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2. PREFACE 

Patients receiving medical treatments such as blood transfusion, haemodialysis or 

nutritional support may be exposed to high amounts of plasticisers. The most commonly 

used plasticiser in flexible polyvinyl chloride (PVC) products, frequently found in 

medical devices such as blood bags and tubes, is di(2-ethylhexyl) phthalate (DEHP) [1-

3]. PVC medical devices contain up to 40% of DEHP by weight [4-6]. Since DEHP is 

not chemically bound to the PVC it can easily migrate into the blood and blood products, 

such as red blood cells, whole blood, platelets and plasma [5-8]. 

Due to the toxic effects of DEHP the concentrations of its metabolites in urine have been 

determined to evaluate the exposure of DEHP to children and the general population [9-

18]. In humans DEHP is rapidly converted into its primary monoester, mono(2-

ethylhexyl)phthalate (MEHP), through phase-I biotransformation. Following a multistep 

oxidative pathway it is further metabolised mainly to mono(2-ethyl-5-

hydroxyhexyl)phthalate (5OH-MEHP), mono(2-ethyl-5-oxohexyl)phthalate 

(5oxo-MEHP), mono(2-ethyl-5-carboxypentyl)phthalate and mono[2-

(carboxymethyl)hexyl]phthalate [19]. The metabolites are mainly eliminated as 

conjugates following phase-II glucuronidation with the highest urinary levels of 

5OH-MEHP followed by 5oxo-MEHP and MEHP [20-22]. 

Since increased urinary amounts of DEHP metabolites can result from blood transfusion, 

monitoring of concentration levels can be utilised as a marker for blood doping. Taking 

into consideration that for anti-doping testing mainly urinary sampling is conducted and 

existing methods are based on blood analysis and cover only homologous blood 

transfusion, the detection of blood transfusion is limited [23-28]. Accordingly, it would 

be a great leap forward to detect both homologous and autologous blood transfusions 

from urine samples. Monitoring urinary concentrations of DEHP metabolites in order to 

test for blood transfusion in athletes was proposed by Monfort et al. [29]. Analysing 

urine samples for DEHP metabolites from patients subjected to clinical care or to blood 

transfusions and from an elite athlete population it was noticed that urine samples 

collected up to two days after blood transfusion contained significantly higher amounts 

of DEHP metabolites compared to a control group. This indicates that DEHP metabolites 

are good candidates to be used in sports drug testing as alert markers for the potential 

misuse of blood transfusion. 
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3. ABBREVIATIONS 

13C4-5oxo-MEHP 13C4-mono(2-ethyl-5-oxohexyl) phthalate 
13C4-MEHP 13C4-mono(2-ethylhexyl) phthalate 

2cx-MMHP mono[2-(carboxymethyl)hexyl] phthalate 

5cx-MEPP  mono(2-ethyl-5-carboxypentyl) phthalate 

5OH-MEHP mono(2-ethyl-5-hydroxyhexyl) phthalate 

5OH-MEHP-gluc glucuronidated mono(2-ethyl-5-hydroxyhexyl) phthalate 

5oxo-MEHP mono(2-ethyl-5-oxohexyl) phthalate 

5oxo-MEHP-gluc glucuronidated mono(2-ethyl-5-oxohexyl) phthalate 

ACD acid-citrate-dextrose 

AICAR 5-amino-4-imidazolecarboxyamide ribonucleoside 

ASE alkyl sulphonic acid phenyl ester 

ATBC acetyl tri-n-butyl citrate 

ATP adenosine triphosphate 

BTHC butyril trihexyl citrate,  

CE collision energy 

CID collision-induced dissociation 

CPD citrate-phosphate-dextrose 

cps counts per second 

CV coefficient of variation 

DEHA di(2-ethylhexyl) adipate 

DEHP di(2-ethylhexyl) phthalate 

DEHT di(2-ethylhexyl) terephthalate 

DIDP diisodecyl phthalate 

DINCH 1,2-cyclohexanedicarboxylic acid diisononyl ester 

DINP diisononyl phthalate 

DP declustering potential 

EAS-61 experimental additive solution-61 

ECD electron capture detector 

ECMO extracorporeal membrane oxygenation 

EI electron ionisation 
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ESI electrospray ionisation 

