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Introduction

The results presented in this thesis are from the fields of finite geometry and graph

theory, mainly from their intersection. The emphasis is on the finite geometri-

cal viewpoint, though most of the research was motivated by graph theoretical

questions. Two of the examined areas, the problem of cages and the Zarankiewicz-

problem, have extremal combinatorial origins, and have attracted a considerable

amount of interest since the middle of the last century. It is well-known that

generalized polygons play a prominent role in some particular cases of the cage-

problem, just as designs do in the Zarankiewicz-problem. The idea we consider

in this work regarding these problems is that the known extremal structures may

contain substructures that provide us other valuable constructions. This resem-

bles the general phenomenon of combinatorial stability: in many cases, almost

extremal structures can be obtained from extremal ones by subtle modifications.

We mainly investigate projective planes, which can be considered as generalized

triangles and as symmetric 2-designs as well, but the more general cases will also

be touched.

We also consider two general notions from graph theory that become par-

ticularly interesting in the setting of finite projective planes. The concept of

semi-resolving sets is motivated by localizational questions in graphs, and their

study in this setting was proposed by R. F. Bailey. In the theory of hypergraph

coloring, the upper chromatic number is the counterpart of the classical chro-

matic number in some sense, and its study has been intensively encouraged by

V. Voloshin. Projective planes, considered as hypergraphs, are naturally aris-

ing examples to investigate this problem for, and their study was started in the

mid-nineties.

While preparing this thesis, I realized that domination supplies another com-

mon graph theoretical background for many of the problems discussed here.

Therefore I decided to introduce and use this notion, mainly in the study of

(k, g)-graphs.
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2 INTRODUCTION

Besides their graph theoretical motivations, the problems in this work are

joined by their finite geometrical aspects as well. The substructures of projec-

tive planes we need to study regarding the problem of cages are in connection

with weighted multiple blocking sets, while semi-resolving sets and colorings that

reach the upper chromatic number both turn out to be closely related to dou-

ble blocking sets. As for the techniques, the polynomial method plays a crucial

role by supplying important information about the structures in question, which

information can be used in further combinatorial arguments.

Let us outline the main points of the thesis. In Chapter 1 we review the

main definitions and results that we need in the sequel. As three out of the four

problems are related to multiple blocking sets, we collect and treat our results

regarding these separately in Chapter 2. There we show a unique reducibility

result for t-fold blocking sets in PG(2, q), and give a construction for a small

double blocking set in PG(2, ph), p an odd prime, h ≥ 3 odd. The latter result was

motivated by the tight connection with the upper chromatic number of PG(2, q).

The next four chapters are devoted to the above mentioned problems. In Chapter

3 we study perfect t-dominating sets in generalized n-gons to construct small

(k, 2n)-graphs, and give a characterization result in PG(2, q). The main result

of Chapter 4 is that a small semi-resolving set for PG(2, q) can be extended to

a double blocking set by adding at most two points to it. As a corollary, we

obtain a lower bound on the size of a blocking semioval in PG(2, q). In Chapter

5 we establish an exact result on the upper chromatic number of PG(2, q) in

terms of the size of the smallest double blocking set. Finally, in Chapter 6,

we discuss Zarankiewicz’s problem and give several exact values of Zarankiewicz

numbers. Our guide in the ordering of these chapters was the role of polynomial

techniques used in them. Let us underline that the key tool in Chapters 3 and 4

is a lemma newly developed by Tamás Szőnyi and Zsuzsa Weiner. For the sake

of completeness, we give the proof of this lemma in the Appendix.

In general, we use the words Theorem, Proposition, Lemma etc. when

referring to our original results, while the word Result is used to denote the

fruits of other authors’ work. The vast majority of the thesis is based on the

six articles denoted by capital letters in the bibliography, which all have been

published or accepted for publication in peer-reviewed journals.



Chapter 1

Preliminary definitions and results

1.1 Finite fields and polynomials

We denote by GF(q) the finite field (Galois field) of order q and GF(q)∗ = GF(q)\
{0} is the multiplicative group of GF(q). For any field F, F[X1, . . . , Xn] denotes

the polynomial ring in n variables over F. For f, g ∈ F[X1, . . . , Xn], gcd(f, g)

denotes the greatest common divisor of f and g, and deg(f) is the total degree of

f . If we want to emphasize the variables taken into account in the degree of the

polynomial, we list them as a subscript of deg. In case of a geometric setting, we

use upper case letters to denote variables, and use the same letter in lower case

when substituting an element of F into the respective variable. Recall that for

any element x ∈ GF(q)∗, we have xq−1 = 1; xq = x for all x ∈ GF(q); and x 7→ xp

is an automorphism of GF(q), where p is the characteristic of the field.

Definition 1.1.1. Let 0 6≡ f ∈ F[X1, . . . , Xn] for a field F, and suppose that

a ∈ Fn is a zero of f . The multiplicity of the zero a is defined as the lowest

degree that occurs in f(X1 + a1, . . . , Xn + an) (which is a positive number). By

convention, every element of Fn is a zero of the zero polynomial of multiplicity t

for every positive integer t.

We say that a polynomial is fully reducible over the field F if it is the product

of some linear factors over F. If a polynomial of F[X] is fully reducible, then the

number of its roots (counted with multiplicities) is equal to its degree. Note that

every element of GF(q) is a root of Xq − X ∈ GF(q)[X] with multiplicity one,

hence Xq − X =
∏

a∈GF(q)(X − a) is fully reducible.

We will use the following multiplicity version of Alon’s combinatorial Null-

stellensatz.

3



4 Chapter 1. Preliminary definitions and results

Result 1.1.2 (Ball–Serra [16]). Let F be any field, f ∈ F[X1, . . . , Xn], and let

S1, . . . , Sn be finite non-empty subsets of F. For all 1 ≤ i ≤ n, define

gi(Xi) =
∏

s∈Si

(Xi − s).

Let Nn
t = {(a1, . . . , an) ∈ Zn : a1+. . .+an = t, a1 ≥ 0, . . . , an ≥ 0}. If f has a zero

of multiplicity at least t at every point of S1×. . .×Sn, then there exist polynomials

ha ∈ F[X1, . . . , Xn], a ∈ Nn
t , for which deg(ha) ≤ deg(f) − ∑n

i=1 ai|Si| and

f =
∑

a∈Nn
t

ga1

1 · . . . · gan

n ha.

The following, recent theorem will be a crucial tool as well. For z ∈ Z, let

z+ := max{0, z}.

Result 1.1.3 (Szőnyi–Weiner Lemma [71, 69]). Let u, v ∈ F[X,Y ]. Suppose that

the term Xdeg(u) has non-zero coefficient in u(X,Y ) (that is, deg(u(X,Y )) =

deg(u(X, y)) for every element y ∈ F). Let ky := deg gcd (u(X, y), v(X, y)) for

any y ∈ F. Then for an arbitrary y ∈ F,

∑

y′∈F

(ky′ − ky)
+ ≤ (deg u(X,Y ) − ky)(deg v(X,Y ) − ky).

We give the proof of this lemma in the Appendix.

1.2 Graphs

We only consider finite, simple, undirected graphs. G = (V ; E) denotes a graph

with vertex-set V and edge-set E, and G = (A,B; E) denotes a bipartite graph

with vertex classes A and B, and edge-set E. Two vertices are called adjacent

or neighbors if there is an edge connecting them. The set of neighbors of v is

denoted by N(v). The number of neighbors of a vertex v is called the degree of

v, and we denote it by d(v). A graph is k-regular if every vertex has exactly k

neighbors. The length of a path or a cycle is the number of edges contained in

it. Cn stands for a cycle of length n. The girth of a graph G, in notation g(G),

is the length of the shortest cycle in it.

Let x and y be two vertices. The distance of x and y, denoted by d(x, y),

is the length of the shortest path between x and y. Should there be no such

path, let d(x, y) = ∞. For two vertex-sets X ⊂ V and Y ⊂ V , let d(X,Y ) =

min{d(x, y) : x ∈ X, y ∈ Y }. If X or Y has one element only, we write for
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example d(x, Y ) instead of d({x}, Y ). A ball of center v ∈ V and radius r ∈ N is

Br(v) = {u ∈ V : d(v, u) ≤ r}.
The adjacency matrix of G is the matrix A = A(G) of {0, 1}V ×V , where

Au,v = 1 if and only if u and v are adjacent (u, v ∈ V ).

In the following we introduce the general graph theoretical notion called dom-

ination. We mostly follow the book by Haynes, Hedetniemi and Slater [45]. In

the upcoming definitions we suppose that a graph G = (V ; E) is given.

Definition 1.2.1. We say that a vertex v dominates the vertex u if either u = v

or u is adjacent to v. Accordingly, a set S of vertices dominates the set S ∪
⋃

v∈S N(v).

Definition 1.2.2. A vertex-set S ( V is called a t-fold dominating set, if for

all v ∈ V \ S we have |N(v) ∩ S| ≥ t; that is, every vertex is an element of S or

has at least t neighbors in S. In other words, every vertex v /∈ S is dominated by

S at least t times.

As usual, we may omit the prefix “1-fold”, and we may also substitute the

word “double” for the prefix “2-fold”.

Definition 1.2.3. A t-fold dominating set S is called perfect (abbreviated as

t -PDS), if for all v ∈ V \ S we have |N(v)∩ S| = t; that is, every vertex outside

S has precisely t neighbors in S.

There is a frequently investigated variation of domination, called total domi-

nation, where self-domination is not allowed.

Definition 1.2.4. A vertex-set S ( V is called a t-fold total dominating set, if

for all v ∈ V we have |N(v) ∩ S| ≥ t; that is, every vertex has at least t neighbors

in S (even the elements of S). In other words, every vertex v is dominated at

least t times by S \ {v}.

Proposition 1.2.5. In a bipartite graph G = (A,B; E), a proper vertex-set S is

a t-fold total dominating set iff S ∩ A dominates B at least t times and S ∩ B

dominates A at least t times.

Proof. As any vertex dominates vertices only from the other class, the assertion

is trivial.

Thus in bipartite graphs a total dominating set may be also called a split

dominating set, while an ordinary dominating set may be called a non-split dom-

inating set.
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Definition 1.2.6. Let G = (A,B; E) be a bipartite graph. A vertex-set S is a

t-fold semi-dominating set, if S is a subset of one of the vertex classes, and it

dominates the other class at least t times.

In case of bipartite graphs, discussing semi-dominating sets is also interesting.

In fact, in finite geometry a huge amount of research has been done on t-fold semi-

dominating sets (and thus, though accidentally, on total dominating sets). In the

incidence graph of a finite projective or affine plane a t-fold semi-dominating set

is called either a t-fold blocking set or a t-fold covering set, depending on whether

it dominates the lines or the points, respectively. We will discuss these structures

later.

Non-split dominating sets have not been in the center of finite geometrical

research. When looking for certain (k, g)-graphs in Chapter 3, we will make use

of t-fold perfect dominating sets in the incidence graph of projective planes and

other generalized polygons.

Domination in graphs has several variations. For example, a dominating set S

is called locating if N(v)∩S is unique for each vertex v /∈ S. Other localizational

questions lead to the definition of a resolving set for a graph. We say that a vertex-

set S = {s1, . . . , sk} resolves the vertex v if the distance list (d(s1, v), . . . , d(sk, v))

is unique (so we can identify v by its distance list with respect to S). The set

S is called a resolving set if it resolves all vertices of the graph. As in case of

dominating sets, we may define semi-resolving sets for bipartite graphs. Chapter

4 is devoted to semi-resolving sets for the incidence graphs of projective planes.

1.3 Incidence structures

An incidence structure is a triplet Ψ = (A,B; I) where A and B are disjoint,

nonempty sets and I ⊂ A × B is a relation between the elements of A and B

called incidence. Throughout this work we consider finite incidence structures,

that is, A and B are finite sets. The elements of A ∪ B and I will be called

objects and flags, respectively; a non-incident pair of elements is called an anti-

flag. Usually the set A is considered as a point-set, while the elements of B are

regarded as lines or blocks, depending on the context. If (a, b) ∈ I for some

a ∈ A, b ∈ B, we say that a is incident with b, or b is incident with a, or a and b

are incident.

The dual of Ψ is ΨT = (B,A; IT ), where (b, a) ∈ IT ⇐⇒ (a, b) ∈ I for all

a ∈ A and b ∈ B. An incidence structure Ψ = (A,B; I) is isomorphic to another
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one Ψ′ = (A′, B′; I ′) iff there is a bijective mapping ϕ : A ∪ B → A′ ∪ B′ such

that ϕ(A) = A′, ϕ(B) = B′, and (a, b) ∈ I ⇐⇒ (ϕ(a), ϕ(b)) ∈ I ′. An incidence

structure Ψ is called self-dual if it is isomorphic to ΨT .

Various sets of axioms may be used to restrict our attention to a specific

class of incidence structures. We may call a class self-dual if its axioms are

symmetric in A and B (that is, an incidence structure Ψ satisfies the axioms iff

ΨT does). For such classes, the principle of duality can be applied: if for an

incidence structure Ψ we can deduce a statement from the axioms, then we also

have the dual statement in Ψ (that is, we may interchange the role of the sets

A and B in the statement), as the same arguments work in ΨT . In case of self-

dual class (which means generalized polygons in the context of this work), one

can distinguish A and B only artificially. However, it is worth noting that an

incidence structure of a self-dual class may not be self-dual.

Sometimes blocks (or lines) are identified with the set of points they are

incident with, which allows us to consider an incidence structure as a set system or

a hypergraph. This justifies the notation a ∈ b to express (a, b) ∈ I. Thus many

times we just write Ψ = (A,B) for an incidence structure without indicating the

incidence relation, which we think of as the ∈ relation. However, in case of a self-

dual class or structure, this otherwise comfortable approach regrettably breaks

the symmetry between the sets A and B, which is considerably unfortunate.

Therefore, in a self-dual context, to conciliate our natural demands for comfort

and symmetry, we will simultaneously treat an object of an incidence structure as

a standalone being and as the set of objects incident with it as well. This allows

us to write a ∈ b or b ∈ a to indicate that a and b are incident. Moreover, as it is

common in the case of a geometric setting, we may denote the common point of

two lines e and ℓ by e∩ℓ, for example; furthermore, we might also denote the line

joining the points P and Q by P ∩Q (besides the standard notation PQ or PQ).

If, for some x ∈ A∪B, we want to emphasize that we consider the set of objects x

is incident with, we will use the notation [x] defined as [x] = {y ∈ A∪B : x ∈ y}.
Then, naturally, the notation y ∈ [x] and x ∈ [y] are also completely satisfactory

to express x and y being incident; and, indeed, [P ]∩ [Q] is the line connecting P

and Q.

The triplet (A,B; I) can be regarded as a bipartite graph with vertex classes A

and B and edge-set I (more precisely, the edge-set should be {{a, b} : (a, b) ∈ I}).
The bipartite graph arising from the incidence structure Ψ is called the incidence

graph or Levi-graph of Ψ, and will be denoted by G(Ψ). Two graphs are isomor-
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phic iff there is a bijection between their vertex-sets that maps edges to edges

and non-edges to non-edges. If two incidence structures Ψ and Ψ′ are isomor-

phic, then G(Ψ) and G(Ψ′) are also isomorphic. Moreover, as graph isomorphism

may interchange the vertex classes, G(Ψ) ∼= G(Ψ′T ) follows as well. As there

exist incidence structures that are not self-dual, G(Ψ) ∼= G(Ψ′) does not imply

Ψ ∼= Ψ′.

Usually we will not distinguish an incidence structure from its incidence graph;

hence we will unscrupulously mix the graph theoretical terminology and notation

with the geometrical ones. In this manner, we may talk about a subgraph of

a projective plane when thinking of a subgraph of the incidence graph of the

projective plane, for example.

Ψ can also be represented by a 0–1 matrix M(Ψ) called the incidence matrix of

Ψ, defined as follows. Let A = {a1, . . . , an} and B = {b1, . . . , bm} be any ordering

of A and B, respectively, where |A| = n and |B| = m. Then M(Ψ) ∈ {0, 1}n×m,

and Mi,j = 1 iff ai and bj are incident in Ψ. Ψ and Ψ′ (considered as incidence

structures) are isomorphic iff there exist permutation matrices P ∈ {0, 1}n×n

and Q ∈ {0, 1}m×m such that PM(Ψ)Q = M(Ψ′). Note that under a suitable

ordering of its vertices, the adjacency matrix of G(Ψ) is the block-matrix

(

M(Ψ) 0

0 M(Ψ)T

)

.

1.4 Generalized polygons

In the geometric context of generalized polygons, we consider the two sets of

an incidence structure as points and lines, and so denote them by P and L,

respectively. We say that some points (lines) are collinear (concurrent), if there

exists a line (point) incident with all of them; and a set of points (lines) is said

to be in general position if no three of them are collinear (concurrent).

Definition 1.4.1 (Generalized polygon, GP). Let n ≥ 3, s, t ≥ 1 be integers.

An incidence structure is a generalized n-gon of order (s, t) if and only if the

following hold:

GP1: every point is incident with s + 1 lines;

GP2: every line is incident with t + 1 points;

GP3: the diameter and the girth of its incidence graph is n and 2n, respectively.
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From GP3 it follows that if d(x, y) ≤ n − 1, then there is a unique path of

length ≤ n − 1 connecting x to y. Note that the axioms of generalized polygons

are symmetric in points and lines, that is, the dual of a GP of order (s, t) is a GP

of order (t, s). The deep result of Feit and Higman [37] claims that generalized n-

gons of order (q, q), q ≥ 2, exist only if n = 3, 4 or 6; these are called a generalized

triangle (or a projective plane), a generalized quadrangle (GQ), and a generalized

hexagon (GH) of order q, respectively. Generalized polygons of order q are known

to exist if q is a power of a prime, but no example has been found otherwise so

far. It is easy to compute that a generalized n-gon of order (q, q) has
∑n−1

i=0 qi

points and the same number of lines.

We also mention that one may give alternative definitions for a GP. For ex-

ample, a projective plane is commonly defined as follows.

Definition 1.4.2. An incidence structure (P,L) is a projective plane if and only

if it satisfies the following axioms:

1. any two points have a unique line incident with both;

2. any two lines have a unique point incident with both;

3. there exist four points in general position.

From these properties it follows that there exists a number q ≥ 2 such that

our incidence structure is a generalized triangle of order (q, q). The notation Πq

always refers to a projective plane of order q.

Definition 1.4.3. An incidence structure (P,L) is a degenerate projective plane

if it satisfies the first two axioms of a projective plane (Definition 1.4.2) but not

the third. If the maximal number of points in general position in a degenerate

projective plane is at most two, then it is of type π1; if this number is three, then

it is of type π2.

In a degenerate projective plane of type π1 there is an incident point-line pair

(P, ℓ) such that all points are incident with ℓ and all lines are incident with P ;

in a degenerate projective plane of type π2 there is a non-incident point-line pair

(P, ℓ) such that every point except P is incident with ℓ, and every line except

ℓ is incident with P . Degenerate projective planes are not generalized triangles

except for the ordinary triangle.

In case of generalized quadrangles, GP3 is commonly replaced by GQ3: for

all P ∈ P and ℓ ∈ L such that P /∈ ℓ, there exists a unique line e ∈ L such that

P ∈ e and e intersects ℓ. We end this section by giving some further definitions.
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Definition 1.4.4. Let (P,L) be a GP, S ⊂ P, ℓ ∈ L. Then ℓ is a t-secant to

S iff |ℓ ∩ S| = t. A 0-secant or a 1-secant is also called a skew or tangent (line)

to S. A (> t)-secant to S is a line intersecting S in more than t points; (≥ t),

(< t), and (≤ t)-secants are defined analogously.

Definition 1.4.5. Let (P,L) be a GP, S ⊂ P, R ⊂ L. We say that S blocks

the line ℓ if ℓ∩S is nonempty; dually, R covers a point P if P ∩R is nonempty.

1.5 Projective and affine spaces

First let us give the combinatorial definition of an affine plane.

Definition 1.5.1. An incidence structure (P,L) is an affine plane if and only if

the following hold:

1. any two points have a unique line incident with both;

2. for any line ℓ and any point P /∈ ℓ there exists a unique line e such that

P ∈ e and e ∩ ℓ is empty;

3. there exist three points in general position.

If two lines of an affine plane do not intersect each other, we call them parallel.

One can construct an affine plane from a projective plane by removing from it a

line together with its points. It is well-known that any affine plane has q2 points

and q2 + q lines for some integer q ≥ 2, which is called the order of the affine

plane; moreover, every affine plane of order q can be embedded into a unique

projective plane of order q. This follows from the simple fact that parallelism is

an equivalence relation for the lines of the affine plane.

In the sequel we define n-dimensional projective and affine spaces over the field

GF(q), though, in fact, we will only consider them for n = 3. The n dimensional

projective space over the finite field GF(q), denoted by PG(n, q), can be defined

as follows. Take the linear space V = GF(q)n+1. The point-set P of PG(n, q)

is the set of one dimensional subspaces of V ; and in general, the set Fk of flats

of rank k of PG(n, q), 0 ≤ k ≤ n, is the set of k + 1 dimensional subspaces of

V . Note that F0 = P , Fn = {V }. The flats are ordered by inclusion. Flats of

rank 0, 1, 2, 3 and n − 1 are also called a point, a line, a plane, a solid and a

hyperplane of PG(n, q), respectively. The set F1 of lines is also denoted by L.

We write F ∈ PG(n, q) to denote that F is a flat of PG(n, q).
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Points of PG(n, q) can be represented by any non-zero vector v spanning

the respective one dimensional subspace of V . Two vectors v and w represent

the same point of PG(n, q) if and only if w = λv for some λ ∈ GF(q)∗; hence

the coordinates of the representatives are well-defined up to a non-zero scalar

multiplier. Such (n + 1)-tuples are called homogeneous coordinates; in notation,

we write (v1 : v2 : . . . : vn+1). A hyperplane has a one dimensional orthogonal

complement in V , so it can also be represented by a homogeneous (n + 1)-tuple.

To distinguish the representatives of points and hyperplanes, we will use the

notation [v1 : v2 : . . . : vn+1] for the latter. Note that a point (v) is in the

hyperplane [w] if and only if their inner product, vw (more precisely, vwT if the

vectors are considered as rows), is zero.

The n-dimensional affine plane over GF(q), denoted as AG(n, q), can be de-

rived from PG(n, q) in the following way: let H∞ = {(v) ∈ PG(n, q) : vn+1 =

0} = [0 : . . . : 0 : 1], and let the point-set PA of AG(n, q) be P \H∞. The set FA
k

of k dimensional flats of AG(n, q) is {PA ∩ F : F ∈ Fk, F 6⊂ H∞}, k = 1, . . . , n.

By the homogeneity of the coordinates, we may choose (v) ∈ AG(n, q) so that

vn+1 = 1, and identify the points of AG(n, q) with the points of GF(q)n by the

mapping (v1 : . . . : vn : 1) 7→ (v1, . . . , vn). Usually we consider AG(n, q) as em-

bedded into PG(n, q). In this case, H∞ is called the hyperplane at infinity, a

point (v1 : . . . : vn : 1) = (v1, . . . , vn) is called an affine point, while the points of

H∞ are called ideal points or directions.

In case of n = 2, that is, the affine plane AG(2, q) embedded into PG(2, q),

H∞ = ℓ∞ is called the line at infinity; by homogeneity, its points can be repre-

sented in the form (1 : m : 0), m ∈ GF(q) or (0 : 1 : 0). We will also denote these

points by (m) (m ∈ GF(q)) and (∞), respectively. Also, we may identify a set

D ⊂ GF(q) with the set of directions {(m) : m ∈ D}. A line of PG(2, q) different

from ℓ∞ is called an affine line. An affine line [m : −1 : b] is incident with the

points {(x : y : 1) = (x, y) : y = mx + b}∪ {(1 : m : 0)}, and m is called the slope

of the line. A line with representative of form [−1 : 0 : c] is incident with the

points {(x : y : 1) = (x, y) : x = c} ∪ {(0 : 1 : 0)}; such lines are called vertical.

If two affine lines intersect at the line at infinity, we call them parallel. The set

of q pairwise parallel lines incident with the same point of the line at infinity is

called a parallel class.

In a projective plane Πq = (P,L), we may count the cardinality of a point-set

S ⊂ P with respect to a point P . If P /∈ S, then |S| =
∑

ℓ∈P |ℓ∩S|; if P ∈ S, then

|S| = 1+
∑

ℓ∈P (|ℓ∩S|− 1). To indicate that we are considering the intersections
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of all the lines through a given point P and a point-set, we might say that we

look around from P .

The projective plane PG(2, q) is well-known to have a large automorphism

group. In particular, any ordered quadruple of points in general position can be

mapped into any other such quadruple by an automorphism of the plane. Thus

we may choose the coordinate system quite freely, e.g., we may take any line ℓ to

be the line at infinity and any two points of ℓ to be (∞) and (0) when considering

AG(2, q) embedded into PG(2, q).

Note that PG(2, q) is self-dual: the mapping from PG(2, q) to PG(2, q)T de-

fined by (x : y : z) 7→ [x : y : z] and [a : b : c] 7→ (a : b : c) clearly preserves

incidence. For more information and related topics we refer to the book [46].

1.5.1 The standard equations

Next we give a well-known, simple but often useful counting argument that may

be referred to as the standard equations. Let B ⊂ P be a point-set in an arbitrary

projective plane Πq = (P,L) of order q. Let ni denote the number of i-secant

lines to B. Then we have

q+1
∑

i=0

ni = |L| = q2 + q + 1,

q+1
∑

i=0

ini = |{(P, ℓ) : P ∈ B, ℓ ∈ L, P ∈ ℓ}| = |B|(q + 1),

q+1
∑

i=0

i(i − 1)ni = |{(P,Q, ℓ) : P,Q ∈ B; P 6= Q; ℓ ∈ L; P,Q ∈ ℓ}| = |B|(|B| − 1).

1.5.2 Special substructures of projective planes

Here we collect some substructures of projective planes and some of their prop-

erties that will be needed in the sequel.

Subplanes

We call a pair Π′ = (P0,L0) of a point-set and a line-set of a projective plane Πq

of order q a closed system, if the intersection point of any two lines of L0 is in

P0, and dually, the line joining any two points of P0 is in L0. If there are four

points in general position in P0, then Π′ is a projective plane on its own right; in
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this case Π′ is called a subplane of Π. Note that any line intersects a subplane

of order s in 0, 1 or s + 1 points. It is easy to derive the following observation

attributed to R. H. Bruck.

Result 1.5.2 (Bruck [26]). Suppose that a projective plane of order q has a proper

subplane of order s. Then either s =
√

q or s2 + s ≤ q.

If a closed system Π′ does not contain four points in general position, then it

is a degenerate projective plane, and so it is called a degenerate subplane of type

π1 or π2 (cf. Definition 1.4.3). The number of points and lines of a degenerate

subplane of type π1 in Πq may be different, but each number is at most q + 1. A

degenerate subplane of type π2 in Πq has equally many points and lines, at most

q + 2 of each. It is well-known that all non-degenerate subplanes of PG(2, ph), p

a prime, have order pk, where k divides h. Thus PG(2, p), p prime, does not have

non-degenerate subplanes.

A subplane of order
√

q is called a Baer subplane, and it intersects every line

in either 1 or
√

q + 1 points. It is known that in any projective plane Πq, the

intersection of two Baer subplanes is a closed system with equally many points

and lines [24, 68]. In PG(2, q), four points in general position determine a unique

Baer subplane; thus the intersection of two distinct Baer subplanes is either empty

or it is a degenerate subplane of both Baer subplanes, and so it has at most
√

q+2

points.

Multiple blocking sets

Definition 1.5.3. A point-set B in Πq = (P,L) is a t-fold blocking set if |ℓ∩B| ≥
t for all ℓ ∈ L. One-fold and two-fold blocking sets are also called a blocking set

and a double blocking set, respectively. A line-set S in Πq = (P ,L) is a t-fold

covering set if |P ∩ S| ≥ t for all P ∈ P. Note that this is the dual of a t-fold

blocking set.

We remark that a blocking set is also commonly defined as a point-set which

intersects every line, but does not contain a line. In the language of hypergraphs,

t-fold blocking sets are called t-transversals.

Definition 1.5.4. Let B be a t-fold blocking set in Πq = (P,L). A point P ∈ B is

essential, if B \ {P} is not a t-fold blocking set; equivalently, if there is a t-secant

to B through P . B is minimal, if all its points are essential; equivalently, if it

does not contain a smaller t-fold blocking set.
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Definition 1.5.5. The size of the smallest t-fold blocking set in Πq is denoted

by τt(Πq), and it is called the t-blocking number of Πq. We write simply τt if the

context makes clear which projective plane the notation regards to.

Blocking sets and multiple blocking sets are widely studied objects. We will

use many results regarding these. Note that by duality, we have the same results

for (multiple) covering sets.

A point-set containing a line is always a blocking set. A Baer subplane is well-

known to be a blocking set. The union of the point-set of any t pairwise disjoint

Baer subplanes is a t-fold blocking set. Such a t-fold blocking set intersects every

line in t or
√

q + t points. If q is a square, then PG(2, q) = (P ,L) can be

partitioned into pairwise disjoint Baer subplanes (Pi,Li), 1 ≤ i ≤ q −√
q + 1, so

that P = ∪q−√
q+1

i=1 Pi and L = ∪q−√
q+1

i=1 Li.

The next theorem is also referred to as the Bruen–Pelikán theorem.

Result 1.5.6 (Bruen [27]). A blocking set B in Πq not containing a line has at

least q +
√

q + 1 points. In case of equality B is a Baer subplane.

Result 1.5.7 (Ball–Blokhuis [13]). Let q ≥ 9 be a square prime power. Then

τ2(PG(2, q)) = 2(q +
√

q + 1).

Result 1.5.8 (Blokhuis–Storme–Szőnyi [23]). Let B be a t-fold blocking set in

PG(2, q) of size t(q + 1) + C. Let c2 = c3 = 2−1/3 and cp = 1 for p > 3. Then

1. if q = p2d+1 and t < q/2 − cpq
2/3/2, then C ≥ cpq

2/3;

2. if q is a square, t < min{q1/4/2, cpq
1/6}, and C < cpq

2/3, then B contains

the union of t disjoint Baer subplanes. Consequently, under the same con-

ditions, τt(PG(2, q)) = t(q +
√

q + 1).

Remark 1.5.9. In particular, if B is a double blocking set in PG(2, q), q a square,

q > 256, and |B| ≤ 2q + 2
√

q + 11 = τ2 + 9, then B contains two disjoint Baer

subplanes.

Proof. We only verify the respective assumptions of Result 1.5.8. First, 2 =

2561/4/2 < q1/4/2. Second, we need 9 < cpq
2/3 − 2

√
q. As q > 256 and q is

a square, we have q ≥ 172 = 289. In the case of cp = 1, we obtain 9.71 <

2892/3 − 34 ≤ q2/3 − 2
√

q. In the case of cp = 2−1/3, that is, p ∈ {2, 3}, we have

q ≥ min{36, 210} = 36, thus 10.28 < 2−1/381 − 54 ≤ cpq
2/3 − 2

√
q.
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Result 1.5.10 (Blokhuis–Lovász–Storme–Szőnyi [22]). Let B be a minimal t-fold

blocking set in PG(2, q), q = ph, h ≥ 1, |B| = t(q + 1) + s, s + t < (q + 3)/2.

