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Introduction

This dissertation consists of two parts. The topic of the first part is the Lax theory of
the numerical solution of linear and nonlinear equations, see Chapter 1. The second
part deals with discrete elliptic and parabolic maximum principles, see Chapters 2—4.
Chapter 5 is the Appendix, which contains the necessary basics we build upon.

Now, we introduce the two topics of the thesis consecutively.

Lax-type theorems were already used when the application of some numerical
method was necessary in order to approximate the solution of linear or nonlinear
equations. The first paper was [36, Lax and Richtmyer, 1956], which generalized the
preceding theorems and brought them to an abstract level. It contained the Lax equiv-
alence theorem, which was later reformulated for semigroups by the same author [35,
Lax, 2002]. This famous theorem was formulated for linear initial value problems. The
paper [44, Palencia and Sanz-Serna, 1985] gave a framework applicable both for initial
value and boundary value problems.

The theory was generalized for the nonlinear case in many papers. The primary
difference between these papers is in their stability definitions. See [33, Keller, 1975],
[48, Stetter, 1973], [37, Lépez-Marcos and Sanz-Serna, 1988] and [54, Trenogin, 1980].
[47, Samarskii, Matus, Vabishchevich, 2002] collected many different types of stability
notions.

In some of the works the error (i.e., the distance between the solution and the
numerical approximation) is measured in the space of the solution using interpolation,
see, e.g., the results of Aubin in [53, Temam, 1977], while most of the earlier mentioned

works made the comparison in the space of the approximate solution using restriction.

When we want to approximate the solution « of the equation F(u) = 0, where
X and ) are normed spaces, D C X and F' : D — ) is a (nonlinear) operator,
usually a numerical method is used. Section 1.1 addresses the general (nonlinear)
case. This section is based on the paper [23, Faragé, Mincsovics, Fekete, 2012]. In
Subsection 1.1.1 we gave the definitions of the notions “problem”, “numerical method”

and “discretization”. The success of a numerical method can be measured by the notion



INTRODUCTION

of convergence. Even this notion can be defined in different ways, using interpolation
or restriction as we already mentioned. Our choice is using restriction, but we shortly
investigate the pros and cons of the other possible choice, too.

The definition of convergence is theoretical since it contains the unknown solution
u. Lax’s idea was to substitute this unverifiable notion with the notions of consistency
and stability. In our framework we use the stability notion of Keller. Firstly, the idea
works since stability and consistency together implies convergence, which was firstly
proven by Stetter for the nonlinear case. Secondly, for the applications the following
recipe works: it is sufficient to check consistency for a set of elements, which can
be done in parallel, and it is enough to check stability “near to the solution”. In
Subsection 1.1.3 we formulate these results at an abstract level. In Subsection 1.1.4
we investigate the relation of the basic notions (consistency, stability and convergence)
providing numerous examples.

Section 1.2 contains the linear part of the framework. Note that we use the name
affine instead of linear since we formulated the problem otherwise. In this case stability
and convergence are equivalent under the consistency assumption. This is the Lax
equivalence theorem, which we present in the form given by Palencia and Sanz-Serna.
We compare the basic notions of the linear (affine) case with the basic notions of the
general case as well. Finally, in Subsection 1.2.2 we present examples showing how

the framework can be applied for approximating the solutions of elliptic and parabolic

PDE’s.

The second part of my dissertation deals with discrete elliptic and parabolic maxi-
mum principles.

What is the relevance of the discrete maximum principles?

When choosing a numerical method to approximate the solution of a continuous
mathematical problem, the first thing to consider is which method results in an good
approximation from a quantitative point of view. This is investigated in the first part of
the thesis. However, in most of the cases it is not enough. The original problem (which
is usually some model of a phenomenon) possesses important qualitative properties
and a natural requirement from the numerical solution is to preserve these qualitative
properties. E.g., when we seek an approximation of the Laplace’s equation where the
boundary condition is defined to be nonnegative, then the solution is nonnegative,
too, and a good approximation should be nonnegative as well. For linear elliptic and
parabolic problems the main qualitative properties are the various maximum principles.

The first paper in which a discrete elliptic maximum principle was formulated is

probably [56, Varga, 1966]. The definition of the discrete weak maximum principle
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which is used today appeared first in [5, Ciarlet, 1970] (but it was named differently).
While the discrete weak maximum principle was extensively investigated in the last
decades, see, e.g., the works [25, Hannukainen, Korotov, Vejchodsky, 2009], [57, Ve-
jchodsky, 2011], the discrete strong maximum principles have not been thoroughly
analysed. In [30, Ishihara, 1987] and in [34, Knabner-Angermann, 2003] a sufficient
algebraic condition was given, while in [8, Draganescu, Dupont, Scott, 2005 the pos-
itivity of the discrete Green function was investigated (this is in a close relation with
the discrete strong maximum principles) in a special case. However, a sufficient and

necessary algebraic condition was missing.

The first paper on a discrete parabolic maximum principle was [32, Keller, 1960],
and from the early years the paper [24] should also be mentioned. From the recent
years the works [11, Faragé, 2008], [17, Faragé and Horvéath, 2009] contain a detailed
investigation of a whole family of discrete (and continuous) parabolic maximum prin-

ciples.

Discrete maximum principles can be investigated at two levels. One is purely alge-
braic (and theoretical), the other is more related to application. Namely, for a certain
continuous problem (which possesses some continuous maximum principle) some dis-
cretization is applied. Then the question is how we should choose the mesh and the
parameters of the discretization to get a discrete problem which possesses the corre-
sponding discrete maximum principle. This latter case is naturally dependent both on
the problem and on the discretization. As a consequence, there are countless papers of
this sort. In our work both types of investigation can be found, the purely algebraic,
and the other when for a problem a certain discretization is applied.

We present a short introduction on elliptic and parabolic maximum principles in
Chapter 2. We note that we define maximum principles for an operator and not for
an equation. Chapters 3 and 4 contain our work on discrete elliptic and parabolic
maximum principles, respectively.

In Section 3.1 and 4.1 we give an algebraic framework on discrete elliptic and
discrete parabolic maximum principles, respectively. At the elliptic case we focused on
the differences between the weak and strong discrete maximum principles, see Section
3.2.

In Section 3.3 we investigate some elliptic problem where an interior penalty dis-
continuous Galerkin method is applied as discretization. We give sufficient conditions
on the discretization parameters and on the mesh fulfilling the most important discrete
elliptic maximum principles.

In Section 4.2 we investigate a parabolic problem when some FEM + f-method
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discretization is used. We derive practical conditions under which the most important
discrete parabolic maximum principles can be preserved.

In Section 4.3 we introduce a new notion, the discrete stabilization property (DSP),
and we present our results on the relation of the DSP and the discrete elliptic and
discrete parabolic maximum principles. These results explain the property that a
non-adequate mesh can already hinder the fulfilment of discrete parabolic maximum

principles.

Throughout the thesis we use the following convention. We give references next to
every result, lemma or theorem, except if it is our result. In this latter case, we supply
the references at the beginning of the chapter/section/subsection, which contains the
result. In that chapter/section/subsection all of the results without reference are from

the same work unless the result has not been published yet.



Chapter 1
Basic notions of numerical analysis

This chapter contains an introduction on the basic notions of numerical analysis, defin-
ing in an exact way the mostly intuitively used notions including the discretization and
the numerical method. Their important properties (convergence, consistency and sta-
bility) are introduced and the relation of these properties is investigated in the nonlinear

and in the linear case, respectively.

1.1 Nonlinear theory

We consider a general nonlinear equation in an abstract (Banach space) setting. We
seek an approximate solution of this equation. The usual way to proceed is to discretize
the problem obtaining a simpler equation which can be solved already. This is how we
can get one approximate solution which is usually enough in practice.

However, from a theoretical point of view it is better to define the notion of dis-
cretization as it results in a sequence of simpler problems which will be called numerical
method. The main aim is to guarantee the convergence of the approximate solutions
to the exact solution of the original problem. However, the convergence is difficult to
treat directly.

It will be shown that this notion can be guaranteed by two other notions: the
consistency and the stability together ensure the convergence, see Theorem 1.1.24 and
Theorem 1.1.36, and these two notions can be checked directly. In the linear case this
result is well known as the Lax (or sometimes Lax-Richtmyer-Kantorovich) theorem,
which states more, actually, see Section 1.2.

The necessity of these conditions is investigated by giving suitable examples that
show that neither consistency, nor stability is necessary for the convergence, in general.

(The linear theory is different from this viewpoint.) All the notions and the results on
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these are illustrated by showing their meaning for the numerical solution of a Cauchy
problem of ordinary differential equation by means of the explicit Euler method.
The section is based on the paper [23].

1.1.1 Introduction

When we describe some real-life phenomenon with a mathematical model, it results in

a — usually nonlinear — problem of the form
F(u) =0, (1.1)

where X and ) are assumed to be normed spaces, D ¢ A and F': D — ) is assumed to
be a (nonlinear) operator. Moreover, it is assumed that there exists a unique solution,
which will be denoted by .

However, we note that, for any concrete applied problems we must prove the exis-
tence of a unique @ € D. In most cases the proof is not constructive, c.f. [33].

Ewven if it is possible to solve directly, the realization of the solving process is very
difficult or even impossible. However, in practice, we need only a good approximation
for the solution of problem (1.1), since our model is usually already a simplification of a
real-life phenomenon. Therefore we use some discretization, which results in a sequence
of simpler problems, i.e., a numerical method, see Definition 1.1.3 and Definition 1.1.5
for the exact definition of these notions.

With this approach we need to face the following difficulties:

e we need to compare the solutions of the simpler problems with the solution of

the original problem (1.1); which might be found in different spaces;

e naturally, this comparison seems to be impossible, since the solution of the orig-

inal problem (1.1) is unknown.

To get rid of the latter difficulty, the usual trick is to introduce the notions of
consistency and stability, which do not require the knowledge of the solution of the
original problem (1.1) and can be verified. Thus, the convergence can be replaced with

these two notions. Sometimes this popular “recipe” is summarized in the “formula”
Consistency + Stability = Convergence . (1.2)

In the following we introduce and investigate these notions in an abstract frame-

work, and we try to shed some light on the formula (1.2). Namely:
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e how to define consistency and stability to ensure the formula (1.2);

e is it consistency or/and stability that is necessary for the convergence (in the

linear case the Lax equivalence theorem deals with this question, too, see Section

1.2).

The following is mainly devoted to answer these questions. First, we start with

some definitions and notations, by giving an example.

Definition 1.1.1. Problem (1.1) can be given as a triplet 22 = (X, ), F). We will

refer to it as problem 2.

Example 1.1.2. Consider the following initial value problem:

uw'(t) = f(u(t)) (1.3)

u(0) = o, (1.4)
where t € [0,1], up € R and f € C(R,R) is a Lipschitz continuous function.

The operator F' and the spaces X', ) are defined as follows.

o X = Cl[{]: 1]: ”uH(‘B = max |’U,(t)|,

tel0,1]

()l

. Flu)= (u’(t) —f(u(t))) |
u(0) — ug

= max ([u(t)[) + |uol;

te[0,1]

e V=C[0,1] xR, ‘

Definition 1.1.3. We say that the sequence A = (X, Vu, Fn)nen 18 a numerical

method if it generates a sequence of problems
Fo(up) =0, n=12..., (1.5)
where
e X, ), are normed spaces;
e D,cX,and F,, : D, > V.

If there exists a unique solution of the (approximating) problems (1.5), it will be

denoted by u,, .
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Example 1.1.4. For n € N we define the following sequence of triplets:

o X, =R" v, =(vp,v1,...,0,) € Xp: [[Vallx, = max. vil;

o Vo =R™, yn=(0,41,-,¥n) € Vu: [[¥nlly, = Iyol + max |y;

ssss n

o F,:R™! — R and for any v, = (vo,v1,...,vn) € R*"! it acts as
n(v;—vi1)—g(v—1), i=1...,n,
(Fa(va)), = (1.6)

Here g : R — R and ¢ € R are arbitrary given data and one can see that the defined

numerical method is the explicit Euler method.
Definition 1.1.5. We say that the sequence Z = (¢n, Un, Pn)nen 18 a discretization if

e the ¢,-s (respectively 1,-s) are operators from X into X, (respectively from Y

into V), where X', &, Y, M are normed spaces;
e &, {F: D= Y| DCcX}—={F,:D,— Vu|D, C Ay}

Example 1.1.6. Based on Examples 1.1.2 and 1.1.4, in Definition 1.1.5 we define
X =C"0,1,Y =C[0,1] xR, and &,, =V, =R G, :={t; =%, i =0,...,n}.

Then, we define the triplet of the operators as follows.
e For any v € X we put (p,v); =v(t;), i=0,1,...,n.
e For any y € Y we put

y(té—l)} 1,...??1}
(Yny)i =
y(to)} 1= 0

e In order to give ®,,, we define the mapping ®,, : C'[0, 1] — R™*! in the following

way:

n(v(t;) —v(ti-1)) —g(v(tiz1)), i=1,...,n,
[(®n(F)) v]; = (1.7)
v(tg) — ¢, i=0.
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We note that the introduced notions of problem £ and numerical method 4" are
independent of each other. However, for our purposes only those numerical methods
A are interesting which are obtained when some discretization method Z is applied
to a certain problem £?. We introduce the notation 2(4?) ~» A for the sentence
“the discretization Z is applied to problem & resulting in the numerical method 4.

Thus, this notation denotes the whole process.

Remark 1.1.7. Theoretically, the normed spaces X and ) in the definitions of the
problem and of the discretization might be different. However the application of the
discretization to the problem is possible only when these normed spaces are the same.

In the sequel this will be always assumed.

Example 1.1.8. Let us define the numerical method .4 for problem 42 from Example
1.1.2, and for the discretization 2 from Example 1.1.6. Then we solve the sequence
of problems in the form (1.5), where in the discretization for g and ¢ we put f and u,
from problem (1.3)-(1.4), respectively. This yields that the mapping F, : R"*! — R™t!

is defined as follows: for the vector v,, = (vg, v1,...,v,) € R""! we have

n(vi_vi—l)_f(vé—l)1 i=1,...,n,
(Fu(vn)); = (1.8)

Up — Up, i=0.

Hence, using the notation h = 1/n, the equation (1.5) for (1.8) results in the task:

we seek the vector v,, = (vg,vy,...,v,) € R"*! such that
v; — Vi _
tT“:f({Ué—l)} 1:1,...}?'1}
(1.9)
Vp = Up, i=20.

Hence, the obtained numerical method is the well-known explicit Euler method on the

mesh G,, with uniform step-size h.

In the sequel the following assumption will be used.
Assumption 1.1.9. 9(2%) ~» A possesses the following properties.
(al) A4 possesses the property dim &, = dim ), < oo.

(a2) F), is continuous on the ball Bg(p, (7)) from some index.

(a3) ¥n(0) =0 holds from some index.

Obviously, when 1), are linear operators, then (a3) is automatically satisfied.
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1.1.2 Basic notions and theoretical results

In this part we introduce the important properties (convergence, consistency and sta-

bility) related to the process 2(Z2) ~ A .

Convergence. Our aim is to guarantee the existence of the solutions %, and its
closeness to u. We define the distance between these elements, which will be called
global discretization error. Since these elements belong to different spaces, this is not
straightforward.

There are two possible options for where to compare the solutions: in X, which
might appear the more natural at first sight, or in the spaces where the solutions of the
simpler problems can be found, i.e. in the spaces &,,. We choose this latter possibility,

however, both possibilities will be investigated shortly, giving their pros and cons.

Figure 1.1: The general scheme of numerical methods with interpolation operators.

e It is possible to define the distance between the elements @ and @, in the space
X, with the help of (interpolation) operators @, : A, — X, by the quantity ||u —
@nlin||x- For such an approach see Figure 1.1. In this approach the convergence

means that the numerical sequence ||z — @niiy||x tends to zero.

At first sight this approach seems to be more natural, however to deal with it on
an abstract level is more difficult. The difficulty is that the convergence depends

on two processes, on the numerical method and on the interpolation.

Example 1.1.10. Let us choose the numerical method so that we choose an arbitrary
@y from an arbitrary space &; and 4, = 4, &), := X;. We use the interpolation @,
defined as @, (v,) = @ for all v, € A,,, for all n.

Then clearly, |z — @ni,||x tends to zero.

10
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This degenerate example shows that the whole process is convergent in spite of
the fact that the numerical method is simply unacceptable. To avoid such cases,
usually it is assumed that lim(@, o ¢,)v = v for any v € X (or some similar
property). We note that this relation does not mean that @, is the inverse of ,,,

because ¢, is not invertible, typically it represents some interpolation.

However, on the basis of all this it seems to be more appropriate to handle
the numerical method and the interpolation separately. This leads to the other

approach.

Figure 1.2: Second approach (which is our choice): The general scheme of numerical

methods without interpolation.

e The general scheme of this approach is illustrated in Figure 1.2.

Definition 1.1.11. The element e, = ¢,(u) — 4, € &, is called global discretization

ETTOT.

Clearly, our aim is to guarantee that the global discretization error is arbitrarily

small, by increasing n. That is, we require the following property.
Definition 1.1.12. 2(22) ~» A is called convergent if
lim ||e,||x, =0 (1.10)

holds. When
llenll,, = O(n7?)

we say that the order of the convergence is p.

11
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Thus, the whole process is split into two tasks, into the numerical method and
into the interpolation. Naturally, for a convergent 2(4?) ~» A" it is much easier

to find an appropriate interpolation.

Thus, this approach is more appropriate if the numerical method is in our focus
(without the interpolation process) and this is the reason why we choose this one.
However, it does not mean that the interpolation process (or the possibility of this
process, which depends on the approximation capabilities of the space-sequence
(X)nen) is less important. To underline this statement the next example is

shown.

Example 1.1.13. Let us choose the numerical method so that we choose an arbitrary
u, from an arbitrary space X| and @y, := @1, A, := X} with the norm |- ||x, == £|| - || x,-
Moreover, we choose an arbitrary ; and ¢, := ;.

Then clearly, e, tends to 0 thanks to the factor 1/n.

On the other hand, nobody would call it a convergent numerical method. To
avoid such an example, some kind of norm-consistency could be assumed, e.g.,

lim || on(v)|| 2, = ||v]|x for all v € X.

Independently of the form of the definition of the global error, it is hardly applicable
in practice, because the knowledge of the exact solution u is assumed. Therefore,
we introduce some further notions (consistency, stability), which help us in getting

information about the behavior of the global discretization error.

Consistency. Consistency is the connecting link between the problem &7 and the

numerical method .A4".
Definition 1.1.14. P(£?) ~» A is called consistent at the element v € D if
e pn(v) € Dy holds from some index,
e the relation
lim || Fo(¢n(0)) — n(F(©))]ly, = 0 (1.11)

holds.

D(P) ~ N is called consistent if it is consistent at the element .

12
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The element 1,,(v) = F,(¢n(v)) — ¥n(F(v)) € Yy in (1.11) plays an important role
in the numerical analysis. When we fix some element v € D, we can transform it into
the space ), in two different ways (with the help of the operators F', 1, and @,, F},):
X—=Y—=Y,and X — X, — YV, (cf. Figure 1.2). The magnitude [,,(v) characterizes
the difference of these two directions for the element v. Hence, the consistency at the
element v yields that in limit the diagram of Figure 1.2 is commutative. A special role
is played by the behaviour of [,(v) on the solution of the problem (1.1), that are the

elements [,,(u). Later on we will use the following notions.

Definition 1.1.15. The element [,(v) = F,(pn(v)) — Yn(F(v)) € Yy, is called local
discretization error at the element v. Assuming (a3) of Assumption 1.1.9, the element
ln = lh(w) = Fup(en(a)) — Un(F (7)) = Fu(en(w)) is called local discretization error.
When

11n ()l 5, = O(n7"),

we say that the order of the consistency at v is p (analogously simply order of the

consistency for v = u).

One might ask whether consistency implies convergence. The following simple

example shows that this is not true in general.

Example 1.1.16. Let us consider the case X = &, =Y =V, = R, ¢, = ¢, =
identity. Our aim is to solve the scalar equation F(z) = 0, where we assume that it
has a unique solution Z = 0. We define the numerical method as F,,(z) = (1 — z)/n.
Clearly, due to the linearity of ¢, and v, we have [, = F,(0) — 0 = F,(0). Since
F,(0) — 0, therefore this discretization is consistent. However, it is not convergent,

since the solution of each problem F,(z) =0 is z, = 1.
Thus, convergence cannot be replaced by consistency in general.

Stability. As we have already seen, consistency in itself is not enough for convergence.

Assuming the existence of the inverse operator F, !, we can easily get to the relation
en = ¢n() — Un = F ' (Fulpn(@)) — F'(0) = F ' (In) — F(0),

which shows the connection between the global and local discretization errors. This
relation suggests that the consistency (i.e., the convergence of the local discretization
error l,, to zero) can provide the convergence (i.e., the approach of e, to zero) when
(E;'),en has good behavior. Such a property is the Lipschitz continuity: it would be

useful to assume that the functions F;! uniformly satisfy the Lipschitz condition at

13
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the points 0 € ),. However, generally at this point we have no guarantee even to the
existence of F!, thus we provide this with some property of the functions F},, without
assuming their invertibility. The first step in this direction is done by introducing a

simplified form of the notion of semistability in [37].

Definition 1.1.17. 2(2) ~» A is called semistable if there exist S € R, R € (0, oo]
such that

e Br(pn(u)) C D, holds from some index;

e Y(vp)nen which satisfy v, € Br(p, (%)) from some index, the relation

l[on(@) = vallx, <SIFa(en(@)) — Fulva)lly, (1.12)

holds.