EU European Union 

EVA ethylene vinyl acetate 

FID flame ionisation detector 

GC gas chromatography 

Hb haemoglobin 

HPLC high performance liquid chromatography 

IC in-competition 

ICC intraclass correlation coefficient 

ISTD internal standard 

IV intravenous 

LC-MS/MS liquid chromatography/tandem mass spectrometry 

LIT linear ion trap 

LOD limit of detection 

LOQ limit of quantification 

MEHP mono(2-ethylhexyl) phthalate 

MRM multiple reaction monitoring 

MS mass spectrometer / mass spectrometry 

MS/MS tandem mass spectrometry 

NHANES National Health and Nutrition Examination Survey 

OOC out-of-competition 

PCI positive chemical ionisation 

PE polyethylene 

PEL permissible exposure limit 

PEO polyethylene oxide 

PO polyolefin 

PP polypropylene 

PU polyurethane 

PVE plasma volume expander 

QC quality control 

QQQ triple quadrupole mass analyser 

QTOF-MS quadrupole time-of-flight mass spectrometry 

QTrap hybrid triple quadrupole/linear ion trap 
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RBC red blood cell 

RT retention time 

S/N signal to noise ratio 

SAGM saline-adenine-glucose-mannitol 

SPE solid phase extraction 

TEHTM tri-(2-ethylhexyl) trimellitate 

TOF time-of-flight mass analyser 

TPE thermoplastic elastomers 

TPN total parenteral nutrition 

TWA time weighted average 

UHPLC ultra-high performance liquid chromatography 

WADA World Anti-Doping Agency 
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4. LITERATURE OVERVIEW 

4.1. DI(2-ETHYLHEXYL) PHTHALATE 

Phthalate ester plasticisers are used to impart flexibility, softness and extensibility to 

inherently rigid thermoplastic and thermoset resins [30]. The most commonly used 

phthalate ester plasticiser is di(2-ethylhexyl) phthalate (DEHP, Figure 4.1), which is 

mainly added to polyvinyl chloride (PVC), but also compatible with ethyl cellulose, 

cellulose nitrate and polystyrene [31]. More than 95% of the total amount of DEHP 

produced is used as a plasticiser in polymer products, while the rest is utilised for non-

polymer applications. The content of DEHP in flexible polymer materials usually varies 

between 10 and 40% by weight. DEHP plasticised PVC is used in various products e.g. 

in building materials, in consumer products as well as in medical devices. 

 

Figure 4.1: Chemical structure of di(2-ethylhexyl) phthalate (DEHP). 

 

According to Annex I of Directive 67/548/EEC, DEHP is classified as a substance toxic 

to reproduction (Repr. Cat. 2; R60-61; May impair fertility; May cause harm to the 

unborn child) [32,33]. Since it is known that DEHP can be leached out from the polymer 

products the toxic effects of DEHP and its metabolites were studied to evaluate the 

human exposure and the possible sources of the plasticiser [1-4,7,34-37]. The main 

source was found to be food products, which can be contaminated through the 

manufacturing process or from the packaging material. Therefore, there are certain 

restrictions on the use of DEHP in food contact materials. It is not permitted for use in 

single-use applications, such as cap seals or gaskets. However, it can be safely and 
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legally used in non-fatty food contact materials for repeated use and as a technical 

support agent in concentrations up to 0,1 % in the final product, provided the migration 

of the plasticiser does not exceed the Substance Migration Limit (SML) of 1.5 mg/kg 

food [38,39]. Other possible sources are consumer products or indoor air and house dust 

contaminated from building materials. The EU Directive 2005/84/EC took effect in 

January 2007 and set the limit of DEHP in toys and childcare products at 0.1% by mass 

[40,41]. Other countries (US, Canada, Argentina, Brazil) have also set the same limit of 

DEHP in toys and children's products. DEHP is also prohibited in cosmetics in the 

European Union (EU) due to its classification as a reproductive toxicant [42,43]. 



Literature Overview 

 10 

4.1.1. Production and uses of di(2-ethylhexyl) phthalate 

The market for DEHP has been decreasing over the last ten years. In 1997, the total 

Western European production of DEHP was 595,000 t/y and in the early 1990s DEHP 

represented about 51% of the total phthalate plasticiser market in the EU. Of the 341,000 

tonnes produced in 2007, 187,000 tonnes were produced in Western Europe 

corresponding to 31% of the 1997 level [35]. The use of diisononyl phthalate (DINP) and 

diisodecyl phthalate (DIDP) have increased during the same period, indicating that 

DEHP has been replaced by DINP and DIDP in several applications. No data has been 

available for estimating the global production of DEHP. The content of DEHP is not 

known, but a rough estimate can be obtained assuming a phthalate content of the 

polymer of 30% and that DEHP accounts for 18% of the phthalates (EU manufacturing 

average). DEHP may be traded in end-product preparations such as sealants, adhesives 

and paint, but no information is available for estimating the DEHP content of these 

product groups [36]. 