Then every line intersects B in t (mod p) points.

Definition 1.5.11. A weighted point-set is a set of points B with a weight func-

tion w : B → N. The size of B is defined as |B| =
∑

P∈B w(P ). A weighted

point-set B (with weight w) in Πq = (P ,L) is a t-fold weighted blocking set if
∑

P∈ℓ w(P ) ≥ t for all ℓ ∈ L.

Multiple weighted covering sets are defined analogously. Weighted blocking

sets were studied, e.g., in [38] and [19]. In such context, the sum of some point-

sets is a weighted set in which the weight of a point P is the number of sets in

the sum in which P is contained. We will need the following results.

Result 1.5.12. ([38], Theorems 2.5, 2.13 and Proposition 2.15) Let B be a

weighted k-fold blocking set in PG(2, p), p prime, with |B| = kp + k + r, k + r <

(p+2)/2. Then B contains the sum of k (not necessarily different) lines (consid-

ered as point-sets).

Result 1.5.13. ([19], Theorem 3.10) Let B be a weighted k-fold blocking set in

PG(2, q), q = ph, p prime, h > 1. Let c2 = c3 = 2−1/3 and cp = 1 for p > 3.

Assume that |B| = kq + k + c − (k − 1)(k − 2)/2, where

(1) c < cpq
2/3 and k < min{cpq

1/6, q1/4/2}, or

(2) q = p2, k < q1/4/2 and c < q3/4/2.

If the number of simple points (i.e., points with weight one) is at least (k−2)(q +
√

q + 1) + 16
√

q + 8q1/4 in (1) and at least (k − 2)(q +
√

q + 1) + 16
√

q + 16q1/6

in (2), then B contains the sum of the point-sets of k (not necessarily different)

Baer subplanes and/or lines (considered as point-sets).

Ovals, (k, n)-arcs and unitals

Definition 1.5.14. A point-set K of size k in Πq = (P,L) is a (k, n)-arc if

|ℓ ∩ K| ≤ n for all ℓ ∈ L. The term k-arc is also used to denote a (k, 2)-arc. An

oval and a hyperoval is a (q + 1)-arc and a (q + 2)-arc, respectively.

Note that it is common to ensure the existence of an n-secant line in the

definition of a (k, n)-arc, yet we do not require it. A non-degenerate conic is an

oval in PG(2, q). If q is even, then any oval in Πq can be extended to a hyperoval.
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The dual of a (hyper)oval is called a dual (hyper)oval. For convenience, 2-secant

lines of an arc are shortly called secants.

An oval O of Πq = (P,L) has one tangent in each of its points. If q is odd,

then a point not on O is incident with either zero or two tangents to O, and

it is called an inner (internal) or an outer (external) point of O, respectively.

We denote by Inn(O), Out(O), Skw(O), Tan(O), Sec(O) the set of inner points

and outer points of O, and the set of skew lines, tangents lines and secant lines

to O, respectively. If P /∈ O, then |P ∩ Skw(O)| = |P ∩ Sec(O)|, and dually,

if ℓ /∈ Tan(O), then |ℓ ∩ Inn(O)| = |ℓ ∩ Out(O)|. It is easy to compute that

|Out(O)| = | Sec(O)| = q(q + 1)/2 and | Inn(O)| = | Skw(O)| = q(q − 1)/2.

Looking around from a point of a (k, n)-arc we see that k ≤ 1+(q +1)(n−1);

in case of equality the arc is called a maximal (k, n)-arc. Every line intersects

such an arc in either zero or n points.

Result 1.5.15 (Denniston [33], Ball–Blokhuis–Mazzocca [14]). Let 1 < n < q.

Then a maximal (k, n)-arc exists in PG(2, q) if and only if n | q and q is even.

Definition 1.5.16. A unital in Πq, q a square, is a set of q
√

q + 1 points which

intersects every line in 1 or
√

q + 1 points.

In PG(2, q), q a square, Hermitian curves are unitals. Let U be a unital in a

projective plane of order q. By looking around from a point of U and then from a

point not in U , we easily see that there is exactly one tangent to U at any point of

U , and that there are
√

q+1 tangents to U through any point not in U . Thus the

total number of tangents and (
√

q +1)-secants of U is q
√

q +1 and q(q−√
q +1),

respectively.

For more information and details about the above structures we refer to [46].
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Results on multiple blocking sets

2.1 Some properties of multiple blocking sets in

PG(2, q)

Theorem 2.1.1 ([B]). Let S be a t-fold blocking set in PG(2, q), |S| = t(q+1)+k.

Then there are at least q + 1− k − t distinct t-secants to S through any essential

point of S.

Proof. Let P ∈ S be essential, and let ℓ be an arbitrary t-secant of S that is not

incident with P . Assume that there are less than (q +1−k− t) t-secants through

P . We claim that in this case every t-secant through P intersects ℓ in a point

of ℓ ∩ S. Having proved this, we easily get a contradiction: since P is essential,

there exists a line e through P that is a t-secant. Choose a point Q ∈ e \ S. If

the only t-secant through Q is e, then |S| ≥ t(q + 1) + q and the statement of

the Lemma is trivial. Thus we may assume that there is another t-secant, say ℓ∗,

through Q. But by our claim every t-secant through P intersects ℓ∗ in a point of

ℓ∗ ∩ S, which is a contradiction, since e ∩ ℓ∗ = Q /∈ S. So now we have to prove

the claim above.

Choose a coordinate system in such a way that the common point of the

vertical lines, (∞) is in S, and ℓ is the line at infinity.

Suppose that S ∩ ℓ = {(∞)} ∪ {(1 : mi : 0) | i = 1, . . . , t − 1}. Let S \ ℓ =

{(xi, yi) | i = 1, . . . , tq + k} ⊂ AG(2, q) = PG(2, q) \ ℓ. We may assume that

P = (x1, y1). Let H(B,M) be the Rédei polynomial of S \ {(∞)}; that is, let

H(B,M) =
t−1∏

i=1

(M − mi) ·
tq+k
∏

i=1

(B + xiM − yi).

17
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Note that degB,M H(B,M) = t(q + 1) + k − 1. A line with slope m and

y-intersection b (defined by the equation Y = mX + b) intersects S in exactly as

many points as the number of (linear) factors vanishing in H(b,m); that is, the

multiplicity of the root b of the one-variable polynomial H(B,m), or the multi-

plicity of the root m of H(b,M), provided that these one-variable polynomials

are not identically zero. This latter phenomenon occurs iff we substitute M = mi

for some i = 1, . . . , t − 1.

Since S is a t-fold blocking set, every pair (b,m) produces at least t factors

vanishing in H; thus by the multiplicity version of Alon’s Combinatorial Nullstel-

lensatz (Result 1.1.2; or, regarding this special case, see [27] or [22]), H(B,M)

can be written in the form

(Bq −B)tF0(B,M)+(Bq −B)t−1(M q −M)F1(B,M)+ . . .+(M q −M)tFt(B,M),

where deg(Fi) ≤ k+t−1. Since
∏t−1

i=1(M−mi) divides H(B,M) and (M q−M) =
∏

m∈GF(q)(M − m),
∏t−1

i=1(M − mi) divides F0(B,M) as well. Let F ∗
0 (B,M) =

F0(B,M)/
∏t−1

i=1(M−mi). Fix m ∈ GF(q)\{mi : i = 1, . . . , t−1}. Then F0(B,m)

and F ∗
0 (B,m) differ only in a nonzero constant multiplier; 0 6≡ H(B,m) = (Bq −

B)tF0(B,m); and degB F0(B,m) ≤ k. If a line Y = mX + b intersects S in more

than t points, then the multiplicity of the root b of H(B,m) is more than t, thus

(B − b) divides F ∗
0 (B,m). Conversely, if F ∗

0 (b,m) = 0, then the line Y = mX + b

intersects S in more than t points.

If there are less than (q + 1 − k − t) t-secants through P = (x1, y1), then

there are more than k non-vertical (> t)-secants through P with slopes different

from mi, i = 1, . . . , t − 1. Hence there are more than k pairs (b,m) for which

b + mx1 − y1 = 0 and F ∗
0 (b,m) = 0; in other words, the algebraic curves defined

by B + Mx1 − y1 = 0 and F0(B,M) = 0 have more than k points in common.

Since degB,M F ∗
0 (B,M) ≤ k, this implies that B + Mx1 − y1 | F ∗

0 (B,M) (e.g.,

by Bezout’s theorem). Geometrically this means that every line passing through

P = (x1, y1) not through S ∩ ℓ are (> t)-secants of S.

Remark 2.1.2. Theorem 2.1.1 is similar to Lemma 2.3 in [22]. The proof given

there works for k + t < (q + 3)/2 (although it is only stated implicitly before

the Lemma) and it gives a somewhat better result, that there are at least (q − k)

t-secants through every essential point.

Corollary 2.1.3 ([B]). Let B be a t-fold blocking set in PG(2, q) with |B| ≤
(t+1)q points. Then there is exactly one minimal t-fold blocking set in B, namely

the set of essential points of B.
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Proof. Let B′ be a minimal t-fold blocking set of size t(q+1)+k′ inside B, and let

P ∈ B′. Then P is an essential point of B′, hence there are at least q + 1− k′ − t

t-secants to B′ through P . At least q + 1− k′ − t− (|B| − |B′|) ≥ 1 of these must

be a t-secant to B as well, thus P is an essential point of B. On the other hand,

all essential points of B must be in B′.

Remark 2.1.4. The case t = 1 of the above corollary was already proved by

Szőnyi [70]. Recently, Harrach [44] proved a more general result for weighted

multiple blocking sets in higher dimensional projective spaces. For non-weighted

t-fold blocking sets in PG(2, q), Harrach’s result is the same as Corollary 2.1.3.

Harrach pointed out the following in [44]. For blocking sets (i.e., t = 1), this

connection can also be found in [21] and [70].

Remark 2.1.5. Corollary 2.1.3 is equivalent with Theorem 2.1.1.

Proof. Suppose that Corollary 2.1.3 holds. Let S be a minimal t-fold blocking

set with |S| = t(q + 1) + k ≤ (t + 1)q. Should there be a point P ∈ S with

s < q + 1 − k − t t-secants through it, add one new point Pi to S on each of the

t-secants through P , 1 ≤ i ≤ s. Then the extended set S ′ is a t-fold blocking

set and |S ′| ≤ (t + 1)q. Note that S ′ \ {P} is also a t-fold blocking set, hence

it contains a minimal t-fold blocking set that is different from S. Thus S ′ would

violate Corollary 2.1.3, a contradiction.

Remarks 2.1.4 and 2.1.5 show that Theorem 2.1.1 also follows from the recent

results of Harrach [44]. However, the proof of Theorem 2.1.1 given here is a

basically self-contained application of the polynomial method.

Next we characterize a somewhat artificially looking type of blocking sets.

The motivation of the upcoming theorem is found in Chapter 3, Section 3.3.

Lemma 2.1.6 ([E]). Let q be a power of the prime p, and let L be a set of non-

vertical lines of AG(2, q) which cover every point of AG(2, q) exactly k times

(k ≥ 1) except possibly the points of ν fixed vertical lines, where ν(k +1) ≤ q and

νk < p. Then L consists of the union of k parallel classes, or L consists of the

kq non-vertical lines passing through k fixed points on a fixed vertical line.

Proof. Counting the lines of L through the points of a non-exceptional vertical

line we see that |L| = kq. Suppose ν = 0. Fix an arbitrary line ℓ ∈ L, and

consider AG(2, q) embedded into PG(2, q) (and also extend the lines by their

ideal points). As the affine points of ℓ are covered exactly k times by L, there
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are kq − q(k − 1) = q lines of L incident with the ideal point of ℓ, whence the

statement follows.

Suppose ν ≥ 1. Since the lines of L are non-vertical, they are given by the

equations Y + miX + bi = 0, where mi, bi ∈ GF(q), i ∈ {1, . . . , kq}. Consider the

following dual Rédei polynomial (over GF(q)):

f(X,Y ) =

kq
∏

i=1

(Y + miX + bi).

Then degX,Y f = kq. Let S ⊂ GF(q) be the subset of q − ν elements x for which

on the vertical line X = x every point is covered exactly k-times. Consider the

polynomial

g(X) =
∏

x∈S

(X − x).

Then degX g = q−ν. The elements of S×GF(q) are zeros of f(X,Y ) with multi-

plicity k, thus by the multiplicity version of Alon’s Combinatorial Nullstellensatz

we get

f(X,Y ) = (Y q − Y )k + . . . + fi(X,Y )(Y q − Y )k−ig(X)i + . . . + fk(X,Y )g(X)k,

where degX,Y fi ≤ kq− q(k− i)− (q−ν)i = iν for all 1 ≤ i ≤ k. For convenience,

let f0(X,Y ) ≡ 1. Fix an arbitrary x /∈ S. Then g(x) 6= 0, and including the

arising constants into the fis we get

f(x, Y ) = (Y q − Y )k + f1(x, Y )(Y q − Y )k−1 + . . . + fk(x, Y ).

Note that since the multiplicity of the root y is the number of lines of L passing

through (x, y) ∈ AG(2, q), no root of f(x, Y ) can have multiplicity larger than q.

Now let h be the largest integer for which fh(x, Y ) 6≡ 0 (0 ≤ h ≤ k). Then

f(x, Y ) = (Y q − Y )k + f1(x, Y )(Y q − Y )k−1 + . . . + fh(x, Y )(Y q − Y )k−h.

Consider

f ∗(x, Y ) =
f(x, Y )

(Y q − Y )k−h
= (Y q − Y )h + (Y q − Y )h−1f1(x, Y ) + . . . + fh(x, Y ).

Let R denote the set of distinct roots of f ∗(x, Y ). Then r(y) =
∏

y∈R(Y − y)

divides Y q − Y , and hence fh(x, Y ) as well. Thus |R| ≤ deg fh(x, Y ) ≤ hν.

Let ′ denote the derivation in the variable Y . As every root of f ∗(x, Y ) is root
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of f ∗′(x, Y ) with one less multiplicity, degY f ∗′(x, Y ) ≥ degY f ∗(x, Y ) − |R| ≥
hq − hν ≥ hq − kν holds except if f ∗′(x, Y ) ≡ 0. On the other hand,

f ∗′(x, Y ) = −h(Y q−Y )h−1+f ′
1(x, Y )(Y q−Y )h−1−(h−1)f1(x, Y )(Y q−Y )h−2+. . .

. . . − fh−1(x, Y ) + f ′
h(x, Y ),

and since deg f ′
i < iν, then deg f ∗′ < max{iν+(h−i)q : 0 ≤ i ≤ h} ≤ (h−1)q+ν.

As ν(k +1) ≤ q, hq−kν < (h−1)q +ν can not hold. Thus f ∗′ ≡ 0, which means

that f ∗(x, Y ) ∈ GF(q)[Y p]. Using the binomial expansion, we see that the terms

of f ∗(x, Y ) are of form Y qi+j where 0 ≤ i ≤ k − h and 0 ≤ j ≤ hν ≤ kν < p,

thus only j = 0 occurs. This means that

f ∗(x, Y ) = Y hq + a1Y
(h−1)q + . . . + ah

with proper ai ∈ GF(q) (i.e., f ∗(x, Y ) ∈ GF(q)[Y q] and it has degree h). Since

yq = y for every y ∈ GF(q), f ∗(x, Y ) may have only h different zeros. Never-

theless, f ∗(x, Y ) is fully reducible, so it has hq zeros altogether (summing up the

multiplicities), but each distinct zero has multiplicity at most q−k+h. Therefore

hq ≤ h(q − k + h). This can only happen if h = 0 or h = k. In the first case

f(x, Y ) = (Y q − Y )k by the definition of h, thus every point on the line X = x is

covered exactly k-times, while in the latter case f(x, Y ) = f ∗(x, Y ) ∈ GF(q)[Y q]

and we find k points on the vertical line X = x that are covered q-times. Thus

the lemma is proved.

Remark 2.1.7. Note that the two possibilities on the structure of the set of lines

in the above lemma are essentially the same: if we view AG(2, q) inside PG(2, q),

then we see that our line-set consists of the lines intersecting a fixed line ℓ in one

of k fixed points. This line ℓ may be the line at infinity or an affine line as well.

A condition like νk < p is necessary: if we take a Baer subplane B = (P0,L0)

in PG(2, q), q = p2, so that (∞) ∈ ℓ∞ is a flag of it, then P0 ∩AG(2, q) is covered

by the ν =
√

q = p affine lines of B incident with (∞). Thus if L is the set of the

non-vertical affine lines of B, then all other points of AG(2, q) are covered exactly

k = 1 times by L. Thus L is an example in which νk = p, and the conclusion of

Theorem 2.1.6 fails.

Remark 2.1.8. A similar result can be obtained using known results on weighted

multiple blocking sets in the following way. Give weight k to the ν exceptional

vertical lines and to the line at infinity to obtain a weighted line-set L∗ of size
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kq + (ν + 1)k. Then L∗ is a weighted k-fold covering set, hence we may apply

the dual of Results 1.5.12 and 1.5.13. If q = p, to apply Result 1.5.12, we need

(ν + 1)k < (p + 2)/2. Provided so, L∗ contains the sum of k points P1, . . . , Pk

(considered as line-sets). Note that (∞) 6= Pi as only ν < p vertical lines are

included in L∗. A line Pi ∩ Pj has weight more than one, hence it must be an

exceptional line, which lines do not have an intersection point besides (∞), hence

Pi∩Pj is the same line for all 1 ≤ i < j ≤ k. Thus in AG(2, p) we obtain the same

result under the somewhat stricter condition (ν + 1)k < (p + 2)/2. In AG(2, ph),

h > 1, we may apply Result 1.5.13 if its somewhat technical conditions hold (in

particular, in case of h = 2, Result 1.5.13 requires k < 4
√

q/2 =
√

p/2, while for

h ≥ 3 it also needs k < cp
6
√

q, which are further restrictions on k if h < 6).

Provided so, we may conclude that L∗ contains the sum of k points or line-sets

of Baer subplanes. If ν <
√

q, then Baer subplanes cannot be involved, as such

a line-set would cover all the points of the Baer subplane
√

q + 1 > k times, but

the affine points of a Baer subplane cannot be covered by the ν <
√

q exceptional

vertical lines. Thus under these assumptions we obtain the same conclusion as

in Lemma 2.1.6. However, if h is large enough, the assumptions of Result 1.5.13

are less restrictive than those of Lemma 2.1.6.

2.2 Two disjoint blocking sets in PG(2, q)

Next we construct two small disjoint blocking sets in PG(2, q) in order to find

a small double blocking set. No such general constructions were known if q is

not a square; we give the related results at the end of the section. We prove the

following theorem.

Theorem 2.2.1 ([B]). Let h ≥ 3 odd, α ≥ 1 an integer, p an odd prime, r = pα,

q = rh. Then there exist two disjoint blocking sets of size q + (q − 1)/(r − 1) in

PG(2, q). Consequently, τ2(PG(2, q)) ≤ 2(q + (q − 1)/(r − 1)).

As there are two disjoint Baer subplanes in PG(2, q) if q is a square, we

immediately get the following result.

Corollary 2.2.2 ([B]). Let r denote the order of the largest proper subfield of

GF(q), where q is odd (not a prime), or q is a square. Then there exist two

disjoint blocking sets of size q+(q−1)/(r−1) in PG(2, q), and so τ2(PG(2, q)) ≤
2(q + (q − 1)/(r − 1)).
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Throughout this section GF(q) denotes the finite field of q = rh elements of

characteristic p, r = pα.

Let f : GF(q) → GF(q), and consider its graph Uf = {(x : f(x) : 1) : x ∈
GF(q)} in the affine plane AG(2, q). The slopes (or directions) determined by Uf

is the set Sf = {(f(x) − f(y))/(x − y) : x, y ∈ GF(q), x 6= y}. It is well-known

that Uf ∪ {(1 : m : 0) : m ∈ Sf} is a blocking set in PG(2, q). This blocking set

has the property that there is a line such that there are precisely q points in the

blocking set not on this line. Such blocking sets are called blocking sets of Rédei

type. For more information about these we refer to [41].

Let γ be a primitive element of GF(q)∗, the multiplicative group of GF(q).

Let d | q− 1, m = (q− 1)/d, and let D = {xd : x ∈ GF(q)∗} = {γkd : 0 ≤ k < m}.
Let 1 ≤ t ≤ m − 1. Then γdt 6= 1. On the other hand,

∑

c∈D ct =
∑

c∈D ctγdt,

therefore
∑

c∈D ct = 0 follows.

First we copy the ideas of the proof of the Hermite–Dickson theorem on per-

mutation polynomials from [57] to prove a generalization of it to multiplicative

subgroups of GF(q)∗.

Lemma 2.2.3 ([B]). Let GF(q) be a field of characteristic p, d | q − 1, m =

(q − 1)/d. Let D = {xd : x ∈ GF(q)∗} be the set of nonzero dth powers. Let

a1, . . . , am be a sequence of elements of D. Then the following two conditions are

equivalent:

(i) a1, . . . , am are pairwise distinct;

(ii)
∑m

i=1 at
i = 0 for all 1 ≤ t ≤ m − 1, p6 | t.

Proof. Let γ be a primitive element of GF(q)∗. Then ai = γαid for appropriate

αi ∈ N. Let gi(x) =
∑m−1

j=0 am−j
i xj. Choose b = γβd ∈ D. Then gi(b) equals

m−1∑

j=0

γαi(m−j)dγdβj =
m−1∑

j=0

γαimdγd(β−αi)j =
m−1∑

j=0

(γjd)β−αi =

{
m, if β − αi = 0,

0 otherwise.

As m | (q − 1), m 6≡ 0 (mod p). Let

g(x) =
m∑

i=1

gi(x) =
m−1∑

j=0

(
m∑

i=1

am−j
i

)

xj.

Then deg g(x) < m, and g(b) = |{i ∈ {1, . . . ,m} : ai = b}| · m (mod p). Thus

a1, . . . , am are pairwise distinct ⇐⇒ g(b) = m for all b ∈ D ⇐⇒ g(x) ≡
m ⇐⇒ ∑m

i=1 at
i = 0 for all 1 ≤ t ≤ m − 1. As x 7→ xp is an automorphism of

GF(q), the statement follows.
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Theorem 2.2.4 ([B]). Let GF(q) be a field of characteristic p, m | q − 1, and let

D be the multiplicative subgroup of GF(q)∗ of m elements. Let g ∈ GF(q)[x] be a

polynomial such that g(b) ∈ D for all b ∈ D. Then g|D : D → D is a permutation

of D if and only if the constant term of g(x)t (mod (xm − 1)) is zero for all

1 ≤ t ≤ m − 1, p6 | t.

Proof. Let b ∈ D. If b 6= 1, then bm−1 + bm−2 + . . . + b + 1 = (bm − 1)/(b − 1) =

0, otherwise it equals m. Let g[t](x) = g(x)t (mod (xm − 1)). As g(x)t and

g[t](x) take the same values on D and deg g[t](x) < |D|, by interpolation we have

g[t](x) =
∑

b∈D
gt(b)
m

((
x
b

)m−1
+ . . . + x

b
+ 1

)

. Thus the constant term of g[t](x) is
∑

b∈D gt(b), hence Lemma 2.2.3 yields the stated result.

Corollary 2.2.5 ([B]). Let D ≤ GF(q)∗ be a multiplicative subgroup of m ele-

ments. Suppose that g ∈ GF(q)[x] maps a coset c1D into another coset c2D. Then

this mapping is bijective if and only if the constant term of g(c1x)t (mod (xm−1))

is zero for all 1 ≤ t ≤ m − 1, p6 | t.

Proof. Apply Theorem 2.2.4 to g∗(x) = c−1
2 g(c1x).

Now we are ready to prove Theorem 2.2.1. Recall that q = rh, h ≥ 3 odd,

r = pα, α ≥ 1, p an odd prime.

Proof of Theorem 2.2.1 ([B]). Let f, g : GF(q) → GF(q) be two additive func-

tions. Then the set of directions determined by f is {(f(x)− f(y))/(x− y) : x 6=
y ∈ GF(q)} = {f(x)/x : x ∈ GF(q)∗}, and these correspond to the points

(1 : f(x)/x : 0) = (x : f(x) : 0) on the line at infinity. The analogous assertion

holds for g as well. Note that interchanging the second and third coordinates is

an automorphism of PG(2, q). Consider the following blocking sets:

B1 = {(x : f(x) : 1)}
︸ ︷︷ ︸

U1

∪{(x : f(x) : 0)}x6=0
︸ ︷︷ ︸

D1

,

B2 = {(y : 1 : g(y))}
︸ ︷︷ ︸

U2

∪{(y : 0 : g(y))}y 6=0
︸ ︷︷ ︸

D2

.

Besides additivity, suppose that g is an automorphism of GF(q) and that

f(x) = 0 ⇐⇒ x = 0. The latter assumption yields (0 : 0 : 1) /∈ D2, so

D2 ∩ B1 is empty. If (x : f(x) : 0) = (y : 1 : g(y)) ∈ D1 ∩ U2, then g(y) = 0,

hence y = 0 and x = 0, a contradiction. Thus D1 ∩ U2 is also empty. Now we

need U1 ∩ U2 = ∅. Suppose that (y : 1 : g(y)) = (x : f(x) : 1). Then x 6= 0
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(otherwise y = g(y) = 0 6= 1), thus (y : 1 : g(y)) = (x/f(x) : 1 : 1/f(x)), so

g(x/f(x)) = 1/f(x). As g is multiplicative, this yields g(x)f(x) = g(f(x)) (⋆).

We want this equation to have no solutions in GF(q)∗.

Let D be the set of nonzero (r−1)th powers, m = (q−1)/(r−1) = rh−1+ . . .+

r+1. Then m is odd. Let g(x) = xr and f(x) = 1
a
(xr +x), a ∈ GF(q)∗. Then g is

an automorphism and f is additive. Moreover, if x 6= 0, then f(x) = 1
a
x(xr−1 +1)

is zero iff xr−1 = −1, consequently 1 = xm(r−1) = (−1)m = −1 as m is odd, which

is impossible in odd characteristic. Hence f(x) = 0 ⇐⇒ x = 0. It is easy to see

that f(x)/x = f(y)/y if and only if (x/y)r−1 = 1, thus |D1| = (q − 1)/(r − 1);

similarly, |D2| = (q − 1)/(r − 1) as well.

Equality (⋆) now says xr = ( 1
a
(xr + x))r−1 = xr−1

ar−1 (x
r−1 + 1)r−1, equivalently

ar−1 =
(xr−1 + 1)r−1

x
=: ψ∗(x). (2.1)

Recall that we want (2.1) to have no solutions in GF(q)∗. To this end we need

to find an (r − 1)th power (i.e., an element of D) that is not in the range of ψ∗.

Note that ψ∗(b) ∈ D ⇐⇒ b ∈ D. Let ψ(x) = (xr−1 + 1)r−1xq−2. Then ψ∗(x)

and ψ(x) take the same values on GF(q)∗. Thus we need to show that ψ|D does

not permute D. By Theorem 2.2.4, it is enough to show that the constant term

of ψr−1(x) (mod (xm − 1)) is not zero.

Consider

ψr−1(x) =

(r−1)2
∑

k=0

(
(r − 1)2

k

)

xk(r−1)+(r−1)(q−2).

Since k(r − 1) + (r − 1)(q − 2) ≡ (k − 1)(r − 1) (mod m), the exponents reduced

to zero have k = 1 + ℓ m
gcd(m,r−1)

for some ℓ ≥ 0. As
(
(r−1)2

1

)
≡ 1 (mod p), it is

enough to show that
(
(r−1)2

k

)
≡ 0 (mod p) for the other possible values of k.

As 0 ≤ k ≤ (r − 1)2, m/ gcd(m, r − 1) ≥ r2 would imply that ℓ ≥ 1 does

not occur. By m/ gcd(m, r − 1) > m/r > rh−2, this is the case for h ≥ 5;

and also for h = 3 and r 6≡ 1 (mod 3), as in this case m = r2 + r + 1 and

gcd(m, r − 1) = gcd(3, r − 1) = 1.

Now suppose h = 3, r ≡ 1 (mod 3). Then 1 ≤ ℓ ≤ 2, and so k = 1 +

ℓm/ gcd(m, r − 1) = 1 + ℓ(r2 + r + 1)/3 ≡ (3 + ℓ)/3 6≡ 0, 1 (mod r) as r > 5. Let

k! = pβk′, where gcd(k′, p) = 1. Consider the product π = (r2 − 2r − 1) . . . (r2 −
2r+2−k)(r2−2r+1−k)(r2−2r−k). As

(
r2−2r−1

k

)
is an integer, k! | π, so pβ | π.

Since (r2 − 2r + 1)(r2 − 2r) is divisible by r, but (r2 − 2r + 1− k)(r2 − 2r − k) is

not, pβ+1 divides (r2 − 2r + 1) . . . (r2 − 2r + 2 − k), hence
(
(r−1)2

k

)
≡ 0 (mod p).

Thus the proof is finished.
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Let us mention some results in connection with Theorem 2.2.1. As the union

of two disjoint blocking sets, a double blocking set of size 2q+2q2/3+2q1/3+2 was

constructed by Davydov, Giulietti, Marcugini and Pambianco [32] in PG(2, q =

p3) for p ≤ 73, p prime, and by Polverino and Storme ([62], cited in [22]) in

PG(2, q = p3h) for ph ≡ 2 (mod 7). Note that Result 1.5.8 roughly says that a

double blocking set in PG(2, q) of size at most 2q + q2/3 contains the union of two

disjoint Baer subplanes. These examples show that the term q2/3 is of the right

magnitude if q is a cube.

Also, according to [67], the PhD thesis of Van de Voorde [74] implicitly con-

tains the following general result: if B is a minimal blocking set in PG(2, q),

q = ph, that is not a line, and |B| ≤ 3(q − ph−1)/2, then there is a small

GF(p)-linear blocking set that is disjoint from B. It seems that the proof re-

quires the characteristic of the field to be more than five. Note that this implies

τ2 ≤ 2q + q/p + (q − 1)/(p − 1) + 1. For an overview of linear sets, we refer to

[61]. We remark that the functions f and g in the above construction are both

linear over GF(r), and hence the arising blocking sets are linear as well.

Finally, let us note that two specific disjoint linear sets were also presented in

[15] in order to construct semifields. The rank of those are different from what

we need if we want to obtain two disjoint linear blocking sets. However, the

construction probably can be modified so that one may use it to find two disjoint

blocking sets.

2.3 Lower bound on the size of multiple blocking

sets

The next theorem was originally proved by Ball in [12] using basically the same

counting arguments, though in a less friendly way. Note that for t = 1, a Baer

subplane proves the theorem sharp. Using this formulation, a slight improvement

is easily achieved for t ≥ 2 as we mention in Remark 2.3.2.

Result 2.3.1 (Ball [12]). Let B be a t-fold blocking set in an arbitrary projective

plane of order q that contains no line, 1 ≤ t ≤ q − 2. Then

|B| ≥ tq +
√

tq + 1.

Proof. Suppose that there exists a line ℓ that intersects B in at least x points.

Since ℓ 6⊂ B, x ≤ q and there is a point P ∈ ℓ \ B. Then counting the number
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of points on the lines through P we get that |B| ≥ tq + x. Now suppose that

every line intersects B in less than x points. Using the standard equations, we

shall prove that |B| ≥ tq + x holds in this case as well, provided that x is chosen

properly. We will set x =
√

tq + 1.

