04.73

3.00 0.25 31.11 29.40 -3.55 31.91 31.43 29.65 -4.90 31.18
0.75 21.21 18.94 -5.57 19.82 21.83 19.11 -6.71 21.89
1.00 17.13 15.68 -4.90 14.82 17.20 15.00 -7.65 18.35
1.25 11.77 10.26 -8.37 12.46 13.51 11.16 -9.17 13.40
2.00 04.30 00.98 -18.44 05.26 09.19 04.47 -17.12 09.27
3.00 01.72 -6.14 -37.39 03.88 05.44 -2.80 -36.62 06.86
4.00 03.19 -7.98 -60.18 03.91 05.25 -6.57 -63.18 03.20

4.00 0.25 29.81 27.81 -30.98 30.27 32.84 30.88 -29.45 30.87
0.75 19.36 16.86 -30.44 19.89 22.21 18.89 -33.16 20.77
1.00 15.13 12.17 -33.17 16.15 17.30 13.83 -33.47 16.67
1.25 10.64 07.43 -36.25 10.33 12.98 08.92 -35.91 12.65
2.00 04.19 -2.26 -45.33 05.19 06.19 -0.48 -43.94 07.98
3.00 03.17 -7.40 -57.77 05.01 03.21 -8.25 -63.68 04.36
4.00 -0.65 -16.46 -90.18 02.66 04.70 -10.73 -88.25 04.53
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Table 4.2.2: Relative risk performances of various estimators
for quantiles with η = 1.960

(n1, n2, n3) → (10,15,20)
ρ2 ↓ ρ3 ↓ PR1 PR2 PR3 PR4 PR5 PR6
0.25 0.25 31.51 31.52 31.42 31.42 30.30 31.47

0.75 29.83 29.84 29.36 29.36 27.62 31.17
1.00 32.31 32.31 31.70 31.71 28.81 31.71
1.25 32.59 32.59 31.75 31.75 27.05 31.57
2.00 31.27 31.27 30.08 30.08 17.72 30.60
3.00 32.67 32.68 31.49 31.49 04.41 30.28
4.00 32.12 32.12 31.03 31.04 -18.60 30.54

0.75 0.25 31.58 31.58 31.14 31.15 29.63 31.29
0.75 27.12 27.17 27.08 27.10 27.33 28.75
1.00 26.75 26.79 26.91 26.92 26.85 27.13
1.25 25.03 25.07 25.28 25.29 24.57 25.39
2.00 23.74 23.77 23.36 23.36 16.61 24.32
3.00 23.70 23.76 22.41 22.40 01.28 22.74
4.00 22.74 22.80 20.75 20.73 -22.09 22.64

1.00 0.25 31.03 31.04 30.33 30.34 27.80 32.06
0.75 25.44 25.51 25.33 25.35 25.57 25.51
1.00 24.08 24.10 24.43 24.44 24.63 24.13
1.25 23.72 23.75 24.34 24.35 24.33 22.15
2.00 21.14 21.16 21.43 21.42 16.11 19.91
3.00 19.54 19.58 18.85 18.82 -0.09 18.92
4.00 18.86 18.88 17.72 17.68 -21.41 19.08

1.25 0.25 31.98 31.98 31.30 31.31 27.77 31.23
0.75 27.21 27.26 26.84 26.86 26.36 24.96
1.00 22.58 22.63 23.04 23.05 23.26 23.02
1.25 20.24 20.27 21.11 21.12 21.13 21.61
2.00 17.34 17.32 18.27 18.25 14.17 17.46
3.00 16.62 16.61 16.59 16.55 -0.20 16.30
4.00 16.54 16.49 15.28 15.22 -23.12 14.93

2.00 0.25 30.00 30.01 28.94 28.96 19.42 30.41
0.75 24.06 24.13 23.22 23.24 18.84 24.95
1.00 21.60 21.66 20.96 20.97 17.29 21.17
1.25 17.81 17.91 18.31 18.32 15.97 18.25
2.00 13.75 13.59 14.13 14.08 08.40 13.94
3.00 10.43 10.19 09.52 09.43 -7.63 10.15
4.00 08.36 08.16 06.15 06.03 -31.03 09.31

3.00 0.25 32.59 32.60 31.32 31.34 09.78 30.53
0.75 24.39 24.47 22.34 22.37 06.37 24.95
1.00 21.41 21.47 19.81 19.82 05.99 20.94
1.25 18.35 18.38 17.17 17.17 04.19 17.01
2.00 10.92 10.76 09.81 09.76 -3.84 10.73
3.00 07.95 07.53 04.08 03.94 -21.16 06.57
4.00 06.58 06.27 01.56 01.38 -40.77 04.56

4.00 0.25 31.55 31.55 30.31 30.33 -8.76 30.65
0.75 25.87 25.93 23.34 23.37 -8.89 24.40
1.00 22.18 22.25 19.79 19.81 -10.39 20.17
1.25 17.38 17.35 15.46 15.45 -12.30 16.16
2.00 10.91 10.71 08.24 08.17 -20.11 08.95
3.00 05.61 05.29 00.64 00.48 -35.83 05.31
4.00 02.65 02.24 -5.46 -5.70 -61.06 03.28
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Table 4.2.3: Relative risk performances of various estimators
for quantiles with η = 1.960

(n1, n2, n3) → (40,30,20)
ρ2 ↓ ρ3 ↓ PR1 PR2 PR3 PR4 PR5 PR6
0.25 0.25 31.57 31.56 31.31 31.31 25.99 32.05

0.75 31.59 31.59 30.48 30.49 24.93 31.04
1.00 32.05 32.05 30.89 30.90 24.65 29.75
1.25 31.38 31.38 30.04 30.05 22.25 32.17
2.00 31.05 31.04 28.85 28.86 12.65 31.33
3.00 31.74 31.74 29.63 29.64 -2.75 31.86
4.00 30.47 30.47 28.44 28.45 -26.09 31.94

0.75 0.25 30.80 30.80 30.07 30.06 24.53 32.25
0.75 22.52 22.53 22.82 22.83 22.11 20.52
1.00 21.65 21.67 21.59 21.60 21.37 20.48
1.25 21.75 21.77 21.06 21.08 20.26 20.43
2.00 20.54 20.54 18.53 18.56 12.43 17.72
3.00 18.19 18.17 14.56 14.61 -7.26 20.04
4.00 19.39 19.38 15.24 15.30 -27.92 18.14

1.00 0.25 29.86 29.85 28.86 28.84 21.65 29.39
0.75 20.41 20.42 20.86 20.86 20.35 20.21
1.00 18.57 18.61 18.64 18.66 19.27 18.27
1.25 16.94 16.96 16.48 16.51 16.97 16.95
2.00 15.68 15.70 13.55 13.59 09.73 14.34
3.00 15.08 15.10 10.54 10.60 -8.12 14.23
4.00 14.66 14.67 09.44 09.52 -30.19 12.69

1.25 0.25 30.80 30.80 29.66 29.64 20.40 31.06
0.75 20.02 20.02 20.29 20.29 18.73 19.11
1.00 16.80 16.83 16.69 16.70 16.75 16.47
1.25 14.35 14.37 13.91 13.93 14.42 15.04
2.00 12.16 12.22 08.86 08.92 05.61 12.31
3.00 11.18 11.21 05.66 05.74 -11.04 11.67
4.00 10.28 10.29 03.73 03.82 -34.69 09.16

2.00 0.25 29.14 29.13 27.15 27.13 05.39 30.05
0.75 16.08 16.08 14.69 14.69 04.06 17.60
1.00 12.93 12.94 11.37 11.38 03.37 14.03
1.25 09.52 09.58 07.06 07.09 01.24 09.29
2.00 07.80 07.85 01.96 02.03 -5.55 08.69
3.00 05.39 05.43 -3.71 -3.60 -23.08 06.14
4.00 07.27 07.32 -5.39 -5.24 -46.02 05.40

3.00 0.25 31.42 31.40 29.05 29.02 -16.60 29.81
0.75 16.34 16.34 13.70 13.69 -19.31 14.38
1.00 12.19 12.23 08.22 08.23 -21.63 12.34
1.25 08.30 08.34 03.16 03.19 -24.54 10.53
2.00 04.32 04.39 -5.49 -5.40 -31.68 03.88
3.00 03.28 03.33 -11.15 -11.01 -47.51 04.42
4.00 04.35 04.37 -13.39 -13.22 -69.69 02.18

4.00 0.25 30.10 30.09 27.47 27.45 -52.39 30.05
0.75 15.24 15.25 11.38 11.38 -54.65 15.03
1.00 11.74 11.75 06.76 06.77 -55.75 11.24
1.25 07.76 07.81 01.08 01.12 -58.05 09.97
2.00 03.68 03.79 -9.54 -9.44 -66.89 04.17
3.00 02.85 02.90 -15.15 -14.99 -81.77 04.76
4.00 02.81 02.84 -19.69 -19.49 -106.28 04.63
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4.3 Estimating Quantile Vector in Several Normal
Populations with a Common Mean

In the previous section (Section 4.2), we have considered the estimation of quantiles of the first
population when the other k − 1 normal populations with a common mean are available. In
this section we consider the same model and estimate the quantile vector θ˜ = (θ1, θ2, . . . , θk);
θi = µ + ησi, where η = Φ−1(p); 0 < p < 1. Here Φ(.) denotes the cumulative distribution
function of a standard normal randomvariable. The loss function is taken as the sum of quadratic
losses given by,

L(d˜, θ˜) =
k∑
i=1

(di − θi
σi

)2

, (4.3.1)

where d˜ = (d1, d2, . . . , dk) is an estimator of θ˜ = (θ1, θ2, . . . , θk).

4.3.1 A General Result and Some Improved Estimators

Suppose (Xi1, Xi2, . . . , Xini
); i = 1, 2, . . . , k be independent random samples taken from k(≥

2) normal populations N(µ, σ2
i ). We observe that a minimal sufficient statistic for this model

exists and is given by (X̄1, X̄2, . . . , X̄k, S
2
1 , S

2
2 , . . . , S

2
k) where

X̄i =
1

ni

ni∑
j=1

Xij, S
2
i =

ni∑
j=1

(Xij − X̄i)
2; i = 1, 2, . . . , k.

Wenote that themaximum likelihood estimator (MLE) forµ, is not obtainable in closed form
(see Pal et al. (2007) for the case k = 2). Also the minimal sufficient statistics for this problem
are not complete, hence the usual approaches to find uniformly minimum variance unbiased
estimator (UMVUE) for individual quantile do not work as ancillary statistics may carry
relevant information for the parameter of interest. Therefore, it is not known if a UMVUE exists
or not, and it is difficult to find even if one exists. Further, it is known that when we have only
one population (sayX˜ ) the best affine equivariant estimator for estimating quantile θ1 = µ+ησ1
is minimax (see Kiefer (1957)). When we have two populations the problem of estimating the
first component θ1 has been considered by Kumar and Tripathy (2011). Also in the Section
4.2, we have estimated the first component θ1, when k(≥ 2) populations are available, which
generalizes the results of Kumar and Tripathy (2011). Following their arguments, a natural way
to construct improved estimators for θ˜ is to combine the improved estimators for the commonmean and the improved estimators for the respective standard deviations. We first propose a
basic estimator for θ˜ as,

d˜ = (d1, d2, . . . , dk),

where di = X̄1 + cSi; i = 1, 2, . . . and c ∈ R.
Let us define

Cn =
η
√
2

n− k

k∑
i=1

[
Γ(ni

2
)

Γ(ni−1
2

)

]
. (4.3.2)
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where we denote n =
∑k

i=1 ni.

Theorem 4.3.1 If we estimate the quantile vector θ˜ by d˜ = (X̄1+cS1, X̄1+cS2, . . . , X̄1+cSk)
with respect to the loss function (4.3.1), then the value of c that minimizes the risk is obtained
as Cn.

Proof 4.3.1 To prove the theorem, let us consider the risk function of θ˜, with respect to the loss(4.3.1):

R(d˜, θ˜) =
k∑
i=1

E

(
di − θi
σi

)2

.

The above risk is a convex function of c and hence its minimizing value is obtained by
differentiating with respect to c and equating to zero, and is given by

c =
η
∑k

i=1E(Si/σi)∑k
i=1E(S

2
i /σ

2
i )
.

Further we note that, S2
i /σ

2
i ∼ χ2

ni−1; i = 1, 2, . . . , k henceE(S2
i /σ

2
i ) = ni−1 andE(Si/σi) =√

2Γ(ni/2)
Γ((ni−1)/2)

. Substituting all these values we obtain the minimizing choice after simplification as,

c =
η
√
2

n− k

k∑
i=1

[
Γ(ni

2
)

Γ(ni−1
2

)

]
= Cn (say).

This completes the proof of the theorem.

Remark 4.3.1 The above result in Theorem 4.3.1 will remain unchanged if X̄1 is replaced by
any one of the X̄i; i = 1, 2, . . . , k.

Let us denote d˜X̄1 = (X̄1 + CnS1, X̄1 + CnS2, . . . , X̄1 + CnSk). Next, we give a general
result which in parallel to Theorem 2.1 of Kumar and Tripathy (2011) that valid for estimating
only θ1.

Theorem 4.3.2 Suppose d˜M = (dM , dM , . . . , dM)k be an estimator for µ˜ = (µ, µ, . . . , µ)k,

and d˜S = (dS1 , dS2 , . . . , dSk
) be an estimator for σ˜ = (σ1, σ2, . . . , σk). Consider d˜Q =

(dQ1, dQ2, . . . , dQk) = d˜M + ηd˜S as an estimator for θ˜. Further, assume that given d˜S =
(dS1 , dS2 , . . . , dSk

), the estimator dM is conditionally unbiased for µ, that is

E(dM |dSi
) = µ, (4.3.3)

for i = 1, 2 . . . , k, then,

E
k∑
i=1

(dQi − θi)
2 = kE(dM − µ)2 + η2

k∑
i=1

E(dSi
− σi)

2. (4.3.4)

Proof 4.3.2 The proof is similar to the arguments used in proving Theorem 2.1 of Kumar and
Tripathy (2011), hence omitted.

Remark 4.3.2 It is easy to observe that, condition (4.3.4) will satisfy if we choose dM to be
an unbiased estimator for µ and dS1 , dS2 , . . . , dSk

are independent of dM . For example we may
take dM = X̄1 and dSi

= Si, i = 1, 2, . . . , k.
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Remark 4.3.3 As a consequence of Theorem 4.3.2, to construct a good estimator for θ˜, it issufficient to have a good estimator for µ and/or a good estimator for σi, i = 1, 2, . . . , k.

Remark 4.3.4 Let dM = dϕ, where dϕ =
∑k

i=1 ϕi(S1, S2, . . . , Sk)X̄i be any unbiased
estimator for µ, such that

∑k
i=1 ϕi(S1, S2, . . . , Sk) = 1 and dSi

= cSi/η, (η ̸= 0),i =
1, 2, . . . , k. It is easy to see that, the condition of Theorem 4.3.2 satisfies and we prove the
following result.

Theorem 4.3.3 Let dϕ =
∑k

i=1 ϕi(S1, S2, . . . , Sk)X̄i such that
∑k

i=1 ϕi(S1, S2, . . . , Sk) = 1
be an estimator for the common mean µ. Consider the estimator d˜ϕ(c) = (dϕ + cS1, dϕ +
cS2, . . . , dϕ + cSk) for estimating quantile vector θ˜. Then d˜ϕ(c) has smaller risk than d˜ with
respect to the sum of quadratic loss (4.3.1) if and only if dϕ has smaller risk than X̄1. Further,
d˜ϕ(c) has minimum risk with respect to the loss (4.3.1) when c = Cn.

Proof 4.3.3 The proof of first part of the result is very much similar to the proof of Theorem
4.2.2. The second part follows from Theorem 4.3.1 by replacing X̄1 with dϕ and the fact that dϕ
is conditionally unbiased.

We note that the minimizing choice of c is Cn which is symmetric in ni i = 1, 2, . . . , k. One
may construct an estimator for the quantile θ˜ using any one of the X̄i for the common mean.
Let us denote d˜∗ = (X̄i + cS1, X̄i + cS2, . . . , X̄i + cSk), i = 2, 3, . . . , k. The results of the
Theorem 4.3.3 will remain true if we replace d˜ by d˜∗. Hence we have the following remark.
Remark 4.3.5 Let dϕ =

∑k
i=1 ϕi(S1, S2, . . . , Sk)X̄i;

∑k
i=1 ϕi = 1 be an estimator for the

common mean µ. Consider the estimator d˜ϕ(c) = (dϕ + cS1, dϕ + cS2, . . . , dϕ + cSk) for
estimating quantile vector θ˜. Then d˜ϕ(c) has smaller risk than d˜∗ with respect to the sum of
quadratic loss (4.3.1) if and only if dϕ has smaller risk than X̄i. Further, d˜ϕ(c) has minimumrisk with respect to the loss (4.3.1) when c = Cn. Let us denote d˜X̄i = (X̄i + CnS1, X̄i +
CnS2, . . . , X̄i + CnSk); i = 2, 3, . . . , k.

Remark 4.3.6 Following the Theorem 4.3.3, one can easily construct good estimators for θ˜ byreplacing X̄1 in d˜X̄1 or X̄i in d˜X̄i by any improved estimator of the form dϕ for the common
mean µ.

To emphasize the case k = 2 and k(≥ 3) we construct the following estimators for k = 2
and k(≥ 3) separately. Following the above remarks and Theorem 4.3.2, we first propose the
following estimators for θ˜ taking k = 2, which have smaller risk than d˜X̄1 or/and d˜X̄2 under
certain conditions on the sample sizes. For k = 2, we have n = n1 + n2, so that Cn = Cn1+n2 .

d˜GM = (µ̂GM + CnS1, µ̂GM + CnS2),

d˜GD = (µ̂GD + CnS1, µ̂GD + CnS2),

d˜KS = (µ̂KS + CnS1, µ̂KS + CnS2),

d˜CS = (µ̂CS + CnS1, µ̂CS + CnS2),

d˜MK = (µ̂MK + CnS1, µ̂MK + CnS2),

d˜TK = (µ̂TK + CnS1, µ̂TK + CnS2),

d˜BC1 = (µ̂BC1 + CnS1, µ̂BC1 + CnS2),

d˜BC2 = (µ̂BC2 + CnS1, µ̂BC2 + CnS2).
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Here we denote µ̂GM = n1X̄1+n2X̄2

n1+n2
, µ̂TK =

√
n1 bn2−1S2X̄1+

√
n2 bn1−1S1X̄2√

n1 bn2−1S2+
√
n2 bn1−1S1

, and µ̂GD, µ̂KS, µ̂BC1,

µ̂BC2, µ̂CS, µ̂MK , are estimators for the common mean µ, as defined in Tripathy and Kumar
(2010), with X̄ = X̄1, Ȳ = X̄2, m = n1, and n = n2. Although the closed form of the MLE of
µ is not available, one can obtain it numerically by solving a system of three equations in three
unknowns. Let us denote µ̂ML as the MLE of the common mean. Using this estimator for the
common mean we propose an estimator for the quantile vector θ˜ as,

d˜ML = (µ̂ML + CnS1, µ̂ML + CnS2).

All these estimators belong to the class d˜ϕ(Cn) and will be compared numerically in Section4.3.3.

Theorem 4.3.4 Let the estimators d˜X̄1 , d˜X̄2 , d˜GD, d˜KS, d˜BC1, d˜BC2, and d˜CS as defined above
for estimating θ˜. The loss function be taken as the sum of the quadratic losses (4.3.1).

(i) The estimator d˜GD performs better than both d˜X̄1 and d˜X̄2 if and only if n1, n2 ≥ 11.

(ii) The estimator d˜KS performs better than both d˜X̄1 and d˜X̄2 if and only if (n1−7)(n2−7) ≥
16.

(iii) The estimator d˜BC1 performs better than d˜X̄1 if and only if n1 ≥ 2, n2 ≥ 3 and for
0 < b1 < bmax(n1, n2).

(iv) The estimator d˜BC2 performs better than d˜X̄1 if and only if n1 ≥ 2, n2 ≥ 6 and for
0 < b2 < bmax(n1, n2 − 3).

(v) The estimator d˜CS performs better than d˜X̄1 if n1 = n2 ≥ 7.

Here b1, b2 and bmax(n1, n2) are as defined in Kumar and Tripathy (2011).

Proof 4.3.4 The proof of (i)-(v) can be done by using Theorem 4.3.3 and the arguments given
in the proof of Theorem 2.4 in Kumar and Tripathy (2011).

Remark 4.3.7 The estimator d˜MK uses the estimator proposed by Moore and Krishnamoorthy
(1997) that uses the estimates of standard deviation instead of variance. Their estimator does
not improve upon X̄1 uniformly. The estimator d˜TK proposed by Tripathy and Kumar (2010),
also does not improve upon X̄1 uniformly. As our numerical results shows (in Section 4.3.3),
these two estimators perform quite well for moderate values of σ2/σ1 > 0 and also they are
good competitor of each other.

Next we propose the estimators for the general case of k(≥ 3). The well known popular
estimator for the common mean µ, proposed by Graybill and Deal (1959) for the case k = 2,
has been extended to the case k ≥ 3 by Norwood and Hinkelmann (1977). Using this estimator
we propose

d˜NH = (µ̂NH + CnS1, µ̂NH + CnS2, . . . , µ̂NH + CnSk),

where

µ̂NH =

∑k
i=1 ni(ni − 1)X̄i/S

2
i∑k

i=1 ni(ni − 1)/S2
i

, Norwood and Hinkelmann (1977).
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d˜SZ = (µ̂SZ + CnS1, µ̂SZ + CnS2, . . . , µ̂SZ + CnSk),

where

µ̂SZ =

∑k
i=1 ni(ni − 3)X̄i/S

2
i∑k

i=1 ni(ni − 3)/S2
i

, Shinozaki (1978).

d˜MK = (µ̂MK + CnS1, µ̂MK + CnS2, . . . , µ̂MK + CnSk),

where

µ̂MK =

∑k
i=1

√
ni(ni − 1)X̄i/Si∑k

i=1

√
ni(ni − 1)/Si

, Moore and Krishnamoorthy (1997).

d˜TK = (µ̂TK + CnS1, µ̂TK + CnS2, . . . , µ̂TK + CnSk),

where

µ̂TK =

∑k
i=1

√
niX̄i/(bni−1Si)∑k

i=1

√
ni/(bni−1Si)

, Tripathy and Kumar (2015).

We propose the estimator based on the grand sample mean,

d˜GM = (µ̂GM + CnS1, µ̂GM + CnS2, . . . , µ̂GM + CnSk),

where

µ̂GM =

∑k
i=1 niX̄i∑k
i=1 ni

.

Finally we propose the estimator based on the MLE of µ which can be obtained by solving
a system of k + 1 non linear equations in k + 1 variables (µ, σ2

1, σ
2
2, . . . , σ

2
k). Let µ̂ML be the

MLE for µ obtained by solving the system of equations. Using the MLE µ̂ML for the common
mean µ, we propose an estimator for the quantile vector θ˜ as,

d˜ML = (µ̂ML + CnS1, µ̂ML + CnS2, . . . , µ̂ML + CnSk).

The following two theoretical comparisons are immediate, which follows directly from
the results given in Norwood and Hinkelmann (1977) and Shinozaki (1978) where they have
obtained the results for the common mean.

Theorem 4.3.5 For estimating the quantile vector, θ˜ with respect to the loss function (4.2.1),
the estimator

(i) d˜NH has smaller risk than d˜X̄1 if and only if, the sample sizes ni ≥ 11 or one of the
ni = 10 and all other nj ≥ 18 where i is different from j.
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(ii) d˜SZ has smaller risk than d˜X̄1 if and only if (n1 − 1) ≥ 7 and (n1 − 7)(nj − 7) ≥ 16 for
any j ̸= 1.

Proof 4.3.5 The proof is trivial after using Theorem 4.3.3 and the results of Norwood and
Hinkelmann (1977) and Shinozaki (1978) for the common mean.

Remark 4.3.8 In Section 4.3.3, we carry out a detailed simulation study to numerically
compare all these estimators for the case k = 2 and k = 3, which validate the theoretical
results.

4.3.2 Inadmissibility Results for Equivariant Estimators
In this subsection, we introduce the concept of invariance to the problem of estimating quantile
vector and derive classes of affine and location equivariant estimators. Further sufficient
conditions for improving estimators in these classes have been derived. Consequently some
complete class results are also proved.

Consider the groupGA = {ga,b : ga,b(x) = ax+ b, a > 0, b ∈ R} of affine transformations.
Under the transformation, X̄i → aX̄i+b, S

2
i → a2S2

i , µ→ aµ+b, σ2
i → a2σ2

i , and θ˜→ aθ˜+be˜,where e˜ = (1, 1, . . . , 1)k and θ˜ = (θ1, θ2, . . . , θk), θi = µ + ησi, i = 1, 2, . . . , k. The problem
considered is invariant if we choose the loss function as sum of the affine invariant loss functions
(4.3.1). Based on the sufficient statistics (X̄1, X̄2, . . . , X̄k, S

2
1 , S

2
2 , . . . , S

2
k), the form of an affine

equivariant estimator for estimating the vector θ˜ is obtained as,
d˜(aX̄1 + b, · · · , aX̄k + b, a2S2

1 , , · · · , a2S2
k) = ad˜(X̄1, · · · , X̄k, S

2
1 , · · · , S2

k) + be˜.
Now choosing b = −aX̄1 where a = 1/S1, and simplifying we obtain the form of an affine
equivariant estimator as,

d˜Ψ˜ = (X̄1 + S1Ψ1(T˜, R˜), X̄1 + S1Ψ2(T˜, R˜), . . . , X̄1 + S1Ψk(T˜, R˜))
= (dψ1 , dψ1 , . . . , dψk

) (4.3.5)

where T˜ = (T2, T3, . . . , Tk), R˜ = (R2, R3, . . . , Rk), Ti = (X̄i − X̄1)/S1, and Ri = S2
i /S

2
1 ;

i = 2, 3, . . . , k.
Let us consider the case k = 2 and derive the following inadmissibility results for

equivariant estimators. Hence, as per the notation used above, for k = 2, we have T˜ = T2
and R˜ = R2. Specifically we obtain the form of an equivariant estimator for the case k = 2 as

(d1(X̄1, X̄2, S
2
1 , S

2
2), d2(X̄1, X̄2, S

2
1 , S

2
2)) = (X̄1 + S1Ψ1(T2, R2), X̄1 + S1Ψ2(T2, R2))

= (dΨ1 , dΨ2)

= d˜Ψ˜ say, (4.3.6)

where T2 = X̄2−X̄1

S1
and R2 =

S2
2

S2
1
. To proceed further let us denote, M1 = min(t2, 0), and

M2 = max(t2, 0). For the affine equivariant estimator d˜Ψ˜ we define the following functions.

Ψ˜0 = (min(max(Ψ1,M1),M2),min(max(Ψ2,M1),M2)) (4.3.7)

Ψ˜1 = (max{M1 + ηCn1+n2 ,Ψ1},max{M1 + ηCn1+n2

√
r2,Ψ2}), (4.3.8)
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Ψ˜2 = (min{M2 + ηCn1+n2 ,Ψ1},min{M2 + ηCn1+n2

√
r2,Ψ2}). (4.3.9)

Here t2 and r2 denote the observed values of T2 and R2.
The following theorem gives a sufficient condition for improving estimators in the class of

d˜Ψ˜.
Theorem 4.3.6 Let d˜Ψ˜ be an affine equivariant estimator of the form (4.3.6) of the quantile
vector θ˜, and the loss function be sum of the quadratic loss (4.3.1) or the sum of squared errors.
Let the functions Ψ˜0, Ψ˜1 and Ψ˜2 be defined as in (4.3.7), (4.3.8) and (4.3.9) respectively. Let
α˜ = (µ, σ2

1, σ
2
2).

(i) When η = 0, the estimator d˜Ψ˜ is improved by d˜Ψ˜0 if Pα˜(Ψ˜0 ̸= Ψ˜) > 0 for some choices
of α˜.

(ii) When η > 0, the estimator d˜Ψ˜ is improved by d˜Ψ˜1 if Pα˜(Ψ˜1 ̸= Ψ˜) > 0 for some choices
of α˜.

(iii) When η < 0, the estimator d˜Ψ˜ is improved by d˜Ψ˜2 if (Ψ˜2 ̸= Ψ˜) > 0 for some choices of
α˜.

Proof 4.3.6 To prove the theorem we use a result due to Brewster and Zidek (Brewster and
Zidek (1974)). Consider the conditional risk function of d˜Ψ˜ given (T2, R2) :

R((d˜Ψ˜, θ˜)|(T2, R2)) = E{L(d˜Ψ˜, θ˜)|(T2, R2)}

=
1

σ2
1

E{(X̄ + S1Ψ1(T2, R2)− µ− ησ1)
2|(T2, R2) = (t2, r2)}

+
1

σ2
2

E{(X̄ + S1Ψ2(T2, R2)− µ− ησ2)
2|(T2, R2) = (t2, r2)}.

(4.3.10)

The above risk function (4.3.10) is a sum of two convex functions inΨ1 andΨ2,which is a convex
function. The minimizing choices of Ψ1(T2, R2) and Ψ2(T2, R2), are obtained respectively as,

Ψ1(t2, r2) = −E{(X̄ − µ)S1|(T2, R2)}
E(S2

1 |(T2, R2))
+ ησ1

E(S1|(T2, R2))

E(S2
1 |(T2, R2))

and

Ψ2(t2, r2) = −E{(X̄ − µ)S1|(T2, R2)}
E(S2

1 |(T2, R2))
+ ησ2

E(S1|(T2, R2))

E(S2
1 |(T2, R2))

.

Using the conditional expectations derived in Kumar and Tripathy (2011), the minimizing
choices for Ψ1(t2, r2) and Ψ2(t2, r2) are simplified and are given by

Ψ1((t2, r2), ρ) =
t2

1 + ρ
+ ηCn1+n2

√
λ (4.3.11)

and

Ψ2((t2, r2), ρ) =
t2

1 + ρ
+ ηCn1+n2

√
n2ρ

n1

√
λ. (4.3.12)

85



Chapter 4 Estimating Quantiles of Several Normal Populations with a Common Mean

Here λ =
n1t22
1+ρ

+ n1r2
n2ρ

+ 1, and ρ = n1σ2
2

n2σ2
1
.

In order to prove the theorem, we need to find the infimum and supremum values of
Ψ1(t2, r2, ρ) and Ψ2(t2, r2, ρ) with respect to ρ > 0, for all values of η and (t2, r2). After
analyzing the terms Ψ1(t2, r2, ρ) and Ψ2(t2, r2, ρ), for separate values of η, we have the
following cases:

(i) When η = 0, and t2 ∈ R,

inf
ρ
Ψ1(t2, r2, ρ) =M1 and sup

ρ
Ψ1(t2, r2, ρ) =M2

inf
ρ
Ψ2(t2, r2, ρ) =M1 and sup

ρ
Ψ2(t2, r2, ρ) =M2. (4.3.13)

(ii) When η > 0, and t2 ∈ R, we have

inf
ρ
Ψ1(t2, r2, ρ) ≥M1 + ηCn1+n2 (equality holds if t2 > 0)

and sup
ρ

Ψ1(t2, r2, ρ) = +∞

inf
ρ
Ψ2(t2, r2, ρ) ≥M1 + ηCn1+n2

√
r2(equality holds if t2 < 0)

and sup
ρ

Ψ2(t2, r2, ρ) = +∞. (4.3.14)

(iii) When η < 0, t2 ∈ R, we have

sup
ρ

Ψ1(t2, r2, ρ) ≤M2 + ηCn1+n2 (equality holds if t2 < 0)

and inf
ρ
Ψ1(t2, r2, ρ) = −∞

sup
ρ

Ψ2(t2, r2, ρ) ≤M2 + ηCn1+n2

√
r2 (equality holds if t2 > 0)

and inf
ρ
Ψ2(t2, r2, ρ) = −∞. (4.3.15)

Utilizing the expressions (4.3.13)-(4.3.15), for η = 0, η > 0 and η < 0, respectively, for
an affine equivariant estimator d˜Ψ˜ = (dΨ1 , dΨ2), we can easily define the functions Ψ˜0, Ψ˜1, Ψ˜2

as in (4.3.7)-(4.3.9) respectively. An application of orbit-by-orbit improvement technique for
improving equivariant estimators of Brewster and Zidek (1974), proves the theorem.

Remark 4.3.9 The above theorem is basically a complete class result. It tells that for an
equivariant estimator of the form (4.3.6),

(i) if Pα˜({Ψ1 ∈ [min(T2, 0),max(T2, 0)]c}
∪
{Ψ2 ∈ [min(T2, 0), max(T2, 0)]c}) > 0, then

the estimator d˜Ψ˜ is improved by d˜Ψ˜0 , when η = 0.

(ii) if P ({Ψ1 < min(T2, 0) + ηCn1+n2}
∪
{Ψ2 < min(T2, 0) + ηCn1+n2

√
R2}) > 0, then the

estimator d˜Ψ˜1 will improve upon d˜Ψ˜, when η > 0,

(iii) if P ({Ψ1 > max(T2, 0) + ηCn1+n2}
∪
{Ψ2 > max(T2, 0) + ηCn1+n2

√
R2}) > 0, then

the estimator d˜Ψ˜2 will improve upon d˜Ψ˜ when η < 0.

Here [a, b]c stands for complement of the interval [a, b] in R.
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Remark 4.3.10 All the estimators discussed in Section 4.3.1 (except d˜ML whose closed form
does not exist), belong to the class (4.3.6). But it has been seen that for none of these estimators,
the choices of Ψ1 and Ψ2 satisfy the above conditions in Remark 4.3.9. So the estimators
considered can not be improved by using Theorem 4.3.6, but they form a complete class. The
result we write as a theorem below.

Theorem 4.3.7 Let the loss function be (4.3.1).

(i) The class of estimators {d˜Ψ˜ : Ψ1 ∈ [min(T2, 0),max(T2, 0)] and Ψ2 ∈
[min(T2, 0),max(T2, 0)]} is complete for η = 0.

(ii) The class of estimators {d˜Ψ˜ : Ψ1 > min(T2, 0) + ηCn1+n2 and Ψ2 > min(T2, 0) +
ηCn1+n2

√
R2} is complete for η > 0.

(iii) The class of estimators {d˜Ψ˜ : Ψ1 < max(T2, 0) + ηCn1+n2 and Ψ2 < max(T2, 0) +
ηCn1+n2

√
R2} is complete for η < 0.

Proof 4.3.7 The proof is immediate from Theorem 4.3.6.

Next, we consider a smaller group of transformations and hence a larger class of estimators for
estimating the quantile vector θ˜. Consider the group GL = {gc : gc(x) = c + x, c ∈ R} of
location transformations. Under the transformation, X̄i → X̄i + c, S2

i → S2
i , µ → µ + c,

σi → σi, θi = µ+ ησi → θi + c where i = 1, 2, . . . , k.
The estimation problem is invariant if we take the loss function as the sum of squared error

losses (4.3.1), and the form of a location equivariant estimator for estimating the vector θ˜ basedon the sufficient statistics (X̄1, X̄2, . . . , X̄k, S
2
1 , S

2
2 , . . . , S

2
k) is obtained as

d˜ψ˜ = (X̄1 + ψ1(U˜ , S˜), X̄2 + ψ2(U˜ , S˜), . . . , X̄2 + ψ2(U˜ , S˜), (4.3.16)

where U˜ = (U2, U3, . . . , Uk) and S˜ = (S1, S2, . . . , Sk) and Ui = X̄i − X̄1; i = 2, 3, . . . , k. To
obtain the inadmissibility result let us consider the case k = 2. Let us denote N1 = min(u2, 0)
and N2 = max(u2, 0). For a location equivariant estimator d˜ψ˜, define the functions ψ˜0, ψ˜1 and
ψ˜2 as,

ψ˜0(u˜) = (min(max(ψ1, N1), N2),min(max(ψ2, N1), N2)) (4.3.17)

ψ˜1(u˜) = (max{N1, ψ1},max{N1, ψ2}), (4.3.18)

ψ˜2(u˜) = (min{N2, ψ1},min{N2, ψ2}). (4.3.19)

The following theorem gives a sufficient condition for improving estimators in the class d˜ψ˜.
Theorem 4.3.8 Let d˜ψ˜ be a location equivariant estimator of the quantile vector θ˜ and the lossfunction be sum of the quadratic losses (4.3.1) or the sum of squared errors. Let the functions
ψ˜0, ψ˜1 and ψ˜2 be defined as in (4.3.17), (4.3.18) and (4.3.19) respectively.

(i) When η = 0, the estimator d˜ψ˜ is improved by d˜ψ˜0 if Pα˜(ψ˜0 ̸= ψ˜) > 0 for some choices of
α˜.
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(ii) When η > 0, the estimator d˜ψ˜ is improved by d˜ψ˜1 if Pα˜(ψ˜1 ̸= ψ˜) > 0 for some choices of
α˜.

(iii) When η < 0, the estimator d˜ψ˜ is improved by d˜ψ˜2 if Pα˜(ψ˜2 ̸= ψ˜) > 0 for some choices of
α˜.

Proof 4.3.8 The proof is similar to the arguments used in proving Theorem 4.3.6. The details
of the proof is omitted.

Remark 4.3.11 Similar to Theorem 4.3.6 above, Theorem 4.3.8 is also a complete class result.
It tells that for an estimator of the form (4.3.16),

(i) if P ({ψ1 ∈ [min(U2, 0),max(U2, 0)]
c}

∪
{ψ2 ∈ [min(U2, 0),max(U2, 0)]

c}) > 0 then
the estimator d˜ψ˜ is improved by d˜ψ˜0 , when η = 0,

(ii) if P ({ψ1 < min(U2, 0)}
∪
{ψ2 < min(U2, 0)}) > 0, then the estimator d˜ψ˜1 will improve

upon d˜ψ˜, for η > 0, and

(iii) if P ({ψ1 > max(U2, 0)}
∪
{ψ2 > max(U2, 0)}) > 0, then the estimator d˜ψ˜2 will improve

upon d˜ψ˜ when η < 0.

Remark 4.3.12 All the estimators discussed in Section 4.3.1 (except d˜ML whose closed form
does not exist), belong to the class (4.3.16). But it has also been seen that for none of these
estimators the choices of ψ1 and ψ2 satisfy the above conditions in Remark 4.3.11. So the
estimators considered can not be improved by using Theorem 4.3.8, but they form a complete
class. This we write as a theorem.

Theorem 4.3.9 Let the loss function be (4.3.1).

(i) The class of estimators {d˜ψ˜ : ψ1 ∈ [min(U2, 0),max(U2, 0)] and ψ2 ∈ [min(U2,

0),max(U2, 0)]} is complete for η = 0.

(ii) The class of estimators {d˜ψ˜ : ψ1 > min(U2, 0) and ψ2 > min(U2, 0)} is complete for
η > 0.

(ii) The class of estimators {d˜ψ˜ : ψ1 < max(U2, 0) and ψ2 < max(U2, 0)} is complete for
η < 0.

Proof 4.3.9 The proof is immediate from Theorem 4.3.8.

Remark 4.3.13 We note that, the inadmissibility results have been derived only for the case
k = 2 populations. The case of general k(≥ 3) remains unresolved. However, we feel that all
the proposed estimators in Section 4.3.1 for the case k(≥ 3) will form a complete class.

88



Estimating Quantiles of Several Normal Populations with a Common Mean Chapter 4

4.3.3 Numerical Comparisons

In the previous subsections we have derived several estimators for the quantile vector θ˜ suchas d˜X̄1 , d˜X̄2 , d˜GD, d˜GM , d˜KS, d˜BC1, d˜BC2, d˜CS, d˜MK , d˜TK , and d˜ML when k = 2. Further for
the case k(≥ 3) we have also constructed various estimators for θ˜ such as, d˜NH , d˜SZ , d˜MK ,
d˜TK , d˜GM , and d˜ML. We have also shown that these well structured estimators, except d˜ML,
belong to the class (4.3.6) and (4.3.16). It seems quite difficult to compare the risk values of
all these estimators analytically. But for practical purposes, one needs the estimator to be used.
Taking the advantages of computational resources, we in this section compare numerically the
simulated risk values of all these estimators which may be handy for practical purposes. For
evaluating the risk function, we use the loss function (4.3.1).

We first discuss the numerical results for the case k = 2 normal populations. For numerical
comparison purpose, we have generated 20,000 random samples X˜ 1 of sizes n1 and 20,000
random samples X˜ 2 of sizes n2 from normal populations with equal mean and different
variances. It can be easily checked that all the risks values are functions of τ = σ2

σ1
> 0,

for fixed values of n1, n2 and |η|. The approximate value of π is taken to be 3.1416.We have
computed the risk values of all the estimators taking various choices of τ and the sample sizes.
However, for illustration purpose we present the risk values for some selected choices of τ and
n1, n2.We also observe that when the values of τ increase from 0 to∞ the risk values converge
for all the estimators except d˜GM and d˜X̄2 . As the sample sizes increases the risk values of all
the estimators decrease for fixed |η|. Further, the risk values increase as η increases for fixed
values of τ and sample sizes. If we choose the value of b1 and b2 near 0 the estimators d˜BC1

and d˜BC2 tends to d˜X̄1 . Also if we choose the value of b2 near 1 the estimator d˜BC2 tends to
d˜GD. So for numerical comparison a convenient choice would be an intermediate value whichwe take as 1

2
bmax. The value of bmax(n1, n2) have been taken from the tabulated values given

in Brown and Cohen (1974). We also note that, when the sample sizes are equal the estimator
d˜GD becomes same as d˜KS and d˜MK becomes same as d˜TK .When the sample sizes are unequal
the estimator d˜CS is not defined, so for unequal sample sizes we do not include it for numericalcomparison purpose. A massive simulation study has been conducted separately for the cases
n1 = n2, n1 > n2 and n1 < n2. The simulated risk values have been plotted against τ for all
the estimators in Fig. 4.3.1 and Fig. 4.3.2. In Fig. 4.3.1 the sample sizes have been taken as
equal, whereas in Fig. 4.3.2, the simulated risk values have been plotted for unequal sample
sizes. In Figures 1, and 2 we labelX , Y , GM , GD,KS, BC1, BC2, CS,MK, TK andML
for the estimators d˜X̄1 , d˜X̄2 , d˜GM , d˜GD, d˜KS, d˜BC1, d˜BC2, d˜CS, d˜MK , d˜TK d˜ML respectively.
In Tables 4.3.1-4.3.3, we have presented the simulated values of the percentage of relative risk
improvement of all the estimators with respect to d˜X̄1 , which are defined as

PR1 =
(
1−

Risk(d˜X̄2)

Risk(d˜X̄1)

)
× 100, PR2 =

(
1−

Risk(d˜GM)

Risk(d˜X̄1)

)
× 100,

PR3 =
(
1−

Risk(d˜GD)
Risk(d˜X̄1)

)
× 100, PR4 =

(
1−

Risk(d˜KS)
Risk(d˜X̄1)

)
× 100,

PR5 =
(
1−

Risk(d˜BC1)

Risk(d˜X̄1)

)
× 100, PR6 =

(
1−

Risk(d˜BC2)

Risk(d˜X̄1)

)
× 100,

PR7 =
(
1−

Risk(d˜CS)
Risk(d˜X̄1)

)
× 100, PR8 =

(
1−

Risk(d˜MK)

Risk(d˜X̄1)

)
× 100,
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PR9 =
(
1−

Risk(d˜TK)
Risk(d˜X̄1)

)
× 100, PR10 =

(
1−

Risk(d˜ML)

Risk(d˜X̄1)

)
× 100.