The fate of the DEHP sent into circulation in the EU in 2007 is illustrated in Figure 4.2, 

where release from the use of end-products and disposal represent the total life-time 

emission of the articles produced in 2007 instead of total DEHP emission from end-

products in the EU in 2007 [36]. The latter would depend on the total amount of DEHP 

accumulated in society and would probably be higher, as the amount of DEHP sent into 

circulation has been decreasing in recent years. 
 

 
Figure 4.2: Overall flow of DEHP sent into circulation in the EU in 2007. Tonnes DEHP/year [36]. 
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The manufactured DEHP is further processed in different formulation and processing 

steps, through which a wide range of end-products are produced as illustrated in the 

overview flow chart in Figure 4.3 [36]. 

 

 
Figure 4.3: Overall flow of DEHP through manufacturing processes in the EU (tonnes DEHP/year) 

[36]. 
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The main end-product uses of DEHP are as follows [35-37]: 

Polymer applications: 

 Flooring; 

- PVC flooring (with PVC surface); 

- Carpets with PVC back-coating; 

- Cork with PVC top-coating or back-coating; 

 Wall covering; 

 Roofing; 

 Film/sheet and coated products: 

- Curtains, blinds, table linen, etc.; 

- Packaging; 

- Tape and self-adhesive foils; 

- Office supplies (ring binders, files, slip cases, etc.); 

- Toys (swimming pools, rubber beach toy, beach balls, etc.); 

- Medical bag/sheet devices; 

- Bottom sheets for hospitals; 

 Wires and cables; 

 Hoses and profiles; 

- Garden hoses and tubes; 

- Hoses and tubes in industry; 

- Profiles of windows and electrical products; 

- Medical tubing; 

 Coated fabric; 

- Upholstery and car seats (synthetic leather); 

- Luggage; 

- Rainwear; 

- Tarpaulins; 

- Water beds; 

 Moulded product; 

- Footwear; 

- Adult toys (DEHP is not permitted in toys for children); 

 Car undercoating. 

 

Non-polymer applications: 

 Adhesives; 

 Lacquers and paints; 

 Printing inks (see comment below); 

 Sealants (glass insulation, construction); 

 Ceramics. 

 

The estimated amount of DEHP in end-products marketed in the EU based on EU 

manufacture, import, export data is summarised in Table 4.1. 
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In the European Union, DEHP is not permitted for use in toys and childcare articles 

[40,41] or in cosmetics [42,43]. Additionally, there are certain restrictions on the use of 

DEHP in food contact materials [38,39]. 

 

Table 4.1: The estimated DEHP tonnage in end-products marketed in the EU based on EU 

manufacture, import and export data in 2007 (n.d.: no data) [36]. 

End-product use area Tonnage (t/year) % of total use 

EU Manufacture Import Export End- 
product use 

Indoor uses      

Polymer applications      

Flooring 33,000 2,000 4,800 30,200 10.6 

Wall covering 11,000 700 1,600 10,100 3.5 

Film/sheet and coated products  
made by calendering 

44,000 13,600 16,400 41,200 14.5 

Wires and cables 52,000 6,200 5,600 52,600 18.5 

Hoses and profiles 31,000 1,600 3,000 29,600 10.4 

Coated fabric and  
other products from plastisol 

31,000 2,200 1,400 31,800 11.2 

Moulded products 3,000 2,700 700 5,000 1.8 

Other polymer applications 12,300 10,900 3,100 20,100 7.1 

Non-polymer applications      

Adhesives and sealant 4,000 n.d. n.d. 4,000 1.4 

Lacquers and paints 500 n.d. n.d. 500 0.2 

Printing ink 1,000 n.d. n.d. 1,000 0.4 

Other non-polymeric applications 20 n.d. n.d. 20 0.0 

Outdoor uses      

Polymer applications      

Calendered roofing material 600 n.d. n.d. 600 0.2 

Coil coated roofing material 3,000 n.d. n.d. 3,000 1.1 

Wire and cables – air 2,400 n.d. n.d. 2,400 0.8 

Wire and cables – soil 9,700 n.d. n.d. 9,700 3.4 

Coated fabric 12,800 n.d. n.d. 12,800 4.5 

Car undercoating 4,000 n.d. n.d. 4,000 1.4 

Hoses and profiles 3,700 n.d. n.d. 3,700 1.3 

Shoe soles 19,400 n.d. n.d. 19,400 6.8 

Non-polymer applications      

Lacquers and paints 400 n.d. n.d. 400 0.1 

Adhesives and sealant 3,300 n.d. n.d. 3,300 1.2 

Total end-product use (round) 282,000 40,000 37,000 285,000 100 
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The use in medical devices is estimated at 0.5% of the total DEHP production, of which 

the major use (more than 95%) is soft medical grade PVC in containers, flexible tubing 

and medical gloves [2]. The typical concentration of DEHP in plasticised PVC is 

approximately 30% (w/w). 