Let ni denote the number of i-secants to B. Recall the standard equations:

q+1
∑

i=0

ni = q2 + q + 1,

q+1
∑

i=0

ini = |B|(q + 1),

q+1
∑

i=0

i(i − 1)ni = |B|(|B| − 1).

Since every line intersects B in at least t and in at most x points, we have

0 ≤
q+1
∑

i=1

(i − t)(x − i)ni = −
q+1
∑

i=1

i(i − 1)ni +

q+1
∑

i=1

(x + t − 1)ini −
q+1
∑

i=1

txni,

which combined with the standard equations gives the following quadratic in-

equality:

|B|2 − (tq + x + t + (x − 1)q) |B| + tx(q2 + q + 1) ≤ 0.

Thus |B| is at least as large as the smaller root of the quadratic polynomial (in the

variable |B|) on the left-hand side. Hence it is enough to prove that substituting

|B| = tq + x in the polynomial we get a non-negative value and that tq + x is

not larger than the larger root. The mean of the roots, (tq + x + t + (x− 1)q)/2,

is larger than tq + x iff x ≥ t + q/(q − 1), which holds for x =
√

tq + 1 under

1 ≤ t ≤ q − 2. (Let us remark that x ≥ √
tq + 1

2
and t ≤ q − 3 are also

satisfactory here.) Thus the second condition is satisfied. Regarding the first

condition, substituting |B| = tq + x in the polynomial we get

txq − t2q + tq2 − x(x − 1)q,

which is non-negative if and only if

x2 − (t + 1)x − t(q − t) ≤ 0.

Using t ≤ q, it is immediate to check that for x =
√

tq + 1 this inequality holds.

Thus |B| ≥ tq +
√

tq + 1 is proved.
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Remark 2.3.2. The arguments in the proof of Theorem 2.3.1 also work with

x =
√

tq + t
2

(

1 −
√

t
q

)

+ 1
2
, though we need a little more detailed calculations. In

this way we obtain the following: if B is a t-fold blocking set in Πq that contains

no line and 1 ≤ t ≤ q − 3, then

|B| ≥ tq +
√

tq +
t

2

(

1 −
√

t

q

)

+
1

2
.

Based on Ball’s theorem, an unpublished result due to Bacsó, Héger, Szőnyi

and Tuza yields a similar lower bound for the case when lines are not excluded.

Theorem 2.3.3. Let B be a t-fold blocking set in an arbitrary projective plane of

order q, 2 ≤ t ≤ q − 3. Then

|B| ≥ tq +
√

(t − 1)q − t + 3.

Proof. If B contains no line, then we may apply Theorem 2.3.1. If B contains

exactly one line, then by deleting q − t + 2 arbitrary points from it we obtain

a (t − 1)-fold blocking set that contains no line. Thus by Theorem 2.3.1, |B| ≥
(t−1)q +

√

(t − 1)q +1+ q− t+2 = tq +
√

(t − 1)q− t+3. If B contains at least

two lines, choose two of them. These intersect in a point P . Counting the number

of points of B on the lines through P we get that |B| ≥ 1 + 2q + (t− 1)(q − 1) =

(t + 1)q − t + 2 ≥ tq +
√

(t − 1)q − t + 3.

Remark 2.3.4. By Remark 2.3.2, we may obtain a somewhat better constant

term in Theorem 2.3.3, namely |B| ≥ tq +
√

(t − 1)q − t + 5
2

+ t−1
2

(

1 −
√

t−1
q

)

.

2.4 Remarks

Surprisingly enough, there is a shortage of constructions for multiple blocking

sets in PG(2, q) if q is not a square. It seems that the only (rather natural) idea

to construct small t-fold blocking sets for general t so far is to find and unite t

disjoint blocking sets. One may ask whether every small enough t-fold blocking

set in PG(2, q) is the union of t disjoint blocking sets, provided that t is small

enough (cf. the linearity conjecture for multiple blocking sets [69]); however, this

question seems quite hard. An affirmative answer for t = 2 would improve some

of the results we present later.



Chapter 3

On constructions of (k, g)-graphs

This chapter is based on the articles [D], [E], and [C]. The respective part of [C]

is an attempt to give a general background of and to unify the constructions and

concepts presented formerly in the topic; here we rely on this point of view.

3.1 Introduction to (k, g)-graphs

Definition 3.1.1. A (k, g)-graph is a k-regular graph of girth g. The least num-

ber of vertices a (k, g)-graph may have is denoted by c(k, g). A (k, g)-cage is a

(k, g)-graph on c(k, g) vertices.

The study of cages began in the mid-1900s with the papers of Tutte [73] and

Kárteszi [51]. The cases k = 2, g = 3, and g = 4 are trivial, the corresponding

cages are the cycles, complete graphs, and the regular complete bipartite graphs,

respectively. It was proved by Erdős and Sachs [35] that (k, g)-graphs exist for

all k ≥ 2 and g ≥ 3, thus c(k, g) is defined for such parameters. Determining

c(k, g) is challenging and extremely hard in general; for an overview on the topic,

see the surveys [36] and [76]. There is a simple and well-known lower bound on

c(k, g). Throughout this chapter we use the following notation. For a vertex v,

let N i(v) = {u ∈ V : d(v, u) = i}, that is, the set of the ith neighbors of v. In

particular, N0(v) = {v} and N1(v) = N(v). If i < 0, let N i(v) = ∅.
Result 3.1.2 (Moore bound).

c(k, g) ≥ c0(k, g) =







1 +
(g−3)/2∑

i=0

k(k − 1)i if g is odd,

2
(g−2)/2∑

i=0

(k − 1)i if g is even.

29



30 Chapter 3. On constructions of (k, g)-graphs

Proof. Let G be a (k, g)-graph. If g = 2n + 1 is odd, let v be an arbitrary vertex

of G. As g(G) = 2n + 1, for all i = 1, . . . , n, the set N i(v) consists of k(k − 1)i

pairwise distinct vertices, which yields the stated lower bound. If g = 2n is even,

let uv be an arbitrary edge of G. Similarly, the sets Ai = N i(u) \ N i−1(v) and

Bi = N i(v) \ N i−1(u), 0 ≤ i ≤ n − 1, are pairwise disjoint of size (k − 1)i.

This bound was established by Tutte [73], Kárteszi [51], and Erdős and Sachs

[35]. The name Moore bound originates from the same numerical bound regarding

the degree/diameter problem attributed to E. F. Moore (cf. [47]).

Definition 3.1.3. A (k, g)-graph on c0(k, g) vertices is called a Moore graph or

a Moore cage.

By definition, Moore cages of girth g = 2n and degree k and generalized n-

gons of order (k − 1, k − 1) are the same. Excluding the trivial cases, Moore

cages are rare objects. They may exist only if g = 5, 6, 8, 12. This result is due to

Damerell [31], Bannai and Ito [17] and Feit and Higman [37]. Furthermore, the

celebrated Hoffman–Singleton theorem [47] says that a Moore cage of girth g = 5

may only have degree k = 3, 7, 57. In the cases g = 6, 8, and 12, Moore cages

exist whenever the degree k is subsequent to a power of a prime. The famous and

widely open prime power conjecture claims that every Moore cage of girth 6, 8 or

12 has such degree. (In other words, the conjecture says that a GP of order (q, q)

exists iff q is a prime power.) For more results and interesting open problems in

the topic, the reader is once again directed to the excellent surveys [36] and [76].

It is worth mentioning that in the cases g = 6, 8, and 12, the only known

cage that is not a Moore graph is the unique (7, 6)-cage on 90 vertices, which

is the incidence graph of an elliptic semiplane discovered by Baker [9]. Thus

lower bounds and constructions are both welcome; we are focusing on the latter.

Please note that although several techniques have been developed to construct

small (k, g)-graphs, the recent work only treats one specific idea.

The next, fundamental result is often referred to as the girth monotonicity of

the order of cages.

Result 3.1.4 (Erdős–Sachs [35]). Let k ≥ 2, g ≥ 3. Then c(k, g) < c(k, g + 1).

Recall that a t-fold perfect dominating set (t -PDS) is a proper vertex-set in a

graph such that any vertex not belonging to it has exactly t neighbors in it. Let

G = (V ; E) be a k-regular graph, and let W ( V . It is clear that the subgraph

G′ of G induced by V \W is (k−t)-regular if and only if W is a t -PDS of G. This
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operation never decreases the girth, though g(G′) > g(G) may occur. Result 3.1.4

shows that this idea can be used to give an upper bound on c(k − t, g). Clearly,

for a fixed t, the larger t-PDS we find the better bound we obtain.

Starting from a projective plane of order q, Brown ([25], 1967) constructed

(k, 6)-graphs for arbitrary 4 ≤ k ≤ q by deleting some properly chosen points

and lines from the plane, that is, by removing the vertices of a (q + 1 − k)-PDS

from the incidence graph of the plane. Although Brown himself gave only one

specific construction without any general terminology, the basic idea of deleting

a t -PDS from a cage seems to appear first in his paper [25]. Thus we refer to

this construction method as Brown’s method. Our aim in this chapter is not

only to construct small (k, g)-graphs by applying Brown’s method for GPs, but

to understand its limitations as well.

In [D], t-good structures were introduced to investigate the induced regular

subgraphs of generalized polygons. In [1], the notion of perfect dominating sets

appears in the context of constructing small (k, 8)-graphs. In fact, t-good struc-

tures and t -PDSs are the same. Since (perfect) dominating sets have a large

literature (see [45]), we decided to use the latter terminology.

However, one may look for non-induced regular subgraphs of a generalized

polygon; that is, we are allowed to delete vertices and edges as well to obtain a

regular graph from the incidence graph of the GP. There are constructions that

prove this idea useful as we will see in Section 3.6.

3.2 Perfect t-fold dominating sets in generalized

polygons

In this section we give some definitions, notation and constructions that work

for all generalized polygons. In case of generalized polygons (or more generally,

bipartite graphs), we consider a t -PDS as a pair of vertex-sets T = (P0,L0)

corresponding to the vertex classes of the graph, where P0 ∪ L0 is a t -PDS.

Notation. If T = (P0,L0) is a fixed t -PDS, a line ℓ ∈ L0 (a point P ∈ P0) will

be called also a T -line (a T -point).

Remark 3.2.1. In [D] and [E], the term “t-good structure” is used instead of

“t -PDS”.

We continue with a trivial observation.
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Proposition 3.2.2. Let G = (P ,L) be a generalized polygon of order q, and let

T = (P0,L0), P0 ⊂ P, L0 ⊂ L, be a t -PDS in G, t < k. Then |P0| = |L0|.

Proof. As G and the subgraph of G induced by (P \ P0) ∪ (L \ L0) are regular

bipartite graphs, we have |P| = |L| and |P| − |P0| = |L| − |L0|.

Note that the above argument works for arbitrary regular bipartite graphs,

not only GPs.

Definition 3.2.3. Let T = (P0,L0) be a t -PDS in a generalized polygon. We

define the size of T = (P0,L0) as |T | := |P0| = |L0| (instead of the number

|P0| + |L0| = 2 |P0| of vertices in it).

The common combinatorial properties of generalized polygons allow us to give

a general construction of t -PDSs in them. We show a purely combinatorial idea.

Recall that in a graph G = (V,E), d(x, y) denotes the distance of x and y, and

Br(x) = {y ∈ V : d(x, y) ≤ r} is the ball of center x and radius r. The upcoming,

general construction can be found in [C].

The neighboring balls construction.

Let G = (P ,L) be the incidence graph of a generalized n-gon of order q. Let

L∗ = {ℓ1, . . . , ℓt} and P∗ = {P1, . . . , Pt} be a collection of distinct lines and points

such that ∀1 ≤ i < j ≤ t the following hold:

(i) d(ℓi, ℓj) = 2 (the lines are pairwise intersecting);

(ii) the unique point at distance one from ℓi and ℓj (their intersection point) is

an element of P∗;

(i’) d(Pi, Pj) = 2 (the points are pairwise collinear);

(ii’) the unique line at distance one from Pi and Pj (the line joining them) is an

element of L∗.

We call such a pair (P∗,L∗) a proper center-set. Let BP∗,L∗ = (P0,L0) be the

collection of points and lines that are at distance at most n−2 from some element

of P∗ or L∗; that is, P0 ∪ L0 =
⋃t

i=1{Bn−2(Pi)} ∪
⋃t

i=1{Bn−2(ℓi)}.

Proposition 3.2.4. BP∗,L∗ is a t -PDS in G.
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Proof. We may assume that n is even (the other case is analogous). Let Q ∈
P \ P0. Then for every 1 ≤ i ≤ t we have d(Q, ℓi) = n − 1 and d(Q,Pi) = n;

hence there is a unique a line ei such that d(Q, ei) = 1 and d(ei, ℓi) = n−2. Thus

e1, . . . , et are precisely those lines of L0 that are incident with Q. We show that

these lines are pairwise distinct. Suppose to the contrary that ei = ej = e for some

i 6= j. Let P ∈ P∗ be the point incident with both ℓi and ℓj. Then d(Q,P ) = n,

and d(P, e) = n − 1. Consequently, there are two distinct paths of length n − 1

from P to e, one through ℓi and another one through ℓj, a contradiction. Thus

exactly t neighbors of a point Q are in T . The same (dual) arguments hold for

lines.

We call BP∗,L∗ a neighboring balls union with center (P∗,L∗). This immedi-

ately yields two specific constructions, the first of which is essentially the same as

the one in the proof of Theorem 1 in [4]. In Section 3.5, we show the connections

among the constructions appearing in [2, 4, 25, 56, C, D].

Construction 3.2.1: the basic t -PDS [D]. Let P∗ = {P1, P2, . . . , Pt} be t

arbitrary points on a line ℓ1, and let L∗ = {ℓ1, ℓ2, . . . , ℓt} be t arbitrary lines

through P1 in a generalized n-gon G of order q. Then BP∗,L∗ is a t -PDS of size

tqn−2 + qn−3 + . . . + q + 1.

Proof. It is straightforward that (P∗,L∗) is a proper center set, thus BP∗,L∗ =

(P0,L0) is a t -PDS. Let T = P0∪L0, and consider the sets Ai = N i(P1)\N i−1(ℓ1)

and Bi = N i(ℓ1) \N i−1(P1), 0 ≤ i ≤ n− 1, which partition the vertex-set of G as

seen in the proof of Result 3.1.2. Then
⋃n−2

i=0 Ai ⊂ Bn−2(P1) ⊂ T , and An−1∩T =

An−1 ∩
(⋃t

i=2 Bn−2(ℓi)
)
. Thus |T ∩

(
∪n−1

i=0 Ai

)
| = 1 + q + . . . + qn−2 + (t− 1)qn−2.

Analogously, |T ∩
(
∪n−1

i=0 Bi

)
| = 1 + q + . . . + qn−3 + tqn−2.

The above construction may be regarded as a generalization of Brown’s con-

struction [25], which starts from a projective plane. The next construction im-

proves on the size for t = 1 by qn−3. If we start from PG(2, q), we obtain basically

the same construction that appears in [2].

Construction 3.2.2: the antiflag PDS [D]. Let (P, ℓ) be an arbitrary antiflag

in a generalized n-gon G of order q (n ∈ {3, 4, 6}), and let P∗ = {P}, L∗ = {ℓ}.
Then BP∗,L∗ is a 1-PDS of size

∑n−2
i=0 qi + qn−3.

Proof. It is trivial that (P∗,L∗) is a proper center set, thus BP∗,L∗ = (P0,L0) = T
is a 1-PDS. Suppose that d(P, ℓ) = d. Let e a line in B1(P )∩Bd−1(ℓ). Note that

if n is even, then d ≤ n − 1, so e is unique. Consider the partition {Ai, Bi}n−1
i=0
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of G as in the proof of Result 3.1.2 with u = P and v = e. Recall that any

vertex x ∈ Ai (Bi), 0 ≤ i ≤ n − 1, has q neighbors in Ai+1 (Bi+1) and one in

Ai−1 (Bi−1), where An and A−1 (Bn and B−1) are replaced by Bn−1 and B0 (An−1

and A0), respectively. By Proposition 3.2.2, it is enough to determine |P0|. Note

that P0 ∩ Ai = ∅ if 0 ≤ i ≤ n − 1 is odd, and P0 ∩ Bi = ∅ if 0 ≤ i ≤ n − 1 is

even. If n = 3, then d(P, ℓ) = 3, and B1(P )∩P0 and B1(ℓ)∩P0 are disjoint sets

of size 1 and q + 1, respectively, hence |P0| = q + 2 as indicated. Now suppose

that n ∈ {4, 6}. Then Bn−2(P ) ∩ P0 =
(
⋃n/2−1

i=0 A2i

)

∪
(
⋃n/2−2

i=0 B2i+1

)

contains

(qn−1−1)/(q−1) points, so we only have to deal with P0∩Bn−1 = Bn−2(ℓ)∩Bn−1.

If d(P, ℓ) = 3 (that is, ℓ ∈ B2; this must be the case if n = 4), then it is easy to

see that Bn−1 ∩ P0 = Bn−3(ℓ) ∩ P0 has precisely qn−3 points, hence the assertion

follows. If d(P, ℓ) = 5 (that is, ℓ ∈ B4 and n = 6), then the points of B5 ∩ P0

can be reached from ℓ via a path of length three, ℓ − x1 − x2 − x3, where either

x1 ∈ B3, x2 ∈ B4, and x3 ∈ B5, or x1 ∈ B5, x2 ∈ A5, x3 ∈ B5. We can reach

1 · q · q2 vertices in the first way (this is clear), and q · q · (q−1) new vertices in the

second way, as all vertex in A5 has q − 1 neighbors in B5 which are not adjacent

to ℓ (those have been found already). These two groups are disjoint as the girth

of G is more than six, thus we have found q3 points.

Note that in the neighboring balls construction, if we allow P∗ and L∗ to

have different sizes, s and t, respectively, and define T the same way, then the

same arguments show that after deleting T , every non-deleted point has degree

q + 1− s or q + 1− t, and every non-deleted line has degree q + 1− t or q + 1− s,

depending on n being odd or even, respectively. More generally, one may define

(s, t)-PDSs in order to obtain biregular graphs. Although biregular cages are also

of interest, we will restrict the usage of (s, t)-PDSs to give a better overview of

perfect dominating sets in generalized quadrangles.

Definition 3.2.5. Let (P,L) be a GP of order q. A pair of a proper point-set

and a proper line-set T = (P0,L0) is a perfect (s, t)-dominating set if every point

outside P0 is covered by s lines of L0, and every line outside L0 intersects P0 in

t points. The size of an (s, t)-PDS T = (P0,L0) is the pair (|P0| , |L0|).

By definition, T is a t -PDS if and only if it is a (t, t)-PDS.

Definition 3.2.6. Let T = (P0,L0) be an (s, t)-PDS. A point P (a line ℓ) is

T -complete, if P ∈ P0 and [P ] ⊂ L0 (ℓ ∈ L0 and [ℓ] ⊂ P0).
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Proposition 3.2.7. Let Ti = (Pi,Li) be an (si, ti)-PDS, i = 1, 2. Then T =

(P1 ∪P2,L1 ∪L2) is an (s1 + s2, t1 + t2)-PDS if and only if every point in P1 ∩P2

and every line in L1 ∩ L2 is T -complete.

Proof. Let P0 = P1 ∪P2, L0 = L1 ∪L2. Then [P ]∩L0 = s1 + s2 for all P /∈ P0 if

and only if [P ]∩L1 ∩L2 = ∅ for all P /∈ P0, which holds if and only if every line

of L1 ∩ L2 is T -complete. By duality, we are ready.

Corollary 3.2.8. The union of a (0, t)-PDS and an (s, 0)-PDS is an (s, t)-PDS.

Proof. The lines of a (0, t)-PDS T = (P0,L0) must be T -complete, otherwise

there would be a point P /∈ P0 incident with at least one line of L0. Similarly,

the points of an (s, 0)-PDS are also complete, hence the assertion follows by

Proposition 3.2.7.

3.3 Perfect t-fold dominating sets in projective

planes

This section is based on [D, E]. Throughout this section Πq = (P ,L) denotes a

finite projective plane of order q. Recall that |P| = |L| = q2 + q + 1. We recall

and rephrase the definition of t -PDSs for projective planes.

Definition 3.3.1. Let (P,L) be a finite projective plane, T = (P0,L0), P0 ( P,

L0 ( L. T is a perfect t-fold dominating set iff

• ∀P /∈ P0 there are exactly t lines in L0 through P ,

• ∀ℓ /∈ L0 there are exactly t points in P0 on ℓ.

3.3.1 Constructions

The first two constructions are also related to the work of other authors. These

relations are discussed in Section 3.5.

Construction 3.3.1: complete subplanes [D, E]. Let (P∗,L∗) be a (pos-

sibly degenerate) subplane, P∗ = {P1, . . . , Pt}, L∗ = {ℓ1, . . . , ℓt}. Let P0 =

P∗ ⋃∪t
i=1[ℓi], L0 = L∗ ⋃∪t

i=1[Pi]. Then T = (P0,L0) is a t -PDS. The size of T
is tq+1, t(q−1)+3, t(q− t1 +1) according to whether the underlying subplane is

degenerate of type π1 or π2, or it is nondegenerate of order t1, where t = t21+t1+1,

respectively.
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Proof. Let P /∈ P0. Then P /∈ li (i = 1, . . . , t), and the lines P ∩ Pi, i = 1, . . . , t

are pairwise distinct elements of L0 as the lines connecting any two of the Pis are

in L∗ as (P∗,L∗) is a subplane. Hence the number of T -lines through P is t. The

dual arguments for lines finish the proof. Calculating the sizes is easy.

The above construction is a rephrasal of the neighboring balls construction for

projective planes; a proper center set is simply a (possibly degenerate) subplane.

Constructions 3.2.1 and 3.2.2 correspond to a complete degenerate subplane of

type π1 and π2 (the latter one consisting of a single antiflag), respectively. Note

that for t = 2, both degenerate subplanes yield the same 2-PDS.

Construction 3.3.2: disjoint Baer subplanes [D]. Let Bi = (Pi,Li), i =

1, . . . , t, be t mutually disjoint Baer subplanes. Let P0 = ∪t
i=1Pi, L0 = ∪t

i=1Li.

Then T = (P0,L0) is a t -PDS of size t(q +
√

q + 1).

Proof. Every line intersects a Baer subplane in one or
√

q + 1 points. Respective

lines are called tangents and long secants. If P is a point not in a Baer subplane,

then there are q tangent lines and exactly one long secant through it. Given two

disjoint Baer subplanes, there is no line intersecting both in
√

q + 1 points [24].

Thus L0 covers every point not in P0 exactly t-times. Similarly, every line not in

L0 intersects each Pi (i = 1, . . . , t) in exactly one point, hence P0 intersects these

lines in precisely t points.

Construction 3.3.3: unital. Let U be a unital in Πq. Let P0 = U , and let L0

be the set of tangent lines to U . Then T = (P0,L0) is a (
√

q + 1)-PDS of size

q
√

q + 1.

Proof. A line not in L0 intersects U in
√

q + 1 points by definition. Through a

point not in U there are exactly
√

q + 1 tangents to U .

Construction 3.3.4: maximal
√

q -arc. Let K be an (n,
√

q)-arc in Πq of size

n =
√

q
(
q −√

q + 1
)
. Let P0 = K, and let L0 be the set of skew lines to K. Then

T = (P0,L0) is a
√

q -PDS of size n.

Proof. Every line intersects K in zero or
√

q points. Lines not in L0 intersect

P0 = K in
√

q points by definition. Through a point not in P0 there are exactly
√

q skew lines and q −√
q + 1

√
q -secants to P0.

Construction 3.3.5: inner part of an oval. Let O be an oval of Πq, q odd. Let

P0 = O∪ Inn(O), L0 = Tan(O)∪Skw(O). Then T = (P0,L0) is a (q +1)/2-PDS

of size q(q + 1)/2.
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Proof. Recall that on a two-secant line there are (q − 1)/2 outer points of O,

while on an outer point of O there are (q− 1)/2 two-secant lines. The number of

outer points is q(q + 1)/2.

Construction 3.3.6: outer part of an oval. Let O be an oval of Πq, q odd.

Let P0 = O∪Out(O), L0 = Tan(O)∪ Sec(O). Then T = (P0,L0) is a (q− 1)/2-

PDS of size q(q − 1)/2.

Proof. Recall that on a skew line there are (q + 1)/2 inner points of O, while on

an inner point of O there are (q + 1)/2 skew lines. The number of inner points is

q(q − 1)/2.

Construction 3.3.7: half-line. Let ℓ = {P0, . . . , Pq} be a line, and P /∈ ℓ

an arbitrary point of Πq, q odd. Let P0 = [ℓ]
⋃∪⌊q/2⌋

i=0 [P ∩ Pi], and let L0 =

[P ]
⋃∪q

i=⌈q/2⌉[Pi]. Then T = (P0,L0) is a (q + 1)/2-PDS of size (q + 1)2/2 + 1.

Proof. A line e /∈ L0 is not incident with P or Pi, i = ⌈q/2⌉, . . . , q and thus the

T -points on e are exactly its intersections with the lines P∩Pi, 0 ≤ i ≤ ⌊q/2⌋.

In the above list there are only two constructions that provide us t -PDSs for

arbitrary values of t, namely Constructions 3.3.1 and 3.3.2, which will be referred

to as complete (degenerate) subplanes and disjoint Baer subplanes in the sequel,

respectively. Furthermore, all other constructions yield t -PDSs with t ≥ √
q. In

what follows, our aim is to study t -PDSs in finite projective planes, and, assuming

that t is small enough, to characterize all of them in PG(2, q).

For a point P , [P ] covers all but one points exactly once; for t points P1, . . . , Pt,

∪t
i=1[Pi] covers a lot of points exactly t times, so it is natural to ask how one can

construct a t -PDS by putting t points and lines completely into it. The sharpness

of the following result is shown by Construction 3.3.7.

Proposition 3.3.2 ([E]). Let t < (q + 1)/2, P∗ = {P1, . . . , Pt} and L∗ =

{ℓ1, . . . , ℓt}, P0 = P∗ ⋃∪t
i=1[ℓi], L0 = L∗ ⋃∪t

i=1[Pi]. Then T = (P0,L0) is a

t -PDS in Πq if and only if (P∗,L∗) is a (possibly degenerate) subplane.

Proof. As the if part was proved in Construction 3.3.1, we only discuss the only

if part. Take a line connecting two (or more) of the Pis, and suppose that there

is a point P on it that is not in P0. Then some of the T -lines P ∩ Pi coincide,

and as P is not incident with any ℓ ∈ L∗, there are less than t T -lines through

P , a contradiction. Hence lines connecting the points of P∗ must be T -complete.

A line ℓ /∈ L∗ may intersect P∗ in at most t points and may contain t further
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T -points on the ℓis. As 2t < q + 1, we get that there are no T -complete lines

outside L∗. Together with the dual of this argument, we see that (P∗,L∗) is a

subplane.

3.3.2 General results

Proposition 3.3.3 ([D]). Let T = (P0,L0) be a t -PDS in Πq, t ≤ q. Then

|T | ≥ t(q + 1 − t). In case of equality t =
√

q and P0 is a maximal (
√

q, n)-arc.

Proof. Take a line e /∈ L0. Then there are exactly q + 1 − t points not in P0 on

e, each being incident with exactly t T -lines. Thus we see at least t(q + 1 − t)

T -lines.

Now suppose that equality holds. Take any line ℓ /∈ L0. Then the former argu-

ment shows that a point P ∈ ℓ is covered either zero or t times by L0 depending

on P being in P0 or not, respectively. Thus t ≤ q implies that points not in P0

are all covered exactly t times by L0. Also, for any point P ∈ P0, |[P ] ∩ L0| is

either zero or q + 1. Should there be a point P ∈ P0 with [P ] ⊂ L0, all points

of P0 would be covered at least once, hence q + 1 times by L0, which is clearly

impossible. Hence the points of P0 are not covered by L0. Therefore L0 is a

maximal dual t-arc, and dually, P0 is a maximal t-arc. Counting the points of P0

through the lines of [P ], P ∈ P0, we get that 1+(q+1)(t−1) = |P0| = t(q+1−t),

whence t =
√

q follows.

Proposition 3.3.4. Let G = (V ; E) be a (k, g)-graph on n vertices, and let

S ⊂ V be a t -PDS of G. Then |S| ≤ n − c0(k − t, g).

Proof. The subgraph of G induced by the vertices of V \ S is (k − t)-regular of

girth at least g, hence by the Moore bound and the girth monotonicity (Results

3.1.2 and 3.1.4) n − |S| ≥ c0(k, g) follows.

The next theorem is am important upper bound which shows that the disjoint

Baer subplanes construction is optimal if t is not too large.

Theorem 3.3.5 ([D]). Let T = (P0,L0) be a t -PDS in Πq = (P,L), and suppose

t ≤ 2
√

q. Then |T | ≤ t(q +
√

q + 1). Moreover, in case of equality every line

intersects P0 in t or
√

q + t points.

Proof. Let

n0
i = |{ℓ ∈ L0 : |ℓ ∩ P0| = i}| ,

n1
i = |{ℓ /∈ L0 : |ℓ ∩ P0| = i}| .
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Then the total number ni of i-secants to P0 is ni = n0
i + n1

i . By the definition of

t -PDSs,

n1
i =

{

q2 + q + 1 − |L0| for i = t,

0 otherwise.
(∗)

Using (∗), the standard equations and |P0| = |L0| (Proposition 3.2.2), we obtain

q+1
∑

i=0

n0
i = |L0| ,

q+1
∑

i=0

in0
i = |L0| (q + 1 + t) − t(q2 + q + 1),

q+1
∑

i=0

i(i − 1)n0
i = |L0|2 + |L0| (t2 − t − 1) − t(t − 1)(q2 + q + 1).

From the three equations above we get

0 ≤
q+1
∑

i=0

(i − (
√

q + t))2n0
i =

q+1
∑

i=0

i(i − 1)n0
i −

q+1
∑

i=0

(2(
√

q + t) − 1)in0
i +

q+1
∑

i=0

(
√

q + t)2n0
i =

|L0|2 + |L0|
(
t2 − t − 1 − (2(

√
q + t) − 1)(q + 1 + t) + (

√
q + t)2

)
+

(q2 + q + 1) ((2t(
√

q + t) − t) − t(t − 1)) =

(|L0| − t(q +
√

q + 1)) (|L0| − (t + 2
√

q)(q −√
q + 1)) .

Hence either |L0| ≤ t(q +
√

q + 1) or |L0| ≥ (t + 2
√

q)(q −√
q + 1) (it is easy

to check that the first root is smaller than the second one). Assuming the latter

case, Corollary 3.3.4 yields 2(q2 + q + 1) − c0(q + 1 − t, 6) = 2t(2q − t + 1) ≥
2 |L0| ≥ 2(t + 2

√
q)(q − √

q + 1), in contradiction with t ≤ 2
√

q. Therefore

|L0| ≤ t(q +
√

q + 1) must hold. Equality yields that all lines of L0 intersect P0

in
√

q + t points.

Proposition 3.3.6 ([D]). Let T = (P0,L0) be a t -PDS in Πq, and assume

t ≤ √
q. Then P0 is a blocking set, unless t =

√
q and P0 is a maximal

√
q-arc.