Semistability is a purely theoretical notion, which, similarly to the consistency,
cannot be checked directly, due to the fact that @ is unknown. However, the following

statement clearly shows the relation of the three important notions.
Lemma 1.1.18. We assume that (&) ~ A is such that

e (a3) of Assumption 1.1.9 is satisfied;

e it is consistent and semistable with stability threshold R;

e cquation (1.5) has a solution in Bgr(p,(@)) from some indez.

Then the sequence of these solutions of equation (1.5) converges to the solution of

problem &2 , and the order of convergence is not less than the order of consistency.

Proof. First, using the semistability gives

llenllx, = llon (@) — ﬁn“xn < S||Fa(pn(a)) — Fn(ﬂn)”yn =S ”Fn(‘r’:’n(ﬂ))”yn = S|[lnlly,

from some index. Finally, using the consistency proves the statement. O

This lemma has some drawbacks. Firstly, we cannot verify its conditions because
this requires the knowledge of the solution. Secondly, we have no guarantee that
equation (1.5) has a (possibly unique) solution in Bg(p,(a)) from some index. By
using the following modified stability notion, see [33], we can get rid of the second

problem.

14
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Definition 1.1.19. 2(&) ~» 4 is called stable at the element v € X if there exist
S eR, R e (0,00] such that

e for the stability neighbourhood Bg(¢,(v)) C D, holds from some index;
o V(v})nen, (v2)nen which satisfy vl € Br(pn(v)), the estimate
l|on = vall o, < S||Fn(vp) = Fa(wp)|,, (1.13)
holds.
D(P) ~ A is called stable if it is stable at the element u € X
Remark 1.1.20. Obviously, stability implies semistability.

The immediate profit of this definition is injectivity as it is formulated in the next

statement.

Corollary 1.1.21. If 9(2?) ~~ A is stable at the element v € X with stability
threshold R, then F,, is injective on Bg(pn(v)) from some indez.

The following statements demonstrate the usefulness of the stability notion, given
in Definition 1.1.19. These results first appeared in [48], however, based on a different
notion of stability, see the Paragraph “Notes on the notion of stability — other possi-
bilities.” of this dissertation. Thus, these results are converted in order to fit in our

framework and are presented here in this converted form.

Lemma 1.1.22. [/8, Version of Lemma 1.2.1.]

We assume that
e V, W are normed spaces with the property dimV = dim W < oo;
e G : Br(v) = W is continuous for some v € V and R € (0, 00];
e for all v',v? which satisfy v* € Bgr(v), the stability estimate
”’Ul — ’U2|Iv <S ”G(’Ul) — G(’UQ)HW (1.14)
holds.
Then
e G is invertible, and G : Bp/s(G(v)) = Bg(v);

e G7! is Lipschitz continuous with the constant S.

15



1. BASIC NOTIONS OF NUMERICAL ANALYSIS

The proof of this lemma is rather technical, thus it is placed into the Appendix.

Lemma 1.1.23. [/8, Version of Theorem 1.2.5.]
For 9(P) ~» N we assume that

e (al) and (a2) of Assumption 1.1.9 are satisfied;
e it is consistent and stable with stability threshold R and constant S.

Then 2(22) generates a numerical method A such that equation (1.5) has a unique

solution in Br(pn(@)) from some indez.

Proof. Due to Lemma 1.1.22, F,, is invertible, and F;' : Bg/s(Fy(¢n())) — Br(pa(a)).
Note that F,(pn(u)) = I, — 0, due to the consistency. This means that 0 €
Bpr)s(F,(¢n(1))) holds from some index. This proves the statement. O

Hence, we can formulate the following theorem.

Theorem 1.1.24. [/8, Version of Theorem 1.2.4.]
For 9(P) ~» N we assume that

e (al)-(a3) of Assumption 1.1.9 are true;
e it is consistent and stable with stability threshold R and constant S.

Then 2(2P) ~» N is convergent, and the order of the convergence is not less than the

order of consistency.

Proof. The statement is a consequence of Lemmas 1.1.23 and 1.1.18. O

Notes on the notion of stability — other possibilities. We complete this sub-
section with some remarks w.r.t. the stability notion by Definition 1.1.19.
There are other definitions for stability in the literature, these are mostly general-

izations of the stability notion of Keller. We list some of them.

e The first one of them is the following one, which is given in [48].

Definition 1.1.25. 2(%?) ~» A is called stable in the sense of Stetter if there
exist S € R, R € (0,00] and r € (0, 0o] such that

— Bgr(pn(w)) C D, holds from some index;

— for all (v})nen, (v2)nen such that v, € Bg(pn(a)), and the inclusion F,(v}) €
B,.(Fy(¢n(w))) is true, the estimate (1.13) holds.
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Note that the stability notion by Stetter is less restrictive than the one given in
Definition 1.1.19: if we put r = oo in Definition 1.1.25, then we re-obtain the
stability definition by Keller, given in Definition 1.1.19.

The second one was given in the paper [37].

Definition 1.1.26. () ~ A is called stable in the sense of Lopez-Marcos
and Sanz-Serna if there exist S € R and (R,)nen, R € (0, 00] such that
— Bg,(¢n(2)) C D, holds from some index;

— Y(vp)nen, (V2)nen which satisfy v, € Bp, (¢n(@)) from that index, the esti-
mate (1.13) holds.

This stability notion allows us to vary the radius of the balls which could be
necessary as it has been shown in [37], where an example is presented for which

this is the appropriate notion, while the others fail.

Finally we mention another generalization which was introduced in [54] (actually,

here we present a version of it).

Definition 1.1.27. 2(2?) ~» A" is called stable in Trenogin’s sense if there exist
S e R and R € (0, 00| such that

— Bg(pn(u)) C D, holds from some index;

— there exists a continuous at a neighbourhood of zero, strictly monotonically
increasing function w(t) defined on ¢ > 0 such that w(0) = 0 and

w (|lot = 22l5,) < 1Faeh) = Fae2)ly, (1.15)

holds for all v}, v2 € Br(en(w)).

n -n

If we choose w as identity/L, we re-obtain the Definition 1.1.19.

We mention that similarly to that definition of stability and the corresponding

built-up we choose the whole construction can be carried through choosing the above

mentioned stability definitions, too.

Naturally it is possible to construct further types of stability notions, e.g., mixing

the above mentioned ones. But this would be fruitful only from a theoretical point of

view, the real question is always that of how these could work in practice. Even the

stability notion of Stetter and that of Trenogin’s seem to be too theoretical until now.
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1.1.3 Basic notions — revisited from the application point of

view

Theorem 1.1.24 is not yet suitable for our purposes: the condition requires to check the
stability and the consistency at the unknown element v = @. Therefore, this statement
is not applicable for real problems. Since we are able to verify the above properties
on some set of points (sometimes on the entire D), we convert the previously given
framework into another one which fits more for the application and is based on global

properties instead of the local (pointwise) ones.

Definition 1.1.28. 2(Z?) ~» A is called densely consistent if there exists a set
D ¢ D whose image F(D°) is dense in some neighbourhood of the point 0 € ), and
it is consistent at each element v € D°.

The order of the dense consistency on D is defined as inf {p, : v € D°}, where p,

denotes the order of consistency at the point v.

Example 1.1.29. Let us consider the explicit Euler method, given in Examples 1.1.4,
1.1.6 and 1.1.8. We apply it to the Cauchy problem of Example 1.1.2, i.e., to the
problem (1.3)-(1.4). We verify the consistency and its order on the set D° C D, where
D := C'[0,1] and D° := C?[0, 1]. Then for the local discretization error we obtain

%’U”(Q@), i=1,...,n,
[F (o (V) = ¥n (F' (v))] (t:) = (1.16)
0 i=20

? ?

where 6; € (t;_1,t;) are given numbers and v € D° is an arbitrary element. Then
[ln(v)]l 5, = O(n™") on D°.

Hence, for the class of problems (1.3)-(1.4) with Lipschitz continuous right-hand
side f, the explicit Euler method is densely consistent, and the order of the dense

consistency on D? := C?[0, 1] equals one.

In the paragraph “Consistency.” in Subsection 1.1.2 (c.f. Example 1.1.16) we
showed that (pointwise) consistency in itself is not enough for the convergence. One
may think that the notion of dense consistency, given by Definition 1.1.28, ensures

convergence. The following example shows that this is not true.

Example 1.1.30. Let us choose the normed spaces as X = X, = YV = )V, = R,

Yn,= ¥, = identity. Our aim is to solve the scalar equation F'(z) = 0, where the

18
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function F' € C(R,R) is given as

1, ifz e (—o0,—1]UJ[1,00).

F@):{|xhifme(—L1L

Clearly this problem has a unique solution z = 0. We define the numerical method as

(&, ifze[-4.4],

z,ifze (%}1),
Folz)=¢ 1,ifz € (—oo0,—1]U[l,n)U[n+2,00),
—x, ifz e (—1}—%),

L |z —(n+1)|,ifzenn+2).

For the given problem this 2(42) ~» A4  is consistent on the entire R, however, it is
not convergent, since the solutions of the discrete problems F,(z) =0 are Z, = n + 1,

and therefore z,, = 7.

What is more interesting is that dense consistency does not imply consistency either

as the following examples show.

Example 1.1.31. Let us choose the normed spaces as X = &, = YV = )V, = R,
¢Yn = ¥n = identity. Our aim is to solve the scalar equation F'(z) = 0, where the
function F' € C(R, R) is the identity. Clearly this problem has a unique solution z = 0.
We define the numerical method as

1—n|z|, fre (—=,=),
Fn(.’ﬂ):{ | | ( —1 'l’l—f—])

T
z,ifze (—oo,—L] U [n+r1,oo)

It can be seen that in this case Z(22) ~» 4 is densely consistent, since it is consistent

at all z € R\ {0}, however, it is not consistent.

Example 1.1.32. We modify Example 1.1.31 only at some points. We choose the
function F' € C(R,R) as F'(z) = |z|. We define the numerical method as

Fn(ﬂ?):{ 1—n|z|, fze (_nL-I—l?nL_H),

|, if 2 € (—o0, — 7] U [

).
Here we can conclude the same as in the last example.

The alarming difference is that in Example 1.1.31 we have a unique solution of the
equation F,(z) = 0 for all n, moreover z,, — = 0, while here F,,(z) > 0 for all n.

We note that both examples fail in the stability test due to the lack of injectivity.

19
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In spite of all this, the notion of dense consistency is extremely useful as the Reader
will see below.

In the sequel, besides Assumption 1.1.9, we will use the following new assumptions.
Assumption 1.1.33. 2(2?) ~» A possesses the following properties.

(a4) The problem £ is such that F~! exists in some neighbourhood of 0 € ) and is
continuous at the point 0 € ).

(ab) There exists K1 > 0 such that for all v € D the relation

len () — on(v)llx, < Killu—vly
holds for all n € N.

(a6) There exists K5 > 0 such that for all y € ) the relation

1¥n(y) = ¥a(0)lly, < K2lly —Olly
holds for all » € N.
Lemma 1.1.34. We assume that (&) ~ N possesses the following properties.
e (al)-(a3) of Assumption 1.1.9 hold.

e (aj) and (a6) of Assumption 1.1.33 hold.

e [t is densely consistent and stable with stability threshold R and constant S.

Then F, is invertible at the point 1n(0) = 0, i.e., there exists F,, ' (1 (0)) for sufficiently

large indices n.

Proof. We can choose a sequence (y*)gey such that y* — 0 € Y and F! (yk) =k —
i, due to the continuity of F~'. Then the discretization 2 on problem £ at the
element u* is stable with stability threshold R/2 and constant S, for some sufficiently
large indices k. Moreover, F, is continuous on Bpr/a(¢n(u¥)). Thus, for these indices k
and also for sufficiently large n there exists F, ' : Bgjas(Fy(pn(u¥))) = Brja(pn(u¥))
moreover, it is Lipschitz continuous with constant S, according to Lemma 1.1.22. Let

us write a trivial upper estimate:

1 Fu(en@))ly, < [|Falpn@®)) = gu(F@)|;, + [daF@)], -

Here the first term tends to 0 as n — oo, due to the consistency. For the second
term, based on (a3) and (a6) we have the estimate ||¢n(yk)”yn < K, ”yk”Xn. Since
the right-hand side tends to zero as k — oo, this means that the centre of the ball
Bg2(Fr(pn(u¥))) tends to 0 € V,, which proves the statement. O

20



1.1. NONLINEAR THEORY

Corollary 1.1.35. Under the conditions of Lemma 1.1.34, for sufficiently large indices

k and n, the following results are true.
o There exists F (n(y*)), since n(y*) € Brjas(Fa(on(uk))).
o F'(¥n(y")) € Bryz(on(w),
moreover, under (a5) of Assumption 1.1.33
o 0,(F(y*)) € Brja(pn(n)) holds, too.
Now we are in the position to formulate our basic result.
Theorem 1.1.36. We assume that D(2) ~ N possesses the following properties.
e (al)-(a3) of Assumption 1.1.9 and (aj)-(a6) of Assumption 1.1.33 hold.
e [t is densely consistent and stable with stability threshold R and constant S.

Then it is convergent, and the order of the convergence can be estimated from below by

the order of consistency on the corresponding set D°.

Proof. By use of the triangle inequality and Corollary 1.1.35, we can write

lpn(@) — Tnlly, = ||en(F71(0)) = Fr ' (¥n(0)|| . <

on(F71(0) = @n(F ' (5")) ], +
I

llen(F71 (") = B (n(y")) |, + (1.17)
1.
1F () = B (4 0)) |,
I11.

where the elements y* € ) are defined in the proof of Lemma 1.1.34.
In the next step we estimate the different terms on the right-hand side of (1.17).

I. For the first term, on the basis of (a5) of Assumption 1.1.33, we have the estimate

len(F(0)) = n(FT' (")la, < K [[F7'0) = F7 (") o -

Since y* — 0 as k — 0o, and F~! is continuous at the point 0 € ), therefore this

term tends to zero, independently of n.
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IT. Due to Corollary 1.1.35, we can use the stability estimate, therefore for this term

we have the estimate
[on(F71 (") = Byt @n(@®)]|, <
S| Fulen(F154) = n@)ly, = S | Falon(@)) — bl F@)]), -

In this estimate the term on the right-hand side tends to zero because of the

consistency at u*.

III. For the estimation of the third term we can use the Lipschitz continuity of F); !,
due to Lemma 1.1.34 and Corollary 1.1.35. Hence, by using (a3) and (a6) of

Assumption 1.1.9 and Assumption 1.1.33, respectively, we have

[F (n(@) = B (n(0)]| . < S][n@") — ¥a(0)]y, < SKa||*],,-

The right-hand side of the above estimate tends to zero, independently of the

index n.

These estimations complete the proof. O

There is only one job left, to ensure the stability. Analogously to the consistency, in
the stability the lack of knowledge of the solution # makes the direct application of the
Definition 1.1.19 impossible. Thus, we need a condition which can be easily checked

and implies stability. The following trivial lemma gives a helping hand.

Lemma 1.1.37. We assume that 2(2) ~ N possesses (a5) of Assumption 1.1.33
and it is stable with stability threshold R and constant S. Then it is stable at all
v € DN Br(u) with stability constant S.

As a consequence, we need to check stability on a set of elements that the union
of their stability neighbourhoods contains ¢, (%) and the infimum of their stability

constants is positive.

Example 1.1.38. [54, Version of Paragraph 38.2]
Let us analyse the stability property of the explicit Euler method, given in Example
1.1.8.

Let v»0,v(® € X, = R™! be two arbitrary vectors, and we use the notation
e =v) —v® ¢ R, We define the vector § = F, (v(l)) — F, (V(Q)) € R where
F, is defined in (1.6). (In the notation, for simplicity, we omit the use of the subscript
n for the vectors. We recall that the coordinates of the vectors are numbered from
i=0toi=mn.)

For the coordinates of the vector 6 we have the following relations.
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e For the first coordinate (i = 0) we obtain: §y = (Fn (v(l)))o — (Fn (v(g)))o =

(U(gl) — Ho) — (’L’éﬁ) — UD) = €p.

e For the other coordinates i = 1,...,n we have

5 = ,Uﬁl) _ (2) _
a0~ 22— £ — (el — o) + 16 =
) _ @ )) n('u(l) (3) (f(’u(l) ff? (2) ) =

1 2
ne; — nej— 1_(f(’U§ )1 - (zg—)l )

n(v;

We can express ¢; from this relation as follows:

€ = €i—1+ — (f('”gl)l_ ((2))"" —0; .

Under our assumption, f € C(R,R) is a Lipschitz continuous function, therefore we
have the estimation |f(v\",)) — f(v®))| < L|v{", — v?,|. Hence, we get

L 1
6l < leical + Lo — o1+~ 15 = fexe ( ‘) ol
If we apply this estimate consecutively to |¢;_1], |€;_s|, etc., we obtain:

L\?> 1 L\ 1
lei| < |€i—2] (1 + —) + —|d:] + (1 + —) —|6ia| < ...
n n n)n

IN\" n [\ n—i
leo| (HZ) +%;|§*’|(1+E) . (1.18)

Since 0y = €; and Hv(l) V(Q)” = max le;|, hence we can write our estimation in
the fom
L\" 1 Lyn—i
VO v, <[5l (1 4 5) D sl (1+2) (1.19)
< el(6y + max |6;]) = e 6]y, = ek HFn (v) — F, (v®) ”yn . (1.20)

This shows us that the discretization (1.8) applied to the problem given in Example
1.1.2 resulting in the explicit Euler method given in Example 1.1.8 is stable on the whole
set X = C'[0,1] with S = e’ and R = oo for this problem.

Hence, on the basis of Theorem 1.1.36, the results of this example and Example
1.1.29, we can conclude that the explicit Euler method is convergent, and the order of
its convergence is one.

We note that the whole process can be done (with small modifications) when f is

only locally Lipschitz continuous.
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1.1.4 Relation between the basic notions

Theorems 1.1.24 and 1.1.36 show that, under the assumptions (al)-(a3) and (al)-
(a6), the consistency or dense consistency and stability result in the convergence, i.e.,
consistency and stability together are a sufficient condition for convergence. (Roughly
speaking, this implication is shown in (1.2).) However, from this observation we cannot
get an answer to the question of the necessity of these conditions.

In the sequel, we raise a more general question: What is the general relation between
the above listed three basic notions? Since each of them can be true (T) or false (F),

we have to consider eight different cases, listed in Table 1.1.

consistency/ dense consistency | stability | convergence
1 T T T
2 T T F
3 T F T
4 T F F
5 F T T
6 F T F
7 F F T
8 F F F

Table 1.1: The list of the different cases (T: true, F': false).

Before giving the answer, we consider some examples. In each examples X = A}, =
Y=Vu=R, D=D, =[0,0), ¢, = ¥, = identity. Our aim is to solve the scalar

equation
F(z)=2°"=0, (1.21)
which has the unique solution z = 0.

Example 1.1.39. For solving equation (1.21) we choose the numerical method de-
fined by the n-th Lagrangian interpolation, i.e., F;,(x) is the Lagrangian interpolation
polynomial of order n. Since the Lagrangian interpolation is exact for n > 2, therefore
F,(z) = 22 holds for all n > 2. Hence, clearly the numerical method is consistent and
convergent. The operator F;;! can be defined easily, and it is F, !(z) = /z. One can
see that if F;! exits and it is differentiable, then for the stability (F; ')’ needs to be
bounded around the solution #,, from some index. Since in this case it is not fulfilled,

the numerical method is not stable.
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Example 1.1.40. For solving equation (1.21) we choose now the numerical method
F,.(z) =1 —nz. The roots of the discrete equations F,(z) = 0 are Z,, = 1/n, therefore
T, —+ & = 0 as n — oo. This means that the numerical method is convergent. We
observe that o,(F,(0)) = ¢,(1) = 1, and %, (F(0)) = ¢,(0) = 0. Hence, for the
local discretization error we have |l,,| = 1, for any index n. This means that the
numerical method is not consistent. One can easily check that F;, is invertible, and
F'(z) = —z/n + 1/n. Hence the derivative of the inverse operators are uniformly

bounded on [0, 00) by 1 for any n. Therefore, the numerical method is stable.

Example 1.1.41. For solving equation (1.21) we choose the following numerical method:
F,(z) =1 —nz? Then z,, = 1/y/n, and hence z,, — = = 0 as n — oco. This means
that the numerical method is convergent. Due to the relations ¢, (F,(0)) = pn(1) =1
and ¥, (F(0)) = ¥,(0) = 0, this method is not consistent. Since for this numerical
method F;!(z) = y/(1 — z)/n, therefore the derivatives are not bounded. Therefore,

the numerical method is not stable.

number of the case answer reason
1 always true | Theorem 1.1.24 and 1.1.36
2 always false | Theorem 1.1.24 and 1.1.36
3 possible Example 1.1.39/ Example 1.1.31
4 possible Examples 1.1.16 and 1.1.30/ Example 1.1.32
5 possible Example 1.1.40
6 uninteresting | uninteresting
7 possible Example 1.1.41
8 uninteresting | uninteresting

Table 1.2: The possibility of the different cases.

Now, we are in the position to answer the question, raised at beginning of this sec-
tion. Using the numeration of the different cases in Table 1.1, the answers are included
in Table 1.2. (We note that two cases (cases 6 and 8 in Table 1.1) are uninteresting
from a practical point of view, therefore we have neglected their investigation.) The
results particularly show that neither consistency/ dense consistency, nor stability is a

necessary condition for the convergence.
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1.2 Linear theory

It should be made clear in the first place that the name linear in the title could be
misleading, this section contains the case where F' is an affine operator F'u = Lu — f,
where L is a linear operator and f € ). The name comes from the linear inhomogeneous
equation of the form Lu = f.