The estimated releases from all activities are summarised in Table 4.2 [36]. The main 

releases are to soil and waste water. The use of end-products gives rise to the largest 

releases to the environment with washing of flooring, releases from underground cables 

and abrasive releases and pieces lost in the environment as the largest single sources. The 

releases from landfill may in fact be six times higher than indicated if total releases until 

the DEHP is ultimately degraded is considered, but no data on the long term fate of 

DEHP in landfills have been made available. 

 

Table 4.2: Tonnage handled and releases of DEHP from manufacturing, formulation, processing, 

end-products use and disposal in the EU in 2007 [36]. 

Activity Tonnage handled  

(t/year) 

Emission to 

 (t/year) 

Air Soil Waste water 

EU manufacture of DEHP 341,000 1 4 220 

Transportation of substance  
from manufacturing a 

345,479 0 0 29 

Formulation 61,000 30 1 97 

Processing 283,000 174 41 125 

End-product uses, indoor 223,000 380 0 1,240 

End-product uses, outdoor,  
non-abrasive 

33,000 30 3,980 500 

End-product uses, outdoor,  
abrasive leakages 

33,000 5 3,500 1,200 

Disposal and recycling operations 275,133 9 48 10 

Total releases (round)  600 7,600 3,400 
a The tonnage handled is the sum of EU production and import. 
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4.1.2. Occurrence of di(2-ethylhexyl) phthalate 

4.1.2.1. Di(2-ethylhexyl) phthalate in the environment 

Release of DEHP to the environment occurs during the production, transport, storage, 

formulation and processing of PVC. Since DEHP is not chemically bound to the polymer 

in flexible PVC the plasticiser will become released from the finished article during its 

use and after its final disposal. 

DEHP enters the environment mainly via direct releases to air and waste water, from 

sewage sludge and from solid waste. In air, DEHP may occur both in the vapour phase 

and as solid particles. The nature of these particles can be either aggregated pure DEHP 

or polymer particles containing DEHP. Particles formed by weathering of polymer 

products probably represent an important route of DEHP distribution. It is estimated that 

around 800 industrial sites in the EU use DEHP or preparations containing DEHP [35]. 

Releases from these sources are expected to cause higher local exposure. 

 

Table 4.3: Contribution to the total emissions of DEHP from different life-cycle stages [35]. 

Source Emission contribution Uncertainty in estimate Emission type 

Production ~2.5% low Point sources 

Industrial uses ~2.5% medium Point sources 

End-product uses ~32% medium Wide dispersive (and point sources) 

Waste handling a ~63% high Wide dispersive (and point sources) 
a Car shredding, incineration, landfills and waste remaining in the environment 

 
The release of DEHP from industrial point source is low compared to the releases during 

end-product uses (Table 4.3). The primary recipients during production, formulation and 

processing are air and wastewater; while surface water and soil are exposed from outdoor 

use. Emission from car shredding, municipal landfills and incineration stations seem to 

be low and the main recipients are soil (car shredding), water (municipal landfills) and 

air (incineration). The low dissipation rate of DEHP in the municipal landfill 

environment will probably cause accumulation. The emissions from landfills may 

therefore increase in the future. Dominating sources are shoe soles, outdoor use of coil 

and fabric coatings and indoor floors. The primary recipients are expected to be soil 

followed by the aquatic compartment (mainly sediment) and to a lesser extent air. DEHP 

in waste formed from buried cables and demolished building material is assumed to 
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cause emission to ground water in urban areas. However, the uncertainty of these 

estimations is, high due to limited data. The overall distribution of DEHP is 2% to air, 

21% to water and 77% to urban/industrial soil [35]. 

4.1.2.1.1. Environmental fate of di(2-ethylhexyl) phthalate 

Photodegradation of DEHP (reaction with OH radicals) is important in the atmosphere 

(t½ = 1 day) but is assumed to be of little importance in water and soil [35]. DEHP does 

not hydrolyse in water. The biodegradation of DEHP varies in available studies. Based 

on the results of standard biodegradation tests, DEHP is readily biodegradable. 

Experimental data indicates a biodegradation half-life for DEHP in surface water of 50 

days and 300 days in aerobic sediment. Anaerobic conditions and low temperature 

further reduce the degradation rate. The primary biodegradation product of DEHP is 

mono(2-ethylhexyl) phthalate (MEHP). 