Proof. Assume that there exists a line ℓ not meeting P0. Then ℓ must be in

L0. Since any point P on ℓ is outside P0, the number of T -lines different from ℓ

through P has to be exactly t− 1, therefore |L0| = 1 + (q + 1)(t− 1) = tq + t− q.

Compared with Proposition 3.3.3, we get t(q + 1− t) ≤ tq + t− q. If t <
√

q, this

is not possible, hence P0 is a blocking set. If t =
√

q, then we obtain equality in

Proposition 3.3.3, hence P0 is a maximal
√

q-arc.
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Now the characterization of (one-fold) perfect dominating sets quickly follows.

Theorem 3.3.7 ([D]). Every PDS of Πq is one of Constructions 3.3.1 and 3.3.2

(with t = 1).

Proof. Let T = (P0,L0) be a perfect dominating set. First note that by Propo-

sition 3.3.6, P0 is a blocking set. Since a line not in L0 meets P0 in exactly

t = 1 point, every line joining two points of P0 must be a T -line, and dually, the

intersection point of two T -lines is in P0. We distinguish three cases according

to the maximum number ν of points in general position in P0.

Case 1: ν = 2. Then P0 is contained in a line, but since it is a blocking set,

it has to be the full line. It is easy to see that T is obtained from Construction

3.3.1 with a degenerate subplane of type π1.

Case 2: ν = 3. In this case |P0| ≤ q + 2, since it cannot contain two pairs of

points on two different lines, as that would imply ν ≥ 4. By Result 1.5.6, P0 has

to contain a line, thus |P0| = q + 2. It is easy to see that T is obtained from

Construction 3.3.1 with a degenerate subplane of type π2.

Case 3: ν ≥ 4. Assume that P0 contains all the points of a line ℓ. Then by ν ≥ 4,

there must be at least two points of P0 not on ℓ, but then the lines joining these

two points to the points of ℓ must be T -lines, thus |L0| ≥ 2q + 2, contradicting

the upper bound |P0| ≤ q +
√

q + 1 of Theorem 3.3.5. Therefore P0 is a blocking

set that does not contain a full line, hence by Result 1.5.6 and Theorem 3.3.5 it

is a Baer subplane, that is, we have Construction 3.3.2.

The next result yields that a 2-PDS T = (P0,L0) in Πq, q ≥ 5, is either

obtained from Construction 3.3.1, or P0 is a double blocking set. This is not

satisfactory to give a complete description of 2-PDSs in Πq due to the lack of our

recent knowledge on double blocking sets in general finite projective planes, yet

it will be useful when characterizing 2-PDSs in PG(2, q).

Proposition 3.3.8 ([D]). Let T = (P0,L0) be a t -PDS in Πq = (P,L), t <
√

q.

1. If t = 2, then |P0| = |L0| ≥ 2q + 1 with equality if and only if T is a

complete degenerate subplane.

2. If t ≥ 2 and |T | ≥ tq + 2, then P0 is a double blocking set.

Proof. To prove the first statement, let P /∈ P0. There are q − 1 lines not in L0

through P , each containing exactly two points of P0. Therefore |P0| = |L0| =
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2q−2+c, where c denotes the number of T -points on the two T -lines through P .

As 2 <
√

q, Proposition 3.3.6 yields that P0 is a blocking set, so we can deduce

that c ≥ 2. Hence |P0| ≥ 2q with equality if and only if both T -lines through

P meet P0 in one point. Assume |P0| ≤ 2q + 1. Then c ≤ 3. Therefore, as one

can repeat this counting from any P /∈ P0, we see that each line ℓ ∈ L0 meets

P0 in 1, 2 or q + 1 points. Take a point P ∈ P0. Count the points of P0 through

the lines of P . As |P0| > q + 2, we see that there must be at least one line ℓ

intersecting P0 in more than two points. Hence ℓ ∈ L0 and [ℓ] ⊂ P0. Now as

|P0| ≥ 2q > q + 2, there must be two points in P0, Q and R, such that neither

Q nor R is on ℓ. Consequently, the line Q ∩ R intersects P0 in at least three,

hence in q + 1 points, whence |P0| ≥ 2q + 1. Since we assumed |P0| ≤ 2q + 1,

we obtained that |P0| = 2q + 1 and it is the union of the point-sets of two lines.

Dually, L0 must be the union of the line-sets of two points. Hence by Proposition

3.3.2, T = (P0,L0) is a complete degenerate subplane.

Now for the second statement, assume t ≥ 2 and |L0| ≥ tq + 2. As t ≥ 2,

we only have to check that |ℓ ∩ P0| ≥ 2 for all ℓ ∈ L0. Suppose to the contrary.

Then, as P0 has already been proved to be a blocking set in Proposition 3.3.6,

there exists a line ℓ ∈ L0 such that ℓ ∩ P0 = {P}. Then counting the T -lines

through the points of ℓ, we obtain |L0| ≤ 1 + q + q(t − 1), a contradiction.

The following observation says that a proper part of a t -PDS cannot be a

t -PDS. We will use this in the next subsection.

Proposition 3.3.9 ([E]). Let 1 ≤ t ≤ q/2, T = (P0,L0) and T ′ = (P ′
0,L′

0) be

two t -PDSs in Πq = (P,L). Then P0 ⊂ P ′
0 and L0 ⊂ L′

0 implies T = T ′.

Proof. Suppose to the contrary that T 6= T ′. By duality we may assume that L0

is a proper subset of L′
0. Take a line ℓ ∈ L′

0 \L0. Then ℓ contains exactly q+1− t

points, P1, . . . , Pq+1−t, that are not in P0. Thus these are covered exactly t times

by the lines of L0, that is, there are q + 1 − t lines not in L0 through each of the

Pis (i = 1, . . . , q + 1 − t) intersecting P0 in exactly t points. The set S of these

lines has (q + 1 − t)2 pairwise distinct elements, and S ∩ L0 = ∅. As ℓ ∈ L′
0 and

L0 ⊂ L′
0, the Pis are covered at least t + 1 times by L′

0, hence they are in P ′
0,

thus ℓ is completely in T ′. Therefore the lines of S intersect P ′
0 in at least t + 1

points (by P0 ⊂ P ′
0), hence S ⊂ L′

0. Consequently, the Pis (i = 1, . . . , q + 1 − t)

are completely in T ′. Thus a point P /∈ ℓ is covered at least (q + 1 − t)-times by

L′
0, which is more than t as t < (q + 1)/2. This means that every point is in P ′

0,

a contradiction.
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3.3.3 Characterization in PG(2, q)

Recall that perfect dominating sets in an arbitrary finite projective plane of order

q are characterized in Theorem 3.3.7. 2-PDSs can be handled separately due to

Proposition 3.3.8.

Theorem 3.3.10 ([D]). Let T = (P0,L0) be a 2-PDS in PG(2, q).

1. If q ≥ 9, then T is either a complete subplane, or |T | = 2(q +
√

q + 1).

2. If q > 256, then T is either a complete subplane or the union of two disjoint

Baer subplanes.

Proof. Proposition 3.3.8 yields that if T is not a complete subplane, then P0 is a

double blocking set. Result 1.5.7 claims that if q ≥ 9, then a double blocking set

in PG(2, q) has at least 2(q +
√

q + 1) points. It follows from the upper bound

in Theorem 3.3.5 that equality must hold. Moreover, if q > 256, then by Remark

1.5.9, a double blocking set of size 2(q +
√

q + 1) is the union of the point-sets

of two disjoint Baer subplanes. Then L0 is the union of the line-sets of the Baer

subplanes, as a line from the union intersects P0 in
√

q + 2 > 2 points.

In the rest of this section we prove our following, main result, which describes

all t -PDSs in PG(2, q) if t is small enough (roughly, t ≤ p and t ≤ 6
√

q).

Theorem 3.3.11 ([E]). Let T = (P0,L0) be a t -PDS in PG(2, q), q = ph, p a

prime; furthermore,

• for h = 1 and h = 2, let t < p1/2/2;

• for h ≥ 3, let t < min
{
p + 1, cpq

1/6 − 1, q1/4/2
}
, where c2 = c3 = 2−1/3 and

cp = 1 for p > 3.

Then T is a complete (degenerate) subplane or T is the union of t disjoint Baer

subplanes.

Throughout this section T = (P0,L0) will denote a t -PDS in PG(2, q). We

will suppose t ≥ 3, as the cases t = 1 and t = 2 have been proved already in

Theorems 3.3.7 and 3.3.10.

Definition 3.3.12. We call a line bad if it does not intersect P0 in t mod p

points. Dually, we call a point bad if it does not have t mod p lines from L0

through it. A point (line) is good if it is not bad.
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Clearly, every line not in L0 is good (as it intersects P0 in exactly t points);

in other words, the bad lines are in L0. However, lines of L0 are not necessarily

bad (see Figure 3.3.3). The dual observations for points stand as well.

Note that if we supposed that q = p prime, then in the above definition t

mod p and exactly t would be the same (assuming t ≥ 2).

Definition 3.3.13. Let the index of a point P be the number of bad lines going

through it. Dually, the index of a line ℓ is the number of bad points on it. We

denote the index of a point P or a line ℓ by ind(P ) and ind(ℓ), respectively. For

the sake of simplicity, the index of the ideal point (m), m ∈ GF(q), will be denoted

by ind(m) instead of ind((m)).

P
l

t−1 t−1

t−1

t−1
q+1

q+1P

1 1 1 111q+1 1 q+1 q+1 2 2 2 2 2
l

Figure 3.1: We see the schematic pictures of two t -PDSs, a complete degenerate sub-

plane of type π1 and π2, respectively. Every depicted object is in T . Good lines are thin,

bad lines are thick; good points are round, bad points are square, T -complete points

are crossed. The numbers next to the points are their indices. Note that in case of

the left construction, being bad and being in T are not equivalent; moreover, not every

T -complete point has large index.

Next our aim is to show that the indices of the points are either small (at

most t), or large (at least q+1− t). First we introduce a polynomial that encodes

the intersection multiplicity of P0 with lines. Let ℓ∞ denote the line at infinity

in an affine coordinate system. Let {(xi, yi)}i be the set of affine points of T (in

this coordinate system), and let {(mj)}j be the set of points of T on ℓ∞ \ {(∞)}.
Consider the following polynomial in GF(q)[M,B]:

g(M,B) =

|P0\ℓ∞|
∑

i=1

(
1 − (Mxi + B − yi)

q−1
)

+
∑

(mj)∈P0∩ℓ∞

(
1 − (M − mj)

q−1
)
− t.

Let m, b ∈ GF(q) and let ℓ be the line defined by Y = mX + b. Then g(m, b) =

|ℓ ∩ P0| − t (mod p), as a term of the first or the second sum equals one if and
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only if the corresponding affine point (xi, yi) or the ideal point (mj) is on ℓ,

respectively.

Proposition 3.3.14 ([E]). Assume that ℓ∞ is good. Then for any point (m) ∈
ℓ∞, m ∈ GF(q), ind(m) = q − deg gcd (g(m,B), Bq − B).

Proof. Since b ∈ GF(q) is a root of g(m,B) if and only if the line Y = mX + b

intersects P0 in t mod p points, the number of affine good lines equals the number

of distinct roots of g(m,B), which is precisely the degree of the greatest common

divisor of g(m,B) and Bq − B. As ℓ∞ is good, all the bad lines are among the q

affine lines passing through (m), hence the assertion follows.

As indices can be expressed in terms of the greatest common divisor of two

suitable polynomials as shown above, the Szőnyi–Weiner Lemma can be applied

to derive that there are no average indices.

Proposition 3.3.15 ([E]). Let k be the index of a point or a line and let 3 ≤ t ≤
√

q/2. Then either k ≤ t or k ≥ q + 1 − t.

Proof. By duality it is enough to prove the statement for the index of points. Let

δ denote the total number of bad lines. As bad lines are in L0, Theorem 3.3.5

implies δ ≤ |L0| ≤ t(q+
√

q+1). Pick an arbitrary point P . If there is no good line

through P , then ind(P ) = q + 1 and there is nothing to prove. Otherwise choose

our coordinate system so that ℓ∞ is a good line through P and P = (m0) is an

ideal point different from (∞). Then δ ≥ ∑

m∈GF(q) ind(m), as on the right-hand

side we count all but the vertical bad lines exactly once. Let u(B,M) = Bq −B,

v(B,M) = g(M,B), and let km = deg gcd(u(B,m), v(B,m)). By Proposition

3.3.14 we have ind(m) = q − km, so using the Szőnyi–Weiner Lemma we obtain

q · ind (m0) − δ ≤
∑

m∈GF(q)

(ind (m0) − ind (m)) ≤
∑

m∈GF(q)

(km − km0
)+ ≤

(deg u − km0
)(deg v − km0

) = ind (m0) (ind (m0) − 1) .

This implies

ind(P ) (q + 1 − ind(P )) ≤ δ. (3.1)

As δ ≤ t(q +
√

q + 1), we get that

ind(P )(q + 1 − ind(P )) − t(q +
√

q + 1) ≤ 0.

Since indices are integers, we only need that for ind(P ) = t+1 and ind(P ) = q−t,

the above inequality does not hold. Substituting either values and using t ≤ √
q/2
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we get 0 ≥ t(q− t)− t(q+
√

q+1) = q− t(
√

q+ t+2) ≥ q/4−√
q, a contradiction

if q > 16. As t ≥ 3, t ≤ √
q/2 implies q > 16, hence the proof is complete.

Now we see that it t ≤ √
q/2, then the points and the lines can be split into

two groups: the ones with small and the others with large index.

Definition 3.3.16. The index of a point or a line is called large, if it is at least

q + 1 − t, and it is called small, if it is at most t.

Note that as bad lines are in L0, the number of T -lines through a point with

large index is at least q+1−t, which is larger than t (provided that t < (q+1)/2),

hence such points are in P0. Let us examine points and lines with large index.

Proposition 3.3.17 ([E]). If 3 ≤ t ≤ √
q/2, then points and lines with large

index are T -complete.

Proof. By duality it is enough to prove the proposition for points. Suppose to

the contrary that there is a point P with large index and a line ℓ /∈ L0 passing

through P . Thus |ℓ ∩ P0| = t. We count the number of T -lines through the

points of ℓ. On each of the q + 1 − t points of ℓ \ P0 we see exactly t distinct

T -lines and at least q+1−t more through P (since the bad lines are in L0). Thus

|L0| ≥ (q+1−t)t+q+1−t. Compared with the upper bound |L0| ≤ t(q+
√

q+1)

(Theorem 3.3.5), q ≤ t(
√

q + 1) + (t + 1)(t − 1) follows. By t ≤ √
q/2 we get

q/4 ≤ √
q/2 − 1, a contradiction.

Proposition 3.3.18 ([E]). Suppose 3 ≤ t ≤ √
q/2. Then the number of T -

complete points is at most t, and the number of T -complete lines is at most t.

Proof. By duality it is enough to prove the proposition for points. Suppose to

the contrary that there exist t + 1 distinct T -complete points. Then the number

of T -lines through these is at least (t + 1)(q + 1) −
(

t+1
2

)
, thus by Theorem 3.3.5

(t+1)(q +1)−
(

t+1
2

)
≤ t(q +

√
q +1). This gives 2(q +1) ≤ t(t+2

√
q +1), which

contradicts t ≤ √
q/2.

Corollary 3.3.19 ([E]). The number of points with large index is at most t.

Dually, the number of lines with large index is at most t.

Proof. Follows immediately from Propositions 3.3.17 and 3.3.18.

The following proposition shows a crucial property of points and lines with

large index, which is a typical corollary of the Szőnyi–Weiner Lemma.
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Proposition 3.3.20 ([E]). Suppose t ≤ √
q/2. Then the points with large index

block the bad lines (that is, every bad line is incident with at least one point with

large index). Dually, lines with large index cover the bad points.

Proof. Again, by duality it is enough to prove the proposition for points. Suppose

to the contrary that there exists a bad line ℓ on which every point has index at

most c, where c ≤ t, and suppose that there exists a point P on ℓ with ind(P ) = c.

Then the total number δ of bad lines counted through the points of ℓ is at most

(c−1)(q+1)+1. Then using inequality (3.1) from the proof of Proposition 3.3.15

we get

0 ≤ c2 − c(q + 1) + (c − 1)(q + 1) + 1 = c2 − q,

a contradiction since c ≤ t <
√

q.

Note that if t 6≡ 1 (mod p), then the existence of a point with large index

is equivalent to the existence of a line with large index (if t is small enough to

use the propositions). For instance a point P with large index is T -complete

(Proposition 3.3.17), that is, all lines through it are in T , hence the number of

T -lines through it is 1 (mod p), thus P is bad. On this bad point there should

exist a line with large index (Proposition 3.3.20).

Proposition 3.3.21 ([E]). Suppose that 3 ≤ t ≤ √
q/2 and also t ≤ p. Then the

line joining two T -complete points has large index. Dually, the intersection point

of two T -complete lines has large index.

Proof. Once more, by duality it is enough to prove the proposition for points.

Let P1 and P2 be two T -complete points and denote by ℓ the line joining them.

Then ℓ ∈ L0. As 3 ≤ t ≤ p, q+1 6≡ t (mod p), hence P1 and P2 are bad. Suppose

to the contrary that the index of ℓ is at most t. Then there are at least q + 1− t

good points on ℓ, each having t mod p, thus at least t T -lines through them

(here we use t ≤ p and ℓ being a T -line). Counting the T -lines through the good

points of ℓ, P1, and P2, we can deduce that |L0| ≥ (q + 1 − t)(t − 1) + 2q + 1.

Compared with the upper bound |L0| ≤ t(q +
√

q + 1) (Theorem 3.3.5), we get

q ≤ t(
√

q + 1) + t2. This contradicts t ≤ √
q/2 whenever q > 4, which follows

from the assumption 3 ≤ t ≤ √
q/2.

Corollary 3.3.22 ([E]). Suppose that 3 ≤ t ≤ √
q/2 and also t ≤ p. Let P ′ be

either the set of T -complete points or the set of points with large index. Let L′

be either the set of T -complete lines or the set of lines with large index. Then

(P ′,L′) is a degenerate subplane.



3.3. Perfect t-fold dominating sets in projective planes 47

Proof. We only need to check whether the intersection of two lines of L′ is in P ′,

and if the line joining two points of P ′ is in L′. As points and lines with large

index are T -complete (Proposition 3.3.17), this follows from Proposition 3.3.21

in all the four cases. As |P ′| ≤ t ≤ p by Proposition 3.3.18 or Corollary 3.3.19,

the subplane must be degenerate.

In case of a complete subplane (Construction 3.3.1), the subplane formed by

the T -complete points and lines has t points and t lines, while in the union of t

disjoint Baer subplanes (Construction 3.3.2) it is empty. In the proof of Theorem

3.3.11, we will verify this property with the help of weighted t-fold blocking sets.

Proposition 3.3.23 ([E]). Suppose that T = (P0,L0) is a t -PDS in PG(2, q),

3 ≤ t ≤ √
q/2, and t ≤ p. Giving weight t to points with large index and weight

one to the other points of P0, we obtain a weighted t-fold blocking set. The

analogous dual statement for lines holds as well.

Proof. By Proposition 3.3.20, there is at least one point with large index (of

weight t) on each bad line. On the other hand, every good line is a t (mod p)

secant to P0, thus by t ≤ p and P0 being a blocking set (Proposition 3.3.6), a

good line intersects P0 in a positive number of, hence in at least t points.

Remark 3.3.24. If there are no points (and thus lines) with large index, then the

above proposition yields that P0 is a t-fold blocking set (without weights).

Now we are ready to prove the main result of this chapter.

Proof of Theorem 3.3.11 ([E]). Recall that the assumptions on t (besides 3 ≤
t ∈ N) are the following: if q = ph, then assume t < p1/2/2 for h = 1, 2, and

t < min
{
p + 1, cpq

1/6 − 1, q1/4/2
}

for h ≥ 3, where c2 = c3 = 2−1/3 and cp = 1

for p > 3. At this point we have to assume a somewhat stronger bound on t in

case of h = 1, say, t <
√

q/3, mainly to satisfy the conditions of Result 1.5.12.

Later we will refine the proof so that the original bound will be enough.

Step 1: T contains k T -complete points and lines and t − k Baer subplanes for

some k (0 ≤ k ≤ t), which will be seen to be well defined in Step 2.

By Proposition 3.3.3 we have |P0| = |L0| ≥ t(q +1− t) = tq + t− t2. The number

of T -complete points is at most t (Proposition 3.3.18), thus giving weight t to the

points with large index (which are T -complete by Proposition 3.3.17) we obtain a

weighted t-fold blocking set Pw
0 (Proposition 3.3.23) with |Pw

0 | ≤ |P0|+ t(t−1) ≤
tq + t + t(

√
q + t− 1) (Theorem 3.3.5), in which at least |P0| − t ≥ tq − t2 points
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are simple. Dually, giving weights analogously to the lines of L0 we obtain a

weighted t-fold covering set Lw
0 . The assumptions on t and q yield that we may

use Results 1.5.12 and 1.5.13 together with their duals to see that Pw
0 contains the

sum of the point-sets of k lines ℓ1, . . . , ℓk and t− k Baer subplanes BP
1 , . . . , BP

t−k,

while Lw
0 contains the sum of the line-sets of k′ points P1, . . . , Pk′ and t− k′ Baer

subplanes BL
1 , . . . , BL

t−k′ . (Here a subplane is considered as a pair of a point-set

and a line-set.)

Note that by the definitions of Pw
0 and Lw

0 , the only points and lines in Pw
0 and

Lw
0 with weight more than one are those with large index, which are T -complete

as well (Proposition 3.3.17).

Let P∗ = {P1, . . . , Pk′}, B∗
L = {BL

1 , . . . , BL
t−k′}, L∗ = {ℓ1, . . . , ℓk}, and B∗

P =

{BP
1 , . . . , BP

t−k}. Note that the elements of P∗ and L∗ are T -complete. Moreover,

as the line-set of a Baer subplane B ∈ B∗
L is in L0 and it covers all the points of

B
√

q + 1 > t times, the point-set of B is contained in P0 (and dually as well).

However, in principle it could happen that B /∈ B∗
P . Next we show that this is

not the case.

Step 2: There are no other T -complete points, T -complete lines, or Baer sub-

planes contained in T than the above found ones.

Let S be a line or a Baer subplane whose point-set is contained in P0. We show

that S ∈ L∗ or S ∈ B∗
P . Suppose to the contrary. Then the union of the point-

sets of the elements of L∗ and B∗
P contains at least t(q + 1) − t(t − 1) points

(in P0, without multiplicities), as any one of them has at least q + 1 points,

and at most t points may be in more than one of them (as Pw
0 contains their

sum, and there are at most t points with weight more than one in Pw
0 ). Re-

call that the intersection of two lines, a line and a Baer subplane, or two Baer

subplanes contains at most 1,
√

q + 1, or
√

q + 2 points, respectively. Thus, as

|S| ≥ q + 1, S adds at least (q + 1)− t(
√

q + 2) new points to the union, whence

|P0| ≥ (t + 1)(q + 1) − t(t − 1) − t(
√

q + 2). Compared with the upper bound

|P0| ≤ t(q +
√

q + 1) (Theorem 3.3.5) and considering the assumed upper bounds

on t, we get a contradiction. Together with the dual of this argument, we obtain

the stated result, which yields B∗
L = B∗

P and k = k′.

Step 3: k = 0 or k = t.

Suppose to the contrary that there is a T -complete line ℓ and a Baer subplane B

as well in T . As (the point-set of) a Baer subplane is a blocking set, there exists

a point P in ℓ ∩ B. As ℓ ∈ L∗ and B ∈ B∗
P , P has weight at least two in Pw

0 .
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Thus P has large index, hence it is T -complete (Proposition 3.3.17), consequently

P ∈ P∗. Therefore, as B ∈ B∗
L also holds, Lw

0 contains the sum of the line-sets

of P and B, thus the
√

q + 1 > t lines through P belonging to B have weight at

least two in Lw
0 , hence they are T -complete. However, the number of T -complete

lines is at most t (Proposition 3.3.18), a contradiction.

Step 4: T is a complete subplane or the union of t disjoint Baer subplanes.

Recall that T -complete points and lines form a subplane (Corollary 3.3.22). As

k = 0 or k = t, then T either contains the union of t disjoint Baer subplanes

(as Pw
0 contains the sum of the Baer subplanes, a point in the intersection would

have weight at least two, hence it would be T -complete) or a T -complete sub-

plane (P∗,L∗) on t points and lines, which is degenerate as t ≤ p. Both of these

are t -PDSs, thus T contains a t -PDS T ′. By Proposition 3.3.9, this may happen

only if T = T ′.

Refining the proof of Theorem 3.3.11 for q = p prime

If q = p prime, then we can avoid referring to the cited results on weighted t-fold

blocking sets. Supposing q = p prime and t ≥ 2, every good line (a t mod p

secant) must intersect P0 in exactly t points, which is quite a strong property,

yet not enough in itself: we will use Lemma 2.1.6. This subsection is also based

on [E].

We assume 3 ≤ t <
√

p/2. Recall that the points and lines with large index

(which are T -complete) form a subplane, which must be degenerate as we are

in PG(2, p), and that the number of T -complete points (and lines) is at most

t; moreover, bad lines are blocked by points with large index (see Propositions

3.3.17, 3.3.18, 3.3.20, 3.3.22).

Case 1: there are no points or lines with large index.

Then every line is good, hence intersects P0 in exactly t points. But then counting

the points of P0 through the lines incident with a point inside or outside P0 we

get that |P0| = 1 + (t − 1)(q + 1) and |P0| = (q + 1)t, a contradiction.

Case 2: the points and lines with large index form a subplane of type π1.

Then there exists an incident point-line pair (P, ℓ), both having large index, such

that every line with large index goes through P and dually, every point with large

index lies on ℓ. Take a line e through P with small index. Then every point Q

on e except P is good (since the bad ones are blocked by the lines with large
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index, each of which intersects e in P ), hence there are exactly t T -lines through

it. Thus there are t−1 T -lines through Q different from PQ. We may choose the

coordinate system in such a way that the line at infinity has large index and P

is the common point of vertical lines. Then the non-vertical T -lines cover all the

points of the affine plane exactly t − 1 times, except possibly the points of t − 1

vertical lines with large index. Applying Lemma 2.1.6 for the above situation, we

get that there is a unique line with large index that contains t − 1 T -complete

points (besides P ) and that every point out of this line is good. Thus this line is

the only line that has more than one bad point on it, i.e., this line is ℓ. It follows

from duality that P is the only point with large index and it has t−1 T -complete

lines through it (besides ℓ). It is straightforward that this construction is what

we get from Construction 3.3.1 starting with a degenerate subplane of type π1.

Case 3: the points and lines with large index form a subplane of type π2.

Denote the points with large index by P1, . . . , Pk (k ≤ t) in such a way that

P2, . . . , Pk all lie on a line ℓ, but P1 /∈ ℓ. Here k 6= 2 may be assumed, as

otherwise the degenerate subplane in question is of type π1 as well.

Pick a point P on ℓ with small index and denote by c the number of T -points on

the line PP1 besides P and P1. Counting the elements of P0 from P we get that

|P0| = q + 1 + (t − 1)(q − 1) + c + 1 (∗), as there are q + 1 T -points on ℓ, t − 1

further T -points on the q−1 good lines through P not incident with P1 and c+1

more points on the line PP1 (note that by Proposition 3.3.20 the only possibly

bad lines through P are ℓ and PP1). This implies that c must be independent

from the choice of P . Counting the T -points via the lines passing through P1 we

get that |P0| = 1 + (k − 1)(q − 1) + (q + 1) + c(q + 1− (k − 1)) (∗∗). Rearranging

the equation obtained from (∗) and (∗∗) we get c(k − 2) = (c + k − t)(q − 1).

If k = 1, then −c = (c + 1 − t)(q − 1), hence by c ≤ q − 1 we get either c = 0

and t = 1, or c = q − 1 and t = q + 1. The latter case is out of interest, the first

corresponds to complete subplane of type π2 (which is an antiflag in this case).

If k ≥ 3, then by c ≤ q − 1, we need to have k − 2 ≥ c + k − t, hence c ≤ t − 2.

Using this and k ≤ t, we get that (c + k − t)(q − 1) = c(k − 2) ≤ (t− 2)2 < q − 1

by the assumptions. Hence the only possibility is that c + k − t = 0, whence

c = 0 and k = t follows. It is easy to see that this implies that the pair (P0,L0)

is exactly the complete degenerate subplane of type π2 spanned by the t points

with large index.
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3.4 Perfect dominating sets in generalized quad-

rangles

In contrast with the case of projective planes, not much is known about t-fold

perfect dominating sets in generalized quadrangles. From now on we consider a

GQ (P,L) of order q. The constructions we are to present here are based on the

ideas of [D], though we have rephrased them using the (already presented) more

general concepts of [C].

Definition 3.4.1. For a point-set U ⊂ P, U⊥ denotes the set of points collinear

with all points of U (every point is considered to be collinear with itself). One

can analogously define W⊥ for a set W of lines.

It is easy to see that for any pair of points {U, V },
∣
∣{U, V }⊥

∣
∣ = q + 1. Note

that if U and V are collinear, then {U, V }⊥ is the point-set of the line connecting

U and V , while if U and V are not collinear, then {U, V }⊥ consists of pairwise

non-collinear points.

Definition 3.4.2. A non-collinear point-pair U, V is called regular if it satisfies
∣
∣{U, V }⊥⊥∣

∣ = q + 1. The definition of a regular line-pair is analogous.

Definition 3.4.3. An ovoid in a GQ of order q is a set of q2 + 1 points that

intersects every line in exactly one point. A spread is the dual of an ovoid; that

is, a set of q2 + 1 lines that cover all points exactly once.

Next we construct some (1, 0) and (0, 1)-PDSs (see Definition 3.2.5). Recall

that Corollary 3.2.8 claims that the union of a (0, 1)-PDS and a (1, 0)-PDS is a

1-PDS.

Proposition 3.4.4.

1. Let S be a spread. Then (∅,S) is a (1, 0)-PDS of size (0, q2 + 1).

2. Let ℓ be any line. Then the ball B(ℓ, 2) is a (1, 0)-PDS of size (q + 1, q2 +

q + 1).

3. Let {U, V } be a regular point-pair, P0 = {U, V }⊥ ∪ {U, V }⊥⊥, and let L0

consist of the lines that intersect P0. Then T = (P0,L0) is a (1, 0)-PDS of

size (2q + 2, q2 + 2q + 1).

The duals of the above (1, 0)-PDSs are (0, 1)-PDSs.
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Proof. Parts 1. and 2. are straightforward, so we only verify part 3. By its

definition, a line ℓ /∈ L0 does not intersect P0, so we only have to check whether

every point P /∈ P0 is covered by exactly one line of L0. As U and V are

not collinear, {U, V }⊥ and {U, V }⊥⊥ both consist of q + 1 pairwise non-collinear

points. As any point of {U, V }⊥ is collinear with any point of {U, V }⊥⊥, it is easy

to see that L0 = ∪Q∈{U,V }⊥ [Q] = ∪Q∈{U,V }⊥⊥ [Q], and that the intersection of two

lines of L0 is in {U, V }⊥ or {U, V }⊥⊥. Hence L0 covers all the (q + 1)2(q − 1) =

q3 + q2 + q + 1 − |P0| points not in P0 exactly once.

For more information and details about GQs we refer to the book [60]. There

one can find that in the classical generalized quadrangle Q(4, q), there exists a

regular line-pair and an ovoid for all prime power q, and there exists a regular

point-pair and a spread if and only if q is even.