The following observations can be made from the Tables 4.3.1-4.3.3 and the Figures
4.3.1-4.3.2 as well as from our simulation study. For illustration purpose, we have presented
the risk functions only for the case η = 1.960.
Case 1:n1 = n2

(i) Figure 4.3.1 represents the risk values of all the estimators for the equal sample sizes
and η = 1.960. In Figure 4.3.1, (a)-(c) it represents the risk values for sample sizes
small to moderate that is (6,6), (8,8) and (12,12) whereas (d)-(f) the sample sizes are
taken as moderate to large (20,20), (30,30) and (40,40). It has been noticed that the risk
values of the estimators d˜X̄1 , d˜BC1, d˜BC2 and d˜CS are decreasing as τ increases from 0
to∞. The estimator d˜GD first increases and attains maximum value then decreases. The
estimators d˜GM , and d˜MK first decrease attains minimum (in the neighborhood of τ = 1)
then increases. The estimator d˜X̄2 increases as τ varies from 0 to ∞. It has also been
noticed that all the estimators (except d˜GM and d˜X̄2) converge to the estimator d˜X̄1 which
is true as these estimators are consistent.

(ii) The percentage of relative risk performances of all the estimators with respect to d˜X̄1

decrease as τ varies from 0 to ∞. Let us first consider the case of small sample sizes
(m,n ≤ 10). For small values of τ (τ < 0.25) the estimators d˜X̄2 and d˜ML has the
maximum percentage of relative risk improvement and it is seen near to 98.88%. For
moderate values of τ (0.75 < τ < 2.5) the estimators d˜GM and d˜MK compete each other
however when τ = 1, the estimator d˜GM has the maximum percentage of relative risk
improvement and it is seen near to 15.68%. For large values of τ, the estimator d˜BC1 has
the maximum percentage of relative risk improvement.
Consider the case of moderate sample sizes (12 ≤ n1, n2 ≤ 20). For small values of τ, the
estimator d˜ML has the best performance and the percentage of relative risk improvement
is seen near to 89.78%. For moderate values of τ (0.75 < τ < 2.5) the estimators d˜MK

and d˜GD perform equally well, however for τ = 1, the estimator d˜GM has the maximum
percentage of relative risk performances. For large values of τ, (τ > 3.5) the estimators
d˜BC1 and d˜ML compete with each other.
Consider the case of large sample sizes (n1, n2 ≥ 30). For small values of τ the estimators
d˜ML and d˜GD compete with each other and the percentage of relative risk performance has
been noticed near to 90.40%. For moderate values of τ (0.75 < τ < 2.5,) the estimators
d˜GD, d˜ML and d˜MK compete with each other, however for τ = 1, the estimator d˜GM has
the best performance. For large values of τ, the estimators d˜BC1 and d˜BC2 compete with
d˜ML.

Case 2:(n1 < n2)

(i) Fig. 4.3.2, ((a), (c) and (e)) represents the risk values of all the estimators for η = 1.960
and the sample sizes (4,10), (12,20) and (30,40). The risk values of the estimators d˜X̄1 ,
is decreasing as τ increases. The risk values of d˜GD, d˜KS increase and attains maximumthen decrease as τ increases. The risk values of all the estimators converge to the risk of
d˜X̄1 except d˜X̄2 and d˜GM .

(ii) Consider the small sample sizes (n1, n2 ≤ 10). For small values of τ < 0.25, the estimator
d˜X̄2 and d˜ML compete with each other and the percentage of relative risk improvement is
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seen near to 98.88%. For moderate values of τ (0.75 < τ < 3,) the estimators d˜TK and
d˜GM compete each other, however for τ = 1, the estimator d˜GM has the best performance.
For large values of τ (τ > 3.0,) the estimator d˜BC1 performs the best and the percentage
of relative risk performance.
Consider the case of moderate sample sizes (12 ≤ n1, n2 ≤ 20). For small values of
τ the estimator d˜ML has the maximum percentage of relative risk performance and it is
seen near to 98.88%. For moderate values of τ (0.75 < τ < 3) the estimators d˜TK , d˜MK

and d˜KS compete each other, however for τ = 1, d˜GM has the best performance. For
large values of τ (τ > 3) the estimator d˜BC1 has the maximum percentage of relative risk
improvement.
Consider the case of large sample sizes (n1, n2 ≥ 30). For small values of τ (τ ≤ 0.25),
the estimators d˜KS , d˜GD and d˜ML compete each other. For moderate values of τ (0.25 <
τ < 3.) the estimators d˜GD, d˜KS , d˜TK , d˜MK and d˜ML compete each other. For large
values of τ the estimators d˜ML and d˜BC1 compete each other.

Case-3:n1 > n2

(i) Fig. 4.3.2, ((b), (d) and (f)) represent the risk values of all the estimators for η = 1.960
and for the sample sizes (10,4), (20,12) and (40,30). The risk values of d˜X̄1 is decreasing
as τ increases. The risk values of d˜GD, d˜KS, d˜BC1 and d˜BC2 decrease as τ increases. The
risk values of estimators d˜GM , and d˜X̄2 first decrease attains minimum then increase with
respect to τ.

(ii) Consider the case of small sample sizes (n1, n2 ≤ 10). For small values of τ (τ ≤ 0.25)
the estimator d˜ML has maximum percentage of relative risk performance and it is noticed
near to 97.7%, for moderate values of τ (0.75 < τ < 2.0) the estimators d˜TK and d˜GMcompete each other, however for τ = 1, the estimator d˜GM has the best performance. For
large values of τ, (τ > 3) the estimator d˜BC1 has the best performance.
Consider the case of moderate sample sizes (12 ≤ n1, n2 ≤ 20). For small values of τ
(τ < 0.25) the estimator d˜ML has the best performance, for moderate values of τ (0.75 ≤
τ < 2.0), the estimator d˜KS and d˜GD compete each other. For τ = 1 the estimator d˜GMperforms the best. For large values of τ the estimator d˜BC1 and d˜ML compete each other.
Consider the case of large sample sizes (n1, n2 ≥ 30). For small values of τ the estimators
d˜ML has the maximum percentage of risk improvement, for moderate values of τ the
estimators d˜ML, d˜GD, d˜KS , d˜TK , and d˜MK compete each other. However for τ = 1 the
estimator d˜GM has the best performance. For large values of τ the estimators d˜ML, d˜GD,d˜BC1, d˜BC2 and d˜KS perform equally well.

On the basis of the above discussion and observations the following recommendations may
be done for the use of the estimators.

(i) We conclude from the above discussion that, none of the estimators completely dominate
others in terms of the risk function for the full range of the parameters.

(ii) When the sample sizes are small that is n1, n2 ≤ 10, the estimators d˜ML and d˜X̄2 can be
used if τ is near to 0. For values of τ in the neighborhood of 1, the estimators d˜MK and
d˜TK may be used, however for τ = 1 that is when the variances are of the two populations
are same, the estimator d˜GM should be used. For large values of τ we recommend to use
d˜BC1.
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(iii) When the sample sizes are from moderate to large the estimators d˜ML, d˜GD, or d˜KS maybe used if τ is near to 0, however for moderate values of τ we recommend to use either of
the estimators d˜GD, d˜KS, d˜MK , d˜TK , or d˜ML. For values of τ = 1, the estimator d˜GM is
strongly recommended to use. For large values of τ, the estimators d˜ML, d˜BC1, or d˜BC2

may be used.

(iv) A similar type of observations have been made for other combinations of sample sizes
and η.

Numerical Results for the Case k = 3
As discussed before, we have constructed several estimators for the quantile vector θ˜, whenk ≥ 3. Specifically, we have constructed d˜NH , d˜SZ , d˜MK , d˜TK , d˜GM , and d˜ML. Also, we note

that it is impossible to evaluate the risk functions analytically. Hence, for the particular case
k = 3, we carry out a simulation study to compare the risk functions of all these estimators
numerically. In a similar way we have generated 20,000 random samples each from the normal
populations N(µ, σ2

i ); i = 1, 2, 3 for various sample sizes n1, n2 and n3. The risk will be
evaluated using the loss function (4.3.1). To compare the performances of all the proposed
estimators we calculate the percentage of relative risk improvements of an estimator (say d˜)with respect to d˜X̄1 , as

P (d˜) =
(
1−

Risk(d˜)
Risk(d˜X̄1)

)
× 100.

It is easy to observe that the risk values of all the estimators are functions of τ2 = σ2/σ1 and τ3 =
σ3/σ1 with respect to the loss function (4.3.1). The simulation study has been done by taking
various combinations of the sample sizes, and many choices of the parameters. However, for
illustrative purpose we have presented the percentage of relative risk values of all the estimators
for some selected choices of the sample sizes, parameters and η. In Tables 4.3.4 to 4.3.6 the
percentage of relative risk values of all the estimators have been presented for the case of equal
sample sizes (10, 10, 10), (20, 20, 20) and (30, 30, 30), whereas Tables 4.3.7 to 4.3.9 represent
for unequal sample sizes. We also note that when the sample sizes are equal the estimators
d˜NH = d˜SZ and d˜MK = d˜TK . Tables 4.3.4 to 4.3.6 have ten columns and each column is againdivided into several cells. The first two columns represents the values of τ2 and τ3. The columns
3rd to 8th represent the percentage of relative risk values of all the estimators. Further in each
cell, one value of τ2 (column 1) corresponds to seven values of τ3 (column 2). In a similar
way the percentage of relative risk values of all the estimators in Tables 4.3.7 to 4.3.9 have
been presented for unequal sample sizes. The following observations have been made from the
Tables as well as from our simulation study.

(i) Like the case of k = 2, none of the estimators completely dominate others in terms of the
risk function for the full range of the parameters.

(ii) Consider that the sample sizes are small and equal. For the values of τ2 and τ3 close to 0,
the estimator d˜NH and d˜ML has the maximum percentage of relative risk performances.
Also, a similar type of behavior has been noticed when the values of τ2 and τ3 are large.
For τ2 = τ3 = 1, the estimator d˜GM has the best performance. When the values of τ2 and
τ3 are close to each other and small the estimator d˜MK has the best percentage of relative
risk performances, however as the τ2 and τ3 become large this estimator does not perform
well and is being dominated by d˜NH or d˜ML. Consider that the sample sizes are moderate
to large. For τ2 and τ3 close to 0, the estimators d˜ML and d˜NH perform equally well. For
large values of τ2 and τ3, the estimator d˜ML has the best performance. When τ2 = τ3 = 1,
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the estimator d˜GM has the best performance. Further, when the values of τ2 and τ3 close
to each other but are small the estimator d˜MK has the best performance. However as the
values of τ2 and τ3 become large this estimator is being dominated by either d˜NH or d˜ML.

(iii) Consider that the sample sizes are unequal. For the values of τ2 and τ3 close to 0, the
estimators d˜NH and d˜SZ compete with d˜ML. For the values of τ2 = τ3 = 1, the estimator
d˜GM has the best percentage of relative risk performance. For large values of τ2 and τ3
the estimators d˜NH , d˜SZ and d˜ML compete with each other. We have also noticed that, for
the values of τ2 and τ3 in the neighborhood of 1, the estimators d˜MK and d˜TK performs
better compare to other estimators.

(iv) A similar type of observations have been made for other combinations of sample sizes
and η.

The following conclusions can be drawn from the above discussions regarding the use of
the estimators.

(i) None of the estimators completely dominate others in terms of the risk values for the full
range of the parameters.

(ii) For the values of τ2 and τ3 are close to 0, we recommend to use either d˜NH or d˜SZ (smallsample sizes) and d˜ML for moderate to large sample sizes. For all the sample sizes, when
τ2 = τ3 = 1, that is when the populations have same variances the estimator d˜GM is
recommended for use. For large values of τ2 and τ3, we recommend to use either d˜NHor d˜SZ (small sample sizes) and d˜ML (for large sample sizes). When the sample sizes are
small, and the values of τ2 and τ3 are in the neighborhood of 1, the estimators d˜MK and
d˜TK can be used. For other cases, we recommend to use d˜NH or d˜SZ .
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Table 4.3.1: Percentage of relative risk improvements of various estimators
of normal quantiles with η = 1.960, (n1, n2) = (8, 8), (12, 12), (20, 20), (40, 40)

τ ↓ PR1 PR2 PR3 PR5 PR6 PR7 PR8 PR10
98.72 74.20 98.72 55.40 53.86 30.17 98.46 98.73

0.05 98.76 74.20 98.76 70.66 75.75 63.20 98.52 98.76
98.76 74.19 98.76 83.70 88.49 84.65 98.54 98.76
98.80 74.22 98.80 92.81 94.90 95.05 98.58 98.80
89.50 68.21 89.45 50.46 48.60 27.28 88.06 89.50

0.15 89.73 68.29 89.74 64.02 68.62 57.31 88.45 89.76
89.75 68.39 89.79 76.20 80.40 76.96 88.59 89.79
90.16 68.66 90.20 84.69 86.62 86.77 89.05 90.20
75.29 59.03 75.28 42.83 40.68 22.89 73.34 75.43

0.25 75.77 59.25 75.89 54.65 57.81 48.33 73.97 75.93
76.07 59.45 76.28 64.74 68.12 65.22 74.43 76.29
76.32 59.75 76.57 71.96 73.48 73.62 74.77 76.58
40.53 36.89 41.99 24.76 22.66 12.60 41.28 41.92

0.50 41.25 37.75 43.22 31.97 33.03 27.52 42.35 43.21
41.60 38.23 44.02 37.94 39.44 37.74 43.01 44.03
41.79 38.54 44.60 42.16 42.88 42.95 43.48 44.60
17.86 24.31 23.92 15.07 13.37 07.07 24.71 23.45

0.75 18.06 24.87 25.04 19.29 19.57 15.87 25.52 24.77
17.79 24.86 25.47 22.42 22.99 21.74 25.63 25.40
17.45 25.02 25.81 24.66 24.94 24.90 25.81 25.79
-0.86 15.68 13.55 09.61 08.38 04.16 15.01 12.70

1.00 -0.18 16.58 15.10 12.37 12.39 09.65 16.14 14.64
01.15 17.20 16.38 14.65 14.93 13.72 16.98 16.24
00.56 16.99 16.51 15.83 15.97 15.76 16.85 16.48
-15.31 10.10 08.78 06.77 05.86 02.75 10.05 07.96

1.25 -17.90 09.50 09.08 08.06 08.01 06.04 09.81 08.69
-16.36 10.49 10.32 09.62 09.72 08.80 10.81 10.18
-16.82 10.67 11.02 10.71 10.78 10.60 11.17 10.97
-31.46 04.87 05.88 05.07 04.33 01.97 06.51 05.19

1.50 -32.18 04.77 06.44 06.00 05.87 04.38 06.62 06.29
-34.66 04.40 06.96 06.76 06.80 06.21 06.68 06.88
-34.23 05.07 08.09 07.90 07.92 07.80 07.54 08.08
-67.82 -5.69 02.45 02.94 02.54 01.13 01.45 02.30

2.00 -70.73 -6.03 03.48 03.54 03.47 02.61 01.95 03.46
-69.55 -4.90 04.53 04.35 04.37 03.99 03.00 04.51
-72.31 -5.85 04.57 04.52 04.53 04.48 02.63 04.57
-116.05 -18.14 01.11 01.89 01.68 00.77 -1.87 01.24

2.50 -115.39 -17.45 02.27 02.46 02.40 01.82 -0.84 02.38
-120.07 -18.71 02.59 02.68 02.66 02.47 -1.00 02.68
-119.29 -18.49 02.74 02.78 02.77 02.75 -0.81 02.76
-169.15 -31.75 00.49 01.45 01.21 00.57 -4.27 01.09

3.00 -170.01 -31.47 01.27 01.56 01.57 01.22 -3.49 01.42
-172.46 -31.42 02.11 02.12 02.09 01.93 -2.55 02.17
-176.39 -32.49 02.20 02.17 02.17 02.14 -2.59 02.20
-293.23 -61.96 00.38 00.88 00.78 00.36 -6.55 00.80

4.00 -304.09 -65.67 00.48 00.81 00.82 00.66 -7.06 00.68
-311.09 -66.74 01.19 01.20 01.19 01.10 -6.02 01.23
-319.53 -69.42 01.03 01.06 01.06 01.05 -6.51 01.05
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Table 4.3.2: Percentage of relative risk improvements of various estimators
of normal quantiles with η = 1.960, (n1, n2) = (4, 10), (12, 20), (30, 40)

τ PR1 PR2 PR3 PR4 PR5 PR6 PR8 PR9 PR10
98.74 90.72 98.72 98.74 48.01 53.65 98.51 98.53 98.74

0.05 98.69 84.86 98.69 98.69 79.81 83.67 98.53 98.54 98.69
98.67 80.62 98.67 98.67 91.94 93.71 98.50 98.50 98.67
89.99 82.96 89.77 89.92 43.60 48.41 88.72 88.83 89.98

0.15 89.34 77.33 89.35 89.35 72.34 75.63 88.45 88.46 89.36
89.21 73.63 89.24 89.24 83.16 84.76 88.31 88.31 89.24
76.50 71.03 75.95 76.33 36.96 40.55 74.39 74.57 76.48

0.25 75.22 66.08 75.27 75.28 61.08 63.67 73.81 73.84 75.30
74.94 62.96 75.07 75.07 69.93 71.23 73.52 73.53 75.08
46.57 44.83 45.59 46.46 22.71 23.98 44.43 44.65 46.53

0.50 43.61 41.04 44.23 44.28 36.01 37.19 42.89 42.93 44.31
42.16 39.03 43.48 43.49 40.56 41.16 42.17 42.17 43.50
29.00 29.96 28.53 29.48 14.74 15.03 28.38 28.58 28.88

0.75 24.71 27.02 27.10 27.17 22.40 22.85 26.75 26.77 27.11
20.91 25.07 25.53 25.53 24.10 24.37 25.31 25.32 25.52
18.38 21.72 19.56 20.22 10.59 10.54 20.24 20.38 19.29

1.00 11.35 18.16 17.45 17.48 14.86 15.01 17.78 17.79 17.36
07.2 17.09 16.77 16.77 15.93 16.05 16.96 16.96 16.74
09.62 15.57 13.89 14.02 07.97 07.77 15.03 15.12 13.32

1.25 02.77 13.30 12.91 12.93 11.06 11.09 13.50 13.51 12.74
-4.45 11.25 11.45 11.45 11.02 11.02 11.77 11.77 11.41
03.39 11.56 10.57 10.33 06.29 06.10 12.03 12.07 09.84

1.50 -8.37 07.64 09.18 09.15 08.16 08.13 09.66 09.65 08.99
-15.42 06.25 08.30 08.29 07.98 07.99 08.34 08.33 08.27
-13.23 01.65 05.59 03.91 04.05 03.82 06.86 06.78 04.87

2.00 -29.23 -1.70 05.12 05.03 04.86 04.83 05.06 05.03 05.00
-44.68 -4.36 04.66 04.64 04.65 04.64 03.58 03.57 04.65
-29.19 -6.74 03.43 00.82 02.96 02.77 04.27 04.11 02.86

2.50 -54.92 -12.23 03.36 03.25 03.32 03.29 02.20 02.15 03.32
-73.59 -14.60 02.94 02.93 02.98 02.97 00.74 00.73 02.95
-49.24 -17.00 02.39 -0.89 02.31 02.15 02.43 02.18 01.92

3.00 -87.01 -25.22 02.26 02.13 02.37 02.34 -0.28 -0.36 02.31
-110.99 -26.79 02.34 02.33 02.34 02.31 -0.94 -0.96 02.36
-76.25 -31.59 00.89 -3.42 01.63 01.51 -0.37 -0.76 00.76

3.50 -120.65 -38.15 01.77 01.66 01.85 01.83 -1.67 -1.76 01.82
-159.48 -43.07 01.61 01.59 01.63 01.64 -3.08 -3.10 01.62
-83.63 -34.56 01.41 -2.41 01.64 01.53 00.17 -0.21 01.22

3.75 -138.71 -45.64 01.33 01.21 01.49 01.47 -2.67 -2.77 01.41
-181.46 -49.60 01.60 01.59 01.59 01.58 -3.22 -3.25 01.61
-99.21 -42.8 00.90 -3.31 01.42 01.31 -0.97 -1.42 00.81

4.00 -157.38 -53.73 00.97 00.86 01.18 01.16 -3.7 -3.80 01.08
-199.50 -55.59 01.39 01.39 01.38 01.37 -3.54 -3.57 01.40
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Table 4.3.3: Percentage of relative risk improvements of various estimators
of normal quantiles with η = 1.960, η = 1.960, (n1, n2) = (10, 4), (20, 12), (40, 30)

τ PR1 PR2 PR3 PR4 PR5 PR6 PR8 PR9 PR10
96.66 47.61 96.65 96.61 31.74 06.15 96.10 96.04 96.66

0.05 97.65 59.62 97.65 97.65 73.60 76.84 97.28 97.28 97.65
98.16 66.31 98.16 98.16 90.21 93.39 97.90 97.89 98.16
74.93 38.57 74.89 73.82 25.03 04.75 73.28 73.07 75.01

0.15 81.95 51.36 82.00 81.98 62.19 64.41 80.44 80.41 82.01
85.51 58.82 85.58 85.57 78.61 81.31 84.22 84.21 85.58
51.02 28.76 51.30 49.01 17.79 03.27 50.24 50.00 51.33

0.25 60.73 40.31 61.25 61.21 46.87 48.12 59.58 59.54 61.27
66.65 47.91 67.08 67.08 61.81 63.78 65.37 65.36 67.09
11.92 13.43 17.02 15.51 07.06 01.24 18.18 18.11 16.37

0.50 23.63 21.38 27.08 26.99 21.28 21.32 26.88 26.85 27.00
30.09 27.26 33.27 33.26 30.78 31.58 32.56 32.55 33.27
-7.17 07.28 05.65 05.53 03.32 00.57 07.09 07.16 04.80

0.75 01.51 12.33 12.52 12.51 10.49 10.37 13.11 13.11 12.31
07.33 16.57 17.34 17.34 16.42 16.67 17.52 17.52 17.31
-22.64 04.15 01.39 02.30 01.87 00.34 02.23 02.41 01.16

1.00 -13.11 07.75 06.84 06.88 06.14 05.98 07.26 07.27 06.68
-9.14 10.03 09.55 09.55 09.27 09.34 09.76 09.77 09.52
-37.14 01.91 -0.45 00.84 01.11 00.21 -0.44 -0.18 -0.40

1.25 -27.24 04.17 04.00 04.06 03.82 03.70 03.75 03.78 03.96
-21.59 06.40 06.57 06.58 06.36 06.38 06.46 06.46 06.55
-50.31 00.63 -0.75 00.55 00.87 00.17 -1.31 -1.01 -0.17

1.50 -42.87 00.85 02.20 02.30 02.41 02.32 01.18 01.23 02.27
-38.20 02.26 04.45 04.46 04.37 04.39 03.55 03.56 04.45
-89.75 -3.66 -2.23 -0.43 00.41 00.09 -4.51 -4.06 -0.24

2.00 -77.46 -4.60 01.17 01.26 01.41 01.33 -1.18 -1.11 01.33
-72.94 -5.01 02.44 02.45 02.46 02.45 00.30 00.31 02.46
-130.42 -7.14 -2.33 -0.55 00.26 00.06 -5.74 -5.21 -0.18

2.50 -125.44 -11.86 00.60 00.68 00.85 00.81 -3.25 -3.16 00.78
-115.91 -13.22 1.64 01.65 01.64 01.63 -1.63 -1.61 01.66
-190.10 -12.31 -2.55 -0.66 00.13 00.03 -7.50 -6.85 -0.24

3.00 -175.49 -19.09 00.36 00.42 00.56 00.53 -4.33 -4.23 00.50
-162.38 -21.35 01.32 01.32 01.29 01.28 -2.49 -2.47 01.32
-250.22 -17.03 -2.10 -0.49 00.10 00.03 -8.03 -7.31 -0.17

3.50 -234.56 -27.38 00.29 00.34 00.43 00.42 -5.11 -5.00 00.40
-225.80 -34.25 00.75 00.76 00.78 00.77 -4.54 -4.51 00.78
-285.75 -19.42 -1.88 -0.42 00.16 00.04 -7.97 -7.23 00.06

3.75 -264.67 -31.69 00.20 00.25 00.36 00.33 -5.41 -5.30 00.32
-264.47 -41.68 00.55 00.56 00.59 00.60 -5.42 -5.39 00.57
-328.00 -23.98 -2.36 -0.77 00.08 00.02 -9.20 -8.41 -0.09

4.00 -296.86 -35.41 00.37 00.40 00.44 00.40 -5.16 -5.04 00.45
-296.24 -47.50 00.50 00.51 00.53 00.53 -5.68 -5.65 00.52
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Figure 4.3.1: Comparison of risk values of various estimators of θ˜
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Figure 4.3.2: Comparison of risk values of various estimators of θ˜
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Table 4.3.4: Relative risk performances of various estimators for quantile vector when k=3

(n1, n2, n3) → (10,10,10)
τ2 ↓ τ3 ↓ P (d˜X2) P (d˜X3) P (d˜NH) P (d˜SZ) P (d˜MK) P (d˜TK) P (d˜GM ) P (d˜ML)
0.25 0.25 79.09 79.14 81.50 81.50 81.01 81.01 73.71 81.25

0.50 72.40 57.98 73.08 73.08 72.18 72.18 65.95 72.86
0.75 70.59 33.24 70.95 70.95 69.36 69.36 61.82 70.81
1.00 69.38 -1.00 69.57 69.57 67.38 67.38 56.92 69.48
1.25 69.35 -40.08 69.50 69.50 66.91 66.91 52.54 69.37
2.00 69.33 -215.55 69.35 69.35 65.76 65.76 32.21 69.08
3.00 68.32 -589.33 68.38 68.38 64.36 64.36 -9.75 68.23

0.75 0.25 33.00 70.37 70.75 70.75 69.23 69.23 61.82 70.61
0.50 22.61 39.46 43.60 43.60 43.65 43.65 41.88 43.32
0.75 19.08 19.16 31.61 31.61 32.46 32.46 32.35 31.37
1.00 16.57 0.23 26.25 26.25 27.17 27.17 27.12 26.00
1.25 15.49 -19.65 23.50 23.50 24.04 24.04 23.00 23.19
2.00 15.97 -97.25 21.62 21.62 20.88 20.88 13.45 21.14
3.00 13.94 -256.29 19.42 19.42 17.55 17.55 -5.74 18.71

1.00 0.25 -0.83 69.93 70.05 70.05 67.79 67.79 57.36 69.96
0.50 -0.55 35.71 38.91 38.91 38.58 38.58 35.97 38.72
0.75 1.45 16.89 26.38 26.38 27.29 27.29 27.20 26.14
1.00 0.56 0.50 20.01 20.01 21.27 21.27 21.79 19.65
1.25 -0.09 -16.76 16.74 16.74 17.82 17.82 17.83 16.46
2.00 0.30 -80.27 13.26 13.26 13.19 13.19 8.55 12.78
3.00 1.12 -199.59 12.52 12.52 11.38 11.38 -4.71 11.72

1.25 0.25 -38.24 69.46 69.60 69.60 67.07 67.07 53.08 69.36
0.50 -27.94 35.59 37.95 37.95 37.00 37.00 32.46 37.85
0.75 -18.73 16.33 24.10 24.10 24.68 24.68 23.71 23.68
1.00 -17.02 0.23 16.78 16.78 17.75 17.75 17.68 16.56
1.25 -14.44 -13.37 13.79 13.79 14.91 14.91 15.02 13.49
2.00 -11.50 -67.92 9.69 9.69 10.06 10.06 7.07 9.30
3.00 -11.00 -174.03 8.31 8.31 7.21 7.21 -5.59 7.74

2.00 0.25 -218.00 69.25 69.29 69.29 65.85 65.85 32.52 68.90
0.50 -139.01 34.91 36.64 36.64 34.28 34.28 19.05 36.37
0.75 -96.38 14.37 20.46 20.46 19.87 19.87 12.61 19.95
1 .00 -80.58 0.58 13.43 13.43 13.40 13.40 8.86 12.95
1.25 -68.09 -13.22 9.20 9.20 9.57 9.57 6.63 8.77
2.00 -58.65 -57.06 4.55 4.55 4.14 4.14 0.28 4.29
3.00 -52.43 -141.53 3.03 3.03 1.00 1.00 -9.87 2.86

3.00 0.25 -571.32 68.94 69.00 69.00 65.11 65.11 -6.49 68.88
0.50 -355.44 34.00 35.64 35.64 32.56 32.56 -4.88 35.37
0.75 -252.37 14.03 19.46 19.46 17.41 17.41 -5.70 18.73
1.00 -210.48 -0.48 11.45 11.45 10.23 10.23 -6.63 10.78
1.25 -177.78 -11.83 8.05 8.05 6.92 6.92 -6.36 7.23
2.00 -142.02 -52.69 3.23 3.23 1.19 1.19 -9.74 3.18
3.00 -131.67 -130.10 1.81 1.81 -1.96 -1.96 -17.52 1.14
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Table 4.3.5: Relative risk performances of various estimators for quantile vector when k=3

(n1, n2, n3) → (30,30,30)
τ2 ↓ τ3 ↓ P (d˜X2) P (d˜X3) P (d˜NH) P (d˜SZ) P (d˜MK) P (d˜TK) P (d˜GM ) P (d˜ML)
0.25 0.25 79.52 79.43 82.13 82.13 81.59 81.59 74.18 82.13

0.50 73.10 58.04 74.13 74.13 73.09 73.09 66.58 74.14
0.75 71.29 31.86 71.83 71.83 70.03 70.03 61.85 71.85
1.00 70.88 1.97 71.32 71.32 69.21 69.21 58.55 71.34
1.25 70.11 -41.89 70.51 70.51 68.05 68.05 53.16 70.52
2.00 69.71 -225.20 70.04 70.04 66.90 66.90 32.42 70.04
3.00 69.82 -591.29 70.06 70.06 66.36 66.36 -8.31 70.07

0.75 0.25 33.43 71.35 71.98 71.98 70.33 70.33 62.41 71.99
0.50 22.96 39.41 44.51 44.51 44.09 44.09 42.05 44.51
0.75 19.16 20.01 33.78 33.78 33.91 33.91 33.43 33.77
1.00 17.96 -0.74 28.35 28.35 28.44 28.44 27.97 28.36
1.25 15.40 -20.86 24.92 24.92 24.83 24.83 23.53 24.92
2.00 14.96 -105.12 22.17 22.17 20.81 20.81 12.42 22.17
3.00 14.46 -263.07 21.38 21.38 19.15 19.15 -5.41 21.36

1.00 0.25 1.45 71.10 71.55 71.55 69.39 69.39 58.66 71.56
0.50 0.71 37.48 41.45 41.45 40.69 40.69 37.8 41.46
0.75 0.79 17.21 28.48 28.48 28.68 28.68 28.31 28.46
1.00 -1.38 0.57 21.67 21.67 22.10 22.10 22.28 21.66
1.25 -0.72 -18.59 18.29 18.29 18.46 18.46 18.09 18.26
2.00 0.05 -83.65 14.93 14.93 14.29 14.29 9.31 14.92
3.00 -0.53 -214.01 12.89 12.89 10.97 10.97 -6.89 12.86

1.25 0.25 -43.68 70.73 71.04 71.04 68.40 68.40 53.17 71.05
0.50 -25.66 36.80 40.13 40.13 38.85 38.85 34.03 40.13
0.75 -20.12 16.53 25.91 25.91 25.78 25.78 24.42 25.90
1.00 -17.36 1.31 19.40 19.40 19.69 19.69 19.42 19.38
1.25 -15.83 -14.62 15.25 15.25 15.50 15.50 15.25 15.23
2.00 -12.95 -73.05 10.97 10.97 10.33 10.33 6.51 10.97
3.00 -13.22 -188.65 9.06 9.06 6.90 6.90 -8.13 9.05

2.00 0.25 -225.57 70.05 70.33 70.33 67.19 67.19 33.06 70.34
0.50 -136.71 35.97 38.34 38.34 35.75 35.75 20.25 38.36
0.75 -98.70 14.03 21.77 21.77 20.61 20.61 12.71 21.76
1.00 -82.51 0.38 14.94 14.94 14.27 14.27 9.27 14.92
1.25 -72.60 -13.46 10.92 10.92 10.45 10.45 6.77 10.90
2.00 -59.35 -61.22 6.39 6.39 5.06 5.06 0.31 6.39
3.00 -56.03 -150.7 4.52 4.52 1.70 1.70 -10.51 4.56

3.00 0.25 -592.52 69.73 69.98 69.98 66.37 66.37 -8.15 69.98
0.50 -375.10 33.83 36.40 36.40 33.03 33.03 -7.30 36.39
0.75 -263.62 14.73 21.35 21.35 19.03 19.03 -5.47 21.33
1.00 -214.55 0.06 13.19 13.19 11.15 11.15 -6.86 13.16
1.25 -181.92 -12.24 9.60 9.60 7.93 7.93 -6.01 9.59
2.00 -147.67 -57.16 4.89 4.89 2.40 2.40 -9.31 4.88
3.00 -136.69 -136.04 2.86 2.86 -1.48 -1.48 -18.72 2.88
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Table 4.3.6: Relative risk performances of various estimators for quantile vector when k=3

(n1, n2, n3) → (20,20,20)
τ2 ↓ τ3 ↓ P (d˜X2) P (d˜X3) P (d˜NH) P (d˜SZ) P (d˜MK) P (d˜TK) P (d˜GM ) P (d˜ML)
0.25 0.25 79.40 79.54 82.02 82.02 81.49 81.49 74.06 82.01

0.50 73.06 58.77 74.08 74.08 73.06 73.06 66.60 74.09
0.75 70.65 31.86 71.27 71.27 69.73 69.73 62.08 71.30
1.00 69.71 -1.13 70.15 70.15 68.03 68.03 57.33 70.18
1.25 69.65 -46.82 70.01 70.01 67.41 67.41 51.92 70.03
2.00 70.05 -222.40 70.27 70.27 66.94 66.94 32.87 70.29
3.00 69.42 -576.58 69.67 69.67 66.01 66.01 -6.77 69.69

0.75 0.25 33.18 71.45 71.92 71.92 70.14 70.14 62.17 71.96
0.50 23.94 40.17 45.12 45.12 44.77 44.77 42.71 45.11
0.75 17.55 18.12 32.44 32.44 32.81 32.81 32.47 32.40
1.00 17.38 0.63 27.89 27.89 28.17 28.17 27.78 27.87
1.25 16.16 -20.82 25.01 25.01 24.96 24.96 23.58 25.01
2.00 15.42 -99.94 22.19 22.19 21.00 21.00 12.91 22.14
3.00 14.04 -259.90 20.60 20.60 18.50 18.50 -5.36 20.57

1.00 0.25 -2.08 70.45 70.83 70.83 68.62 68.62 57.65 70.85
0.50 -0.21 37.28 41.01 41.01 40.29 40.29 37.42 41.02
0.75 0.23 17.02 28.06 28.06 28.41 28.41 28.08 28.02
1.00 -0.56 -0.42 21.19 21.19 21.76 21.76 21.94 21.10
1.25 -0.50 -18.19 17.98 17.98 18.47 18.47 18.27 17.94
2.00 0.83 -80.48 15.39 15.39 14.96 14.96 10.21 15.33
3.00 0.67 -209.21 13.51 13.51 11.75 11.75 -5.69 13.48

1.25 0.25 -38.19 70.64 70.91 70.91 68.25 68.25 53.28 70.91
0.50 -28.96 35.83 39.07 39.07 37.84 37.84 32.93 39.08
0.75 -23.42 15.30 24.16 24.16 24.09 24.09 22.65 24.14
1.00 -18.23 -1.34 17.70 17.70 18.21 18.21 18.02 17.66
1.25 -15.76 -15.20 14.89 14.89 15.37 15.37 15.17 14.84
2.00 -12.26 -73.46 10.75 10.75 10.34 10.34 6.64 10.66
3.00 -12.57 -183.13 8.95 8.95 7.21 7.21 -6.84 8.89

2.00 0.25 -230.94 69.08 69.35 69.35 66.00 66.00 30.95 69.38
0.50 -142.69 34.39 36.86 36.86 34.44 34.44 18.77 36.87
0.75 -101.97 14.68 21.69 21.69 20.59 20.59 12.59 21.67
1.00 -83.97 -0.84 13.92 13.92 13.38 13.38 8.42 13.86
1.25 -71.47 -12.95 10.92 10.92 10.61 10.61 7.08 10.88
2.00 -61.58 -60.31 5.44 5.44 3.98 3.98 -0.95 5.46
3.00 -56.47 -148.25 3.86 3.86 1.07 1.07 -10.81 3.96

3.00 0.25 -588.31 69.44 69.65 69.65 65.87 65.87 -8.40 69.67
0.50 -376.73 34.09 36.23 36.23 32.75 32.75 -7.67 36.24
0.75 -255.25 15.20 21.61 21.61 19.56 19.56 -3.98 21.55
1.00 -209.11 -0.02 12.92 12.92 11.28 11.28 -5.93 12.85
1.25 -180.65 -12.81 8.74 8.74 7.21 7.21 -6.51 8.69
2.00 -150.18 -55.91 4.48 4.48 1.89 1.89 -10.27 4.52
3.00 -139.76 -138.82 2.06 2.06 -2.93 -2.93 -20.84 2.21
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Table 4.3.7: Relative risk performances of various estimators for quantile vector when k=3

(n1, n2, n3) → (20,30,40)
τ2 ↓ τ3 ↓ P (d˜X2 ) P (d˜X3) P (d˜NH) P (d˜SZ) P (d˜MK) P (d˜TK) P (d˜GM ) P (d˜ML)
0.25 0.25 75.68 76.35 77.47 77.47 77.10 77.11 74.22 77.46

0.50 67.35 61.36 68.08 68.08 67.45 67.46 64.75 68.09
0.75 65.85 49.82 66.28 66.28 65.30 65.3 61.35 66.28
1.00 65.10 34.95 65.35 65.35 64.02 64.03 57.86 65.36
1.25 64.28 14.60 64.46 64.46 62.83 62.83 52.89 64.47
2.00 63.72 -67.27 63.89 63.89 61.89 61.89 36.62 63.89
3.00 63.76 -228.21 63.86 63.86 61.50 61.51 4.92 63.87

0.75 0.25 42.21 65.92 66.12 66.12 64.99 65.00 61.40 66.12
0.50 27.20 38.25 39.86 39.86 39.24 39.25 38.68 39.86
0.75 21.47 24.76 29.44 29.45 29.27 29.28 29.38 29.45
1.00 18.68 15.32 24.73 24.74 24.73 24.73 24.66 24.73
1.25 16.64 5.68 21.67 21.66 21.65 21.65 20.79 21.65
2.00 16.25 -25.66 19.48 19.48 18.89 18.88 13.31 19.49
3.00 16.55 -84.42 18.91 18.92 17.69 17.68 1.59 18.93

1.00 0.25 22.40 65.08 65.21 65.21 63.84 63.85 58.50 65.21
0.50 13.21 35.58 36.73 36.74 35.81 35.82 34.59 36.74
0.75 9.91 21.41 24.68 24.69 24.46 24.46 24.52 24.68
1.00 7.86 12.37 19.25 19.26 19.34 19.35 19.52 19.26
1.25 7.75 5.55 16.66 16.67 16.84 16.85 16.74 16.67
2.00 6.47 -20.01 13.16 13.16 13.08 13.08 9.73 13.16
3.00 6.08 -67.61 11.54 11.55 10.94 10.93 -0.48 11.52

1.25 0.25 -5.30 64.66 64.77 64.77 63.16 63.17 54.98 64.77
0.50 -1.86 34.33 35.18 35.19 34.02 34.03 31.76 35.19
0.75 -1.42 19.40 22.27 22.28 21.90 21.91 21.45 22.27
1.00 -1.62 11.15 16.66 16.67 16.68 16.68 16.67 16.66
1.25 -0.50 4.42 14.08 14.09 14.31 14.31 14.20 14.08
2.00 -1.47 -17.62 9.92 9.91 10.04 10.04 7.59 9.89
3.00 -0.29 -57.39 8.93 8.93 8.58 8.57 -0.36 8.90

2.00 0.25 -106.88 64.79 64.85 64.85 62.90 62.91 43.67 64.85
0.50 -61.11 33.05 33.57 33.58 31.77 31.78 23.82 33.59
0.75 -43.14 18.04 19.96 19.96 18.99 18.99 15.08 19.97
1.00 -33.91 10.72 14.41 14.43 13.90 13.91 11.66 14.42
1.25 -28.94 4.10 10.94 10.94 10.75 10.75 9.03 10.93
2.00 -23.90 -13.67 6.64 6.64 6.59 6.59 4.10 6.61
3.00 -22.83 -47.63 4.62 4.60 3.95 3.93 -3.40 4.60

3.00 0.25 -331.36 63.52 63.58 63.58 61.45 61.47 17.97 63.58
0.50 -182.69 32.30 32.79 32.80 30.55 30.57 9.73 32.80
0.75 -126.00 17.84 19.35 19.37 17.60 17.61 5.03 19.37
1.00 -95.71 9.94 13.40 13.41 12.37 12.37 4.06 13.39
1.25 -84.01 3.86 9.79 9.80 9.13 9.13 2.54 9.77
2.00 -69.08 -13.83 4.74 4.72 3.90 3.89 -2.04 4.74
3.00 -61.30 -42.31 3.18 3.16 1.83 1.81 -7.14 3.16
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Table 4.3.8: Relative risk performances of various estimators for quantile vector when k=3

(n1, n2, n3) → (40,30,20)
τ2 ↓ τ3 ↓ P (d˜X2) P (d˜X3) P (d˜NH) P (d˜SZ) P (d˜MK) P (d˜TK) P (d˜GM ) P (d˜ML)
0.25 0.25 60.15 57.58 62.48 62.48 62.02 62.01 51.80 62.46

0.50 49.92 27.61 50.76 50.76 49.73 49.73 41.93 50.77
0.75 47.44 -6.22 47.96 47.96 46.35 46.35 38.23 47.98
1.00 46.90 -51.69 47.24 47.24 45.12 45.13 35.39 47.26
1.25 46.07 -106.18 46.43 46.43 44.14 44.15 32.26 46.44
2.00 45.38 -342.95 45.68 45.68 42.87 42.88 19.42 45.69
3.00 45.13 -844.29 45.40 45.40 42.30 42.31 -4.81 45.41

0.75 0.25 11.80 44.84 46.26 46.25 45.21 45.19 36.94 46.26
0.50 6.59 13.49 20.89 20.89 21.01 21.01 19.17 20.88
0.75 4.57 -2.78 13.67 13.67 13.86 13.87 13.47 13.67
1.00 4.05 -18.26 11.16 11.17 11.10 11.11 10.96 11.16
1.25 4.33 -33.48 9.94 9.95 9.66 9.67 9.32 9.95
2.00 3.31 -103.10 8.28 8.29 7.24 7.25 4.41 8.28
3.00 3.52 -246.89 8.12 8.12 6.57 6.59 -2.59 8.12

1.00 0.25 -16.60 44.30 45.33 45.32 43.71 43.69 33.03 45.34
0.50 -7.76 12.84 18.70 18.69 18.67 18.66 16.46 18.70
0.75 -6.24 -2.70 10.46 10.47 10.65 10.65 10.39 10.44
1.00 -5.37 -15.19 7.70 7.72 7.71 7.72 7.95 7.71
1.25 -5.14 -27.76 6.37 6.38 6.20 6.21 6.39 6.36
2.00 -3.71 -79.06 5.17 5.17 4.38 4.40 3.05 5.17
3.00 -3.31 -184.55 4.68 4.69 3.19 3.21 -2.81 4.68

1.25 0.25 -54.94 44.23 45.02 45.01 42.96 42.93 28.51 45.04
0.50 -25.85 11.88 17.01 17.01 16.74 16.73 13.46 16.99
0.75 -17.89 -2.42 9.01 9.01 9.06 9.06 8.28 9.01
1.00 -14.49 -13.23 6.16 6.17 6.15 6.16 6.14 6.15
1.25 -11.71 -25.17 5.09 5.11 4.84 4.85 5.00 5.09
2.00 -10.27 -68.02 3.56 3.57 2.73 2.75 1.85 3.56
3.00 -9.05 -154.36 3.09 3.09 1.70 1.72 -2.77 3.08