DEHP is expected to be strongly adsorbed to organic matter and expected to be found in 

the solid organic phase in the environment. It will be strongly adsorbed to sludge in 

sewage treatment plants. DEHP has a low evaporation rate from its pure state and a 

moderate evaporation rate from a pure water solution (‘semi-volatile’). 

DEHP is found to bioaccumulate in aquatic organisms. This indicates that uptake via the 

food chain might be an important exposure route. 

4.1.2.1. Di(2-ethylhexyl) phthalate in food 

Food is generally regarded as a major source of phthalate exposure in the general 

population. Contamination of food can occur during processing, handling, transportation, 

packaging and storage. There is a considerable difference in the degree of phthalate 

contamination of foods depending on packaging and processing practices and the lipid 

content [44]. The most important food sources of exposure are beverages, excluding 

water, dairy products, fats and oils, grains, milk and meat (Table 4.4) [45]. 
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Table 4.4: Food concentrations of DEHP [3,45]. 

Food Median concentration, μg/kg (Range) 
Beverages 0.043 (0.006–1.7) 

Cereal 0.05 (0.02–1.7) 

Dairy (excluding milk) 0.96 (0.059–16.8) 

Eggs 0.12 (<0.01–0.6) 

Fats and oils 2.4 (0.7–11.9) 

Fish 0.001 (0.00005-not given, 90th percentile 0.02) 

Fruits 0.02 (<0.02–0.11) 

Grains 0.14 (<0.1–1.5) 

Meat, not processed 0.05 (<0.01–0.8) 

Milk 0.035 (<0.005–1.4) 

Nuts and beans 0.045 (<0.08–0.8) 

Poultry 0.9 (0.05–2.6) 

Processed meat 0.45 (<0.1–4.32) 

Vegetables 0.048 (0.0098–2.2) 

Infant formula, powdered 0.12 (<0.012–0.98) 

Infant formula, liquid 0.006 (<0.005–0.15) 

Breast milk 0.062 (0.01–0.6) 

Baby food 0.12 (0.01–0.6) 

Other food 0.05 (<0.01–25) 

4.1.2.2. Di(2-ethylhexyl) phthalate in medical devices 

PVC is ubiquitous in the health care environment. Due to of its properties, processability 

and relatively low cost, PVC is used in a wide range of products in hospitals. Some of 

them impact directly on patient care, whilst others contribute to the overall environment 

of the patient, including floor and wall coverings and clinical equipment. 

The flexibility and barrier properties of plasticised PVC have resulted in extensive uses 

as tubes, sheets, containers and coverings. One of the oldest medical use of plasticised 

PVC is the blood bag. It remains the material of choice for the storage of blood and 

blood products, including red cell preparations and platelet rich plasma. It is also used in 

intravenous tubing for blood collection and infusion and in bags and tubes for the 

delivery of liquid food products. A wide variety of components are used to assist patients 

in respiration, including oxygen masks and tubes, endotracheal and tracheostomy tubes, 

nasal cannulas, humidifier equipment and resuscitator and ventilator components. Some 

major medical procedures aimed at short, medium or long-term functional assistance to 

organs involve PVC tubes and components. This includes extracorporeal membrane 
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oxygenation and haemodialysis. It is also used in umbilical vessel catheters, wound 

drainage tubes and osteotomy shunts. Examination gloves are used very extensively in 

clinical and laboratory procedures and they employ a wide variety of materials, including 

plasticised PVC [7]. 

Wahl et al. tested different phthalates in medical plastic articles and DEHP was found 

mainly in soft pliable PVC plastics used for invasive applications, such as dialysis 

tubing, infusion and blood storage bags and tubing (Table 4.5) [46]. 

 

Table 4.5: Phthalates identified in medical plastic articles
a
 [46]. 

Plastic article DEP DIBP DBP BEP DEHP 

Eppendorf pipette tips x  (x)   

Eppendorf cup (x)  (x)   

Urine container 100 ml (x)  (x)   

Urine container 500 ml (x)  (x)   

Urine container 2500 ml (x)  (x)   

Urine bag 1500 ml (x)  (x)  x 

Syringe 60 ml (x)  (x)  (x) 

Insulin syringe (x)  (x)   

Heparin syringe (x)  (x)  x 

Microfilter 40 μl x  x (x) x 

Serum monovette (x)  (x)   

Butterfly x   x x 

Luerlock obturator (x)  (x)  x 

Infusion tubing (x) x x x xx 

Infusion bag (x)  x (x) xx 

Blood storage bag     xx 

Blood infusion tubing (x)  (x) x xx 

Intestinal tubing x  x  x 

Dialysis tubing (x)  (x)  xx 
a (x) < 1%, x < 20% and xx > 85% of total volatiles. 
DEP: diethyl phthalate, DIBP: diisobutyl phthalate, DBP: dibutyl phthalate, 
BEP: butyl 2-ethylhexyl phthalate, DEHP: di(2-ethylhexyl) phthalate. 