Proposition 3.4.5 ([D]). If q is odd, then there is a 1-PDS of size q2 + 3q + 1

in Q(4, q). If q > 2 is even, then there is a 1-PDS of size q2 + 4q + 3 in Q(4, q).

Proof. If q is an odd prime power, we may unite a (0, 1)-PDS obtained from a

regular line-pair {e, f} of Q(4, q) and a ball B(ℓ, 2) with ℓ /∈ {e, f}⊥ ∪ {e, d}⊥⊥

to obtain a 1-PDS of size q2 + 3q + 1. If q is an even prime power, then one can

find a regular point-pair and a regular line-pair in Q(4, q) such that the (0, 1) and

the (1, 0)-PDSs derived from them as in Proposition 3.4.4 are disjoint, hence the

constructed 1-PDS is of size q2 +4q +3. In case of q = 2, this would be the whole

GQ, so we need q > 2.

No characterization results are known for t -PDSs in GQs, not even for t = 1.

Beukemann and Metsch [20] studied 1-PDSs in arbitrary generalized quadrangles

of order q, and in particular, in Q(4, q). They give several examples, some of

which can be obtained as the union of some (0, 1) and (1, 0)-PDSs above as well,

and they find a sporadic example of size 22 > q2 + 3q + 1 in Q(4, 3). They prove

the following upper bound on the size of a 1-PDS in a GQ, which is almost the

double of the size of the largest construction known.

Result 3.4.6 (Beukemann–Metsch [20]). Let Q be a generalized quadrangle of

order q, q > 1, and let T be a 1-PDS in Q. Then

1. |T | ≤ 2q2 + 2q − 1;

2. If Q is Q(4, q) and q is even, then |T | ≤ 2q2 + q + 1.
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Beukemann and Metsch also have results on the size of a smallest 1-PDSs.

However, it seems that understanding t -PDSs in GQs is much more difficult than

in projective planes. In the latter case the characterization of 1-PDSs is almost

immediate, as seen in Theorem 3.3.7.

3.5 Various methods, same results

In this section, based on [C], we examine some constructions in various articles

and show their relations.

Brown [25] (1967) obtained (k, 6)-graphs on 2kq vertices by deleting a (q +

1 − k)-PDS from an arbitrary projective plane of order q, q ≥ k. In fact, he

deleted a complete degenerate subplane of type π1 (cf. Construction 3.3.1). From

the Moore bound and the distribution of primes it follows that c(k, 6) ∼ 2k2.

Brown’s method can be regarded as a combinatorial, geometric approach.

In 1997, Lazebnik, Ustimenko, and Woldar [56] proved the following.

Result 3.5.1. Let k ≥ 2 and g ≥ 5 be integers, and let q denote the smallest odd

prime power for which k ≤ q. Then

c(k, g) ≤ 2kq
3

4
g−a,

where a = 4, 11/4, 7/2, 13/4 for g ≡ 0, 1, 2, 3 (mod 4), respectively.

In particular, for g = 6, 8, 12 this gives c(k, 6) ≤ 2kq, c(k, 8) ≤ 2kq2, c(k, 12) ≤
2kq5, where q is the smallest odd prime power not smaller than k. Combined with

the Moore bound, this yields c(k, 8) ∼ 2k3.

The construction in the background is the following. First they construct an

incidence structure D(q) as follows. Points and lines of D(q) are written inside a

parenthesis () and angle brackets 〈〉, respectively. Consider the vectors (P ) and

〈ℓ〉 of infinite length over GF(q):

(P ) = (p1, p11, p12, p21, p22, p
′
22, p23, . . . , pii, p

′
ii, pi,i+1, pi+1,i, . . .),

〈ℓ〉 = 〈ℓ1, ℓ11, ℓ12, ℓ21, ℓ22, ℓ
′
22, ℓ23, . . . , ℓii, ℓ

′
ii, ℓi,i+1, ℓi+1,i, . . .〉 .

A point (P ) and a line 〈ℓ〉 are incident if and only if the following infinite list
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of equations hold simultaneously:

ℓ11 − p11 = ℓ1p1

ℓ12 − p12 = ℓ11p1

ℓ21 − p21 = ℓ1p11

ℓii − pii = ℓ1pi−1,i

ℓ′ii − p′ii = ℓi−1,ip1

ℓi,i+1 − pi,i+1 = ℓi,ip1

ℓi+1,i − pi+1,i = ℓ1p
′
ii,

where the last four equations are defined for all i ≥ 2. For an integer n ≥ 2,

let D(n, q) be derived from D(q) by projecting every vector onto its initial n

coordinates. Then the point-set Pn and the line-set Ln of D(n, q) both have qn

elements, and incidence is defined by the first n − 1 equations above. Note that

those involve only the first n coordinates of (P ) and 〈ℓ〉, hence apply to the points

and lines of D(n, q) unambiguously. D(n, q) as a bipartite graph can be proved

to be q-regular and have girth at least n + 4 (thus at least n + 5 if n is odd).

Let R,S ⊂ GF(q), where |R| = r ≥ 1 and |S| = s ≥ 1, and let

PR = {(P ) ∈ Pn : p1 ∈ R},LS = {〈ℓ〉 ∈ Ln : ℓ1 ∈ S}.

The graph D(n, q, R, S) is defined as the subgraph of D(n, q) induced by PR∪LS.

It can be shown that every vertex in PR or LS in D(n, q, R, S) has degree s or r,

respectively.

In the case n = 2, P2 = {(p1, p11) ∈ GF(q)2} and L2 = {〈ℓ1, ℓ11〉 ∈ GF(q)2},
and a point (x, y) ∈ P2 is incident with the line 〈m, b〉 ∈ L2 if and only if

b − y = mx. Let

ϕ : D(2, q) → AG(2, q)

(x, y) 7→ (x, y)

〈m, b〉 7→ {(x, y) : y = −mx + b}.

The mapping ϕ is clearly injective and preserves incidence, hence it is an em-

bedding of D(2, q) into AG(2, q) ⊂ PG(2, q). Note that vertical lines are not in

the image, hence ϕ(D(2, q)) can be obtained by deleting the ideal line together

with its points and the vertical lines from PG(2, q). If we consider the induced

subgraph D(2, q, R, S), geometrically it means that we take points only on the
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vertical lines X = x with x ∈ R and lines with slopes −m ∈ S. In other words,

we delete (besides the formerly deleted points and lines) all the points of the

vertical lines X = x with x /∈ R, and we delete all lines having slopes −m /∈ S;

that is, we delete the lines that intersect the ideal line in a direction (or point)

(m) with −m /∈ S. Hence the deleted objects form an (r, s)-PDS obtained from

a degenerate subplane of type π1 on s points and r lines.

To see why the construction for n = 3 (that is, g = 8) is isomorphic to an

(s, t)-good structure in a GQ, we give an explicit description of PG(3, q) and the

classical generalized quadrangle W (q) first. We use homogeneous coordinates as

introduced in Chapter 1. A line ℓ of PG(3, q) corresponds to a plane of GF(q)4,

and hence can be defined as the span of two vectors; that is, ℓ = {α(x : y : z :

w) + β(x′ : y′ : z′ : w′) | (α, β) ∈ GF(q)2 \ {(0, 0)}} for some distinct points

(x : y : z : w) and (x′ : y′ : z′ : w′) of PG(3, q). The generalized quadrangle

W (q) is defined by a non-degenerate symplectic form over PG(3, q). Let q be

an odd prime power. Take a matrix A ∈ GF(q)4×4 such that AT = −A, and

for x, y ∈ GF(q)4, let x ∼ y (in words, x is perpendicular to y) if and only if

xAyT = 0. Note that the relation ∼ is well defined over PG(3, q), and for all

x ∈ GF(q)4 we have x ∼ x. The points of W (q) are those of PG(3, q), and

the lines of W (q) are those of PG(3, q) that are totally isotropic; that is, any two

points of which are perpendicular. Note that if x ∼ y, then (αx+βy) ∼ (γx+δy)

for all α, β, γ, δ ∈ GF(q), hence two points x and y are collinear in W (q) if and

only if x ∼ y. Thus a point is incident with a line in W (q) if and only if it is

perpendicular to at least two of its points (and hence to all of them). It can be

proved that W (q) is a generalized quadrangle of order (q, q).

Now the graph D(3, q) has point-set P3 = {(x, y, z) ∈ GF(q)3} and line-set

L3 = {〈a, b, c〉 ∈ GF(q)3}, where (x, y, z) ∈ 〈a, b, c〉 if and only if b − y = ax and

c − z = bx. Let

ϕ : D(3, q) → PG(3, q)

(x, y, z) 7→ (x : y : z : 1)

〈a, b, c〉 7→ {α(1 : −a : −b : 0) + β(0 : b : c : 1) | (α, β) ∈ GF(q)2 \ {(0, 0)}},

furthermore, let

A =









0 1 0 0

−1 0 0 0

0 0 0 1

0 1 −1 0









.
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We claim that ϕ is an embedding of D(3, q) into W (q) defined by the symplec-

tic form coming from A. It is clear that ϕ is injective. Moreover, (x, y, z) ∈
〈a, b, c〉 ⇐⇒ b− y = ax and c− z = bx ⇐⇒ (x : y : z : 1)A(1 : −a : −b : 0) = 0

and (x : y : z : 1)A(0 : b : c : 1) = 0 ⇐⇒ (x : y : z : 1) is on the line spanned by

(1 : −a : −b : 0) and (0 : b : c : 1), hence ϕ preserves incidence.

Note that the q2 + q + 1 points collinear with P1 = (0 : 0 : 1 : 0) in W (q)

(that is, points of form (x : y : z : 0), or in other words, the points of the

plane at infinity) are not in the image of ϕ; moreover, lines intersecting the line

ℓ1 = {(0 : α : β : 0)} are also excluded (no lines in the image contain a point

with first and fourth coordinates both zero). This means that ϕ(D(3, q)) ⊂ W (q)

is obtained from W (q) by deleting every point collinear with P1 and every line

intersecting ℓ1. As P1 ∈ ℓ1, this corresponds to a neighboring balls construction

with center-set ({P1}, {ℓ1}). The points (x : y : z : 1) with x /∈ R fixed are

precisely the q2 points collinear to Px = (0 : 1 : x : 0) ∈ ℓ1 not on ℓ1. The lines

{α(1 : −a : −b : 0) + β(0 : b : c : 1)} with a /∈ S fixed are precisely the q2 lines

intersecting the line ℓa = {γ(1 : −a : 0 : 0) + δ(0 : 0 : 1 : 0)} not in P1. Hence

ϕ(D(3, q, R, S)) can be obtained by deleting the balls around P∗ = {Px : x /∈
R} ∪ {P1} and L∗ = {ℓa : a /∈ S} ∪ {ℓ1}. Hence these constructions, coming from

a more algebraic approach, are indeed special cases of Brown’s method.

Using the addition and multiplication tables of GF(q), Abreu, Funk, Labbate

and Napolitano ([2], 2006) constructed two infinite families of (k, 6) graphs, k ≤ q,

via their adjacency matrices. The number of vertices of the graphs in the first

and the second family are 2kq and 2(kq + (q − 1 − k)), respectively. The second

construction yields a graph smaller than the previously known ones for k = q,

resulting c(q, 6) ≤ 2(q2 − 1) for any prime power q. In the sequel we show

that these families of Abreu et al. [2] are equivalent to deleting a (q + 1 − k)-

PDS from PG(2, q) with an underlying degenerate subplane of type π1 or π2,

respectively. Thus the first family was a reinvention of Brown’s construction [25],

though the two approaches are different. Note that, however, Abreu et. al. start

from PG(2, q), while Brown’s construction works in arbitrary projective planes.

Let us consider and rephrase the constructions of [2]. Let A = A(q) be the

addition table of the finite field GF(q), i.e., the rows and columns are indexed

by the elements of the field, and Ai,j = i + j. Similarly, let M = M(q) be the

multiplication table of the multiplicative group GF(q)∗ of GF(q), i.e., Mi,j = ij.

Let H be an arbitrary matrix over GF(q) and let z ∈ GF(q). Define the 0 − 1

position matrix Pz(H) of z in H by Pz(H)i,j = 1 if and only if Hi,j = z. Now
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the matrices corresponding to the two constructions G∗(q, 1) and G+(q, 1) of [2,

page 126] are the following: substitute every element Mi,j by PMi,j
(A) in M , and

respectively, substitute every element Ai,j by PAi,j
(M) in A. Let these “blow

ups” be denoted by M and A, respectively. Let us consider M . It is natural

to index its rows and columns by pairs (a, b), a ∈ GF(q)∗, b ∈ GF(q). By its

definition, M (x,y),(m,b) = 1 exactly when xm = y + b. Now we can see that the

rows and columns of M naturally correspond to the points and lines of the affine

plane AG(2, q): the row (x, y) corresponds to the point (x, y) in AG(2, q), while

the column (m, b) corresponds to the line defined by the equation Y = mX − b,

and a 1 entry in M corresponds to a flag. Since the first coordinates are from

GF(q)∗, we do not have lines having slope 0 or ∞ (i.e., horizontal and vertical

lines), furthermore we do not have points on the y axis (the line with equation

X = 0). Since PG(2, q) can be viewed as AG(2, q) and a line at infinity, one

can see that the structure related to M comes from PG(2, q) by removing all

the points of the line at infinity and the y axis, and all the lines through the

common points of vertical and horizontal lines. The authors of [2] then complete

the matrix M in a way that corresponds to adding the horizontal lines and the

points on the y-axis. Also, they delete rows (x, y) and columns (m, b) of M with

x and m in a fixed set R ⊂ GF(q)∗. This means that they remove the lines with

slope m ∈ R (that is, lines through the points (m) ∈ ℓ∞, m ∈ R) and points on

the horizontal lines with equation X = x, x ∈ R. So we can see that this family

can be obtained according to Construction 3.3.1 with an underlying subplane of

type π1. Similarly, it is easy to verify that A is the incidence matrix of a graph

coming from Construction 3.3.1 with an underlying subplane of type π2.

This example shows how such matrix techniques can be translated into a

geometrical point of view. A construction based on Baer subplanes, similar to

Construction 3.3.2, was also given in [2] using matrices, but only for q = 4, 9, 16.

Note that there are also constructions of this kind that produce non-induced

subgraphs (e.g., [10]), which topic we are to touch in Section 3.6.

Investigating a proper induced subgraph of the incidence graph of a gener-

alized polygon, Araujo, González, Montellano-Ballesteros and Serra ([4], 2007)

showed c(k, 2n) ≤ 2kqn−2, where n ∈ {3, 4, 6}, k ≤ q, and q is the order of a gen-

eralized n-gon. Their construction uses only elementary combinatorial properties

of generalized polygons, and it can be easily seen that these constructions are

directly equivalent to Construction 3.2.1; thus it may be regarded as the general-

ization Brown’s one. The upper bound of [4] on c(k, 8) is the same as of Lazebnik
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et al.’s [56] (though the latter works only if q is an odd prime power), but the

bound on c(k, 12) is better, and leads to c(k, 12) ∼ 2k5. Note that the above

results yield c(k, 2n) ∼ 2kn−1 for n = 2, 3, 4, 6.

3.6 Non-induced subgraphs of generalized poly-

gons

So far we investigated induced regular subgraphs of generalized polygons in order

to find small (k, g)-graphs, g ∈ {6, 8, 12}. Recall that for n = 3, 4, 6, Brown’s fre-

quently reinvented construction and its generalization (Construction 3.2.1) yields

c(k, 2n) ≤ 2kqn−2, where q is the smallest integer not smaller than k for which

a generalized n-gon GPn(q) of order q exists. In other words, we could delete

tqn−2 + 1 points and lines to obtain a q + 1 − t-regular induced subgraph of

GPn(q) (t ≥ 1). No better constructions are known unless t = 1, or n = 3 and

q is a square prime power. However, by considering non-induced subgraphs of

generalized polygons, one may obtain better results. The first such construction

we know about, formulated via matrices, is due to Balbuena [10]. By deleting

tq + 2 points, the same number of lines, and some edges, she found a (q + 1− t)-

regular subgraph of PG(2, q), though without pointing out the exact connection

with PG(2, q). In this section we generalize this result to GQs and GHs. The

construction is based on [A], though the version presented here is more compact.

We are about to prove the following.

Theorem 3.6.1 ([A]). Suppose that a generalized n-gon of order q exists, and

let 2 ≤ k ≤ q. If n ≥ 4, then c(k, 2n) ≤ 2k(qn−2 − qn−4); if n = 3, then

c(k, 2n) ≤ 2kq − 2.

Before giving the proof, let us mention that for k = q, the above theorem

and Construction 3.2.2 give the same result. Furthermore, in case of n = 3, a

better result is due to Araujo-Pardo and Balbuena [5], who found a (k, 6)-graph

on 2kq− 4 vertices, also as a non-induced subgraph of a projective plane of order

q, 3 ≤ k ≤ q − 1 (so the number of deleted points is tq + 3, where t = q + 1− k).

As the following remark shows, the condition k ≤ q − 1 is essential here.

Theorem 3.6.2. Let G = (V ; E) be a q-regular subgraph of a projective plane

Πq = (P,L) of order q. Then either |P \ V | = q +
√

q + 1 or |P \ V | ≤ q + 2.
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Proof. Suppose that V = (P \ P0) ∪ (L \ L0). Then for any line ℓ not in L0,

|ℓ ∩ P0| ≤ 1; in other words, any line connecting two points of P0 is in L0. By

duality, we obtain that Π0 = (P0,L0) is a closed system. If Π0 is a degenerate

subplane, then it has at most q+2 points and lines. If Π0 is non-degenerate, then

by Bruck’s result (Result 1.5.2) we have s =
√

q or |P0| = s2 + s + 1 ≤ q + 1.

In the rest of the section, we prove Theorem 3.6.1. Let G = (V ; E) be the

incidence graph of a generalized n-gon of order q. Let xy be an edge of G, and

consider the following standard partition (cf. the Moore bound):

Xi : = {v ∈ V : d(v, x) = i, d(v, y) = i + 1},
Yi : = {v ∈ V : d(v, y) = i, d(v, x) = i + 1},

where 0 ≤ i ≤ n − 1. As G has diameter n and girth 2n, it is clear that these

sets partition V . It is quite common to use this, so to speak, bi-rooted spanning

tree of a generalized polygon. For any vertex u ∈ Xi and 0 ≤ j ≤ n − 1 − i, let

Dj(u) = {v ∈ Xi+j : d(u, v) = j}.

For a vertex u ∈ Yi, define Dj(u) ⊂ Yi+j analogously. These sets contain the

vertices that are j steps further from u with respect to the respective root. Note

that |Dj(u)| = qj, and the sets {Dj(z) : z ∈ Xi} partition Xi+j. For convenience,

if j < 0, then let Dj(u) be empty, and accordingly, let qj = 0. We will use the

following property of generalized n-gons.

Proposition 3.6.3 ([A]). Let 1 ≤ i, j ≤ n − 1, i + j ≥ n. Then for any

pair of vertices u ∈ Xi and v ∈ Yj there is at most one edge between the sets

Dn−1−i(u) ⊂ Xn−1 and Dn−1−j(v) ⊂ Yn−1. Moreover, if i + j = n, then there is

exactly one edge between these sets.

Proof. Suppose to the contrary that there are two edges between Dn−1−i(u) and

Dn−i−j(v), say, u1v1 and u2v2. Then the walk obtained by concatenating the

natural paths u → u1, u1v1, v1 → v, v → v2, v2u2, u2 → u contains a cycle of

length at most 2(n − 1 − i) + 2(n − 1 − j) + 2 = 4n − 2(i + j) − 2 ≤ 2n − 2, a

contradiction.

Now suppose i+j = n. There are exactly qn−1−i ·q = qn−i = qj edges between

Dn−1−i(u) and Yn−1. As the qj sets {Dn−1−j(z) : z ∈ Yj} partition Yn−1 and, as

seen above, there can be at most one edge between Dn−1−i(u) and any of the sets

Dn−1−j(z), z ∈ Yj, the equal number of sets and edges finishes the proof.
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Figure 3.2: This is a fragment of the k = 3-regular graph obtained from a GQ of order

four. Gray objects are removed from the GQ. Only a few edges between the sets X3 and

Y3 are depicted as an illustration.

Please observe Figure 3.2, where the below defined sets are illustrated. Let

2 ≤ k ≤ q, and let X1 = {x1, . . . , xq}, Y1 = {y1, . . . , yq}, D1(xk) = {xk1, . . . , xkq},
D1(yk) = {yk1, . . . , ykq}. Let

S :=
k−1⋃

i=1

n−2⋃

j=n−3

(Dj(xi) ∪ Dj(yi)) ∪
q−k
⋃

i=1

n−3⋃

j=n−4

(Dj(xki) ∪ Dj(yki)) ,

X∗ :=

q−k
⋃

i=1

Dn−3(xki) = Dn−2(xk) ∩ Xn−1,

Y ∗ :=

q−k
⋃

i=1

Dn−3(yki) = Dn−2(yk) ∩ Yn−1,
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furthermore, let

M : = {uv ∈ E : u ∈ Xn−2, v ∈ Xn−1, N(v) ∩ Y ∗ ∩ S 6= ∅} ∪
{uv ∈ E : u ∈ Yn−2, v ∈ Yn−1, N(v) ∩ X∗ ∩ S 6= ∅}.

Consider the subgraph H of G obtained by removing the edge-set M from the

subgraph spanned by the vertices of S. We claim that H is k-regular. Let

v ∈ S∩Xn−1. In G, v has a unique neighbor r in Xn−2, and the other q neighbors

are in Yn−1, one in each of the sets Dn−2(yi) (Proposition 3.6.3). Thus v has

altogether k neighbors in S \Y ∗ in G. If N(v)∩Y ∗ 6= ∅, then the edge rv is in M ,

so v has exactly k neighbors in H. Now let v ∈ S∩Xn−2. Then v has q neighbors

in S ∩Xn−1. However, in G there is one edge between D1(v) and each of the sets

Dn−3(yki), 1 ≤ i ≤ q−k (again by Proposition 3.6.3), thus precisely q−k of these

edges are missing in H, so the degree of v is again k. The analogous arguments

hold for vertices in S ∩Yn−1 and S ∩Yn−2, so H is indeed k-regular. The number

of vertices in H is 2(k−1)(qn−2 + qn−3)+2(q−k)(qn−3 + qn−4) = 2k(qn−2− qn−4)

if n ≥ 4. If n = 3, then |S| = 2(k−1)(q +1)+2(q−k) = 2kq−2. Thus Theorem

3.6.1 is proved.

3.7 Remarks

One may wonder if the upper bounds on t in Theorem 3.3.11 are necessary or

sharp. The condition t ≤ p is mostly needed to conclude that a t (mod p) secant

line is a (≥ t)-secant. Suppose that t = p+1. If |T | ≥ tq +2, then P0 is a double

blocking set by Proposition 3.3.8, so the arguments of the proof work with slight

modifications, so only the case |T | ≤ tq + 1 remains open. If we set q = p2,

Construction 3.3.3 (the points and the tangents of a unital) shows a t-PDS of size

(t− 1)q + 1 different from Constructions 3.3.1 and 3.3.2. Here every line is good,

but the point-set of the t-PDS is not a t-fold blocking set (cf. Remark 3.3.24). It

is not clear whether there exists a (p+1)-PDS in PG(2, q), q = ph, different from

Constructions 3.3.1 and 3.3.2 if h is arbitrarily large.

This construction method (looking for a (q + 1 − t)-regular subgraph of a

generalized n-gon of order q) is interesting mostly for t ≤ √
q as usually one can

find a prime k between q −√
q and q − 1, hence a (k + 1, 2n) Moore cage could

be chosen as the starting point as well (and it would be worth doing so).



62 Chapter 3. On constructions of (k, g)-graphs



Chapter 4

Semi-resolving sets for PG(2, q)

In this chapter, based on [F], we discuss semi-resolving sets for projective planes.

The study of this topic was motivated by a talk of Robert Bailey [7]. For further

information about resolving sets and related topics, we refer to the survey of

Bailey and Cameron [8].

4.1 Semi-resolving sets for PG(2, q)

Definition 4.1.1. Let G = (V ; E) be a graph, and let H ⊂ V . A vertex-set

S = {s1, . . . , sk} resolves H if for all v ∈ H the distance list of v with respect to

S, dS(v) = (d(v, s1), . . . , d(v, sk)), is unique.

In other words, if S resolves H, then we can identify the vertices of H by their

distances from the vertices of S. It is clear that S resolves H if and only if for all

x, y ∈ H, x 6= y, there exists a vertex z ∈ S such that d(x, z) 6= d(y, z).

Definition 4.1.2. Let G = (V ; E) be a graph. A vertex-set S is a resolving set

for G if S resolves V . Let G = (A,B; E) be a bipartite graph. A vertex-set S is

a semi-resolving set for G if either S ⊂ A and S resolves B, or S ⊂ B and S

resolves A.

A (semi-)resolving set for a projective plane is that for its incidence graph.

As PG(2, q) is self-dual, we may always assume that a semi-resolving set is a

point-set which resolves the lines. However, the first couple of definitions and

results are valid for arbitrary projective planes. Note that in a projective plane

the distance of a point and a line is one or three depending on whether they

are incident or not, respectively. Thus the distance list of a line ℓ with respect

63
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to a point-set S is entirely determined by ℓ ∩ S. Thus a semi-resolving set is a

point-set which has a unique intersection with each line. It is clear that S resolves

all lines that intersect it in at least two points. Therefore, S is a semi-resolving

set iff S resolves its tangents and skew lines. Clearly, a double blocking set is a

semi-resolving set.

Proposition 4.1.3 ([F]). A point-set S is a semi-resolving set for a projective

plane if and only if the following hold:

1. there is at most one skew line to S;

2. through every point of S there is at most one tangent line to S.

Proof. It is clear that S cannot have two or more skew lines. On the other hand,

a unique skew line is clearly resolved. Let ℓ be a tangent to S with tangency

point P (that is, ℓ ∩ S = {P}). Then ℓ is resolved by S if and only if there are

no other tangents to S through P .

Let µS = µS(Πq) denote the size of the smallest semi-resolving set for Πq.

Blokhuis proved µS(Πq) ≥ 2q +
√

2q (unpublished); we are about to determine

µS(PG(2, q)). Recall that τt = τt(Πq) denotes the size of the smallest t-fold

blocking set in Πq. The previous considerations immediately yield µS ≤ τ2. This

and the first point of the next proposition were also pointed out by Bailey [7].

Proposition 4.1.4 ([F]). Let Πq be an arbitrary projective plane. Then

(i) µS ≤ τ2 − 1;

(ii) if B1 and B2 are disjoint blocking sets in Πq, then µS ≤ |B1| + |B2| − 2;

(iii) in particular, if q is a square prime power, then µS(PG(2, q)) ≤ 2q + 2
√

q;

if q = rh, h ≥ 3 odd, r odd, then µS(PG(2, q)) ≤ 2(rh + rh−1 + . . . + r).

Proof. Let B a double blocking set, and let P ∈ B. Then S = B \ {P} is clearly

a semi-resolving set [7], as there are no skew lines to S, and through any point

Q of S there is at most one tangent to S, namely QP . By Proposition 4.1.3,

this proves (i). To prove (ii), let S = (B1 ∪ B2) \ {P1, P2} for some arbitrarily

chosen P1 ∈ B1, P2 ∈ B2. Again, we check the requirements of Proposition 4.1.3.

Clearly, there can be at most one skew line, namely P1P2. Take a point Q, say,

from B1 \ {P1}. As B2 intersects every line through Q, the only possible tangent

line to S through Q is QP2. Point (iii) follows immediately from point (ii) and

Corollary 2.2.2.
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Proposition 4.1.5 ([F]). Let S be a semi-resolving set for Πq. Then |S| ≥ 2q−1.

Proof. Suppose to the contrary that |S| ≤ 2q − 2. If there is no tangent line to

S, take a point R outside S. There is at most one skew line to S through R,

the other q lines through R intersect S in at least two points, so |S| ≥ 2q, a

contradiction.

Now suppose that there is a line ℓ tangent to S. Count the other tangents of S
through the points of ℓ. As there are at most 2q − 2 tangents to S, there are at

least two points in ℓ\S with at most one more tangent through them (besides ℓ).

At least one of them, denote it by P , is not contained in the (possibly existing)

skew line. At least q − 1 lines through P are at least 2-secants to S, one line is

at least a 1-secant and ℓ is a tangent, so |S| ≥ 2q, a contradiction.

From now on S denotes a semi-resolving set for PG(2, q) of size |S| = 2q + β,

β ∈ Z, β ≥ −1. Almost every line intersects S in at least two points: at

most |S| + 1 lines can be exceptional (that is, a (≤ 1)-secant). It would be

natural to note how many exceptional lines are on a point P , yet we need a less

straightforward number assigned to the points.

Definition 4.1.6. Let S be a semi-resolving set. For a point P , let indi(P ) be

the number of i-secants to S through P . Let the index of P , denoted by ind(P ),

be 2 ind0(P ) + ind1(P ). For the sake of simplicity, denote the index of the ideal

point (m) by ind(m) instead of ind((m)).

Note that if P /∈ S, then ind(P ) ≤ 2 (as there is at most one skew line through

P ); if P ∈ S, then ind(P ) ≤ 1 (as there are no skew lines and at most one tangent

through P ).

Proposition 4.1.7 ([F]). Let P ∈ P\S. Assume ind(P ) ≤ q−2, and β ≤ 2q−4.

Let t be the number of tangents to S plus twice the number of skew lines to S.

Then

ind(P )2 − (q − β) ind(P ) + t ≥ 0, (4.1)

and

ind(P )2 − (q − β) ind(P ) + 2q + β ≥ 0. (4.2)

Proof. As ind0(P ) + ind1(P ) ≤ ind(P ) ≤ q − 2, there are at least three lines

through P intersecting S in at least two points, and all other lines intersect S
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in at least one point except possibly the unique skew line. Among these three

(≥ 2)-secants, there must be one intersecting S in s ≤ q − 1 points, otherwise

|S| ≥ 3q + q − 3 = 4q − 3 would hold, contradicting β ≤ 2q − 4.

Choose a coordinate system so that this s-secant line is the line at infinity ℓ∞,

(∞) /∈ S and P 6= (∞). This can be done as s ≤ q − 1. Let the set of the |S| − s

affine points of S be {(xi, yi)}|S|−s
i=1 . Denote by D the set of non-vertical directions

that are outside S, D ⊂ GF(q). As (∞) /∈ S, |D| = q − s. Let

R(B,M) =

|S|−s
∏

i=1

(Mxi + B − yi) ∈ GF(q)[B,M ]

be the Rédei polynomial of S ∩ AG(2, q). If we substitute M = m (m ∈ GF(q)),

then the multiplicity of the root b of the one-variable polynomial R(m,B) is the

number of affine points of S on the line Y = mX + b (as seen in the proof of

Theorem 2.1.1). Fix m ∈ GF(q), and recall that ℓ∞ is a (≥ 2)-secant. Define km

as km = deg gcd(R(m,B), (Bq −B)2). Thus km equals the number of single roots

plus twice the number of roots of multiplicity at least two. If m ∈ D, then the

number of lines with slope m that intersect S ∩ AG(2, q) in at least one point or

in at least two points is q − ind0(m) and q − (ind0(m) + ind1(m)), respectively,

thus km = q − ind0(m) + (q − ind0(m) − ind1(m)) = 2q − ind(m).