2.00 0.25 -211.33 43.68 44.36 44.35 41.54 41.51 10.63 44.37
0.50 -99.23 10.73 15.19 15.19 14.10 14.09 4.05 15.17
0.75 -64.39 -1.43 7.42 7.41 6.79 6.79 2.07 7.40
1.00 -48.84 -11.67 4.41 4.42 3.94 3.95 1.49 4.41
1.25 -43.08 -21.84 2.72 2.75 1.88 1.89 0.13 2.77
2.00 -33.94 -53.82 1.76 1.77 0.48 0.50 -1.22 1.77
3.00 -31.55 -122.95 1.27 1.28 -0.85 -0.82 -5.05 1.29

3.00 0.25 -546.88 43.19 43.90 43.89 40.64 40.61 -26.41 43.90
0.50 -246.71 11.35 15.09 15.08 13.42 13.40 -11.93 15.07
0.75 -155.50 -1.64 6.60 6.61 5.43 5.42 -8.28 6.59
1.00 -118.31 -10.68 3.72 3.74 2.53 2.53 -6.82 3.72
1.25 -101.43 -19.94 2.15 2.17 0.63 0.64 -6.78 2.18
2.00 -79.46 -48.78 1.10 1.11 -0.96 -0.94 -6.68 1.09
3.00 -71.92 -110.70 0.68 0.69 -2.14 -2.11 -9.27 0.71
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Table 4.3.9: Relative risk performances of various estimators for quantile vector when k=3

(n1, n2, n3) → (10,20,30)
τ2 ↓ τ3 ↓ P (d˜X2) P (d˜X3) P (d˜NH) P (d˜SZ) P (d˜MK) P (d˜TK) P (d˜GM ) P (d˜ML)
0.25 0.25 76.35 77.15 77.76 77.76 77.40 77.41 75.88 77.74

0.50 67.88 64.30 68.45 68.45 67.92 67.94 66.46 68.43
0.75 65.58 55.26 65.84 65.85 64.98 65.00 62.38 65.78
1.00 65.25 45.23 65.41 65.42 64.29 64.31 59.68 65.37
1.25 64.38 32.25 64.49 64.50 63.17 63.19 55.82 64.42
2.00 64.09 -21.32 64.12 64.14 62.39 62.41 42.25 64.08
3.00 63.76 -131.02 63.80 63.81 61.86 61.88 14.80 63.76

0.75 0.25 48.98 66.45 66.53 66.54 65.58 65.60 63.51 66.50
0.50 30.61 39.38 40.17 40.20 39.53 39.56 39.45 40.12
0.75 23.92 27.23 29.81 29.85 29.56 29.59 29.90 29.70
1.00 21.68 19.78 25.54 25.58 25.48 25.50 25.59 25.46
1.25 20.76 13.91 23.68 23.72 23.55 23.56 23.02 23.69
2.00 17.99 -9.66 19.90 19.94 19.48 19.49 14.88 19.89
3.00 17.21 -49.69 18.77 18.81 17.82 17.82 4.14 18.80

1.00 0.25 32.57 65.44 65.49 65.50 64.38 64.41 60.87 65.49
0.50 19.13 36.55 37.02 37.05 36.17 36.20 35.64 36.91
0.75 14.67 24.13 25.88 25.92 25.53 25.55 25.78 25.80
1.00 12.35 16.58 20.34 20.39 20.34 20.36 20.69 20.33
1.25 10.71 10.70 17.46 17.49 17.68 17.69 17.69 17.37
2.00 9.93 -6.50 14.28 14.32 14.43 14.44 11.91 14.30
3.00 10.01 -37.14 13.21 13.26 12.84 12.83 3.64 13.18

1.25 0.25 14.57 64.90 64.92 64.93 63.62 63.65 58.29 64.92
0.50 8.01 35.37 35.77 35.80 34.72 34.75 33.36 35.69
0.75 5.01 21.99 23.22 23.26 22.78 22.80 22.66 23.10
1.00 4.93 15.33 18.11 18.17 18.04 18.06 18.32 18.06
1.25 4.71 9.71 14.87 14.92 15.10 15.12 15.28 14.87
2.00 3.92 -5.46 11.29 11.32 11.64 11.64 9.85 11.22
3.00 4.52 -32.92 10.04 10.06 9.96 9.95 2.45 9.94

2.00 0.25 -63.57 64.41 64.43 64.44 62.92 62.95 49.16 64.40
0.50 -36.75 33.91 34.14 34.17 32.64 32.67 27.05 34.10
0.75 -24.47 20.34 21.14 21.19 20.21 20.23 17.69 21.13
1.00 -19.63 13.43 15.41 15.46 15.02 15.04 13.66 15.42
1.25 -18.57 7.90 11.40 11.43 11.32 11.33 10.23 11.37
2.00 -14.94 -5.04 7.28 7.26 7.59 7.58 5.78 7.22
3.00 -13.10 -25.87 5.49 5.44 5.63 5.61 0.34 5.41

3.00 0.25 -226.81 64.46 64.48 64.48 62.81 62.85 31.05 64.48
0.50 -124.15 33.03 33.22 33.24 31.36 31.40 16.42 33.20
0.75 -86.72 19.87 20.42 20.48 19.03 19.06 10.28 20.48
1.00 -67.56 12.60 14.18 14.23 13.24 13.25 7.25 14.21
1.25 -55.55 8.00 10.84 10.88 10.34 10.35 5.98 10.84
2.00 -46.86 -4.25 5.84 5.81 5.67 5.65 1.69 5.85
3.00 -42.46 -25.22 3.70 3.60 3.16 3.11 -3.71 3.68
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4.3.4 Conclusions
We note here that, in the literature most of the results on estimation of quantiles are for a single
parameter θ = µ + ησ either using one or more populations. In this section, we consider the
simultaneous estimation of the quantile vector θ˜ = (θ1, θ2, . . . , θk) which is important from an
application point of view. The loss function is taken as the sum of the quadratic loss functions.
It should be noted that, Kumar and Tripathy (2011) considered this model with k = 2 and
estimated the first component θ1 with respect to a quadratic loss function. We have implemented
the Brewster and Zidek (1974) technique to the case of estimating a vector parameter, which
is interesting. Further we have proposed some new estimators such as the d˜X̄2 , d˜GM , and d˜ML

which were not considered previously. First, we derived sufficient conditions for improving
equivariant estimators and in the process some complete class results obtained for the case
k = 2. We have constructed some improved estimators using one of our result obtained in
Section 4.3.1. However, the analytical comparison of these estimators is not possible. We
have conducted a detailed simulation study to numerically compare these estimators which can
be used in practice. Specifically, we have done the numerical comparison for the case k =
2 and k = 3. Our conclusions regarding the use of the estimators are completely based on
the simulation study as no analytical comparison is possible among all the estimators. It will
be interesting to generalize the results to case of k ≥ 3 normal populations, where proving
inadmissibility of these estimators will be challenging. However, we feel that, for the case
k ≥ 3, the well structured estimators will form a complete class.

Below we present some examples where our model fits well and also compute the estimates
for practical purposes. In the examples below we have taken the value of η = 1.960 for
convenient.

Example 4.3.1 We consider the example discussed in Hines et al. (2008), (p. 290). Suppose
a manufacturer of video display units produces two micro circuit designs design A and design
B. He wants to test whether the two design produce same current flow. The summarized data
for design A are given by n1 = 15, d˜x̄1 = 24.2, s21 = 10 where as the data for design B are
given by n2 = 10, d˜x̄2 = 23.9, s22 = 20. It is also given that both the data follow normal
distributions with a common mean. The experimental conditions ensures that the variances are
unequal. This is a situationwhere ourmodel will be verymuch useful. The several estimators for
quantiles are calculated as d˜X̄1 = (25.97, 26.71), d˜X̄2 = (25.67, 26.41), d˜GM = (25.85, 26.59),
d˜GD = (25.92, 26.65), d˜KS = (25.92, 26.66), d˜BC1 = (25.97, 26.71), d˜BC2 = (25.94, 26.68),
d˜MK = (25.88, 26.61), d˜TK = (25.88, 26.61) and d˜ML = (25.92, 26.65). If the variances of
both the data set differ significantly we may use either the estimator d˜GD, d˜ML, or d˜BC1. If the
variances differ marginally we may use either d˜KS, or d˜MK .

Example 4.3.2 Rohatgi and Saleh (2003), (p.515) discussed one example regarding the mean
life time (in hours) of light bulbs. Suppose a random sample of 9 bulbs has sample mean
1309 hours with standard deviation of 420 hours. A second sample of 16 bulbs chosen
from a different batch has sample mean 1205 hours and standard deviation 390 hours. A
two sample t-test fails to reject the hypothesis that the means are equal. This is a situation
where our model will be useful. Suppose we want to know the life time of both the bulbs at
any instant of time then we can use our estimators. The various estimators are calculated
as d˜X̄1 = (1543.45, 1526.70), d˜X̄2 = (1439.45, 1422.70), d˜GM = (1476.89, 1460.14),
d˜GD = (1460.82, 1444.08), d˜KS = (1458.47, 1441.73), d˜BC1 = (1501.44, 1484.69), d˜BC2 =
(1498.38, 1481.64), d˜MK = (1474.51, 1457.77), d˜TK = (1474.18, 1457.43) and d˜ML =
(1457.08, 1440.33). Also a F-test fails to reject the hypothesis that the population variances
are equal. In this situation we recommend to use either d˜TK , or d˜MK .





Chapter 5

Estimating Quantiles and Ordered Scales
of Two Exponential Populations with a
Common Location Using Censored

Samples

5.1 Introduction
In previous chapters, we have considered estimation of common mean and quantiles of two
or more normal populations when all the samples are available. However, in this chapter,
we consider the estimation of quantiles and ordered scale parameters using type-II censored
samples from two exponential populations, assuming equality restrictions on the location
parameter.

In practice it is not always possible to observe all the sample values because of some
constraints like time and cost in certain life testing experiments. Under such circumstances
type-II censored samples are very much useful for inference purposes. The problem
of estimating parameters of exponential distribution using censored samples has received
considerable attention and has been studied by several authors in the recent past. The
applications of this type of models are seen in industry, public health, business, social sciences
and related fields which arise naturally in the study of reliability, life testing and survival
analysis. Let us consider a situation where the assumption of equality on the location parameters
is justified. Suppose two brands of electrical products have been newly lunched in the market.
The life times of the products being random follow exponential distribution. It is also expected
that the minimum guarantee time (or equivalently the location parameter µ) of both the products
are same due to market competition whereas the residual life times(or equivalently the scale
parameters) may be different. To carry out a life testing procedure, say m and n units from
each of the two brands have been put for life testing. The experimenter could able to observe
only r(≤ m) and s(≤ n) failure times. On the basis of these sample values one needs to draw
the inference on the mean life times or the quantiles of the products. Most of the commonly
used censoring schemes available in the literature are type-I (when number of observations are
random and time is fixed), type-II (when number of observations are fixed and time is random),
random censoring (both time and number of observations are random) or a mixture of these.
For a quick review on estimation of parameters of exponential population using such types of

0The content of this chapter (Section 5.2) has been published in Journal of Statistical Theory and Applications,
Vol. 17, No. 1, Pages 136 - 145.

0The content of this chapter (Section 5.3) has been published in Chilean Journal of Statistics, Vol. 8, No. 1,
Pages 87 - 101.
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conventional censoring schemes, we refer to Lawless (2003) and Johnson et al. ( 1994). Some
practical examples also have been discussed in Lawless (2003) where these types of censoring
schemes are useful.

It should be noted that, type-II censoring is a special case of progressive type-II censoring
scheme. A lot of attention has been paid in estimating the parameters of an exponential
population using progressive type-II censored samples by several authors in the recent past. For
some classical as well as decision theoretic results in this direction, we refer to Balakrishnan
and Sandhu (1996), Chandrasekar et al. (2002), and Madi (2010). For some recent updates
and detailed review on estimation of parameters of an exponential population using progressive
type-II censored samples, one may refer to Balakrishnan and Cramer (2014) and the references
cited therein.

A lot of attention has been paid on estimation of parameters using censored samples when
single population is available using a decision theoretic approach. However, a less attention has
been paid to estimating the parameters when more than one exponential population is available.
For example, Chiou and Cohen (1984) considered estimation of the common location parameter
of two exponential populations using type-II right censored data when the scale parameters
are unknown. Elfessi and Pal (1991) considered the estimation of common scale and the
location parameters of k(≥ 2) exponential populations using type-II right censored data. Yike
and Heliang (1999) considered the Bayesian estimation of ordered location parameters of two
exponential populations under a multiple type-II censoring scheme. Tripathy (2016) obtained
classes of equivariant estimators and derived some inadmissibility results for estimating the
common location parameter of two exponential populations using type-II right censored data.

The main objective of this chapter is to estimate the quantiles and ordered scales of two
exponential populations assuming location parameters to be equal and the samples are type-II
censored, using decision theoretic approach. First (in Section 5.2), we take up the problem of
estimating quantiles θ = µ + ησ1, of the first population, when the parameter µ is common.
Exponential quantiles are very much useful in the study of reliability, life testing and survival
analysis and some related areas. For some practical application of exponential quantiles we refer
to Epstein (1962), Epstein and Sobel (1954) and Saleh (1981). We refer to Ghosh and Razmpour
(1984), Rukhin (1986), Jin and Crouse (1998b), Sharma and Kumar (1994) and Jin and
Crouse (1998a) for some excellent results and review on estimation of common location or/and
quantiles of two or more exponential populations when full sample is available. In Section
5.2.1 we discuss the model and present some basic results. In Section 5.2.2, we propose a class
of estimators which contain the UMVUE of quantiles θ and obtain estimators dominating the
UMVUE. In Section 5.2.3, we derive sufficient conditions for improving equivariant estimators
and as a consequence some complete class results have been obtained. Most importantly, in
Section 5.2.4, we carry out a simulation study to numerically compare the risk values as well
as the percentage of relative risk improvements of all the proposed estimators which may be
useful for practical purposes. Finally we conclude with our remarks in Section 5.2.5.

Next (in Section 5.3) we consider the same model with inequality restrictions (ordered
restriction) on the scale parameters, that is σ1 ≤ σ2, and estimate the vector σ˜ = (σ1, σ2). In the
above example, if one of the brands (say first brand) uses the traditional technology and the other
(second brand) uses the modern technology, then it is natural to assume that σ1 ≤ σ2.Under this
situation one wishes to draw inference on the vector parameter σ˜ = (σ1, σ2). The problem of
estimating the ordered parameters of various distribution functions has been studied by several
researchers in the recent past, when full samples are available. For some results on estimation
of ordered parameters of two or more exponential populations we refer to Misra and Singh
(1994), Jin and Pal (1991), Vijayasree et al. (1995), and Jana and Kumar (2015). Some work
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has been done in estimating the ordered parameters (means or variances) when the underlying
distribution is normal. We refer to Chang et al. (2012) and Tripathy and Kumar (2011) for some
results on estimating ordered parameters of normal populations. In Section 5.3, we consider the
simultaneous estimation of ordered scale parameters, that is, the vector σ˜ = (σ1, σ2) : σ1 ≤ σ2
using type-II right censored samples from two exponential populations. Section 5.3.1 introduces
the MLE and the UMVUE without considering order restriction on the scale parameters. Then
under order restriction on the scale parameters, we derive the restricted maximum likelihood
estimator for σ˜. In Section 5.3.2, we obtain classes of equivariant estimators and prove someinadmissibility results in these classes. Using these results, we obtain improved estimators
which dominate the MLE and the UMVUE with respect to the risk function. In Section 5.3.3, a
detailed simulation study has been carried out in order to numerically compare the relative risk
performances of all the proposed estimators and recommendations have been made regarding
their use. Finally, Section 5.3.4 concludes the remarks.

5.2 Estimating Quantiles of Exponential Populations with
Common Location Using Censored Samples

Suppose we have type-II right censored random samples from two exponential populations
with a common location parameter and possibly different scale parameters. More specifically,
let X(1) ≤ X(2) ≤ · · · ≤ X(r) (2 ≤ r ≤ m) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(s) (2 ≤ s ≤ n) be the
ordered observations taken from random samples of sizes m and n which follow exponential
distributions with a common location parameter µ and possibly different scale parameters σ1
and σ2 respectively. We denote Ex(µ, σi) the exponential population with probability density
function

f(t, µ, σi) =
1

σi
exp{−(t− µ)/σi}, t > µ, σi > 0,−∞ < µ <∞; i = 1, 2. (5.2.1)

The problem is to estimate the pth quantile θ = µ+ ησ1 of the first population, where 0 < η =
− log(1− p); 0 < p < 1. The loss function is taken as

L(d, α˜) =
(d− θ

σ1

)2

, (5.2.2)

where d is an estimate for estimating the quantile θ and α˜ = (µ, σ1, σ2). We evaluate the
performance of an estimator for quantile with the help of the risk function

R(d, α˜) = Eα˜(L(d, α˜)).
We note that, for η = 0, the problem reduces to the problem of estimating common location

parameter µ of two exponential populations using type-II censored samples and has been well
investigated by Chiou and Cohen (1984) and Tripathy (2016). However, we extend some of
their decision theoretic results to the case of estimating quantiles, that is, when η ̸= 0.Moreover,
the results of Sharma and Kumar (1994) can be derived as a particular case of our results by
choosing m = r, n = s and m = n. Basically they have obtained some inadmissibility results
for estimating quantiles θ assuming the sample sizes are equal. They also obtained estimators
which dominate the UMVUE in terms of risk values. However, in practice one would be
interested to know the percentage of risk improvements approximately. Taking advantages
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of computational facilities we compare all the proposed estimators numerically. Hence it fills
the gap in the literature which is not available.

5.2.1 Construction of Some Basic Estimators for Quantiles

In this section, we discuss the model and derive some baseline estimators for the quantile θ =
µ+ ησ1. Specifically we obtain the MLE, a modification to the MLE, and the UMVUE for θ.

Let X(1) ≤ X(2) ≤ · · · ≤ X(r), (2 ≤ r ≤ m) be the r smallest ordered observations
taken from a random sample of sizem having probability density function Ex(µ, σ1) as given
in (5.2.1). Similarly, let Y(1) ≤ Y(2) ≤ · · · ≤ Y(s), (2 ≤ s ≤ n) be the s smallest
ordered observations taken from a random sample of size n having probability density function
Ex(µ, σ2) as given in (5.2.1). The samples drawn from two populations are assumed to be
statistically independent.

For this particular model a sufficient statistic is (U1, U2, Z), where Z = min(X(1), Y(1)),
U1 =

1
m
[
∑r

i=1X(i)+(m− r)X(r)], and U2 =
1
n
[
∑s

j=1 Y(j)+(n− s)Y(s)]. The joint probability
density function of U˜ = (U1, U2, Z) is given by,

fU˜(u˜) = K(u1 − z)r−1(u2 − z)s−1
( r − 1

u1 − z
+

s− 1

u2 − z

)
exp

{
− m(u1 − µ)

σ1
− n(u2 − µ)

σ2

}
,

u1 > x(1), u2 > y(1), z > µ
(5.2.3)

where K = mrns

ΓsΓrσr
1σ

s
2
, (see Chiou and Cohen (1984) and Tripathy (2016)). We also note that

the random variable Z follows an exponential distribution with location parameter µ and scale
parameter 1/p, where p = m/σ1 + n/σ2. The MLEs of µ, σ1 and σ2 are obtained by Tripathy
(2016) and are given by Z, m(U1−Z)/r (say σ̂1ML), and n(U2−Z)/s (say σ̂2ML) respectively.
Using the MLEs of µ and σ1, we obtain the MLE of the quantile θ = µ+ ησ1 as

dML = Z + ησ̂1ML. (5.2.4)

Further using the modified MLE of the common location parameter µ (motivated by Ghosh and
Razmpour (1984)), we propose a modification to the MLE of the quantile θ as

dMM = Z − 1

p̂
+ ησ̂1ML, (5.2.5)

where p̂ = m/σ̂1ML + n/σ̂2ML. It is also noted that the sufficient statistics (U1 − Z,U2 − Z)
and Z are independent and also complete (see Chiou and Cohen (1984)). Using the complete
and sufficient statistics (U1−Z,U2−Z,Z), one can easily obtain the UMVUE of the common
location parameter µ as given in Tripathy (2016) and derived by Chiou and Cohen (1984). Let
us denote V1 = U1 − Z, V2 = U2 − Z. We note that E(V1) = r

m
σ1 − p−1 and E[( V2

s−1
)−1 +

( V1
r−1

)−1]−1 = p−1. Using these results one can easily derive the UMVUE of the quantile θ as,

dMV = Z +
V1V2(k − 1)

(r − 1)V2 + (s− 1)V1
+ kV1, (5.2.6)

where k = ηm/r.

110



Estimating Quantiles and Ordered Scales of Two Exponential Populations Chapter 5

5.2.2 Improving Upon the UMVUE
In this section, we consider a class of estimators which contain the UMVUE for θ = µ + ησ1.
Using a technique of Brewster and Zidek (Brewster and Zidek (1974)), we obtain an estimator
which dominates the UMVUEwith respect to the loss function (5.2.2). Let us consider the class
of estimators for estimating the quantile θ = µ+ ησ1 as D = {dc : c ∈ R} where

dc = Z +
V1V2(k − 1)

(r − 1)V2 + (s− 1)V1
+ kcV1. (5.2.7)

It should be noted that this class contains the UMVUE dMV for c = 1.
Let us denote c1 = r

r+1
, c2 = ηm(r−2)+1

ηm(r−1)
, c12 = max{c1, c2}, c3 = ĉ(β−), where β− =

r+1
2m

−
√

(r+1)2−4ηm

2m
. Further define the constants

c∗ =


c1, if c > c1

c2, if c < c2

c, otherwise
(5.2.8)

c∗ =


c12, if c > c12

c3, if c < c3

c, otherwise
(5.2.9)

Theorem 5.2.1 The class of estimators dc is inadmissible and is improved by dc∗ if c∗ ̸= c when
η > r/m and by dc∗ if c∗ ̸= c when 0 < η < r/m.

Proof 5.2.1 Consider the risk function of dc with respect to the quadratic loss function (5.2.2).

R(dc, α) =
1

σ2
1

E{Z +
V1V2

(r − 1)V2 + (s− 1)V1

(
η
m

r
− 1

)
+ η

m

r
cV1 − θ}2. (5.2.10)

It is easy to see that the above risk function is a convex function with respect to c, hence the
minimizing choice is obtained as,

ĉ(v1, v2, α) =
θEV1 − EZEV1 − (ηm

r
− 1)E{ V 2

1 V2
(r−1)V2+(s−1)V1

}
ηm
r
EV 2

1

. (5.2.11)

We also note that EV1 = r
m
σ1 − p−1, EZ = µ+ p−1, EV 2

1 = σ1np−1

σ2m
[σ1
m
(r+1)r+ σ2

n
r(r− 1)],

and E[ V 2
1 V2

(r−1)V2+(s−1)V1
] = r

m
σ1p

−1. Substituting all these values in (3.2) and simplifying we get,

ĉ(λ) =
ηr − 2ηλm+mλ2

η(r + 1− 2mλ)
, (5.2.12)

where λ = (σ1p)
−1 and 0 < λ < 1

m
.

To apply Brewster and Zidek technique (Brewster and Zidek (1974)) for improving
estimators, we need to find the supremum and infimum of ĉ(λ) for fixed V1, V2 and η. Consider
the derivative of ĉ(λ).We have ĉ′(λ) = g(λ)/η(r+1−2mλ)2, where g(λ) = −2m(mλ2−(r+
1)λ+η). The derivative is simply g(λ) multiplied by a positive factor. It is easy to see that g(λ)
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is a concave function of λ. The maximum value of g(λ) is (r+1)2

4m
−η attained at λ = (r+1)/2m.

Next we consider two separate cases as η > (r+1)2

4m
or η ≤ (r+1)2

4m
.

Case I: η > (r+ 1)2/4m. In this case the maximum of g(λ) is negative, hence g(λ) < 0 which
leads to ĉ′(λ) < 0. The function ĉ(λ) is decreasing with respect to λ. Hence we obtain

sup
0<λ< 1

m

ĉ(λ) =
r

r + 1
, and inf

0<λ< 1
m

ĉ(λ) =
ηm(r − 2) + 1

ηm(r − 1)
. (5.2.13)

Case II: η < (r + 1)2/4m. In this case the maximum value of g(λ) is positive and hence it

will have two roots λ+ = r+1
2m

+

√
(r+1)2−4ηm

2m
, and λ− = r+1

2m
−

√
(r+1)2−4ηm

2m
. Also it is can be

seen easily that 0 < λ− < λ+. But λ+ is always greater than 1/m. Further λ− also lies outside
our concerned interval if η > r/m. Hence for this case the function ĉ(λ) is decreasing and we
obtain

sup
0<λ< 1

m

ĉ(λ) =
r

r + 1
and inf

0<λ< 1
m

ĉ(λ) =
ηm(r − 2) + 1

ηm(r − 1)
. (5.2.14)

If η < r/m, then λ− < 1/m. For this case the function g(λ) decreasing in the interval
(0, λ−] and increasing in the interval (λ−, 1/m]. Hence we obtain,

sup
0<λ< 1

m

ĉ(λ) = max{ĉ(0), ĉ(1/m)} and inf
0<λ< 1

m

ĉ(λ) = ĉ(λ−). (5.2.15)

Let us denote c1 = r
r+1

, c2 = ηm(r−2)+1
ηm(r−1)

. Utilizing the results from case I and II, define the
constants c∗ and c∗ as above. That is,

c∗ =


c1, if c > c1
c2, if c < c2
c, otherwise

c∗ =


c12, if c > c12
c3, if c < c3
c, otherwise

Nowapplying the orbit-by-orbit improvement technique of Brewster-Zidek technique (Brewster
and Zidek (1974)), we have the theorem. Next we obtain improved estimators for the UMVUE
of the quantile θ by an application of the Theorem (5.2.1).

Theorem 5.2.2 Let the loss function be quadratic loss as given in (5.2.2). The uniformly
minimum variance unbiased estimator(UMVUE) dMV = d1 for the quantile θ = µ + ησ1
is inadmissible and is improved by dc1 when η > (r+ 1)/2m. For 1/m < η < (r+ 1)/2m the
UMVUE is improved by dc2 . For 0 < η < 1/m the estimator dMV is admissible and can not be
improved.

Remark 5.2.1 The class of estimators {dc : c2 ≤ c ≤ c1} form an essentially complete class
when η > r/m. The class of estimators {dc : c3 ≤ c ≤ c1} form an essentially complete class
when (r+1)/2m < η < r/m. The class {dc : c3 ≤ c ≤ c2} form an essentially complete class
when 1/m < η < (r + 1)/2m. Finally the class {dc : c3 < c < c2} is the essentially complete
class in the class D when 0 < η < 1/m, and can not be improved on by any dc.
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Remark 5.2.2 Using the above results it is easy to write the improved estimator which improves
upon the UMVUE of the quantile θ. Let η > r/m then the estimator which improves upon the
UMVUE is obtained as dMV I = Z + V1V2(k−1)

(r−1)V2+(s−1)V1
+ ( ηm

r+1
)V1. It is easy to write the improved

estimator for the case 1/m < η < (r + 1)/2m. The estimator d1 = dMV can not be improved
by any dc when 0 < η < 1/m. In Section 5.2.4, we numerically evaluate the risk functions of
these improved estimators and show the percentage of improvement over the UMVUE dMV .

5.2.3 An Inadmissibility Result for Affine Equivariant Estimators
In this section, we introduce the concept of invariance to our problem and obtain a broad
class of estimators for quantiles θ = µ + ησ1, which are invariant under an affine group of
transformations. Further sufficient conditions for improving these estimators are obtained.

Let GA = {ga,b : ga,b(x) = ax + b, a ∈ R+, b ∈ R} be an affine group of transformations.
Under this transformation the problem remain invariant and the form of an affine equivariant
estimator for estimating the quantile θ, based on the sufficient statistics (V1, V2, Z) is obtained
as

d(Z, V1, V2) = Z + V1ϕ(V ) = dϕ, (say), (5.2.16)

where ϕ : R+ → R and V = V2/V1. To proceed further, let us define the functions ϕ1 and ϕ2

as follows.

ϕ1(v) =


m
r+s

(
η − 1

m

)
, if 0 < v ≤ 1

1−ηm
m+nτ+v
r+s

(
η − 1

m+nτ+

)
, if v > 1

1−ηm

ϕ2(v) =
m

r + s

(
η − 1

m

)
,

where τ+ = −m
n
+ 1

n

√
m(v−1)
ηv

. For the affine equivariant estimator dϕ, we define the functions
ϕ∗
1 and ϕ∗

2 as below.

ϕ∗
1(v) =

{
ϕ1, if ϕ < ϕ1

ϕ, otherwise
(5.2.17)

ϕ∗
2(v) =

{
ϕ2, if ϕ < ϕ2

ϕ, otherwise
(5.2.18)

Now it is immediate to propose the main result of this section which will help in deriving
improved estimators for the quantiles θ with respect to the quadratic loss function (5.2.2).

Theorem 5.2.3 For the affine equivariant estimator dϕ (as given in (5.2.16)), define the
functions ϕ∗

1 and ϕ∗
2 as given in (5.2.17) and (5.2.18) respectively. Let the loss function be

the affine invariant loss (5.2.2).

• The estimator dϕ is inadmissible and is improved by dϕ∗1 , if there exist some values of the
parameters α = (µ, σ1, σ2) such that, P (dϕ ̸= dϕ∗1) > 0 when η < 1/m.

• The estimator dϕ is inadmissible and is improved by dϕ∗2 , if there exist some values of the
parameters α = (µ, σ1, σ2) such that, P (dϕ ̸= dϕ∗2) > 0 when η > 1/m.
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Proof 5.2.2 Consider the conditional risk function of dϕ given V = v.

R((dϕ, α)|V = v) =
1

σ2
1

E[(dϕ − θ)2|V = v],

=
1

σ2
1

E[(Z + V1ϕ(V )− θ)2|V = v]. (5.2.19)

It can be easily seen that the above risk function (5.2.19) is a convex function in ϕ. Therefore
the minimizing value of ϕ for fixed values of V is obtained as,

ϕ̂(v, σ1, σ2) = ησ1
E(V1|V = v)

E(V 2
1 |V = v)

− 1

p

E(V1|V = v)

E(V 2
1 |V = v)

. (5.2.20)

To evaluate the above expression in (5.2.20), we have the joint probability density function
of (U1, U2, Z) as given in (5.2.3). Let us use the transformation V1 = U1 − Z, V2 = U2 − Z
and Z = Z. The inverse transformation is given by U1 = V1 + Z, U2 = V2 + Z, and Z = Z.
The Jacobian is obtained as J = 1. Hence, the joint probability density function of (Z, V1, V2)
is obtained as,

fV1,V2,Z(v1, v2, z) =
mrns

σr1σ
s
2

[ vr−1
1 vs−2

2

ΓrΓ(s− 1)
+

vr−2
1 vs−1

2

ΓsΓ(r − 1)

]
exp{−m

σ1
(v1 + z − µ)− n

σ2
(v2 + z − µ)},

v1 > 0, v2 > 0, z > µ.

Using the independence of (V1, V2) and Z one can easily write the joint probability density
function of (V1, V2) and is given by,

fV1,V2(v1, v2) =
mrnsp−1

σr1σ
s
2

[ vr−1
1 vs−2

2

ΓrΓ(s− 1)
+

vr−2
1 vs−1

2

ΓsΓ(r − 1)

]
exp

{
− m

σ1
v1 −

n

σ2
v2

}
, v1 > 0, v2 > 0.

We need to calculate the conditional density of V1 given V. Let us use the transformation,
V = V2

V1
, V1 = V1. The inverse transformation is given by V2 = V V1, V1 = V1. The Jacobian of

this transformation is obtained as V1. Hence the joint probability density function of (V1, V ) is
obtained as,

fV1,V (v1, v) =
mrnsp−1

σr1σ
s
2

[ vr+s−2
1 vs−2

ΓrΓ(s− 1)
+
vr+s−2
1 vs−1

ΓsΓ(r − 1)

]
exp

{
− m

σ1
v1 −

n

σ2
vv1

}
, v1 > 0, v > 0.

The marginal density function of V is given by

fV (v) =
mrnsp−1Γ(r + s− 1)

σr1σ
s
2

(m
σ1

+
n

σ2
v
)1−r−s[ vs−2

ΓrΓ(s− 1)
+

vs−1

ΓsΓ(r − 1)

]
, v > 0.

It is easy to observe that, the conditional probability density function of V1 given V = v, is
a gamma distribution with shape parameter r + s − 1 and scale parameter σ1σ2

mσ2+nσ1v
. Here

the gamma probability density function with a shape parameter α and a scale parameter β is
defined as,

g(x, α, β) =
1

Γ(α)βα
xα−1e−

x
β , x > 0, α > 0, β > 0.
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So, the conditional expectations are calculated and obtained as

E(V1|V = v) =
(r + s− 1)σ1σ2
mσ2 + nσ1v

, (5.2.21)

and

E(V 2
1 |V = v) = (r + s− 1)(r + s)

( σ1σ2
mσ2 + nσ1v

)2

. (5.2.22)

Substituting these conditional expectations from (5.2.21) and (5.2.22) in (5.2.20), and
simplifying, we have the minimizing choice of ϕ̂(τ, v) for fixed v as,

ϕ̂(τ, v) =
m+ nτv

r + s

(
η − 1

m+ nτ

)
, (5.2.23)

where τ = σ1
σ2
> 0 and v > 0.

In order to apply the orbit-by-orbit improvement technique of Brewster and Zidek ( Brewster
and Zidek (1974)), we need to obtain the supremum and infimum of ϕ̂(τ, v) with respect to τ
for fixed values of v and η. Consider the derivative of ϕ̂(τ).We have ϕ̂′

(τ) = 1
(r+s)(m+nτ)2

h(τ),

where h(τ) = ηn3vτ 2 + 2mn2vητ +mnv(ηm − 1) +mn. It can be noticed that the ϕ̂′
(τ) is

simply h(τ) multiplied by a positive factor. To analyze h(τ), it is easy to observe that h(τ) is
a convex function of τ. The minimum value is obtained at τ = −m

n
, which is negative. Hence

in the concerned region (0,∞), the minimum is attained at τ = 0. The minimum value being
ηm2nv − mnv + mn. Below we discuss two separate cases η < 1/m and η > 1/m for
calculating supremum and infimum of ϕ.

Case I: η < 1/m. For this case there are two possibilities that is either the minimum value of
h(τ) is positive or negative. Suppose it is positive that is v < 1/(1 − ηm). If the minimum is
positive then h(τ) ≥ 0 for all τ > 0. Hence the function ϕ̂(τ, v) is increasing in τ for all τ > 0.
In this case the supremum and infimum of ϕ̂(τ, v) is obtained as,

sup
τ>0

ϕ̂(τ, v) = ∞, and inf
τ>0

ϕ̂(τ, v) =
m

r + s

(
η − 1

m

)
. (5.2.24)

If the minimum value is negative that is when v ≥ 1/(1− ηm), then the function h(τ) crosses
the τ axis. The function h(τ) has two real roots say τ− (smaller root) and τ+ (larger root). It
can be easily checked that τ− < 0 < τ+. Here τ+ = −m

n
+ 1

n

√
m(v−1)
ηv

. It can be seen that for
τ ∈ (0, τ+] the function h(τ) < 0 and for τ ∈ [τ+,∞) the function h(τ) ≥ 0. That is ϕ̂(τ, v) is
decreasing in (0, τ+] and increasing in [τ+,∞). Hence we obtain,

sup
τ>0

ϕ̂(τ, v) = max{ϕ(0, v), ϕ(∞, v)} = ∞ (5.2.25)

and

inf
τ>0

ϕ̂(τ, v) =
m+ nvτ+

r + s

(
η − 1

m+ nτ+

)
. (5.2.26)

Case-II: η > 1/m. In this case, the minimum value of h(τ) is always positive. Hence the
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function ϕ̂(τ, v) is increasing with respect to τ. Hence we obtain the supremum and infimum of
ϕ̂(τ, v) as,

sup
τ>0

ϕ̂(v, τ) = ∞, and inf
τ>0

ϕ̂(v, τ) =
m

r + s

(
η − 1

m

)
.

Utilizing the results from case I and II it is easy to define the functions ϕ1 and ϕ2. Further
using the functions ϕ1 and ϕ2,we define the functions ϕ∗

1 and ϕ∗
2 as given in (5.2.17) and (5.2.18)

respectively. Applying the orbit-by-orbit improvement technique of ( Brewster and Zidek (1974))
(see Theorem 3.1.1 in Brewster and Zidek (1974)), the result follows.

Remark 5.2.3 The above theorem basically gives a complete class result. It simply tells that
any affine equivariant estimator dϕ of the form (5.2.16) can be improved if P (ϕ < ϕ1) > 0
(when η < 1/m) or P (ϕ < ϕ2) > 0 (when η > 1/m).

Remark 5.2.4 The class of estimators {dϕ : ϕ ≥ ϕ1} for estimating the quantiles θ form a
complete class with respect to the loss function (5.2.2) when η < 1/m. The class of estimators
{dϕ : ϕ ≥ ϕ2} for estimating the quantiles θ form a complete class with respect to the loss
function (5.2.2) when η > 1/m.

It is easy to note that, all the estimators such as the MLE dML, a modification to the MLE
dMM (MM) and the UMVUE dMV considered for the quantiles θ belong to the class dϕ as given
in (5.2.16).

Remark 5.2.5 Though the estimators dML and dMM belong to the class dϕ in (5.2.16), the
condition for improving these estimators does not satisfy which has been observed from our
simulation study. Hence we are not able to get improved estimator for dML and dMM .However,
the UMVUE dMV has been improved by using Theorem (5.2.3) , when η < 1/m and denote the
improved estimator as dMVA. A numerical comparison of this estimator with other estimators
has been done using Monte-Carlo simulation method in Section 5.2.4.

5.2.4 Simulation Study
In the previous sections, we have proposed various estimators for the quantiles θ such as the
MLE dML, a modification to the MLE (MM) dMM and the UMVUE dMV . Further improved
estimators dMV I and dMVA dominating theUMVUEhave also been derived. However, it should
be noted that the analytical comparison of risk values for all these estimators is not possible.
Taking the advantages of computational facilities, we in this section numerically evaluate the
risk values of all these estimators. For this purpose, we have generated 20,000 type-II censored
random samples each from two exponential populations having probability density function
(5.2.1) with a common location parameter µ and different scale parameters σ1, σ2. The loss
function is taken as (5.2.2). We use Monte-Carlo simulation method to compute the simulated
risk values of each estimator. The accuracy of simulation has been checked and the standard
error is of the order of 10−4. It can be easily seen that with respect to the loss function (5.2.2),
the risk values of all the estimators are function of τ = σ2/σ1 > 0, for fixed sample sizes and
fixed η. The simulation study has been conducted for wide range of the parameters, however for
illustrative purpose we report the simulated risk values for some selected choices of parameters.
Let us define the percentage of relative risk improvements (RRI) of all the estimators with
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respect to the MLE as,

R1 =
(
1− Risk(dMM)

Risk(dML)

)
× 100, R2 =

(
1− Risk(dMV )

Risk(dML)

)
× 100,

R3 =
(
1− Risk(dMV I)

Risk(dML)

)
× 100, R4 =

(
1− Risk(dMVA)

Risk(dML)

)
× 100.

Also we define the percentage of risk improvement of improved estimators over their old
counterparts,

P1 =
(
1− Risk(dMV I)

Risk(dMV )

)
× 100, P2 =

(
1− Risk(dMVA)

Risk(dMV )

)
× 100.

Further we define the censoring factors (k1 and k2) for both the populations as the ratio of
number of observed samples to the total number of samples. That is for the first population
k1 = r/m and for the second population k2 = s/n. It can be noticed that the censoring factors
k1 and k2 always lie between 0 and 1. A massive simulation study has been carried out by
considering various combinations of sample sizes and η. However, for illustration purpose, we
present (in Table 5.2.1) the percentage of relative risk performances as well as percentage of
risk improvements for sample sizes (m,n) = (8, 8) and for η = 1.5, η = 0.01. The first
column gives the values of τ. Corresponding to one value of τ, there corresponds four values
of relative risk performances for an estimator. These four values correspond to k1 = k2 =
0.25, 0.50, 0.75, 1.00 respectively.

The following conclusions can be drawn from our simulation study as well as the Tables
5.2.1-5.2.4, and Figures 5.2.1-5.2.4.

1. Let η > r/m or (r + 1)/2m. The percentage of relative risk values R2 increases with
respect to both τ and k1, k2, whereas the relative risk value R3 increases for small
values of τ and then starts decreasing after attending maximum somewhere near 1.0.
The behavior of R1 is not clear.

2. Let η < 1/m. The relative risk improvement (R1, R2, R4) of all the estimators with
respect to the MLE dML increases as the censoring factors k1 and k2 increase for fixed
sample sizes. Also R1, R2 and R4 increases with respect to τ and attains its maximum
somewhere near τ = 1, then slowly decrease. Further, as τ becomes large the risk values
of all the estimators converge to some constant value.

3. The percentage of improvements of dMV I over dMV (P1) is maximum around 39% and
the percentage of improvements of dMVA over dMV (P2) is near to 15%.As the censoring
factors k1 and k2 increase the percentage of improvement becomes negligible. The
maximum improvement is obtained near τ = 1.

4. Consider for small values of η that is η < 1/m.When the values of τ are close to 0, the
estimator dMM has the maximum percentage of relative risk performance. For moderate
values of τ (0.25 < τ < 3.00), the estimator dMVA has the maximum percentage of
relative risk improvement and is seen to vary from 30% to 47%.However, for large values
of τ (≥ 3.0) the estimator dMM performs the best and the percentage of relative risk
improvement is seen near to 45%.

5. Consider that η > 1.0 or η > (r + 1)/2m.When the values of τ are close to 0, and k1
and k2 also close to 0, the estimator dMM has the maximum percentage of relative risk
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performance and is seen near to 1%. For moderate to large values of τ, the estimator dMV I

has the maximum percentage of relative risk improvement and it is seen near to 36%.

6. From our simulation study we notice, that the amount of improvement of dMVA over
dMV decreases as the values of τ increases. The improvement is not significant as the
values of k1 and k2 increases for η < 1/m. We also observe that the estimator dMV I

gives maximum percentage of improvement over dMV for the case η > r/m.

7. On the basis of our computational results, we recommend the following. When η is small
and the values of τ are close to 0, we recommend to use dMM . For moderate values
of τ we recommend to use dMVA whereas for large values of τ the estimator dMM is
recommended. When η > (r + 1)/2m, and for small values of τ, we recommend to use
dMM whereas for moderate to large values of τ we recommend using the estimator dMV I .

8. A similar type of observations have been made for other combinations of k1, k2 and the
sample sizes.

5.2.5 Conclusions
We have considered the estimation of quantiles of two exponential populations assuming that
the location parameters are equal using type-II censored samples from a decision theoretic point
of view. We have derived some baseline estimators such as the MLE, the modified MLE and
the UMVUE for the quantile θ.We also obtained estimators which dominate the UMVUE for
η > 1/m. Further inadmissibility results have been proved for affine equivariant estimators.
It should be noted that when the censoring factors k1 and k2 become 1, the problem reduces
to the full sample problem which was earlier studied by several authors including Sharma and
Kumar (1994) . Though they have obtained improved estimators analytically, it is essential to
know the percentage of risk improvement approximately. In this regard our results add one
more dimension to their results and may be handy for practical purposes for k1 = k2 = 1. Also
we have obtained the results when the sample sizes are not equal and k1 = k2 = 1. The present
work also extends the results of Tripathy (2016) to the case of η ̸= 0 which is new.

Next, we present an example where our model fits well and compute the estimates for the
quantile θ = µ+ ησ1.