Comparing the nonlinear and the linear theory some introductory remarks are men-
tioned. First, the linear theory is a special case contained by the nonlinear theory. As
we have seen in the nonlinear case, stability with consistency (under some assumptions)
implies convergence, but nothing more can be stated, see Subsection 1.1.4. However,
in the special case where the operator F'is affine, something more can be stated. Fi-
nally, we mention that in the nonlinear theory there is a large variety of the definitions
(c.f. the Paragraph “Notes on the notion of stability — other possibilities.”), while the
linear theory is more fixed, we will see that every stability notion of the nonlinear case
is simplified to one stability notion in the linear case. On the other hand, this (and
other) simplifications provide a possibility to handle parallel a family of affine operators
(differing only in the constant part) by defining consistency, stability and convergence.

The linear theory is more elaborated, the foundations of the theory are already laid
in the famous paper [36] and later developed, e.g., in the papers [42, 43, 44]. We also

rely on the results of these papers.

1.2.1 Problem setting, basic notions and theoretical results

Problem, discretization and numerical method. In this paragraph we follow

the paper [44]. When F' is an affine operator, the equation (1.1) to be solved reads as

Lu=f, (1.22)

where X and ) are assumed to be normed spaces, f € Y, D ¢ X, R c Y and
L:D — R is assumed to be an (unbounded) linear operator.

It is supposed that the problem (1.22) is well-posed in the following sense. The
range R of L is dense in ) and there exists an operator E € B(), X') such that FA is
the identity in D.

This yields that for f € R the unique solution is Ef. If f ¢ R, then Ef can be
regarded as a generalized solution, since F' is the unique bounded extension to ) of
L™!': R — D. In each cases the unique solution (corresponding to f) will be denoted
by uy.
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We assume that 2(Z?) ~» A (defined above) generates a sequence of problems in

the special form
Lpuy, = fn, n=12,..., (1.23)

where &), and ), are assumed to be normed spaces, f, € V,, and L, : &, — Y, is a
linear operator.

We assume that the problems (1.23) are well-posed in the same sense as problem
(1.22) with solution operators E, = L.

Note that (al) of Assumption 1.1.9 with stability implies well-posedness, but here
we do not want to restrict ourself to the case where the spaces &, )V, are finite
dimensional.

On 2(Z) ~» A we make some further assumptions.
Assumption 1.2.1. (%) ~» A possesses the following properties.
(Al) ¢n, ¥y, are bounded linear operators for all n.

(A2) For the operators ¢, ¥, the estimates

||<Pn||3(x,xn) <C, ||’¢'n||B(y,yn) < Cy
hold with the constants C', C5 independently of n.
(A3) The relation %, f = f, holds.

Note that (a5) and (a6) of Assumption 1.1.33 with (A1) of Assumption 1.2.1 implies
(A2).

We recall that from now on (in this section) we assume that the problem £ is linear
and it has the form (1.22) with the properties given above, moreover, that 2(%) ~» A
is such that the numerical method .4 generates a sequence of problems in the special

form (1.23) with the properties given there as well.

Basic notions in the linear case. Basic notions as stability, consistency and con-
vergence are already defined in the nonlinear case. Here it is shown how those defi-
nitions can be transformed to the definitions of the linear case. We begin with some

observations, and finally we give the adequate definitions.

e Stability: due to the special form of F', the relation (1.13) can be rewritten as

Fr(vn) = Fu(vy) = Lavy — fo = (Lnv; = fn) = La(vy, — vp) .
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Using the notation v} 2 .— w, it can be written as

n— Un:

“wn”(rn <S5 ”ann”yn )

thus, the relation (1.13) reads as [|Ey,|| gy, x,) < S in the linear case.

Note that it means stability is entirely independent of f,,, which enables us to
handle a complete family of problems (differing only in the term f). Furthermore,

the notion of stability is the property of the numerical method .4 only.

e Consistency: for a given f, the local discretization error can be transformed as

follows.
s (©) = Fa(n(0)) — n(F(©)) = Luga(0) — fo — (Lo — ).
Using (A1) and (A3) of Assumption 1.2.1 implies that
ln,f(v) = Lppnv — YpLv.
As we can see, consistency can be defined for a family of problems, too.

e Convergence: using (A1) of Assumption 1.2.1 the global discretization error reads

as
En,f ‘= PplUf — Un f = SOnEf - Enwnf-

In the light of the previous items we reformulate the basic notions. First, we introduce
the notations {Z} = {(X,V,F) : Fu= Lu— f,f € Y} and 2({#}) ~» {4} for
the notions that we apply the discretization on the family of problems {42} resulting
in the family of numerical methods {.#}.

Definition 1.2.2. 9(Z?) ~» A is called convergent at the element f € Y if
lim [l Ef — Eutpuflla, = 0 (1.24)
holds. When it is convergent for all f € ), we say that 2({#}) ~» {4} is convergent.
Definition 1.2.3. 2(2) ~» A is called consistent at the element v € D if the relation
lin [ gt — Loy, =0 (1.25)

holds. We call 2({2}) ~» {4} consistent if there exists a set D C D for which LD°

is dense in Y and 2(Z) ~+ A4 is consistent at each element in D°.

Definition 1.2.4. 2({Z}) ~» {4} is called stable if the inequality
1 Enll 5,20y <5 (1.26)

holds with a constant S (independently of n).
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Results. A generalization of the Lax equivalence theorem is presented.

Theorem 1.2.5. [/4, Equivalence theorem, part 1]
We assume that 2({2}) ~» { A} possesses the following properties.

o (A1)-(A3) of Assumption 1.2.1 is valid.
e [t is consistent and stable.
Then it is convergent.

This theorem is analogous to Theorem 1.1.24, however the main task by that theo-
rem was to ensure the existence of the discrete solutions. Thus, Theorem 1.2.5 is rather
similar to Lemma 1.1.18. The proof is almost the same (since Theorem 1.2.5 can be
viewed as a special case of Lemma 1.1.18), but we need to handle generalized solu-
tions, too. This makes the proof similar to the proof of Theorem 1.1.36 (but simpler).
Another difference is that, due to the linearity, Theorem 1.2.5 deals with a family of

problems, while in the nonlinear case this was impossible.

Proof. 1If f € R, then
lenEf — Enthnfllx, = | En(Lnpnus — ¥nLug)||x, < S||Lopnus — nLuglly, — 0.
If f ¢ R, we can choose a sequence (fk)keN, with f* € R and lim f* = f. Then

“(IO'REf - En"ubnfnxn <

llﬁOnEf - ‘PnEfk||X15+J|(PnEfk - En'ﬁbnfklanl+\||En"ubnfk - Eﬂ’llbﬂfllxnl .
I 1. 117

[. and III. tend to O independently of n. II. tends to 0 independently of k because of
the first part of the proof. O

Before moving on to the second part of the equivalence theorem we take preparation.

Assumption 1.2.6. We assume that 2({Z?}) ~» {4} possesses the following prop-

erties.
(A4) Y is a Banach space.

(A5) There exists a constant L such that, for all n and for all g, € ),, with ||g,|y, <1,
there exists an element g € Y such that ||g||y < L and 1,9 = g».
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(A5) establishes a connection between the norms of the spaces Y and ), see [44,
Rem.2.2.] and c.f. with the Paragraph “Convergence.” in Subsection 1.1.2.) The

second part of the equivalence theorem is based mainly on the following lemma.

Lemma 1.2.7. [}2] Let Z be a Banach space, (Wh), ey @ sequence of normed spaces
and T,, : Z — W, linear operators. If for each z € Z, sup|T,z|w, < oo, then

sup || Tul Bz wn) < oo.
This is a generalization of the Banach-Steinhaus theorem. (The proof can be done

in the same way as by the original theorem.)

Ready with the preparation, the second part of the equivalence theorem is presented.

Theorem 1.2.8. [/4, Equivalence theorem, part 2]
Assume that D({P}) ~» { AN} possesses the following properties.

o (A1)-(A3) of Assumption 1.2.1 and (A})-(A5) of Assumption 1.2.6 are valid.
e [t is convergent.
Then it is stable.

This part contains the novelty compared to the nonlinear case, i.e. convergence is

necessary for stability.

Proof. For each f € Y the sequences (||pnEf — Enwnf“?dn)neN, (||<anf||Xn)neN are
bounded due to the convergence and Assumption 1.2.1, respectively. This implies that
the sequence (|| Entnflx,)ney is bounded as well.

The generalized Banach-Steinhaus lemma 1.2.7 implies that there exists a con-

stant K such that ||Entn|py.x,) < Ki. Choosing a sequence (gn),cy, gn € Yo with

lgnlly. <1 and ¥ng = gn, then ||Engnllx, = |Entngllx, < [|Entnllm.amllglly = KiL
by (A5) of Assumption 1.2.6. Thus, || Ey| g x,) < KiL. O

Remark 1.2.9. Here we note the following.

e Theoremsl.1.24 and 1.1.36 contained the essence of the nonlinear theory, that
result can be illustrated with the formula (1.2). Meanwhile, the heart of the
linear theory is summarized in Theorems 1.2.5 and 1.2.8. This result can be

illustrated by the formula

Consistency + Stability = Convergence
moreover, (1.27)

Convergence = Stability .
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This explains the name “equivalence theorem” (i.e., stability is equivalent to

convergence under the assumption of consistency).

e (A4) and (A5) of Assumption 1.2.6 are necessary, see [43] and [44], respectively
for the details.

1.2.2 Examples
Until now we have shown the linear framework on the abstract level. In the following

we illustrate these abstract results with various examples.

Problem 1. Let Q ¢ R? be an open and bounded domain with a smooth boundary
0f). We investigate the elliptic equation

Ku= in
u=f, mi, (1.28)
u=g, atofl,
where K is an elliptic operator given in a divergence form as
d d
ou ou ou
Ku=— — | ajj— bi— , 1.29

where a;;, b;, ¢ are smooth coefficient functions.

Remark 1.2.10. [10, Ch.6.1.1] We can model physical processes with PDE’s. The so-
lution of the previously defined problem can be interpreted as a chemical concentration
(or the density of some quantity) at equilibrium within a region €.

Then the second-order term represents the diffusion, the first-order term represents
the transport within {2 and the zeroth-order term describes the local creation or deple-
tion of the chemical (simply saying the reaction term). (The coefficients a;; describe

the anisotropic heterogeneous nature of the medium.)

Example 1.2.11. This example is based on [44, Paragraph 3.4]. We set a ho-
mogeneous Dirichlet boundary condition (i.e., ¢ = 0), moreover, we assume that
K : L?(Q) < L*(f) is a symmetric, uniformly positive operator (this can be ensured
by some restrictions on the coefficients) whose domain is dom K = Hj(Q2) N H?*(Q).
f € L*(Q) is a given function.

In this case there exists a unique weak (generalized) solution u; = Ef € H}(1Q),
and F : L?(Q) — H}(Q) is characterized by the variational formula

a(Ef,v) = (f,v), Yve HyQ), (1.30)
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where a(-,-) is the bilinear form corresponding to K which is defined as

d d
Ou Ov ou
G(’u.?’U) = / E a.ija—xia—mj —|— E bia—xév + cuv C]X (131)
o) i,j=1 i=1

and (-,-) denotes the L? inner product.

This means the setting X = H;(2) with the energy norm, D = Hj(Q2) N H*(Q),
Y = L*(Q) with the L? norm, and consequently the problem is well-posed in the sense
explained at the beginning of this subsection.

To get an approximation u, ¢ of the solution uy, a finite dimensional subspace S,

in Hj(R) is chosen and u,, ; is defined by the equality
a(unf,v) = (f,v), Yvels,. (1.32)

It is known that in this case u, ; exits uniquely.

We set X, as S,, with the energy norm and ), as S,, with the L? norm, ¢, : X — X,
and ¢, : Y — Y, as the a(, -)- and (-, -)-orthogonal projections, respectively. With this
choice Assumptions 1.2.1 and 1.2.6 are fulfilled. The discrete problems are well-posed
with solution operators E,, : YV, — A, defined as

a(Eph,v) = (h,v), YveS,. (1.33)
This means that
a(ur —upr,v) =0, Yvebs,, (Galerkin-orthogonality)

consequently, o, Ef = ppus = uyn s = Epfn = Eptbn f, thus the global discretization
error is 0, which means that this method is convergent independently of the choice of
the subspaces S,,.

This may sound odd, but reflects well on the argumentation of the Paragraph
“Convergence” in Subsection 1.1.2 i.e. the success of the whole procedure depends on
two tasks, on the numerical method (in our terminology convergence is a notion related
only to the numerical method) and on the approximation capabilities of the subspaces
X,,. The second task depends on the choice of the subspaces S,,. This can be explained
by the relation

lup —unglle < Jlup — enuglly + |lnuy = unslla, - (1.34)
a.pprcxximatign capabilities =0 =>CD-1?IrVEI‘gel'lCG
Thus, in this case
lusr —unslle = |luy — enurllx . (1.35)
e’

approximation capabilities
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FEM. A question is: how to implement the numerical method described above?
One possible way is the finite element method (FEM). The FEM is well-known in the
numerical analysis community, detailed descriptions can be found in many textbooks,
here we provide a short introduction in order to introduce some notations which will
be used later.

To realize (1.32) we need to define Sy, which can be done by giving a basis of this
subspace. There are many ways to do this, here is only one approach presented.

The first step is to define a mesh on 2. A 1D mesh consists of intervals. The
2D mesh is a regular triangle mesh and the 3D one is a tetrahedron mesh. A given
mesh determines the sets P = {x1,%a,...,xy} and Py = {Xn41,XN+2s- -, XN+N, |
containing the vertices in €2 and on €2, respectively. Let us introduce two more
notations: N = N+ Ny and P = P U Ps.

The basis functions are denoted by ¢;(x), i = 1,... N. One possibility is the use of
the so-called hat functions which are defined with the following properties:

1. the basis functions are continuous functions;

2. the basis functions are piecewise linear functions over intervals/triangles/tetrahedrons;
3. di(xs)=1fori=1,...N;

4. ¢i(xj)=0fori=1,...N,j=1,...N,i#j.

We set n = N and seek u,, s in the form Ei\;l u;¢;. Then the coefficients u; can be

determined by solving the linear algebraic equation
Koug =1, (1.36)

where K, € RV*V is the so-called stiffness matrix with entries

Koij = a (95, $i) (1.37)

uy € RY contains the unknowns, and f; is determined by the formula (f, ¢;).

Returning to Example 1.2.11, where a convergent numerical method was described,
Theorem 1.2.8 (Equivalence theorem, part 2) implies that the inverses of the matrices
Ky are uniformly bounded (stability), i.e. there exists a constant S independently of
n such that

Kl < S (1.38)
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holds in some suitable norm. Note that (1.36) and (1.32) can be viewed as two different
forms of the same equation, however, in this case this means that the norms correspond-
ing to the second form (1.36) are determined, i.e. ||f||g is defined as ||t f||z2 and ||u]|
is defined as |/¢nul|g1, and the suitable norm in (1.38) is the || - [|g 4 norm.

If we want to depart from this choice e.g. we choose X, = YV, = (RY,|| - ||2),

then we need to check (A2) of Assumption 1.2.1 and (A5) of Assumption 1.2.6. When
N
f = >_rid;, then ||fljz = ||r||m and £ = Mr, thus ||¢,| = ||M||2% and similarly

i=1

llenll = ||H_1||§, where H;; = (grad¢;, grade;). This means that for (A2) it is needed
1 1

to show that |[H 1|2 < C; and ||[M||3 < C; hold. This can be done, however, (A5)

does not generally hold since

1 < 1
M1~ [|[M]2

< ”h/I_lll2 3

and e.g. for the one-dimensional uniform mesh |M||; = h, where the meshsize is h,
shows us that |M™!||; — oo when h — 0. This means that in this case the framework

is not applicable.

We note that the FEM can be easily extended to the case where a nonhomogeneous
Dirichlet boundary condition is prescribed. In this case the set of the basis functions
need to be supplemented by the functions ¢;, i = N+1, ... N with the properties listed

earlier. The equation to be solved reads as
Ku=f, (1.39)

where K = (Ko|Kj) € RV*N u = (up|us)” € RY and up can be determined by using
the boundary condition.

FDM. There are other ways to approximate the solution of the equation (1.28). In
the following we overview the finite difference method (FDM) in a same short way
as earlier for the FEM. To make easier the presentation of the FDM we simplify the
problem (1.28) into the simple problem
{ —u'(z) = f(z), z€(0,1),

u(0) = u(1) =0. (1.40)

In the first step a mesh is defined (similarly as for the FEM), here we choose a uniform
mesh which determines the sets P = {x; = h,x3 = 2h,...,xy = Nh} and Py = {x0 =
0,xy+1 = 1} containing the vertices in {2 and on 952, respectively, with h = N1
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Then we use the approximations

—u(x — h) + 2u(z) — u(z + h)
h? ’

’U,(:E) =0, L= To, TN+1 >

—u"(z) ~ r=x;,i=1,...,N,

(1.41)

resulting in the linear algebraic equation
Koup = f:

where Ky = (N + 1)%tridiag (—1,2, —1) € RV*Y and uy € RY contains the unknowns

whose coordinates u; approximate the values of the function u at the points z; and
similarly f; = f(z;).

Example 1.2.12. To be precise we set
X =C*%0,1)Nn{uec C[0,1] : u(0) = u(1) = 0}

with the maximum norm and J = C?(0, 1) with the maximum norm, too. We mention
that this choice is needed to gain the usual second order consistency (and with that
the possibility of the second order convergence) but for the consistency (and for the

convergence) instead of C* C* would be sufficient.
X, = {u e RN*2 . 0 = UN+1 :0}

and ), = R", both with the maximum norm. ¢, : X — X, and ¢, : Y — ), are
defined as u +— u : u(z;) = u; and f +— f: f(z;) = fi, respectively.

Note that here ) is not a Banach space, but this is not very interesting from a
practical point of view, since we want to define a convergent numerical method. To
ensure convergence we need to show that the procedure described above is consistent
and stable, c.f. Theorem 1.2.5 (Equivalence theorem, part 1).

Consistency can be obtained easily using the Taylor series theorem. The main task

is to prove stability.

To prove stability the notions of Z- and M-matrix and related basic results are used,
which can be found in the Appendix.

The matrix Ko = (N + 1)%tridiag (—1,2, —1) is a Z-matrix, moreover it is a non-
singular M-matrix. To show that it can be used the 2nd point of the Theorem 5.0.14
which is usually called ”dominant vector condition”. We choose d as d; = z;(1 — z;),
i=1,...,N. Then d > 0 and min(Kyd); = 2 hold independently of N.
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Using Lemma 5.0.15, the choice d : d; = z;(1 — z;), i = 1,..., N means that
[d|ec < $ independently of N, hence

9l

Ko < ——2
Ko loo < min(Kod);

1
s%s (1.42)

1

8

holds independently of N, and this yields the stability.
Finally, returning to Example 1.2.12 we obtained that the FDM applied to the

problem 1.40 is consistent and stable, and so it is convergent as well.

Remark 1.2.13. We obtained above that K;' is a nonnegative matrix (i.e., each

entries are nonnegative) and this has an important consequence. Namely,
f<0=>u=K;'f<0. (1.43)

This property is called discrete nonpositivity preservation property. If the data is

nonpositive, then the solution is nonpositive as well.

It is important to note that the original equation (1.40) possesses this property
(continuous nonpositivity preservation property), too. Naturally, a numerical method
which can reflect this property is a better choice, than another one which lacks this
property.

We note that the most important difference between the notions convergence and
qualitative properties (such as the discrete nonpositivity preservation property) is as
follows. Convergence is a property of a sequence and a qualitative property is related
to one member of the sequence. However, it can have the same importance.

We gave a quick look at a qualitative property in order to prepare the Reader
for the subject of the forthcoming chapters, which deal with maximum principles, a

generalization of the nonpositivity preservation property.

We note that the FDM can be extended to nonhomogeneous Dirichlet boundary

conditions. The problem

—U”(:E) = f(:t?) y T E (01 1) )
u(0) =a (1.44)
u(l) =5

transforms under the FDM into the system of linear equations Ku = f, where K =
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(Ko|Kjp) with

(o)

0
Ko=| 0 0 and u = (uolb,a)” . (1.45)
0 0

\-1 0

Naturally, consistency, stability and convergence can be verified similarly to the homo-

geneous case.

Problem 2. In this paragraph we will study the linear parabolic problem

X b Kv=f inQy (1.46)

with the Dirichlet boundary condition

v=g ondx|[0,T] (1.47)
and with the initial condition

v=1vy onfx{t=0} , (1.48)

where Q7 = Q x (0,T] for some fixed T > 0. As in the previous paragraph, Q c R¢
is open and bounded with boundary 9Q, O = QU Q. u: Qr — R, v = v(x, t) is the
unknown, f: Qr - R, f = f(x,t), g: 02 x [0,T] = R, g = g(x,t) and up : Q@ — R,

Vo = up(x) are given. The differential operator K is given in divergence form as

K ——ii ek +§:bv‘%+ (1.49)
v ij=1 3£I?j a”@:ni o1 %6373‘ @ ’

with sufficiently smooth coefficient functions a;;(x,t), bi(x,t),e(x,t) : Qr = R, 4,7 =
1,...,d.

Remark 1.2.14. [10, Ch.7.1.1] In Rem.1.2.10 we mentioned that we can model physi-
cal processes with PDE’s. The solution of the above defined problem can be interpreted
as the time evolution of a chemical concentration (or the density of some quantity)

within a region (2.

37



1. BASIC NOTIONS OF NUMERICAL ANALYSIS

Switching to semigroup viewpoint, we assume that the coefficients of the operator

K are time-independent, and K generates a strongly continuous semigroup in the

Banach space B. We choose X = (C([0,T],B), || - l), L : v(-) = (v(0), % — Kv),
D={veX: :32 & _Kve F(0,T],B)},Y = BxF([0,T], B) and we assume that
feF(0,T],B), where F=LP 1<p<ooor F=C.