We use the Szőnyi–Weiner Lemma (Result 1.1.3) with u(B,M) = R(B,M) and

v(B,M) = (Bq −B)2. Note that the leading coefficient of both polynomials in B

is one, so the Lemma applies. Let P = (p) be our point on ℓ∞ whose index shall

be estimated. By the Szőnyi–Weiner Lemma,

∑

m∈D

(km−kp) ≤
∑

m∈GF(q)

(km−kp)
+ ≤ (|S|−s−kp)(2q−kp) = (ind(P )+β−s) ind(P ).

On the other hand, let δ =
∑

m∈D ind(m); that is, we count the tangents and the

skew line intersecting ℓ∞ in D with multiplicity one and two, respectively. Then
∑

m∈D(km −kp) =
∑

m∈D(ind(P )− ind(m)) = (q− s) ind(P )− δ. Combined with

the previous inequality we get

ind(P )2 − (q − β) ind(P ) + δ ≥ 0.

As δ ≤ t, we obtain inequality (4.1). Furthermore, as the (possibly not existing)

skew line (counted with multiplicity two) may have a slope in D, and the (possibly

not existing) tangents through the s (s ≥ 2) points in ℓ∞ ∩ S are not counted in

δ, we have δ ≤ |S| − s + 2 ≤ |S| = 2q + β. This gives inequality (4.2).
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Proposition 4.1.8 ([F]). Suppose β ≤ q/4 − 5/2. Let P /∈ S. Then ind(P ) ≤ 2

or ind(P ) ≥ q − β − 2.

Proof. Suppose that P /∈ S and ind(P ) ≤ q−2 (in order to use inequality (4.2) in

Proposition 4.1.7). Substituting ind(P ) = 3 or ind(P ) = q−β−3 into (4.2), we get

β ≥ (q−9)/4, a contradiction. Thus either ind(P ) ≤ 2, or ind(P ) ≥ q−β−2.

Hence, if β ≤ q/4 − 5/2, we may call the index of a point large or small,

according to the two possibilities above.

Proposition 4.1.9 ([F]). Assume β ≤ q/4 − 5/2 and q ≥ 4. Then on every

tangent to S there is at least one point with large index, and on the skew line, if

exists, there are at least two points with large index.

Proof. Let ℓ be a skew line. A tangent line intersects ℓ in a point with index at

least three, hence in a point with large index. If there were at most one point

with large index on ℓ, then there would be at most q tangents to S, whence

the parameter t in Proposition 4.1.7 would be at most q + 2. A point P on ℓ

with small index has index two, while by inequality (4.1) we have ind(P )2 − (q −
β) ind(P ) + q + 2 = 2β + 6 − q ≥ 0, in contradiction with β ≤ q/4 − 5/2 under

q ≥ 4.

Suppose that ℓ is tangent to S. Suppose that all indices on ℓ are at most two.

Then there is no skew line to S as the intersection point would have index at least

three. Then we have t ≤ 1 + q. If there is a point P ∈ ℓ \ S with index two, (4.1)

gives 4− 2(q− β) + q + 1 = β + 5− q ≥ 0, a contradiction. If all points on ℓ have

index one, then t = 1, and (4.1) yields 2 − q + β ≥ 0, again a contradiction.

Theorem 4.1.10 ([F]). Let S be a semi-resolving set for PG(2, q), q ≥ 4. If

|S| < 2q + q/4 − 3, then one can add at most two points to S to obtain a double

blocking set.

Proof. In other words, the upper bound on S says β < q/4 − 3. As Proposition

4.1.8 applies, indices are either small or large. Recall that the points with large

index are not in S. Proposition 4.1.9 yields that by adding the points with large

index to S we obtain a double blocking set. Therefore, we only have to show that

there are at most two points with large index. Suppose to the contrary, and let P1,

P2 and P3 be three points with large index. The number of tangent lines through

Pi (i = 1, 2, 3) is at least q−β−4 or q−β−2, according to whether Pi is incident

with a skew line or not, respectively. If P1, P2 and P3 are collinear, we find at
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least 3(q − β − 4) tangents to S. If they are in general position, at most two of

them are incident with a skew line, so again we find at least 3(q−β−4) tangents

to S. Thus 3(q − β − 4) ≤ |S| = 2q + β, in contradiction with β < q/4 − 3.

This immediately yields the following theorem.

Theorem 4.1.11 ([F]). Let S be a semi-resolving set for PG(2, q), q ≥ 4. Then

|S| ≥ min{9q/4 − 3, τ2(PG(2, q)) − 2}.

Compared with our recent knowledge on τ2, we obtain the following. Recall

that µS(PG(2, q)) is the size of the smallest semi-resolving set for PG(2, q).

Corollary 4.1.12 ([F]).

(i) If q ≥ 121 is a square prime power, then µS(PG(2, q)) = 2q + 2
√

q. More-

over, if q > 256, then semi-resolving sets attaining equality are the union

of two punctured, disjoint Baer subplanes (cf. Proposition 4.1.4 (iii)).

(ii) If q = rh, h ≥ 3 odd, and r ≥ 11 is an odd prime power (possibly a prime),

then τ2 − 2 ≤ µS(PG(2, q)) ≤ τ2 − 1.

Proof. Regarding (i), Result 1.5.7 yields τ2(PG(2, q)) = 2q + 2
√

q + 2 for q ≥ 9

square, hence τ2 − 2 ≤ 2q + q/4 − 3 is equivalent to 2
√

q + 3 ≤ q/4, which holds

if q ≥ 121. Thus Theorem 4.1.11 gives µS ≥ τ2 − 2, while Proposition 4.1.4

(ii) shows that equality holds. Result 1.5.8 yields that in PG(2, q), q > 256, any

double blocking set of size 2(q+
√

q+1) is the union of two disjoint Baer subplanes.

The two missing points cannot lie in the same Baer subplane, as otherwise we

could easily find a point in the other Baer-subplane with two tangents.

As for (ii), Theorem 2.2.1 gives τ2 − 2 ≤ 2q + 2(q − 1)/(r − 1) − 2, which is

not larger than 2q + q/4−3 if and only if q−1 ≤ (r−1)(q−4)/8. By r ≥ 11 and

q ≥ r3, this inequality is satisfied. Thus Theorem 4.1.11 gives the lower bound.

The upper bound comes from Proposition 4.1.4 (i).

We remark that for small values of q, there are semi-resolving sets smaller

than τ2 −2. Three points in general position show τ2(PG(2, 2)) = 3. A vertexless

triangle (the union of the point-set of three lines in general position without their

three intersection points) is easily seen to be a semi-resolving set of size 3q − 3

for q ≥ 3. If q ≥ 4, we may remove one more (arbitrary) point to obtain a

semi-resolving set of size 3q− 4. (In fact, there are no smaller semi-resolving sets

than the previous ones for q = 2, 3, 4.) On the other hand, τ2(PG(2, q)) = 3q for

q = 2, 3, 4, 5, 7, 8 (mentioned in [13]; this result is due to various authors).
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4.2 A note on blocking semiovals

Finally, let us mention an immediate consequence of Theorem 4.1.10 on the size

of blocking semiovals. The connection between blocking semiovals and semi-

resolving sets was pointed out by Csajbók [29]. For more information on semio-

vals, we refer to [54].

Definition 4.2.1. A point-set S in a finite projective plane is a semioval, if

for all P ∈ S, there is exactly one tangent to S through P . A semioval S is a

blocking semioval, if there are no skew lines to S.

Lower bounds on the size of blocking semiovals are of interest. Up to our

knowledge, the following is the best bound known.

Result 4.2.2 (Dover [34]). Let S be a blocking semioval in an arbitrary projective

plane of order q. If q ≥ 7, then |S| ≥ 2q + 2. If q ≥ 3 and there is a line

intersecting S in q − k points, 1 ≤ k ≤ q − 1, then |S| ≥ 3q − 2q/(k + 2) − k.

Corollary 4.2.3 ([F]). Let S be a blocking semioval in PG(2, q), q ≥ 4. Then

|S| ≥ 9q/4 − 3.

Proof. By Proposition 4.1.3, S is clearly a semi-resolving set. Suppose to the

contrary that |S| < 9q/4 − 3. Then by Theorem 4.1.10, we find two points, P

and Q, such that S ∪ {P,Q} is a double blocking set, that is, P and Q block all

the |S| tangents to S. On the other hand, |S| ≥ τ2 − 2 > 2q + 1 (here we use

q ≥ 4 and τ2 = 3q for q ≤ 8, τ2 ≥ 2q + 2
√

q + 2 for q ≥ 9.) Hence S has more

than 2q + 1 tangents. However, P and Q can block at most 2q + 1 of them, a

contradiction.

Note that Dover’s result is better than Corollary 4.2.3 if there is a line inter-

secting the blocking semioval in more than q/4 points (roughly).

4.3 Remarks

Note that if we knew that the double blocking sets of size τ2(PG(2, q)) in PG(2, q)

are the union of two disjoint blocking sets, then we would have µS(PG(2, q)) =

τ2(PG(2, q)) − 2 in Corollary 4.1.12 (ii).

One motivation to study semi-resolving sets for projective planes was to con-

struct resolving sets; clearly, if we take the union of two semi-resolving sets, one
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of which resolves the lines, the other of which resolves the points, we obtain a

resolving set for the whole projective plane. Bailey [7] calls such resolving sets

split resolving sets. By Theorem 4.1.11 we have that the smallest split resolving

set in PG(2, q), q ≥ 4, has at least min{9q/2 − 6, 2τ2 − 4} points. Regarding

(non-split) resolving sets, in [F] we prove that the smallest resolving set for Πq,

q ≥ 23, has exactly 4q − 4 points, which is definitely smaller than the size of the

smallest split resolving set.



Chapter 5

The upper chromatic number of

PG(2, q)

5.1 Introduction

The almost classical area of finite geometries and a very young area, the coloring

theory of mixed hypergraphs are combined in this chapter. For general informa-

tion on the latter, we refer to [75]. We discuss only a particular problem of the

coloring theory of mixed hypergraphs, so we do not give the general definitions.

The chapter is based on [B].

The upper chromatic number of a hypergraph H is the maximum number

UCN(H) of colors with which one can color the points of H without creating a

rainbow hyperedge (a hyperedge is rainbow, if no two of its points have the same

color). This is the counterpart of the traditional chromatic number in some sense:

there we color the points with as few colors as possible while avoiding monochro-

matic hyperedges. Note that the upper chromatic number of an ordinary graph

is the number of its connected components.

Let Πq = (P,L) denote a finite projective plane of order q. Considering Πq

as a hypergraph, we wish to determine UCN(Πq); that is, we wish to color the

points of Πq with as many colors as possible without creating a line whose points

have pairwise distinct colors. Throughout this chapter, let v = |P| = q2 + q + 1.

Definition 5.1.1. We say that a coloring of the points of a finite projective plane

Π is proper, if every line contains at least two points of the same color. The upper

chromatic number of Π, in notation UCN(Π), is the maximum number of colors

one may use in a proper coloring.

71
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Note that it if we merge color classes of a proper coloring (i.e., replace two

color classes Ci and Cj by Ci ∪ Cj), then the resulting coloring is also proper.

In [6] the following general bound is given on the upper chromatic number

for any projective plane, as a function of the order, and thus a ten-year-old open

problem is solved in the coloring theory of mixed hypergraphs.

Result 5.1.2 (Bacsó–Tuza [6]). As q → ∞, any projective plane Πq of order q

satisfies

UCN(Πq) ≤ q2 − q −√
q/2 + o(

√
q).

If B is a double blocking set in Πq, coloring the points of B with one color

and all points outside B with mutually distinct colors, one gets a proper coloring

of Πq with v − |B| + 1 colors. To achieve the best possible out of this idea, one

should take B a smallest double blocking set. Recall that τ2 = τ2(Πq) denotes the

size of the smallest double blocking set in Πq. We have obtained

Proposition 5.1.3.

UCN(Πq)) ≥ v − τ2 + 1.

Definition 5.1.4. A coloring of Πq is trivial, if it contains a monochromatic

double blocking set of size τ2, and every other color class consists of one single

point. A nontrivial coloring is a proper coloring that is not trivial.

Let us cite a more general result of [6]. Let τ2(Πq) = 2(q + 1) + c(Πq). Note

that Proposition 5.1.3 claims UCN(Πq) ≥ q2 − q − c(Πq).

Result 5.1.5 (Bacsó–Tuza [6]). Let Πq be an arbitrary finite projective plane of

order q. Then

UCN(Πq) ≤ q2 − q − c(Πq)

2
+ o(

√
q).

If c(Πq) is not too small (roughly, c(Πq) > 24q2/3), we improve this result

combinatorially. Moreover, we show that (under some technical conditions) the

lower bound of Proposition 5.1.3 is sharp in PG(2, q) if q is not a prime, and it is

almost sharp if q is a prime and τ2 is small enough. In the proof we use algebraic

results as well, and we also rely on Corollary 2.2.2, the upper bound on τ2. The

precise results are the following.

Theorem 5.1.6 ([B]). Let Πq be an arbitrary projective plane of order q ≥ 8, and

let τ2(Πq) = 2(q + 1) + c(Πq). Then

UCN(Πq) < q2 − q − 2c(Πq)

3
+ 4q2/3.
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Theorem 5.1.7 ([B]). Let v = q2 + q + 1. Suppose that τ2(PG(2, q)) ≤ c0q − 8,

c0 < 8/3, and let q ≥ max{(6c0 − 11)/(8 − 3c0), 15}. Then

UCN(PG(2, q)) < v − τ2 +
c0

3 − c0

.

Note that c0
3−c0

< 8.

Theorem 5.1.8 ([B]). Let v = q2 + q + 1, q = ph, p prime, and suppose that

q > 256 is a square, or p ≥ 29 and h ≥ 3 odd. Then UCN(PG(2, q)) = v− τ2 +1,

and equality is reached only by trivial colorings.

5.2 Proof of the results

Let Πq be a finite projective plane of order q. Let C = {C1, . . . , Cm} be a proper

coloring, where the point-set of Πq is partitioned by the color classes Ci, i =

1, . . . ,m = m(C). We may assume that |C1| ≥ |C2| ≥ . . . |Cn| ≥ 2, |Cn+1| = . . . =

|Cm| = 1 for some appropriate n = n(C). A color class of size exactly d will be

called a d-class. We say that a color class Ci colors a line ℓ, if |ℓ ∩ Ci| ≥ 2. Let

B = B(C) = ∪n
i=1Ci. As every line must be colored, B is a double blocking set.

We always assume that a proper coloring C of the plane is given.

With the above notation, C uses v−|B|+n colors, while a trivial coloring has

v − |τ2|+ 1 colors. Thus to achieve this bound, we need to have n ≥ |B| − τ2 + 1.

We define the parameter e = e(C), standing for excess, which measures how much

our coloring is better than a trivial one.

Definition 5.2.1.

e := n − |B| + τ2 − 1.

To avoid colorings that are worse than the trivial ones, we will usually suppose

that e ≥ 0 (equivalently, n ≥ |B| − τ2 + 1). First we formulate a straightforward

observation.

Proposition 5.2.2 ([B]). If C is a nontrivial proper coloring with e(C) ≥ 0, then

C does not contain a monochromatic double blocking set.

Proof. Suppose to the contrary that C contains a monochromatic double blocking

set S. Then v − τ2 + 1 ≤ m(C) ≤ v − |S| + 1 ≤ v − τ2 + 1, so |S| = τ2 and all

other color classes are 1-classes, thus C is trivial, a contradiction.

The following lemma shows that we can eliminate all but possibly one 2-

classes.
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Lemma 5.2.3 ([B]). Let C be proper coloring of Πq. Then there is another proper

coloring C′ with the same number of colors such that there is at most one 2-class

in C′. If there is a 2-class in C′, then its points are essential with respect to

B(C′). Moreover, if Πq = PG(2, q), τ2 < 3q, and C is nontrivial, then C′ is also

nontrivial.

Proof. We construct C′ step by step from C; the notation always regard to the

coloring obtained at the last step. Consider a 2-class Ci = {P,Q}. Then it colors

only one line, namely PQ. If PQ intersects B in a point R, R ∈ Cj (i 6= j),

then remove P from Ci and put it into Cj. As PQ = PR is now colored by

the class Cj, we obtain a proper coloring. Note that Cj originally had at least

two points, so we did not create a new 2-class. Repeat this operation until every

2-class colors a line that is a two-secant to B. Now suppose that there are two

2-classes Ci = {P1, P2} and Cj = {Q1, Q2} (i 6= j) such that P1P2 and Q1Q2 are

two-secants to B. Then R = P1P2 ∩Q1Q2 is not in B, so {R} = Ch is a singleton

color class. Remove P1 from Ci and Q1 from Cj, and put both into Ch. Again

it is clear that we obtain a proper coloring, and we do not create new 2-classes.

Repeating this operation we can decrease the number of 2-classes to at most one.

If a 2-class {P,Q} remains uneliminated, then PQ is a two-secant, hence P and

Q are essential. Thus the first part of the lemma is proved.

Now suppose to the contrary that Πq = PG(2, q), the original coloring C is

nontrivial, but we obtain a trivial coloring C′. Then at the last step we eliminated

every color class of size two, and we created a monochromatic double blocking

set of size τ2. We must have used the first operation at this step (in the second

operation no color classes of size more than three are involved), so we put a point

from Ci = {P,Q} to Cj. As both points of Ci could be used, Cj ∪ {P} and

Cj ∪ {Q} are both double blocking sets of size τ2. Hence Ci ∪ Cj is a double

blocking set of size τ2 + 1 ≤ 3q which contains two minimal double blocking sets,

in contradiction with Corollary 2.1.3.

By the above lemma, from now on we may rely on the assumption that there

is at most one 2-class.

Proposition 5.2.4 ([B]). Suppose that B contains at most one 2-class and e ≥ 0.

Then n ≤ τ2/2.

Proof. As there is at most one 2-class and all other color classes in B have at

least three points, we have n ≤ 1 + (|B| − 2)/3. By e ≥ 0, |B| − τ2 + 1 ≤ n ≤
1+(|B|−2)/3, hence |B| ≤ 3τ2/2−1. Thus we have n ≤ 1+(|B|−2)/3 ≤ τ2/2.
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Now let us recall and prove our combinatorial result on UCN(Πq).

Theorem 5.1.6 ([B]). Let Πq be an arbitrary projective plane of order q ≥ 8, and

let τ2(Πq) = 2(q + 1) + c(Πq). Then

UCN(Πq) < q2 − q − 2c(Πq)

3
+ 4q2/3.

Proof. Take a proper coloring C. We will estimate the number of colors in C.

We may assume that e(C) ≥ 0 (otherwise the statement is trivial), moreover, by

Lemma 5.2.3, we may also suppose that there is at most one 2-class in C. Set

ε = 4/ 3
√

q, and let h denote the number of color classes with at least K = 6/ε

elements (obviously, K ≥ 3). Let S = ∪h
i=1Ci.

First suppose |S| ≤ 2(1 − ε)q. Let P /∈ S. As the number of lines through

P that intersect S in at least two points is at most |S|/2, there are at least εq

lines through P that intersect S in at most one point. Hence the total number of

such lines is at least (q2 + q + 1− |S|)εq/(q + 1) > εq(q − 2). On the other hand,

color classes of size less than K can color at most (n − h)
(

K
2

)
≤ (n − h)K2/2

lines, thus (n − h)K2 ≥ 2εq(q − 2) must hold. Therefore, by Proposition 5.2.4,

3q/2 ≥ τ2/2 ≥ n ≥ 2εq(q − 2)/K2 = ε3q(q − 2)/18 holds. As ε = 4/ 3
√

q, this

yields 27 ≥ 64(q − 2)/q, in contradiction with q ≥ 8.

Thus |S| > 2(1− ε)q may be supposed. As all but one color classes in B have

at least three points, for the number n of colors used in B, n ≤ |S|/K + (|B| −
|S|)/3 + 1 holds. Since K ≥ 3, by substituting |S| = 2(1 − ε)q we increase the

right-hand side, so n ≤ 2(1 − ε)q/K + (|B| − 2(1 − ε)q)/3 + 1. Using |B| ≥ τ2,

for the total number m = n + q2 + q + 1 − |B| of colors we get m ≤ q2 + q + 2 −
2τ2/3 − 2(1 − ε)q(1/3 − 1/K). By τ2 = 2q + c(Πq) + 2, we obtain that

n ≤ q2 − q − 2

3
c(Πq) +

2ε

3
q +

2(1 − ε)

K
q.

As K = 6/ε, we get

UCN(Πq) < q2 − q − 2

3
c(Πq) + εq.

Attention. From now on, we only consider proper colorings of Desarguesian

projective planes; that is, we assume Πq = PG(2, q), q = ph, p prime.

In the sequel, we show that if τ2 is small, then a nontrivial coloring can not

have e ≥ 0. We handle three cases separately, depending on |B| being at least
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3q − α, between τ2 + ξ and 3q − α, or at most τ2 + ξ, where α and ξ are small

constants. In the next proposition we use the well-known fact that if f is a convex

function and x ≤ y, then f(x + ε) + f(y − ε) ≥ f(x) + f(y) for arbitrary ε > 0.

Therefore if the sum of the input x1, . . . , xn is fixed and the xis are bounded

from below, then
∑n

i=1 f(xi) takes its maximum value iff all but one of the xis

meet their lower bound (so the input is spread). However, the function we are

about to consider is not entirely convex, so at some point we cannot modify the

input by an arbitrarily small ε, but only with a large enough value to see that

the maximum value is taken if and only if the input is spread.

Proposition 5.2.5 ([B]). Suppose that there is at most one 2-class in B. Let

|B| ≥ 3q −α for some integer α, 0 ≤ α ≤ q − 5, and suppose τ2 ≤ c0q − β, where

c0 < 8/3 and β = (2α + 4)/3. Assume q ≥ q(c0) = (6c0 − 11)/(8 − 3c0). Then

e < 0.

Proof. Suppose to the contrary that e ≥ 0. Then n ≥ |B| − τ2 + 1 ≥ 3q − α −
8q/3 + β = (q − α + 4)/3 ≥ 3.

Denote by ℓ(Ci) the number of lines colored by Ci, i = 1, . . . , n. It is straight-

forward that ℓ(Ci) ≤
(|Ci|

2

)
. On the other hand, counting selected point-line pairs,

we get

2ℓ(Ci) ≤ |{(P, e) : P ∈ e ∩ Ci, |e ∩ Ci| ≥ 2}| ≤ (q + 1)|Ci|,

whence

ℓ(Ci) ≤
q + 1

2
|Ci|

follows. Therefore ℓ(Ci) ≤ min
{(|Ci|

2

)
, q+1

2
|Ci|

}

=: f(|Ci|). Note that the second

upper bound is smaller than or equal to the first one iff |Ci| ≥ q + 2. As every

line must be colored by at least one color class, we have

q2 + q + 1 ≤
n∑

i=1

ℓ(Ci) ≤
n∑

i=1

f(|Ci|),

where
∑n

i=1 |Ci| = |B| is fixed. We will give an upper bound on the right-hand-

side. Extend the function f to R. Then f is increasing and convex on [2, q + 2],

linear on [q + 2,∞), but it is not convex on [2,∞). Recall that |C1| ≥ . . . ≥
|Cn| ≥ 2, n = |B|− τ2 +1+ e ≥ |B|− τ2 +1, and that there is at most one 2-class

in B. Note that 3τ2 − 2|B| ≤ 3c0q − 3β − 6q + 2α = (3c0 − 6)q − 4 < 2q − 4.

We claim that |C2| ≤ q − 1. If |C1| ≥ q, then by n ≥ |B| − τ2 + 1, we have

|C2| ≤ |B| − q − 2 − 3(n − 3) ≤ 3τ2 − 2|B| − q + 4 < q. On the other hand, if
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|C1| ≤ q − 1, then |C2| ≤ |C1| also implies |C2| ≤ q − 1. As there is at most

one 2-class, |C2| ≥ 3 follows from n ≥ 3. As 2 ≤ |Ci| ≤ q − 1 for all 2 ≤ i ≤ n

and f is convex on this interval,
∑n

i=2 f(|Ci|) achieves its largest possible value

if |Cn| = 2, |Cn−1| = . . . = |C3| = 3, and |C2| = |B| − |C1| −
∑n

i=3 |Ci|. By

substituting these values,

n∑

i=1

f(|Ci|) ≤
q + 1

2
|C1|+

n∑

i=2

(|Ci|
2

)

≤ q + 1

2
|C1|+

(|C2|
2

)

+(n− 3)

(
3

2

)

+

(
2

2

)

.

Now we claim that

q + 1

2
|C1| +

(|C2|
2

)

≤ q + 1

2
(|C1| + |C2| − 3) +

(
3

2

)

, (5.1)

which is equivalent to |C2|2 − (q + 2)|C2| + 3q − 3 ≤ 0. It is easy to see that this

latter inequality holds for |C2| ∈ [3, q − 1], so we may use (5.1). Recall n ≤ τ2/2

(Proposition 5.2.4) and 3τ2−2|B| ≤ (3c0−6)q−4. As |C1|+|C2| ≤ |B|−2−3(n−3),

q2 + q + 1 ≤
n∑

i=1

f(|Ci|) ≤
q + 1

2
(|B| + 4 − 3n) + 3(n − 2) + 2 ≤

q + 1

2
(|B| + 4 − 3(|B| − τ2 + 1))+3(τ2/2−2)+2 ≤ q + 1

2
(3τ2−2|B|+1)+

3

2
τ2−4.

For aesthetic reasons, we continue with a strict inequality. The last value is less

than

q + 1

2
((3c0 − 6)q − 3) +

3

2
c0q +

5

2
=

(
3c0

2
− 3

)

q2 +

(

3c0 −
9

2

)

q + 1.

This is equivalent to (8− 3c0)q
2 − (6c0 − 11)q < 0, hence, as c0 < 8/3, we obtain

q < (6c0 − 11)/(8 − 3c0), a contradiction.

Next we investigate the case when B is of medium size. We show that in this

case there are some large color classes, which bounds the total number of color

classes. Note that the next proposition does not use any assumptions on |B|,
however, it is meaningful only if |B| < 3q.

Proposition 5.2.6 ([B]). Every color class containing an essential point of B
has at least (3q − |B| + 2) points.

Proof. Let P ∈ B be an essential point. Let |B| = 2(q+1)+k. Then by Theorem

2.1.1 there are (q − 1 − k) = 3q − |B| + 1 two-secants through P . The points of

a two-secant must have the same color.
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Remark 5.2.7. Proposition 5.2.6 shows that if |B| < 3q, then color classes con-

taining an essential point have at least three points. Thus by Lemma 5.2.3, every

2-class can be eliminated.

Proposition 5.2.8 ([B]). Assume that |B| < 3q, and suppose that there are no

color classes of size two. Then

(
2

3
(|B| − τ2) + e + 1

)

(3q − |B| + 2) ≤ τ2. (5.2)

Proof. Consider a minimal double blocking set B′ ⊂ B. Corollary 2.1.3 yields

that B′ consists precisely of the set of essential points of B. Thus color classes

intersecting B′ must have at least 3q − |B| + 2 points (Proposition 5.2.6), while

color classes disjoint from B′ contain at least three points. Thus the total number

of color classes in B,

n ≤ |B′|
3q − |B| + 2

+
|B| − |B′|

3
.

Recall n = |B| − τ2 + 1 + e (Definition 5.2.1). As |B′| ≥ τ2 and 3q − |B| + 2 ≥ 3,

we obtain

|B| − τ2 + 1 + e ≤ τ2

3q − |B| + 2
+

|B| − τ2

3
,

which is clearly equivalent to the formula stated.

Now we recall and prove Theorem 5.1.7.

Theorem 5.1.7 ([B]). Suppose that τ2(PG(2, q)) ≤ c0q − 8, 2 ≤ c0 < 8/3, and

let q ≥ max{(6c0 − 11)/(8 − 3c0), 15}. Then

UCN(PG(2, q)) < v − τ2 +
c0

3 − c0

.

Proof. Let C be a proper coloring of v−τ2 +1+e colors. Suppose to the contrary

that e ≥ c0/(3 − c0) − 1. As c0 ≥ 2, this yields e ≥ 1. By Lemma 5.2.3, we may

assume that there is at most one 2-class in C.

Suppose that |B| ≥ 3q − 10. By the assumptions of the present theorem, the

assumptions of Proposition 5.2.5 are also satisfied for α = 10. Then we get e < 0,

a contradiction.

Thus we may assume |B| ≤ 3q − 11. Then by Remark 5.2.7, we may use

Proposition 5.2.8 to obtain

(
2(|B| − τ2)

3
+ e + 1

)

(3q − |B| + 2) < c0q.



5.2. Proof of the results 79

We will show that this can not hold. Note that the expression on the left-hand-

side is concave in |B|, so it is enough to verify that we get a contradiction for the

extremal values |B| = τ2 and |B| = 3q − 11. By substituting |B| = τ2 < c0q, we

easily obtain (e + 1)(3q − c0q) < c0q, thus e < c0/(3 − c0) − 1, a contradiction.

Substituting |B| = 3q − 11, using τ2 ≤ c0q − 8 and e ≥ 1, we get

(
2(3q − 11 − c0q + 8)

3
+ 2

)

· 13 < c0q,

which results in 84 < 29c0 < 80, a contradiction. Thus e < c0/(c0 − 3) − 1. As

c0 < 8/3, we have e < 7, hence e ≤ 6 also follows.

To obtain tight results, we need to investigate the case when |B| is close to

τ2. If such a double blocking set is the union of two disjoint blocking sets (e.g.,

in PG(2, q), if q is a square), we easily find two large color classes, so |B| must be

big.

Proposition 5.2.9 ([B]). Let C be a nontrivial proper coloring, and suppose that

B contains the union of two disjoint (1-fold) blocking sets, B1 and B2, such that

B1 ∪ B2 is a minimal double blocking set. Then |B| > 12q/5.

Proof. We may assume |B| ≤ 3q. By Corollary 2.1.3, B1 ∪ B2 is precisely the set

of essential points of B. As C is nontrivial, Proposition 5.2.2 assures that at least

two colors, say, red and green, are used to color the points of B1 ∪ B2. We may

assume that there is a red point P in B1. Then by Theorem 2.1.1, there are at

least 3q− |B|+1 distinct 2-secants to B through P . As B2 is a blocking set, each

of these lines intersects B2 in precisely one point, which must be red. Therefore

there are at least 3q − |B| + 1 > 0 red points in B2. Conversely, starting from

a red point in B2, we see that there are at least 3q − |B| + 1 red points in B1.

Hence the number of red points is at least 2(3q − |B| + 1). As this argument is

valid for the number of green points as well, |B| ≥ 4(3q − |B| + 1) holds, thus

|B| > 12
5
q.

This is enough to prove Theorem 5.1.8 if q is a square.

Theorem 5.1.8 (first case, [B]). Let q > 256 be a square prime power. Then

UCN(PG(2, q)) = v − τ2 + 1 = q2 − q − 2
√

q. Equality can be reached only by a

trivial coloring.

Proof. Result 1.5.7 yields τ2 = 2q+2
√

q+2. Let C be a nontrivial proper coloring

of v− τ2 + 1 + e colors. Suppose to the contrary that e ≥ 0. By Lemma 5.2.3, we
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may assume that there is at most one 2-class in C, and the nontriviality of the

coloring is also preserved as τ2 = 2q + 2
√

q + 2 < 3q.