Example 5.2.1 (Simulated Data) Suppose two brands of electronic devices each having 30
units are placed for a life testing experiment. It is known that, the lifetimes (in hours) of each
unit follows an exponential distribution with same minimum guarantee time. The experimenter
could able to observe only 10 units of failures (in hours) from each brands of devices because of
some constraints. The data for both the brands are obtained as Brand 1: 59.69, 60.18, 68.33,
113.78, 155.78, 203.83, 237.86, 243.67, 251.62, 301.49; Brand 2: 37.62, 73.03, 100.54, 103.61,
106.37, 110.72, 119.26, 135.59, 169.75, 177.03.

On the basis of above data, we have computed the statistic values as Z = 37.62, V1 =
219.91, and V2 = 118.18. Let η = 2.0, then the various estimates for the quantile θ = µ+ ησ1
have been computed as dML = 1357.13, dMM = 1349.448, dMV = 1399.84, dMV I = 1279.88.
In this situation, we recommend to use dMV I .
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Table 5.2.1: Relative risk performances of different estimators
for quantile θ when η = 1.5 with k1 = k2 = 0.25, 0.50, 0.75, 1.00

τ ↓ (m,n)=(8,8) (m,n)=(16,16)
R1 R2 R3 P1 R1 R2 R3 P1
0.71 -81.30 -25.16 30.96 0.46 -27.64 -0.42 21.32

0.05 2.30 -25.68 1.73 21.81 1.10 -11.10 1.94 11.74
2.57 -11.89 3.83 14.05 2.47 -6.90 3.09 9.35
4.38 -6.71 5.34 11.29 2.43 -3.23 2.98 6.03
0.34 -48.47 2.60 34.40 0.59 -20.47 7.78 23.45

0.25 1.60 -17.28 9.07 22.47 1.12 -8.32 5.57 12.83
2.76 -9.13 8.51 16.17 1.19 -4.11 4.12 7.90
3.91 -4.96 8.31 12.65 1.82 -2.34 4.09 6.29
0.18 -22.85 21.96 36.48 0.27 -9.89 15.60 23.20

0.75 1.02 -8.88 16.86 23.65 0.17 -3.31 7.95 10.90
1.20 -4.34 11.87 15.54 0.51 -1.96 5.73 7.54
1.65 -2.30 9.86 11.89 0.90 -1.16 4.93 6.02
0.13 -17.03 26.53 37.22 0.24 -7.54 17.68 23.45

1.00 0.53 -6.06 17.61 22.31 0.14 -2.57 8.85 11.14
1.11 -3.57 13.11 16.11 0.57 -1.67 6.72 8.26
1.32 -1.80 10.10 11.69 0.75 -0.92 5.42 6.29
0.19 -14.31 29.15 38.02 0.19 -6.15 18.09 22.84

1.25 0.19 -4.27 17.18 20.57 0.19 -2.15 9.29 11.21
0.95 -2.85 14.30 16.68 0.30 -1.17 6.53 7.62
1.04 -1.42 10.64 11.90 0.51 -0.68 5.44 6.08
0.01 -6.92 32.14 36.54 0.00 -2.66 18.37 20.48

2.00 0.11 -2.38 18.66 20.56 0.07 -1.13 10.04 11.04
0.50 -1.56 14.41 15.73 0.20 -0.68 7.31 7.93
0.29 -0.64 9.60 10.18 0.31 -0.39 5.73 6.10
0.03 -5.36 33.31 36.71 0.05 -2.32 19.73 21.55

2.50 0.14 -1.90 19.78 21.27 0.19 -1.14 11.73 12.73
0.12 -0.86 13.15 13.90 0.13 -0.48 7.30 7.75
0.28 -0.49 10.91 11.35 0.13 -0.24 5.35 5.59
0.06 -4.59 34.50 37.38 0.03 -1.75 20.51 21.88

3.00 0.07 -1.40 19.40 20.52 0.04 -0.64 10.68 11.25
0.16 -0.77 13.47 14.13 0.16 -0.44 8.04 8.45
0.35 -0.46 11.33 11.75 0.23 -0.25 6.40 6.63
0.04 -3.53 34.62 36.85 0.00 -0.94 19.65 20.40

3.50 0.17 -1.38 20.94 22.02 0.06 -0.58 10.92 11.44
0.28 -0.76 15.01 15.66 0.06 -0.28 7.31 7.58
0.16 -0.30 10.47 10.74 0.12 -0.16 5.72 5.88
0.08 -3.33 35.63 37.70 0.00 -1.04 20.49 21.31

4.00 0.09 -0.99 20.04 20.83 0.13 -0.64 12.44 13.01
0.18 -0.57 15.11 15.59 0.02 -0.19 7.45 7.63
0.30 -0.34 11.68 11.98 0.10 -0.13 5.76 5.89
0.00 -2.27 34.00 35.47 0.01 -0.90 20.51 21.22

4.50 0.05 -0.75 20.25 20.85 0.09 -0.50 11.62 12.06
0.11 -0.42 14.85 15.21 0.12 -0.26 8.36 8.60
0.29 -0.31 11.93 12.20 0.12 -0.13 6.28 6.41
0.01 -2.02 33.30 34.62 0.00 -0.66 19.43 19.96

5.00 0.07 -0.72 19.60 20.18 0.05 -0.35 11.64 11.95
0.00 -0.25 13.44 13.66 0.02 -0.14 7.46 7.60
0.03 -0.13 10.35 10.47 -0.03 -0.04 4.76 4.80
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Table 5.2.2: Relative risk performances of different estimators
for quantile θ when η = 1.5 with k1 = k2 = 0.25, 0.50, 0.75, 1.00

τ ↓ (m,n)=(8,12) (m,n)=(12,8)
R1 R2 R3 P1 R1 R2 R3 P1
0.96 -74.69 -18.35 32.25 0.57 -44.07 -6.27 26.24

0.05 2.06 -23.81 2.89 21.56 1.00 -14.95 1.53 14.34
3.04 -11.81 4.72 14.79 2.62 -8.69 3.09 10.84
4.10 -6.18 5.55 11.05 3.48 -4.59 3.93 8.15
0.66 -36.55 12.28 35.76 0.32 -33.59 3.04 27.42

0.25 1.68 -14.10 11.97 22.84 1.32 -13.02 5.41 16.31
1.75 -6.70 9.18 14.89 1.90 -6.67 4.73 10.70
3.86 -4.30 9.76 13.49 2.78 -3.66 5.08 8.43
0.42 -13.66 30.09 38.49 -0.02 -18.70 13.92 27.48

0.75 0.87 -5.87 18.54 23.06 0.64 -7.40 9.62 15.85
1.28 -3.27 14.07 16.79 1.29 -4.19 7.78 11.49
1.24 -1.55 10.49 11.86 1.99 -2.38 6.75 8.92
0.40 -10.26 32.37 38.66 -0.06 -14.85 17.75 28.39

1.00 0.36 -3.42 18.90 21.59 0.82 -6.71 11.41 16.98
0.74 -2.14 13.82 15.63 0.80 -3.03 7.80 10.52
0.38 -0.85 9.15 9.92 0.93 -1.57 5.90 7.36
0.45 -9.04 33.31 38.84 0.12 -14.16 19.57 29.55

1.25 0.43 -3.00 19.89 22.23 0.31 -4.78 11.11 15.17
0.67 -1.71 14.19 15.64 0.78 -2.70 8.44 10.85
0.74 -0.87 11.13 11.89 0.84 -1.33 6.43 7.66
0.07 -3.07 34.16 36.12 0.01 -8.42 22.89 28.89

2.00 0.23 -1.52 21.03 22.22 0.18 -2.90 12.98 15.43
0.20 -0.72 13.63 14.25 0.46 -1.61 9.70 11.13
0.34 -0.43 11.15 11.53 0.81 -0.99 7.54 8.45
0.16 -2.95 35.83 37.68 -0.04 -6.21 23.61 28.08

2.50 0.11 -0.95 20.18 20.94 0.01 -1.95 12.38 14.06
0.21 -0.58 14.86 15.35 0.36 -1.26 9.75 10.88
0.25 -0.31 10.87 11.15 0.13 -0.48 6.47 6.92
0.14 -2.30 36.46 37.89 -0.03 -5.13 23.72 27.45

3.00 0.06 -0.67 19.93 20.47 -0.01 -1.48 12.96 14.23
0.24 -0.53 15.75 16.20 0.10 -0.80 8.90 9.63
0.20 -0.24 11.47 11.69 0.35 -0.52 7.54 8.02
0.13 -1.99 36.12 37.37 -0.08 -3.62 24.94 27.56

3.50 0.07 -0.56 21.17 21.61 0.05 -1.40 13.40 14.60
0.21 -0.44 15.79 16.15 0.19 -0.77 9.84 10.53
0.13 -0.17 10.96 11.12 0.26 -0.41 7.69 8.07
0.07 -1.29 34.91 35.74 -0.06 -3.31 23.97 26.41

4.00 0.04 -0.40 20.45 20.77 0.09 -1.29 14.10 15.20
0.00 -0.16 13.36 13.50 0.13 -0.63 9.73 10.29
0.16 -0.16 11.69 11.83 0.16 -0.31 7.44 7.73
0.04 -0.90 33.84 34.43 -0.01 -3.18 26.06 28.34

4.50 0.03 -0.32 20.53 20.79 0.03 -0.96 14.17 14.99
0.05 -0.18 14.30 14.46 0.07 -0.47 10.04 10.46
0.10 -0.11 11.61 11.71 0.03 -0.20 7.01 7.20
0.07 -1.02 35.49 36.15 -0.07 -2.22 24.20 25.85

5.00 0.02 -0.27 20.05 20.27 0.07 -0.94 14.61 15.41
0.09 -0.20 15.06 15.23 0.13 -0.50 10.04 10.49
0.09 -0.10 11.37 11.47 0.09 -0.21 7.52 7.71
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Table 5.2.3: Relative risk performances of different estimators
for quantile θ when η = 0.01 with k1 = k2 = 0.25, 0.50, 0.75, 1.00

τ ↓ (m,n)=(8,8) (m,n)=(16,16)
R1 R2 R4 P2 R1 R2 R4 P2
27.00 9.91 13.03 3.46 40.55 38.37 38.43 0.09

0.05 39.18 35.78 35.85 0.11 45.39 44.57 44.57 0.00
42.54 41.43 41.43 0.01 46.79 46.52 46.52 0.00
45.60 44.97 44.97 0.00 47.66 47.43 47.43 0.00
30.01 19.93 30.70 13.45 42.42 41.88 43.10 2.09

0.25 40.72 39.08 40.51 2.35 46.37 46.34 46.54 0.37
43.63 42.81 43.25 0.76 47.95 47.94 47.92 0.03
46.21 45.78 45.93 0.26 48.62 48.57 48.59 0.04
30.63 22.39 33.70 14.57 43.04 42.94 44.20 2.19

0.75 41.95 40.92 43.00 3.52 47.17 47.16 47.44 0.52
44.83 44.66 45.40 1.33 47.98 47.99 48.10 0.22
46.66 46.58 46.88 0.56 48.56 48.52 48.64 0.22
31.03 23.76 34.46 14.03 42.29 41.93 43.20 2.18

1.00 42.72 41.64 43.31 2.86 46.96 47.13 47.36 0.43
46.57 46.59 47.19 1.11 48.31 48.22 48.33 0.21
47.02 47.20 47.34 0.27 48.31 48.35 48.38 0.06
31.34 23.79 33.63 12.90 43.06 42.69 43.97 2.22

1.25 41.72 41.27 42.61 2.28 47.17 47.05 47.30 0.47
45.93 46.00 46.51 0.94 47.73 47.94 47.99 0.11
46.04 46.02 46.20 0.34 48.52 48.64 48.65 0.02
30.62 22.18 31.21 11.60 42.73 41.95 42.98 1.78

2.00 41.62 40.94 41.84 1.52 46.10 46.35 46.43 0.13
44.85 44.65 44.90 0.45 47.70 47.76 47.78 0.03
46.08 45.92 46.06 0.26 49.00 48.97 48.98 0.00
29.23 20.06 28.40 10.42 41.28 40.82 41.52 1.17

2.50 40.87 39.80 40.51 1.18 45.71 45.76 45.81 0.08
44.15 43.98 44.11 0.23 47.73 47.81 47.82 0.01
45.98 46.12 46.15 0.05 47.34 47.30 47.30 0.00
29.44 20.13 28.29 10.22 39.62 39.13 39.66 0.87

3.00 41.07 40.09 40.64 0.91 45.32 45.20 45.22 0.03
44.29 43.72 43.88 0.27 48.69 48.80 48.80 0.00
46.14 46.13 46.16 0.05 47.19 47.21 47.21 0.00
29.12 21.00 27.45 8.16 39.59 38.56 38.95 0.64

3.50 40.39 39.02 39.51 0.79 44.45 44.35 44.37 0.03
43.77 43.25 43.35 0.17 46.60 46.53 46.53 0.00
46.04 45.89 45.91 0.02 46.77 46.72 46.72 0.00
28.68 17.91 24.47 7.99 39.46 38.51 38.90 0.63

4.00 39.96 38.87 39.24 0.61 45.10 44.85 44.86 0.01
43.27 42.84 42.88 0.07 46.23 46.10 46.10 0.00
45.06 44.76 44.77 0.02 47.33 47.19 47.19 0.00
28.99 17.85 24.42 7.99 38.24 37.19 37.48 0.47

4.50 39.56 37.88 38.19 0.49 43.70 43.61 43.62 0.01
44.91 44.41 44.46 0.08 46.00 45.91 45.91 0.00
44.80 44.48 44.47 0.01 47.04 46.89 46.89 0.00
27.82 16.13 22.36 7.42 38.32 37.75 37.97 0.36

5.00 39.62 38.22 38.47 0.39 43.32 42.74 42.75 0.01
43.76 42.95 42.98 0.04 45.61 45.53 45.53 0.00
44.58 44.27 44.28 0.02 46.72 46.76 46.76 0.00
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Table 5.2.4: Relative risk performances of different estimators
for quantile θ when η = 0.01 with k1 = k2 = 0.25, 0.50, 0.75, 1.00

τ ↓ (m,n)=(8,12) (m,n)=(12,8)
R1 R2 R4 P2 R1 R2 R4 P2
28.60 15.31 17.24 2.28 35.75 29.88 30.58 1.00

0.05 39.36 36.21 36.24 0.03 42.83 41.65 41.67 0.03
42.84 41.53 41.53 0.00 45.01 44.40 44.40 0.00
43.82 43.02 43.02 0.00 46.17 45.85 45.85 0.00
33.76 26.27 34.71 11.45 35.95 30.94 35.83 7.07

0.25 42.18 41.10 42.35 2.13 43.41 42.57 43.16 1.02
44.42 43.95 44.43 0.85 46.00 45.56 45.80 0.42
46.37 46.38 46.44 0.12 46.65 46.47 46.50 0.06
36.07 32.66 38.76 9.06 35.28 31.91 37.63 8.40

0.75 43.16 42.64 43.94 2.26 43.82 43.33 44.46 1.99
45.62 45.34 45.97 1.14 45.81 45.64 46.06 0.78
47.86 47.80 48.09 0.55 47.10 46.97 47.20 0.43
35.27 32.17 37.56 7.95 35.51 32.45 37.95 8.14

1.00 44.17 43.76 44.66 1.59 44.37 44.42 45.02 1.07
46.07 46.11 46.41 0.55 46.61 46.53 46.78 0.46
47.70 47.70 47.91 0.39 47.49 47.60 47.76 0.29
36.31 32.98 37.71 7.05 34.38 30.51 36.39 8.45

1.25 44.09 43.69 44.57 1.54 43.96 43.62 44.53 1.61
45.96 45.69 46.15 0.85 46.05 46.12 46.37 0.46
47.09 47.03 47.19 0.29 47.54 47.53 47.67 0.28
37.27 33.76 37.85 6.17 33.99 30.70 35.43 6.82

2.00 43.74 43.17 43.74 0.99 44.15 43.97 44.41 0.77
46.13 45.90 46.05 0.27 46.15 46.17 46.31 0.26
47.85 47.82 47.91 0.15 47.78 47.81 47.84 0.06
36.54 32.06 35.96 5.73 32.51 28.63 33.45 6.75

2.50 43.34 42.83 43.21 0.66 42.21 41.43 41.88 0.75
45.25 44.70 44.83 0.22 45.75 45.88 45.95 0.12
46.75 46.50 46.53 0.05 46.43 46.22 46.25 0.03
35.65 31.73 34.76 4.43 32.90 28.67 32.56 5.44

3.00 43.58 43.08 43.38 0.53 41.56 40.41 40.67 0.44
44.39 43.75 43.83 0.14 45.45 45.41 45.43 0.04
46.84 46.75 46.76 0.02 45.90 45.60 45.60 0.00
36.01 31.77 34.96 4.67 31.16 25.05 29.17 5.50

3.50 43.05 42.22 42.48 0.45 41.60 41.22 41.44 0.36
44.37 43.94 43.98 0.06 44.32 44.10 44.12 0.03
47.53 47.51 47.52 0.01 45.92 45.92 45.92 0.00
34.99 31.17 33.92 3.98 30.47 25.14 28.46 4.44

4.00 42.20 41.49 41.72 0.39 41.70 40.91 41.04 0.20
44.18 43.73 43.77 0.06 44.10 44.06 44.07 0.02
46.48 46.29 46.30 0.01 46.00 45.86 45.86 0.00
33.97 28.41 31.66 4.54 29.74 23.26 26.44 4.14

4.50 41.32 40.45 40.60 0.25 40.89 40.18 40.28 0.15
43.89 43.49 43.50 0.02 43.61 43.38 43.39 0.01
45.72 45.51 45.52 0.00 45.59 45.47 45.46 0.00
33.80 28.91 31.24 3.28 30.32 25.48 27.81 3.13

5.00 42.32 41.88 41.98 0.16 41.05 40.34 40.38 0.06
43.44 42.93 42.93 0.00 44.28 44.43 44.44 0.00
45.97 45.78 45.78 0.00 46.13 46.08 46.09 0.00
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Figure 5.2.1: Comparison of risk values of improved estimators for quantile θ when k1 = k2 =
0.5, m = n = 8 and η = 0.01
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Figure 5.2.2: Comparison of risk values of improved estimators for quantile θ when k1 = k2 =
1.00, m = n = 8 and η = 0.01
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Figure 5.2.3: Comparison of risk values of improved estimators for quantile θ when k1 = k2 =
0.5, m = n = 8 and η = 1.50
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Figure 5.2.4: Comparison of risk values of improved estimators for quantile θ when k1 = k2 =
1.0, m = n = 8 and η = 1.50
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5.3 Estimating Ordered Scale of Two Exponential
Populations with a Common Location under Type-II
Censoring

In this section we consider the simultaneous estimation of ordered scale parameters of two
exponential populations under equality restriction on the location parameter and the samples
are type-II censored.

Suppose type-II censored samples are available from two exponential populations with a
common location parameter µ and possibly different scale parameters σ1 and σ2 respectively.
More specifically, let X(1) ≤ X(2) ≤ · · · ≤ X(r) (2 ≤ r ≤ m) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(s)
(2 ≤ s ≤ n) be ordered observations taken from two random samples of sizes m and n which
follow Ex(µ, σ1) and Ex(µ, σ2) respectively. This type of data are known as type-II right
censored data. Here Ex(µ, σi) denotes the exponential population with location parameter ‘µ’
and scale parameter σi, i = 1, 2. The probability density function of Ex(µ, σi) is given by

f(t, µ, σi) =
1

σi
exp

{
−

(t− µ

σi

)}
, t > µ, σi > 0,−∞ < µ <∞, i = 1, 2. (5.3.1)

The parameter ‘µ’ which is common to both populations is known as the location parameter
(equivalently minimum guarantee time) and the σi’s are known as the scale parameters
(equivalently residual life times). The problem is to estimate the vector parameter σ˜ = (σ1, σ2)
under the assumption that σ1 ≤ σ2 using a decision theoretic approach. The loss function is
taken as

L(d̂˜, σ˜) =
2∑
i=1

(di − σi
σi

)2

, (5.3.2)

where d̂˜ = (d1, d2) is an estimator for σ˜ = (σ1, σ2). The performance of an estimator will be
evaluated using the risk function defined as

R(d̂˜, σ˜) = Eσ˜{L(d̂˜, σ˜)}. (5.3.3)

The model we consider in this section has applications in industry, business, medical
research in the study of reliability, life testing and survival analysis. For example, two new
brands of electronic devices say brandA (which uses traditional technology) and brand B (which
uses modern technology), havingm(≥ 2) and n(≥ 2) units each are placed for life testing. The
experimenter could observe only r (≤ m) and s (≤ n) number of failures from brand A and
brand B respectively, due to some constraints like time and cost. It may be noted that, the
lifetime of each unit from the two brands is random and follows exponential distribution. It is
also expected that the minimum guarantee time (µ) for both brands are the same due to market
competition, whereas the residual life time (σ1) of brand A can not exceed the residual life time
(σ2) of brand B. Under this situation one may be interested in drawing inference on the vector
parameter σ˜ = (σ1, σ2). For some more examples of similar nature we refer to Jana and Kumar
(2015), and Barlow et al. (1972).

It should be noted that, for full sample case (that is r = m, and s = n) Jana and

0The content of this chapter (Section 5.3) has been published in Chilean Journal of Statistics, Vol. 8, No. 1,
Pages 87 - 101.
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Kumar (2015) considered the componentwise estimation of ordered scale parameters of two
exponential populations when the location parameter is common.

5.3.1 Some Basic Results

In this section, we consider the model (5.3.1) and obtain some basic estimators for the vector
parameter σ˜ = (σ1, σ2) assuming that σ1 ≤ σ2. To be very specific, let X(1) ≤ X(2) ≤ · · · ≤
X(r), (2 ≤ r ≤ m) be the r smallest ordered observations taken from a random sample of size
m(≥ 2) which follows Ex(µ, σ1). Likewise let Y(1) ≤ Y(2) ≤ · · · ≤ Y(s), (2 ≤ s ≤ n) be the s
smallest ordered observations taken from a random sample of size n(≥ 2) followingEx(µ, σ2).
We assume that these two samples have been drawn independently from two populations. Let
us denote Z = min(X(1), Y(1)), Vx = Ux − Z, Vy = Uy − Z, where Ux = [

∑r
i=1X(i) + (m −

r)X(r)]/m and Uy = [
∑s

i=1 Y(i)+(n− s)Y(s)]/n. The complete and sufficient statistics for this
problem is given by (Z, Vx, Vy). The joint probability density function of (Z, Vx, Vy) is given
by

fVx,Vy ,Z(vx, vy, z) =
mrns

σr1σ
s
2

[ vr−1
x vs−2

y

ΓrΓ(s− 1)
+

vr−2
x vs−1

y

ΓsΓ(r − 1)

]
exp{−m

σ1
(vx + z − µ)− n

σ2
(vy + z − µ)}, vx > 0, vy > 0, z > µ.

(5.3.4)

The statistic Z is independent of (Vx, Vy). In the next lines to follow, when we say the MLE
(the UMVUE) of the vector parameter σ˜ = (σ1, σ2) we mean “the collection of the MLEs (the
UMVUEs) for each component σi and put together to form the vector”.

When there is no order restriction among the scale parameters σ1 and σ2 the MLE of σ˜ =
(σ1, σ2) is given by

σ̂˜ml =
(m
r
Vx,

n

s
Vy

)
= (σ̂1ml, σ̂2ml), say, (5.3.5)

(see Tripathy (2016) and Chiou and Cohen (1984)). The uniformly minimum variance unbiased
estimator for the vector σ˜ = (σ1, σ2) is given by

σ̂˜mv =
(m
r

(
Vx + V −1

∗

)
,
n

s

(
Vy + V −1

∗

))
= (σ̂1mv, σ̂2mv), say, (5.3.6)

where V∗ = ( Vx
r−1

)−1 + ( Vy
s−1

)−1 (see Tripathy (2016) and Chiou and Cohen (1984)).
When it is known a priori that the scale parameters follow certain ordering that is σ1 ≤ σ2,

these estimators need not be good enough to estimate the vector σ˜. Hence improved estimatorscan be obtained by using its isotonic regression with proper weights. Using the mini-max
formula (see Barlow et al. (1972)), one can easily write the restricted MLEs of both σ1 and
σ2 as

σ̂ir = min
i≤t1≤2

max
1≤s1≤i

Av(s1, t1), i = 1, 2,
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where

Av(s1, t1) =

∑t1
j=s1

njσ̂j∑t1
j=s1

nj
, s1 ≤ t1, s1, t1 ∈ {1, 2}.

Here we denote n1 = r and n2 = s. Explicitly we obtain the estimators for σ1 and σ2 as

σ̂1r = min
(m
r
Vx,

mVx + nVy
r + s

)
and σ̂2r = max

(n
s
Vy,

mVx + nVy
r + s

)
.

Using these estimators for σ1 and σ2we construct the restrictedMLE (call it σ̂˜rm) of σ˜ = (σ1, σ2)
as

σ̂˜rm = (σ̂1r, σ̂2r). (5.3.7)

It is easy to observe that the risk of the MLE σ̂˜ml and the UMVUE σ̂˜mv are respectively givenby

R(σ̂˜ml, σ˜) = 1

r
+

1

s
,

and

R(σ̂˜mv, σ˜) = 1

r
+

1

s
+
{( m

rσ1

)2

+
( n

sσ2

)2}
E(V −2

∗ ).

Theorem 5.3.1 Let σ̂˜ml and σ̂˜rm be the MLE and the restricted MLE of σ˜ = (σ1, σ2) : σ1 ≤ σ2
respectively. Let the loss function be the sum of the quadratic losses as given in (5.3.2). Then
we have R(σ̂˜ml, σ˜) ≥ R(σ̂˜rm, σ˜).
Proof 5.3.1 Consider the risk difference of σ̂˜rm and σ̂˜ml :

∆ = R(σ̂˜rm, σ˜)−R(σ̂˜ml, σ˜)
= K1

∫ ∞

1

(1− z)zr−2{(1 + z)− 2ρ}{z(s− 1)nr + (r − 1)ms}
(rz + sρ)r+s+1

dz

+K2

∫ ∞

1

(z − 1)zr−2{(1 + z)− 2z/ρ}{z(s− 1)nr + (r − 1)ms}
(rz + sρ)r+s+1

dz

= ∆1 +∆2, (say),

where K1 = ss+1rr−1Γ(r+s+1)ρs

(r+s)2(m+nρ)
, K2 = ss−1rr+1Γ(r+s+1)ρs+2

(r+s)2(m+nρ)
and 0 < ρ = σ1/σ2 ≤ 1. It is easy

to observe that, both terms ∆1 and ∆2 are non-positive when 0 < ρ ≤ 1. This completes the
proof of the theorem.

Next, we consider a general class of estimators for estimating the vector σ˜ = (σ1, σ2) and
derive a sufficient condition for improving estimators in this class under the assumption, that
the scale parameters are ordered, that is, σ1 ≤ σ2. Consider the class of estimators

Dc = {d̂˜c = (d̂c1 , d̂c2) : c = (c1, c2), c1, c2 ∈ R}, (5.3.8)

where d̂c1 = c1Vx, and d̂c2 = c2Vy. This class contains the MLE with choices of c1 = m/r and
c2 = n/s.
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To proceed further we define a vector c∗ for the class of estimators Dc as,

c∗ = (min(max(c1, c1∗), c∗1),min(max(c2, c2∗), c∗2)), (5.3.9)

where

c1∗ =
m(r(m+ n))−m

mr(r − 1) + nr(r + 1)
, c∗1 =

m

r
, c2∗ =

n

s+ 1
, and c∗2 =

n(s(m+ n))− n

ns(s− 1) +ms(s+ 1)
.

Next, we prove a general inadmissibility result for the class of estimators Dc.

Theorem 5.3.2 Let d̂˜c be the class of estimators for estimating the vector parameter σ˜ as given
in (5.3.8) and the loss function be taken as in (5.3.2). Define a vector c∗ as in (5.3.9). Then the
class of estimators d̂˜c is inadmissible and is improved by d̂˜c∗ if c ̸= c∗.

Proof 5.3.2 Let us consider the risk of the estimator d̂˜c with respect to the loss function (5.3.2).
R(d̂˜c, σ̂˜) = E

( d̂c1 − σ1
σ1

)2

+ E
( d̂c2 − σ2

σ2

)2

.

The above risk is a convex function in both c1 and c2, hence the minimizing choices of c1 and
c2 have been obtained as

ĉ1 =
σ1EVx
EV 2

x

and ĉ2 =
σ2EVy
EV 2

y

.

We note that EVx = r
m
σ1 − p−1, EVy = s

n
σ2 − p−1, EV 2

x = nσ1
mσ2

p−1{ r(r−1)σ2
n

+ r(r+1)σ1
m

},
EV 2

y = mσ2
nσ1

p−1{ s(s−1)σ1
m

+ s(s+1)σ2
n

} where we denote p = m
σ1
+ n

σ2
. Substituting all these values

and after some simplification we get

ĉ1(ρ) =
m(r(m+ nρ)−m)

mr(r − 1) + nr(r + 1)ρ
, and ĉ2(ρ) =

n(s(m+ nρ)− nρ)

s(s− 1)nρ+ s(s+ 1)m
,

where we denote ρ = σ1/σ2; 0 < ρ ≤ 1.
In order to obtain the result we need to obtain the supremum and infimum of ĉ1(ρ) and

ĉ2(ρ) with respect to ρ for fixed sample sizes. It is easy to observe that the function ĉ1(ρ) is a
decreasing function in ρ (0 < ρ ≤ 1). Hence its infimum is attained as ρ→ 1 and supremum is
attained as ρ→ 0. We have

inf ĉ1(ρ) =
m(r(m+ n))−m

mr(r − 1) + nr(r + 1)
= c1∗ and sup ĉ1(ρ) =

m

r
= c∗1.

Similarly the infimum and supremum of ĉ2(ρ) are obtained as

inf ĉ2(ρ) =
n

s+ 1
= c2∗ and sup ĉ2(ρ) =

n(s(m+ n))− n

ns(s− 1) +ms(s+ 1)
= c∗2.

Utilizing these results one can easily define the vector c∗ as given in (5.3.9). Now using
the orbit-by-orbit improvement technique of Brewster and Zidek (1974), we have proved the
theorem.
Remark 5.3.1 The class of estimators Dc = {d̂˜c : c = (c1, c2), c1∗ ≤ c1 ≤ c∗1, c2∗ ≤ c2 ≤ c∗2}
is complete.
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Remark 5.3.2 Consider the restricted parameter space σ1 ≤ σ2. The estimator d̂˜c∗ dominates
d̂˜c if either c1 ∈ [c1∗, c

∗
1]
c or c2 ∈ [c2∗, c

∗
2]
c. The MLE σ̂˜ml can not be improved by using Theorem5.3.2 as for the MLE, c1 ∈ [c1∗, c

∗
1] and c2 ∈ [c2∗, c

∗
2]. Here [a, b]c denotes the compliment of the

interval [a, b] for any real numbers a and b.

In the next section, we prove some general inadmissibility results for the classes of affine
and scale equivariant estimators. As a consequence estimators dominating the MLE σ̂˜ml, theUMVUE σ̂˜mv and the restricted MLE σ̂˜rm have been obtained.

5.3.2 Improving Equivariant Estimators under Order Restriction
In this section, we introduce the concept of invariance to our problem and derive a sufficient
condition for improving estimators which are equivariant under affine group of transformations.

Let GA = {ga,b : ga,b(x) = ax + b, a > 0,−∞ < b < ∞} be a group of affine
transformations. Let us define, Vx = Ux − Z, Vy = Uy − Z. Under the transformation ga,b,
the sufficient statistics being transformed as Vx → aVx, Vy → aVy and Z → aZ + b. The
parameters µ → aµ + b, and σ˜ → aσ˜ as σi → aσi, i = 1, 2 such that the ordering remains
intact. In order that the loss function (5.3.2) to be invariant, the estimator d˜ = (d1, d2) satisfies
the relation

d˜(aZ + b, aVx, aVy) = ad˜(Z, Vx, Vy).
Substituting b = −aZ where a = 1/Vx, and simplifying, we obtain the form of an affine
equivariant estimator for estimating the vector prameter σ˜ based on (Vx, Vy, Z) as,

d˜(Z, Vx, Vy) = Vx(ξ1(V ), ξ2(V )),

= d˜ξ, (say), (5.3.10)

where ξ = (ξ1, ξ2), V = Vy
Vx

and ξi : [0,∞) → R, i = 1, 2 are real valued functions of V.
To prove the main result of this section let us define a vector valued function ξ∗ for the class

of estimators d˜ξ as
ξ∗(v) = (min(max(ξ1, ξ1∗), ξ∗1),max(ξ2, ξ2∗)), (5.3.11)

where ξ1∗ = m
r+s

, ξ∗1 = m+nv
r+s

, and ξ2∗ = m+nv
r+s

.

Theorem 5.3.3 Let d˜ξ be the affine class of estimators as given in (5.3.10) for estimating
the vector parameter σ˜. Let the loss function be taken as (5.3.2). Then the estimator d˜ξ is
inadmissible and is improved by d˜ξ∗ if there exist some values of the parameters σ1, σ2; σ1 ≤ σ2,
such that P (d˜ξ ̸= d˜ξ∗) > 0.

Proof 5.3.3 The proof of the theorem can be done by using a result of Brewster and Zidek
(Brewster and Zidek (1974)). To complete the proof, let us consider the conditional risk function
of d˜ξ given V.

R(d˜ξ, σ˜|V = v) = E
{(dξ1 − σ1

σ1

)2

|V = v
}
+ E

{(dξ2 − σ2
σ2

)2

|V = v
}
.

The above risk function is a convex function of both ξ1 and ξ2. The minimizing choices of these
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functions are obtained as

ξ̂1(v) =
σ1E(Vx|V = v)

E(V 2
x |V = v)

and ξ̂2(v) =
σ2E(Vx|V = v)

E(V 2
x |V = v)

. (5.3.12)

It is easy to observe that, the conditional probability density function of Vx given V = v, is
a gamma distribution with shape parameter ‘r + s− 1’ and scale parameter ‘ σ1σ2

mσ2+nσ1v
’. Here

the gamma probability density function with a shape parameter ‘α’ and a scale parameter ‘β’
is defined as

g(x, α, β) =
1

Γ(α)βα
xα−1e−

x
β , x > 0, α > 0, β > 0.

So, the conditional expectations are calculated and are obtained as

E(Vx|V = v) =
(r + s− 1)σ1σ2
mσ2 + nσ1v

, (5.3.13)

and

E(V 2
x |V = v) = (r + s− 1)(r + s)

( σ1σ2
mσ2 + nσ1v

)2

. (5.3.14)

Substituting the conditional expectations from (5.3.13) and (5.3.14) in (5.3.12) and simplifying
we get the minimizing choices as,

ξ̂1(v) =
m+ nρv

r + s
and ξ̂2(v) =

m+ nρv

ρ(r + s)
.

In order to apply the Brewster-Zidek technique (Brewster and Zidek (1974)), it is necessary to
obtain the supremum and infimum of both ξ̂1(v) and ξ̂2(v) for fixed values of v and fixed values
of sample sizes. It is easy to note that ξ̂1(v) is an increasing function of 0 < ρ ≤ 1 for fixed v
andm,n, r, s. Hence the infimum and supremum of ξ̂1(v) are obtained as

inf
0<ρ≤1

ξ̂1(v) =
m

r + s
= ξ1∗, say and sup

0<ρ≤1
ξ̂1(v) =

m+ nv

r + s
= ξ∗1 , say.

Similarly it is easy to obtain the spremum and infimum of ξ̂2 and are given by

inf
0<ρ≤1

ξ̂2(v) =
m+ nv

r + s
= ξ2∗, say and sup

0<ρ≤1
ξ̂2(v) = +∞.

Now using the above results it is easy to define the vector valued function ξ∗ as given in (5.3.11).
Using Theorem 5.3.3 of Brewster and Zidek (see Brewster and Zidek (1974)) for improving
equivariant estimators we get R(d˜ξ, σ˜) ≥ R(d˜ξ∗ , σ˜) when 0 < ρ ≤ 1. Hence the proof is
completed.

Remark 5.3.3 The class of estimators d˜ξ such that ξ1∗ ≤ ξ1 ≤ ξ∗1 and ξ2 ≥ ξ2∗ form an
admissible class of estimators within the class of all estimators of the form d˜ξ.

Next we apply the Theorem 5.3.3 to obtain improved estimators which dominate the MLE
σ̂˜ml, the UMVUE σ̂˜mv and the restricted MLE σ̂˜rm when σ1 ≤ σ2.We note that, the estimators
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σ̂˜ml, σ̂˜mv and σ̂˜rm belong to the class given in (5.3.10). Applying Theorem 5.3.3, we obtain the
improved estimators dominating σ̂˜ml, σ̂˜mv and σ̂˜rm respectively as

σ̂˜am = Vx[min(max(ξ1m(V ), ξ1∗(V )), ξ∗1(V )),max(ξ2m(V ), ξ2∗(V )))], (5.3.15)

where ξ1m(V ) = m
r
, ξ2m(V ) = n

s
V,

σ̂˜av = Vx[min(max(ξ1v(V ), ξ1∗(V )), ξ∗1(V )),max(ξ2v(V ), ξ2∗(V )))], (5.3.16)

where ξ1v(V ) = m
r
(1 + V

(r−1)V+(s−1)
), ξ2v(V ) = n

s
(V + V

(r−1)V+(s−1)
), and

σ̂˜ar = Vx[min(max(ξ1r(V ), ξ1∗(V )), ξ∗1(V )),max(ξ2r(V ), ξ2∗(V )))], (5.3.17)

where

ξ1r(V ) =

{
m
r
, if m

r
Vx ≤ n

s
Vy,

m+nV
r+s

, if m
r
Vx >

n
s
Vy,

ξ2r(V ) =

{
n
s
V, if m

r
Vx ≤ n

s
Vy,

m+nV
r+s

, if m
r
Vx >

n
s
Vy.

Remark 5.3.4 We note that the risk values of the above improved estimators could not be
obtained in closed form. Hence a simulation study has been done in Section 5.3.3, to evaluate
numerically the risk performances of all these estimators.

Next, we consider a smaller group of transformations which will lead to form a larger class
of estimators. Consider the smaller scale group of transformationsGS = {ga : ga(x) = ax, a >
0}.With the help of this group structure, the sufficient statistics being transformed as Z → aZ,
Vx → aVx and Vy → aVy. Also the parameters µ → aµ, σi → aσi; i = 1, 2, so that the vector
σ˜ → aσ˜. The loss function (5.3.2) will be invariant if the estimator δ˜ satisfies the relation

δ˜(aZ, aVx, aVy) = aδ˜(Z, Vx, Vy).
Choosing a = 1/Vx, and simplifying we get the form of a scale equivariant estimator for
estimating σ˜, based on (Z, Vx, Vy) as

δ˜(Z, Vx, Vy) = Vx(ψ1(U, V ), ψ2(U, V ))

= δ˜ψ, say (5.3.18)

where U = Z/Vx, V = Vy/Vx and ψ1 and ψ2 are real valued functions of U and V.
Let us define the following functions

ψ0
1 =

m(1 + u) + n(u+ v)

r + s+ 1
, ψ0

11 =
m(1 + u)

r + s+ 1
, ψ0

2 = ψ0
1. (5.3.19)

For the scale equivariant estimator δ˜ψ define the vector valued function ψ∗ as,

ψ∗ = (ψ∗
1, ψ

∗
2) (5.3.20)

131



Chapter 5 Estimating Quantiles and Ordered Scales of Two Exponential Populations

where the functions ψ∗
1 and ψ∗

2 are defined as

ψ∗
1 =


ψ0
1, if u > 0, ψ1 > ψ0

1 or u < 0, ψ1 < ψ0
1, u+ v < 0,

ψ0
11, if u < 0, ψ1 < ψ0

11, u+ v > 0,
ψ1, otherwise.

and

ψ∗
2 =

{
ψ0
2, if u < 0, ψ2 < ψ0

2,
ψ2, otherwise.

Theorem 5.3.4 Let δ˜ψ be the class of scale equivariant estimators for estimating the vector
parameter σ˜ as given in (5.3.18). Let the loss function be as given in (5.3.2). Define the vector
valued function ψ∗ as in (5.3.20). Then the estimator δ˜ψ is inadmissible and is improved by δ˜ψ∗

if there exist some values of parameters µ, σ1, σ2 : σ1 ≤ σ2, such that P (δ˜ψ∗ ̸= δ˜ψ) > 0.

Proof 5.3.4 Let us consider the conditional risk function of δ˜ψ given (U, V ) = (u, v).

R(δ˜ψ, µ, σ˜|(U, V )) =
1

σ2
1

E{(Vxψ1(U, V )− σ1)
2|(U, V )}+ 1

σ2
2

E{(Vxψ2(U, V )− σ2)
2|(U, V )}.

It is easy to observe that the above risk function is a sum of two convex functions in ψ1 and ψ2,
hence their minimizing choices have been obtained as

ψ̂1(u, v) =
σ1E(Vx|(U, V ) = (u, v))

E(V 2
x |(U, V )) = (u, v)

=

∫
D
tr+s exp{−(m(1 + u) + nρ(u+ v))t}dt∫

D
tr+s+1 exp{−(m(1 + u) + nρ(u+ v))t}dt

,

where D = {t : 0 < t <∞, σ1ut > µ}.

ψ̂2(u, v) =
σ2E(Vx|(U, V ) = (u, v))

E(V 2
x |(U, V )) = (u, v)

=

∫
D∗ t

r+s exp{−(m(1 + u)ρ∗ + n(u+ v))t}dt∫
D∗ tr+s+1 exp{−(m(1 + u)ρ∗ + n(u+ v))t}dt

,

where D∗ = {t : 0 < t <∞, σ2ut > µ}, and ρ∗ = 1/ρ.

To apply Brewster and Zidek (1974) technique, we first obtain the bounds for the first
component ψ̂1(u, v). Let

G1(c) =

∫ ∞

c

tr+s exp{−(m(1 + u) + nρ(u+ v))t}dt

and

G2(c) =

∫ ∞

c

tr+s+1 exp{−(m(1 + u) + nρ(u+ v))t}dt,

where c = max(0, µ/σ1u). Next we consider three separate cases to analyze the terms and
obtain the bounds.
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Case I: Let µ > 0, u > 0. In this case c = µ/σ1u. It is easy to see that ψ̂1(u, v) is a decreasing
function of µ ∈ (0,∞) as G2(c) ≥ cG1(c). Hence we obtained

inf ψ̂1(u, v) = 0, and sup ψ̂1(u, v) =
m(1 + u) + n(u+ v)

r + s+ 1
.

Case II: Let µ < 0, u < 0. In this case we have c = µ/σ1u so that the range of integration
becomes (0, c). Hence

G1(c) =

∫ c

0

tr+s exp{−(m(1 + u) + nρ(u+ v))t}dt

and

G2(c) =

∫ c

0

tr+s+1 exp{−(m(1 + u) + nρ(u+ v))t}dt.

In this case we can easily see that, G2(c) ≤ cG1(c). The function ψ̂1(u, v) is an increasing
function of µ as G2(c) ≤ cG1(c). We have limµ→−∞ ψ̂1(u, v) = limµ→−∞

G1(c)
G2(c)

=
m(1+u)+nρ(u+v)

r+s+1
. Hence

inf
ρ,µ
ψ̂1(u, v) =

m(1 + u)

r + s+ 1
, if u+ v > 0,

=
m(1 + u) + n(u+ v)

r + s+ 1
if u+ v < 0.

In this case the supremum is obtained as

sup
µ→0

ψ̂1(u, v) = ∞.

Case III: Let µ < 0, u > 0. In this case c = 0. Hence the function ψ̂1(u, v) simplifies to

ψ̂1(u, v) =
m(1 + u) + nρ(u+ v)

r + s+ 1
.