The Reader can find information about the well-posedness of the above defined
parabolic problem in [44, Paragraph 3.2.] and in [10, Ch.7.1.1 and Thm.3 in Ch.5.9.2,

Thm.3 and 4 in Ch.7.1.2¢, Thm.5 in Ch.7.1.3].

Discretization with FEM + #-method. For the sake of simplicity we assume
a homogeneous Dirichlet boundary condition i.e. ¢ = 0 on 09 x [0,T]. We choose
B = L*(Q2). By using the weak formulation

(%w) —a(v,w) = (f,w),

where (-, -) denotes the L? inner product, and a(,-) is the bilinear form corresponding
to K (defined similarly as in the elliptic case). Choosing a subspace (defined with the

basis functions ¢;(x), i = 1,... N) we arrive at the equations

N N

> 0 t) (i ¢5) — Y vit)aldi, é5) = fi(H), i=1,...,N,

i=1 i=1

where f;(t) = (f(t), ¢;), which can be written in the matrix form
MQVO(t) - K()Vﬂ(t) = f(t) 3

where v (t) = (v1(t),...,ox ()T, £(t) = (f1(t),- .., [n(t)T, Moij = (¢4, ¢:) is the mass
matrix and Ko;; = a(¢;, ¢;) is the stiffness matrix.
To obtain the fully discretized form from the semidiscrete form one possible option

is to apply the f-method.

vitl _yn
Mo~ = 0Kovp ™ + (1 - O)Kovg + 1974, n=0,.... M,
where a uniform mesh is used with 7' = MAt, § € [0,1]. v approximates v(nAt),
(n+1)At
fOrtl — Of (n+1)At) + (1 —6)f(nAt) in case of F' = C, and ! = A [ f(t)dt
nAL

in case of F' = LP.
Using the notation X;q = éMo — 0K, and X5 = éMﬂ + (1 — 0)Kj it can be

rewritten as

n=0,...,M.

?

nt+l n __ en+l
XIDVQ XQQVO =f
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In the following, for the sake of simplicity, we drop the superscript # from the expression

fon+1 Using the notations

[ 1 0 ... ... 0 ) [ v [ v3

—Xa20 Xjo 0 Ca 0 Vé f!
EO = 0 —X20 XID 0 y g = : 3 ,U.'- = : 3
\ 0 . 0 —Xgo XlO / \ Véw / \ er )

it can be written in the compact form
Lovg = p,

or
v =Ly,

where

[T o ... ... 0) [ v
T

I o ... 0 0
L= T T 1 0 ... |, pu=]| : (1.50)
\ T ... T2 T I ) \ 0 )

in case of f =0, otherwise

(1 o ... ... 0\[1T 0o ... ... o0 )

T I 0 ... 0 0 Xy 0 ... 0
Lol=| T2 T 1 0 .. 0 0 X3t o ... |. (1.51)
\ TV ... T2 T 1 J\0 ... 0 0 Xy }

We choose &, = (R, || [[)*, || loo) and Yo = ((RY, |- [lo)™*, || [l1). Stability

means that
sup {|| T*|lo«:1<i<M,} <oo

holds for all n (note that the notation n was omitted earlier, here the procedure was
presented for a fixed n) in case of f = 0. This is similar to the stability condition

obtained in the famous paper [36] and in the paper [44] for the semidiscrete form.
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This type of stability is usually called stability with respect to the initial data c.f. [47,
Paragraph 2.3.]. In the general case stability means that

sup {||T*'X1_01||D,<J 1<i < M,} < 00.

holds for all n. This type of stability is usually called stability with respect to the
initial data and to the right hand side, c.f. [47, Paragraph 2.4.].

Here the framework was presented for a homogeneous boundary condition, but it is
extendible to the nonhomogeneous case. Moreover, here the FEM + 6 method is used,

but FEM can be substituted with e.g. FDM, too.

Summary of the chapter. In this chapter we gave a framework on the numerical
treatment of approximating the solution of the equation F'(u) = 0, where & and Y
are normed spaces, D C X and F': D — ) is a (nonlinear) operator. The framework
was split into two parts, the first contained the general (nonlinear) case while the
second contained the affine case. Both parts were based on Lax’s idea, namely on the
statement that consistency and stability implies convergence. Moreover, in the affine
case stability and convergence are equivalent under the consistency assumption (Lax
equivalence theorem).

Section 1.1 contained the nonlinear theory and this was based on the paper [23,
Faragd, Mincsovics, Fekete, 2012]. Our framework contained a theoretical part, where
we rephrased Stetter’s results in order to fit it into our framework, and we illustrated
the basic notions and results for the explicit Euler method, see Subsection 1.1.2. We
extended the framework for applications, see Subsection 1.1.3, including our results,
namely Lemma 1.1.34, Theorem 1.1.36 etc. Finally, in the general case we investigated
the relation of the basic notions with numerous examples.

Section 1.2 contained the affine part of the framework. Here we compared the
basic notions of this special case to the basic notions of the general case, and we gave
an overview by using the results of Palencia and Sanz-Serna. Finally, we presented

examples for the case where the framework was applied to elliptic and parabolic PDE’s.
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Chapter 2
Maximum principles

In this chapter we overview the most important pieces of informations on maximum

principles based mainly on the book [10].

2.1 Elliptic maximum principles

In this section we list the definitions of continuous maximum principles for linear elliptic
operators and the important theorems about them, based mainly on [10, Ch.6.4.1-
Ch.6.4.3]. We study elliptic operators, and not elliptic PDE’s; since this approach is
more comfortable, and clearly the qualitative properties of some PDE’s depend on the

qualitative properties of the corresponding operators.

Let © ¢ R? be an open and bounded domain with boundary 89, and Q = QU
0. We investigate the elliptic operator K, dom K = C?(2) N C(2), defined in non-

divergence form as

Ku——iza-vy—u—i—i:b-@—l-cu (2.1)
- ig=1 “ 3:1?;'311?3' i1 ®6$g’ ’ ’

where a;;(x), bi(x), c(x) € C(Q2), moreover, for the sake of simplicity we assume that
a;j(x) € C*(2), which enables us to rewrite the non-divergence form to divergence

form and vice versa, c.f. (1.29).

The family of maximum principles consist of many members, the most known are
the non-positivity preservation property (which was mentioned already earlier) and
the weak and strong maximum principle. Here, besides these maximum principles we
investigate less frequently used ones including newly introduced, too. This is done with

the purpose to make the discussion clearer. Their similarity will provide the possibility
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we can exploit mostly in Section 3 in the proofs. Thus, in other words, we can consider
the family of maximum principles as variations on a theme.

First we define the weak and strong non-positivity preservation properties.
Definition 2.1.1. We say that the operator K, defined in (2.1), possesses

e the weak non-positivity preservation property (nP) if the following implication

holds:

Ku<0in Q, négxug[} = maxu<0. (2.2)
0

e the strong non-positivity preservation property (NP) if it possesses the nP, more-
over, the following implication holds:

Ku<0inQ and mgxu:m_amxu:[} = u=0in{). (2.3)
Q

We could call these two the “parents” in the family of maximum principles. These
are clearly maximum principles and with a (relatively) mild expectation. For those
operators possessing the nP we can give an upper bound (which is 0) for the function u
under some conditions, namely the K-image of u is non-positive and u is non-positive
at the boundary. For those operators possessing the NP we can state that if the K-
image of u is non-positive, and u attains its maximum at an interior point, and this
maximum is 0, then v = 0.

To define further and less mild maximum principles we proceed in the following
way. We push some condition from the left side of the implication (2.2) to the right
side resulting in something like this: Ku < 0in Q@ = maxgu < max{0, maxsq u}.
[t means that for those operators fulfilling this principle, if the K-image of u is non-
positive, then u is bounded from above, and this bound is defined by the boundary
values of u and the zero, more precisely, u attains its non-negative maximum at the
boundary. We could make this notion more restrictive omitting the 0 from the upper
bound max{0, maxsg u}. (This means that for those operators fulfilling this principle,
if the K-image of u is non-positive then u attains its maximum at the boundary.)
Naturally, we want to proceed similarly with the implication (2.3), but in this case we
modify the right side of it.

We summarize these “descendants” in the following definition.
Definition 2.1.2. We say that the operator K, defined in (2.1), possesses

e the weak mazimum principle (wWMP) if the following implication holds:

Ku<0inQ = maxu< maac{[},né%xu};
0
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e the strictly weak mazimum principle (WMP) if the following implication holds:

Ku<0in () = maxu=—maxu;
9 a9
e the strong mazimum principle (sMP) if it possesses the wMP, moreover, the

following implication holds:

Ku<0in{) and maxu=maxu=m2>0 = uw=min Q;
Q
e the strictly strong mazimum principle (SMP) if it possesses the WMP, moreover,

the following implication holds:

Ku<0in{) and maxu=maxu=m = u=minf{).
Q

We note that in the definition of the sMP and SMP m is a constant. The meaning
of SMP (sMP) is the following. For those operators fulfilling this principle, if the K-
image of u is non-positive and u attains its (non-negative) maximum at an interior
point, then u is a constant function. We can see that the operator —A possesses all

the above defined maximum principles when 2 is connected.

Remark 2.1.3. We make some comments on the above defined maximum principles.

It is clear that the relation of the above defined notions are the following.

WMP = wMP = nP

i i i
SMP = sMP = NP

e Sometimes the case ¢ = 0 is called strong elliptic maximum principle, see e.g.

[10], but we wanted to reserve this name to another property.

e We mention that it is possible to define minimum principles similarly. E.g. the
weak minimum principle (the twin of the wMP) reads as Ku < 0in ) =
mingu > min{0, mingg u}. However, due to the linearity of the operator K, it

requires the same restriction for an operator to fulfil it.

e To define maximum principles we followed a recipe. The Reader could ask
whether we could make it further, pushing Ku, too, somehow to the right side of
the implication of the wMP. This can be done and it can be found in the series
of papers [20, 21, 22|, and in collected form in [52] (however, we note that these

papers discuss only a case of a special operator).
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e We defined maximum principles for those operators whose domain is dom K =
C?() N C(Q). It is possible to proceed similarly for a wider class of operators,
namely, for those defined on H'(f2) (containing less smooth functions). This can

be found in [57].
We collected the results on maximum principles in the following theorem.

Theorem 2.1.4. [10, Thm.2. and Thm.1. in Ch.6.4.1, Thm.4. and Thm.3. in
Ch.6.4.2] If operator K, defined in (2.1), is uniformly elliptic and

e ¢ > 0, then it possesses the wMP;

e ¢ =0, then it possesses the WMP;

e ¢ > 0, moreover €2 is connected, then it possesses the sMP;

e ¢ = 0, moreover () is connected, then it possesses the SMP.
Remark 2.1.5. We make some comments on this result.

e The definition of uniform ellipticity can be found in the Appendix.

e ¢ > 0 is not necessary for the wMP and for the sMP.

e The requirements under which the operator possesses a weak maximum principle

can be weakened, see, e.g. [5].

e One can see that the connectedness of (2 is necessary, too, for the sMP and SMP

as well.

The Reader can find more information about maximum and minimum principles in

[10, Ch.6.4.1-Ch.6.4.3).

2.2 Parabolic maximum principles

In this section we could proceed similarly to the elliptic case, namely, we could introduce
a whole family of maximum principles, which is more plentiful in members. However,
here we restrict ourselves to the most important ones, only. Besides this we skip
the details (which are similar to the elliptic case), thus we switch to the brief style.
This section is based mainly on [10, Ch.7.1.4]. To a more concise style introduction

containing various types of parabolic maximum principles we recommend the works

[11, 17, 19] besides [10].

44
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We assume that the domain 2 € R? is open and bounded with boundary 050, as
before. Let T' be a positive real number. For ¢t € (0,7] we introduce the notations
Q; = 0x(0,1), Q; = 0x[0,#] and I'; = (82 x[0,¢])U(Q2x{0}) for a piece of the parabolic
boundary. We investigate the parabolic operator L, dom L = C*'(Q7)NC(Q,) — where
the symbol C?! means: twice continuously differentiable with respect to the space
variable and continuously differentiable with respect to the time variable — defined in
non-divergence form as

Ov d
LU:E_ZQZ“"'@%&BJ ;:b—+w (2.4)

where a;;(x,t), b;i(x,t),c(x,t) € C(Qx [0, T]) and a;;(x, t) is continuously differentiable
with respect to the space variable, this enables us to rewrite the non-divergence form

to divergence form and vice versa, c.f., the paragraph “Problem 2” in the last chapter.
Definition 2.2.1. We say that the operator L, defined in (2.4), possesses

e the non-positivity preservation property (nP) if the following implication holds
for all t € (0,77:

Lv <0in @, mraxv<0 = maxv <0. (2.5)
Qr

e the mazimum principle (mP) if the following implication holds for all ¢ € (0, T]:

Lv<0in @, = maxv< max{[},n}‘axv}. (2.6)

t

e the strict mazimum principle (MP) if the following implication holds for all
te (0,7]:

Lv<0inQ; = maxv= maxv. (2.7)
Q: t

We can see that these maximum principles are of the week type (c.f. the elliptic
maximum principles) but we omitted this attribute in order to simplify the naming
procedure and the notations. It is clear that their relation can be explained with the

same recipe as the construction of the family of elliptic maximum principles.

Theorem 2.2.2. [10, Ch.7.1.4, Thm.9. and Thm.8.] If operator L, defined in (2.4),

is uniformly parabolic and

e ¢ >0, then it possesses the mP (and the nP);

e ¢ =0, then it possesses the MP (and both the mP and the nP).

The definition of uniform parabolicity can be found in the Appendix.
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Summary of the chapter. In this chapter an overview on elliptic and parabolic
maximum principles was presented based mostly on the book [10]. From didactical
considerations we introduced a new notion: the weak non-positivity preservation prop-
erty (nP).
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Chapter 3

Discrete elliptic maximum

principles

In this chapter we present an algebraic framework for discrete maximum principles
for matrices where we define these in accordance with the continuous case and we
investigate their applicability. We give algebraic results on discrete maximum principles
and we present numerical examples demonstrating the differences between them. These
results are (mostly) from the paper [41]. Finally we end this chapter with a thorough
investigation of how we can handle a discrete maximum principle when a discontinuous
Galerkin method is applied as discretization on a special operator. This final part is

based on the paper [28].

3.1 Algebraic framework

3.1.1 Discrete elliptic maximum principles

First we introduce some notations. We use the following typesetting: A for matrices,
a for vectors. 0 denotes the zero matrix (or vector), e is the vector all coordinates of
which are equal to 1. The dimensions of these vectors and matrices should be clear
from the context. A >0 (A > 0) or a > 0 (a > 0) means that all the elements of A
or a are non-negative (positive). The symbol max a stands for the maximal element of
the vector a and max{0,a} denotes max{0, maxa}.

We will use the notions of different types of matrices, such as Z-, M-, irreducible,
diagonally dominant (DD), irreducibly diagonally dominant (IDD) and Stieltjes matrix.
All of these notions and related basic results can be found in the Appendix.

In the following we define discrete maximum principles for a discrete operator, i.e.,
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3. DISCRETE ELLIPTIC MAXIMUM PRINCIPLES

for a matrix in the partitioned form

K = (Ko|Ky) € RNV (3.1)
where K, € RVNV, Ky € RV*No 'N = N + Nj, acting on the vector

u = (uoluy)’ € RV, (3.2)

where up € RV, uy € RV2. We assume that N, Ny > 1.

We choose the natural (which is at the same time the simplest) way to define
discrete maximum principles for this matrix. Later, in Subsection 3.1.3 we investigate
the applicability of the definitions in the light of different discretization methods.

The natural way means the following.
Definition 3.1.1. We say that the matrix K, given in the form (3.1), possesses

e the discrete weak non-positivity preservation property (DnP) if the following im-

plication holds:

Ku<0, maxus <0 = maxu<O0.

e the discrete strong non-positivity preservation property (DNP) if it possesses the

DnP, moreover, the following implication holds:

Ku<0 and maxu=maxuyy;=0 = u=0.

Definition 3.1.2. We say that the matrix K, given in the form (3.1), possesses
e the discrete weak mazimum principle (DwMP) if the following implication holds:

Ku<0 = maxu<max{0,us}; (3.3)

e the discrete strictly weak mazimum principle (DWMP) if the following implica-
tion holds:

Ku<0 = maxu=maxuy;

e the discrete strong mazimum principle (DsMP) if it possesses the DwMP, more-

over, the following implication holds:

Ku<0 and maxu=maxup=m=>0 = u=me;
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e the discrete strictly strong mazimum principle (DSMP) if it possesses the DWMP,

moreover, the following implication holds:

Ku<0 and maxu=maxuy=m = u=me.

Here we also note (as in the continuous case) that m is a real number, representing
the value of the maximal entry of the vector u. These definitions correspond clearly to
the Definitions 2.1.1 and 2.1.2. The relation between these discrete maximum principles

is the same as that between the corresponding continuous ones.

DWMP = DwMP = DnP

i i i
DSMP = DsMP = DNP

Remark 3.1.3. However, there are other ways to define discrete maximum principles.

About this we collected some information.

e The first paper in which a discrete maximum principle was formulated is probably
[56], but that definition given there contains Ku = 0 at the left side of the
implication (3.3) instead of Ku < 0. On the other hand, K was allowed to have

complex entries.

e The definition of the discrete weak maximum principle which is used today (in the

same form as we defined it) appeared first in [5] (but it was named differently).

e In Remark 2.1.3 we mentioned that it is possible to define more restrictive con-
tinuous maximum principles following the previously given recipe further. In the
works [20, 21, 22|, collected in [52], the Reader can find information about a

discrete case, too.

e There are other types of discrete maximum principles based on other continuous
models. We mention the papers [49, 50|, which contain the definition of a discrete
maximum principle suitable for input-output models. In [50] the connection of

the two different discrete maximum principles is investigated, too.

3.1.2 Algebraic results on discrete elliptic maximum princi-

ples

Our aim is to give necessary and sufficient conditions for the above defined discrete

maximum principles, moreover, by means of which we would also like to shed some
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3. DISCRETE ELLIPTIC MAXIMUM PRINCIPLES

light on the relations and differences between them. Naturally, we also touch upon

useful practical conditions which can be useful from an application point of view.

We begin with the DnP and the DNP.

Lemma 3.1.4. The matriz K (given in the form (3.1)) possesses the DnP if and only
if the following two conditions hold:

ml) K;'>0; (n2) -K;'Ks>0.

Proof ~ — First, we assume (nl)-(n2) and Ku < 0, us < 0. Then K" exists by

(n1) and we can use the identity
u, = K;'Ku — K 'Kpsuy , (3.4)
which gives immediately ug < 0, the required relation of the DnP.

— Second, we assume the validity of the DnP. We use the setting Ku =0, usy = 0,
which results in maxug < 0. We use the same setting in —Ku = K(—u) in order
to get max —ugy < 0, thus ker Ko = {0}, and this means that the identity (3.4)
can be applied. Then (nl) follows from setting us = 0, while (n2) follows from
setting Ku =0.

|

Lemma 3.1.5. We assume that N > 2. The matriz K (given in the form (3.1))
possesses the DNP if and only if the following two conditions hold:

(N1) Kg' >0; (N2) -K;'Kp > 0.

Proof.  — First, we assume (N1)—(N2). We have to show that the relations Ku < 0
and max u = max uy = 0 together imply u = 0. Then uy < 0 have a 0 coordinate.
Using the identity (3.4), (N1)—(N2) and the fact that uy has a 0 coordinate yields
that Ku = 0 and us = 0. These imply ug = 0.

— Second, we assume the DNP. Then the DnP holds, thus (n1)—(n2) hold. We can
choose freely Ku < 0, usp <0 in (3.4).

First, we set ug = 0 and we assume that K;' has a 0 element, let it be the ij-th
entry of the matrix. We choose the j-th coordinate of Ku as —1, the others as
0, then the i-th coordinate of ug is 0. If in the j-th column of Kj' there is a
positive entry, then uy # 0, which is a contradiction. Otherwise, the matrix K
has a zero column, which is a contradiction, too, since it is invertible. Thus, we
have proven that (N1) holds.
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Second, we set Ku = 0, and assume that —K;'Kp has a 0 element, let it be the
ij-th entry of the matrix. We choose the j-th coordinate of uy as —1, the others
as 0, then the i-th coordinate of ug is 0, but us # 0, which is a contradiction.
Thus, we have proven that (N2) holds, too.

O

Note that the following proofs in this section will be similar to the proofs of Lemma
3.1.4 and 3.1.5. Next we investigate the DwMP. The next lemma was first proven by
Ciarlet, but we give here a slightly different proof exploiting Lemma 3.1.4.

Lemma 3.1.6. [5] The matriz K possesses the DwMP if and only if the following three

conditions hold:
(wl) Kyt >0; (w2) ~K;'Ks > 0; (w3) —K;'Kse < e.
Proof. We can observe that (wl) and (w2) are identical with (n1) and (n2).

— First we assume (w1)—(w3), then

Ku<0 = u<-K;'Ksus < —K;'Ksmax{0,us}e < max{0,us}e.

— Second, to prove the reverse direction we assume the DwMP. DwMP implies
DnP and that gives (wl) and (w2) (= (nl) and (n2)). (w3) follows from putting
Ku =0, us = e in (3.4).

O

Earlier in Chapter 2 we created the definition of wMP from the definition of nP
following a recipe. Now we present a useful result in order to explain this recipe (and

relation) from a deeper point of view.

Lemma 3.1.7. [11, L.2.3.26] The matriz K possesses the DwMP if and only if the

following two implication hold.
Ku<0, upy <0 = maxuyg<0

and

Ku<0, uwvp>0 = maxuy<maxuy.