 

Quantitative information of the amount of plasticised PVC used for medical devices is 

not available. Medical applications account for 0.5% of the total PVC volume used in 

Western Europe [47].  
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4.1.2.3. Di(2-ethylhexyl) phthalate in blood and blood products 

4.1.2.3.1. Accumulation of DEHP during storage of blood 

It is well established that DEHP could leach out from PVC bags and accumulate in the 

stored blood and blood products [48-59]. While plasticisers have very low solubility in 

water (0.01 mg/100 mL at 25°C), DEHP is accumulated in whole blood (stored in PVC 

bag) at a rate of 0.25 mg/100 mL blood/day during storage at 4°C, to a level of 

5-7 mg/100 mL of blood at the end of 21 days [51,52,58]. 

The extraction of DEHP into blood products is biphasic [60]. The rate is maximal during 

the first few hours when the blood is handled at a higher temperature and is moved over 

new surfaces in handling. After this, when the blood is stored at refrigerated 

temperatures and the surfaces area of the plastic is held constant, the rate of extraction 

becomes much lower. 

Essentially, all DEHP in blood is protein bound with about three-quarters being bound to 

lipoprotein [61]. Fractionation of the blood indicated that the plasticiser was located 

almost exclusively in the plasma fraction and was specifically associated with the 

lipoprotein fraction of plasma [51]. Proteins such as albumin, fibrinogen, plasminogen 

and immunoglobulin G have very low affinities for DEHP in comparison with plasma 

[62]. Several early reports indicated that the amount of DEHP that leaches from 

transfusion packs correlated with triglyceride concentrations in the plasma [63-65]. 

DEHP added to the plasma tended to migrate to the areas of low and very low density 

lipoproteins, thus supporting the suggestion that DEHP may be solubilised and 

transported in blood in a manner similar to the triglycerides. DEHP is also found in 

platelet concentrates stored in PVC bags (approximately 11% in the platelet pellet and 

89% in the supernatant) [54]. 

Rock et al. demonstrated that there is a constant hydrolysis of DEHP to MEHP in stored 

whole blood [56]. The accumulation of DEHP and MEHP continued throughout the 

storage of whole blood, platelet-rich plasma, platelet concentrates and platelet-poor 

plasma. The levels of DEHP were much higher than those of MEHP and the highest 

concentrations were detected in platelet-poor plasma. The authors concluded that the 

accumulation of MEHP was due to the hydrolysis of DEHP by plasma proteins rather 

than by leaching from the blood bags. Similar conclusions were reached by Peck et al. 

[57]. In addition, they observed that the storage temperature affects not only the extent of 



Literature Overview 

 20 

leaching but activity of the enzyme, however, DEHP continues to be hydrolysed to 

MEHP even in the frozen state [66]. 

The distribution of MEHP in the plasma protein fractions was different from that of 

DEHP. MEHP is bound principally to non-lipoprotein constituents in the serum and this 

binding distribution is unaffected by lipid concentration [65]. The supernatant contained 

more MEHP and measurable amounts of MEHP were found in the albumin fraction [62].  

Miripol et al. reported that irrespective of whether whole blood or packed cells were 

stored in acid-citrate-dextrose (ACD)-adenine or citrate-phosphate-dextrose 

(CPD)-adenine solution in PVC bags, there was a continuing and increasing level of 

DEHP observed [67]. However, in packed cells the levels of DEHP were lower by a 

factor of about three. Given that plasma proteins and not erythrocytes provide the major 

binding sites for DEHP. Similar data were obtained by Peck et al. [57]. They also found 

that the accumulation of DEHP may be related to the increase in ratio of the plastic 

surface area to the volume of plasma in red blood cell (RBC) concentrates. Gulliksson et 

al. studied the effect of decreased plasma residue and replacement solutions on the 

extraction of materials from plastic storage bags into RBC concentrates [68]. 

Significantly less accumulation of DEHP per unit was observed in RBC components 

resuspended in saline-adenine-glucose-mannitol (SAGM) medium compared to CPD-

adenine solution. It was observed that the final level of DEHP appeared to be related to 

the amount of residual plasma, rather than to the volume of SAGM added. 