We obtain the supremum and infimum as

inf
ρ→0

ψ̂1(u, v) =
m(1 + u)

r + s+ 1
,

and

sup
ρ→1

ψ̂1(u, v) =
m(1 + u) + n(u+ v)

r + s+ 1
.

To obtain the supremum and infimum of the second component we proceed as follows. Let
us denote,

H1(c) =

∫ ∞

c

tr+s exp{−(m(1 + u)ρ∗ + n(u+ v))t},

133



Chapter 5 Estimating Quantiles and Ordered Scales of Two Exponential Populations

and

H2(c) =

∫ ∞

c

tr+s+1 exp{−(m(1 + u)ρ∗ + n(u+ v))t},

where c = max(0, µ/σ2u). As in the case of the first component we also consider three separate
cases for the second component as below.
Case I: µ > 0, u > 0. In this case c = µ/σ2u. It is easy to observe that ψ2(u, v) is a decreasing
function of µ. So infµ,ρ ψ2(u, v) = limµ→∞ ψ2(u, v) = 0 and supµ,ρ ψ2(u, v) = ∞.

Case II: µ < 0, u < 0. In this case c = µ/σ2u. Also we have observed that ψ2(u, v) is an
increasing function of µ. Hence infψ2(u, v) = limµ→−∞ ψ2(u, v) = m(1+u)ρ∗+n(u+v)

r+s+1
. Hence

infψ2(u, v) =
m(1+u)+n(u+v)

r+s+1
. Also we obtain supψ2(u, v) = ∞.

Case III: µ < 0, u > 0. In this case c = 0 and hence ψ2(u, v) = m(1+u)ρ∗+n(u+v)
r+s+1

. Hence
supψ2(u, v) = ∞ and infψ2(u, v) =

m(1+u)+n(u+v)
r+s+1

.

Next define the following functions.

ψ0
1 =

m(1 + u) + n(u+ v)

r + s+ 1
, ψ0

11 =
m(1 + u)

r + s+ 1
, ψ0

2 = ψ0
1.

For the scale equivariant estimator δψ define the functions ψ∗
1 and ψ∗

2 as follows.

ψ∗
1 = ψ0

1, if u > 0, ψ1 > ψ0
1 or u < 0, ψ1 < ψ0

1, u+ v < 0,

= ψ0
11, if u < 0, ψ1 < ψ0

11, u+ v > 0,

= ψ1, otherwise.

ψ∗
2 = ψ0

2, if u < 0, ψ2 < ψ0
2,

= ψ2, otherwise.

Using the above results it is easy to define a vector ψ∗ as

ψ∗ = (ψ∗
1, ψ

∗
2).

Using the orbit-by-orbit improvement technique of Brewster and Zidek (1974), the theorem is
proved.

Next, we use the above result to obtain estimators improving upon the MLE σ̂˜ml, the UMVUE
σ̂˜mv, and the restricted MLE σ̂˜rm.We note that the estimators σ̂˜ml, σ̂˜mv, and σ̂˜rm, also belongto the class given in (5.3.18). As an application of Theorem 5.3.4, the following improved
estimators have been obtained. The estimator which improves upon σ̂˜ml is given by

σ̂˜sm = Vx(ψ
∗
1m, ψ

∗
2m) (5.3.21)

where

ψ∗
1m =


ψ0
1, if u > 0, ψ1m > ψ0

1 or u < 0, ψ1m < ψ0
1, u+ v < 0,

ψ0
11, if u < 0, ψ1m < ψ0

11, u+ v > 0,
ψ1m, otherwise,
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ψ∗
2m =

{
ψ0
2, if u < 0, ψ2m < ψ0

2,
ψ2m, otherwise,

and

ψ1m =
m

r
, ψ2m =

n

s
Vy.

The estimator which improves upon σ̂˜mv is given by
σ̂˜sv = Vx(ψ

∗
1v, ψ

∗
2v) (5.3.22)

where

ψ∗
1v =


ψ0
1, if u > 0, ψ1v > ψ0

1 or u < 0, ψ1v < ψ0
1, u+ v < 0,

ψ0
11, if u < 0, ψ1v < ψ0

11, u+ v > 0,
ψ1v, otherwise.

ψ∗
2v =

{
ψ0
2, if u < 0, ψ2v < ψ0

2,
ψ2v, otherwise,

and

ψ1v =
m

r

(
1 +

V

(r − 1)V + (s− 1)

)
, ψ2v =

n

s

(
V +

V

(r − 1)V + (s− 1)

)
.

Similarly the estimator which improves upon σ̂˜rm is given by

σ̂˜sr = Vx(ψ
∗
1r, ψ

∗
2r) (5.3.23)

where

ψ∗
1r =


ψ0
1, if u > 0, ψ1r > ψ0

1 or u < 0, ψ1r < ψ0
1, u+ v < 0,

ψ0
11, if u < 0, ψ1r < ψ0

11, u+ v > 0,
ψ1r, otherwise.

ψ∗
2r =

{
ψ0
2, if u < 0, ψ2r < ψ0

2,
ψ2r, otherwise,

and

ψ1r =

{
m
r
, if m

r
Vx ≤ n

s
Vy,

m+nV
r+s

, if m
r
Vx >

n
s
Vy,

ψ2r =

{
n
s
V, if m

r
Vx ≤ n

s
Vy,

m+nV
r+s

, if m
r
Vx >

n
s
Vy.

Remark 5.3.5 The improved estimators σ̂˜sm, σ̂˜sv and σ̂˜sr obtained by using Theorem 5.3.4
have been numerically compared in Section 5.3.3.
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5.3.3 Numerical Comparisons
In Section 5.3.2, we have proposed improved estimators namely σ̂˜am, σ̂˜av, σ̂˜ar, σ̂˜sm, σ̂˜sv, andσ̂˜sr, for σ˜ = (σ1, σ2) using Theorem 5.3.3 and 5.3.4 when there is order restriction on σis that
is, σ1 ≤ σ2. These estimators have been improved upon σ̂˜ml, σ̂˜mv, σ̂˜rm. In Section 5.3.1, wehave also shown that the estimator σ̂˜rm improves upon σ̂˜ml. It seems impossible to comparethe risk performances of all the estimators analytically. The performance of each estimator was
evaluated numerically using simulations. In order to numerically compare the performances of
all the estimators, we have generated 20,000 random type-II censored samples each from two
exponential populations with a common location parameter µ and different scale parameters σ1
and σ2 such that σ1 ≤ σ2. It is easy to observe that the risk function of all these estimators with
respect to the loss (5.3.2) is only a function of τ, where 0 < τ = σ1/σ2 ≤ 1 for fixed sample
sizes m,n, r and s.We note that the risk of the estimator σ̂˜ml is constant 1/r + 1/s, however
the simulated risk values have been used for comparison purpose in our simulation. To proceed
further we define the following percentage of relative risk for all the estimators with respect to
the estimator σ̂˜mv as

PR1 =
(
1−

Risk(σ̂˜ml)
Risk(σ̂˜mv)

)
× 100, PR2 =

(
1−

Risk(σ̂˜rm)
Risk(σ̂˜mv)

)
× 100,

PR3 =
(
1−

Risk(σ̂˜am)
Risk(σ̂˜mv)

)
× 100, PR4 =

(
1−

Risk(σ̂˜av)
Risk(σ̂˜mv)

)
× 100,

PR5 =
(
1−

Risk(σ̂˜ar)
Risk(σ̂˜mv)

)
× 100, PR6 =

(
1−

Risk(σ̂˜sm)
Risk(σ̂˜mv)

)
× 100,

PR7 =
(
1−

Risk(σ̂˜sv)
Risk(σ̂˜mv)

)
× 100, PR8 =

(
1−

Risk(σ̂˜sr)
Risk(σ̂˜mv)

)
× 100.

The simulated risk values are checked correct up to 4 decimal places. It has been observed from
our simulation study that the risk values of the estimators σ̂˜rm, σ̂˜am and σ̂˜ar are very similar,hence for presentation purpose we have excluded the estimators σ̂˜ar and σ̂˜am.The censoring factors for the first and second populations are k1 = r/m and k2 = s/n
respectively. We note that the values of k1 and k2 are always lie between 0 and 1. The simulation
study has been done for various combinations of sample sizes and τ ranging from 0 to 1. The
simulated risk values as well as the percentage of relative risk have been computed for the
choices m = n, m ̸= n, k1 = k2 and k1 ̸= k2. The risk values of σ̂˜ml (labeled as MLE) σ̂˜mv(labeled as UMV), σ̂˜rm (labeled as RML), σ̂˜av (labeled as AMV), σ̂˜sm (labeled as SML), σ̂˜sv(labeled as SMV) and σ̂˜sr (labeled as SRM) have been presented in the Figures 5.3.1 and 5.3.2.
Specifically, we have presented the risk values of all the estimators for the choicesm = n = 8,
k1 = k2 = 0.25 (Figure 5.3.1(a)), k1 = k2 = 0.75 (Figure 5.3.1(b)), k1 = 0.25, k2 = 0.75
(Figure 5.3.1(c)), k1 = 0.75, k2 = 0.25 (Figure 5.3.1(d)). The graphs for the unequal sample
sizes m = 12, n = 20, k1 = k2 = 0.25 (Figure 5.3.1(e)) and k1 = k2 = 0.75 (Figure 5.3.1(f))
are also presented. Similarly, in the Figure 5.3.2(a)-5.3.2(f) the risk values have been presented
for the sample sizesm = 12, n = 20 andm = 20, n = 12 with various combinations of k1 and
k2 (mentioned in the graphs).

The following observations have been made from our simulation study, see Tables
5.3.1-5.3.4 and Figures 5.3.1, 5.3.2.

1. The percentage of relative risk performances of each estimator with respect to σ̂˜mvdecreases as the censoring factors for first and second populations k1 and k2 increase

136



Estimating Quantiles and Ordered Scales of Two Exponential Populations Chapter 5

from 0 to 1 for fixed values of m,n. However, as the sample sizes increase for fixed
censoring factors (k1 and k2) the percentage of relative risk decreases.

2. The percentage of relative risk improvement for σ̂˜ml varies between 3% and 41%.
The percentage of relative risk improvement for σ̂˜rm varies between 5% and 46%.
The percentage of relative risk improvement for σ̂˜av varies between 0% and 51%. The
percentage of relative risk improvement for σ̂˜sm varies between 2% and 41%. The
percentage of relative risk improvement for σ̂˜sv varies between 0% and 51% whereas
for σ̂˜sr it is varying between 2% and 46%.

3. The percentage of risk improvement for σ̂˜rm over σ̂˜ml varies between 0% and 34%.
The percentage of risk improvement of σ̂˜av over σ̂˜mv has been quite significant and isvarying between 1% and 51%. The percentage of risk improvement of σ̂˜sm over σ̂˜mlvaries between 2% and 27%. The percentage of risk improvement for σ̂˜sv over σ̂˜mv variesbetween 0% and 51% however, for σ̂˜sr over σ̂˜rm is very small and is noticed between 0%
and 2%.

4. The maximum percentage of relative risk improvement has been seen for each estimator
when τ → 1, and k1 and k2 tending to 0.

5. For small values of τ (∼0), the percentage of relative risk performance of σ̂˜sr has thehighest percentage of relative risk improvement ∼46%. For moderate values of τ the
estimator σ̂˜sr also has the best performance. However, as τ approaches 1, it competeswith σ̂˜av.

6. Similar observations hold for other combinations of r,m and s, n.

7. Based on above discussion and our simulation study, we recommend using the estimator
σ̂˜sr when the values of τ is moderate or very small (∼0). For large values of τ ≤ 1 either
of the estimators σ̂˜sr or σ̂˜av can be used.

Example 5.3.1 Suppose two brands (brand A and B) of electronic devices have been introduced
in the market. It is known that the brand A uses traditional methodology where as brand B uses
modern technology. The lifetimes are assumed to follow exponential distribution. It is also
expected that the minimum guarantee time for both the products remain same due to market
competition where as the residual life times of brand A never exceeds the residual life times of
brand B. Say 20 units from each brand A and B put for a life test. Then the following failure
times (in hours) from brand A and B have been observed . Brand A: 760.60, 768.34, 1159.43,
1179.04, 1224.18, 1966.99, 4125.64, 4216.05, 7554.39, 8415.60, Brand B: 259.29, 698.10,
857.57, 1471.89, 1987.32, 3486.55, 4922.22, 4941.09, 5333.26, 5869.24. Here m = n = 20
and r = s = 10. On the basis of these type-II censored samples we can easily compute
Z = 259.29, Vx = 5517.01 and Vy = 4166.65. The various estimators for the vector parameter
σ̂˜ = (σ1, σ2) are computed as, σ̂˜ml = (11034.04, 8333.30), σ̂˜mv = (11561.56, 8860.82),
σ̂˜rm = (9683.67, 9683.67), σ̂˜av = (9683.67, 9683.67), σ̂˜sm = (9716.44, 8333.30), σ̂˜sv =
(9716.44, 8860.82), σ̂˜sr = (9683.67, 9683.67). In this situation we recommend to use the
estimator σ̂˜sr.
5.3.4 Conclusions
We have considered the simultaneous estimation of ordered scale parameters σis using type-II
right censored samples from two exponential populations with common location parameter
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in a decision theoretic approach. We note that Jana and Kumar (2015) considered the
componentwise estimation of ordered scale parameters when full samples (that is r = m, s = n)
are available from two exponential populations. We have succeeded in applying Brewster and
Zidek (1974) technique for simultaneous estimation of parameters. We have derived a sufficient
condition for improving estimators belonging to a broad class of equivariant estimators. This
class contains the MLE, and the UMVUE for estimating σ˜. As a consequence, estimators
dominating the MLE, and the UMVUE in terms of risk values are obtained using the prior
information σ1 ≤ σ2. In fact the results obtained in this section generalizes some of their results
for simultaneous estimation of ordered scale parameters σis using samples from two exponential
populations with a common location. Also we discuss an example where our model fits well
and compute estimates for the ordered scale parameters σis.
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Figure 5.3.1: Comparison of risk values of various estimators of σ˜
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Figure 5.3.2: Comparison of risk values of various estimators of σ˜
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Table 5.3.1: Comparison of relative risk performances of different estimators of σ˜ = (σ1, σ2)
when (m,n) = (8, 8) and k1 = k2 = 0.25, 0.50, 0.75, 1.00

τ PR1 PR2 PR3 PR4 PR5 PR6 PR7 PR8
29.14 29.34 29.34 02.05 29.34 29.39 02.75 29.42

0.05 13.55 13.55 13.55 00.01 13.55 13.55 00.01 13.55
08.56 08.56 08.56 00.00 08.56 08.56 00.00 08.56
06.41 06.41 06.41 00.00 06.41 06.41 00.00 06.41
27.00 27.91 27.91 05.49 27.91 27.97 07.47 28.11

0.10 11.54 11.65 11.65 00.39 11.65 11.67 00.50 11.68
07.52 07.54 07.54 00.04 07.54 07.55 00.05 07.55
05.24 05.24 05.24 00.00 05.24 05.24 00.01 05.24
25.33 26.96 26.96 09.58 26.96 26.88 12.13 27.30

0.15 10.62 11.15 11.15 01.47 11.15 11.14 01.79 11.27
06.63 06.73 06.73 00.24 06.73 06.75 00.32 06.77
04.94 04.98 04.98 00.07 04.98 04.98 00.09 04.99
21.72 26.21 26.21 17.53 26.21 25.68 19.89 26.89

0.25 09.89 11.75 11.75 04.39 11.75 11.55 04.91 12.11
06.21 06.83 06.83 01.41 06.83 06.83 01.72 07.00
03.95 04.21 04.21 00.61 04.21 04.22 00.71 04.30
20.52 27.56 27.56 21.67 27.56 26.03 23.43 28.40

0.35 08.29 12.88 12.88 09.06 12.88 12.03 09.81 13.55
04.72 07.88 07.88 05.24 07.88 07.24 05.22 08.35
04.45 06.04 06.04 02.64 06.04 05.71 02.68 06.28
20.75 30.14 30.14 25.40 30.14 27.47 26.18 31.06

0.45 08.45 17.07 17.07 14.78 17.07 14.66 14.58 18.06
04.93 10.53 10.53 08.60 10.53 08.91 08.23 11.19
03.80 07.82 07.82 05.98 07.82 06.78 05.83 08.37
18.16 31.03 31.03 27.13 31.03 26.61 26.83 31.84

0.55 07.34 19.14 19.14 17.74 19.14 14.98 16.64 20.10
04.72 14.63 14.63 13.68 14.63 11.20 12.34 15.55
03.16 12.06 12.06 11.55 12.06 08.95 10.04 12.77
18.38 33.16 33.16 28.18 33.16 27.45 27.00 33.89

0.65 08.16 24.42 24.42 22.80 24.42 18.48 20.58 25.53
04.07 17.76 17.76 17.46 17.76 12.06 14.60 18.62
03.32 15.98 15.98 15.50 15.98 10.88 12.79 16.80
16.55 34.16 34.16 29.53 34.16 27.22 27.40 34.89

0.75 07.89 26.97 26.97 24.80 26.97 19.02 21.10 27.88
04.72 22.51 22.51 21.26 22.51 14.67 16.95 23.29
03.69 21.32 21.32 20.40 21.32 13.51 15.60 22.04
17.19 36.46 36.46 30.17 36.46 28.68 27.44 37.06

0.85 07.36 28.27 28.27 25.41 28.27 18.84 20.78 28.85
04.32 25.95 25.95 24.78 25.95 15.98 18.99 26.52
02.61 23.86 23.86 23.32 23.86 13.60 16.89 24.39
15.94 36.16 36.16 29.04 36.16 27.81 26.13 36.68

0.95 06.66 29.98 29.98 27.14 29.98 19.94 22.12 30.50
04.74 27.66 27.66 25.65 27.66 16.96 19.35 28.07
02.91 27.05 27.05 25.84 27.05 15.27 18.22 27.32
16.97 37.88 37.88 29.52 37.88 29.82 26.74 38.41

1.00 06.16 29.36 29.36 26.39 29.36 18.36 20.73 29.62
04.56 29.87 29.87 27.76 29.87 18.97 21.44 30.10
03.10 28.05 28.05 26.36 28.05 16.07 18.64 28.19
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Table 5.3.2: Comparison of relative risk performances of different estimators of σ˜ = (σ1, σ2)
when (m,n) = (12, 12) and k1 = k2 = 0.25, 0.50, 0.75, 1.00

τ PR1 PR2 PR3 PR4 PR5 PR6 PR7 PR8
17.60 17.62 17.62 00.19 17.62 17.63 00.30 17.64

0.05 08.25 08.25 08.25 00.00 08.25 08.25 00.00 08.25
05.76 05.76 05.76 00.00 05.76 05.76 00.00 05.76
03.79 03.79 03.79 00.00 03.79 03.79 00.00 03.79
16.70 17.05 17.05 01.24 17.05 17.06 01.64 17.15

0.10 06.93 06.94 06.94 00.02 06.94 06.94 00.02 06.95
04.46 04.46 04.46 00.00 04.46 04.46 00.00 04.46
03.97 03.97 03.97 00.00 03.97 03.97 00.00 03.97
15.42 16.75 16.75 04.16 16.75 16.78 04.91 17.06

0.15 06.21 06.23 06.23 00.07 06.23 06.24 00.10 06.24
04.01 04.02 04.02 00.02 04.02 04.03 00.02 04.03
03.10 03.10 03.10 00.00 03.10 03.10 00.00 03.10
13.22 16.02 16.02 08.24 16.02 15.85 09.53 16.64

0.25 05.71 06.38 06.38 01.37 06.38 06.29 01.50 06.51
03.64 03.74 03.74 00.26 03.74 03.76 00.31 03.79
02.83 02.87 02.87 00.08 02.87 02.87 00.11 02.88
11.57 17.16 17.16 13.26 17.16 15.93 14.16 18.03

0.35 06.35 09.47 09.47 05.21 09.47 08.78 05.31 09.90
04.07 05.35 05.35 02.06 05.35 05.08 02.04 05.56
02.95 03.33 03.33 00.65 03.33 03.29 00.72 03.43
11.76 21.24 21.24 18.88 21.24 18.82 19.24 22.38

0.45 05.48 11.37 11.37 09.17 11.37 09.81 08.84 12.16
03.66 07.06 07.06 04.91 07.06 06.09 04.70 07.52
02.76 04.99 04.99 03.06 04.99 04.33 02.84 05.26
10.65 23.60 23.60 21.70 23.60 19.38 20.77 24.60

0.55 04.51 14.81 14.81 14.28 14.81 11.47 12.91 15.78
02.64 10.47 10.47 09.96 10.47 07.71 08.62 11.15
02.40 08.22 08.22 07.30 08.22 06.25 06.22 08.70
10.33 25.52 25.52 23.42 25.52 19.89 21.86 26.49

0.65 05.04 19.41 19.41 18.50 19.41 13.81 15.79 20.36
03.08 15.23 15.23 14.66 15.23 10.21 11.79 15.95
02.07 13.24 13.24 13.04 13.24 08.63 10.14 13.83
09.91 28.96 28.96 26.22 28.96 21.13 23.32 29.73

0.75 04.27 22.47 22.47 21.56 22.47 14.47 17.28 23.28
02.47 20.02 20.02 19.69 20.02 12.06 14.81 20.74
02.01 17.97 17.97 17.90 17.97 11.24 13.55 18.71
09.06 29.83 29.83 26.42 29.83 20.85 22.81 30.49

0.85 04.56 26.22 26.22 25.01 26.22 16.62 19.53 26.85
03.36 24.27 24.27 23.40 24.27 15.21 17.62 24.91
02.04 22.87 22.87 22.53 22.87 13.36 16.00 23.42
09.40 31.48 31.48 27.09 31.48 21.31 22.56 31.89

0.95 04.52 28.58 28.58 26.74 28.58 17.68 20.48 28.95
02.58 26.64 26.64 25.57 26.64 14.68 17.66 26.90
02.16 25.98 25.98 25.23 25.98 14.93 17.51 26.32
09.82 32.72 32.72 27.89 32.72 22.66 23.22 33.08

1.00 04.51 29.13 29.13 26.61 29.13 17.23 19.53 29.31
02.61 28.25 28.25 26.91 28.25 15.67 18.53 28.38
02.16 26.32 26.32 25.21 26.32 14.47 16.93 26.43
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Table 5.3.3: Comparison of relative risk performances of different estimators of σ˜ = (σ1, σ2)
when (m,n) = (12, 20) and k1 = k2 = 0.25, 0.50, 0.75, 1.00

τ PR1 PR2 PR3 PR4 PR5 PR6 PR7 PR8
20.85 20.85 20.85 00.00 20.85 20.85 00.01 20.85

0.05 09.67 09.67 09.67 00.00 09.67 09.67 00.00 09.67
06.95 06.95 06.95 00.00 06.95 06.95 00.00 06.95
04.67 04.67 04.67 00.00 04.67 04.67 00.00 04.67
16.94 17.01 17.01 00.25 17.01 17.02 00.29 17.04

0.10 08.03 08.03 08.03 00.00 08.03 08.03 00.00 08.03
05.30 05.30 05.30 00.00 05.30 05.30 00.00 05.30
03.91 03.91 03.91 00.00 03.91 03.91 00.00 03.91
14.26 04.78 14.78 01.42 14.78 14.83 01.60 14.91

0.15 07.25 07.32 07.32 00.09 07.32 07.30 00.08 07.32
05.20 05.20 05.20 00.00 05.20 05.20 00.01 05.20
03.25 03.25 03.25 00.00 03.25 03.25 00.00 03.25
12.11 14.76 14.76 06.30 14.76 14.68 06.87 15.29

0.25 05.57 05.82 05.82 00.52 05.82 05.81 00.57 05.87
03.76 03.81 03.81 00.09 03.81 03.81 00.10 03.82
03.07 03.09 03.09 00.03 03.09 03.09 00.03 03.09
10.42 16.51 16.51 11.84 16.51 16.10 12.53 17.38

0.35 05.30 07.54 07.54 03.64 07.54 07.29 03.68 07.85
03.48 04.30 04.30 01.23 04.30 04.28 01.30 04.44
02.04 02.17 02.17 00.23 02.17 02.17 00.26 02.20
08.97 20.95 20.95 19.75 20.95 19.50 20.02 22.10

0.45 04.11 09.48 09.48 08.18 09.48 08.87 08.21 10.15
02.44 04.86 04.86 03.46 04.86 04.57 03.49 05.18
02.35 03.57 03.57 01.73 03.57 03.42 01.70 03.73
08.07 24.62 24.62 25.34 24.62 22.04 25.07 25.88

0.55 04.14 14.80 14.80 14.74 14.80 13.00 14.16 15.64
02.64 09.34 09.34 08.88 09.34 08.31 08.57 09.92
01.93 06.05 06.05 05.46 06.05 05.43 05.25 06.48
07.46 27.14 27.14 28.35 27.14 23.55 27.40 28.25

0.65 03.72 19.98 19.98 21.19 19.98 17.00 20.01 21.05
02.30 15.34 15.34 16.15 15.34 12.72 14.75 16.12
01.55 12.02 12.02 12.60 12.02 10.02 11.50 12.64
07.20 30.36 30.36 31.70 30.36 26.14 30.34 31.43

0.75 03.33 25.13 25.13 26.50 25.13 20.33 23.93 25.96
02.62 20.99 20.99 22.00 20.99 17.08 19.80 21.89
01.60 18.46 18.46 19.57 18.46 14.87 17.37 19.21
05.88 30.67 30.67 31.75 30.67 24.99 29.53 31.32

0.85 03.96 28.17 28.17 28.79 28.17 22.35 25.56 28.87
02.48 26.24 26.24 27.46 26.24 20.98 24.25 26.99
01.95 25.36 25.36 26.28 25.36 19.99 22.74 25.96
06.48 33.71 33.71 34.04 33.71 27.87 31.58 34.12

0.95 03.02 30.77 30.77 31.80 30.77 24.50 28.34 31.15
02.26 29.56 29.56 30.72 29.56 23.37 26.78 29.93
01.51 29.72 29.72 30.88 29.72 23.10 26.40 30.00
05.91 31.40 31.40 31.24 31.40 25.04 28.54 31.65

1.00 02.78 30.26 30.26 31.02 30.26 23.26 26.98 30.38
01.52 28.53 28.53 29.59 28.53 21.16 24.81 28.60
01.35 28.53 28.53 29.50 28.53 21.41 24.61 28.63
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Table 5.3.4: Comparison of relative risk performances of different estimators of σ˜ = (σ1, σ2)
when (m,n) = (20, 12) and k1 = k2 = 0.25, 0.50, 0.75, 1.00

τ PR1 PR2 PR3 PR4 PR5 PR6 PR7 PR8
07.72 07.72 07.72 00.04 07.72 07.72 00.06 07.73

0.05 04.07 04.07 04.07 00.00 04.07 04.07 00.00 04.07
02.84 02.84 02.84 00.00 02.84 02.84 00.00 02.84
01.81 01.81 01.81 00.00 01.81 01.81 00.00 01.81
07.95 08.06 08.06 00.41 08.06 08.05 00.52 08.09

0.10 03.50 03.50 03.50 00.00 03.50 03.50 00.01 03.50
02.23 02.23 02.23 00.00 02.23 02.23 00.00 02.23
01.64 01.64 01.64 00.00 01.64 01.64 00.00 01.64
06.95 07.56 07.56 01.60 07.56 07.40 01.81 07.68

0.15 03.35 03.36 03.36 00.04 03.36 03.36 00.06 03.36
01.91 01.91 01.91 00.00 01.91 01.91 00.00 01.91
01.43 01.43 01.43 00.00 01.43 01.43 00.00 01.43
06.51 08.58 08.58 04.18 08.58 07.79 04.36 08.86

0.25 02.88 03.21 03.21 00.57 03.21 03.07 00.57 03.26
02.47 02.55 02.55 00.12 02.55 02.50 00.09 02.56
01.52 01.54 01.54 00.06 01.54 01.55 00.07 01.56
06.50 10.73 10.73 07.34 10.73 08.77 06.99 11.23

0.35 02.63 04.36 04.36 02.46 04.36 03.46 01.99 04.55
02.14 02.69 02.69 00.76 02.69 02.44 00.68 02.77
01.38 01.70 01.70 00.41 01.70 01.53 00.32 01.72
05.22 12.97 12.97 10.96 12.97 08.50 09.12 13.50

0.45 02.31 06.69 06.69 05.70 06.69 04.42 04.54 07.12
01.91 04.25 04.25 02.87 04.25 02.96 02.14 04.46
01.41 02.49 02.49 01.29 02.49 01.86 00.94 02.60
05.77 16.94 16.94 14.42 16.94 09.98 11.08 17.56

0.55 02.93 11.29 11.29 09.89 11.29 06.47 07.08 11.87
01.86 07.14 07.14 05.98 07.14 04.04 04.06 07.49
01.67 05.84 05.84 04.57 05.84 03.37 02.85 06.10
06.16 20.52 20.52 17.46 20.52 11.45 12.73 21.18

0.65 03.06 15.75 15.75 13.95 15.75 07.71 08.73 16.38
02.14 11.96 11.96 10.54 11.96 05.53 06.09 12.45
01.37 09.57 09.57 08.56 09.57 04.16 04.65 09.94
05.85 24.08 24.08 20.48 24.08 12.27 13.94 24.72

0.75 02.49 19.45 19.45 17.51 19.45 07.46 09.28 19.95
01.95 18.16 18.16 16.48 18.16 06.95 08.26 18.66
01.26 16.25 16.25 15.14 16.25 05.76 07.09 16.69
05.70 25.51 25.51 21.07 25.51 11.49 12.94 25.96

0.85 02.87 23.77 23.77 20.93 23.77 08.90 10.65 24.20
02.04 22.28 22.28 19.87 22.28 07.80 09.12 22.64
01.58 21.18 21.18 19.35 21.18 07.24 08.48 21.54
06.37 28.61 28.61 22.85 28.61 12.77 13.46 28.96

0.95 03.38 26.53 26.53 23.03 26.53 10.36 11.66 26.86
02.00 25.76 25.76 23.09 25.76 08.56 10.02 25.97
01.54 26.44 26.44 24.21 26.44 08.45 09.98 26.66
06.40 28.35 28.35 22.39 28.35 12.99 13.51 28.62

1.00 02.79 27.48 27.48 23.98 27.48 09.84 11.62 27.61
02.00 26.95 26.95 24.10 26.95 08.90 10.45 27.11
01.36 26.54 26.54 24.34 26.54 08.22 09.89 26.64
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Chapter 6

Estimating Ordered Quantiles of Two
Exponential Populations with a Common

Location or Scale

.

6.1 Introduction

In Chapter 5, we have considered the problem of estimating quantiles and ordered scale of
two exponential populations, under equality assumption on the location parameters when the
samples are type-II censored. In this chapter we consider the estimation of ordered quantiles of
two exponential populations under equality restriction on either the location or scale parameter
using decision theoretic approach. First we take up the problem of estimating ordered quantiles
of two exponential populations when the location parameter is common.

The problem of estimation of parameters when they known to follow certain ordering is
quite popular and has a rich literature in statistical inference. Particularly when the underlying
distribution is either exponential or normal, the problem has got considerable attention by
several researchers in the recent past due to its real world applications. Estimation of parameters
under order restrictions, has its origin in the study of isotonic regression, bio-assays, reliability
and arises naturally in various agricultural, industrial, and biomedical experiments. Suppose
two brands (say A and B) of mechanical products has been produced where brand A uses
traditional methodologies and brand B uses modern technology. The life times of these two
products being random follow exponential distributions. Also it is quite expected that the
minimum guarantee period or warranty period (µ) will remain same for both the brands due
to market competition, whereas the mean residual life times of A will never exceed that of
B. For another example, suppose an electronic item contains k important components and
has been put for a life testing experiment. The life times of these components may follow
exponential distribution. It is natural to assume that the minimum guarantee time to failure
remains same (because of the warranty period of the system), whereas the residual life times of
the individual components are ordered. For some more examples of this nature when the data
follow exponential distribution, we refer to Jana and Kumar (2015), Misra and Singh (1994),
and Kaur and Singh (1991). Under these circumstances it is customary to draw inference on the
associated parameters or some function of it, say, mean or quantiles.

The problem of estimating parameters under order restriction has been well addressed

0The content of this chapter has been published in Communications in Statistics - Theory and Methods,
DOI:10.1080/03610926.2018.1478100 (In Press)
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in Barlow et al. (1972) and Robertson et al. (1988). There most of the results are dealt
with deriving the maximum likelihood estimators (MLEs) and the isotonic versions of the
unrestricted MLEs. In the recent past, the problem has got attention by several authors,
particularly when the underlying distribution is exponential or normal. Vijayasree et al. (1995)
considered the component-wise estimation of ordered scale (location) parameters when the
location(scale) parameters are known as well as unknown. They proposed some new estimators
which improve upon the MLEs. Kaur and Singh (1991) considered the estimation of ordered
means of two exponential populations and showed that the isotonic version of the MLEs of
the means dominate the unrestricted MLEs in terms of the mean squared error (MSE). Misra
and Singh (1994) considered the componentwise estimation of ordered location parameters of
two exponential populations when the scale parameters are known. They have shown that the
minimum risk equivariant estimators (MREs) are inadmissible. Further they derived the class
of mixed estimators and show their efficiency with respect to the MREs. Vijayasree and Singh
(1993) considered the estimation of ordered means of two exponential populations and obtained
some inadmissibility results for the class of mixed estimators. We note that, along the same
direction, some study also has been done when the underlying distribution is normal. For some
results on estimation of ordered location (mean) and scale (standard deviation) parameters of
normal populations, we refer to Kumar and Tripathy (2011), Oono and Shinozaki (2005), Kumar
and Sharma (1988), Kumar and Sharma (1989) and the references cited therein.

The problem under consideration has its importance in the sense that, the estimators for
the common location parameter have been utilized to estimate the ordered quantiles. For the
same statistical model, Jana and Kumar (2015) considered the estimation of scale parameters
and proved some decision theoretic results. They proposed some new estimators for ordered
scale parameters which improve upon the usual estimators with respect to a quadratic loss. Also
Tripathy et al. (2014) considered the estimation of common location parameter when the scale
parameters follow some known ordering. In this study, we consider the estimation of quantiles
when it is known a priori that they satisfy the ordering, θ1 ≤ θ2, where θi; i = 1, 2 denotes the
pth quantile of the ith population. In fact, the basic purpose of the study is to extend some of the
results obtained by Jana and Kumar (2015) to the estimation of ordered quantiles. The problem
of estimation of quantiles is quite important for its practical applications as well as theoretical
challenges involve in it. Applications of quantiles are seen in the study of reliability, life testing
and survival analysis. We refer to Li et al. (2012) and Guo and Krishnamoorthy (2005) for
some applications and related results on quantiles. The estimation of quantiles of exponential
populations has been considered by several researchers lately in the literature. From a decision
theoretic view point, the problem has got attention by several researchers in the recent past.
We refer to Kumar and Sharma (1996) and Rukhin (1986) and the references cited therein for
some decision theoretic results on estimating quantiles of exponential populations. In Section
6.2.1, we derive some baseline estimators without assuming ordering of quantiles. Further,
using isotonic version of unrestricted MLEs, we propose some new estimators (call it restricted
MLEs) for the quantiles under order restriction. Using the existing estimators for ordered scale
and common location, we propose some new plug-in type of estimators for the ordered quantiles.
In Section 6.2.2, we consider some classes of estimators for the quantiles. Sufficient conditions
for improving estimators in this class have been proved. As a result, new estimators improving
upon the MLE, the UMVUE, a modification to the MLE and the restricted MLE have been
obtained. We note that an analytical comparison of the risk values of all these estimators is not
possible. Hence, a detailed simulation study has been done in Section 6.2.3, to compare the
percentage of relative risk improvement of all these proposed estimators. We recommend using
estimators for quantiles under order restrictions. Finally we conclude our remarks in Section
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6.2.4.
Next (in Section 6.3), we take up the problem of estimating ordered quantiles of two

exponential populations, under equality assumption on the scale parameters when the samples
drawn are type-II censored. The definition of type-II censoring scheme and its importance have
been discussed in Chapter 5. Let us discuss a situation where assumption of equality on the
scale parameter is justified. Suppose a particular type of product or item is produced by k(≥ 2)
different manufacturers or companies. Let Xi; i = 1, 2 denote the lifetimes of the products
from the ith manufacturer. Assume that all the manufacturers use modern statistical methods
(for example, process control technique), and quality standards (like ISO 9000 series) during
their production. This guarantees that the variations of the processes are minimum and are
under control. Hence, we may assume that the scale parameters (σi) are close to each other.
Furthermore, wemay assume that the minimum guarantee periods of the products follow certain
ordering (may be due to their target level and technology development). Under such scenario,
it is quite reasonable to estimate the mean life times or the quantiles. We refer to Tripathy and
Kumar (2011), Rukhin and Zidek (1985), Elfessi and Pal (1991) and the references cited therein
for some related results and justification of our model. In Section 6.3.1, we propose certain basic
estimators such as theMLE, a modification to theMLE, the UMVUE, the BAEEwithout taking
into account the ordering of the quantiles. Further, we obtain the isotonic version of the MLE
when there is order restrictions. In Section 6.3.2, Bayes estimators have been derived for the
quantiles. In Section 6.3.3, a detailed simulation study has been carried out for numerically
comparing the risk function of all the proposed estimators.

6.2 Estimating Ordered Quantiles of Two Exponential
Populations with a Common Minimum Guarantee Time

In this section we consider the estimation of ordered quantiles from two exponential populations
when the location parameter is common. More specifically, let X˜ = (X1, X2, . . . , Xm) and
Y˜ = (Y1, Y2, . . . , Yn) be independent random samples taken from two exponential populations
Ex(µ, σ1) and Ex(µ, σ2) respectively. Here µ is the location parameter which is common to both
the populations and σ1, σ2 are the scale parameters. In reliability and life-testing experiments the
location parameter µ is also known as the minimum guarantee period to failure of an equipment
and σis are known as the residual life times after the survival period. The quantile of the ith
population is θi = µ + ησi; i = 1, 2, where η = − log(1 − p), 0 < p < 1. The problem is to
estimate the quantile θi when it is known a priori, that, they follow the ordering, θ1 ≤ θ2. The
loss function is taken as the quadratic loss given by

L(di, θi) =
(di − θi

σi

)2

, (6.2.1)

where di is an estimator for θi; i = 1, 2. The performance of an estimator will be evaluated
using the risk function

R(di, θi) = Eµ,σi{L(di, θi)}. (6.2.2)

6.2.1 Some Basic Results
In this section, we derive some basic results as well as construct some plug-in type estimators
for the quantiles θis when θ1 ≤ θ2, using some of the existing results in the literature.
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Suppose X˜ = (X1, X2, . . . , Xm) and Y˜ = (Y1, Y2, . . . , Yn) are independent random
samples taken from two exponential populations Ex(µ, σ1) and Ex(µ, σ2) respectively. Here
Ex(µ, σi) denotes the ith exponential population having probability density function,

f(x) =
1

σi
exp

{
−

(x− µ

σi

)}
, x > µ, −∞ < µ <∞, σi > 0.

We assume that all the parameters are unknown however a prior information regarding the
ordering is known in advance that is θ1 ≤ θ2.We are interested in estimating the quantiles θis
when θ1 ≤ θ2 or equivalently σ1 ≤ σ2 using a decision theoretic approach.

We note that, when there is no order restriction on the quantiles, one can derive the basic
estimators. Let us denoteZ = min(X(1), Y(1)),whereX(1) and Y(1) are minimum of the first and
second samples respectively. Further define V1 = 1

m

∑m
i=1(Xi−Z) and V2 = 1

n

∑n
j=1(Yj−Z).

A complete and sufficient statistic for this model is (Z, V1, V2). The statistics Z and (V1, V2) are
independent. Also the probability density function of Z and (V1, V2) are given by respectively,

fZ(z) = p exp(−p(z − µ)), z > µ,−∞ < µ <∞,

and

fV˜(v˜) = mmnn

σm1 σ
n
2 p

[ vm−1
1 vn−2

2

ΓmΓn− 1
+

vm−2
1 vn−1

2

ΓnΓm− 1

]
exp(−mv1/σ1 − nv2/σ2), v1, v2 > 0,

where p = m
σ1

+ n
σ2
. The MLE of µ is given by Z and the MLEs of σis are given by Vi; i = 1, 2.

Using these, we can write the MLEs of θi as

dLi = Z + ηVi, i = 1, 2. (6.2.3)

Also a modification to the MLE of µ can be used to obtain the modified MLE of θi as,

dMi = Z − V1V2
mV2 + nV1

+ ηVi, i = 1, 2. (6.2.4)

In a similar way one can obtain the UMVUE of θi as,

dUi = Z + ηVi + (η − 1)V ∗, where V ∗ =
V1V2

(m− 1)V2 + (n− 1)V1
. (6.2.5)

When there is order restriction on the parameters that is under the prior information θ1 ≤ θ2,
all the above estimators may not perform well. Hence using the isotonic regression on the
MMLEs of θis with suitable weights one can get improved estimators dominating the MMLEs
as,

dRi = Z − σ̂1Rσ̂2R
mσ̂2R + nσ̂1R

+ ησ̂iR, i = 1, 2, (6.2.6)

where

σ̂1R = min
(
V1,

mV1 + nV2
m+ n

)
, σ̂2R = max

(
V2,

mV1 + nV2
m+ n

)
.

Next we prove a basic result regarding improving any estimator of the quantiles θi.
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Theorem 6.2.1 Let δ(µ, σ1) = δ(µ) + ηδ(σi) be an estimator of θi = µ + ησi; i = 1, 2. Let
the loss function be (6.2.1). Let us consider a new estimator of the form δ∗(µ, σi) = δ∗(µ) +
ηδ∗(σi),where δ∗(µ) and δ∗(σi) are improved estimators over δ(µ) and δ(σi) respectively. Then
R(δ∗(µ, σi), θi) ≤ R(δ(µ, σi), θi), provided the following conditions hold:

1. The estimators δ(µ) and δ∗(µ) are unbiased for µ and must be free from V1 and V2.

2. The estimators δ(σi) and δ∗(σi) are unbiased for σi and must be free from Z.

Proof 6.2.1 Let us consider the risk difference △ = R(δ∗(µ, σi), θi) − R(δ(µ, σi), θi). After
substituting the expressions for δ∗(µ, σi), and δ(µ, σi), then simplifying, the risk difference
reduces to,△ = R(δ∗(µ), µ)−R(δ(µ), µ) + η2R(δ∗(σi), σi)−R(δ(σi), σi) + 2η{E{(δ∗(µ)−
µ)(δ∗(σi)−σi)}−E{(δ(µ)−µ)(δ(σi)−σi)}}. It is given that, R(δ∗(µ), µ)−R(δ(µ), µ) < 0,
andR(δ∗(σi), σi)−R(δ(σi), σi) < 0.Hence, the risk difference△ ≤ 0, provided the conditions
(1) and (2) hold. This proves the theorem..

Remark 6.2.1 We note that, Tripathy et al. (2014) obtained an improved estimator for the
modified MLE of common location µ by using Brewster and Zidek (1974) technique. This
improved estimator is same as the restricted MLE of µ. Hence, the restricted MLE of µ can be
further improved by using the same method. This improved estimator for the common location
µ has been used to construct plug-in type estimator for the quantiles under order restriction.
For details see Remark 6.2.3 below.

Remark 6.2.2 It should be noted that, some plug-in type of estimators may be constructed
which may or may not improve upon the original estimators. The plug-in type of estimators
may be constructed by improving either the common location parameter µ or scale parameters
σi.However, below we propose some plug-in type of estimators by replacing both the estimators
of µ and σi with their improved versions.