Proof. Tt is trivial that the DwMP implies the two implications given above. The
converse is almost trivial because the first implication is equivalent to (w1) and (w2),
since it is the DnP. To prove (w3) we set uy = —K;'Kse and us = e. With this
setting we can apply the second implication, since Ku = 0, thus max —K;'Kgze < 1,
and this is exactly (w3). O
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Practical algebraic conditions for the DwMP. Lemma 3.1.6 is a theoretical

result which cannot usually be applied directly. There are several ways to get practical

conditions under which the DwMP holds.
e The condition (w2) is usually replaced by the assumption
(w2) Ky <0,

as suggested in [5]. Then (w2’) with (wl) clearly implies (w2), but the converse

1s not true.

e The condition (w3) is usually replaced by the assumption
(w3’) Ke >0,

as suggested, also in [5]. (w3’) with (wl) implies (w3) but the converse is not

true again. (w3’) corresponds to 0 < ¢ c.f. with the continuous case.

e But the major task is to guarantee (wl). Inverse non-negativity is a more difficult

notion. In most cases (wl) is relaxed by
(wl’) Ky is a non-singular M-matrix.

But (w1’) in this form is a theoretic condition, too. [5] (see also [34, Thm.1.9])

gives the condition
(wl'a) Ko is an IDD Z-matrix with positive diagonal entries.

(wl’a) implies K;' > 0, see [55, Cor. 3.20.]. Both the assumption and the result
seem to be too much. Actually,

(wl’b) Ky is an irreducible DD non-singular Z-matrix

is enough to guarantee K;' > 0. These can be proven using [3, Thm. 2.7. in
Ch. 6.2.] (see the Appendix). We can generalize this result with

(w1'bb) Ky consists of diagonal blocks with the property (w1’b) (or (wl’a))
(elsewhere 0)
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c.f. [34, argumentation below the Thm.1.9, and Ex.1.13]. Thus we can see that
irreducibility is far not necessary and assuming this we get the "only” required
condition Kal > 0.

In [25] (see [8], too) the condition
(wl'c) Ky is a Stieltjes matrix

is proposed since (w1’a) seems to be too restrictive in some cases in the practice.

Naturally, it is recommended only if K is symmetric.

We can use the "dominant-vector” condition
(wl'd) Ky is a Z-matrix for which 3v > 0 with Kov > 0,

too, as it is demonstrated in Subsection 3.3.2. We note that this condition is
equivalent to (w1’) in fact, see [3, Thm.2.3 in Ch.6.2] (see the Appendix).

K, does not need to be an M-matrix. For other possibilities see [25] and the

references therein.

After this, the Reader might think that it is needed to choose a triplet of practical
conditions in order to guarantee the DwMP. This is right, but we note that the listed
practical conditions are not entirely independent from each other. E.g., if we choose

the following triplet

(w1’b-) Kj is an irreducible Z-matrix
(Ww2'+) Kp <0
(w3’) Ke>0,

then (w2'+) and (w3’) "can help” the condition (w1’b-), since then K is IDD; too.
Note that the condition (w2'+) is wholly natural in practical situations and we will
see later that a similar condition (s2’) plays an important role in order to guarantee

the discrete strong maximum principles.

We are going further with the DWMP.

Theorem 3.1.8. [11, L.2.3.29 and L.2.3.30] or [12] The matrizx K possesses the
DWMP if and only if the following three conditions hold:

(W1) K;' > 0; (W2) —K;'Ks > 0; (W3) —K;'Kse = e.
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Proof. We can observe that (W1) and (W2) are identical with (wl) and (w2) (with
(n1) and (n2), too).

— We assume (W1)—-(W3) and Ku < 0. Then
ug = KalKu — KalKaua < —KalKaua < —KalKa(max up)e = (maxup)e,
which implies maxuy, < maxug.

— In the reverse direction it is clear that (W1) and (W2) (= (wl) and (w2)) holds
since DWMP implies DwMP.

To prove (W3) we poceed similarly as in the proof of Lemma (3.1.7). First, we
set uy = —K;'Kpe and uy = e. With this setting we can apply the implication
of the definition of DWMP, since Ku = 0, thus max —K;'Kge < 1. Second, we
set ug = KalKae and up = —e. With this setting we get max KalKae < -1,

which is equivalent to min —K;'Kge > 1. Finally, the relation
1 < min —KalK,se < max —KalKae <1
implies (W3).

O

e Note that (W3) is equivalent to Ke = 0, and this corresponds to ¢ = 0 c.f. the

continuous case.

e In [34, Thm.1.10] it was proven that (w1’bb), (w2’), (W3) imply the DWMP, thus
they form a practical triplet of conditions to guarantee it. (It is trivial, since we

saw earlier that (w1’bb) implies (W1), and (w2’) with (W1) implies (W2).)

We complete this part with the two strong maximum principles.

Theorem 3.1.9. We assume that N > 2. The matriz K possesses the DSMP if and
only if the following three conditions hold:

(S1) Kg'>0;  (S2) - K;'Ks >0;  (S3) —K;'Kse =e.

Proof. Note that (S1) and (S2) are identical with (N1) and (N2), moreover, (S3) are
identical with (W3).
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— First, we assume (S1)—(S3), Ku < 0 and maxu = maxug = m. We write
uy = me — hg, usg = me — hy, where both hy, hsy > 0 have a 0 coordinate. We

put these into the identity (3.4) resulting in

me — hy = Kj'"Ku — K;'Kame + K 'Kphs. (3.5)
Using (S3) we get

—hy = Kj'(Ku) — K;'Ks(—hy) . (3.6)

Using (S1), (S2) and the fact that hg has a 0 coordinate yields that Ku = 0 and
hs = 0. These imply hg = 0.

— Second, we assume the DSMP. DSMP implies both of DNP and DWMP, thus
(S1)-(S2) (= (N1)-(N2)) and (S3) (= (W3)) hold, too.

O

Theorem 3.1.10. We assume that N > 2. The matriz K possesses the DsMP if and
only if the following three conditions hold:

(s1) Kg' >0;  (s2) - K;'Ks > 0;

(s3) —K;'Kge <e or —Kj'Kge=e.

Proof. Note that (s1) and (s2) are identical with (N1) and (N2).

— First, we assume (s1)—(s3).
If -K;'Kpe = e holds, then we can adopt the proof of the DSMP case.
If -K;'Kse < e holds and m = 0, then we can adopt the proof of the DSMP

case again.

If -K;'Kpe < e holds and m > 0, then (3.6) is modified as
—hy < K;'(Ku) — K;'Ky(—hj) ,

which excludes the possibility that hg has a 0 coordinate. (This means that the
left side of the implication in the definition of the DsMP is never fulfilled and

consequently it is always true.)

— Second, we assume the DsMP. DsMP implies DNP, thus (s1)-(s2) (= (N1)-(N2))
hold. DsMP implies DwWMP; too, thus (w3) holds, which can be rewritten as
e+ K, 1Kge > 0.
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To get (s3), we assume that —K;'Kse £ e and —K;'Kge #£ e, ie., e+ K; ' Kge
has a 0 and a positive coordinate, too. Choosing m = 1, Ku = 0, hy = 0 in (3.5)
yields

hy =e + K;'Kpe,

thus hy has a 0 and a positive coordinate, too, which is a contradiction.

Practical algebraic conditions for the discrete strong maximum principles.
While the discrete weak maximum principle was extensively investigated in the last

decades, the discrete strong maximum principle has not been thoroughly analysed.
e As we saw earlier, (wl’a) or (w1’b) is a sufficient condition for (s1) (=(S1)).

e We can see that (s1) implies the irreducibility property of Ky. Irreducibility can
be interpreted as that all the discrete interior points are in contact with each
other, which is clearly some discrete interior connectedness property. (C.f. the

continuous case.)

e To ensure (s2) (=(S2)), one possibility is to require
(s2’) Ky < 0 and at least one non-zero element in every column.

(s2’) can be interpreted that all of the discrete boundary points are in contact
with the discrete interior points, which is in some sense some discrete “boundary”

connectedness property. (s2') with (s1) implies (s2).

e The only difference between the conditions in Theorem 2.1.4 for the weak and
strong maximum principles is the connectedness of the domain 2. (That theorem
gave only sufficient conditions for the different maximum principles.) Now, we

have seen that connectedness plays an important role in the discrete case, too.

e (s3) can be replaced by (w3’). This is based on the following. (w3’) with (s1)

implies (s3). (The converse implication is naturally not true.)

We can conclude that irreducibility is necessary for DsMP and DSMP (but it is not
sufficient). Anyway, this would be the key-concept if we want something to emphasize.
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e Probably the first paper about strong maximum principles was [30]. In that
paper it was proven that (wl’a), (s2’), (w3’) imply the DsMP. We note that the

same theorem can be found in [34, Thm.1.9].

e In [8] the non-negativity and positivity of the discrete Green function were inves-
tigated (and illustrated with interesting numerical examples), which is in close
relation with our topic, namely, the non-negativity of the discrete Green func-

tion means (wl)—(w2), and the positivity of the discrete Green function means

(s1)—(s2).

e Finally, [41] gave necessary and sufficient algebraic conditions for the DsMP and

for the DSMP.

3.1.3 Applicability of the framework

We have defined the discrete maximum principles in a natural way for a self-standing
discrete operator independently of the original continuous operator. Now we are going
to investigate the applicability of these definitions in the light of different discretization
methods. This is to be understood as follows. Usually we seek a solution of a given
continuous problem Ku = f (where K is in the form (2.1)). But we only look for
an approximation of the solution by solving a simpler problem (usually it is a linear
algebraic system of equations), because to solve the continuous problem directly is hard
or even impossible. In order to construct a simpler problem in the form Ku = f, a
discretization method is applied to the original problem, see the paragraphs “FDM”
and “FEM” in the previous chapter.

e In the case of FDM generally no problem occurs since the coordinates of u rep-
resent the values of the approximation at given places. If u < 0, then the
approximation is also non-positive at the given places, so we can conclude that
the DNPP is in harmony with the NPP, in other words, it is applicable (the same

can be said about the other discrete maximum principles).

But if we want a continuous approximation, then we can construct it with some
interpolation from u. “Connecting the points” linearly will not cause any prob-
lem, however, if, we use a more sophisticated interpolation method, then the
obtained function can attain positive values, too, in spite of the fact that u was

non-positive. And this is a problem showing the limits of our definitions.

Another problem can be caused by the mesh. In a lot of cases (e.g., if the

domain is a rectangle) the mesh contains so-called corner points. Corner points
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are such boundary points whose all neighbours are boundary points, too, thus
these are not connected to interior mesh points and so these have (usually) no
effect on the process. We can define their value as we like, independently of the
other values, and this makes our definitions meaningless. Naturally, we want to
avoid this situation. The easiest way is to omit these points. We will follow this
solution, c.f. [34, Thm.1.8], but we mention the paper [30], where the definitions

are modified.

e In the case of FEM the approximation is constructed as a linear combination
in the form (u, ®), where @ is a vector whose coordinates ¢;, i = 1,..., N are
basis functions of some finite-dimensional vector-space. It is clear that if the
basis functions are non-negative (e.g., the usual piecewise linear hat functions
are of this type) then the non-positivity of u implies the non-positivity of the

approximation. In this case our definition is applicable again.

But if we use higher order elements, then the usual choice of the basis functions
clearly shows us that our definition is not applicable again. In this situation an
other approach is needed, the Reader can find information about this in [57, 58],
where positive results are obtained (only) for a simple 1D problem and [29], where

negative results are obtained for a higher dimensional simple problem.

Another problem can be if the coordinates of u do not represent the values of the
approximation at the given places (c.f. the FDM). This should be understood as
follows. Consider a continuous problem defined on the unit interval. We use a uni-
form mesh which determinates the sets P = {1, xs,...,zn} and Py = {zn41 =
0,zn49 = 1} containing the vertices in 2 and on 952, respectively. Now consider
the set of the usual hat functions with a small modification: we choose ¢y, and
dnN+2 as half of the usual. Then for u = (1,...,1) maxu < max{0,us} clearly
holds, on the other hand, max,,cpup,(u, ®)(z;) < max{0, max,,cp, (u, ®)(z;)}
does not hold since the left side is equal to 1 and the right side is equal to %

To summarize, we can conclude that the definitions of discrete maximum principles
as we introduced them are applicable for FDM (except for the case mentioned above),
and for FEM with the usual linear and multilinear elements (since in these cases the

basis functions are nonnegative and possess the ”"value representing condition”).
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3.2 Numerical examples on the differences between
the discrete elliptic weak and strong maximum
principles

In this section we present numerical examples, visualized with the help of Matlab in
order to show the differences between the discrete elliptic weak and strong maximum
principles. In all examples we used linear finite element discretization (because in this
case the FDM is less interesting). We focus on the irreducibility property, i.e., we give
examples where the discrete domain is not connected from some point of view. This
can easily happen when the domain consists of two relatively large areas connected
in the middle with a thin "path”. In this case the program package COMSOL can

produce qualitatively incorrect meshes, too. This section is based on the paper [41].

In the first three examples K = —A, in the fourth it is defined as Ku = —Au+128u.
In all examples Ku = 0. In the first two cases u is defined as 1 on the boundary of
the left square, 0 on the boundary of the right square and linearly decreasing from
1 to 0 on the boundary of the middle square. The boundary condition of the third
example differs only on the middle part: on the left part of the boundary of it, i.e. on
{(z,y) : z € [3,3.5],y € {1,2}}, wis 1, then linearly decreasing from 1 to 0 on the right
part of the boundary of the middle square i.e. on {(z,y) : z € [3.5,4],y € {1,2}}. The

fourth example is similar to the first two.

as| S| S| /S b

Figure 3.1: 1. Example: The mesh results in a reducible matrix. The DsMP failed,
while the DwMP was fulfilled.

The arrangement within the figures is as follows. The top left panel presents the
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Figure 3.2: 2. Example: The mesh results in an irreducible matrix. Both of the DsMP
and DwMP were fulfilled.

mesh, the top right panel presents the nonzero elements of the matrix Kg, and in the
bottom panels u is plotted from two different angles, the right one shows us better
where the function is constant.

The first example shows us how an inadequate mesh can result in a reducible
matrix and so losing the DSMP (while the DWMP is fulfilled). The second is the
"good” example, here both discrete maximum principles are fulfilled. In [8] a mesh is
presented, this is the third example here, which seems to be good at first sight, but
the two right angles damage the connection of the two seemingly connected points in

the middle, c.f. [25], too.

P N xtt\\
. B
30|
1 \\\
40|
: W
a 1 2 3 4 5 6 T 1] 2 40

Figure 3.3: 3. Example: The mesh results in a reducible matrix. The DsMP failed,
while the DwMP was fulfilled.
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The fourth example presents a mesh, which results in losing the DsMP, while the
DwMP is fulfilled. It is caused surprisingly by the use of equilateral triangles.

Figure 3.4: 4. Example: The mesh which contains equilateral triangles can result in a

reducible matrix, too. The DsMP failed, while the DwMP was fulfilled.

With these examples we demonstrated the usefulness of the algebraic framework.

3.3 Discrete maximum principles for interior penalty

discontinuous Galerkin elliptic operators

In the previous sections an algebraic framework was presented with numerical examples.
But our job has not been completed yet. The algebraic conditions need to be translated
into mesh conditions. There are numerous papers dealing with mesh conditions for
FDM and for FEM with linear and continuous elements which guarantee the most
popular (and important) maximum principles; the DnP and the DwMP, see e.g., the
papers referred to in Section 3.1 besides [46]. Instead of giving an overview of these
results here we present how the DnP and DwMP can be guaranteed when interior
penalty discontinuous Galerkin method (IPDG) is applied to a 1D elliptic operator
(containing diffusion and reaction terms). We formulate the problem and we give the
construction of the IPDG operator. After this conditions are derived under which the
DnP and DwMP holds. Finally, the sharpness of our conditions is investigated with

the help of numerical examples. This section is based on the paper [28].
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3.3.1 Interior penalty discontinuous Galerkin elliptic opera-

tors

Problem setting. Let us set 2 = (0, 1) and consider the elliptic operator K, defined

as
Ku=—(pu) + k*u, (3.7)

where dom K = H'(0,1), p,k € R, p > 0.

It is clear that for this operator the nP and wMP holds due to Theorem 2.1.4 and
Remark 2.1.3.

There are several sorts of discontinuous Galerkin methods in the literature. Here

the interior penalty discontinuous Galerkin method is considered.

Construction of the IPDG elliptic operator. The idea behind the discontinu-
ous Galerkin method in comparison with FEM with piecewise linear and continuous
basis functions is to get better approximation and/or to spare computational time by
dropping the continuity requirement (even in the case when the solution of the original

problem is continuous, which holds for many applications).

As opposed to the standard FEM approach, here the first step to discretize the
operator (3.7) with the interior penalty discontinuous Galerkin method is to define a
mesh on (0,1). Let us denote it by 7, and define it in the following way: 0 = zp <
Ty < Ty < ... < xzy_1 < xy = 1. We use the notations I, = [z, 1, 2z,|, by = |I,,
hy—1n = max{h,_1, h,}, (with ho1 = hy, hy n41 = hy).

The next step is to define the space Dy(1) = {v: v|;, € B(I,,),Yyn=1,2,... N} -
piecewise polynomials over every interval with maximal degree [. For these functions
we introduce the right and left hand side limits v(z)}) = tl_ig}r v(zn + t), v(z,) =

lini v(z, —t), and jumps and averages over the mesh nodes as
t—0

[u(on)] = u(zz) — u(a), fulz)} =

~(u(ay) + u(eh)

At the boundary nodes these are defined as
[u(zo)] = —u(aq) , fu(zo)} = u(aq) , [u(zn)] = u(zy) , {ulzn)} = u(zy).

We fix the penalty parameter o > 0 and &, which can be any arbitrary number, but
it is usually chosen from the set {—1,0,1}. The value € = 1 gives the nonsymmetric,

£ = 0 the incomplete, and € = —1 the symmetric IPDG.
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After these preparations we are ready to define the (discrete) IPDG bilinear form

N—1 Tntl N
apc(wv) =Y f pul (@) (2) dz — 3 o (2n) } o) +
"= " (3.8)
N N 1
EZ@ {pv'(zn) } [u(zn)] + ZD hnz+1 [v(z,)] [u(z,)] + [] Euv dz .

Note that fixing the parameters o, ¢ and the mesh 7, can be done in parallel.

The crucial step is the following. We fix a basis in the space D;(73). If we want to
use the algebraic framework of Section 3.1, then [ = 1 needs to be chosen. Moreover,
the basis functions need to be non-negative and have to possess the “value representing
condition” at least in a generalized sense. This can be done with the following choice,
where on the other hand we set aside continuity.

We will use @} (z) for the (2(i — 1) + 1)th basis functions, and ®?(x) for the (2(i —
1) + 2)th basis functions, see Figure 3.5. On interval I; the function ®}(x) is the
linear function with ®}(z;,) = 1, ®}(z;) = 0 and $?(z) is the linear function with
ol (zf ) =0, ®}(z;) = 1, and these functions are zero outside I;, see Figure 3.5. Thus,
here the basis functions can be associated to the subintervals opposed to the standard

FEM approach where the basis functions can be associated to the vertices of the mesh.

2 2
1.9 19
1t 1t
%)
05} 05}
0f 0f
-1 xi
I
-0.5 -0.5
0 0.5 1 1.9 0 05 1 15

Figure 3.5: ®}(x) and ®?(x)

Finally, we construct the IPDG elliptic operator K = (Ky|Kp) similarly to the

way as we did in the case of the standard FEM approach. However, there are small
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differences since here K € RCN-2xC2N) K, ¢ RCN-2x2N-2) and Ky € RGN -2x2,
The 2N basis function are ordered as follows: the first 2N — 2 are the basis functions
that belong to the interior nodes and they are numbered from left to right. The
(2N — 1)th belongs to the left boundary and the 2Nth belongs to the right boundary.

A few words generally about interior penalty discontinuous Galerkin meth-
ods. Discontinuous Galerkin methods have been thoroughly investigated in recent

years [2, 27, 1]. These methods have several advantages:
e built-in stability for time-dependent advection-convection equations,

e adaptivity can be done easily (the basis function do not have to be continuous

over the interfaces),
e the mesh does not have to be regular, hanging-nodes can be handled easily,
e conservation laws could be achieved by the numerical solutions.

There are some disadvantages of this method, too, e.g. there is no guarantee that for a
given problem it will work better than the usual FEM approach. Moreover, there are
still holes in the theory of the method including questions on the choice of the penalty
parameter.

In [2], where several DG methods were examined, the following conditions on the
convergence can be found. The nonsymmetric version converges for all o > 0, while the
two other (symmetric and incomplete) converge only for o > ¢*, where ¢* is unknown
for both methods. The symmetric method is the only one of them that guarantees

optimal convergence order.

We note another important difference between the usual FEM and the IPDG
method, and it is the treatment of the boundary conditions. In the FEM it is strongly
imposed, while in the IPDG case it is imposed only weakly. This means that we need
to solve (not trivial) equations to get an approximation for the boundary values. And
this is one argument for defining maximum principles for the operator and not for the
equation.

For more details about discontinuous Galerkin methods see [7, 9, 45].

The exact form of K. In the following we calculate the elements of the matrix K.
It is easy to check that
1

6m¢’: (:E) = _h_ ) 31-‘1);2(37) = hi ’
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which means that the averages are

{ovl @)y = —5.

{2820} = 5

at both endpoints zx of I;, with the exception of the boundary nodes, where there is

no division by 2. Similarly, the jumps are

[®} ()] =—1,  [[®}(z:)] =1

and zero elsewhere. Using these facts we can calculate the matrix entries.