Suppose that |B| ≥ 3q − 3. Then α = 3 and c0 = 2.5 are convenient for

Proposition 5.2.5: τ2 = 2q + 2
√

q + 2 ≤ 2.5q − 10/3 for q ≥ 36, and q(2.5) = 8.

Thus e < 0, a contradiction.

Now suppose τ2 + 6 ≤ |B| ≤ 3q − 4. Then by Remark 5.2.7, we may use

Proposition 5.2.8 to obtain

2

3
(|B| − τ2)(3q − |B| + 2) ≤ τ2.

As the left-hand side is concave in |B|, it is enough to obtain a contradiction for

the values |B| = τ2 + 6 and |B| = 3q − 4. Substituting either values of |B| we get

4(3q − τ2 − 4) ≤ τ2, thus 12q/5− 5 < τ2 = 2q + 2
√

q + 2, a contradiction even for

q ≥ 49.

Finally, suppose |B| ≤ τ2 + 5. By Remark 1.5.9, B contains the union of two

disjoint Baer subplanes, which is a minimal double blocking set. Thus Proposition

5.2.9 yields τ2 + 5 ≥ |B| > 12q/5, a contradiction.

In Proposition 5.2.9 we relied on the assumption that a small double blocking

set contains two disjoint blocking sets, and this could be used to find large color

classes. If q is not a square, we do not know whether small double blocking sets

have this property. Thus we need further investigations and the t (mod p) result

on small t-fold blocking sets (Result 1.5.10) to find at least one large color class,

and to obtain a result similar to Proposition 5.2.9.

Proposition 5.2.10 ([B]). Let C be a nontrivial proper coloring. Let ξ ∈ N.

Suppose that |B| ≤ τ2 + ξ < 2q + (q + 3)/2 and ξ ≤ (τ2 − 2q)/24. Then τ2 >

3q/2 + pq/50 − ξ + 1, where p is the characteristic of the field.

Proof. As |B| < 3q, the set B′ of essential points of B is a double blocking set

(Corollary 2.1.3). As C is nontrivial, B′ cannot be monochromatic (Proposition

5.2.2). By merging color classes while preserving this property, we may assume

that there are only two color classes inside B, say, red and green, each containing

at least one essential point of B. (We do not want to preserve the number of

colors this time.) By Result 1.5.10, if a line ℓ intersects B′ in more than two

points, then |ℓ∩B′| ≥ p+2. We refer to such lines as long secants. We are about

to find a red point on which there are many long secant lines that have at least

as many red points as green.
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Let |B′| = b ≥ τ2 ≥ 2(q + 1). Denote the set of red and green essential points

by Br and Bg, respectively, and for any line ℓ ∈ L, let nℓ = |ℓ ∩ B′|, nr
ℓ = |ℓ ∩ Br|

and ng
ℓ = |ℓ ∩ Bg|. Clearly nℓ = nr

ℓ + ng
ℓ for all line ℓ. Using double counting we

get
∑

ℓ∈L nℓ = |B′|(q + 1), hence

∑

ℓ∈L : nℓ>2

nℓ ≥
∑

ℓ∈L
(nℓ−2) = b(q+1)−2v = bq+2(q+1)−2(q2 +q+1) ≥ (b−2q)q.

Let Lr = {ℓ ∈ L : |ℓ ∩ B′| > 2, nr
ℓ > ng

ℓ}, Lg = {ℓ ∈ L : |ℓ ∩ B′| > 2, nr
ℓ < ng

ℓ},
and L= = {ℓ ∈ L : , nr

ℓ = ng
ℓ}. Then

(b − 2q)q ≤
∑

ℓ∈L : nℓ>2

nℓ =
∑

ℓ∈Lr

(nr
ℓ + ng

ℓ) +
∑

ℓ∈Lg

(nr
ℓ + ng

ℓ) +
∑

ℓ∈L=

(nr
ℓ + ng

ℓ) ≤

∑

ℓ∈Lr

2nr
ℓ +

∑

ℓ∈Lg

2ng
ℓ +

∑

ℓ∈L=

2nr
ℓ ≤ 4 ·

∑

ℓ∈Lr∪L=

nr
ℓ ,

where we assumed in the last step that the first sum was at least as large as the

second (we may interchange the colors without the loss of generality). We say

that a line ℓ is red if nr
ℓ ≥ ng

ℓ . Hence, by the above inequality, there exists a

point P ∈ Br such that the number of long secant red lines passing through P

is at least (b − 2q)q/4|Br| ≥ (τ2 − 2q)q/4|Br|. On these lines there are at least

p/2 red points besides P . Moreover, on the two-secants to B through P , there

are at least 3q − |B| + 1 red points besides P (see Proposition 5.2.6). Thus we

have |Br| ≥ (τ2 − 2q)pq/8|Br| + 3q − |B| + 2. As there exists a green essential

point, Proposition 5.2.6 yields that the total number γ of green points in B
is at least 3q − |B| + 2. Therefore, |Br| ≤ |B| − γ ≤ 2|B| − 3q − 2. Thus

altogether we have (τ2 − 2q)pq/8|Br| + 3q − |B| + 2 ≤ 2|B| − 3q − 2, hence

(τ2 − 2q)pq/8|Br| ≤ 3|B| − 6q − 4 < 3(τ2 − 2q + ξ). Therefore

(τ2 − 2q)pq

24(τ2 − 2q + ξ)
< |Br| ≤ 2|B| − 3q − 2 = 2τ2 − 3q + 2ξ − 2.

Since ξ ≤ (τ2 − 2q)/24, we have 24(τ2 − 2q + ξ) ≤ 25(τ2 − 2q), hence the assertion

pq/50 + 3q/2 − ξ + 1 < τ2 follows.

Now we are ready to prove the second (and last) part of Theorem 5.1.8.

Theorem 5.1.8 (second case, [B]). Suppose that q = ph, p ≥ 29 prime, h ≥ 3

odd. Then UCN(PG(2, q)) = v − τ2 + 1, and equality can be reached only by a

trivial coloring.
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Proof. Corollary 2.2.2 yields τ2 ≤ 2q+2(q−1)/(p−1). As p ≥ 29, τ2 < 2q+q/14.

Note that q ≥ p3 > 20000 is fairly large. Suppose to the contrary that C is a

nontrivial proper coloring with e = e(C) ≥ 0. By Lemma 5.2.3, we may assume

that there is at most one 2-class in C, and the nontriviality of the coloring is also

preserved as τ2 < 3q.

First suppose that |B| ≥ 3q − 11. Then α = 11 and c0 = 2.5 are convenient

for Proposition 5.2.5: τ2 < 2q + q/14 ≤ 2.5q − 26/3, and q(2.5) = 8. Thus e < 0,

a contradiction.

Now suppose τ2 + 12 ≤ |B| ≤ 3q − 12. Then by Remark 5.2.7, we may use

Proposition 5.2.8 to obtain

2

3
(|B| − τ2)(3q − |B|) < τ2.

As the left-hand side is concave in |B|, it is enough to obtain a contradiction for

the values |B| = τ2 + 12 and |B| = 3q − 12. Substituting either values of |B|, we

get 8(3q − τ2 − 12) ≤ τ2, thus 24q/9 − 11 < τ2 < 2q + q/14, a contradiction.

Thus |B| ≤ τ2 + 11 < 2q + (q + 3)/2. By Result 1.5.8, we have (τ2 − 2q)/24 >

q2/3/24 ≥ 292/24 > 29, thus we may apply Proposition 5.2.10 with ξ = 11 to

obtain τ2 > 3q/2 + pq/50 − 10 ≥ 2q + 2q/25 − 10. Compared to τ2 < 2q + q/14,

q is large enough to get a contradiction.

5.3 Remarks

Again, if we knew that the double blocking sets of size τ2(PG(2, q)) in PG(2, q)

are the union of two disjoint blocking sets, then we could use Proposition 5.2.9

instead of Proposition 5.2.10 to obtain the result of Theorem 5.1.8 under less

restrictive assumptions. The conditions of Theorem 5.1.8 on q and p are rather

technical, and it is very likely that they are not sharp, yet some restrictions

are necessary. Let P1, P2, P3 be three non-collinear points, and let ℓ1 = P2P3,

ℓ2 = P1P3, ℓ3 = P1P2. Then the triangle ℓ1 ∪ ℓ2 ∪ ℓ3 is a minimal double blocking

set of size 3q. It is easy to see that the coloring in which the color classes of

size at least two are ℓ2 ∪ ℓ3 \ {P1} and {P1} ∪ ℓ1 \ {P2, P3} is proper, and it uses

v − 3q + 2 colors. However, τ2(PG(2, q)) = 3q for 2 ≤ q ≤ 8 (cf. [13]), thus in

these cases the conclusion of Theroem 5.1.8 fails. For arbitrary finite projective

planes, the results of Theorems 5.1.7 and 5.1.8 may be false or hopeless to prove.



Chapter 6

The Zarankiewicz problem

6.1 Introduction

This chapter is based on [C]. Kn,m denotes the complete bipartite graph in which

the vertex classes have n and m elements, respectively. Cn denotes the cycle of

length n. Note that K2,2 is isomorphic to C4. The number of edges of a graph G

will be denoted by e(G).

Definition 6.1.1. A bipartite graph G = (A,B; E) is Kα,β-free if it does not

contain α nodes in A and β nodes in B that span a subgraph isomorphic to Kα,β.

We call (|A|, |B|) the size of G. The maximum number of edges a Kα,β-free

bipartite graph of size (m,n) may have is denoted by Zα,β(m,n), and is called a

Zarankiewicz number. Graphs attaining equality are called extremal.

Note that a Ks,t-free bipartite graph is not necessarily Kt,s-free if s 6= t.

The problem of determining Zα,β(m,n) is known as Zarankiewicz’s problem [77],

though originally it was formulated via matrices in the following way: what is

the minimum number of 1’s in a 0-1 matrix of dimension m× n that ensures the

existence of an α× β submatrix containing only 1s? This quantity is denoted by

K(m,n, α, β), and it clearly equals Zα,β(m,n) + 1. The history of the problem

and early results are collected in Guy [43] (1969). We do not know of a more

recent survey in the topic, so we refer the interested reader to the works of

Irving [50], Füredi [39, 40], Alon–Rónyai–Szabó [3], Nikiforov [59], Griggs–Ho [42],

Balbuena–García-Vázquez–Marcote–Valenzuela [11], and the references therein.

Determining the exact value of Zα,β(m,n) is extremely hard in general. However,

if one of the vertex classes is much bigger than the other one, or the parameters

fit those of a block design, exact results are known.

83
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Result 6.1.2 (C̆ulík [30]). If 1 ≤ s ≤ m and n ≥ (t − 1)
(

m
s

)
, then

Zs,t(m,n) = (s − 1)n + (t − 1)

(
m

s

)

.

Result 6.1.3 (Guy [43]). If ℓ(n, s, t) ≤ n ≤ (t − 1)
(

m
s

)
+ 1, then

Zs,t(m,n) =

⌊

(s2 − 1)n + (t − 1)
(

m
s

)

s

⌋

,

where ℓ(n, s, t) is approximately (t − 1)
(

m
s

)
/(s + 1).

Definition 6.1.4. Let ∅ 6= K ⊂ Z+. An incidence structure (P,B) is called a

t-(v,K, λ) design, if |P| = v, ∀B ∈ B : |B| ∈ K, and every t distinct points are

contained in precisely λ distinct blocks. If K = {k}, we write simply t-(v, k, λ).

In a t-(v, k, λ) design, the total number |B| = b of blocks is b = λ
(

v
t

)
/
(

k
t

)
,

and the number r of blocks incident with an arbitrary fixed point is r = bk/v =

λ
(

v−1
t−1

)
/
(

k−1
t−1

)
. We always assume that k < v. The incidence graph of a t-(v, k, λ)

design is Kt,λ+1-free of size (v, b) by definition, and they turn out to have the most

possible number of edges among such graphs. Special cases of the next result were

also established earlier by Reiman [63, 64], Kárteszi [52, 53] and Hyltén-Cavallius

[48].

Result 6.1.5 (Roman’s bound [65]). Let G = (A,B; E) be a Ks,t-free bipartite

graph of size (m,n), and let p ≥ s − 1, p ∈ N. Then the number of edges in G

satisfy

e(G) ≤ R(s, t,m, n, p) :=
(t − 1)
(

p
s−1

)

(
m

s

)

+ n · (p + 1)(s − 1)

s
.

Equality holds if and only if every vertex in B has degree p or p + 1 and every

s-tuple in A has exactly t − 1 common neighbors in B.

The proof of the above result is based on the following estimation (cf. [55]):

the number of K1,ss in G is exactly
∑

v∈B

(
d(v)

s

)
; on the other hand, it is at most

(t − 1)
(

m
s

)
(as no s-tuple in A may have t common neighbors). Thus we are to

estimate
∑

v∈B d(v) subject to
∑

v∈B

(
d(v)

s

)
≤ (t − 1)

(
m
s

)
. This can be done, e.g.,

by applying Jensen’s inequality to the convex extension of
(

x
s

)
, but it is somewhat

uncomfortable. The ready-to-use formulation above, in fact, can be derived from

Jensen’s inequality for integers, though Roman used other ideas to prove it.

The existence of designs with given parameters is also a very hard question

in general. We will use only a trivial necessary condition.
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Definition 6.1.6. We call the parameters (t, v, k, λ) admissible, if they are pos-

itive integers satisfying 2 ≤ t, t ≤ k < v, furthermore, b := λ
(

v
t

)
/
(

k
t

)
and

r := bk/v = λ
(

v−1
t−1

)
/
(

k−1
t−1

)
are also integers.

Remark 6.1.7. If (t, v, k, λ) are admissible parameters in the sense of Definition

6.1.6, then R(t, λ + 1, v, b, k) = bk = rv is integer.

A projective plane of order q can be considered as a 2-(q2 + q + 1, q + 1, 1)

design. The main concept of this chapter is to look for C4-free graphs with many

edges as subgraphs of the incidence graph of a projective plane.

6.2 Constructions and bounds

The incidence graphs of t-(v, {k, k + 1}, λ) designs are Kt,λ+1-free, and these are

precisely the graphs that satisfy the conditions of equality in Roman’s bound,

thus they are extremal. Next we give some examples of such structures.

Example 6.2.1. a) If we delete one point arbitrarily from a t-(v, k, λ) design, we

obtain a t-(v − 1, {k − 1, k}, λ) design.

b) Take a 2-(v, k, 1) design D and delete a block from it with all, or all but one

of its points. We obtain a 2-(v − k + c, {k − 1, k}, 1) design, c ∈ {0, 1}.

c) Delete two intersecting lines ℓ1, ℓ2 with all their points except possibly one

point P 6= ℓ1∩ ℓ2 from an affine plane of order n (that is, a 2-(n2, n, 1) design,

where r = n + 1). In this way we get a 2-(n2 − 2n + 1 + c, {n − 2, n − 1}, 1)

design D′, c ∈ {0, 1}. Note that if c = 0, then every point of D′ has degree r,

while for c = 1, one point has degree r − 1 (this holds in Example b) as well).

d) Let O be an oval in a projective plane Πq of order q, q odd, and let S ⊂ O
be any point-set. Let P0 = Inn(O) ∪ S, L0 = Skw(O) ∪ Sec(O), and consider

the subgraph of Πq induced by P0 ∪ L0 (that is, we delete the tangents of O,

the outer points of O, and some points of O). As no point of Inn(O) is

incident with a tangent of O, any two points of P0 are connected by a line

of L0. Note that the points of Inn(O) have degree q + 1, while the points of

S have degree q. A skew line has precisely (q + 1)/2 points in P0, while a

line ℓ ∈ Sec(O) has (q − 1)/2 + |ℓ ∩ S| points in P0, which is zero or one

if |S| ∈ {0, 1}, and one or two if |S| ∈ {q, q + 1}; thus for |S| ≤ 1 and

|S| ≥ q we obtain a 2-(|S| + q(q − 1)/2, {(q − 1)/2, (q + 1)/2}, 1) and a 2-

(|S| + q(q − 1)/2, {(q + 1)/2, (q + 3)/2}, 1) design, respectively.
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As seen in Example a), Roman’s bound yields that if we remove one point

from a design, the resulting graph is also extremal. The next result, which is also

a direct consequence of Roman’s bound, shows that we may go further.

Proposition 6.2.2 ([C]). Assume that the parameters (t, v, k, λ) are admissible,

and let c0 be the largest integer such that λ
((

v−c0
t

)
+ c0

(
v−1
t−1

)
−

(
v
t

))
<

(
k−1
t−1

)
. Then

for every integer 0 ≤ c ≤ c0,

Zt,λ+1(v − c, b) ≤ r(v − c).

Equality can be reached if a t-(v, k, λ)-design exists. Moreover, if c < c0, then in

the graphs obtaining equality, the vertices in the class of size v − c have degree r.

In particular, the condition for t = 2 is c0(c0 − 1) < 2(k − 1)/λ.

Proof. Removing c points from the incidence graph of a t-(v, k, λ) design we

obtain a Kt,λ+1-free graph on (v − c, b) nodes and r(v − c) edges.

On the other hand, using rv = bk and bk/t = λ
(

v
t

)
/
(

k−1
t−1

)
, Roman’s bound

with p = k − 1 yields Zt,λ+1(v − c, b) ≤
⌊

λ
(

k−1
t−1

)

(
v − c

t

)

+ b · k(t − 1)

t

⌋

= r(v − c) +

⌊

λ
((

v−c
t

)
+ c

(
v−1
t−1

)
−

(
v
t

))

(
k−1
t−1

)

⌋

.

Suppose that G = (A,B) is Kt,λ+1-free on (v − c, b) vertices and (v − c)r

edges, c < c0. Assume that there is a vertex u ∈ A with degree smaller than r.

Removing u from A, we obtain a graph on (v − c − 1, b) vertices and more than

(v − c − 1)r edges, which contradicts our upper bound.

For a projective plane of order n, the bound on c in the above proposition is

roughly
√

2n. To prove a stronger result, we need a theorem of Metsch and a

slight relaxation of it.

Result 6.2.3 (Metsch [58]). Let n ≥ 15, (P,L, I) be an incidence structure with

|P| = n2+n+1, |L| ≥ n2+2 such that every line in L is incident with n+1 points

of P and every two lines have at most one point in common. Then a projective

plane Π of order n exists and (P,L, I) can be embedded into Π.

Lemma 6.2.4 ([C]). Let n ≥ 15, G = (P ,L; I) be an incidence graph with |P| =

n2 + n + 1, |L| ≥ n2 + 2 such that every line in L is incident with at least n + 1

points of P, and every two lines have at most one point in common. Then a

projective plane Π of order n exists, and (P,L, I) can be embedded into Π; in

particular, every line in L is incident with exactly n + 1 points of P.
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Proof. By deleting edges from G, we can obtain a graph G′ = (P,L, I ′) in which

the vertices of L have degree exactly n + 1. Then, by Theorem 6.2.3, G′ is a

subgraph of a projective plane Π of order n. Now suppose that there is a line ℓ

in L that has degree at least n + 2 in G. This means that there exists a point P

such that ℓ is incident with P in G, but not in Π. Then each of the n + 1 lines

passing through P in Π intersects ℓ in a point different from P . As |L| ≥ n2 + 1,

at least one of these lines is a line of G as well, but it intersects ℓ in at least two

points in G, a contradiction. Hence every line has n + 1 points in G.

Theorem 6.2.5 ([C]). Let n ≥ 15, and c ≤ n/2, 0 ≤ c ∈ Z. Then

Z2,2(n
2 + n + 1 − c, n2 + n + 1) ≤ (n2 + n + 1 − c)(n + 1).

Equality holds if and only if a projective plane of order n exists. Moreover, graphs

giving equality are subgraphs of a projective plane of order n.

Proof. If a projective plane of order n exists, deleting c of its lines yields a graph

on (n2 + n + 1 − c, n2 + n + 1) vertices and (n2 + n + 1 − c)(n + 1) edges.

Suppose that G = (A,B; E) is a K2,2-free graph on (n2 +n+1− c, n2 +n+1)

vertices and e(G) ≥ |A|(n + 1) edges. Let m be the number of vertices in A

of degree at most n (low-degree vertices). Assume that m ≥ n − c. Delete

(n − c) low-degree vertices to obtain a graph G′ on (n2 + 1, n2 + n + 1) vertices

with at least (n2 + 1)(n + 1) + (n − c) edges. By Roman’s bound with p = n,

Z2,2(n
2 + 1, n2 + n + 1) ≤ (n2 + 1)(n + 1) + (n − 1)/2, hence n − c ≤ (n − 1)/2.

This contradicts c ≤ n/2, thus m < n − c must hold.

Now delete all the low-degree vertices from A to obtain a graph G′ on the

vertex sets (A′, B) with |A′| ≥ n2 + 2, |B| = n2 + n + 1. Then every vertex in

A′ has degree at least n + 1, hence we can apply Lemma 6.2.4 to derive that G′

can be embedded into a projective plane Π of order n, therefore every vertex in

A′ has degree n + 1, which combined with e(G) ≥ |A|(n + 1) yields that every

vertex in A has degree n + 1 (in G), thus G itself can be embedded into Π.

Remark 6.2.6. If we knew Z2,2(n
2 +1, n2 +n+1) ≤ (n2 +1)(n+1)+ δ, then the

above argument would hold for c < n − δ. Removing n points (or lines) from a

projective plane of order n we get Z2,2(n
2 +1, n2 +n+1) ≥ (n2 +1)(n+1). Note

that an affine plane plus an extra line containing a single point shows Z2,2(n
2, n2+

n + 1) ≥ n2(n + 1) + 1, thus Theorem 6.2.5 cannot be extended to c = n + 1.

Question 6.2.7. Is it true that Z2,2(n
2 + 1, n2 + n + 1) ≤ (n2 + 1)(n + 1) (if n

is large enough)?
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If an extremal graph is embedded into another one, it is easier to figure out

how could we extend it to a larger one with many edges. Classical unitals show

such an example.

Theorem 6.2.8. Let q be a square prime power, and let c(c − 1) < 2(
√

q + 1),

0 ≤ c ∈ Z. Then

Z2,2(q
√

q + 1 + c, q(q −√
q + 1)) = q(q

√
q + 1) + c(q −√

q + 1).

Proof. Let U be a classical unital in PG(2, q) (that is, the set of the GF(q)-rational

points of an Hermitian curve). Recall that every line intersects U in either one or
√

q + 1 points; the number of tangents to U through a point P is one or
√

q + 1

depending on whether P ∈ U or P /∈ U ; and the points of U together with the

q(q−√
q+1) long secants to U form a 2-(q

√
q+1,

√
q+1, 1) design. Let G = (U ,L)

be the incidence graph of this design. Another well-known property of U is that if

we take any point P not belonging to U , then the
√

q + 1 points of U that are on

the tangents to U through P , called the feet of P , are collinear [46]. Now take a

tangent line ℓ = {P0, P1, . . . , Pq} to U and suppose that ℓ∩U = P0. Let ei be the

unique long secant to U such that ei ∩U are the feet of Pi. It is clear that Pi /∈ ej

for all 1 ≤ i, j ≤ q, otherwise we would have {P0, Pi} ⊂ ℓ ∩ ej. Consider the

subgraph of PG(2, q) induced by U ∪ {P1, . . . , Pq} ∪ L, and add an edge between

Pi and ei for all 1 ≤ i ≤ q (that is, we add a matching of size q). Let this new

graph be G∗. Then in G∗, the points of U have degree q, while the Pis have degree

q−√
q +1. Now suppose that we have a C4 in G∗ induced by P , Q, e, and f . As

a new edge must be involved in the C4, but no more than one can be involved, we

may assume that P = Pi and e = ei. Then Q ∈ ei is a point of U , and f must be

the original long secant connecting Pi and Q. This is a contradiction as PiQ is a

tangent to U . Thus Z2,2(q
√

q +1+ c, q(q−√
q +1)) ≥ q(q

√
q +1)+ c(q−√

q +1)

for all 0 ≤ c ≤ q. On the other hand, by Roman’s bound we have

Z2,2(q
√

q + 1 + c, q(q −√
q + 1)) ≤ R(2, 2, q

√
q + 1 + c, q(q −√

q + 1),
√

q + 1) =

q(q
√

q + 1) + c(q −√
q + 1) +

c(c − 1)

2(
√

q + 1)
.

We have seen that if we delete the lowest degree vertex from an extremal

Ks,t-free graph, the resulting graph is also Ks,t-free and it has considerably many

edges (sometimes also extremal). This was also pointed out by Guy [43, p138,
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point C]. Despite its triviality, this idea turns out surprisingly useful. From

now on, F denotes a subgraph-closed family of bipartite graphs; that is, if

G ∈ F and H is a subgraph of G, then H ∈ F . For example, Ks,t-free graphs

clearly form a subgraph-closed family. Let F(m,n) = {(A,B; E) ∈ F : |A| =

m, |B| = n}, exF(m,n) = max{e(G) : G ∈ F(m,n)}, and let ExF(m,n) = {G ∈
F(m,n) : e(G) = exF(m,n)}. Graphs of ExF(m,n) are called extremal.

Theorem 6.2.9 ([C]). Let F be a subgraph-closed family of bipartite graphs. Sup-

pose that exF(m,n) ≤ e, and let 0 ≤ c ∈ Z. Then

(1) exF(m + c, n) ≤ e + c⌊e/m⌋;

(2) exF(m,n + c) ≤ e + c⌊e/n⌋.

Moreover, if equality holds in, say, (1) for some c ≥ 1, then equality holds for all

c′ ∈ Z, 0 ≤ c′ < c as well, and any graph G ∈ ExF(m + c, n) induces a subgraph

that is in ExF(m + c − 1, n).

Proof. It is enough to prove (1) as (2) is completely analogous. We prove the

assertion by induction on c. The statement is trivial if c = 0. Let d = ⌊e/m⌋.
Suppose exF(m + c, n) ≥ e + cd, and let G = (A,B; E) ∈ ExF(m + c, n). There

is no vertex of degree strictly smaller than d in A, otherwise removing such a

vertex we would obtain a graph in F(m + c − 1, n) with more than e + (c − 1)d

edges, which is not possible by the inductive hypothesis. Consider an arbitrary

subgraph of G on (m,n) vertices. By the definition of d, we find a vertex in A

of degree d. Removing this vertex, we obtain a graph G′ of F(m + c− 1, n) with

at least, hence (by the inductive hypothesis) exactly e + (c − 1)d edges. Thus

exF(m + c− 1, n) = e + (c− 1)d = e(G′), and exF(m + c, n) = e(G) = e + cd.

Sometimes it is more comfortable to use the following form of Theorem 6.2.9.

Remark 6.2.10. Let 0 ≤ c, d ∈ Z. Suppose that exF(m,n) ≤ md and exF(m +

1, n) < (m + 1)d. Then exF(m + c, n) ≤ md + c(d − 1). In case of equality the

same holds as in Theorem 6.2.9.

Proof. The conditions imply that we may use Theorem 6.2.9 starting from either

exF(m,n) or exF(m + 1, n).

By the above remark, Theorem 6.2.9 is especially useful if we have an extremal

graph from a family F such that one of its vertex classes is regular of some degree

d, we can extend that class by adding further vertices of degree d− 1 (while still

remaining in F), and the first extension is also extremal.
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Corollary 6.2.11 ([C]). (1) Let (t, v, k, λ) be admissible parameters (with b =

λ
(

v
t

)
/
(

k
t

)
, r = λ

(
v−1
t−1

)
/
(

k−1
t−1

)
), and let 0 ≤ c ∈ Z. Then

Zt,λ+1(v + c, b) ≤ rv + c(r − 1). (6.1)

(2) Let (2, v, k, 1) be admissible parameters. Then

Z2,2(v − k + c, b − 1) ≤ (v − k)r + c(r − 1). (6.2)

Moreover, if a 2-(v, k, 1) design exists, then equality holds in (6.2) for all

0 ≤ c ≤ k.

Proof. (1) Roman’s bound yields rv = R(t, λ + 1, v, b, k) = λ
(

v
t

)
/
(

k
t−1

)
+ b(k +

1)(t − 1)/t, furthermore

Z2,λ+1(v+1, b) ≤ R(t, λ+1, v+1, b, k) = λ

(
v+1

t

)

(
k

t−1

) +
b(k + 1)(t − 1)

t
= rv+λ

(
v

t−1

)

(
k

t−1

) .

It is easy to see that r > λ
(

v
t−1

)
/
(

k
t−1

)
, so Remark 6.2.10 applies.

(2) Example 6.2.1 b) shows Z2,2(v − k, b− 1) ≤ e := R(2, 2, v − k, b− 1, k − 1) =

(v − k)r and Z2,2(v − k + 1, b− 1) ≤ e + (r − 1), thus Remark 6.2.10 applies. If a

2-(v, k, 1) design exists, we may remove one of its blocks and all but c points of

that block to obtain a graph with equality.

Corollary 6.2.12. Let 0 ≤ c ∈ Z, q odd. Then

Z2,2

(
q(q − 1)

2
+ c, q2

)

≤ (q2 + 2c − 1)q

2
.

Equality holds for 0 ≤ c ≤ q + 1 if there exists a projective plane of order q with

an oval (e.g., if q is a prime power).

Proof. Example 6.2.1 d) yields a construction attaining equality for all 0 ≤ c ≤
q + 1. It also shows R(2, 2, q(q − 1)/2 + c, q2, (q − 1)/2) = (q + 1)q(q − 1)/2 + cq

for c = 0, 1, hence Remark 6.2.10 proves the assertion for all c ≥ 0.

We remark that starting from PG(2, 5), Corollary 6.2.12 yields Z2,2(14, 25) =

80. We easily find a line of degree two in the respective construction. Deleting this

line, combined with Roman’s bound, yields Z2,2(14, 24) = 78. These Zarankiewicz

numbers were reported inaccurately in [43].

In case of affine planes, we derive stronger results than Corollary 6.2.11. Recall

that an affine plane of order n is always embeddable into a projective plane of
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order n. Totten [72] also has an embeddibility result on the complement of two

lines in a projective plane (that is, we delete one line and all its points from an

affine plane).

Result 6.2.13 (Totten [72]). Let S = (P ,L) be a finite linear space (that is, an

incidence structure where any two distinct points are contained in a unique line)

with |P| = n2 − n, |L| = n2 + n − 1, 2 ≤ n 6= 4, and every point having degree

n + 1. Then S can be embedded into a projective plane of order n.

We slightly relax the conditions of this result (like we did with Metsch’ one).

Lemma 6.2.14 ([C]). Let S = (P ,L) be a finite partial linear space (that is, an

incidence structure where any two distinct points are contained in at most one

line) with |P| = n2 − n, |L| = n2 + n − 1, n > 4, in which the number of flags is

at least (n2 − n)(n + 1). Then S is a linear space, and it can be embedded into a

projective plane of order n.

Proof. As R(2, 2, n2 − n, n2 + n − 1, n − 1) = (n2 − n)(n + 1), each line in L has

degree n−1 or n, and any two distinct points must be contained in a unique line.

The average degree of a point is n + 1. Now suppose that there is a point P of

degree at least n + 2. Then the number of points on the lines incident with P is

at least 1+ (n+2)(n− 2) = n2 − 3 > |P| = n2 −n (by n > 4). Hence every point

has degree n + 1, so by Totten’s Result 6.2.13, S is the complement of two lines

in a projective plane of order n.