Although, earlier reports had not found significant amounts of DEHP taken up by RBCs, 

Rock et al. reported that labelled DEHP was incorporated into RBC concentrates stored 

at 4°C [69]. There was an immediate binding of 28% of the available 14C-DEHP into the 

RBCs on day 0, with approximately equal amounts being incorporated into the cytosol 

and membrane fractions. The total amount and relative distribution of the 14C-DEHP did 

not change significantly over 7 days. Since earlier studies examined RBCs stored as 

whole blood, not RBC concentrates and DEHP which is taken up by the lipid fraction of 

plasma, much of the DEHP in the former experiments may have preferentially bound to 

the plasma lipoproteins. In the case of RBC concentrates, limited plasma is available, 

thus favouring association of the DEHP with RBCs. This difference has important 

implications since in the majority of blood banks RBC concentrates are stored rather than 

whole blood. 

Rock et al. also found that DEHP leaches also into platelet concentrates and that 6-10% 

of the labelled DEHP added might bind to the platelets [70]. They also suggested that 
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DEHP might be involved in the loss of the platelet function during storage and affect the 

viability of stored platelets. DEHP bound to the platelets was found to be 90% in the 

membrane and 10% in the cytosol. The binding was reversible – DEHP was lost on 

resuspension of the platelets into new plasma [71]. 

4.1.2.3.2. Effect of plasticisers on erythrocytes 

It was subsequently shown that the DEHP improves RBC storage by reducing 

haemolysis and membrane loss by microvesiculation [72,73]. Other plastics, such as 

polyolefins (PO), which are used in platelet storage bags because of their high gas 

permeability, were associated with greater RBC haemolysis and microvesiculation when 

used in conjunction with standard storage solutions. However, the addition of DEHP or 

similar plasticisers to the RBCs stored in PO bags resulted in a better survival rate of the 

erythrocytes [69,74,75]. Similar results were found using glass storage tubes supporting 

the idea that DEHP has a beneficial influence on the RBCs. This excludes the possibility 

that PO bags might adversely affect them [69]. Without the protection afforded by the 

plasticiser, RBC storage would be limited to 3 weeks by using conventional storage 

solutions [76,77]. 

Hess et al. developed an additive storage solution, Experimental Additive Solution-61 

(EAS-61), in which RBCs can be stored for 9 weeks in PVC bags [78]. EAS-61 works, 

in part, by suppressing RBC microvesiculation and haemolysis. The increased volume of 

additive solution also seemed to be important for raising adenosine triphosphate (ATP) 

levels in RBC concentrates, improving RBC morphology and reducing haemolysis [79]. 

To evaluate whether EAS-61 might suppress RBC haemolysis during storage in a 

different plastic and to learn more about cellular mechanisms important for blood 

storage, Hill et al. conducted a study comparing RBCs stored in PVC and PO containers 

in 100 and 200 ml volumes of EAS-61 [80]. Although haemolysis of RBCs stored in 

EAS-61 was below conventional limits for at least 6 weeks, RBCs stored in PO bags had 

four times more haemolysis and lower RBC ATP concentrations than those stored in 

PVC. When DEHP was added to RBC stored in the PO bags, the degree of shape change, 

microvesiculation and haemolysis were reduced. Exposure of warm blood to PO bags 

caused a rapid initial shape change which persisted but progressed at a slower rate after 

the RBCs were transferred to PVC bags. This result suggests that DEHP can suppress 

further shape change and haemolysis, even after the processes have been initiated. 
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Several studies investigated the possible preservation role of butyril trihexyl citrate 

(BTHC) in RBC concentrates stored in BTHC-plasticised PVC bags [81-83]. 

Furthermore, it was found to be suitable for the storage of platelets [84,85]. Chemically, 

BTHC is esterified citric acid. The central hydroxyl group is esterified with butyrate, 

while the three carboxyl groups are esterified with hexanol. During metabolism it is 

hydrolysed to hexanol, butyric acid and citric acid. Straight-chain alcohols (such as 

hexanol) were found to expand RBCs ghost membrane areas sufficiently to inhibit 

haemolysis [86-88]. It was also reported that hexanol (144.6 µg/mL) found to suppress 

haemolysis and vesiculation of RBCs during storage, which supports that the hexanol is a 

key component of BTHC [89]. 

 

 

Figure 4.4: Chemical structure of butyril trihexyl citrate (BTHC). 
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4.1.3. Pharmacokinetics of di(2-ethylhexyl) phthalate 

The metabolism and excretion of DEHP was extensively studied in rats whereas only a 

limited number of studies are available on humans. 