Summing them up we have the following discretization matrices

( dl 1 52
ta € g2 wy
Wy g2 dy 19 S3

Sy t3 e q3 w3

Ky =
w; ¢ d; Ti Sit+1
Si1 1y € w;
Wny-1 4N dy—1
\ sn-1 In
where
p o pE N
i= =0 — + k=, =1,...,.N—1,
ol hm 2 03"
P a pe th
i — k—, _2...,N,
o T hiws om T3t
pE
= —— =2,...,N—1,
ST
p ., P DPE 2 hi
i -7 - k—, :2,. .,f\I—lj
G="p o Top, TN !
p o pe
P = - — =1,...,N—1,
T %hi R 2R
p )
i— T a7 :1;- 1N1
s o 7
p o pe
ti = ————, i=2,...,N,
2hiv hic1i 2k
P, P PE, ol
;= —— —— 4+ k= =1,...,N
vE o TR TR

and zero elsewhere.
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3.3.2 Discrete weak non-negativity preservation property and
discrete weak maximum principle for interior penalty

discontinuous Galerkin elliptic operators

We remark that the space H'(0,1) consists of continuous functions. Continuity is
an important qualitative property, and it cannot be preserved by the discontinuous
Galerkin method. This is one reason why we need to be careful, especially with the
preservation of some milder qualitative properties which are in connection with the
continuity. This leads directly to the investigation of maximum principles for the
discontinuous Galerkin method.

Our aim is to get useful mesh conditions that guarantee the DnP and the DwMP.
DnP will be guaranteed by the condition (w1’d), while the DwMP will be guaranteed
by the conditions (w1'd), (w2’) and (w3’).

First we deal with the condition (w1’d). Here first we guarantee that the diagonal
elements of the matrix Ky are non-negative and the off-diagonal elements are non-

positive resulting in that Ky is a Z-matrix. This means for the elements

o d;, e
we get the following conditions for e:

20h,  2k*h?

e>—1— Ci=1,....N—1
- phiin 3p
20h; 2k2h?
e> 12 2 9 N,
phz’—l,@‘ 3p

® W

w; should be non-positive, which indicates
<0 (3.9)

in the case where we have more than two subintervals. See the third part of
Remark 3.3.4 for the degenerate case. This means that for ¢ = 1 generally we
cannot guarantee the DnP and the DwMP.

® (;:
because of ¢; we need to guarantee —2%:_ — 23’—; —I—k2% <0,i=2,...,N—1, which
means the following for e:
k2h2
e>—-1+——, i=2,...,N—1.
3p
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Or, rephrasing it for the mesh, we have

3(1+¢)p
k2

in the case where k # 0. (In the case k = 0 we simply have ¢ > —1.)

h? < i=2,...,N—-1

® 55

Inequality s; < 0 always holds.

® T, tii
_p o pe P _o _ pe
we need to guarantee T T T o S 0 and T R S 0. After
re-indexing ¢; and reformulating we have
hiiv1  €hijn 20 hiiv1  €hiiy 20
MW < gnd 2 W < i=1,...,N—1.

hit1 hi P h; hiyh — p

Then we use the “dominant vector” condition to guarantee that K, is a non-singular

M-matrix, see Theorem 5.0.14 in the Appendix.
Lemma 3.3.1. There exists v > 0 with Kov > 0.

Proof. Fist we consider the case k =0 and p = 1.

We choose the dominant vector v as the piecewise linear interpolation of the func-
tion d(z) = ¢ —x? with the bases of ®/ in the interior nodes and zero at = = 0, 1, where
¢ > 1, see Figure 3.6. We prove that this choice is suitable.

Let us denote this interpolation by II;(z) and the vector of the coefficients by
v, 80 Ia(Z) = 3 0 j\emtm) ’Ug(i_l)_’_j_lfbg (), where the summation goes over all basis
functions with the exception of the two that belong to the boundary nodes, (®1(z)
and ®%(z)). It is clear that v > 0, and we need to prove that Kov > 0 holds. The
meaning of this inequality is that ape(Ilg(z), ®](z)) > 0 holds for all basis functions,

since e.g. for the first coordinate of Kyv:

(Kov)1 = Z U2(i-1)+j-14DG (‘i’i (z), ®i(z)) =

(i,7)eint(Ty)

ape | Y. va1419l(2), 81 (2) | = ape (Ma(z), ®3(2)) .
(i,7)€int(Ty)
Next we calculate this bilinear form. The function IIg(z) is continuous, therefore
its jumps are zero all over the nodes, which means that we have to take into account
neither e, nor the penalty terms.

The derivative of I1z(z) can be calculated on every I,,. It is
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L L L L
0 0.5 1 15

° S S el :—(.’L'.i—l—m.i_l) on I-i ?':2,1N_15‘
Ty — Ti—1

2
5 _,—c¢C

o N1 only.
1—zn_

This means

apc (Ily(z), ®i(z)) 2] 0,114(7) 0,27 (z) dz — {0 1a(z1) } [[1(21)]] =

I

2
2 C—Iy o o 2
c—xj 1 m 5 c—x{ T+ T
—dz — - 1= . 3.11
( z )/11 hy ‘ ( 2 ) 21, + 2 (3-11)
R

=1

Similarly,

c—x? r +x
apc(Ila(z), ®y(z)) = = + =5

Fori#1,N -1 N:

apc(Iy(z), ®2(x)) = / 0p114(z)0, @} (z) dx — {0, 11a(z:) } [®F(z:)]] =

I;

—(fE@‘ + I.E@‘_l) id:c —

3.12
5 (3.12)

(_iI?z' +xi1 +x + $-i+1) 1= Tit1 — Ti—1
2 2 '
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For i #£1,2, N:

apc(Ila(z), i (z)) = f 0:T1a(2)0: @ (x) dr — {OuTla(zi1) } [[®7 (zi1)]] =

I;

1 i+ T i i i — Ti—
(it 7i) ——dm—(—x +xigtTitx 2)'(_1):&.

L i 2 2
(3.13)
On Iy_q:
apc(la(z), Py (x)) =
/ 0x114(z)0, % _, () dz — {0, 11a(xn_1)} [PX_1(zn-1)] =
Inv_q
2
—(zN_g F Ty ) + 2
—(ZN—2 +2ZN-1) ! dr — (et ov) 1=
IN—1 hn-1 2
IN—2 +ITN-1 c— Ty,
— . 3.14
2 * 2(1 —zn-1) .
Finally,
1 _ TN—2 1+ TN c— X,
apc(la(z), Py (z)) = 2 2(1 —zn—1)

We have to prove that these are positive values. The first three (3.11) — (3.13)

are trivial. To prove that (3.14) is positive, some simple calculation is still needed.

_IN-2HINCL o >0 s > +z and this holds, since s S
2 2(1—znN-1) ’ 1-ry—1 N-2 N-1 ’ 1—ry_1
(\/E_ml__lizf\ﬁﬂ”_ﬂ = \{E—_mirN__ll (\/E +TN_q) > \/E—i- TN > 14+ 2zN > TN_2 + TN

When p # 1, we only have to multiply the matrix Ky with p, which makes no
difference in the sign of the product.

When k # 0, we have the extra terms [} k2@ () - ®(k), where j,1 € {1,2}. All
functions are positive, so these integrals are also positive, hence we have just increased

the elements of Ko, consequently increased the coordinates of Kov. O

Property (w2’) means that v; and vy should be non-positive, i.e.,

—3p + k*h? 1 k%h2 1
> — = = > i =1,N. 3.15
=7 6p 2T - 20 'O (3.15)
Note that this means that in the case £¢ = —1 we cannot guarantee the DwMP.

Property (w3’) means the condition 0 < (Ky|Kjp)e. It is equivalent to the condition
apc(1,®)) > 0 for (i,5) € int(r), for example, for the first coordinate of (Ko|Ks)e
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this means the following:

(KolKn)e), = 3731 e (#1(2), 82(2) =

i=1 j=1

N 2
anc (221 ®!(z), @2(3;)) = ape (1, 82 (2)) .

i=1 j=1

The result of this matrix-vector product is

(k?hl » kh, K2hy_, k?hy p)T

—e—,—, ... —e—

2 hy’ 2 272 hy
which is non-negative if

k2h2
2p

e <

., i=1,N. (3.16)

We note that we need to take it into consideration only in the degenerate case, when
the interval is divided into two subintervals, since (3.9) is stricter.
Inequalities (3.15) and (3.16) can be pulled together as

1 k2R k2h2
<

— < =1,N 3.17
or rephrasing it for the mesh,

2pe s _3p(2e+1) )

e pe®EEXD - . (315)

Mesh conditions. We sum up and systematize the conditions we have obtained.
Our plan is to give a “recipe” on how we should choose the parameters and the mesh
to guarantee the DnP and DwMP. The trick is that we fix the order of the choices.

First we suppose that the interval (0, 1) is divided into more than two subintervals.

Theorem 3.3.2. Let K = (Ko|Kjp) be the matriz constructed from (3.7) by the IPDG

method as described earlier. This matriz has the DnP if we choose

e ¢ as
—-1<e<0, when k=0,
—1<e<0, when k>0,
e 0 as
pd—¢) .,
5 <
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e the mesh 1, as

3p(e +1)

h? < —z i1=2,...,N—1, (fineness at the interior)
hi i B eh;iq < 2_0' and

h-i+1 h; p
hiiyi  €hii <2_0'

hi hivi — p’
Theorem 3.3.3. Let K = (Ko|Kjp) be the matriz constructed from (3.7) by the IPDG

method as described earlier. This matriz possesses the DwMP if we choose

(uniformity)

i=1,...,N—1.

e ¢ as .
—§§€§0, when k=0,
1
—§<s§0, when k>0,
e 0 as
pA—e) _ ?
2
e the mesh 1, as
3p(2e +1
h? < %, i=1,N, (fineness at the boundary)
h? < @, i=2,...,N—-1, (fineness at the interior)
hz’,z’—i—l B Shi,z’-i—l < 2_0' and
hit1 h; p o i
his ehiiy 20 (uniformity)
A Z el o2 i =1,...,N—1.

h; hisn — p
Proof (of both theorems). Almost all of the conditions are simple consequences of the

above calculations.

The condition for o can be derived from (3.10) by taking its minimum

2_0' > hi i B eh;iq >1—¢
p h-i+1 h;

O

Note that we have two types of mesh conditions, one is about the fineness of the
mesh and the other is about the uniformity. The first determines the maximum size
of the subintervals and it depends on the choice of €, with £ = 0 being the less restric-
tive one. The second determines the maximum ratio of the size of the neighbouring

subintervals, and it depends on the choice of o, 0 = 412;81 is the most restrictive.

71



3. DISCRETE ELLIPTIC MAXIMUM PRINCIPLES

Remark 3.3.4. We investigate the popular cases: £ € {—1,0, 1}, too.

e == —1:

We can guarantee only the DnP, and only in the case if £ = 0 holds. In this case
(3.10) simplifies to
h@',¢'+1 + hi,i—f—l 20

<2 i=1,... N-1. 3.19
hi hign = p ( )

This has the consequence that o needs to be chosen > p.

e = =0:

We have no additional restrictions in this case. The conditions simplify as

hi i o hi i o .
FE <L and HE<E i=1,...,N-1
which can be pulled together as
= Z. i=1,...,N—-1 (3.20)

min{h@, h’é—i—l} - ? ’

since it is enough to guarantee that the inequality holds for the greater left-hand
side. Thus, o needs to be chosen > p/2.

o c=1:

We can guarantee the DnP in this case only if (0,1) is subdivided into two
subintervals. Then (3.10) leads to the following conditions

hi,2 hi2 < 2

hia hi2 20
s o <5 and 32 e <2

They can be pulled together as

h’l,2 — min{hl, hg} 20
min{hy,he} T p

(3.21)

For the DwMP we have more conditions, namely k& > 0 and

<h; <

. i=1,2.

?

Tl
Tl

Remark 3.3.5. If we choose a different definition for h,—1 5, namely, if it is defined
as = min{h,_1, h,} (cf. [7, Ch.4, Definition 4.5] and [45, Ch.1]), the condition for o
will coincide with the condition that describes the relation between the neighbouring

subintervals.
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3.3.3 Numerical examples —on the sharpness of the conditions

In this subsection we will investigate the mesh conditions we derived. Naturally, the
obtained conditions cannot be sharp since we used practical conditions and these are
only sufficient and not necessary. However, we will show that our conditions are sharp

in some sense.

Example 3.3.6. Let usset p =1, =0, 0 = 5, k = 0. First of all it is clear that
condition (3.17) holds for £ and (3.18) is out of view. In this case for the mesh:

, = {0, 0.02, 0.22, 0.8, 1}
the condition (3.20) is sharp in the following sense. Let us modify this mesh as

1
7 ={0,0.02, 022+ =, 08, 1}.

Let us consider the vector v = (—1, 104,,,, 0,0, 0, 0)T, see Figure 3.7. The following
calculation shows that the resulting right-hand side is non-positive, which means that

the maximum principle fails.

x10°

05F 1571
X 1
07 x1 X, X
o 3 %
051
-05
0 &
_1 L
-05
%
-1.51 -1
Ll -15}
1 1 1 1 _2 1 1 1 1
0 05 1 15 022 02205 0221 02215 0222

Figure 3.7: Left: the counterexample with m = 3. Right: the positive value at the
node 0.221

The product Kv has four non-zero coordinates: (—d;+r;/10™, —ty+e5/10™, —wy+
q2/10™, 55,/10™,0,0,0,0)T. In this case h; 5 = hy. Let us examine these terms.

1 1 5 1(1 5) 1 5 1 9

0m ~ oh, h, 107 \2h, T,
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The second one is

bt 2 (L D) — o L (5 ) =
2T10m 2k, ' hy | 10m \2hy,  2hy ) hy 2.10m ) —
25 - 10™ + 55/2

—25 <0.
+ 10m + 5
The last two terms are easier
7)) 7)) 1 1 1 1
W2t 1om =0t 1om 10m( h1+2h1) 2.10m -k,

So 1 1
— =— | —=— 0.
10m ~ 10m ( 2h1) =
Example 3.3.7. Let usset p=1,e =1, 0 =5, k = 0. In the case that was discussed
in the third part of Remark 3.3.4 the mesh

m = {0, 1/12, 1}

is sharp in the same sense as in the last example with respect to (3.21). Similarly as

above, we modify the mesh as
' ={0,1/12—-1/10™, 1}

and choose v as vo = (—1, 12=)" and 0 elsewhere. This setting breaks the DnP.

Kv is non-positive since Kovo = (—d; + 7, /10™, —t5 + €5/10™)T | where

g L5 101 1 5 1)
YT10m T % hy 2k 10m \2hy hy 2k )

and
t+62_1+5+1+1 1+5+1_
2700m T 2k hy 2k,  10m \2hy | hy  2hy)
1 1 12
—t+— | 114+ —
ohy ( N mm)
and similar calculations as before give its negativity (15 — =) (11 + 1% ) < 13 + 105
andthisholdsforallm>(}since%—l—mLm—ul]—}n—l—éfﬁ<%+mLm_

Conclusion. First of all, we have shown that it is possible to guarantee the DnP and
DwMP when the IPDG discretization is used. However, our conditions are restrictive

at the following points:
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e the choice of the basis functions,
e ¢ =1 is excluded from a practical point of view,

e we can handle € = —1 only in special cases.

On the other hand, we could state that £ = 0 works very well from the viewpoint of
the discrete maximum principle and the conditions suggest that we need to take into
consideration a non-integer € € (—%, 0), too.

We have shown with numerical examples that our conditions are sharp in some
sense. The numerical examples and computational tests suggest the following points

of interest:

e for the symmetric IPDG (3.19) does not seem to be sharp,

e the mesh condition (3.20) seems to be sharp only at the boundary, it could be
slightly broken in the interior intervals without losing the DwMP,

e for meshes that consist of more than two subintervals, the condition (3.21) seems

to be irrelevant for the neighbouring elements.

Summary of the chapter. In Section 3.1 of this chapter we presented an algebraic
framework on discrete maximum principles for matrices. The framework contained
sufficient and necessary algebraic conditions (for each introduced discrete maximum
principle) including our own results on discrete strong maximum principles, namely,
Lemma 3.1.5, Theorem 3.1.10 and Theorem 3.1.9. We gave an overview of the practical
conditions ensuring the DwMP, the DsMP and the DSMP by listing the known results
and completing them with our own conditions. We investigated the applicability of
the framework, too. In Section 3.2 we illustrated the differences between the weak and
strong discrete maximum principles with several numerical examples. Section 3.1 and
3.2 were based on the paper [41, Mincsovics and Horvath, 2012].

In Section 3.3, using the algebraic framework we investigated an elliptic problem
where the interior penalty discontinuous Galerkin method was applied as discretiza-
tion. Here we gave sufficient conditions on the parameters € and o and on the mesh
under which the DnP and the DwMP are fulfilled, see Theorem 3.3.2 and Theorem
3.3.3, respectively. We investigated the sharpness of the necessary conditions of these
theorems with numerical examples as well. Section 3.3 was based on the paper [28,
Horvath and Mincsovics, 2013].
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Chapter 4

Discrete parabolic maximum

principles

In this chapter first we present an algebraic framework on the important discrete max-
imum principles defined for a certain class of hyper-matrices. We give algebraic results
on discrete maximum principles, both theoretical and practical ones, and we investigate
the applicability of the framework as well. Furthermore we apply the framework and
present practical conditions when FEM is applied as the spacial discretization and the
f-method for the time integration on a wide class of linear parabolic operators. This is
based on the paper [39]. Finally in this chapter we investigate the relation of discrete

elliptic and parabolic maximum principles. These results are from the paper [40].

4.1 Algebraic framework

In this section we applied a brief style, since it is very similar to Section 3.1 both in

its content and structure.

4.1.1 Discrete parabolic maximum principles

We define maximum principles for a hyper-matrix £ in a special form, acting on a

hyper-vector v

[T o ... ... 0) [ v

X, X;, 0 ... 0 vl
[ — 0 -X, X; 0 , - : : (4.1)
\ 0 .. 0 =X, XI) \VM/



4. DISCRETE PARABOLIC MAXIMUM PRINCIPLES

where T = (ID|OB); X = (X10|X18); Xy = (X20|X28) € RNXW; I, X0, X9 € RNXN;
05, X159, Xo9 € RV*No N = N+ Np. ()" = v* = (viv2)T e RN, v € RV, vZ € RV,

We mention that the vectors v{ and v} are some approximations of the interior
and boundary values of the function v on some time-level, respectively, and L is the

discrete parabolic operator corresponding to L c.f. the paragraph “Problem 2” in 1.2.2.

Thus, we can write (Lv)? = v?, (Lv)" = X ;v" — Xov™ ! n=1,..., M. With this
notation and by the assumption that X, is non-singular, the following iteration form

can be created
v = X Xov" ! = X0 Xovh + X (L))", n=1,...,M, (4.2)

which serves to compute (theoretically) v if the boundary values v}, the initial vector

vY and (Lv)" are given.

To formalize the discrete maximum principles we introduce the notations vy (k) =
{v6, -, vo ks vo(K®) = {v§,v5,.... v} (Lv)(k) = {(Lv),..., (Lv)*} and (Lv)(K%) =
{(Lv)°, (Lv)t, ..., (Lv)*}.

Then the corresponding maximum principles read as follows.
Definition 4.1.1. We say that the hyper-matrix £ in the form (4.1) possesses

e the discrete non-negativity preservation property (DnP) if forallk =1,2,.... M

the following implication holds.

max(Lv)(k°) <0, maxvs(k°) <0 = maxyy(k)<0;

e the discrete mazimum principle (DmP) if for all k = 1,2,..., M the following
implication holds.
max(Lv)(k) <0 = maxyy(k) < max{0, (Lr)°, maxvy(k°)}.
e the discrete strict mazimum principle (DMP) if for all £k = 1,2,..., M the
following implication holds.
max(Lv)(k) <0 = maxyy(k) < max{(Lr)°’, maxvy(k°)}.
Remark 4.1.2. Even though the discrete parabolic maximum principles are less in-

vestigated, there are some important works in this topic. We give a short list of the

recommended literature.
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e Probably the first paper on a discrete parabolic maximum principle is [32].

e From the early years the paper [24] should be mentioned which was the starting-

point for almost every later published work in this topic.
e From the recent years the works [11, 17] contain a detailed investigation of a

whole family of discrete (and continuous) parabolic maximum principles.

4.1.2 Algebraic results on discrete parabolic maximum prin-

ciples

Our aim is to give necessary and sufficient conditions for the above defined discrete
maximum principles, moreover, we also touch upon useful practical conditions which

can be used from an application point of view.

First, exploiting the iteration form (4.2) we reformulate Definition 4.1.1 into a more

suitable form.
Lemma 4.1.3. The hyper-matriz L in the form (4.1) possesses

e the DnP if and only if (for all v™,v™!) the following implication holds.

(Ly)"=Xv" = Xov™ ' <0, max{v" ' vi} <0 = maxv"<0;

e the DmP if and only if (for all v"*,v"~!) the following implication holds.

(Ly)"=Xv" —Xov" ' <0 = maxv" < max{0,v" ', vi};

e the DMP if and only if (for all v",v"!) the following implication holds.

(Lr)"=X;vP —Xov™ ' <0 = maxv"” < max{v" ! vi}.

Proof. The “if” part follows from induction, the “only if” part is trivial. O

Now, based on Lemma 4.1.3 we can give sufficient and necessary algebraic conditions

for the DnP.

Lemma 4.1.4. [11, L. 2.3.39] The hyper-matriz L in the form (4.1) possesses the DnP
if and only if the following three conditions hold.

(nl) X5 > 0; (n2) — X790 X195 >0; (n3) X3 X, >0.
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4. DISCRETE PARABOLIC MAXIMUM PRINCIPLES

Proof. This can be proven exactly in the same way as Lemma 3.1.4, thus we recall only

the important steps.
— First, we assume (nl1)—(n3). Then the identity (4.2) gives immediately the DnP.