Corollary 6.2.15 ([C]). Let n ≥ 2 and 0 ≤ c ∈ Z. Then

Z2,2(n
2 + c, n2 + n) ≤ n2(n + 1) + cn, (6.3)

Z2,2(n
2 − n + c, n2 + n − 1) ≤ (n2 − n)(n + 1) + cn, (6.4)

Z2,2(n
2 − 2n + 1 + c, n2 + n − 2) ≤ (n2 − 2n + 1)(n + 1) + cn. (6.5)

Equality can be reached in all three inequalities if a projective plane of order

n exists and c ≤ n + 1, c ≤ 2n, or c ≤ 3(n − 1), respectively. Moreover, if

c ≤ n+1, or c ≤ 2n and n > 4, then graphs reaching the bound in (6.3) or (6.4),

respectively, can be embedded into a projective plane of order n.

Proof. The parameters of an affine plane, (2, n2, n, 1) (with b = n2 +n, r = n+1)

are admissible. Hence (6.3) and (6.4) follow from Corollary 6.2.11. To apply

Theorem 6.2.9 in (6.5), it is enough to consider Example 6.2.1 c) and Remark

6.2.10.
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By taking a projective plane of order n, and deleting one, two, or three of its

lines and all but c of their points each of which is contained in only one of the

deleted lines, we can reach equality in (6.3), (6.4), and (6.5), respectively, under

the respective assumption on c.

In (6.3), Theorem 6.2.9 also provides an affine plane of order n as an induced

subgraph in graphs obtaining equality. Now the c extra points of degree n must

be incident with pairwise non-intersecting lines to avoid C4’s in the graph; that

is, they can be considered as the common points of c distinct parallel classes.

Adding the missing n + 1 − c ideal points and the line at infinity, we obtain a

projective plane of order n.

In (6.4), Theorem 6.2.9 provides us an extremal C4-free subgraph G = (A,B)

on (n2 − n, n2 + n − 1) vertices and (n2 − n)(n + 1) edges in graphs reaching

equality. By Lemma 6.2.14, G can be embedded into a projective plane of order

n. As before, it is easy to see that the embedding extends to the c extra points

as well.

Next we prove a straightforward recursive inequality. For a bipartite graph

G = (A,B; E) and vertex-sets X ⊂ A and Y ⊂ B, let G[X,Y ] denote the

subgraph of G induced by X ∪ Y .

Proposition 6.2.16 ([C]). Let Us,t(m,n, α, β) = Zs−α,t(m − α, β) + Zs,t(m −
α, n − β) + (α − 1)n + β. Then Zs,t(m,n) is at most

min
α

max
β

min{Zα,β+1(m,n), Us,t(m,n, α, β) : 1 ≤ α < s, t − 1 ≤ β ≤ n}.

Proof. Let G = (A,B; E) be a maximal Ks,t-free bipartite graph on m+n vertices.

Let 1 ≤ α < s, and let β be the largest integer for which Kα,β is a subgraph of

G (the ordering of the classes does matter). Then |E| ≤ Zα,β+1(m,n) follows

from G being Kα,β+1-free. Now let S ⊂ A and T ⊂ B induce a Kα,β, and let

U = A \ S, V = B \ T . Then G[U, T ] must be Ks−α,t-free; G[U, V ] is Ks,t-free;

moreover, since no Kα,β+1 can be found in G, every vertex in V may have at

most α − 1 neighbors in S. Summing up the maximum number of edges in each

part, we get |E| ≤ αβ + Zs−α,t(m−α, β) + Zs,t(m−α, n− β) + (α− 1)(n− β) =

Us,t(m,n, α, β). As G is maximal, it must contain a Kα,t−1 for all α < s, hence

we have β ≥ t − 1.

Remark 6.2.17. In particular, the case α = 1 of this inequality investigates the

vertex with largest degree. Zs,t(m, 0) is defined to be zero (which occurs above for
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β = n). Note that we may interchange the role of the classes, that is, write up

the above inequality for Zt,s(n,m). We will call this the transpose of Proposition

6.2.16.

Remark 6.2.18 ([C]). In case of α = s − 1, the function Us,t(m,n, s − 1, β) is

non-increasing in β (β ≥ t − 1), while Zs−1,β+1(m,n) is clearly non-decreasing

in β. Thus the maximum of the minimum of these two values in β can be found

easily.

Proof.

Us,t(m,n, s− 1, β) = Z1,t(m− s + 1, β) + Zs,t(m− s + 1, n− β) + (s− 2)n + β =

(t − 1)(m − s + 1) + (s − 2)n + β + Zs,t(m − s + 1, n − β).

By adding a vertex of degree t− 1, we have Zs,t(m− s + 1, n− β) ≥ Zs,t(m− s +

1, n − (β + 1)) + t − 1.

This recursion is useful in some cases. For example, Roman’s bound with

p = 4 or 5 yields Z3,3(7, 7) ≤ 35. We show Z3,3(7, 7) ≤ 33. (Here, in fact, equality

holds.) Let α = 2. For β ≤ 4 we have Z2,β+1(7, 7) ≤ R(2, 5, 7, 7, 5) = 33, while

U3,3(7, 7, 2, 4) = Z1,3(5, 4) + Z3,3(5, 3) + 7 + 4 = 33. By Remark 6.2.18, we are

done. Other examples that prove this recursion useful are the balanced C4-free

graphs.

Proposition 6.2.19 ([C]). Let 2 ≤ q ∈ Z, 3 − q ≤ c ≤ 1 + q, c ∈ Z. Then

Z2,2(q
2 + c, q2 + c) ≤ (q2 + c)

(

q +
1

2

)

+
( c

2
− 1

)

q +
c

2
+

(c − 1)(c − 2)

2(q − 1)
.

Proof. Consider the bounds in Corollary 6.2.18 with s = t = 2. If β ≤ q, then

Z1,β+1(q
2 + c, q2 + c) ≤ q(q2 + c), which is smaller than the bound stated provided

that c ≥ 3 − q. Hence we may assume β ≥ q + 1. Then the second expression is

(q2+c−1)+β+Z2,2(q
2+c−1, q2+c−β) ≤ q2+q+c+Z2,2(q

2+c−1, q2+c−q−1).

Applying Roman’s bound with p = q − 1 to Z2,2(q
2 + c − q − 1, q2 + c − 1), we

get the desired result.

Remark 6.2.20. It is easy to calculate that for 3− q ≤ c ≤ 1 + q, Roman’s upper

bound on Z2,2(q
2 + c, q2 + c) gives the best result if we set p = q. The bound in

Proposition 6.2.19 is smaller than Roman’s one by

q − c

2
+

(2q − c)(c − 1)

2q(q − 1)
.
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The recursive inequality of Proposition 6.2.16 can be used to achieve another

bound in a more special case.

Proposition 6.2.21 ([C]). Let (2, v, k, 1) be admissible parameters. Then

Z2,2(v + 1, b) ≤ bk + b − k(r − 1).

Proof. Let G = (A,B; E) be an extremal K2,2-free bipartite graph of size (v+1, b).

Then there must be a vertex in B with degree at least k + 1. Thus by Remark

6.2.18, we may use the transpose of Proposition 6.2.16 with α = 1, β = k + 1 to

obtain

e(G) ≤ U2,2(b, v + 1, 1, k + 1) = (b − 1) + k + 1 + Z2,2(b − 1, v − k).

Now Z2,2(b − 1, v − k) ≤ (v − k)r, as deleting a block and its points from a 2-

(v, k, 1) design would result in a structure seen in Example 6.2.1 (so R(2, 2, v −
k, b−1, k−1) = (v−k)r). Hence e(G) ≤ k + b+(v−k)r = bk + b−k(r−1).

As a corollary, we obtain that, surprisingly enough, if we add one vertex

to a projective plane of order n, we cannot do anything better than the trivial

extension (by one edge); however, there are different extremal constructions.

Corollary 6.2.22 ([C]). Let 2 ≤ n ∈ Z. Then

Z2,2(n
2 + n + 2, n2 + n + 1) ≤ (n2 + n + 1)(n + 1) + 1,

and equality holds if and only if a projective plane of order n exists. Moreover, any

graph G reaching equality can be obtained in the following way: take a projective

plane (P,L) of order n, let A = P ∪ {u0} (u0 /∈ L∪P), B = L. Take any vertex

v ∈ L, and let {u1, . . . , un+1} be its neighbors in P. Let H be any subset of the

neighbors of u1, for which v /∈ H. Delete the edges u1v
′ for all v′ ∈ H, and add

the edges u0v and u0v
′ for all v′ ∈ H. In particular, there must be a vertex in A

with degree at most n/2 + 1.

Proof. Proposition 6.2.21 applied to a projective plane of order n (with param-

eters v = b = n2 + n + 1, t = 2, λ = 1, k = n + 1) yields Z2,2(n
2 + n + 1, n2 +

n + 2) ≤ (n2 + n + 1)(n + 1) + 1. Now let G = (A,B) be a C4-free graph on

(n2 + n + 2, n2 + n + 1) vertices and (n2 + n + 1)(n + 1) + 1 edges. Then there

must be a vertex v ∈ B of degree at least n + 2. Consider the proof of Propo-

sition 6.2.21. As U2,2(b, v + 1, 1, k + 2) = n2 + n + n + 3 + Z2,2(n
2 + n, n2) ≤
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n2 +2n+3+(n2−1)(n+1) = (n2 +n)(n+1)+2 < (n2 +n+1)(n+1)+1, v must

have degree n + 2. To reach equality, the decomposition in the proof of Propo-

sition 6.2.16 (with α = 1, β = n + 2) assures that removing v and its neighbors

N(v) = {u0, . . . , un+1} from G, we find an affine plane (P,L) of order n, whose

points and lines correspond to A \N(v) and B \ {v}, respectively; moreover, the

degree of the vertices of B \ {v} in G is n + 1. As these vertices have precisely n

neighbors in A\N(v), each one has to be adjacent to one of the uis. On the other

hand, any ui (0 ≤ i ≤ n + 1) may be adjacent only to the n lines of one parallel

class (besides v), hence deg(ui) ≤ n + 1. Let Li ⊂ A \ {v} be the parallel classes

of L (1 ≤ i ≤ n+1). We may assume that N(ui)\{v} ⊂ Li for all 1 ≤ i ≤ n+1.

Let H = N(u0) \ {v}; we may assume H ⊂ L1. Then N(ui) = {v} ∪ Li for all

2 ≤ i ≤ n + 1, and N(u1) = {v} ∪ L1 \ H. Then deg(u0) + deg(u1) = n + 2.

Note that the gap between Z2,2(v, v) and Z2,2(v+1, v) can be arbitrarily large

in general as shown by (6.3) in Corollary 6.2.15 with c = n and n + 1, n a prime

power. Using the information on the lowest degree in the extremal graphs above,

we obtain a slight improvement if the larger class is further extended.

Proposition 6.2.23 ([C]). Let c ≥ 1 and n ≥ 2, c, n ∈ Z. Then

Z2,2(n
2 + n + 2 + c, n2 + n + 1) ≤ (n2 + n + 1)(n + 1) + cn + 1.

If n ≥ 3, then

Z2,2(n
2 + n + 2 + c, n2 + n + 1) ≤ (n2 + n + 1)(n + 1) + cn.

Proof. Let F be the family of C4-free bipartite graphs. The first statement follows

from Proposition 6.2.22 and Theorem 6.2.9. Now suppose n ≥ 3 and that equality

holds for some c ≥ 1, thus for c = 1 as well. Then any G ∈ ExF(n2 + n + 3, n2 +

n + 1) induces a graph from ExF(n2 + n + 2, n2 + n + 1), which has a vertex with

degree at most n/2 + 1 by Proposition 6.2.22. Deleting this vertex from G we

would have exF(n2 +n+2, n2 +n+1) ≥ (n2 +n+1)(n+1)+n+1− (n/2+1) >

(n2 + n + 1)(n + 1) + 1, a contradiction.

The above bounds are sharp for n = 2, 3 and c = 1. There are ad hoc ideas

that may help to determine Zarankiewicz numbers for small parameters, see Guy

[43, p138]. The next proposition illustrates such a case. In the proof we rely on

the fact that Z2,2(16, 16) = Z2,2(15, 17) = 67. Actually, we only need these as

upper estimates. As Z2,2(8, 17) ≤ R(2, 2, 8, 17, 2) = 39.5 < 5 · 8, Theorem 6.2.9
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yields Z2,2(8 + c, 17) ≤ 39 + 4c. Using Z2,2(11, 15) = 47 (reported by Guy [43]),

Proposition 6.2.16 yields Z2,2(16, 16) ≤ 67 with α = 1 and β = 5.

Proposition 6.2.24 ([C]). Z2,2(16, 17) = 70.

Proof. Take four lines in general position in PG(2, 4) and take five of their six

intersection points. These determine 10 flags, hence deleting these nine objects

from PG(2, 4) we result in a C4-free graph of size (16, 17) and 21·5−9·5+10 = 70

edges. Now suppose to the contrary that there exists a C4-free bipartite graph

G = (A,B; E) with |A| = 16, |B| = 17, |E| = 71. As Z2,2(16, 16) = Z2,2(15, 17) ≤
67, every vertex in G has degree at least four. Remark 6.2.18 yields that there

can be no vertex of degree six. Hence the degree sequence of A and B are {49, 57}
and {414, 53}, respectively, where the superscripts denote the multiplicity of the

respective degree. Let v ∈ A, deg(v) = 5, and let N(v) = {u1, . . . , u5}. Then

deg(ui) = 4 for 1 ≤ i ≤ 5, otherwise the pairwise disjoint sets N(ui) \ {v} ⊂
A \ {v}, 1 ≤ i ≤ 5, would have more than 15 elements. Let vi ∈ A a vertex of

degree five, 1 ≤ i ≤ 5. Then |N(v1) ∪ . . . ∪ N(v5)| ≥ 5 + 4 + 3 + 2 + 1 = 15, but

there are only 14 vertices of degree four in B.

To finish this section, we give some constructions based on Baer subplanes.

We may either delete or contract the points of some of them, and then delete

some vertices of low degree. By the contraction of the points of a Baer subplane

we mean that the point-set of a Baer subplane is replaced by one point which

is incident with all the lines of the Baer subplane. Doing so, we remove q +
√

q

points and produce one of degree q +
√

q + 1, so this operation is clearly better

than deleting q +
√

q arbitrary points. In the upcoming proposition, (2) is sharp

for q = 4, c = 1 and 0 ≤ h ≤ 2, and (3) is sharp for q = 4 and c = 1.

Proposition 6.2.25 ([C]). Let q be a square prime power, and let v = q2 + q +1,

w = q +
√

q +1. Suppose that 1 ≤ c ≤ q−√
q, 0 ≤ d ≤ cw, 0 ≤ h ≤ w− 2. Then

(1) Z2,2(v − c(w− 1), v − d) ≥ (v − c(w− 1))(q + 1) + c
√

q − d(q −√
q + 2− c);

(2) Z2,2(v − c(w − 1) − h, v) ≥ (v − c(w − 1) − h)(q + 1) + c
√

q;

(3) Z2,2(v − cw, v − cw) ≥ (v − cw)(q + 1 − c).

Proof. Let PG(2, q) = (P ,L), and let B1 = (P1,L1), . . . , Bc = (Pc,Lc) be c

pairwise disjoint Baer subplanes in it. Let P0 = ∪c
i=1Pi, L0 = ∪c

i=1Li.
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(1) Define G = (A,B) in the following way. Let A = (P \ P0) ∪ {B1, . . . , Bc}
(|A| = v− cw + c), B = L. The edges between A∩P and B are those defined by

PG(2, q); furthermore, for each 1 ≤ i ≤ c, connect the vertex Bi to all the vertices

of Li ⊂ B. (That is, we contract the points of c Baer subplanes.) As any two

lines of Li had an intersection in Pi, we do not create a C4. Note that every Pi

is a blocking set, so every line not in L0 looses precisely c neighbors. The v − cw

vertices of A∩P have degree q+1, the c new vertices have degree w = q+
√

q+1,

thus there are (v − cw + w)(q + 1) + c
√

q edges in G. Let ℓ ∈ Li ⊂ L0. Then

|ℓ ∩ Pj| equals one for all 1 ≤ j ≤ c except for j = i, in which case it equals
√

q + 1. Hence deg(ℓ) = q + 1 − √
q − (c − 1) in G. There are c(q +

√
q + 1)

lines in L0, so we may delete any d of them to obtain a graph G′ with the stated

parameters.

(2) Every point of A∩P has degree q + 1 in G, so we may delete any h of them.

It is not worth deleting more than w − 2 points since we may contract another

Baer subplane instead.

(3) Consider the graph induced by P \ P0 and L \ L0. Here every vertex has

degree q + 1 − c.

6.3 Remarks

For small values of m and n, we have computed the best upper bounds one can

obtain on C4-free graphs using these ideas [C]. These values can be found in

Table 1.

Illés and Krarup [49] use the formulation of Zarankiewicz’s problem in terms

of integer programming. They introduce Problem (R), that is, to find

r(n)=max

{
n∑

j=1

xj :
n∑

j=1

(
xj

2

)

≤
(

n

2

)

, where xj ≥ 0, xj ∈ Z for all 1 ≤ j ≤ n

}

.

The cost of a solution x = (x1, . . . , xn) is
∑

j

(
xj

2

)
. They call a solution x realizable

if there exists an n × n J2 =

(

1 1

1 1

)

-free 0 − 1 matrix in which the jth column

contains xj ones. In Remark 6, page 129 they claim: “It is conjectured that a

necessary condition for realizability is that the corresponding optimal solution

to (R) is a least cost solution.” Note that the transpose of an optimal n × n

J2-free 0 − 1 matrix is also an optimal matrix of that kind, hence the conjecture

claims that the rows also correspond to a least cost optimal solution. As
(

x
2

)
is
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This conjecture is false. Let n = 8. Then Z2,2(8, 8) = 24. Let G = (A,B)

be the incidence graph of the Fano plane, and let a ∈ A and b ∈ B two non-

adjacent vertices. Add two new vertices, u and v to A and B, respectively, and

let {u, v}, {a, v}, {u, b} be edges. The resulting graph is C4-free, has 21 + 3 = 24

edges, and the degrees in both classes take the values 2, 3 and 4. However, deleting

a line ℓ and a point P not on ℓ, together with all the points and lines incident

with ℓ and P from PG(2, 3), we obtain a three-regular bipartite graph on (8, 8)

vertices.

We say that a vertex class of a bipartite graph is nearly regular, if the degrees

in that class differ by at most one. We end this section by posing some questions

that, to the best of our knowledge, are open. Let 2 ≤ t ≤ n ≤ m be arbitrary

integers.

Question 6.3.1. Does there exist an extremal Kt,t-free graph on (n, n) vertices

whose classes are both nearly regular?

Question 6.3.2. Does there exist an extremal Kt,t-free graph on (n,m) vertices

with at least one nearly regular class?

Corollary 6.2.22 shows that extremal C4-free bipartite graphs on (n2 + n +

2, n2 + n + 1) vertices, n a power of a prime, can not have two nearly regular

classes.

It seems that if the total number of vertices is fixed in a Kt,t-free bipartite

graph, then balanced graphs have the most number of edges. In fact, the known

Zarankiewicz numbers satisfy Zt,t(m,n) ≤ Zt,t(m+1, n−1) whenever m+2 ≤ n.

Question 6.3.3. Is it true that Zt,t(n,m) ≤ Zt,t (⌊(n + m)/2⌋, ⌈(n + m)/2⌉)?
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Appendix

Proof of the Szőnyi–Weiner Lemma

Here we give the proof of the Szőnyi–Weiner Lemma which has proved quite useful

in finite geometry. It was developed by Szőnyi and Weiner in [A-2, A-3, A-4].

The proof given here is entirely based on Sziklai’s monograph [A-1, Section 9.5,

pp54–59], which is in preparation at the present time; there one finds all elements

needed. However, the structure and the formulation of the current proof is slightly

different from the mentioned versions.

Let us introduce some notation and assumptions that will be valid in the se-

quel. Let f(X) =
∑k

i=0 aiX
k−i, g(X) =

∑l
i=0 biX

l−i, f, g ∈ F[X], F an arbitrary

field, where a0 6= 0 or b0 6= 0. Let r(X) = gcd(f(X), g(X)) with leading coeffi-

cient equal to one (i. e., r is monic), and let deg r(X) = µ. Let m ∈ Z, m ≥ 0,

m ≤ min{k, l}. The polynomials c =
∑k−m

i=0 ciX
k−m−i and d =

∑l−m
i=0 diX

l−m−i

are supposed to satisfy c0 = a0, d0 = b0, and they are regarded as unknowns.

Coefficients “out of range” are considered to be zero. Let

Rm(f, g) =















a0 b0

a1 a0 b1 b0

...
...

. . .
...

...
. . .

al−m−1
... a0 bl−m−1

... b0

...
...

...
...

...
...

ak+l−2m−1 · · · · · · ak−m bk+l−2m−1 · · · · · · bl−m















.

︸ ︷︷ ︸

l − m
︸ ︷︷ ︸

k − m

Note that Rm(f, g) ∈ Fk+l−2m×k+l−2m, R0(f, g) is the Sylvester-matrix of f and

g, and det(R0(f, g)) is the resultant of f and g.

Consider the following polynomial equation (with unknowns c and d).

df − cg = 0 (A-1)
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Proposition 1. Let m ≤ µ. Then the set of solutions of (A-1) form a (µ− m)

dimensional vector space over F.

Proof. We may assume that neither f or g is the zero polynomial, otherwise the

assertion is trivial. Suppose that c, d form a solution of (A-1). By f | cg, it is

clear that c =
f
r u, and similarly, d =

g
rv for some u, v ∈ F[x]. Then u = v follows

immediately from
fg
r u =

fg
r v. As, say, c0 = a0 6= 0, c =

f
r u (or d =

g
ru) implies

that u ∈ F[X] is monic, and it has degree precisely µ − m.

Proposition 2. Suppose that m ≤ µ. Then the rank of the matrix Rm(f, g) is

k + l − 2m − (µ − m).

Proof. As deg r = µ ≥ m and r divides df − cg, c and d form a solution of (A-1)

if and only if deg(df − cg) < m. As

df − cg =
l−m∑

i=0

diX
l−m−i

k∑

j=0

ajX
k−j −

k−m∑

i=0

ciX
k−m−i

k∑

j=0

bjX
l−j =

k+l−m∑

i=0

(
i∑

j=0

djai−j − cjbi−j

)

Xk+l−m−i,

this is equivalent to
∑i

j=0 djai−j − cjbi−j = 0 for all 0 ≤ i ≤ k + l − 2m.

Now consider Rm(f, g)(d1, . . . , dl−m,−c1, . . . ,−ck−m)T . The ith coordinate of

this vector is
∑i

j=1(djai−j − cjbi−j). Recall that c0 = a0 and d0 = b0. Hence
∑i

j=0 djai−j − cjbi−j = 0 for all 0 ≤ i ≤ k + l − 2m if and only if

Rm(f, g)(d1, . . . , dl−m,−c1, . . . ,−ck−m)T =

(a0b1 − a1b0, . . . , a0bk+l−2m − ak+l−2mb0)
T . (A-2)

By Proposition 1, the solutions (A-1), and hence those of (A-2) form a subspace

of dimension µ − m, which is the dimension of the kernel of Rm(f, g).

A unique factorization domain (UFD) is a commutative ring in which every

non-zero non-unit element can be written as a product of irreducible elements,

uniquely up to the order of the elements and unit multipliers. Polynomial rings

in any number of variables over a field are UFDs.

Lemma 3 (Sziklai). Let M ∈ Rn×n, R a unique factorization domain. Suppose

that all (n − 1) × (n − 1) subdeterminants of M are divisible by rs, r ∈ R,

1 ≤ s ∈ N. Then rs+1 divides det(M).



Proof. Let M∗ ∈ Rn×n be the matrix where (M∗)i,j is the signed (n−1)× (n−1)

subdeterminant of M corresponding to the position (j, i). By our assumption,

rs divides all entries of M∗, therefore rsn divides det(M∗). On the other hand,

M∗M = det(M)In, hence det(M∗) det(M) = det(M)n, thus rsn | det(M∗) =

det Mn−1, and the assertion follows.

From now on let ai = ai(Y ) and bi = bi(Y ) be polynomials of degree deg ai ≤
i, deg bi ≤ i. (In other words, f, g ∈ F[X,Y ] of total degree at most k and

l, respectively, and also f, g ∈ F [X], where F = F(Y ) is the field of rational

expressions over F in the indeterminate Y ). Then every entry of Rm(f, g) =

Rm(Y ) and hence det(Rm(Y )) is a polynomial in Y . Recall a0 6= 0 or b0 6= 0.

Proposition 4. Fix y ∈ F. Let r(X) = gcd(f(X, y), g(X, y)), deg(r) = µ ≥ m.

Then (Y − y)µ−m | det(Rm(Y )).

Proof. By Proposition 2 we have that all (k + l − 2m − (µ − m) + 1) × (k + l −
2m− (µ−m) + 1) subdeterminants of Rm(y) are zero, hence (Y − y) divides all

such subdeterminants of Rm(Y ). Iterating Lemma 3 finishes the proof.

Proposition 5. Let m ≤ µ. Then deg det Rm(Y ) ≤ (k − m)(l − m).

Proof. (Rm(Y ))i,j has degree at most i−j if j ≤ l−m, and at most i−j+(l−m)

otherwise. Hence for any permutation π : {1, . . . , k+l−2m} → {1, . . . , k+l−2m}
we have deg

(
∏k+l−2m

i=1 (Rm(Y ))i,π(i)

)

≤ ∑k+l−2m
i=1 (i − π(i)) + (k − m)(l − m) =

(k − m)(l − m), hence the assertion follows.

In the upcoming formulation of the Szőnyi–Weiner Lemma, all necessary as-

sumptions are included. If the field F is not finite, then the sum ranges over the

finitely many nonzero addends. For α ∈ Z, let α+ = max{0, α}.

Result 6 (Szőnyi–Weiner Lemma). Let f, g ∈ F[X,Y ], where F is an arbitrary

field, and suppose that the coefficient of the term Xdeg f in f is nonzero. Let

ky = deg gcd(f(X, y), g(X, y)), y0 ∈ F arbitrary. Then

∑

y∈F

(ky − ky0
)+ ≤ (deg f(X,Y ) − ky0

)(deg g(X,Y ) − ky0
).

Proof. Let m = ky0
. Then det Rm(y0) 6= 0 by Proposition 2, hence det Rm(Y ) 6≡

0. Applying Proposition 4 we get that for all y ∈ F, (Y − y)(ky−m)+ divides

Rm(Y ), which has degree at most (deg f − m)(deg g − m) by Proposition 5.
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Summary

The thesis treats problems in finite geometry that either try to answer graph

theoretical questions, or originate from graph theory. However, the emphasis is

on the finite geometrical viewpoint. In some problems we use the polynomial

method (Rédei-polynomials, the Szőnyi–Weiner Lemma, and the combinatorial

Nullstellensatz with multiplicities).

In Chapter 2 we collect results on multiple blocking sets, which are closely

related to three of the four main problems. We show that through any essential

point of a t-fold blocking set of size t(q + 1) + k in PG(2, q) there pass at least

q + 1 − k − t distinct t-secants. If q is not a square, no general construction

for small t-fold blocking sets were known if t ≥ 2. We construct a small double

blocking set in PG(2, q) for each q = ph, where p and h ≥ 3 are odd.

The classical problem of (k, g)-cages asks for the order of the smallest k-regular

graph of girth g. For n = 3, 4, 6, (q + 1, 2n) cages are the incidence graphs of

generalized n-gons of order q. In Chapter 3 we study the regular subgraphs of

these extremal graphs. We characterize all (q + 1− t)-regular induced subgraphs

of the incidence graph of PG(2, q), q = ph, if t ≤ p and t ≤ √
q/2 (roughly), and

also construct some induced and non-induced regular subgraphs for n = 4, 6.

In Chapter 4 we show that any small semi-resolving set for PG(2, q) can be

extended to a double blocking set by adding at most two points to it. As a

corollary, we obtain a new lower bound on the size of blocking semiovals.

The upper chromatic number of PG(2, q), considered as a hypergraph, is

proved to equal q2 + q + 2 − τ2(PG(2, q)) in Chapter 5, provided that q > 256

is a square or q = ph, p ≥ 29 and h ≥ 3 is odd. In addition, we show that the

coloring reaching this bound is essentially unique.

We treat the Zarankiewicz problem in Chapter 6, focusing on the case of C4-

free bipartite graphs. We provide exact values for several sets of the parameters,

and also exhibit a table of exact values for small parameters.
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Összefoglaló

A tézis olyan véges geometriai kérdésekkel foglalkozik, melyek vagy gráfelméleti

problémákra keresnek megoldást, vagy gráfelméleti ihletésűek; a hangsúly min-

dazonáltal a véges geometriai megközelítésen van. A bizonyítások során olykor

a polinomos módszerre támaszkodunk (Rédei polinomok, Szőnyi–Weiner-lemma,

kombinatorikus nullhelytétel multiplicitásos változata).

A 2. fejezetben többszörös lefogó ponthalmazokat vizsgálunk. Ezek a dolgozat

négy fő kérdéséből hárommal szoros kapcsolatban állnak. Megmutatjuk, hogy

egy PG(2, q)-beli, t(q + 1) + k pontú, t-szeres lefogó ponthalmaz minden lényeges

pontján át legalább q + 1 − k − t darab t-szelő halad. Kicsi többszörös lefogó

ponthalmazokra nem volt általános konstrukció, ha q nem négyzetszám; mi adunk

egyet kétszeres lefogókra, ha p és h páratlanok, ahol q = ph, h ≥ 3.

Egy klasszikus gráfelméleti probléma a legkisebb k-reguláris, g bőségű gráfok

csúcsszámának meghatározása. Ha n = 3, 4, 6, akkor a legkisebb (q+1, 2n)-gráfok

az általánosított 2n-szögek illeszkedési gráfjai. A 3. fejezetben ezen extrém példák

reguláris részgráfjait vizsgáljuk. Leírjuk a PG(2, q), q = ph, illeszkedési gráfjának

az összes (q +1− t)-reguláris feszített részgráfját, közelítőleg a t ≤ p és t ≤ √
q/2

feltételek mellett, továbbá adunk konstrukciókat az n = 4, 6 esetekben is.

A 4. fejezetben megmutatjuk, hogy PG(2, q) minden kicsi féligmegoldó-halmaza

előáll egy kétszeres lefogó ponthalmazból legföljebb két pont elhagyásával. Ebből

nyerünk egy alsó korlátot blokkoló szemioválisok méretére is.

A PG(2, q) sík mint hipergráf fölső kromatikus száma q2+q+2−τ2(PG(2, q)) az

5. fejezet tanúsága szerint, feltéve, hogy q > 256 egy négyzetszám, vagy q = ph,

p ≥ 29 prím és h ≥ 3 páratlan. Ráadásként az is kiderül, hogy lényegében

egyetlen színezés éri el ezt a korlátot.

A 6. fejezetben Zarankiewicz problémájával, és azon belül kiemelten a C4-

mentes páros gráfokkal foglalkozunk. Meghatározunk pontos értékeket bizonyos

paramétertartományokban, és egy táblázatban közreadunk kis paraméterekre vo-

natkozó pontos értékeket is.
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