Remark 6.2.3 Under order restrictions on σis Tripathy et al. (2014), obtained improved
estimators for the common location parameter µ. Also Jana and Kumar (2015) obtained
improved estimators for σis when σ1 ≤ σ2. Using those improved estimators for the MLEs
of µ and σis, we propose an estimator for the quantile θi as,

dli = µl + ησli,

where µl is the improved estimator over the MLE of µ (equation (30) of (Tripathy et al. (2014))
and σli is the improved estimator for the MLE of σi as given in Corollary 1 or 3 of Jana and
Kumar (2015). Further using the improvement over theUMVUEofµ (equation (31) of (Tripathy
et al. (2014)) and improvement over the UMVUE of σi (see either Corollary 1 or 3 of Jana and
Kumar (2015)) one can get another plug-in type estimator for θi as,

dui = µu + ησui .

Similarly using the improved estimator over the restricted MLE of µ (as given in equation
(6.2.6)) and improvement over the restricted MLE of σi (see Corollary 1 Jana and Kumar
(2015)) one can propose the estimator of the quantile θi as,

dri = µr + ησri .
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These estimators have been numerically compared using a Monte-Carlo simulation procedure
in Section 6.2.3. It has been observed that none of these improve uniformly upon their respective
old estimators. This also follows from Theorem 6.2.1.

In the next section, we prove a general inadmissibility result for affine equivariant class of
estimators and as a consequence, estimators dominating MLEs, and the UMVUEs in terms of
risk values have been obtained.

6.2.2 Sufficient Conditions for Improving Equivariant Estimators under
Order Restrictions

In this section, we derive the form of an affine class of estimator for the quantiles θi; i =
1, 2. Utilizing a technique of Brewster and Zidek (1974) we derive sufficient conditions for
improving estimators in this class under the assumption that θ1 ≤ θ2. First we consider the
estimation of θ1 when θ1 ≤ θ2.

Estimation of θ1

Let us introduce the affine group of transformations, GA = {ga,b : ga,b(x) = ax + b, a >
0, b ∈ R} to our problem. Under the transformation ga,b, Z → aZ + b, Vi → aVi, σ1 → aσ1,
µ → aµ + b, and θ1 = µ+ ησ1 → aθ1 + b. The problem remains invariant with respect to the
loss function (6.2.1), (with i = 1) and the form of an affine equivariant estimator for estimating
θ1, based on the sufficient statistics (Z, V1, V2) is thus obtained as,

d(Z, V1, V2) = Z + V1ϕ(V )

= dϕ, say, (6.2.7)

where V = V2/V1 and ϕ : (0,∞) → R a real valued function. Let η > 0, be fixed. For the
class of estimators dϕ, let us define the functions ϕ∗(v) and ϕ∗(v) as follows:
Case-I: Let η < m

(m+n)2
. For this values of η define

ϕ∗(v) =


ηm−1
m+n

, if v < 1
1−ηm

ηm(1−v)+2
√
ηmv(v−1)−v

m+n
, if 1

1−ηm < v < m
m−η(m+n)2

m+nv
m+n

(η − 1
m+n

), if v > m
n−η(m+n)2

,

(6.2.8)

and

ϕ∗(v) =


m+nv
m+n

(η − 1
m+n

), if v < 1
1−ηm

max{ηm−1
m+n

, m+nv
m+n

(η − 1
m+n

)}, if 1
1−ηm < v < m

m−η(m+n)2

ηm−1
m+n

, if v > m
m−η(m+n)2

.

(6.2.9)

Case-II: Let m
(m+n)2

< η < 1
m
. Define

ϕ∗(v) =

{
ηm−1
m+n

, if v < 1
1−ηm

m+nv
m+n

(η − 1
m+n

), if v > 1
1−ηm .

(6.2.10)

ϕ∗(v) =

{
m+nv
m+n

(η − 1
m+n

), if v < 1
1−ηm

ηm−1
m+n

, if v > 1
1−ηm .

(6.2.11)

150



Estimating Ordered Quantiles of Two Exponential Populations Chapter 6

Case-III: Let η > 1
m
. For this choice of η, define

ϕ∗(v) =
ηm− 1

m+ n
, ϕ∗(v) =

m+ nv

m+ n
(η − 1

m+ n
). (6.2.12)

Utilizing the functions ϕ∗(v) and ϕ∗(v) and for fixed values of η, we define the function,
ϕ0(v) as follows:

ϕ0(v) = min{max{ϕ∗(v), ϕ(v)}, ϕ∗(v)}. (6.2.13)

The following theorem is immediate.
Theorem 6.2.2 Let dϕ be the class of affine equivariant estimators for estimating θ1. The loss
function is taken as (6.2.1). Let us define a function ϕ0(v) as given in (6.2.13). Then the
estimator dϕ is inadmissible and is improved by dϕ0 if there exist some values of the parameters
(µ, σ1, σ2); θ1 ≤ θ2 such that P (ϕ0(V ) ̸= ϕ(V )) > 0.

Proof 6.2.2 The proof of the theorem can be done by using a technique of Brewster and Zidek
(1974). Let us consider the conditional risk function of dϕ given V = v.

R(dϕ, θ1) =
1

σ2
1

E{(Z + V1ϕ(V )− µ− ησ1)
2|V }. (6.2.14)

The above risk function (6.2.14) is a convex function in ϕ and the minimizing value is obtained
as,

ϕ(v, σ1, σ2) =
ησ1E(V1|V )− a−1E(V1|V )

E(V 2
1 |V )

.

The conditional expectations are evaluated as

E(V1|V ) =
m+ n− 1

K
, E(V 2

1 |V ) =
(m+ n− 1)(m+ n)

K2
,

where K = m
σ1

+ n
σ2
v. After substituting these values and simplifying one would get the

minimizing choice as,

ϕ(τ, v) =
[η − (m+ nτ)−1][m+ τnv]

m+ n
, (6.2.15)

where τ = σ1/σ2 : 0 < τ ≤ 1.
We consider the following three separate cases in order to obtain the bounds of ϕ(τ, v) for

given V = v.
Case I: η < m

(m+n)2
. The derivative of ϕ(τ, v) is simply g(τ) = ηn3vτ 2+2ηmn2vτ+mn(ηmv−

v+1)multiplied by a positive factor. This is a convex function of τ attaining minimum at τ = 0
in the concerned region (0, 1). The minimum value is h(0) = mn(ηmv−v+1). If the minimum
value is positive that is 0 < v < 1

1−ηm , then h(τ) > 0. Hence ϕ(τ, v) is an increasing function
in τ. Hence,

infϕ(τ, v) = m

m+ n
(η − 1

m
) = ϕ(0, v), supϕ(τ, v) = 1

m+ n
(η − 1

m+ n
)(m+ vn) = ϕ(1, v).

If 1
1−ηm < v < m

m−η(m+n)2
, then the function g(τ) will have two real roots say τ− and

τ+. The smaller root say τ− is negative and the larger one τ+ < 1. The function ϕ(τ, v) is
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decreasing in (0, τ+) and increasing in (τ+, 1). Hence we have

infϕ(τ, v) = ϕ(τ+, v), supϕ(τ, v) = max{ϕ(0, v), ϕ(1, v)},

where τ+ = −m
n
+ 1

n

√
m(v−1)
ηv

.

If v > m
m−η(m+n)2

, then τ+ > 1. Hence in the concerned region (0, 1) the function ϕ(τ, v)
is decreasing in τ. We obtain

infϕ(τ, v) = ϕ(1, v), supϕ(τ, v) = ϕ(0, v).

Case II: m
(m+n)2

< η < 1
m
. In this case m

m−η(m+n)2
< 1

1−ηm . The minimum value of g(τ, v) is
positive for 0 < v < 1

1−ηm . Hence

infϕ(τ, v) = ϕ(0, v), supϕ(τ, v) = ϕ(1, v).

If v > 1
1−ηm , the minimum value of g(τ, v) is negative and crosses the τ axis. However the

larger root τ+ > 1. Hence in the concerned region (0, 1) the function ϕ(τ, v) is decreasing and
we obtain,

infϕ(τ, v) = ϕ(1, v), supϕ(τ, v) = ϕ(0, v).

Case III: η > 1
m
. In this case the minimum value of g(τ, v) is always positive for all v. Hence

we obtain,

infϕ(τ, v) = ϕ(0, v), supϕ(τ, v) = ϕ(1, v).

Utilizing the above cases from I to III, one can easily define the functions ϕ∗ and ϕ∗ for
different regions of η. Consequently, ϕ0 is defined as in (6.2.13). Using a result of Brewster and
Zidek (see Theorem 3.1.1 of Brewster and Zidek (1974)) for improving equivariant estimators,
it is immediate that R(dϕ0 , θ1) ≤ R(dϕ, θ1) when θ1 ≤ θ2. This completes the proof of the
theorem.

Next our target is to get improved estimators in the class dϕ. It is easy to observe that all the
basic estimators such as, the MLE, MMLE, UMVUE and the restricted MLE for θ1 belong to
the class dϕ for some choices of ϕ. To get improved estimators, one needs to fix the value of
η. For simplicity, let us choose the value of η > 1

m
(Case-III above). Let us consider the MLE

dL1 = Z + V1ϕl(V ), where ϕl(V ) = ϕ(V ) = η. In order to obtain the improved estimator, the
value of ϕ(v) = η,must lie outside the interval [ηm−1

m+n
, m+nv
m+n

(η− 1
m+n

)]with non zero probability
for some choices of parameters. We observe that, the condition η < ηm−1

m+n
is not satisfied.

Further, the condition η > m+nv
m+n

(η − 1
m+n

) is equivalent to v < ηn2+ηmn+n
n(η(m+n)−1)

= η0, (say). Thus
for η > 1

m
, the improved estimator for θ1, which will dominate the MLE dL1 = Z + V1ϕl(V ),

call it dLI1 and is obtained as,

dLI1 =

{
Z + (mV1+nV2

m+n
)(η − 1

m+n
), if V < η0,

Z + ηV1, otherwise.
(6.2.16)

Let us consider the MMLE dM1 = Z + V1ϕm(V ), where ϕm(V ) = ϕ(V ) = η − V
mV+n

. To get
improved estimator for dM1 , we notice that, the condition η− v

mv+n
< ηm−1

m+n
is not true. Further,
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the condition η− v
mv+n

> (η(m+n)−1
m+n

) to hold, v must belong to the interval (0, v+),where v+ is
the larger root of the equation g(v) = n2v2(1−η(m+n))−v(m2+ηmn2+n2)+m2+ηm3 = 0.
Thus the improved estimator which dominate the MMLE dM1 = Z + V1ϕm(V ), is obtained as,

dMI
1 =

{
Z + (mV1+nV2

m+n
)(η(m+n)−1

m+n
), if V ∈ (0, v+)

Z + V1(η − V
mV+n

), otherwise.
(6.2.17)

Next, to get improved estimator for the UMVUE dU1 = Z + T1ϕu(V ), where ϕu(V ) = ϕ(V ) =

η+ V (η−1)
(m−1)V+(n−1)

. For this case, it is not possible to check the conditions analytically. However,
it has been observed numerically, using simulation study, that the condition for improving the
UMVUE does satisfy for many values of the parameters. Thus the improved estimator for the
UMVUE is obtained as,

dUI1 (V ) =


Z + V1(

ηm−1
m+n

), if ϕu(V ) < ηm−1
m+n

Z + V1(
m+nV
m+n

)(η(m+n)−1
m+n

), if ϕu(V ) > (m+nV
m+n

)(η(m+n)−1
m+n

),

Z + V1ϕu(V ), otherwise.
(6.2.18)

Let us denote A(v) = min(1, m+nv
m+n

), B(v) = max(v, m+nv
m+n

). Using these notations, the
restricted MLE of θ1 is given by

dR1 = Z + V1ϕr(V ),

where

ϕr(V ) = ηA(v)− A(v)B(v)

nA(v) +mB(v)
.

It is also not possible to check analytically, the condition for improving the RML dR1 . However,
using a simulation study we have checked numerically, that the condition for improving the
RML hardly satisfy. In fact, ϕr(v) belongs to the interval [ηm−1

m+n
, m+nv
m+n

(η − 1
m+n

)] with
probability 1. Thus we are not able to get improved estimator for the RML using Theorem
(6.2.2).
Remark 6.2.4 The expressions of improved estimators for other choices of η can be obtained
in a very similar manner. We note that, the conditions are not straight forward to derive
analytically. However, the conditions for improving estimators, can be checked numerically.
In Section 6.2.3, we have computed the risk values as well as the relative risk performances of
all these estimators through a simulation study, numerically.

Estimation of θ2

In this section, we consider the estimation of θ2 when θ1 ≤ θ2. Let us consider the affine group
of transformations, GA = {ga,b : ga,b(x) = ax + b, a > 0, b ∈ R}. Under the transformation
ga,b, the sufficient statistics get transformed and thus Z → aZ + b, Vi → aVi, σ2 → aσ2,
µ → aµ + b, and θ2 = µ + ησ2 → aθ2 + b. The estimation problem remains invariant if we
choose the loss function (6.2.1), (with i = 2) and the form of an affine equivariant estimator for
estimating θ2, based on the sufficient statistics (Z, V1, V2) is obtained as,

d(Z, V1, V2) = Z + V2ψ(W )

= dψ, say, (6.2.19)
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where W = V1/V2 and ψ : (0,∞) → R a real valued function. Let η be fixed. Now for the
affine equivariant estimator dψ, define the function ψ∗ as give below.
Case-I: Let η < n

(m+n)2
. Define

ψ∗(w) =

{
mw+n
m+n

(η − 1
m+n

), if w < n
n−η(m+n)2

ψ(ρ+, w), if w > n
n−η(m+n)2

,
(6.2.20)

where ψ(ρ+, w) = 2
√
ηnw(w−1)−ηn(w−1)−w

m+n
.

Case-II: Let η > n
(m+n)2

. Define

ψ∗(w) =
mw + n

m+ n

(
η − 1

m+ n

)
. (6.2.21)

Utilizing the function ψ∗(w), and for a fixed value of η, we define a new function ψ0(w) for the
affine equivariant estimator dψ as,

ψ0(w) = max{ψ∗(w), ψ(w)}. (6.2.22)

The following result is immediate.

Theorem 6.2.3 Let dψ be the class of affine equivariant estimators for estimating θ2 as given
in (6.2.19). The loss function is taken as (6.2.1). Let us define a function ψ0(w) as in (6.2.22).
Then the estimator dψ is inadmissible and is improved by dψ0 if there exist some values of the
parameters (µ, σ1, σ2); θ1 ≤ θ2 such that P (ψ0(W ) ̸= ψ(W )) > 0.

Proof 6.2.3 The proof of the theorem can be done by using a technique of Brewster and Zidek
(1974). Let us consider the conditional risk function of dψ givenW = w.

R(dψ, θ2) =
1

σ2
2

E{(Z + V2ψ(W )− µ− ησ2)
2|W}. (6.2.23)

The above risk function (6.2.23) is a convex function in ψ and the minimizing value is obtained
as,

ψ(w, σ1, σ2) =
ησ2E(V2|W )− a−1E(V2|W )

E(V 2
2 |W )

.

The conditional expectations are evaluated as

E(V2|W ) =
m+ n− 1

M
, E(V 2

2 |W ) =
(m+ n− 1)(m+ n)

M2
,

where M = n
σ2

+ m
σ1
w. After substituting these values and simplifying one would get the

minimizing choice as,

ψ(ρ, w) =
[η − (n+mρ)−1][n+ ρmw]

m+ n
,

where ρ = σ2/σ1.
In this case also we consider the following three separate cases in order to obtain the bounds

of ψ(ρ, w) for fixed w.
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Case I: η < n
(m+n)2

. The derivative of ψ(ρ, w) is simply h(ρ) = ηm3wρ2 + 2ηnm2wρ +

mn(ηnw − w + 1) multiplied by a positive factor. This is a convex function of ρ attaining
minimum at ρ = 1 in the concerned region [1,∞). The minimum value is h(1) = ηm3w +
2ηnm2w + mn(ηnw − w + 1). If the minimum value is positive that is 0 < w < 1

1−ηn , then
h(ρ) > 0. Hence ψ(ρ, w) is an increasing function in ρ ∈ [1,∞). Hence,

infψ(ρ, w) = 1

m+ n
(η − 1

m+ n
)(mw + n), supψ(ρ, w) = ∞.

If 1
1−ηn < w < n

n−η(m+n)2
, then the function h(ρ) > 0 ∀ρ ∈ [1,∞). Hence ψ(ρ, w) is

increasing in the concerned region. We obtain

infψ(ρ, w) = 1

m+ n
(η − 1

m+ n
)(mw + n), supψ(ρ, w) = ∞.

If w > n
n−η(m+n)2

, then h(ρ) < 0. Hence the function h(ρ) will have two real roots say ρ−

and ρ+. The smaller one ρ− < 0 and the larger one ρ+ > 1 if w > n
n−η(m+n)2

. Then ρ+ is inside
our concerned region [1,∞).Hence the function ψ(ρ, w) is decreasing in the region [1, ρ+] and
increasing in the region [ρ+,∞). We obtain

infψ(ρ, w) = ψ(ρ+, w), supψ(τ, w) = max{ψ(1, w), ψ(∞, w)} = ∞,

where ρ+ = − n
m
+ 1

m

√
n(w−1)
ηw

.

Case II: n
(m+n)2

< η < 1
n
. In this case n

n−η(m+n)2
< 1

1−ηn and let 0 < w ≤ 1
1−ηn . The minimum

value of h(ρ) is positive for 0 < w < 1
1−ηn . Hence

infψ(ρ, w) = ψ(1, w), supψ(ρ, w) = ∞.

If w > 1
1−ηn , then w > n

n−η(m+n)2
and h(1) > 0.Hence ψ(ρ, w) is increasing in ρ ∈ [1,∞).

We obtain,

infψ(ρ, w) = ψ(1, w), supψ(ρ, w) = ∞.

Case III: η > 1
n
. In this case the minimum value of h(ρ) is always positive for all ρ. Hence we

obtain,

infψ(ρ, w) = ψ(1, w), supψ(τ, w) = ∞.

Utilizing the above cases from I to III, one can easily define the function ψ∗ and consequently
ψ0 for different regions of η. Using a result of Brewster and Zidek (1974)(see Theorem 3.1.1
in Brewster and Zidek (1974)) for improving equivariant estimators, it is immediate that
R(dψ0 , θ2) ≤ R(dψ, θ2) when θ1 ≤ θ2.

Next, using the Theorem 6.2.3, we will derive improved estimators which dominate the usual
estimators such as, the MLE, the MMLE, the UMVUE and the restricted MLE RML for θ2.We
note that, all the basic estimators belong to the class dψ. To get the improved estimators we need
to fix the value of η. For simplicity, let η > 1

n
> n

(m+n)2
. Let us first consider the MLE dL2 =

Z+V2ψl(W ),where ψl(W ) = ψ(W ) = η. In order to get the improved estimator, the condition
η < (mw+n)(ηm+ηn−1)

(m+n)2
must satisfy. The condition is equivalent to say that w > ηmn+ηm2+n

m(η(m+n)−1)
.
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Thus the improved estimator for MLE dL2 = Z + V2ψl(W ), can be written as,

dLI2 =

{
Z + (mV1+nV2

m+n
)(η − 1

m+n
), if w > ηmn+ηm2+n

m(η(m+n)−1)

Z + ηV2, otherwise.
(6.2.24)

Next, consider the modifiedMLE dM2 = Z+V2ψm(W ),whereψm(W ) = η− W
m+nW

. In order to
get improved estimator the condition η− w

m+nw
< (mw+n)(ηm+ηn−1)

(m+n)2
must hold. Analytically, we

are unable to prove the inequality. Using simulation study, numerically it has been checked that,
the condition does not satisfy for many replications of sample sizes. However, for η < n

(m+n)2
,

the condition does hold for some ranges of w, which have been seen numerically. Thus one can
write the expression for the improved estimator for the modified MLE dM2 = Z + V2ψm(W ),
call it dMI

2 and is given by

dMI
2 =


Z + V2(

mW+n
n+m

)(η − 1
m+n

), if w < n
n−η(m+n)2

Z + V2ψ(ρ
+, w), if w > n

n−η(m+n)2

dM2 , otherwise.
(6.2.25)

Next, consider the UMVUE dU2 = Z + V2ψu(W ), where ψu(W ) = η+ W (η−1)
(m−1)+(n−1)W

. In order
to get the improved estimator, the condition η+ W (η−1)

(m−1)+(n−1)W
< (mW+n

n+m
)(η− 1

m+n
)must hold

true for some ranges of w.We are unable to prove the inequality analytically. However, for any
fixed choice of η, using a simulation study, it has been checked numerically that the condition
satisfies for many values of w. Thus one can write, the expression for improved estimator for
the UMVUE dU2 = Z + V2ψu(W ), as

dUI2 =

{
dψ∗(W ), if ψu(W ) < ψ∗(W )

Z + V2ψu(W ), otherwise.
(6.2.26)

Remark 6.2.5 We note that, though the estimator restricted MLE belong to the class of
estimators dψ, the condition for improving it, is not satisfied. Hence we are unable to improve
the restricted MLE using Theorem 6.2.3. In Section 6.2.3, we carry out a detailed simulation
study to numerically compare the risk values of all these improved estimators.

6.2.3 Simulation Study
In Section 6.2.1 we have proposed some baseline estimators such as theMLE dLi , a modification
to the MLE dMi and the UMVUE dUi for the quantiles θi, i = 1, 2, without assuming order
restriction on the quantiles as given in (6.2.3), (6.2.4) and (6.2.5) respectively. Further under
order restrictions on the quantiles that is, when θ1 ≤ θ2, we have proposed the restricted MLEs
dRi ; i = 1, 2 for the quantiles. In Section 6.2.2, we have also obtained improved estimators for
some of these estimators. Specifically, for estimating θ1,we have proposed improved estimators
dLI1 and dUI1 for the MLE and the UMVUE respectively. The expressions for these estimators
has been obtained in (6.2.16) and (6.2.18) for the choice of η > 1

m
. We also note that the

estimators dR1 , dMI
1 perform equally well. Thus for estimating θ1, we consider dL1 , dM1 , dU1 , dR1 ,

dLI1 and dUI1 for numerical comparison purpose. For estimating θ2, we have proposed improved
estimators dMI

2 (for η < n
(m+n)2

), dLI2 (for η > n
(m+n)2

) and dUI2 . It has also been noticed
that the estimators dLI2 (for η < n

(m+n)2
) and dMI

2 (for η > n
(m+n)2

) have not been included
for numerical comparison purpose, as these estimators give either no improvements or very

156



Estimating Ordered Quantiles of Two Exponential Populations Chapter 6

marginal improvements. Hence, in our numerical study, we consider only dL2 , dM2 , dU2 , dR2 , dMI
2

(for small η < 1
n
) dLI2 (for moderate to large η > 1

n
) and dUI2 when estimating θ2.

Further we note that, the proposed plug-in type of estimators for the quantiles under the
assumption, θ1 ≤ θ2 (see Remark 6.2.3) using some of the existing results in the literature, does
not improve upon the old as well as improved estimators obtained by using Theorem 6.2.2 and
6.2.3 uniformly. This has been noticed in our simulation study. Hence we exclude those plug-in
type of estimators from our numerical study. For the numerical comparison purposes, we
have generated 20,000 random samples each from two exponential populations with a common
location parameter µ and different scale parameters σ1, σ2 such that, θ1 ≤ θ2. It should be noted
that, with respect to the loss function (6.2.1), the risk values of all the estimators are functions
of 0 < τ = σ2/σ1 ≤ 1 for fixed sample sizes and η. We have used Monte-Carlo simulation
procedure to evaluate the risk functions for each estimator. Next, we define the percentage of
relative risk improvement for each estimator say, d of θi with respect to the MLE dLi as,

R(d) =
(
1− R(d, θi)

R(dLi , θi)

)
× 100, i = 1, 2,

where d is any estimator for estimating θi.
The accuracy of simulation has been checked and the error of simulation is of the order of

10−3. The risk values of the estimators has been evaluated by considering various choices of
sample sizes as well as η. In Table 6.2.1, we present the percentage of relative risk performances
of all the estimators for sample sizes (5, 5), (10, 10), (5, 10), (10, 5) for estimating θ1 with
choices of η = 0.01, and 1.5. The table consists of 3 columns and several rows. The first
column represents the values of τ. Second and third column again divided into 5 sub columns
each. The second column gives the percentage of relative risk values of various estimators for
the choice of η = 0.01 whereas column 3 gives the values for η = 1.5. Corresponding to each
value of the parameter τ, there corresponds four values in each cell of the sub columns. These
four values correspond to four different combinations of sample sizes. For example in Table
6.2.1, the percentage of relative risk performances has been tabulated for the sample sizes (5, 5),
(10, 10), (5, 10) and (10, 5) in each cell. In a very similar manner, the percentage of relative
risk performances of various estimators for the quantile θ2 have been tabulated in Table 6.2.2,
with the choice of η = 0.01 and 1.5.

The following conclusions can be drawn from our simulation study as well as from the
Tables 6.2.1-6.2.2. For convenient, we discuss the observations for estimating θ1 and θ2
separately.

Comments for θ1

1. The risk values of all the estimators decrease as τ increases from 0 to 1 for fixed sample
sizes and η.Also as the sample sizes increase the risk values of all the estimators decrease
for fixed values of η and τ.

2. The percentage of relative risk improvement of all the estimators increase when η <
m/(m+ n)2. The percentage of relative risk improvement of all the estimators decrease
when η > 1/m except dU1 and dUI1 as sample sizes increase for fixed values of τ and η.

3. Consider the case η < m/(m+n)2. The percentage of relative risk performance of dR1 is
maximum (near to 47%) for small values of τ (< 0.35). For moderate to large values of
τ (0.35 < τ ≤ 1) the estimator dUI1 has the maximum percentage of relative risk values
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(near to 50%). A similar type of pattern of improvements for the case m/(m + n)2 ≤
η ≤ 1/m has been noticed. Further for the case η > 1/m, the percentage of relative
risk performance of dM1 and dR1 are quite comparable for small ranges of τ. For moderate
to large values of τ (0.35 < τ ≤ 1) the estimator dLI1 has the maximum percentage of
relative risk values near to 45%.

4. It has been observed that, by using the Theorem 6.2.2, the percentage of risk
improvements for the new estimators dLI1 , and dUI1 , upon their respective old estimators
dL1 , and dU1 are seen maximum up to 50%, and 2%, for the case η < 1/m. For the case
η > 1/m, the percentage of risk improvements of dUI1 over dU1 is seen maximum up to
45%, and for dLI1 it is seen up to 44%. This validates the theoretical results obtained in
Theorem 6.2.2.

5. A similar type of observations have been made for other combinations of sample sizes
(m,n) and fixed η.

Comments for θ2

1. The percentage of relative risk performance of each estimator increases as the sample
sizes increase for fixed values of τ when η < n/(m + n)2. The percentage of relative
risk performance of all the estimators decrease as sample sizes increase except dU2 and
dUI2 (for η > n/(m + n)2). The percentage of relative risk performance of dU2 and dUI2

decrease as the sample sizes increase.

2. Consider the case η < n/(m + n)2. The percentage of relative risk performance of dMI
2

and dR2 are quite good (seen near to 45%) in comparison to other estimators for small
values of τ (< 0.35). For moderate to large values of τ (0.35 < τ ≤ 1) the estimator
dUI2 has the maximum percentage of relative risk values and it is seen near to 48%. Next,
consider the case of η ≥ n/(m + n)2. The percentage of relative risk improvements of
dR2 is maximum for all the values of τ.

3. The percentage of risk improvement of the estimator dMI
2 is very negligible, where as for

dUI2 it is seen between 1% and 3% when η < n/(m + n)2.When η > n/(m + n)2, the
percentage of risk improvement of dLI2 is seen maximum up to 25%. The percentage of
risk improvement for dMI

2 is seen maximum up to 28% where as for dUI2 it is seen near to
23%. This validates the theoretical results obtained in Theorem 6.2.3.

4. A similar type of observations have been made for other combinations of sample sizes
(m,n) and η.

On the basis of our theoretical as well as computational studies, the following conclusions
can be made regarding the use of the estimators for the quantiles θis when a priori condition
θ1 ≤ θ2 is available.

1. Consider the estimators for estimating θ1 with respect to the loss function (6.2.1). For
small values of τ (τ < 0.35) we recommend to use dR1 . For moderate to large values of τ
we recommend to use dUI1 (when η < 1/m) and dLI1 (when η > 1/m).

2. Consider the estimators for estimating θ2 with respect to the loss function (6.2.1). For
small values of τ, (τ < 0.35) the estimator dR2 is recommended for use. For moderate to
large values of τ the estimator dUI2 (when η < n

(m+n)2
) and dUI2 (when η > n

(m+n)2
) are

recommended.
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6.2.4 Conclusions
We have considered the estimation of quantiles θi = µ + ησi, i = 1, 2 of the two exponential
populations under the restriction that θ1 ≤ θ2. The loss function is taken as the quadratic loss.
First we derive some baseline estimators for the quantiles when there is no ordering, such as the
MLE, a modification to the MLE and the UMVUE. Under order restriction on the quantiles, we
have obtained the restricted modifiedMLEs using isotonic regression which we call it RML.We
derive sufficient conditions for improving these baseline estimators. Consequently, estimators
dominating the MLE, the modification to the MLE, the UMVUE have been derived. A detailed
simulation study has been carried out in order to evaluate the performance of these improved
estimators under order restrictions. It has been noticed that in case of theMLE and the UMVUE
the percentage of risk improvement is quite significant. This validates the theoretical findings
in Section 6.2.2. The present work also extends some of the theoretical results of Jana and
Kumar (2015) to the estimation of ordered quantiles. Finally we have recommended for the use
of the estimators under order restrictions on the quantiles which is useful in practice. To the best
of our knowledge, the problem of estimation of ordered quantiles has not been considered in
the literature and hence the problem is new and has importance from a practical point of view.
Below we discuss an example to compute the estimates of quantiles and recommend to use.

Example 6.2.1 (Simulated Data) We have generated the following simulated data from two
exponential populations with a common location parameter µ = 100 and different scale
parameters σ1 = 15 and σ2 = 25. Here we note that the condition θ1 ≤ θ2 holds. Here
we have takenm = 10, and n = 15.
Sample 1: 128.61, 115.73, 105.63, 111.46, 100.14, 100.64, 106.13, 111.01, 103.14, 111.66.
Sample 2: 165.26, 109.50, 108.88, 112.57, 110.52, 154.40, 109.87, 118.37, 114.79, 116.08,
101.96, 136.84, 102.62, 115.31, 135.89.

On the basis of the above samples one can obtain the statistics Z = 100.14, V1 = 9.27,
and V2 = 20.71. Let η = 0.01. In this case the various estimators have been computed for θ1
as dL1 = 100.23, dM1 = 99.68, dU1 = 99.63, dR1 = 99.68, dLI1 = 99.81, and dUI1 = 99.66. Here
we recommend to use dUI1 for θ1. Using these data one can also compute the estimates of θ2 as
dL2 = 100.35, dM2 = 99.07, dU2 = 98.76, dR2 = 99.07, dMI

2 = 99.07, and dUI2 = 98.79. In this
case we recommend to use dUI2 .
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Table 6.2.1: Relative risk performance of various estimators for quantile θ1
for (m,n) = (5, 5), (10, 10), (5, 10), (10, 5).

τ ↓ η = 0.01 η = 1.5
R(dM1 ) R(dU1 ) R(dR1 ) R(dLI

1 ) R(dUI
1 ) R(dM1 ) R(dU1 ) R(dR1 ) R(dLI

1 ) R(dUI
1 )

41.48 39.33 41.48 33.00 39.33 7.62 -11.78 7.62 0.01 -11.76
0.05 45.57 45.23 45.57 37.20 45.23 3.45 -5.13 3.45 0.00 -5.13

41.54 40.25 41.54 26.22 40.25 6.59 -10.16 6.59 0.00 -10.16
45.70 45.27 45.70 41.92 45.27 3.75 -5.57 3.75 0.00 -5.57
41.80 40.31 41.80 33.62 40.41 6.28 -10.16 6.32 0.07 -10.02

0.10 46.49 46.19 46.49 38.91 46.19 3.07 -4.61 3.07 0.00 -4.61
42.27 41.42 42.27 28.27 41.42 6.05 -8.59 6.05 0.00 -8.59
45.89 45.57 45.89 42.29 45.59 3.72 -5.32 3.74 0.04 -5.24
41.87 40.55 41.87 34.57 40.74 6.19 -9.55 6.63 0.80 -8.39

0.15 46.58 46.31 46.58 39.83 46.32 3.75 -4.70 3.75 0.00 -4.69
43.33 42.67 43.33 30.49 42.76 5.31 -7.23 5.34 0.09 -7.09
45.50 45.19 45.50 42.28 45.23 3.68 -5.14 3.85 0.34 -4.65
42.71 41.82 42.72 36.48 42.53 5.24 -7.87 7.55 3.84 -2.60

0.25 47.48 47.34 47.48 42.12 47.41 2.51 -3.60 2.58 0.16 3.35
45.32 45.15 45.33 34.71 45.46 4.20 -5.40 4.97 1.20 -3.84
46.11 45.86 46.13 43.49 46.02 2.93 -4.49 4.13 2.06 -1.66
43.97 43.26 44.03 38.83 44.31 4.18 -6.53 9.70 9.00 5.61

0.35 47.40 47.42 47.41 43.30 47.53 2.35 -3.18 3.42 1.72 -0.95
45.22 45.35 45.24 36.78 45.87 3.06 -4.00 7.03 5.55 2.72
46.39 45.97 46.42 44.45 46.32 2.51 -4.00 5.18 4.60 2.21
43.79 43.30 43.95 39.73 44.48 4.05 -5.80 14.97 16.31 15.11

0.45 47.41 47.22 47.43 44.70 47.49 2.05 -2.75 6.44 6.34 4.97
46.07 46.11 46.12 39.71 46.66 2.73 -3.29 12.95 13.55 12.61
46.73 46.59 46.85 45.33 46.89 2.66 -3.91 7.61 8.19 6.89
42.65 42.28 42.97 39.71 43.53 3.65 -5.16 19.20 22.67 23.30

0.55 47.52 47.53 47.58 45.50 47.76 1.56 -2.29 10.35 12.12 12.13
45.67 45.58 45.77 41.02 46.22 2.06 -2.55 20.15 22.89 23.66
46.86 46.91 47.02 45.72 47.23 2.63 -3.66 10.72 12.79 12.81
43.80 43.33 44.13 41.52 44.58 3.02 -4.34 23.4 28.11 29.94

0.65 47.75 47.66 47.88 46.44 48.00 1.42 -2.02 15.42 18.65 19.76
45.76 45.71 45.90 42.21 46.23 1.80 -2.13 26.67 30.79 32.64
46.45 46.36 46.67 45.76 46.81 2.45 -3.44 12.89 16.24 17.24
44.17 43.96 44.71 42.38 45.15 2.40 -3.73 24.96 30.87 33.64

0.75 47.81 47.82 48.02 47.08 48.08 1.24 -1.78 20.12 24.43 26.31
45.80 45.84 46.17 43.38 46.44 1.68 -1.90 32.70 37.54 39.92
46.57 46.48 46.82 46.11 46.93 2.10 -3.08 15.48 19.86 21.68
44.19 43.94 44.89 43.00 45.23 2.37 -3.47 26.95 32.88 35.75

0.85 48.14 48.12 48.45 47.85 48.47 1.28 -1.67 24.96 29.80 32.03
46.47 46.55 46.98 44.91 47.22 1.33 -1.56 36.49 41.63 44.25
47.00 46.90 47.43 46.91 47.43 1.49 -2.63 15.74 20.79 23.00
43.84 43.49 44.72 43.48 44.83 1.75 -2.88 27.75 33.85 36.92

0.95 47.59 47.58 47.93 47.48 47.88 0.68 -1.25 25.35 30.49 32.93
46.55 46.47 47.05 45.61 47.10 0.84 -1.17 36.92 42.22 44.96
46.92 46.98 47.61 47.18 47.56 1.29 -2.40 16.46 21.54 23.80
44.18 43.79 45.17 43.97 45.14 2.15 -3.02 30.29 35.95 38.80

1.00 47.64 47.69 48.15 47.77 48.10 1.18 -1.49 27.66 32.44 34.73
46.08 45.95 46.67 45.25 46.64 1.10 -1.25 39.43 44.43 47.02
47.04 47.03 47.75 47.37 47.70 1.79 -2.65 18.37 23.24 25.41
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Table 6.2.2: Relative risk performance of various estimators for quantile θ2
for (m,n) = (5, 5), (10, 10), (5, 10), (10, 5).

τ ↓ η = 0.01 η = 1.5
R(dM2 ) R(dU2 ) R(dR2 ) R(dMI

2 ) R(dUI
2 ) R(dM2 ) R(dU2 ) R(dR2 ) R(dLI

2 ) R(dUI
2 )

37.04 35.46 37.04 37.04 35.47 0.02 -0.02 0.02 0.00 -0.02
0.05 37.32 36.96 37.32 37.32 36.96 0.01 -0.01 0.01 0.00 -0.01

39.33 38.08 39.33 39.33 38.08 0.00 -0.03 0.00 0.00 -0.03
32.14 31.76 32.14 32.14 31.76 0.00 0.00 0.00 0.00 0.00
41.09 39.72 41.09 41.09 39.80 0.14 -0.14 0.15 0.00 -0.14

0.10 43.63 43.37 43.63 43.63 43.37 0.00 -0.02 0.00 0.00 -0.02
41.68 41.19 41.68 41.68 41.20 0.06 -0.15 0.06 0.00 -0.15
42.14 41.96 42.14 42.14 41.99 0.00 -0.01 0.00 0.00 0.00
41.55 40.26 41.55 41.55 40.47 0.13 -0.20 0.19 0.03 -0.17

0.15 45.05 44.84 45.05 45.05 44.84 0.07 -0.10 0.07 0.00 -0.10
42.87 42.50 42.87 42.87 42.53 0.07 -0.26 0.07 0.00 -0.26
44.16 43.94 44.16 44.16 44.01 0.05 -0.05 0.07 0.01 -0.04
42.63 42.00 42.64 42.63 42.65 0.28 -0.44 0.91 0.39 -0.14

0.25 47.06 46.90 47.06 47.06 46.93 0.03 -0.15 0.07 0.02 -0.13
44.00 44.01 44.00 44.00 44.19 0.53 -0.74 0.64 0.04 -0.71
44.99 44.51 44.99 45.00 44.74 0.16 -0.15 0.66 0.38 0.17
42.55 42.12 42.59 42.55 43.10 0.57 -0.81 2.69 1.38 0.24

0.35 47.49 47.40 47.49 47.49 47.50 0.37 -0.43 0.79 0.27 -0.22
44.68 44.93 44.68 44.68 45.28 0.57 -0.98 1.36 0.43 -0.67
46.17 45.92 46.18 46.17 46.35 0.24 -0.26 2.31 1.62 1.14
43.94 43.30 43.98 43.94 44.59 0.67 -1.05 5.79 3.55 1.75

0.45 47.57 47.46 47.57 47.57 47.65 0.38 -0.53 2.45 1.47 0.68
44.91 44.96 44.91 44.91 45.45 0.84 -1.33 3.32 1.46 -0.25
46.20 45.90 46.22 46.21 46.47 0.36 -0.38 5.37 3.99 3.10
43.58 43.19 43.65 43.58 44.47 1.00 -1.47 10.07 6.46 3.74

0.55 48.21 48.14 48.21 48.21 48.42 0.60 -0.74 6.02 4.08 2.72
45.33 45.41 45.33 45.33 46.00 1.00 -1.58 6.39 3.48 1.13
46.61 46.16 46.61 46.61 46.90 0.42 -0.50 10.44 8.11 6.64
44.07 43.80 44.23 44.07 45.08 1.34 -1.86 14.62 9.72 6.10

0.65 47.94 48.03 47.95 47.95 48.34 0.66 -0.89 10.88 7.88 5.91
46.63 46.59 46.64 46.63 47.24 1.19 -1.84 10.21 6.12 3.04
46.15 45.82 46.18 46.16 46.55 0.71 -0.74 15.75 12.29 10.14
44.16 43.60 44.43 44.16 45.07 1.53 -2.19 19.33 13.38 8.95

0.75 47.53 47.67 47.54 47.53 47.92 0.82 -1.06 16.53 12.35 9.69
45.54 45.74 45.61 45.54 46.19 1.31 -2.08 13.92 8.87 5.15
46.35 46.24 46.43 46.36 46.85 0.74 -0.83 21.84 17.49 14.78
44.03 43.95 44.36 44.03 45.09 1.53 -2.38 23.48 16.69 11.65

0.85 47.10 47.17 47.11 47.10 47.45 0.59 -1.04 22.28 17.43 14.35
46.76 46.75 46.85 46.76 47.34 1.35 -2.22 16.84 11.16 7.01
46.62 46.65 46.73 46.62 47.11 0.79 -0.95 26.92 21.81 18.62
44.44 44.18 44.82 44.44 45.29 1.78 -2.74 25.14 17.68 12.08

0.95 47.64 47.58 47.68 47.65 47.95 0.94 -1.30 25.58 19.88 16.29
6.57 46.62 46.73 46.57 47.09 1.65 -2.51 19.22 12.78 8.11
45.84 45.90 46.06 45.85 46.37 1.22 -1.28 29.51 23.56 19.82
44.15 44.00 44.63 44.15 45.08 2.16 -3.04 25.69 17.76 11.82

1.00 47.17 47.19 47.21 47.17 47.46 0.99 -1.39 25.92 20.03 16.29
46.09 46.17 46.22 46.09 46.57 1.98 -2.75 19.68 12.87 7.95
46.47 46.40 46.71 46.47 46.89 1.11 -1.26 30.35 24.30 20.48
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6.3 Estimating Ordered Quantiles of Two Exponential
Populations with a Common Scale under Type-II
Censoring

In this section, we consider the problem of estimating ordered quantiles from two exponential
populations under equality assumption on the scale parameters using type-II censored samples.
Specifically, suppose type-II censored samples are available from two exponential populations
Ex(µ1, σ) and Ex(µ2, σ). Here µis are the location parameter and σ is the scale parameter. The
quantile of the ith population is given by θi = µi + ησ; i = 1, 2, where η = − ln(1 − p);
0 < p < 1. Our target is to estimate the quantiles θi, when it is known a priori that θ1 ≤ θ2; and
µi ≥ 0. The loss function is taken as

L(di, θi) =
(di − θi

σ

)2

(6.3.1)

where di is an estimator for the quantile θi; i = 1, 2. The risk function of an estimator di is
defined as

R(di, θi) = EL(di, θi).