— Second, we assume the DnP. First we can prove that X is non-singular, and
this means that it is allowed to use the identity (4.2). Then (n1) follows from the
setting v*~! = 0, v = 0, (n2) follows from the setting (Lv)" = 0, v*~' = 0,
and (n3) follows from the setting (Lv)" =0, v} =0.

O
We finish with the DmP and the DMP.
Theorem 4.1.5. [}0, 11] The hyper-matriz L in the form (4.1) possesses
e the DmP if and only if the following four conditions hold.

(ml) X3y >0; (m2) —X ;¢ X195 >0; (m3) X3 X, >0;
(m4) X ;) Xse — X g Xpe < e.

e the DMP if and only if the following four conditions hold.

(M1) X3g 20;  (M2) —X3Xip>0;  (M3) XX, > 0;
(M4) X i Xse — Xy Xpe =e.

Proof. e The DmP case. Note that (m1)—(m3) are identical with (n1)-(n3). The

proof goes in the same way as the proof of Lemma 3.1.6.
— First we assume (m1)—(m4), then

(Lv)" <0 = vp <X pXov" ' — X Xsvh
< Xjg Xy max{0,v" ', vile — X9 X5 max{0,v" ! vile < max{0,v" ! vi}e.
— Second, to prove the reverse direction we assume the DMP. DMP implies

DnP, and that gives (m1)—(m3) (= (n1)—(n3)). (m4) follows from putting
vitl=e, vi=e, (Lv)" =0 in (4.2).

e The DMP case. Note that (M1)—(M3) are identical with (n1)—(n3). Then we can
proceed similarly as in the proof of Lemma 3.1.8, thus we omit the details.

O
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Some remarks this theorem:

e Note that (m4) corresponds to ¢ < 0 (c.f. the continuous case).

e (M4) is equivalent to Ke = 0. This corresponds to ¢ = 0 (c.f. the continuous

case).

e There are many papers containing some variants of the above lemma and theorem,
e.g. [13, 14, 15], but in most cases the discretization method is fixed at the
beginning, thus the algebraic framework is not independent. An independent

algebraic framework can be found in [11] and in [40].

Practical algebraic conditions for the discrete maximum principles. Lemma
4.1.4 and Theorem 4.1.5 are not applicable directly. From an application point of view
it is necessary to give more useful (but only sufficient) conditions in order to guarantee

the DnP/DmP /DMP.

e The condition (m2) is usually replaced by the assumption

(m2)) X5 < 0.

Then (m2’) with (m1) implies (m2), but the converse is not true.
e The condition (m3) is usually replaced by the assumption

(m3") X, > 0.

Then (m3’) with (m1) clearly implies (m3), but the converse is not true.
e The condition (m4) is usually replaced by the assumption

(m4’) Ke > 0.

Then (m4’) with (m1) implies (m4), but the converse is not true.

e To ensure (ml) is the hardest task here, too, and it is usually replaced by the

assumption
(m1’) X is an M-matrix

and we can apply each one from the list that can be found in the paragraph

“Practical algebraic conditions for the DwMP” in Subsection 3.1.2.
These conditions appeared (a little bit hidden) already in [24].
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4. DISCRETE PARABOLIC MAXIMUM PRINCIPLES

Applicability. Finally, we turn our attention on the applicability to the above de-
fined discrete parabolic maximum principles. Here we defined discrete maximum prin-
ciples in the natural way, too. Thus, the applicability of this framework depends on the

same questions as in the elliptic case, however, with some additional things to consider.

e This framework is designed only for some discretization methods. Namely, only

for those when the discretization is done in the following two consecutive steps:

1. The spatial discretization. This can be done e.g. by FDM or FEM as in the
elliptic case. This means that the same applicability problems occur that

we explained in details in the paragraph “Applicability” in Subsection 3.1.1.

2. The time-integration. The special structure of the hyper-matrix £ (4.1)
reveals that only one-step methods are allowed. (Naturally, this could be
extended to contain multistep methods as well.) This means that L is

approximated by the formula
(Lv) (x4, nAt) ~ (Lv)F = (X;v" — Xov™ 1),

where x; e P, n=1,2,..., M and At =T /M is the time-step.

At the time-integration part the same problems can occur that we inves-
tigated at the FDM case in the paragraph “Applicability” of Subsection
3.1.1.

A typical choice is FEM + 6-method. Then X; = éM + 0K, Xy = ﬁM —
(1 — 8)K, where M is the so-called mass matrix, K(= X; — X3) is the so-called

stiffness matrix and 6 € [0, 1] is a parameter.

e Another applicability restriction which comes from the form of the hyper-matrix
is that seemingly we can handle only the case where the coefficient functions are
time independent. However, this deficiency can be stopped easily (introducing

one more index), but that would complicate matters unnecessarily.

e In the discrete elliptic case it was definitively advantageous to define maximum

principles for the operator, but here it has some disadvantages, too, c.f. the

notions AP and CAP in [11].
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4.2 Discrete maximum principles for some finite el-

ement + f-method parabolic operator

In this section we investigate the way how the DmP and the DMP can be guaranteed
for a given (pretty general) linear parabolic operator when the FEM+6-method is
applied as discretization method. The section is organized as follows. First we obtain
the hyper-matrix by the discretization applied to the given operator. Then practical
conditions are obtained including a mesh condition, restriction to the parameter 6 and
restriction to the time step At under which the DmP/DMP is fulfilled for the hyper-
matrix. Finally, numerical examples are presented in order to investigate the sharpness
of the conditions. This section is mainly based on the paper [39], which generalizes the
results of [18].

4.2.1 Finite element 4+ 6-method parabolic operators

Problem setting. Let 2 € R? be an open and bounded domain that can be covered
by a regular simplicial mesh 75 with the property that this mesh is of nonobtuse type,
i.e., all the angles made by any faces of each simplex S € 7T}, are not greater than /2.

We consider the parabolic operator which is defined for the functions v(z,t) €

C*'(Qr) N C(Qr) and which can be described as

Lopev = % — div(a grad v) + (b, grad v) + ¢ v, (4.3)

where a,c: Q = R, b: Q — R% a,b,c € C(Q) and a € C*(Q). The symbol (-,-) stands
for the usual scalar product in R9.

In the sequel we assume that 0 < am < a < ap, ||b]| < by and 0 < ¢ < ¢pr holds
with the constants a,,,ays,byr,cyr. ||| denotes the norm of R? induced by the scalar
product (-, -).

Then, by Theorem 2.2.2 the operator L, . satisfies the DnP and the DmP, more-
over, the operator Lqp o satisfies the DMP.

Discretization. We proceed in the same way as in the paragraph “Problem 2”7 in
1.2.2. Using the FEM+#-method, where we cover {2 by a regular simplicial mesh 7,

and we use the usual hat functions resulting in the discrete parabolic operator

v“+1 -

MTV KV 4 (1 — 0KV,
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where n = 1,... .M, MAt =T, 6 € [0,1] and the matrices M, K are defined by

bilinear forms as

(M), = Bi(d5, 1) — ] b5 dx,
Q

(K)ij = Ba(#j,¢:) = | a (gradg;,grade;) dx + [ (b grade;) ¢; dx + [ cd;¢; dx,
/ [oamsrnins

Q Q

where i =1,...,N, j=1,..., N. This can be rewritten to the familiar form

len—f—l — ngn

which will be denoted by L, . or L0 if our starting point was the operator L, . or
Lqp0, with the roles X; = éM + 0K, X, = éM —(1-9)K.

4.2.2 Discrete maximum principles for some FEM + #-method

parabolic operator

First we give some useful results.

Lemma 4.2.1. The earlier described discretization method applied to the operator (4.3)

results in a hyper-matriz L, with the properties
(i) M >0;
(i) Mge > 0;

(iii) Ke > 0.

Proof. (i) (M)y; = Bi(¢j,¢:) = [ ¢;¢; dx > 0, since the basis functions are non-
Q

negative.

(ii) It follows from the previous item, since (M);; > 0.

N N
(iil) (Ke); = 232(@:@) = BQ(; b5, ¢:) = Ba(1, ¢;) :({C‘ﬁe‘ dx > 0.

Lemma 4.2.2. Under the assumptions

(PI) (K)WSO: z%jizzliiN?.}:l?!W?

=

(PQ) At(Xl)zJ:(M)zj+At9(K)zjSO? 1%_},1:1?,}\?,}:1?,
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(P3)  At(Xa)i = M)y — At(1—0)(K); >0, i=1,....N.

the conditions (m1’)—(mj4’) are satisfied.

Proof. We organize the proof going from simple to difficult.

(m4’)

(m2)
(m3)

(m?)

is independent of the conditions (P1)—(P3), it is ensured by the choice of the

basis functions, see Lemma 4.2.1.
is ensured by (P2).
is ensured by (P1), (P3) and the fact that M > 0 (see Lemma 4.2.1).

is ensured by (P1), (P2) and by Lemma 4.2.1. In details: Xy is a Z-matrix by
(P2).
Kje=Ke—Kge>Ke >0
>0

by (P1) and Lemma 4.2.1. Thus,

1 1
Xloe = (EMO + QKD) e = EM[}"‘QKDG >0

>0
>0 =

by Lemma 4.2.1, which implies that X, is SDD. Finally, we recall that a SDD

Z-matrix is an M-matrix (see the Appendix).

O

Remark 4.2.3. We list some comments on the conditions of Lemma 4.2.2.

Since (M);; = (K);; = 0, (¢ # j) for the index pairs which determine non-

neighbouring vertices, we need to investigate only the remainder.

(P1) is one additional restriction for the mesh, (P2) and (P3) give a lower and an
upper bound for the time-step At. Naturally, the lower bound must be smaller
than the upper bound, this can be attained by the corresponding choice of 6.

In the case # = 0 the condition (P2) cannot be fulfilled. Thus, we fix that
8 € (0,1]. (However, if we use the lumped mass technique (see e.g. in [24]), then
6 = 0 is possible, too.) In case § = 1 (P3) is automatically fulfilled.

(P2) implies (P1). However, we need to require a strict inequality in (P1) for the
index pairs which determine neighbouring vertices, to make (P2) possible. Let us
denote this modified condition by (P1’). Since we want to get a usable condition
for the mesh, we investigate (P1’) instead of (P1) in the following.
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Local conditions for the DmP/DMP. We define/estimate the elements of the
local mass and stiffness matrices similarly as in [4, 18, 26].

The contributions to the mass matrix M over the simplex S € T, are

measgqS 2 measgS

Misls = d+1)(d+2)’ d+1)(d+2)°

We estimate the contribution to the stiffness matrix K over the simplex S in the

(E#7);  Muls= (4.4)

following way. If the simplex S is tightened by the d+ 1 piece vertices x;, and we denote
by Si the (d — 1)-dimensional face opposite to the vertex x;, then cos~;; is the cosine
of the interior angle between faces S; and S;. Note that (measqS)d = (measgq_1S;)m;,
where m; is the (Euclidean) distance between S; and x;.

Let us introduce the notations: am(S) = minga, am(S) = maxga, by(S) =

maxg ||b||, car(S) = maxge. Then,

] a (grade, gradds) dx — — f a lgrada, || lgradd|| cos vy dx =

S
_ 2T / dx < — am(5) (measqS) cosv;; (£0) incasei#j,
m;m; m;m;
otherwise
s s ’
and
/(b, grade;) ¢; dx /|(b, grade;)| ¢; dx <
by (S)(measqS)
T < T -
f bl llraday | 6 dx f b1 dx = LIS
hold.
Thus we have the estimation
am (S) cos vy bu (S) cm(S)
e < _ .
Kils < (measaS) l mam;,  myd+D) @+ D@+ (4.5)
for the non-diagonal elements, and
ap (S) bar (S) 2ep(S)
e < .
Kals < (measS) l m?  md+1)  @d+1)d+2) (46)

for the diagonal elements.
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If we require (P1’)—(P3) on every simplex S € Ty, then we get a sufficient condition
to fulfil (P1’)—(P3). Thus, one can easily check on the basis of (4.4) — (4.6) that the
following lemma is valid.

Lemma 4.2.4. Let us assume that for the mesh Ty, the geometrical condition

bu(S) m; em (S) mm;

> L B AT an®) @ D@ D) 4
is satisfied. Then, for At chosen in accordance with the lower bound
1 (d+1)(d+2) d+2 !
> - S A - ‘
At> [am(SJ con g LEED ()2 — () (45)
and the upper bound
1 [ay(S)(d+1)(d+2)  by(S)d+2 !
< .
ar< iy [N D2 )] )

respectively, Lo pc/Lapo satisfies the DmP/DMP.

Global conditions for the DmP/DMP. Lemma 4.2.4 is of little use in practice,
since conditions (4.7)-(4.9) should be checked for each S € Tx, moreover, it does not
contain any useful information about the corresponding choice of 8. In the following
we deal with getting rid of these problems. The trick is the same as in Theorems 3.3.2
and 3.3.3 that we fix the order of the choices.

In order to formalize the theorem, let us introduce the notations

m=minm;, M =maxm;, G = mincosvy;;,
Th Th Th

d+1)(d+2)  byd+2 d+1)(d+2
o= @+D@+2 bud+2 oo o@FDE+2)
2 m2 2 m

Then, from Lemma 4.2.4 it follows:

b d+2
M2 — Opg m — CM

Theorem 4.2.5. Let us assume that for the mesh Ty, the geometrical-fineness condition
0<Q (mesh condition)

holds.

Moreover the condition

ry : o <4 (restriction for the parameter 0)

holds, too. Then under the condition

11 1 1

11 <t 1 . .

70 = At < o8 (restriction for the time step At)
Lope/Lapo satisfies the DmP/DMP.
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Remark 4.2.6. e We remark that the mesh condition can be substituted for the
less restrictive condition
by M M?
> M " + em M )
amd~+1  ap(d+1)(d+2)

However, with this condition we cannot guarantee that the right side of the

condition “restriction for the parameter #” is not greater than one.

e The mesh condition gives an upper bound for the angles, and it depends on how
fine the mesh is, i.e., the ratio M2 /m cannot be too large. Note that G < é, and
here the equality holds only in the case where 7 is a uniformly regular simplicial
mesh, i.e., that consisting of the congruent regular simplices, see [18]. Naturally,
this can be attained if €2 is special. This case allows us the widest choice of the
parameters 0, At. However even in this case # > O for d > 2, which means by
using the condition “restriction for the parameter 8” that the Crank—Nicolson

method is excluded for us.

e If 75, and # is such that the conditions “mesh condition” and “restriction for
the parameter #” hold, then the lower and upper bounds for At determine a

non-empty interval, this is condition “restriction for the time step At”.

e Note that our bounds contain as special case the bounds obtained in [18] — in
which the operator L, . with constant coefficients was investigated — if we set

the parameters as ay; = a,, = a, byy =0, cpyr = c.

4.2.3 Numerical examples

As one can see, the conditions collected in the last subsection are sufficient, but not
necessary to guarantee the DmP /DMP. Consequently, we need to investigate how sharp
our conditions are. This subsection is devoted to illustrate this question with several

(extreme) numerical examples.

We fix the dimension d = 2 and the parameters a = 1, b = (6,0), ¢ = 10. We
investigate two operators L, . with homogeneous Dirichlet boundary conditions which
differ only in their domains, see Figure 4.1.

In the first case the domain is a rhombus, determined by the vertices (0,0), (1,0),
(3/2,4/3/2), (1/2,4/3/2), which allows us to use a uniformly regular simplicial mesh,
however, the finer mesh from the two is still relatively coarse.

In the second case the domain is a unit square, here we used a mesh which contains

right-angled triangles, which is problematical from the point of view of Theorem 4.2.5.
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Figure 4.1: Mesh and refined mesh on two different domains {2

The question is which bounds we obtain from Theorem 4.2.5, see Table 4.1, and how

these compare with the real bounds of the DmP, see Table 4.2.

rhombus (1) | thombus (r) [ square (1) | square (r)

mesh condition not fulfilled fulfilled not fulfilled | not fulfilled
lower bound for 6 — 0.9644 — -
6 =1/2, bounds for At - - - -
# = 1, bound for At — 0.1399 — -

Table 4.1: Bounds of DmP obtained from Theorem 4.2.5

rhombus (1) [ rhombus (r) | square (1) | square (r)
some mesh condition fulfilled fulfilled not fulfilled | fulfilled
lower bound for 6 0 0.8525 - 0.9809
0 = 1/2, bounds for At || 0 and 0.0476 - - -
6 = 1, bound for At 0 0.0415 - 0.0699

Table 4.2: The real bounds of DmP

Giving an explanation on the results showed by Tables 4.1 and 4.2 we note that the

symbol “-”

means in Table 4.1 that we cannot choose the corresponding parameter to

fulfil the DmP by Theorem 4.2.5, and in Table 4.2 that it is not possible to choose the
corresponding parameter to fulfil the DmP in fact.
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The column corresponding to rhombus (1) is problematic from Theorem 4.2.5 since
the mesh is too coarse. The columns corresponding to rhombus (r) are completely
comparable, in this case Theorem 4.2.5 works very well.

The square (1) was problematic in reality not only for our theorem, the right angles
are intolerable for Theorem 4.2.5 and the situation cannot alter by refining the mesh,
however, in reality it helps a little bit, but only a little bit as it is shown in the column
corresponding to square (r) of Table 4.2.

Finally we turn our attention to the column corresponding to square (1) of Table
4.2 again, since it seems to be mysterious. After fixing the mesh we cannot choose the
parameter 6 and the time step At to ensure the DmP (in reality). It means that we
can spoil the things already with an inadequate choice of the mesh! This is represented
by the row “some mesh condition” in Table 4.2. We investigate this (temporarily

unknown) property in the following section.

4.3 Relation between discrete elliptic and discrete

parabolic maximum principles

In this section we are looking for an answer to the problem the numerical results give

rise to. This section is based on the paper [40].

4.3.1 Discrete stabilization property, discrete elliptic and dis-

crete parabolic maximum principles

We return to the algebraic framework, thus we investigate the hyper-matrix £, which
can be defined by the matrices X; and X,. Let K be defined as K = X; — X,. We

recall that if Xy is non-singular, then we can introduce the notation
T = X3 X0 (4.10)
and with that the iteration form (4.2) can be rewritten as

vi = Tvy '+ Xy Xovh ' — Xg Xiavy + X0 (L), n=1,.... (4.11)

The discrete stabilization property.

Definition 4.3.1. The hyper-matrix £ possesses the discrete stabilization property
(DSP) if K is non-singular and for all u, v{ the iteration

Xv' = Xov" P =Ku, vil=us, n=1,...
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is convergent, moreover

n

holds.

Remark 4.3.2. DSP is related to some continuous property, which is called in various
ways in the literature, we favour the name stabilization property (SP), but absolute
stability is used, e.g., in [31, Ch.10.1] instead of SP, where it is explained in a simple

way for the Laplace operator.

To characterise the DSP we need to recall some notions of the matrix splitting
theory. This can be found in the Appendix. We collected there the basic results of

that topic at the Reader’s convenience, too.

Lemma 4.3.3. The hyper-matriz L possesses the DSP if and only if Ko = X9 — Xag

defines a convergent splitting.

Proof. This is a trivial consequence of the corresponding part of the Appendix, namely
of Definition 5.0.24, of Remark 5.0.25 and of the iteration form (4.11). O

The relation of the DSP, the DwMP and the DmP. Here we show the connec-
tion between the discrete stabilization property and the discrete elliptic and parabolic
maximum principles. Note that the notation DnP is used for matrices (elliptic case)
and for hyper-matrices (parabolic case) too, in this case we tried to make it clear which

property we are talking about.

Theorem 4.3.4. We assume that the hyper-matriz £ possesses the DnP property.
Then the DnP property of K is equivalent to the DSP of L.

Proof. — We assume the DnP property of K besides the DnP property of £. It
means that K;* > 0 holds, and this implies the DSP of £ by Lemma 4.3.3 and
Theorem 5.0.26.

— We assume the DSP and the DnP property of L.

Then Kal > 0 holds by Lemma 4.3.3 and Theorem 5.0.26.

—K;'Ks = (I-T) H(—X1 Kp) = (g T’“) (X X290 —X 70 X15) > 0, (4.12)

>0 >0
>0

due to (m2), (m3) and Lemma 5.0.27 (see Appendix).
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The main theorem of this chapter comes, which will give the theoretical answer on

our open problem from the last chapter.

Theorem 4.3.5. We assume that the hyper-matriz L defines a non-singular matriz

Ky. Then the DmP of L implies the DSP for L and the DwMP for K.

In order to prove this theorem, first we give several useful results.

Lemma 4.3.6. The DmP of L implies || T||, < 1.

Proof. From (m4) we have
e > Xy Xse — X Xge = Te + X3 Xope —X g Xge > Te,
—— N—
>0 >0
due to (m3) and (m2), respectively. Finally, the claimed result follows from the non-

negativity of T, which is guaranteed by (m3). O

Remark 4.3.7. Note that Lemma 4.3.6 has a simple consequence, namely, the DmP
of £ implies p(T) < 1. If for the matrix T in the form (4.10) the property || T|, <1
holds, then in [14] £ is said to possesses the discrete maximum norm contractivity

(DMNC), however, the name non-expansivity would be certainly more accurate.

Lemma 4.3.8. Let us fizr that K = X, — Xs. If Ko and Xy¢ are non-singular, then

I — T is nonsingular, too. Thus, one is not an eigenvalue of T.

Proof.
XI_DIKG =I1-T (4.13)
and the left side is invertible. O

Now we are ready with the preparations.

Proof. (of Theorem 4.3.5)
We assume the DmP of £ and that K, is non-singular.

e First, we prove that the DSP holds. To show that, we need to prove that p(T) <
1, according to Lemma 4.3.3. We already know from Lemma 4.3.6 and Remark
4.3.7 that the DPMP implies p(T) < 1. We suppose that p(T) = 1. Then
one is an eigenvalue of T, due to the non-negativity of T and Theorem 5.0.28
(consequence of the Perron-Frobenius theorem, see Appendix). On the other
hand, using Lemma 4.3.8 contradicts to that. Thus, we proved that p(T) < 1.
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e Second, we prove the DwMP.

(wl) and (w2) follows from Theorem 4.3.4.
(w3) results from (m4), which is equivalent to

(I-T)e > —X;7Kse.

Multiplying with (I—T)~! > 0 and using the first part of the identity (4.12)

gives the desired result.

O

Remark 4.3.9. The conclusion is that the DSP of £ and the DwMP of K are necessary
to fulfil the DmP, but not sufficient, as the next example (constructed by using [38,
Ex. 4.1]) shows us:

T A R A T
D_—]_l 1[)—{:]2 3_0:

since in this case

ko= (V3 13) g (114 2na) g (47 304}
1/3 4/3 0 1/2 12 1/2
thus p(T) < 1, and it can be seen that (w1)—(w3) hold, on the other hand, (m1) fails.

4.3.2 Numerical examples revisited

Now, based on Theorem 4.3.5 we can define that unknown “some mesh condition” of
Table 4.2. It is the DwMP for the matrix K. One can check that for square (1) already
the condition K5* > 0 fails, thus the DmP fails, too.

In the following more numerical examples are investigated from the sufficiency point
of view c.f. Remark 4.3.9. We assume that K = —A and L = % — A\, where /A denotes
the Laplacian operator. For these operators the corresponding maximum principles
hold. We choose different domains, methods and parameter settings. We focus on the
conditions K;' >0, T > 0 and p(T) < 1.

Example 4.3.10. In this case we set {2 = (0,1). We use a FDM with uniform mesh
to the space discretization — we denote the mesh parameter by h — and the #-method
to the time discretization. The usual calculation gives

6 1 26 0

X1p = tridiag 3 E—l_ﬁ’ 7|
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1-0 1 2(1-9) 1-60

h? 7 At h? h? |’
where the matrices are of the size n xn, and n = + —1. Weset n =4, § = 1/2 (Crank-
Nicolson scheme) and At = 0.05. Then one can check that the conditions K5' > 0 and
p(T) < 1 hold, while the condition T > O fails. Refining the time step to At = 0.04

(and keeping the other parameters) we find that all the three conditions hold.

Xyo = tridiag | —

Example 4.3.11. In this case we set Q = (0,1)2. We use a FEM with a uniform
triangle mesh — see Figure 4.1, square — to the space discretization — we denote the mesh
parameter by h — and the #-method to the time discretization. The usual calculation
gives

2

M, = %tridiag [tridiag [0,1/6,1/6], tridiag [1/6, 1,1/6] , tridiag [1/6,1/6,0]] ,

Ko = tridiag [-I, tridiag[—1,4,—1], 1],

where the matrices My and K are of the size n? x n2, and n = % — 1.

First we set n = 3 (Figure 4.1, square (1)), # = 0.9 and At = 0.1. Then one can check
that the conditions K;' > 0 and p(T) < 1 hold, while the condition T > 0 fails.
Choosing the time step as At = 0.05 (and keeping the other parameters) we find that
the conditions K;' > 0 and p(T) < 1 hold, as well as the condition T > 0.

Second we set n = 7 (Figure 4.1, square (r)), § = 0.9 and At = 0.05. Then one can
check that the conditions K;' > 0 and p(T) < 1 hold, while the condition T > 0 fails.
Choosing the time step as At = 0.01 (and keeping the other parameters) we find that
the conditions K;' > 0 and p(T) < 1 hold, as well as the condition T > 0.

The above examples demonstrate that the DmP implies the DwMP and the DSP,

but the converse implication fails.

Summary of the chapter. In this chapter in Section 4.1 an algebraic framework
was presented on discrete maximum principles for hyper-matrices. Both theoretical and
practical conditions were listed on discrete maximum principles besides investigating
the applicability of the framework.

In Section 4.2 by using this framework we investigated some parabolic operator
when the FEM + #-method was applied as a discretization. We gave sufficient con-
ditions on the mesh, on the time step and on the parameter @ to fulfil the DmP and
the DMP, see Theorem 4.2.5. We investigated the sharpness of the conditions of this
theorem with several numerical examples. Section 4.2 was based on the paper [39,
Mincsovies, 2010].
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In Section 4.3 the relation of discrete elliptic and parabolic maximum principles was
investigated. We introduced the notion of DSP. In Theorem 4.3.4 we stated that under
the parabolic DnP property the elliptic DnP property is equivalent to the DSP. In
Theorem 4.3.5 we stated that DmP implies DwMP and DSP. The practical conclusion
of these theorems is that with an inadequate mesh (independently of the choice of the
time step and parameter #) the DmP can be spoiled. To illustrate this we added some

numerical examples. Section 4.3 was based on the paper [40, Mincsovics, 2010].
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Chapter 5
Appendix

In this chapter we collected the definitions and results we used in the other chapters.

1 Basic notions in numerical analysis

proof of Lemma 1.1.22. It is enough to show that Bg/s(G(v)) C G(Br(v)), due to
Corollary 1.1.21. We assume indirectly that there exists w € Bpr;s(G(v)) such that
w ¢ G(Bg(v)). We define the line w(\) = (1 — A)G(v) + Aw for A > 0, and introduce

the number ) as follows:

S

_ { sup{N > 0|w(\) € G(Br(v))VYA € [0,X)}, if it exists,

0, else.

Then clearly the inequality A < 1 holds. We will show that  =: w(j\) € G(Bg(v)).

For A = 0 this trivially holds. For A > 0 we observe that G is invertible on w(j\ —£),
(i.e., the elements G_l(w(j\ —¢€)) € Bg(v) exist) for all € : A > ¢ > 0. Thus, we can
use the stability estimate (1.14)

w
SA—e) |lw— G|y < MR- <R-3,
R

HG*@MX—ED—U

vgﬂ@@—@—aw

e
for some 6 > 0, and using again the stability estimate we can conclude that the
function h(c) = G~ (w(A —¢)) is uniformly continuous at € € (0, A]. Thus, there exists
lim.\ o h(e) =: z € Bgr(v). Using the continuity of G, we get G(z) = w.

Now we can choose a closed ball B,(z) C Bg(v), (r > 0) whose image G(B,(2))

contains a neighbourhood of w, due to Brouwer’s invariance domain theorem. This

results in a contradiction.

97



5. APPENDIX

Finally, the Lipschitz continuity with the constant S is a simple consequence of

(1.14). 0

Definition 5.0.12. A real square matrix is said to be a Z-matriz if its off-diagonal

entries are nonpositive.

Definition 5.0.13. We call a real square matrix M-matriz if it can be represented as
sI — B, where I is the identity matrix and B < 0 (i.e. each entries of the matrix B are

nonpositive), moreover s > o(B), where p denotes the spectral radius of a matrix.

It is obvious that an M-matrix is a Z-matrix, too.

Theorem 5.0.14. [3, Ch.6, Th.2.3] We assume that the matriz A is a Z-matriz. Then

the following statements are equivalent.
1. A is a nonsingular M-matriz.
2. There exists d > 0 with Ad > 0.
3. There exists A1, and A= > 0.

The following lemma (which can be found e.g. in [51, [/Lemma 1.8.]) provides a

tool to estimate the norm of the inverse of an M-matrix.

Lemma 5.0.15. We assume that the matriz A is a nonsingular M-matriz with the
dominant vector d. Then

l[dlloo

-1 o < —— M .,
1A oo < min(Ad);

(5.1)

2 Maximum principles

Definition 5.0.16. We say that K, defined in (2.1), is uniformly elliptic if there exists
a constant m > 0 such that

d

D ay(x)&& > mgf

i,j=1

holds for all x € Q, £ = (&1,&, .. .,¢d) € RY.
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Definition 5.0.17. We say that L, defined in (2.4), is uniformly parabolic if there

exists a constant m > 0 such that
d
Z ai;(x,t)&&; > m €]
ij=1

holds for all (x,t) € Q x (0,T], £ € R4

3 Discrete elliptic maximum principles

Definition 5.0.18. e A € R™" is cogredient to E € R™™ if for some permutation
matrix P € R"*", PAPT = E.

e A is reducible if it is cogredient to

(¢5)

where B and D are square matrices, or if n = 1 and A = 0. Otherwise, A is

irreducible.

Definition 5.0.19. e A € R™" is diagonally dominant (DD) if
[Ail > | Ay (5.2)
J#i
holds for all 1 < i < n.

e A € R™™ is strictly diagonally dominant (SDD) if strict inequality is valid for
all 1 <i<nin (5.2).

e A € R™™™" is irreducibly diagonally dominant (IDD) if it is irreducible and DD,

moreover, strict inequality is valid for at least one i in (5.2).

Definition 5.0.20. A Z-matrix A € R™*" is a Stieltjes matriz if it is symmetric and

positive definite.

The above definitions can be found in almost every textbook on the theory of
matrices e.g. in [3], or in [55]. In the following some basic results are presented on the

introduced notions, based also on the aforementioned books.
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Lemma 5.0.21. [55, Cor. 3.20.] If A € R™™" is an IDD Z-matriz with positive
diagonal entries, then A~! > 0.

Theorem 5.0.22. [3, part of Thm. 2.7. in Ch. 6.2.] We assume that A € R™" is

an irreducible Z-matriz. Then the following two statements are equivalent.
(i) A is a nonsingular M-matriz;
(i) A=t > 0.

Theorem 5.0.23. /3, part of Thm. 2.3. in Ch. 6.2.] We assume that A € R™" is a

Z-matriz. Then the following two statements are equivalent.
(i) A is a nonsingular M-matriz;

(i) A=1 > 0.

4 Discrete parabolic maximum principles Matrix splitting theory plays a fun-
damental role in solving large system of linear equations. Here we give only a short
introduction into the basic definitions and results which will be important for us. The
Reader can find more about this topic in [3, 55, 59].

Definition 5.0.24. For the non-singular matrix A € RV*V the decomposition A =
M — N represents a splitting of A, where M, N € RV*V,

e The splitting is called convergent splitting if M is non-singular with p(M™'N) <
1.

e The splitting is called weak regular splitting if M is non-singular with M~ > 0
and M—!N > 0.

Remark 5.0.25. The idea behind the notion of convergent splitting can be explained
as follows. Consider the linear system of equations Ax = b, where A is non-singular.
Then for the iteration My™ — Ny™ ! = b, y* — x for every initial vector y° if and
only if A = M — N defines a convergent splitting,.

The following theorem summarizes the essence of the relation of the above given

matrix splitting types.
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Theorem 5.0.26. [3, Ch.6, Th.2.3] For the non-singular matriz A € RN*N the fol-
lowing statements are equivalent.

(a) A7' > 0.

(bl) There exists a convergent weak regular splitting of A.

(b2) There exists a weak regular splitting of A and every weak regular splitting of A

is a convergent splitting.
The following two results are used in the proofs of Theorems 4.3.4 and 4.3.5.

Lemma 5.0.27. [55, Th.3.15] If for an arbitrary matriz T € RVN*N p(T) < 1 holds,

then I — T is non-singular and

I-T)"'=) TF=T+T+T>+. ... (5.3)

k=0

The following theorem is a consequence of the Perron—Frobenius theorem, see e.g.

in [59, Th.2.2).

Theorem 5.0.28. If T > 0, then p(T) is an eigenvalue of the matriz T.
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Conclusions

This dissertation consisted of two parts. The topic of the first part was the Lax theory
of the numerical solution of linear and nonlinear equations. The second part dealt with

discrete elliptic and parabolic maximum principles.

To approximate the solution of some equation, usually a numerical method is used,
the success of which depends on its convergence. The definition of convergence is theo-
retical since it contains the unknown solution, however, this problem can be solved with
the following idea. The directly unverifiable notion of convergence can be substituted
with the notions of consistency and stability. In the linear case stability and conver-
gence are equivalent under the consistency assumption, this is the Lax equivalence

theorem.

In the first part of the dissertation, our goal was to present a framework that unifies
the known results, completes the theory and clarifies the relations between the basic
notions of consistency, stability and convergence. These goals were realized in the

following way.

e We reformulated the results of Stetter in order to fit into our framework (since

we used a different stability notion).

e We completed the nonlinear theory by adding our own results in Subsection
1.1.3, i.e., we introduced the notion of dense consistency, see Definition 1.1.28
and we proved that dense consistency together with stability together implies
convergence, see Theorem 1.1.36. Moreover, we stated that stability “near to the
solution” implies stability, see Lemma 1.1.37. These results together provide the

opportunity for using our nonlinear framework in applications.

e We gave numerous examples in order to shed some light on the relation of the
basic notions in the nonlinear case, see Subsection 1.1.4. We proceeded in the

same way in the linear case, too, see Subsection 1.2.2.
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When choosing a numerical method to approximate the solution of a continuous
mathematical problem, the first thing to consider is which method results in a good ap-
proximation from a quantitative point of view. This was investigated in the first part of
the thesis. However, in most of the cases it is not enough. The original problem (which
is usually some model of a phenomenon) possesses important qualitative properties,
and a natural requirement from the numerical solution is to preserve these qualita-
tive properties. E.g., when we seek an approximation of the Laplace’s equation where
the boundary condition is defined to be nonnegative then the solution is nonnegative,
too and a good approximation should be nonnegative as well. For linear elliptic and

parabolic problems the main qualitative properties are the various maximum principles.

In Chapter 3, which dealt with discrete elliptic maximum principles, our aim was
twofold. Firstly, we wanted to present a unified algebraic framework giving the known
results and completing the theory with our results on discrete strong maximum princi-
ples. Secondly, we wanted to apply this framework on a certain problem. These were

realized in the following way.

e In Section 3.1, which is based on the paper [41, Mincsovics and Horvath, 2012],
we investigated six different types of maximum principles including the most
known ones,; like the discrete weak non-positivity preservation property (DnP)
and the discrete weak maximum principle (DwMP). We presented sufficient and
necessary conditions for each of these discrete maximum principles, including
our own results on the strong maximum principles. See the discrete strong non-
positivity preservation property in Lemma 3.1.5, the discrete strong maximum

principle (DsMP)in Theorem 3.1.10 and the discrete strictly strong maximum
principle (DSMP) in Theorem 3.1.9.

e In the same section, we gave an overview on practical conditions ensuring the
DwMP, the DsMP and the DSMP listing the known results and completing with

our own conditions.

e We also investigated the applicability of our algebraic framework. See Subsection
3.1.3.

e We illustrated the differences between the weak and strong discrete maximum
principles with several numerical examples. See Section 3.2, which is also based
on [41, Mincsovics and Horvath, 2012].

e In Section 3.3, based on [28, Horvath and Mincsovics, 2013], using the alge-

braic framework we investigated some elliptic problem where an interior penalty
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discontinuous Galerkin method is applied as discretization. We gave sufficient
conditions on the parameters € and ¢ and on the mesh fulfilling the DnP and the
DwMP, see Theorem 3.3.2 and Theorem 3.3.3, respectively. We investigated the
sharpness of the necessary conditions of these theorems with numerical examples

as well.

In Chapter 4, which dealt with discrete parabolic maximum principles, our aim was
the following. Firstly, to present an algebraic framework on discrete parabolic maxi-
mum principles collecting the known results. Next, we wanted to apply this framework
on a certain practical problem. Finally, we also wanted to find some connection be-
tween discrete elliptic and discrete parabolic maximum principles. These were realized

in the following steps.

e In Section 4.1 we presented an algebraic framework on discrete parabolic max-
imum principles. We studied three types of maximum principles, listing the
known sufficient and necessary conditions for each type. We also investigated the

applicability of the framework.

e In Section 4.2, based on [39, Mincsovics, 2010], we investigated a parabolic prob-
lem when some FEM + 8-method discretization is used and we derived practical
conditions under which the most important discrete parabolic maximum princi-

ples can be preserved, see Theorem 4.2.5.

In Subsection 4.2.3 we presented numerical examples showing that a not carefully

chosen mesh can already hinder to fulfil discrete parabolic maximum principles.

e In Section 4.3, based on [40, Mincsovics, 2010], we introduced a new notion, the
discrete stabilization property (DSP), see Definition 4.3.1. We gave sufficient
and necessary condition to fulfil this property in Lemma 4.3.3. Additionally, we
presented our results on the relation of the DSP and the discrete elliptic and

discrete parabolic maximum principles, see Theorems 4.3.4 and 4.3.5.

These results explain the earlier mentioned property, namely, that a non-adequate

mesh can already hinder to fulfil discrete parabolic maximum principles.
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Summary

This dissertation consisted of two parts. The first part addressed the Lax theory of nu-
merical methods. The second part dealt with discrete elliptic and parabolic maximum
principles.

To approximate the solution of some equation, usually a numerical method is used
which success depends on its convergence. The definition of convergence is theoretical
since it contains the unknown solution, however, this problem can be solved with the
following idea. The directly unverifiable notion of convergence can be substituted with
the notions consistency and stability. In the linear case stability and convergence are
equivalent under the consistency assumption, this is the Lax equivalence theorem.

We presented an abstract framework which is useful for application. We showed
that it is sufficient to check consistency for a set of elements whose image is dense in
some neighbourhood of the zero, which can be done parallel. Moreover, it is enough
to check stability “near to the solution”. We investigated the relation of the basic
notions (consistency, stability and convergence) providing numerous examples both in
the linear and nonlinear case.

When choosing a numerical method to approximate the solution of a continuous
mathematical problem, the first thing to consider is which method results in an good
approximation from a quantitative point of view. This was investigated in the first
part of the dissertation. However, in most of the cases it is not enough. Usually the
original problem possesses important qualitative properties and a natural requirement
is from the numerical solution to keep possessing these qualitative properties. For
linear elliptic and parabolic problems the main qualitative properties are the various
maximum principles.

We gave an algebraic framework both on discrete elliptic and discrete parabolic
maximum principles. At the elliptic case we focused on the differences between the
weak and strong discrete maximum principles. We investigated some elliptic problem
where interior penalty discontinuous Galerkin method is applied as discretization. We
gave sufficient conditions on the discretization parameters and on the mesh fulfilling
the most important discrete elliptic maximum principles. We investigated a parabolic
problem where some FEM + #-method discretization is used and we derived practical
conditions under which the most important discrete parabolic maximum principles can
be preserved. We introduced a new notion, the discrete stabilization property (DSP),
and we presented our results on the relation of the DSP and the discrete elliptic and
discrete parabolic maximum principles. These results explain the property that a non-

adequate mesh can already hinder to fulfil discrete parabolic maximum principles.
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6sszef0glalés

Ez a disszertacié két részre oszlik. Az elso rész numerikus modszerek Lax-féle elméletét
tartalmazza, mig a masodik rész a diszkrét elliptikus és parabolikus maximumelvvel
foglalkozik.

Egy egyenlet megoldasanak approximaciéjahoz altalaban valamilyen numerikus méd-
szert hasznalunk, melynek sikerességét a konvergencia fogalménak segitségével mérhet-
jik. Ezen fogalom definici6ja viszont tartalmazza az ismeretlen megoldast. Vagyis a
konvergencia direkt iton nem ellenorizheto. Ugyanakkor a konzisztencia és a stabilitas
fogalmainak bevezetésével kikiiszobolhetjiik ezt a problémét. Linedaris esetben a sta-
bilitds és a konvergencia ekvivalensek, ha feltessziik a konzisztenciat, ez a Lax-féle
ekvivalencia tétel.

Kidolgoztunk egy, alkalmazasoknak is megfelelo absztrakt felépitését a témakornek.
Megmutattuk, hogy a konzisztenciat elég megvizsgalni egy halmazon, melynek képe
suru a nulla egy kornyezetében. Ennek ellenorzése parhuzamosithaté. Tovabba, a
stabilitast elegendo “a megoldashoz kozel” megvizsgalni. Szamos példan keresztiil
targyaltuk az alapfogalmak (konzisztencia, stabilitds és konvergencia) kapcsolatat mind
a linedris, mind a nemlinedris esetben.

Numerikus moédszer hasznalata estén az elso kérdés az, hogy kvantitativ szem-
pontbdl megfelelo-e. Ezt a disszertacié elso része tartalmazta. Ugyanakkor ez sok e-
setben nem elégséges. Altal4ban a kiindulési feladat fontos kvalitativ tulajdonsagokkal
rendelkezik, és természetes elvaras egy numerikus médszertol, hogy ezen tulajdonsago-
kat orizze meg. Elliptikus és parabolikus parcialis differencidlegyenletek esetében a
legfontosabb kvalitativ tulajdonsagok a kiilonb6zo maximumelvek.

Targyaltuk a diszkrét elliptikus és parabolikus maximumelveket algebrai keretben,
ahol az elliptikus esetben az eros és gyenge maximumelvek kiilonbségeire fokuszaltunk.
Megvizsgaltunk egy elliptikus problémat, ahol “interior penalty discontinuous Galerkin”
médszert alkalmaztunk. Elégséges feltételeket adtunk a diszkretizaciés paraméterekre
és a racshéléra, amelyek mellett megorzodnek a fontosabb diszkrét maximumelvek.
Megvizsgaltunk egy parabolikus problémat, ahol végeselem + #-médszert alkalmaz-
tunk és a gyakorlatban hasznalhaté feltételeket adtunk, amelyek mellett a fontos maxi-
mumelvek megorzodnek. Bevezettiink egy j fogalmat, a “discrete stabilization proper-
ty”-t (DSP). Megmutattuk, hogy milyen kapcsolatban &llnak egyméssal a DSP és a
diszkrét elliptikus és diszkrét parabolikus maximumelvek. Ezek az eredmények mu-
tatjak, hogy nem megfelelo racshal6 valasztasa egymagaban is meg tudja akadélyozni

a diszkrét parabolikus maximumelvek teljesiilését.
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