6.3.1 Preliminaries and Some Basic Results

Suppose type-II censored random samples are available from two exponential populations with
a common scale parameter σ and possibly different location parameters µ1 and µ2. Specifically,
letX(1) ≤ X(2) ≤ · · · ≤ X(r), (2 ≤ r ≤ m) be the r smallest ordered observations taken from a
random sample of sizem(≥ 2)which follows Ex(µ1, σ). Likewise let Y(1) ≤ Y(2) ≤ · · · ≤ Y(s),
(2 ≤ s ≤ n) be the s smallest ordered observations taken from a random sample of size n(≥ 2)
that follows Ex(µ2, σ). We assume that these two samples have been drawn independently.
Here µi is the location parameter and also known as the minimum guarantee time in the study
of reliability, life testing and survival analysis. The scale parameter σ which is common to both
the populations is known as the residual life time. Though the location parameter can take the
value in the interval (−∞,∞), from application point of view we assume that µi ≥ 0. It is
worth mentioning that the same model has also been considered previously by Elfessi and Pal
(1991) without considering ordering of the location parameters and investigated the problem
of estimating the location and scale parameters from a decision theoretic point of view. Here
Ex(µi, σ) denotes the exponential population having probability density function

f(xi) =
1

σ
exp

{
−
(xi − µi

σ

)}
, xi > µi ≥ 0, σ > 0. (6.3.2)

It is easy to see that the joint statistics (X(1), Y(1), T ), is sufficient and also complete. These
three random variables are independent. Here we denote,

X(1) = min
1≤i≤m

Xi, Y(1) = min
1≤j≤n

Yj

and

T =
r∑
i=1

(Xi −X(1)) + (m− r)(X(r) −X(1)) +
s∑
j=1

(Yj − Y(1)) + (n− s)(Y(s) − Y(1)).
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Note that X(1) ∼ Ex(µ1, σ/m), Y(1) ∼ Ex(µ2, σ/n) and T ∼ Gamma(m + n − 2, σ), where
Gamma(α, β) denotes the gamma distribution with shape parameter α and scale parameter β.
The joint probability density function of (X(1), Y(1), T ) is given by

f(x(1), y(1), t) =
mntr+s−3

Γ(r + s− 2)
(1/σ)r+se−

1
σ
(mx(1)+ny(1)+t−mµ1−nµ2), (6.3.3)

where x(1) ≥ µ1, y(1) ≥ µ2, σ > 0.
When there is no order restriction on the location parameters or equivalently on the quantiles,

the MLEs of µ1, µ2, and σ are obtained as X(1), Y(1) and T
r+s

respectively. Consequently, the
MLEs of θ1 and θ2 are given by

δL1 = X(1) + η
T

r + s
and δL2 = Y(1) + η

T

r + s
,

respectively. Furthermore, we observe that, E
(
X(1) − T

m(r+s−2)

)
= µ1 and E

(
Y(1) −

T
n(r+s−2)

)
= µ2. This motivates us to propose a modification to the MLEs of θ1 and θ2 as

δM1 = X(1) −
T

m(r + s− 2)
+ η

T

r + s
and δM2 = Y(1) −

T

n(r + s− 2)
+ η

T

r + s
,

respectively. We also note that, the uniformly minimum variance unbiased estimators
(UMVUEs) for θ1 and θ2 are given by

δU1 = X(1) + (η − 1

m
)

T

r + s− 2
and δU2 = Y(1) + (η − 1

n
)

T

r + s− 2
,

respectively.
Next, we find classes of equivariant estimators for both θ1 and θ2. Consider the groupGA =

{ga,bi : ga,bi(x) = ax + bi, a > 0, bi ∈ R; i = 1, 2} of affine transformations. Under this
transformation,Xi → aXi+b1,X(1) → aX(1)+b1,Yj → aYj+b2, Y(1) → aY(1)+b2, T → aT,
θ1 → aθ1 + b1 and θ2 → aθ2 + b2. The form of the equivariant estimators for θ1 and θ2 based
on the sufficient statistics (X(1), Y(1), T ) are obtained as

δc1 = X(1) + c1T

and
δc2 = Y(1) + c2T,

respectively. Here c1 and c2 are suitably chosen constants. It is easy to observe that, the choice
of c1 that minimizes the risk function of the estimator δc1 is given by c∗1 =

ηm−1
m(r+s−1)

, when the
loss is (6.3.1). Hence the best equivariant estimator in the class δc1 is obtained as δc∗1 = X(1) +
ηm−1

m(r+s−1)
T. Let us call this estimator as δE1 . Similarly for estimating θ2, the best equivariant

estimator is obtained as δE2 = Y(1) +
ηn−1

n(r+s−1)
T.

When there is order restriction on the quantiles that is when it is known a priori that, θ1 ≤ θ2
(equivalently 0 ≤ µ1 ≤ µ2), the above estimators no longer perform better and improved
estimators can be constructed (see Barlow et. al (1972)). Let θ̂1 and θ̂2 be any estimators for θ1
and θ2 respectively when there is no order restriction. Using the method of isotonic regression
on θ̂1 and θ̂2, one can get better estimators under order restrictions on the parameters. Now
using min-max formula (see Barlow et al. (1972)), the isotonic regression of θ̂1, and θ̂2 with
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weights wi; i = 1, 2 is given by

θ̂iR = min
i≤t1≤2

max
1≤s1≤i

Av(s1, t1), i = 1, 2,

where

Av(s1, t1) =

∑t1
r=s1

wrθ̂r∑t1
r=s1

wr
, s1 ≤ t1, s1, t1 ∈ {1, 2}.

As θi ≥ 0, and taking w1 = r and w2 = s, we get the isotonic estimators for θ1 and θ2 as θ̂1R
and θ̂2R. That is, one gets

θ̂1R = max
(
0,min

(
θ̂1,

rθ̂1 + sθ̂2
r + s

))
, and θ̂2R = max

(
0,max

(
θ̂2,

rθ̂1 + sθ̂2
r + s

))
.

Using this estimator, one may easily construct improved estimators for the MLE, the
modifiedMLE, the UMVUE and the best equivariant estimators, when there is order restrictions
on the parameters. Replacing θ̂is by the MLEs, MMLEs, the UMVUEs and the best equivariant
estimators one gets plug-in type restricted estimators for θis. Let us denote these plug-in type
estimators by δLiR, δMiR, δUiR and δEiR respectively, where i = 1, 2.

Remark 6.3.1 A detailed simulation study has been carried out to numerically compare the
performances of all the above restricted plug-in type estimators with respect to their old
counter parts in Section 6.3.3. It has been seen from our simulation study that the percentage
or risk improvements of all the above estimators over their old counter parts give marginal
improvements, when the values of ρ = (µ2−µ1)/σ close to zero. In other cases no improvements
has been seen. Hence, for convenient we have chosen the plug-in type restricted estimators
using the best equivariant estimators for θ1 and θ2, in order to compare with other proposed
estimators (Bayes estimators obtained in the next section).

Remark 6.3.2 It is also observed from our simulation study while using type-II censored
samples (with various choices of r and s such that r < m and s < n), the plug-in type
restricted estimators do not improve uniformly over their old counter parts. Hence, to obtain
better estimators under order restrictions we use Bayesian approach in the next section.

6.3.2 Bayesian Estimation of Ordered Quantiles
In this section, we derive Bayes estimators for the quantiles θ1 and θ2 incorporating the order
restriction, that is assuming θ1 ≤ θ2. For this, we have chosen two types of priors for the
parameters (µ1, µ2, σ) namely the non-informative prior and the inverse gamma prior.

Bayesian Estimation with Uniform Prior

First we consider the joint prior distribution for the ordered location parameter as,

π1(µ1, µ2) = 1, 0 ≤ µ1 ≤ µ2,

where c is a constant. For the scale parameter, we choose the prior as,

π2(σ) =
1

σ
, σ > 0.
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Also it is assumed that the priors are independent. In order to proceed further, let us denote the
sufficient statistics Z˜ = (X(1), Y(1), T ) as Z˜ = (X, Y, T ). Using the notations for the sufficient
statistics, the likelihood function is given by

L(x, y, t) =
mnctr+s−3

Γ(r + s− 2)σr+s
e−

1
σ
{mx+ny+t−mµ1−nµ2}, (6.3.4)

where 0 < µ1 < min(x, y) and µ1 < µ2 < y, as x > µ1, y > µ2. Let us denote t∗ = min(x, y).
Hence the joint posterior density of (µ1, µ2, σ) is obtained by

g(µ1, µ2, σ|Z˜) = mnctr+s−3

AΓ(r + s− 2)σr+s+1
e−

1
σ
{mx+ny+t−mµ1−nµ2}, (6.3.5)

where

A =

∫ t∗

0

∫ y

µ1

∫ ∞

0

g(µ1, µ2, σ|Z˜)dσdµ2dµ1.

Now under the weighted squared error loss function (6.3.1), for i = 1, with weight 1
σ2 , the

Bayes estimator of θ1 is given by the expression

δB1
1 =

E( θ1
σ2 |Z˜)

E( 1
σ2 |Z˜) ,

=
E(µ1

σ2 |Z˜)
E( 1

σ2 |Z˜) + η
E( 1

σ
|Z˜)

E( 1
σ2 |Z˜) , (6.3.6)

where E( θ1
σ2 |Z˜) and E( 1

σ2 |Z˜) are the posterior means of θ1
σ2 and 1

σ2 respectively. Hence the
Bayes estimator of θ1 under the loss function (6.3.1), is given by

δB1
1 =

∫ t∗
0

∫ y
µ1

∫∞
0
(µ1
σ2 )g(µ∗˜|Z˜)dσdµ2dµ1∫ t∗

0

∫ y
µ1

∫∞
0
( 1
σ2 )g(µ∗˜|Z˜)dσdµ2dµ1

+ η

∫ t∗
0

∫ y
µ1

∫∞
0
( 1
σ
)g(µ∗˜|Z˜)dσdµ2dµ1∫ t∗

0

∫ y
µ1

∫∞
0
( 1
σ2 )g(µ∗˜|Z˜)dσdµ2dµ1

. (6.3.7)

where µ∗˜ = (µ1, µ2, σ). Denote ξ = mx+ t and w = mx+ny+ t. After a lot of mathematical
calculations the integrals have been evaluated and after some simplification we obtain,

E
(µ1

σ2
|Z˜

)
=

mtr+s−3Γ(r + s+ 1)

AΓ(r + s− 2)(r + s)
(B1 −B2), (6.3.8)

and

E
( 1
σ
|Z

)
=

mtr+s−3Γ(r + s)

(r + s− 1)AΓ(r + s− 2)
(D1 −D2), (6.3.9)

where we denote

B1 =
t∗(w − (m+ n)t∗)−(r+s)

(m+ n)
+
w1−(r+s) − (w − (m+ n)t∗)1−(r+s)

(m+ n)2(r + s− 1)
,

B2 =
t∗(ξ −mt∗)−(r+s)

m
+
ξ1−(r+s) − (ξ −mt∗)1−(r+s)

m2(r + s− 1)
,
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D1 =
1

(m+ n)
{w1−(r+s) − (w − (m+ n)t∗)1−(r+s)},

D2 =
1

m
{ξ1−(r+s) − (ξ −mt∗)1−(r+s)}.

Similarly we obtain,

E
( 1

σ2
|Z˜

)
=
mtr+s−3Γ(r + s)

AΓ(r + s− 2)
(E1 − E2),

where

E1 =
1

(m+ n)
{w−(r+s) − (w − (m+ n)t∗)−(r+s)},

E2 =
1

m
{ξ−(r+s) − (ξ −mt∗)−(r+s)}.

Substituting all these expressions in (6.3.6), we obtain the Bayes estimator for θ1 as

δB1
1 =

B1 −B2

n(E1 − E2)
+ η

D1 −D2

(r + s− 1)(E1 − E2)
. (6.3.10)

Next we derive Bayes estimator of θ2 using the same vague prior (as above). The Bayes
estimator of θ2 under the loss function (6.3.1), is obtained as

δB1
2 =

E( θ2
σ2 |Z˜)

E( 1
σ2 |Z˜) ,

=
E(µ2

σ2 |Z˜)
E( 1

σ2 |Z˜) + η
E( 1

σ
|Z˜)

E( 1
σ2 |Z˜) , (6.3.11)

where E( θ2
σ2 |Z˜) and E( 1

σ2 |Z˜) are the posterior means of θ2
σ2 and 1

σ2 respectively. Hence the
Bayes estimator of θ2 under the loss function (6.3.1), is given by

δB1
2 =

∫ t∗
0

∫ y
µ1

∫∞
0
(µ2
σ2 )g(µ˜∗)dσdµ2dµ1∫ t∗

0

∫ y
µ1

∫∞
0
( 1
σ2 )g(µ˜∗)dσdµ2dµ1

+ η

∫ t∗
0

∫ y
µ1

∫∞
0
( 1
σ
)g(µ˜∗)dσdµ2dµ1∫ t∗

0

∫ y
µ1

∫∞
0
( 1
σ2 )g(µ˜∗)dσdµ2dµ1

. (6.3.12)

In a very similar way we obtain the expression

E
(µ2

σ2
|Z˜

)
=
mtr+s−3Γ(r + s)

nAΓ(r + s− 2)
(B∗

1 −B∗
2), (6.3.13)

where

B∗
1 =

y

m
{ξ−(r+s) − (ξ −mt∗)−(r+s)}+ {ξ1−(r+s) − (ξ −mt∗)1−(r+s)}

mn(1− (r + s))
.

and

B∗
2 =

t∗(w − (m+ n)t∗)−(r+s)

(m+ n)
+
m{w1−(r+s) − (w − (m+ n)t∗)1−(r+s)}

n(m+ n)2(1− (r + s))
,
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Hence the Bayes estimator of θ2 with respect to the non informative prior is given by

δB1
2 =

(B∗
1 −B∗

2)

n(E1 − E2)
+ η

(D1 −D2)

(r + s− 1)(E1 − E2)
. (6.3.14)

Bayesian Estimation Using Inverse Gamma Prior

In this section we obtain the Bayes estimator of θis using a conditional prior for the ordered
quantiles. We observe that, the scale parameter σ of an exponential population has a conjugate
prior as inverse gamma. We note that the location parameters µis are also refereed as the
minimum guarantee time in the study of reliability and life testing experiment. Hence, a
reasonable prior density for the location parameter may be considered as an exponential type.
Further we have also assumed 0 ≤ µ1 ≤ µ2 which satisfies the boundedness criteria. A similar
type of argument has been used to choose prior distribution for the ordered parameters in Yike
and Heliang (1999) and Nagatsuka et al. (2009). In view of the above arguments we have
considered the joint prior density of (µ1, µ2, σ) as follows (using conditional prior),

π(µ1, µ2, σ) = π1(µ1|µ2, σ)π2(µ2|σ)π3(σ),

where

π1(µ1|µ2, σ) =
1

σ
e−(µ2−µ1)/σ, π2(µ2|σ) =

1

σ
e−µ2/σ (6.3.15)

and

π3(σ) =
βα

Γ(α)

e−β/σ

σα+1
, α > 0, β > 0. (6.3.16)

The joint posterior density of µ1, µ2 and σ is given by

g∗((µ1, µ2, σ)|Z˜) = βαmntr+s−3

A∗Γ(α)Γ(r + s− 2)

e−
1
σ
{mx+ny+t+β+(2−n)µ2−(m+1)µ1}

σr+s+α+3
, (6.3.17)

where

A∗ =

∫ t∗

0

∫ y

µ1

∫ ∞

0

g∗((µ1, µ2, σ)|Z˜)dσdµ2dµ1.

Denoting v = mx + ny + t + β, u = mx + 2y + t + β, and after lot of mathematical
calculations, we obtain

E
(µ1

σ2
|Z˜

)
=
mntr+s−3βαΓ(r + s+ α + 2)

A∗Γ(r + s− 2)Γ(α)(n− 2)
(b1 − b2), (6.3.18)

where

b1 =
t∗(v − (m+ n− 1)t∗)−(α∗+2)

(m+ n− 1)
+

{v−(α∗+1) − (v − (m+ n− 1)t∗)−(α∗+1)}
(m+ n− 1)2(α∗ + 1)

,
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b2 =
t∗(u− (m+ 1)t∗)−(α∗+2)

(m+ 1)
+

{u−(α∗+1) − (u− (m+ 1)t∗)−(α∗+1)}
(m+ 1)2(α∗ + 1)

,

where α∗ = r + s+ α. Similarly we also obtain,

E
( 1
σ
|Z˜

)
=
mntr+s−3βαΓ(r + s+ α + 1)

A∗Γ(r + s− 2)Γ(α)(n− 2)
(d1 − d2), (6.3.19)

where

d1 =
1

(m+ n− 1)
{v−(α∗+1) − (v − (m+ n− 1)t∗)−(α∗+1)},

d2 =
1

(m+ 1)
{u−(α∗+1) − (u− (m+ 1)t∗)−(α∗+1)}.

Similarly we obtain the conditional expectation,

E
( 1

σ2
|Z˜

)
=
mntr+s−3βαΓ(r + s+ α+ 2)

A∗Γ(r + s− 2)Γ(α)(n− 2)
(e1 − e2), (6.3.20)

where

e1 =
1

(m+ n− 1)
{v−(α∗+2) − (v − (m+ n− 1)t∗)−(α∗+2)},

e2 =
1

(m+ 1)
{u−(α∗+2) − (u− (m+ 1)t∗)−(α∗+2)}.

Substituting all the above expressions in (6.3.6), we obtain the Bayes estimator of θ1 as,

δB2
1 =

(b1 − b2)

(e1 − e2)
+

η(d1 − d2)

(α∗ + 1)(e1 − e2)
. (6.3.21)

To obtain the Bayes estimator of θ2, we need to compute E(µ2σ2 |Z˜). The conditional expectationhas been calculated and obtained as,

E
(µ2

σ2
|Z˜

)
=

mntr+s−3βαΓ(α∗ + 2)

A∗Γ(r + s− 2)Γ(α)(n− 2)
(b∗1 − b∗2), (6.3.22)

where

b∗1 =
y

m+ 1
{u−(α∗+2) − (u− (m+ 1)t∗)−(α∗+2)} − {u−(α∗+1) − (u− (m+ 1)t∗)−(α∗+1)}

(m+ 1)(n− 2)(α∗ + 1)
,

b∗2 =
t∗(v − (m+ n− 1)t∗)−(α∗+2)

(m+ n− 1)
− (m+ 1){v−(α∗+1) − (v − (m+ n− 1)t∗)−(α∗+1)}

(m+ n− 1)2(α∗ + 1)(n− 2)
.
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Hence the Bayes estimator of θ2 is obtained as

δB2
2 =

b∗1 − b∗2
e1 − e2

+ η
d1 − d2

(α∗ + 1)(e1 − e2)
. (6.3.23)

6.3.3 Numerical Comparisons

In Section 6.3.1, we have obtained various estimators such as δL1 , δL1 , δM1 , δU1 , δE1 for θ1 when
there is no order restrictions on the location parameters. Further when there is order restriction
we have obtained δR1 , (plug-in type restricted estimator over the analogue of best equivariant
estimator) δB1

1 and δB2
1 as given in Section 6.3.2. Similarly we have proposed δL2 , δL2 , δM2 , δU2 , δE2 ,

δR2 , δ
B1
2 and δB2

2 for θ2. It seems difficult to compare all these estimators analytically. However
for the purpose of application, one needs the estimator that can be used. Further an intention is
to know how these estimators behave as the choices of η and the censoring factors (k1 = r/m,
k2 = s/n) varies. Taking the advantages of computational facilities, we have numerically
compared the risk values of all these estimators using Monte-Carlo simulation method. In order
to do so, we have generated 20,000 type-II censored random samples each from exponential
distributions having the same scale parameter 1 and different location parameters such that
0 ≤ µ1 ≤ µ2. To proceed further, we define the percentage of relative risk improvements of an
estimator d with respect to the MLE δLi as,

R(d) =

(
1− R(d, θi)

R(δLi , θi)

)
× 100.

The simulation results have been checked by taking various combinations of (α, β) and η.We
have taken conveniently the choices of ci ≥ 0. However, one may choose ci < 0, in that case
the MLEs and the UMVUEs will not belong to the class dci . In our simulation we have taken the
choice of η = 1.5 conveniently. The choice of the hyper parameters have been taken as α = 3.5
and β = 3 as a reasonable choice. An extensive simulation study has been conducted by taking
various combinations of sample sizes with censoring factors k1 = k2 = 0.25, 0.50, 0.75, 1. For
illustration purpose we have tabulated the percentage of relative risk performances of various
estimators of θ1 (Tables 6.3.1-6.3.3) for sample sizes (12, 8), (8, 12) and (12, 12). Similarly
the percentage of relative risk values of all the estimators for θ2 have been tabulated in Tables
6.3.4-6.3.6. Table 6.3.1 contains 10 columns and each column divided into some cells. The
first and the 6th column represent the choices of ρ = (µ2 − µ1)/σ > 0. The columns from
second to fifth and 7th to 10th represent the percentage of relative risk values of estimators δE1 ,
δR1 , δ

B1
1 , δB2

1 . Further in each cell corresponding to one value of ρ there correspond four values
of relative risk improvements. These four values correspond to the four choices of censoring
factors k1 = k2 = 0.25, 0.50, 0.75, 1. The accuracy of the simulation has been checked and the
error of the simulation has been checked which is seen maximum up to 10−2.

The following observations can be drawn from our simulation study as well as the Tables
6.3.1-6.3.6.
Comments on θ1

1. For 0 < ρ < 1.0, the estimator δB2
1 perform better than all the estimators. The

percentage of relative risk improvement of δB2
1 varies from 44% to 86%. The percentage

of relative risk improvement of δB1
1 varies from 42% to 82%. The percentage of relative

risk improvement of δE1 varies from 28% to 46%. Similarly, the percentage of relative
risk improvement of δR1 varies from 28% − 63%. For 1.0 < ρ < 2.5, the δB1

1 perform
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better among all the estimators. For ρ > 2.5, the percentage of relative risk improvement
of all the estimators are nearly same except the estimator δB2

1 .

2. The percentage of relative risk improvements of all the estimators are highly dependent
on the hyper parameters α and β and η. This improvement is not uniform for all values
of ρ. It may be positive or negative. However, when the parameters α and β are close to
each other (α ≈ β), the percentage of relative risk improvements are noticeable.

3. When values of the ρ increases from zero to some large value, and α ≈ β, the percentage
of relative risk improvement of δB2

1 is positive and reaches its maximum value then goes
down to zero and, finally enter into negative values. However the percentage of relative
risk improvement of δB1

1 is better for initial-values of ρ and then its performance becomes
negligible.

4. We also observe that for most of the values of ρ, as the censoring factor increases the
percentage of relative risk values of all the estimators decreases.

Comments on θ2

1. For 0 < ρ < 3.5, the estimator δB2
2 perform better than all the estimators. The percentage

of relative risk improvement of δB2
2 varies from 22% to 77%. However the percentage

of relative risk improvements of all other estimators are very less. For ρ > 3.5, the
percentage of relative risk improvement of the δB2

2 is nearly zero and as ρ further increases
it becomes negative. But in this region of ρ, the percentage of relative risk improvements
all other estimators, such as δE2 , δR2 and δB1

2 are almost same.

2. As in the case of θ1, the percentage of relative risk improvements of all the estimators for
θ2 are also highly dependent on the hyper parameters α and β and η. This improvement
is not uniform for all values of ρ. It may be positive or negative. However, when the
parameters α and β are close to each other and medium (α ≈ β), the percentage of
relative risk improvements are noticeable.

On the basis of our computational results, the following conclusions can be drawn for estimating
the quantiles θi when θ1 ≤ θ2.

1. For the estimation of θ1, we recommend to use θ̂2bs for small values of ρ (0 < ρ < 1).
For 1 < ρ < 2.5, we recommend to use θ̂1bs. For ρ > 2.5, we recommend to use θ̂1R.

2. For the estimation of θ2, we recommend to use θ̂2bs for small values of ρ (0 < ρ < 3.5).
For ρ > 3.5, we recommend to use θ̂1R.
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Table 6.3.1: Percentage of relative risk improvements of proposed estimators of θ1 for sample
sizes (m,n) = (12, 8) with censoring factors k1 = k2 = (0.25.0.5, 0.75, 1) and for

η = 1.5;α = 3.5; β = 3.0

ρ ↓ R(δE1 ) R(δR1 ) R(δB1
1 ) R(δB2

1 ) ρ ↓ R(δE1 ) R(δR1 ) R(δB1
1 ) R(δB2

1 )
0.05 5.93 5.41 6.42 35.34 2.25 6.70 6.70 6.51 84.12
0.05 1.83 1.79 1.34 12.50 2.25 1.71 1.71 1.65 60.21
0.05 0.09 0.62 0.88 7.86 2.25 0.37 0.37 0.25 45.37
0.05 0.10 1.10 1.87 6.67 2.25 0.00 0.00 0.03 33.53
0.25 6.19 6.19 7.98 48.63 2.50 6.52 6.52 6.62 79.60
0.25 2.04 2.18 4.26 28.16 2.50 1.89 1.89 1.70 54.46
0.25 0.22 0.52 3.10 20.99 2.50 0.20 0.20 0.18 39.14
0.25 0.05 0.46 3.30 18.43 2.50 0.00 0.00 0.03 29.14
0.50 6.06 6.06 8.38 61.45 2.75 6.45 6.45 6.41 73.36
0.50 1.41 1.42 3.97 41.84 2.75 1.77 1.77 1.69 48.08
0.50 0.18 0.21 2.32 32.46 2.75 0.17 0.17 0.16 32.37
0.50 0.10 0.16 2.07 27.95 2.75 0.08 0.08 0.06 20.84
0.75 6.40 6.40 7.71 70.38 3.00 6.43 6.43 6.42 65.56
0.75 1.54 1.54 2.90 50.80 3.00 2.54 2.54 2.01 40.09
0.75 0.33 0.33 1.17 39.37 3.00 0.13 0.13 0.13 21.73
0.75 0.11 0.11 0.92 33.44 3.00 0.02 0.02 0.05 14.13
1.00 6.80 6.80 7.47 77.54 3.25 6.12 6.12 6.46 54.75
1.00 1.22 1.22 2.27 57.24 3.25 1.64 1.64 1.67 26.67
1.00 0.04 0.04 0.55 44.84 3.25 0.26 0.26 0.19 12.68
1.00 0.11 0.11 0.39 36.91 3.25 0.05 0.05 0.04 2.64
1.25 6.15 6.15 6.99 82.50 3.50 6.60 6.60 6.60 43.21
1.25 1.34 1.34 1.92 61.78 3.50 1.48 1.48 1.56 11.89
1.25 0.08 0.08 0.37 47.91 3.50 0.21 0.21 0.18 -0.54
1.25 0.09 0.09 0.20 39.10 3.50 0.02 0.02 0.04 -7.30
1.50 6.46 6.46 6.63 85.68 3.75 6.54 6.54 6.45 28.78
1.50 1.68 1.68 1.95 64.47 3.75 1.61 1.61 1.61 -2.70
1.50 0.30 0.30 0.31 50.15 3.75 0.16 0.16 0.16 -15.24
1.50 0.00 0.00 0.08 40.21 3.75 0.05 0.05 0.02 -17.54
1.75 6.41 6.41 6.87 86.93 4.00 5.52 5.52 6.28 12.00
1.75 2.32 2.32 2.04 65.58 4.00 2.54 2.54 1.90 -16.42
1.75 0.20 0.20 0.21 49.48 4.00 0.27 0.27 0.18 -31.63
1.75 0.01 0.01 0.06 39.48 4.00 0.07 0.07 0.07 -35.96
2.00 6.89 6.89 6.84 86.64 4.25 5.36 5.36 6.14 -5.41
2.00 1.89 1.89 1.76 63.89 4.25 1.85 1.85 1.60 -37.52
2.00 0.02 0.02 0.14 46.53 4.25 0.05 0.05 0.13 -49.33
2.00 0.02 0.02 0.05 37.25 4.25 0.09 0.09 0.07 -53.71
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Table 6.3.2: Percentage of relative risk improvements of proposed estimators of θ1 for sample
sizes (m,n) = (8, 12) with censoring factors k1 = k2 = (0.25.0.5, 0.75, 1) and for

η = 1.5;α = 3.5; β = 3.0

ρ ↓ R(δE1 ) R(δR1 ) R(δB1
1 ) R(δB2

1 ) ρ ↓ R(δE1 ) R(δR1 ) R(δB1
1 ) R(δB2

1 )
0.05 4.73 2.40 6.23 33.06 2.25 3.97 3.97 4.47 80.85
0.05 0.28 0.56 1.26 12.02 2.25 0.23 0.23 0.21 54.47
0.05 0.39 2.44 3.54 9.35 2.25 0.48 0.48 0.39 37.82
0.05 2.39 6.69 7.92 13.53 2.25 1.75 1.75 1.86 28.67
0.25 5.29 5.32 6.55 47.22 2.50 5.08 5.08 4.67 76.67
0.25 0.27 1.39 3.90 29.86 2.50 0.03 0.03 0.17 47.59
0.25 0.47 2.63 5.42 26.22 2.50 0.32 0.32 0.30 32.27
0.25 2.18 4.95 8.24 26.39 2.50 2.60 2.60 2.24 21.50
0.50 4.60 4.69 6.01 59.97 2.75 4.31 4.31 4.38 69.68
0.50 0.34 0.66 2.23 41.35 2.75 0.23 0.23 0.23 40.12
0.50 0.57 1.05 2.57 34.93 2.75 0.45 0.45 0.39 23.58
0.50 2.42 3.08 4.43 31.87 2.75 1.30 1.30 1.74 15.27
0.75 4.87 4.90 5.42 69.12 3.00 5.02 5.02 4.58 61.13
0.75 0.23 0.27 1.05 49.58 3.00 0.29 0.29 0.29 30.88
0.75 0.31 0.38 1.07 39.62 3.00 0.24 0.24 0.36 14.88
0.75 2.34 2.50 2.72 34.85 3.00 2.07 2.07 1.98 5.67
1.00 4.68 4.68 5.00 76.31 3.25 4.35 4.35 4.45 49.29
1.00 0.26 0.29 0.59 55.66 3.25 0.13 0.13 0.18 16.17
1.00 0.44 0.46 0.62 43.78 3.25 0.37 0.37 0.36 3.05
1.00 2.03 2.05 2.05 36.84 3.25 1.76 1.76 1.84 -4.68
1.25 4.41 4.41 4.81 81.28 3.50 4.45 4.45 4.48 36.08
1.25 0.23 0.23 0.35 59.42 3.50 0.17 0.17 0.19 1.69
1.25 0.36 0.36 0.44 45.91 3.50 0.40 0.40 0.39 -11.07
1.25 1.85 1.85 1.82 38.00 3.50 2.11 2.11 2.13 -16.31
1.50 5.00 5.00 4.90 84.49 3.75 4.23 4.23 4.38 22.12
1.50 0.32 0.32 0.35 61.57 3.75 0.10 0.10 0.17 -17.22
1.50 0.64 0.64 0.49 46.16 3.75 0.38 0.38 0.41 -26.26
1.50 1.74 1.74 1.95 37.82 3.75 2.06 2.06 2.12 -30.63
1.75 5.69 5.69 4.94 85.87 4.00 5.37 5.37 4.63 4.70
1.75 0.25 0.25 0.26 61.04 4.00 0.29 0.29 0.24 -32.21
1.75 0.44 0.44 0.40 45.48 4.00 0.56 0.56 0.42 -47.47
1.75 2.11 2.11 2.10 35.54 4.00 2.12 2.12 2.10 -44.74
2.00 4.86 4.86 4.61 84.30 4.25 4.71 4.71 4.29 -14.75
2.00 0.27 0.27 0.25 58.88 4.25 0.31 0.31 0.29 -51.30
2.00 0.51 0.51 0.41 42.31 4.25 0.28 0.28 0.41 -58.03
2.00 1.77 1.77 1.83 33.25 4.25 2.15 2.15 2.11 -65.62
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Table 6.3.3: Percentage of relative risk improvements of proposed estimators of θ1 for sample
sizes (m,n) = (12, 12) with censoring factors k1 = k2 = (0.25.0.5, 0.75, 1) and for

η = 1.5;α = 3.5; β = 3.0

ρ ↓ R(δE1 ) R(δR1 ) R(δB1
1 ) R(δB2

1 ) ρ ↓ R(δE1 ) R(δR1 ) R(δB1
1 ) R(δB2

1 )
0.05 4.39 3.58 6.30 28.18 2.25 5.39 5.39 5.16 79.48
0.05 0.82 0.71 1.50 8.86 2.25 0.52 0.52 0.67 52.47
0.05 0.00 0.92 1.40 5.28 2.25 0.00 0.00 0.00 38.11
0.05 0.18 1.39 2.32 4.03 2.25 0.22 0.22 0.34 28.99
0.25 4.91 4.94 7.49 42.13 2.50 4.89 4.89 5.21 74.53
0.25 0.54 0.86 3.56 25.30 2.50 0.67 0.67 0.78 48.56
0.25 0.00 0.52 3.04 19.64 2.50 0.00 0.00 0.00 32.42
0.25 0.38 0.93 3.52 17.93 2.50 0.39 0.39 0.43 23.25
0.50 4.64 4.65 6.52 54.74 2.75 5.18 5.18 5.18 68.23
0.50 0.48 0.49 2.16 36.74 2.75 0.43 0.43 0.73 39.39
0.50 0.00 0.01 1.05 27.80 2.75 0.00 0.00 0.00 25.18
0.50 0.39 0.42 1.37 24.44 2.75 0.45 0.45 0.49 16.98
0.75 4.34 4.34 5.67 64.24 3.00 4.97 4.97 5.15 60.94
0.75 0.60 0.60 1.14 44.36 3.00 0.94 0.94 0.90 31.95
0.75 0.00 0.00 0.28 34.15 3.00 0.00 0.00 0.00 18.00
0.75 0.25 0.25 0.57 28.49 3.00 0.40 0.40 0.48 9.82
1.00 4.94 4.94 5.48 71.82 3.25 5.09 5.09 5.17 48.52
1.00 0.96 0.96 0.93 50.47 3.25 0.92 0.92 0.76 21.26
1.00 0.00 0.00 0.07 38.88 3.25 0.00 0.00 0.00 8.30
1.00 0.35 0.35 0.39 31.98 3.25 0.41 0.41 0.40 0.96
1.25 5.34 5.34 5.39 77.29 3.50 4.75 4.75 5.17 35.73
1.25 0.96 0.96 0.88 54.94 3.50 0.72 0.72 0.79 7.97
1.25 0.00 0.00 0.02 41.85 3.50 0.00 0.00 0.00 -3.64
1.25 0.57 0.57 0.51 33.85 3.50 0.39 0.39 0.45 -7.45
1.50 5.28 5.28 5.33 80.83 3.75 4.60 4.60 4.94 22.88
1.50 0.84 0.84 0.89 57.61 3.75 0.49 0.49 0.69 -11.25
1.50 0.00 0.00 0.00 43.15 3.75 0.00 0.00 0.00 -17.79
1.50 0.55 0.55 0.43 34.21 3.75 0.61 0.61 0.53 -24.59
1.75 5.26 5.26 5.21 82.32 4.00 5.05 5.05 5.00 4.84
1.75 0.85 0.85 0.78 58.22 4.00 0.81 0.81 0.82 -20.37
1.75 0.00 0.00 0.00 43.24 4.00 0.00 0.00 0.00 -32.87
1.75 0.51 0.51 0.45 33.35 4.00 0.33 0.33 0.31 -33.58
2.00 6.06 6.06 5.46 82.50 4.25 4.85 4.85 5.03 -12.07
2.00 0.95 0.95 0.90 57.25 4.25 0.96 0.96 0.94 -41.01
2.00 0.00 0.00 0.00 42.23 4.25 0.00 0.00 0.00 -50.38
2.00 0.34 0.34 0.33 31.84 4.25 0.38 0.38 0.42 -49.00
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Table 6.3.4: Percentage of relative risk improvements of proposed estimators of θ2 for sample
sizes (m,n) = (12, 8) with censoring factors k1 = k2 = (0.25.0.5, 0.75, 1) and for

η = 1.5;α = 3.5; β = 3.0

ρ ↓ R(δE2 ) R(δR2 ) R(δB1
2 ) R(δB2

2 ) ρ ↓ R(δE2 ) R(δR2 ) R(δB1
2 ) R(δB2

2 )
0.05 4.87 6.42 9.33 48.10 2.25 4.45 4.45 4.56 82.93
0.05 0.29 1.91 4.01 31.52 2.25 0.14 0.14 0.71 59.10
0.05 0.43 2.11 4.24 23.65 2.25 0.66 0.66 1.27 43.57
0.05 2.20 3.48 5.11 15.31 2.25 2.32 2.32 2.52 34.81
0.25 5.64 5.79 4.83 46.37 2.50 4.70 4.70 4.51 79.85
0.25 0.24 0.47 1.03 27.29 2.50 0.20 0.20 0.43 55.99
0.25 0.56 0.70 1.16 21.20 2.50 0.44 0.44 0.58 41.12
0.25 2.31 2.49 2.57 18.76 2.50 1.64 1.64 1.41 33.81
0.50 3.68 3.69 5.31 56.33 2.75 4.23 4.23 4.46 74.56
0.50 0.30 0.32 0.15 33.71 2.75 0.25 0.25 0.41 50.97
0.50 0.17 0.19 -0.23 23.63 2.75 0.36 0.36 0.35 37.65
0.50 2.12 2.14 1.86 20.73 2.75 1.53 1.53 0.91 29.14
0.75 4.62 4.62 4.85 64.74 3.00 4.91 4.91 4.26 68.21
0.75 0.53 0.53 -0.40 41.45 3.00 0.18 0.18 0.39 42.43
0.75 0.20 0.20 -0.42 30.62 3.00 0.30 0.30 0.09 31.21
0.75 1.92 1.92 1.38 25.04 3.00 1.94 1.94 1.89 23.26
1.00 4.96 4.96 4.69 72.26 3.25 3.88 3.88 4.70 59.04
1.00 0.27 0.27 0.12 49.32 3.25 0.28 0.28 0.16 34.33
1.00 0.34 0.34 0.10 36.71 3.25 0.36 0.36 0.26 21.96
1.00 2.58 2.58 2.76 30.64 3.25 1.90 1.90 1.61 17.53
1.25 4.38 4.38 4.69 77.94 3.50 4.01 4.01 4.83 49.51
1.25 0.26 0.26 0.12 55.25 3.50 0.26 0.26 0.31 23.30
1.25 0.59 0.59 0.87 41.60 3.50 0.43 0.43 0.47 12.81
1.25 2.20 2.20 2.07 34.06 3.50 2.07 2.07 2.08 7.46
1.50 3.77 3.77 4.77 81.79 3.75 4.65 4.65 4.50 37.56
1.50 0.24 0.24 0.12 58.73 3.75 0.28 0.28 0.17 11.59
1.50 0.42 0.42 0.60 44.62 3.75 0.42 0.42 0.78 2.85
1.50 2.47 2.47 2.96 35.79 3.75 2.74 2.74 3.37 -2.59
1.75 4.68 4.68 4.48 83.95 4.00 4.70 4.70 4.24 24.20
1.75 0.18 0.18 0.66 61.00 4.00 0.13 0.13 0.69 -3.08
1.75 0.55 0.55 0.84 46.28 4.00 0.55 0.55 0.92 -10.65
1.75 1.72 1.72 1.39 37.42 4.00 1.94 1.94 1.63 -12.40
2.00 4.44 4.44 4.56 84.34 4.25 4.53 4.53 4.62 7.84
2.00 0.16 0.16 0.51 61.02 4.25 0.21 0.21 0.13 -18.72
2.00 0.59 0.59 0.97 45.49 4.25 0.14 0.14 -0.46 -23.26
2.00 2.15 2.15 2.37 37.36 4.25 1.79 1.79 1.63 -23.97
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Table 6.3.5: Percentage of relative risk improvements of proposed estimators of θ2 for sample
sizes (m,n) = (8, 12) with censoring factors k1 = k2 = (0.25.0.5, 0.75, 1) and for

η = 1.5;α = 3.5; β = 3.0

ρ ↓ R(δE2 ) R(δR2 ) R(δB1
2 ) R(δB2

2 ) ρ ↓ R(δE2 ) R(δR2 ) R(δB1
2 ) R(δB2

2 )
0.05 5.83 8.18 15.31 48.44 2.25 6.08 6.08 6.50 85.36
0.05 1.66 4.23 7.53 31.78 2.25 1.54 1.54 1.50 62.37
0.05 0.07 2.17 4.12 24.46 2.25 0.04 0.04 0.34 46.32
0.05 0.02 2.31 3.58 19.72 2.25 0.07 0.07 0.17 36.26
0.25 6.78 7.32 9.59 48.93 2.50 6.32 6.32 6.55 82.11
0.25 1.28 1.72 3.42 29.52 2.50 1.40 1.40 1.86 58.18
0.25 0.18 0.56 0.72 21.08 2.50 0.13 0.13 0.34 42.30
0.25 0.04 0.36 0.44 17.56 2.50 0.16 0.16 0.81 31.47
0.50 6.29 6.43 7.77 58.28 2.75 6.17 6.17 6.58 76.27
0.50 1.84 1.93 2.08 37.59 2.75 1.57 1.57 1.63 51.51
0.50 0.16 0.22 0.25 28.07 2.75 0.01 0.01 0.52 36.12
0.50 0.08 0.19 0.33 23.16 2.75 0.09 0.09 0.22 26.74
0.75 7.01 7.03 7.09 67.41 3.00 6.63 6.63 6.52 70.37
0.75 2.08 2.09 1.60 46.55 3.00 2.11 2.11 1.50 46.04
0.75 0.13 0.12 0.10 35.61 3.00 0.19 0.19 0.01 30.08
0.75 0.12 0.14 0.47 29.18 3.00 0.05 0.05 0.09 19.84
1.00 6.55 6.55 6.78 74.96 3.25 6.37 6.37 6.40 60.75
1.00 1.75 1.75 1.87 54.12 3.25 2.05 2.05 1.42 35.05
1.00 0.18 0.19 0.06 41.77 3.25 0.13 0.13 0.43 19.58
1.00 0.13 0.13 0.59 33.73 3.25 0.06 0.06 0.10 11.59
1.25 7.27 7.27 6.57 80.66 3.50 6.01 6.01 6.41 50.54
1.25 2.00 2.00 1.57 59.74 3.50 1.62 1.62 1.81 23.13
1.25 0.20 0.20 -0.04 45.85 3.50 0.24 0.24 -0.24 9.69
1.25 0.03 0.03 -0.31 36.91 3.50 0.00 0.00 -0.12 3.88
1.50 6.75 6.75 6.54 84.56 3.75 6.73 6.73 6.38 37.95
1.50 1.27 1.27 2.01 63.14 3.75 1.71 1.71 1.73 9.03
1.50 0.24 0.24 0.16 48.92 3.75 0.23 0.23 0.08 -2.39
1.50 0.11 0.11 0.49 38.89 3.75 0.07 0.07 0.14 -11.11
1.75 7.47 7.47 6.65 87.01 4.00 7.05 7.05 6.41 23.44
1.75 2.07 2.07 1.41 65.37 4.00 1.76 1.76 1.64 -4.77
1.75 0.08 0.08 0.63 49.78 4.00 0.10 0.10 0.34 -17.80
1.75 0.06 0.06 0.00 39.58 4.00 0.06 0.06 0.18 -22.27
2.00 6.37 6.37 6.64 86.71 4.25 5.69 5.69 6.42 6.21
2.00 1.59 1.59 1.72 64.73 4.25 1.48 1.48 1.90 -22.56
2.00 0.20 0.20 0.06 49.24 4.25 0.24 0.24 0.08 -32.98
2.00 0.07 0.07 0.22 38.38 4.25 0.02 0.02 -0.28 -35.21
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Table 6.3.6: Percentage of relative risk improvements of proposed estimators of θ2 for sample
sizes (m,n) = (12, 12) with censoring factors k1 = k2 = (0.25.0.5, 0.75, 1) and for

η = 1.5;α = 3.5; β = 3.0

ρ ↓ R(δE2 ) R(δR2 ) R(δB1
2 ) R(δB2

2 ) ρ ↓ R(δE2 ) R(δR2 ) R(δB1
2 ) R(δB2

2 )
0.05 4.99 6.47 10.44 39.75 2.25 4.92 4.92 5.32 80.43
0.05 0.56 2.17 5.01 25.68 2.25 1.27 1.27 0.54 57.33
0.05 0.00 1.33 2.41 18.99 2.25 0.00 0.00 0.05 40.92
0.05 0.52 2.12 3.26 17.41 2.25 0.30 0.30 -0.04 32.19
0.25 4.78 4.91 6.52 41.23 2.50 5.61 5.61 5.02 77.35
0.25 0.63 0.76 1.75 23.60 2.50 0.95 0.95 0.84 53.58
0.25 0.00 0.11 -0.08 16.22 2.50 0.00 0.00 -0.10 37.91
0.25 0.41 0.60 0.39 14.12 2.50 0.44 0.44 0.47 28.96
0.50 5.33 5.34 5.63 52.03 2.75 5.36 5.36 5.24 71.85
0.50 0.39 0.40 1.21 32.68 2.75 0.82 0.82 0.68 46.66
0.50 0.00 0.00 0.05 23.66 2.75 0.00 0.00 0.13 33.32
0.50 0.37 0.36 -0.04 18.85 2.75 0.60 0.60 0.89 24.00
0.75 5.67 5.67 5.69 61.95 3.00 5.78 5.78 5.23 65.04
0.75 0.82 0.82 0.96 40.65 3.00 0.95 0.95 0.80 40.12
0.75 0.00 0.00 -0.08 30.32 3.00 0.00 0.00 -0.05 26.15
0.75 0.62 0.62 0.94 25.41 3.00 0.41 0.41 0.43 17.98
1.00 4.53 4.53 5.22 69.78 3.25 4.51 4.51 5.09 54.77
1.00 0.85 0.85 1.08 48.18 3.25 0.81 0.81 0.96 29.69
1.00 0.00 0.00 -0.14 36.20 3.25 0.00 0.00 -0.34 17.88
1.00 0.47 0.47 0.67 29.23 3.25 0.41 0.41 0.20 11.64
1.25 4.79 4.79 5.07 75.66 3.50 5.22 5.22 5.17 45.17
1.25 0.98 0.98 0.83 53.36 3.50 0.85 0.85 0.69 18.94
1.25 0.00 0.00 0.04 40.17 3.50 0.00 0.00 -0.29 7.47
1.25 0.59 0.59 1.03 32.45 3.50 0.42 0.42 0.34 1.73
1.50 5.08 5.08 5.11 79.77 3.75 5.33 5.33 5.15 31.71
1.50 0.80 0.80 0.94 56.90 3.75 0.72 0.72 0.91 7.33
1.50 0.00 0.00 0.10 42.62 3.75 0.00 0.00 0.29 -5.26
1.50 0.26 0.26 0.01 34.05 3.75 0.72 0.72 1.29 -9.07
1.75 4.25 4.25 5.36 81.66 4.00 6.20 6.20 5.09 18.87
1.75 0.69 0.69 0.88 58.42 4.00 0.70 0.70 0.91 -8.95
1.75 0.00 0.00 0.20 43.65 4.00 0.00 0.00 0.18 -16.44
1.75 0.27 0.27 0.15 35.09 4.00 0.44 0.44 0.44 -18.47
2.00 5.89 5.89 5.16 82.83 4.25 5.79 5.79 5.06 0.05
2.00 0.88 0.88 0.72 58.45 4.25 0.80 0.80 0.87 -25.47
2.00 0.00 0.00 -0.25 43.67 4.25 0.00 0.00 -0.32 -31.52
2.00 0.25 0.25 0.06 34.57 4.25 0.38 0.38 0.24 -31.11
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6.3.4 Conclusions
In this section we have considered the problem of estimating ordered quantiles from two
exponential populations with a common scale when the samples drawn are type-II censored.
First, utilizing the order restrictions on the location parameters, we propose certain plug-in
type restricted estimators based on some baseline estimators using the principle of isotonic
regression. It has been observed from our simulation study, that these plug-in type restricted
estimators do not improve uniformly upon their old counter parts when censored samples are
available. Furthermore, we have used two types of priors to get Bayes estimators for the
ordered quantiles. These Bayes estimators have been obtained analytically. However, the
Bayes estimators too do not improve upon the restricted plug-in type estimator for all values
of the parameters. Finally, we have tabulated the percentage of relative risk improvements of
all these proposed estimators and recommendations have been made for their use. It will be
interesting to get Bayes estimators using some other useful priors for the parameters in order to
get better dominance results.





Chapter 7

Bayesian Estimation of Common Scale
Parameter of Two Exponential

Populations with Order Restricted
Locations

7.1 Introduction

Let X˜ = (X1, X2, . . . , Xm) and Y˜ = (Y1, Y2, . . . , Yn) be random samples taken from
two shifted exponential populations with a common scale parameter σ and different location
parameters µ1 and µ2 respectively. Here µis are also known as the minimum guarantee times
or survival periods of certain products, whereas σ is known as the mean residual life time after
the minimum survival period. From our practical experience, it is natural to assume that the
minimum guarantee times (minimum survival periods) are non negative, hence throughout we
assume, that µi > 0 (see Elfessi and Pal (1991) for justification). The problem is to estimate
the common scale parameter σ when it is known a priori that the location parameters follow the
ordering µ1 ≤ µ2. The loss function is taken as the quadratic,

L(δ, σ) =

(
δ

σ
− 1

)2

, (7.1.1)

where δ is an estimator for the common scale parameter σ. Further the risk of an estimator is
defined as

E{L(δ, σ)}.

It is natural to expect that, the estimators obtained without any restriction on the parameters
can be improved quite significantly, if one imposes order restrictions on the parameters. We
expect that, the existing estimators for σ (without any restrictions on the location parameters)
can be improved under the assumption of order restrictions on the location parameters. In
the literature, the problem of estimation of parameters under order restrictions has been well
investigated by several authors in the recent past, from a classical as well as decision theoretic
point of view. Particularly, the model under consideration has got its importance due to the
practical applications in real world problems. For example, suppose a product/equipment
is produced from two different manufacturers say M1 and M2 and let the life times of
these products follow exponential distributions. Assume that both the manufacturers employ
modern statistical techniques so that their variations will be minimized. Depending upon their
technology development and the target level the manufactures want that the minimum guarantee
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period or the mean life times of one manufacture will be less or more than the other. Under such
a scenario, it is quite practical to assume that the scale parameters are equal and the location
parameters follow certain ordering. For some review on estimation of ordered parameters under
various statistical model assumptions, we refer to Barlow et al. (1972) and Robertson et al.
(1988). Some further related results on estimation of parameters under order restrictions in the
case of exponential populations have been studied in Tripathy et al. (2014), Misra and Singh
(1994), Kushary and Cohen (1989) and the references cited therein.

The model under consideration, has also been studied previously by Madi and Tsui
(1990), and Madi and Leonard (1996), without assuming the order restrictions on the location
parameters. Madi and Tsui (1990) considered the estimation of σ under a large class
of bowl-shaped loss function and proved the inadmissibility of the best affine equivariant
estimator. They derived a class of improved estimators for σ. Further Madi and Leonard (1996)
derived aBayes estimator forσ and compared its simulated risk valueswith that of the best affine
equivariant estimator usingMonte-Carlo simulationmethod. Their numerical study reveals that,
the amount of risk reduction of the Bayes estimator over the best affine equivariant estimator is
much higher than compared to the estimator proposed byMadi and Tsui (1990). They have also
tabulated the approximate values of the risk reduction in their paper. For some more results on
Bayesian estimation of ordered parameters in the case of exponential populations, we refer to
Yike and Heliang (1999), and Nagatsuka et al. (2009). Elfessi and Pal (1991) considered the
estimation of σ using type-II censored samples where as Pandey and Singh (1979) studied the
problem using the loss function L(δ, σ) = max{δ/σ − 1, σ/δ − 1}. Due to the difficulties in
deriving the analytical expressions of a Bayes estimator under order restrictions, some authors
have shown their interest in developing sampling techniques that can be used numerically.
Treating the order restriction on the parameters, Gelfand et al. (1992) proposed aGibbs sampling
procedure for finding approximate Bayes estimator. Some related results on estimating ordered
parameters using certain numerical methods, one may refer to Molitor and Sun (2002) and the
references cited there in. The problem of estimation of quantiles of exponential populations
with common scale parameter has been considered by Vellaisamy (2003). Recently Nagamani
and Tripathy (2017) considered the Bayesian estimation of common scale parameter of two
gamma populations using some numerical methods. Further results on estimation of common
parameter from exponential distribution using full sample and record data have been considered
by Jana et al. (2016) and Arshad and Baklizi (2018).

In this chapter, we consider the statistical model of two exponential populations with a
common scale, that has been earlier considered by Madi and Tsui (1990), and Madi and
Leonard (1996), with the additional information that the location parameters are ordered and
non-negative. The main target is to derive certain Bayes estimators for the common scale
parameter σ, under the assumption that location parameters are ordered, and which is practically
very much useful. The rest of work is organized as follows. In Section 7.2, we discuss some
basic results and propose the restricted MLE of σ. In Section 7.3, we find Bayes estimators
using uniform prior and a conditional inverse gamma prior, taking into account the order
restrictions on the location parameters. Exact expressions for these two Bayes estimators have
been obtained. It seems quite difficult to evaluate the risk values of these estimators analytically.
In Section 7.4, taking the advantages of computational facilities, we compare the performance
of our estimator with that ofMadi and Leonard (1996) with respect to the quadratic loss function
(7.1.1) using Monte-Carlo simulation method. It has been revealed that the proposed estimator
perform quite satisfactorily in comparison to other estimators, when it is known a priori that the
location parameters are ordered.
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7.2 Ceratin Basic Results

Let X˜ = (X1, X2, . . . , Xm) and Y˜ = (Y1, Y2, . . . , Yn) be random samples taken from two
exponential populations with a common scale parameter σ and different location parameters µ1

and µ2 respectively. Let us define the followings random variable.

X(1) = min
1≤j≤m

Xj, Y(1) = min
1≤j≤n

Yj,

and

T =
m∑
j=1

(Xi −X(1)) +
n∑
j=1

(Yi − Y(1)).

It is easy to see that (X(1), Y(1), T ) is complete and sufficient for (µ1, µ2, σ).We also note that,
X(1) ∼ Exp(µ1,

σ
m
), Y(1) ∼ Exp(µ2,

σ
n
) and T ∼ Gamma(m + n − 2, σ) and they are all

independent. Here Gamma(m + n − 2, σ) denotes gamma distribution with shape parameter
m+ n− 2 and scale parameter σ.

When there is no order restriction on the µis, the MLEs for µ1, µ2 and σ are obtained as
X(1), Y(1) and T

m+n
respectively. Further, the uniformly minimum variance unbiased estimator

(UMVUE) of σ is obtained as T
m+n−2

. The analogous of the best affine equivariant estimator
(BAEE) based on the sufficient statistics (X(1), Y(1), T ) is obtained as T

m+n−1
. Further we also

note that, in the class cT, where c is any positive constant, the choice of c which minimizes
the risk with respect to the loss (7.1.1) or any weighted squared error loss, is obtained as
c0 = 1

m+n−1
. Let us denote this estimator as d0 = c0T. Madi and Leonard (1996) obtained

the following Bayes estimator when there is no restrictions on the location parameters.

dB =

∑3
j=1

1
ζj
{(t+ β + ξj − z(j)ζj)

−(k−1) − (t+ β + ξj − z(j−1)ζ(j))
−(k−1)}

(n+ α− 1)
∑3

j=1
1
ζj
{(t+ β + ξj − z(j)ζj)−k − (t+ β + ξj − z(j−1)ζ(j))−k}

,

where k = m + n + α, Z1 = X(1), Z2 = Y(1), and Z(1) ≤ Z(2) the order statistics of Zi, and
the symbols ξj, ζj are as defined in (2.7), (2.8) of Madi and Leonard (1996). It has been shown
that the estimator dB completely dominates d0 with respect to a quadratic loss. They have also
obtained the amount of risk reduction over the best equivariant estimator d0.

We note that when there is order restriction on the location parameters that is µ1 ≤ µ2, the
usual estimator for the scale parameter may not perform well and hence better estimators can
be derived. When there is no order restriction on location parameters, the MLEs of µ1 and µ2

are given by X(1) and Y(1) respectively. Using the isotonic regression on the estimators of µi
we obtain the following estimators for µ1 and µ2 when µ1 ≤ µ2.

µ̂1R = max{0,min(X(1),
mX(1) + nY(1)

m+ n
)}, µ̂2R = max{0,max(Y(1),

mX(1) + nY(1)
m+ n

)}.

Using these estimators of µis we propose the following estimator of σ and named it as restricted
MLE.

σ̂R =
1

m+ n− 1

[ m∑
j=1

(Xi − µ̂1R) +
n∑
j=1

(Yi − µ̂2R)

]
.
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Now taking convex combination of c0T and σ̂R we get another estimator say

dR = pc0T + (1− p)σ̂R, where 0 < p < 1.

Remark 7.2.1 In the estimator dR, it seems difficult to find an optimal choice of p for which
the risk will be minimum analytically. However, using the computational resources, we have
checked the risk values dR by taking many choices of p (0.01(0.01)1) numerically. It has been
revealed that the risk values of dR changes marginally with respect to p.Hence for convenience
we have taken p = 1/2 in our numerical study.

Remark 7.2.2 A numerical comparison of the risk values of the estimator dR (with p = 1/2)
and σ̂R with respect to the loss function (7.1.1), has been done using Monte-Carlo simulation
method. The restricted MLE σ̂R does not improve upon the MLE. However, it has been observed
that the amount of risk improvement of dR over σ̂R is very negligible. Hence we have not
presented the risk of dR in tables.

7.3 Bayesian Estimation under Order Restriction

In this Section, we derive Bayes estimators for the common scale parameter σ assuming that,
the location parameters follow a certain ordering that is µ1 ≤ µ2.When some prior information
is available about parameters of certain distribution of an random experiment, the Bayesian
estimators are more useful for the estimation of that parameters. It is a usual practice to find
conjugate prior for the parameters in the Bayesian estimation. For our model it seems difficult
to get a conjugate prior for the parameters under the condition that, µ1 ≤ µ2, σ > 0. For
convenience, we have chosen two different priors which satisfy the order restrictions. First we
consider uniform prior on the parameter space that is σ > 0 and µ1 ≤ µ2.

Bayes Estimator Using Uniform Prior

We assume that the parameters (µ1, µ2) and σ have been observed independently. Let us
consider the joint prior density of µ˜ = (µ1, µ2) as

π1(µ1, µ2) = 1, for 0 < µ1 ≤ µ2.

and π2(σ) =
1

σ
for σ > 0.

So the joint prior density is obtained as

π(µ1, µ2, σ) = 1/σ, for 0 < µ1 ≤ µ2, σ > 0. (7.3.1)

To derive the Bayes estimator of σ, we denoteX(1), Y(1), T asX,Y, T respectively. Denote
w = mx+ ny + t. The joint density of (X, Y, T ) is given by

fX,Y,T (x, y, t) =
mntm+n−3

Γ(m+ n− 2)σm+n
e−

1
σ
(w−mµ1−nµ2), t > 0, x > µ1, y > µ2.
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Further the joint posterior density function of (µ1, µ2, σ) is given (X, Y, T ) by

g((µ1, µ2, σ)|(x, y, t)) ∝
mntm+n−3

Γ(m+ n− 2)σm+n+1
e−

1
σ
{w−mµ1−nµ2},

where t > 0, x > µ1, y > µ2, µ1 ≤ µ2. The marginal posterior density function of σ is seen to
be proportional to

g(σ|(x, y, t)) ∝
∫ t∗

0

∫ y

µ1

mntm+n−3

Γ(m+ n− 2)σm+n+1
e−

1
σ
{w−mµ1−nµ2}dµ2dµ1, (7.3.2)

t > 0, x > µ1, y > µ2, µ1 ≤ µ2. Here we denote t∗ = min(x, y) and the values 0 < µ1 < t∗,
µ1 < µ2 < y. It can be seen that with respect to the loss function (7.1.1), the Bayes estimator
of σ is of the form

dUB =
E( 1

σ
|(x, y, t))

E( 1
σ2 |(x, y, t))

. (7.3.3)

After some tedious calculations, the expected values have been obtained as,

E(
1

σ
|(x, y, t)) = c1Γ(m+ n− 1)

[
1

m+ n
{w1−(m+n) − (w − (m+ n)t∗)1−(m+n)}−

1

m
{ξ1−(m+n) − (ξ −mt∗)1−(m+n)}

]
(7.3.4)

and

E(
1

σ2
|(x, y, t)) = c1Γ(m+ n)

[
1

m+ n
{w−(m+n) − (w − (m+ n)t∗)−(m+n)}−

1

m
{ξ−(m+n) − (ξ −mt∗)−(m+n)}

]
(7.3.5)

where ξ = mx+ t, c1 =
mtm+n−3

AΓ(m+n−2)
and A =

∫ t∗
0

∫ y
µ1

∫∞
0

1
σ
fX,Y,T (x, y, t)dσdµ2dµ1.

Substituting these expressions in (7.3.3), one gets the generalized Bayes estimator of σ as

dUB =
1
M
{w(1−M) − (w −Mt∗)(1−M)} − 1

m
{ξ(1−M) − (ξ −mt∗)(1−M)}

(M − 1) 1
M
{w−M − (w −Mt∗)−M} − 1

m
{ξ−M − (ξ −mt∗)−M}

,

whereM = m+ n. The following result is immediate.

Theorem 7.3.1 The generalized Bayes estimator of σ using the uniform prior (7.3.1), with
respect to the loss function (7.1.1) is given by dUB.

Remark 7.3.1 In section 7.4, we have conducted a simulation study and numerically compared
the simulated risk values of the estimator dUB with other estimators.

Bayes Estimator Using Conditional Prior

In this section, we obtain the Bayes estimator of σ considering the fact that, the parameters may
not be independent. We observe that, the scale parameter σ of an exponential population has a
conjugate prior as inverse gamma. We note that the location parameters µis are also refereed
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as the minimum guarantee time in the study of reliability and life testing experiment. Hence, a
reasonable prior density for the location parameter may be considered as an exponential type.
Further we have also assumed 0 ≤ µ1 ≤ µ2 which satisfies the boundedness criteria. A similar
type of argument has been used to choose prior distribution for the ordered parameters in Yike
and Heliang (1999) and Nagatsuka et al. (2009). In view of the above arguments, we have
considered the joint prior density of (µ1, µ2, σ) as follows (using conditional prior). First assume
that the prior density function of σ be an inverse gamma which is given by

p(σ) =
βα

Γ(α)

e−β/σ

σα+1
, α > 0, β > 0.

Further consider the conditional prior density functions of µ2 given σ and µ1 given (µ2, σ)
respectively as,

q(µ2|σ) =
1

σ
e−µ2/σ, µ2 > 0

and

r(µ1|(µ2, σ)) =
1

σ
e−(µ2−µ1)/σ, µ1 ≤ µ2, σ > 0.

Hence the joint prior density function of (µ1, µ2, σ) is given by

π(µ1, µ2, σ) = r(µ1|µ2, σ)q(µ2|σ)p(σ), µ1 ≤ µ2, σ > 0. (7.3.6)

The joint posterior density function of µ1, µ2 and σ is given by

g((µ1, µ2, σ)|(x, y, t)) ∝
βαmntm+n−3

Γ(α)Γ(m+ n− 2)

e−
1
σ
{mx+ny+t+β+(2−n)µ2−(m+1)µ1}

σm+n+α+3
, (7.3.7)

σ > 0, µ1 ≤ µ2.

Hence the marginal posterior density function of σ, can be obtained as in the previous
subsection and is given by

g(σ|(x, y, t)) ∝
∫ t∗

0

∫ y

µ1

βαmntm+n−3

Γ(α)Γ(m+ n− 2)

e−
1
σ
{mx+ny+t+β+(2−n)µ2−(m+1)µ1}

σm+n+α+3
dµ2dµ1,(7.3.8)

σ > 0, µ1 ≤ µ2.

The above integral (7.3.8) has been evaluated and after some simplification is obtained as,

g(σ|(x, y, t)) = c2(b1 − b2 − b3 + b4), (7.3.9)

where

b1 =
e−

1
σ
{ξ∗−(m+1)t∗}

(m+ n)σm+n+α+1
, b2 =

e−
ξ∗
σ

(m+ n)σm+n+α+1
,

b3 =
e−

1
σ
{w∗−(m+n−1)t∗}

(m+ n− 1)σm+n+α+1
, b4 =

e−
w∗
σ

(m+ n− 1)σm+n+α+1
.
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and c2 = βαmntm+n−3

B(n−2)Γ(α)Γ(m+n−2)
, ξ∗ = mx+ 2y + β + t, w∗ = mx+ ny + β + t, where

B =

∫ t∗

0

∫ y

µ1

∫ ∞

0

βαmntm+n−3

Γ(α)Γ(m+ n− 2)

e−
1
σ
{mx+ny+t+β+(2−n)µ2−(m+1)µ1}

σm+n+α+3
dσdµ2dµ1.

Similar to the previous case, we need to find E( 1
σ
|(x, y, t)) and E( 1

σ2 |(x, y, t)). The
expressions have been simplified and are obtained as,

E(
1

σ
|(x, y, t)) = c2Γ(m+ n+ α + 1)[b̂1 − b̂2 − b̂3 + b̂4], (7.3.10)

where

b̂1 =
1

m+ 1
(ξ∗ − (m+ 1)t∗)−(m+n+α+1); b̂2 =

1

m+ 1
ξ∗−(m+n+α+1);

b̂3 =
1

m+ n− 1
(w∗ − (m+ n− 1)t∗)−(m+n+α+1); b̂4 =

1

m+ n− 1
w∗−(m+n+α+1).

Also we have,

E(
1

σ2
|z) = c2Γ(m+ n+ α + 2)[b∗1 − b∗2 − b∗3 + b∗4], (7.3.11)

where

b∗1 =
1

m+ 1
(ξ∗ − (m+ 1)t∗)−(m+n+α+2); b∗2 =

1

m+ 1
ξ∗−(m+n+α+2);

b∗3 =
1

m+ n− 1
(w∗ − (m+ n− 1)t∗)−(m+n+α+2); b∗4 =

1

m+ n− 1
w∗−(m+n+α+2).

Substituting all these expressions we obtain the Bayes estimator of σ as,

dCB =
1

(m+ n+ α + 1)

(
b̂1 − b̂2 − b̂3 + b̂4
b∗1 − b∗2 − b∗3 + b∗4

)
. (7.3.12)

The following theorem is immediate to follow.

Theorem 7.3.2 Let the loss function be (7.1.1) and consider the conditional prior as given in
(7.3.6), for estimating σ. The Bayes estimator of σ with respect to the prior (7.3.6) and the loss
function (7.1.1), is given by

σ̂B2 =
1

(m+ n+ α + 1)

(
b̂1 − b̂2 − b̂3 + b̂4
b∗1 − b∗2 − b∗3 + b∗4

)
.

where b∗i and b̂i, for i = 1, 2, 3, 4 are given above.

Remark 7.3.2 In Section 7.4, we have numerically evaluated the risk values of dCB using
Monte-Carlo simulation. For various values of the sample sizes and the hyper parameters
α and β the risk values have been computed and compared with the existing estimators.
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7.4 Simulation Study

In Section 7.2, we have proposed some basic estimators such as the MLE, UMVUE, BAEE,
(without order restrictions on the location parameters) the restricted MLE dR (with order
restrictions on the location parameters) for the common scale parameter σ.Moreover, in Section
7.3, we have analytically derived two Bayes estimators (one with respect to the uniform
prior and the other with respect to the conditional prior) assuming order restriction on the
location parameters, that is µ1 ≤ µ2. In this section, we will evaluate the performance of all
these estimators with respect to the BAEE d0. It seems difficult to compare the risk function
analytically. Hence, we numerically evaluate the risk functions using Monte-Carlo simulation
procedure. For the purpose of numerical comparison, we have generated 20000 random samples
each from two exponential populations with a common scale parameter and different location
parameters such that, µ1 ≤ µ2. The loss function is taken as the quadratic loss (7.1.1). It is easy
to observe that, with respect to the loss function (7.1.1), the risk values of all the estimators are
function of µ1/σ and µ2/σ. The error of the simulation has been checked and it is seen of the
order of 10−3.

We note that, when there is no order restrictions on the location parameters, the estimator
dB proposed by Madi and Leonard (1996) has the maximum percentage of relative risk
performance. The amount of risk reduction over the BAEE d0 has been calculated by them and
the values have been tabulated there. So we have taken both dB and d0 as the baseline estimators
when there is no order restrictions on the location parameters. When prior information regarding
the ordering of the location parameters is available, onemay be interested to know the amount of
risk reduction of new estimators. Hence to evaluate the performance of the proposed estimators,
we have computed the percentage of relative risk improvement of the estimator dB, dR, dUB and
dCB with respect to the BAEE d0. The percentage of relative risk improvement of any estimator
δ with respect to the the BAEE d0 is given by

R(δ) =

(
1− R(δ, σ)

R(d0, σ)

)
× 100.

Though the risk of d0 is 1/(m + n − 1), we have used the simulated risk values for
comparison purpose. We have not tabulated the relative risk values of dR as the improvement
is very negligible. The simulation study has been done by taking various combinations of
(α, β). However, we have presented the risk values for (α, β) = (3, 3) and (5.5, 5) as for these
choices we have noticed maximum risk reduction. Also from our simulation study it has been
observed that the choices of α and β should be taken close to each other to get maximum
percentage of risk improvements. Let us denote dCB1 the estimator corresponding to the values
of (α, β) = (5.5, 5) and dCB2 corresponding to the values of (α, β) = (3, 3). All the estimators
have been compared taking various combinations of of µ1/σ and µ2/σ under the condition that
the location parameters are ordered that is, µ1 ≤ µ2. The risk values have been computed for
various choices of the sample sizes and various combinations of µ1/σ1 and µ2/σ2.However, for
illustration purpose, we have presented the percentage of relative risk values for some specific
choices of the sample sizes. In Table 7.4.1, we have presented the percentage of relative risk
improvements of various estimators for sample sizes (m,n) = (4, 5).The first two columns give
the values of µ1/σ and µ2/σ. The columns from 3rd to 6th represent the percentage of relative
risk values of dUB, dB, dCB1 and dCB2 respectively. In a similar way the percentage of relative
risk values of various estimators for the sample sizes (m,n) = (5, 4), (10, 5), (5, 10), (12, 16),
(16, 12), (15, 15) and (25, 25) have been presented in Tables 7.4.2-7.4.8 respectively. The
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following conclusions can be drawn from our simulation study as well as the Tables 7.4.1-7.4.8.

1. The percentage of relative risk improvements of dUB varies between 0.10% and 7%. The
percentage of relative risk values of dB varies between 13% and 44%. The percentage of
relative risk values of dCB1 varies between 15% and 80%, where as that of dCB2 varies
between 10% and 70%.

2. The percentage of relative risk improvements of all the estimators certainly depends on
the hyper parameters α and β. As the sample sizes increases the amount of risk reduction
over the estimator d0 decreases which is true. Further we note that for some combinations
of µ1/σ and µ2/σ the percentage of relative risk improver of dUB becomes negative,
showing no improvements. It also has been noticed that, the percentage of relative
risk improvements of all estimators first increase and attains its maximum then starts
decreasing as the difference of µ1/σ and µ2/σ increases. We also noticed that, when
the parameters α and β are nearer to each other (α ≈ β), the percentage of relative risk
improvements is quite satisfactory.

3. The percentage of risk improvements of dCB1 and dCB2 over the estimator dB is quite
noticeable and it is seen to be maximum up to 25% and 35% respectively, which is quite
significant and satisfactory. This is the main contribution of the current work.

4. A very similar type of observations were made for other choices and combinations of
sample sizes and the hyper parameters.

On the basis of above observations, and from our simulation study we recommend to use
the estimator dCB1 or dCB2 for the common scale parameter σ, when it is known a priori that
the location parameters µ1 and µ2 follow the ordering, 0 < µ1 ≤ µ2.
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Table 7.4.1: Percentage of relative risk improvements of Bayes estimators
for sample sizes (m,n) = (4, 5)

µ1/σ µ2/σ R(dUB) R(dB) R(dCB1) R(dCB2)
0.00 0.25 3.481 40.056 42.226 32.574
0.00 0.50 3.537 42.142 51.748 43.260
0.00 0.75 2.068 43.643 59.606 53.517
0.00 1.00 1.379 44.253 66.698 61.375
0.05 0.25 4.817 39.868 42.142 34.203
0.05 0.50 3.993 41.832 51.019 44.023
0.05 0.75 3.710 43.335 59.693 53.682
0.05 1.00 3.458 43.955 66.987 61.234
0.50 1.00 7.501 41.990 64.005 57.892
0.50 1.50 6.300 43.864 74.149 67.773
0.50 2.00 5.767 42.334 77.901 68.834
1.00 1.50 5.747 41.592 70.074 63.541
1.00 2.50 4.153 41.538 75.789 62.364
1.00 3.00 3.745 35.402 68.278 48.191
2.00 2.50 2.962 41.656 75.953 67.562
2.00 2.75 2.705 42.967 76.661 66.328
2.00 3.00 2.453 43.743 75.830 62.404

Table 7.4.2: Percentage of relative risk improvements of Bayes estimators
for sample sizes (m,n) = (5, 4)

µ1/σ µ2/σ R(dUB) R(dB) R(dCB1) R(dCB2)
0.00 0.25 1.329 40.530 41.521 33.016
0.00 0.50 1.745 42.833 51.134 43.913
0.00 0.75 0.950 44.786 59.493 53.905
0.00 1.00 1.100 45.010 66.968 62.020
0.05 0.25 3.756 40.188 42.341 34.601
0.05 0.50 4.316 42.390 51.888 44.675
0.05 0.75 3.238 44.558 60.107 54.518
0.05 1.00 3.265 45.163 67.443 62.311
0.50 1.00 7.136 42.583 64.302 58.221
0.50 1.50 6.782 44.351 74.805 68.278
0.50 2.00 5.745 42.382 78.057 68.121
1.00 1.50 5.105 42.322 70.269 63.623
1.00 2.50 3.631 41.885 75.732 61.797
1.00 3.00 3.350 33.696 66.901 45.766
2.00 2.50 2.525 42.839 76.259 67.406
2.00 2.75 2.908 43.763 76.811 66.310
2.00 3.00 2.590 44.692 76.137 62.273
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Table 7.4.3: Percentage of relative risk improvements of Bayes estimators
for sample sizes (m,n) = (10, 5)

µ1/σ µ2/σ R(dUB) R(dB) R(dCB1) R(dCB2)
0.00 0.25 0.772 26.839 27.358 20.485
0.00 0.50 1.246 28.743 37.856 32.160
0.00 0.75 1.651 29.058 47.356 40.899
0.00 1.00 0.603 29.925 53.643 47.598
0.05 0.25 2.737 26.519 28.727 21.499
0.05 0.50 3.240 28.493 38.730 32.833
0.05 0.75 3.885 29.212 48.476 42.194
0.05 1.00 2.933 29.685 54.246 48.105
0.50 1.00 3.385 28.569 50.252 43.550
0.50 1.50 2.502 29.523 59.512 50.836
0.50 2.00 1.924 26.731 60.954 48.637
1.00 1.50 2.114 28.873 55.258 47.837
1.00 2.50 0.680 26.569 58.888 43.916
1.00 3.00 0.379 22.295 51.127 28.965
2.00 2.50 2.098 28.439 61.090 51.318
2.00 2.75 1.631 29.592 61.811 49.908
2.00 3.00 1.123 29.754 60.417 46.385

Table 7.4.4: Percentage of relative risk improvements of Bayes estimators
for sample sizes (m,n) = (5, 10)

µ1/σ µ2/σ R(dUB) R(dB) R(dCB1) R(dCB2)
0.00 0.25 2.971 25.860 27.878 20.479
0.00 0.50 1.581 27.028 36.825 30.367
0.00 0.75 0.903 27.926 44.733 38.267
0.00 1.00 -0.022 29.008 50.903 44.355
0.05 0.25 4.744 25.519 29.208 22.444
0.05 0.50 3.272 26.702 38.105 30.099
0.05 0.75 1.581 28.088 44.488 38.317
0.05 1.00 1.039 29.045 50.914 44.685
0.50 1.00 4.204 26.794 48.992 41.965
0.50 1.50 3.435 28.257 58.142 49.908
0.50 2.00 3.149 28.170 61.816 50.067
1.00 1.50 2.387 26.926 54.289 46.416
1.00 2.50 1.467 27.791 60.105 45.906
1.00 3.00 1.472 24.112 54.188 35.605
2.00 2.50 0.948 27.041 60.059 49.449
2.00 2.75 0.637 28.281 60.803 48.286
2.00 3.00 0.399 28.605 59.743 45.977
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Table 7.4.5: Percentage of relative risk improvements of Bayes estimators
for sample sizes (m,n) = (12, 16)

µ1/σ µ2/σ R(dUB) R(dB) R(dCB1) R(dCB2)
0.00 0.25 0.840 14.761 15.524 11.867
0.00 0.50 -0.093 15.850 22.555 18.095
0.00 0.75 -0.111 16.486 29.146 23.915
0.05 0.25 2.475 14.476 17.770 13.727
0.05 0.50 1.677 15.465 24.935 19.582
0.05 0.75 1.546 16.052 30.578 25.169
0.05 1.00 1.443 16.403 35.396 29.181
0.50 1.00 0.612 15.622 32.491 25.990
0.50 1.50 0.463 16.246 39.030 31.006
0.50 2.00 0.447 15.908 41.243 30.739
1.00 1.50 0.183 15.407 36.369 29.121
1.00 2.50 0.023 16.086 40.544 28.257
1.00 3.00 0.024 13.396 35.539 21.546
2.00 2.50 0.164 15.527 40.522 31.643
2.00 2.75 0.033 16.175 40.924 31.026
2.00 3.00 0.004 16.297 40.091 28.067

Table 7.4.6: Percentage of relative risk improvements of Bayes estimators
for sample sizes (m,n) = (16, 12)

µ1/σ µ2/σ R(dUB) R(dB) R(dCB1) R(dCB2)
0.00 0.25 0.971 15.000 16.059 10.898
0.00 0.50 0.545 15.780 23.946 18.716
0.00 0.75 0.030 16.318 29.873 24.698
0.00 1.00 -0.223 16.785 34.617 28.978
0.05 0.25 2.911 14.692 18.451 13.624
0.05 0.50 2.248 15.660 26.132 20.570
0.05 0.75 2.001 15.924 31.801 25.902
0.05 1.00 1.610 16.616 35.884 29.877
0.50 1.00 0.519 16.071 32.648 26.629
0.50 1.50 0.183 16.829 39.197 30.979
0.50 2.00 0.180 14.903 40.638 30.333
1.00 1.50 0.378 15.823 36.675 29.664
1.00 2.50 0.005 15.661 40.166 28.096
1.00 3.00 0.004 12.711 34.705 19.734
2.00 2.50 0.387 15.723 40.859 31.967
2.00 2.75 0.093 16.282 40.984 30.467
2.00 3.00 0.021 16.324 39.930 28.466
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Table 7.4.7: Percentage of relative risk improvements of Bayes estimators
for sample sizes (m,n) = (15, 15)

µ1/σ µ2/σ R(dUB) R(dB) R(dCB1) R(dCB2)
0.00 0.25 1.365 13.808 16.146 10.431
0.00 0.50 0.286 14.706 22.344 16.824
0.00 0.75 0.024 15.289 28.145 22.717
0.00 1.00 -0.175 15.793 32.647 27.206
0.05 0.25 2.657 13.634 17.409 12.663
0.05 0.50 1.517 14.794 23.212 18.651
0.05 0.75 1.552 15.223 29.366 23.854
0.05 1.00 1.464 15.563 33.951 27.979
0.50 1.00 0.383 14.580 31.157 24.818
0.50 1.50 0.197 15.562 37.170 29.535
0.50 2.00 0.194 14.766 39.107 29.112
1.00 1.50 0.174 14.727 34.600 27.730
1.00 2.50 0.005 14.638 38.256 26.639
1.00 3.00 0.005 12.816 34.050 19.770
2.00 2.50 0.177 14.994 38.969 30.218
2.00 2.75 0.030 15.214 38.942 28.912
2.00 3.00 0.004 15.683 38.551 27.111

Table 7.4.8: Percentage of relative risk improvements of Bayes estimators
for sample sizes (m,n) = (25, 25)

µ1/σ µ2/σ R(dUB) R(dB) R(dCB1) R(dCB2)
0.00 0.25 0.038 8.568 8.495 6.360
0.00 0.50 0.095 9.004 14.468 10.786
0.00 0.75 -0.047 9.538 18.311 14.475
0.00 1.00 -0.157 9.831 21.723 17.574
0.05 0.25 1.601 8.357 11.957 8.268
0.05 0.50 1.276 8.891 16.414 12.447
0.05 0.75 1.247 9.294 20.127 15.947
0.05 1.00 1.152 9.680 22.958 18.297
0.50 1.00 0.011 9.137 20.340 15.650
0.50 1.50 0.005 9.427 24.886 18.925
0.50 2.00 0.005 9.028 26.255 19.078
1.00 1.50 0.005 9.109 23.023 17.782
1.00 2.50 0.000 9.244 25.991 17.409
1.00 3.00 0.000 7.461 22.449 13.257
2.00 2.50 0.005 9.226 26.105 19.430
2.00 2.75 0.000 9.645 26.535 18.466
2.00 3.00 0.000 9.576 25.858 17.811
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7.5 Conclusions
Wehave considered the estimation of common scale parameter σ of two exponential populations
under the assumption that the location parameters follow the ordering 0 < µ1 ≤ µ2.
Previously, the problem of estimation of common scale parameter σ has been considered by
Madi and Leonard (1996) and Madi and Tsui (1990), but without any restriction on the location
parameters. However, from a practical point of view it is very much reasonable to have an
order relation on the location parameters, as it indicates the minimum guarantee period or time
for a specific product in practice. Taking the advantages of order restrictions on the location
parameters µ1 and µ2, we could able to derive the Bayes estimators namely dUB and dCB,
which improve upon some of the existing estimators (without order restriction on the location
parameters) obtained by Madi and Leonard (1996). We have shown using a numerical study
that, the proposed Bayes estimators perform quite satisfactorily in comparison to the estimator
proposed by Madi and Leonard (1996), under the order restriction on the location parameters.
The amount of risk reduction as well as the percentage of relative risk improvements have
been shown in Tables 7.4.1-7.4.8. The current research work definitely will shed some light
on finding better estimators for the common scale parameter σ, when the location parameters
known to follow some ordering.



Chapter 8

Conclusion and Future Work

This chapter presents the conclusion of our contributed works given in different chapters of the
thesis and a discussion on future research plan, which have culminated from our present study.

In this thesis, we have studied the problems of estimating parameters and quantiles of two
or more normal and exponential populations under equality and inequality restrictions. In a
nutshell, we have studied the problems from a decision theoretic view point using either full
or censored samples. In certain cases we could able to obtain the Bayes estimators, which
has importance when the prior information regarding the parameters is known in advance. For
the sake of completeness, below we give the conclusions and suggestions for the future work
chapter-wise.

• In Chapter 3, we have revisited the problem of estimating common mean of two normal
populations when it is known apriori that the variances are ordered. Taking the advantage
of order restriction on the variances, we could able to propose certain alternative
estimators (including the restricted MLE which has been obtained numerically) for the
common mean. It is worth mentioning that under the same set up Elfessi and Pal
(1992) proposed a new estimator that dominates stochastically and hence universally the
Graybill-Deal estimator (Graybill and Deal (1959)) for both equal and unequal sample
sizes. Further, their results have been generalized to k(≥ 2) normal populations by Misra
and van der Meulen (1997). We have proposed improved estimators that dominate some
other well known estimators for the common mean such as the estimators proposed by
Khatri and Shah (1974), Moore and Krishnamoorthy (1997), Tripathy and Kumar (2010)
and Brown and Cohen (1974) stochastically as well as in terms of Pitman measure of
closeness criterion for both equal and unequal sample sizes. It has been seen from our
simulation study that none of the improved estimators beats other in the whole parameter
space like the case when the variances do not follow the ordering. Finally, we have given
our comments regarding the use of the estimators which is important from an application
point of view. In future our target is to extend these results to a general k(≥ 2)
normal populations and obtain some decision theoretic results. Further, a Bayesian
estimation of the common mean under the same set up can be considered.

• In Section 4.2, we have considered the problem of estimating quantiles for k(≥ 2) normal
populations with a common mean. First, we estimate the quantile of the first population,
when the other k−1 populations are available, with respect to the quadratic loss function.
We have proved a general result which helps in obtaining better estimators for the
quantiles. As a consequence, some improved estimators have been constructed. Then
we introduce the concept of invariance and derive sufficient conditions for improving
estimators in these classes. A detailed simulation study has been carried out in order to
numerically compare the performances of all the proposed estimators for the case k = 3
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and 4. The percentage of relative risk improvements for all the proposed estimators have
been tabulated and recommendations have been made which is important for application
point of view. In Section 4.3, we consider the samemodel and estimate the quantile vector
with respect to sum of the quadratic losses. A similar type of results have been derived
that to Section 4.2. The inadmissibility results have been obtained only for the case k = 2
normal populations. In future our target is to prove the inadmissibility result for a
general k(≥) populations. Further an application of IERD (Integral Expression for
Risk Difference) approach of Kubokawa (1994) can be done to obtain new improved
classes of estimators.

• In Section 5.2, we have considered the estimation of quantiles from two exponential
populations under equality assumption on the location parameters using type-II censored
samples. The findings of this section generalizes results obtained by Sharma and Kumar
(1994) where they have studied the problem for full sample case. In addition to this a
detailed numerical comparison of all the proposed estimators have been done which is
handy for practitioner. In future, we want to study the problem using progressive
type-II censoring scheme which is a generalization of type-II censoring sampling
scheme. Further the results obtained in this section can be considered for a general
k(≥ 2) exponential populations with a common location parameter. In a similar
way, the results obtained in Section 5.3 can be extended to the case of progressively
censored samples. Further generalization of these results for k(≥ 2) populations
can be done in future.

• In Section 6.2, we have considered the problem of estimating ordered quantiles of two
exponential populations under equality assumption on the location parameters. The loss
function is taken as quadratic loss. It is worth mentioning that, so far in the literature, we
have not come across the problem of estimating function of ordered parameters. First we
have obtained certain baseline estimators without assuming ordering of quantiles. Under
order restriction, we propose a new estimator which is the isotonic version of the MLE,
call it, restricted MLE. A sufficient condition for improving equivariant estimators are
derived under order restriction on quantiles. Consequently, estimators improving upon
the baseline estimators such as the MLE, a modification to the MLE, the UMVUE and
the restricted MLE have been improved. The percentage of risk improvements have
been calculated and presented in the form of tables. In our future study, we intend to
obtain some Bayes estimators and will aim to derive minimax estimators. Further
generalization to k(≥) populations using progressive censored samples may be done.
In Section 6.3, we have considered the estimation of ordered quantiles under equality
assumption on the scale parameters, using type-II censored samples. First we have
derived some basic estimators such as theMLE, a modification to theMLE, the UMVUE,
and the best affine equivariant estimator without considering ordering of the quantiles.
Under order restriction on the quantiles, isotonized version of all these estimators have
been proposed. Then Bayes estimators have been derived for the quantiles assuming
order restriction on the quantiles. For this purpose we have considered two types of
priors namely the non-informative prior and the conditional prior. In our future study
we intend to consider classes of mixed estimators and prove some inadmissibility
results using Brewster and Zidek (1974) technique.

• In Chapter 7, we have considered the estimation of the common scale parameter of
two exponential populations when the location parameters satisfy the simple ordering.
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First, we discuss some basic results for the common scale parameter without assuming
ordering of location parameters. Under order restriction on the location parameters, we
propose the restricted MLE. Further we have obtained Bayes estimators of the common
scale using uniform prior and a conditional inverse gamma prior, taking into account
the order restriction on the location parameters. We have numerically compared the risk
of estimators with that of Madi and Leonardo (1996). In future our target will be to
obtain an improved class of estimators that may dominate the usual estimators by
an application of either Brewster and Zidek (1974) technique or IERD approach of
Kubokawa (1994).

• In addition to the above research problems, we also intend to study the following problems
in future. Suppose X ∼ 1

σ1
f(x−µ

σ1
) and Y ∼ 1

σ2
f(y−µ

σ2
). The aim will be to estimate the

ordered quantiles θ1 ≤ θ2; where θi = µ + ησi using a decision theoretic approach. The
problem can be studied when the scale parameters are same and location follow certain
ordering. These models can be extended to the case of k(≥ 2) populations. Further
let X ∼ Ex(µ1, σ1) and Y ∼ Ex(µ2, σ2), where Ex(µi, σi) denotes the exponential
population with location parameter µi and scale parameter σi. In this model we intend to
study the estimation of ordered quantiles using decision theoretic approach.
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