After oral uptake, DEHP is enzymatically hydrolysed into its primary monoester, 

mono(2-ethylhexyl) phthalate (MEHP), partially in the mouth by salivary esterase [90], 

then mainly in the gastrointestinal tract through phase-I biotransformation [91,92]. 

Therefore, the majority of DEHP is rapidly adsorbed as MEHP in the gut [2]. DEHP 

hydrolysing lipases can be found in many tissues (especially in the pancreas, intestinal 

mucosa, liver) and in blood plasma [92,93]. Following a multistep oxidative pathway 

MEHP is further metabolised in the liver [94]. The hydroxylation of the alkyl chain at 

various positions results in the formation of primary (ω-oxidation) and secondary 

alcohols (ω-1 and ω-2 oxidation) which can be further oxidised to ketones and carboxylic 

acids. The carboxylated alkyl chain can undergo α- or β-oxidation yielding shorter 

carboxylated alkyl chains [91,95-97]. 

Most of the orally administered DEHP is systemically absorbed in humans and excreted 

in urine in the form of the five major metabolites (mono(2-ethyl-5-hydroxyhexyl) 

phthalate (5OH-MEHP), mono(2-ethyl-5-carboxypentyl) phthalate (5cx-MEPP), 

mono(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono(2-ethylhexyl) phthalate 

(MEHP) and mono[2-(carboxymethyl)hexyl] phthalate (2cx-MMHP) as illustrated in 

Figure 4.7. The major metabolite in urine detectable up to 12 h after oral administration 

of D4-DEHP was 5OH-MEHP, followed by 5oxo-MEHP and MEHP; after 12 h it was 

5cx-MEPP and after 24 h it was 2cx-MMHP (Figure 4.5) [22,98]. Excretion in urine 

follows a multiphase elimination pattern. After an absorption and distribution phase of 4 

to 8 h the half-lives of excretion in the first elimination phase (until 14-16 h after 

administration) were approximately 2 h for MEHP with slightly higher half-lives for 

5OH-MEHP and 5oxo-MEHP. The elimination half-lives of 5cx-MEPP and 2cx-MMHP 

were between 15 and 24 h. In the second phase, beginning 14 to 18 h post dose, 

half-lives were 5 h for MEHP and 10 h for 5OH-MEHP and 5oxo-MEHP. In the time 

window 36 to 44 h, no decrease in the excreted concentrations of 5OH-MEHP and 

5oxo-MEHP was observed. 

In the first elimination phase (8 to 14 h post dose), the mean excretion ratios of MEHP to 

5oxo-MEHP and MEHP to 5OH-MEHP were 1 to 1.8 and 1 to 3.1, respectively. In the 
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second elimination phase (up to 24 h post dose) mean excretion ratios of MEHP to 

5oxo-MEHP to 5OH-MEHP changed to 1 to 5.0 to 9.3, respectively. The excretion ratio 

of 5OH-MEHP to 5oxo-MEHP remained constant throughout at 1.7. The respective 

half-lives of the metabolites in serum were estimated to be less than 2 h except for 

2cx-MMHP, for which the half-life was at least 5 h. In contrast to urine the major DEHP 

metabolite in serum was MEHP. 

After 24 h, 67.0% (range: 65.8-70.5%) of the DEHP dose was excreted in urine, 

comprising 5OH-MEHP (23.3%), 5cx-MEPP (18.5%), 5oxo-MEHP (15.0%), MEHP 

(5.9%) and 2cx-MMHP (4.2%) [98]. An additional 3.8% of the DEHP dose was excreted 

on the second day, comprising 2cx-MMHP (1.6%), 5cx-MEPP (1.2%), 5OH-MEHP 

(0.6%) and 5oxo-MEHP (0.4%). In total, about 75% of the administered DEHP dose was 

excreted in urine within two days. No dose dependency in metabolism and excretion was 

observed. 5OH-MEHP and 5oxo-MEHP in urine reflect short-term and 5cx-MEPP and 

2cx-MMHP long-term exposure. 

First-morning urine samples collected from children showed decreasing ratios of the 

oxidative metabolites 5OH-MEHP, 5oxo-MEHP relative to the monoester (MEHP) with 

increasing age [10,99]. This might indicate an enhanced oxidative metabolism in 

children. 

 

 

Figure 4.5: Time course of the excretion of the DEHP metabolites in urine (mg/L) after a high dose 

of D4-DEHP administered orally [98]. 
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After intravenous exposure to DEHP a sharp increase in urinary DEHP metabolite 

concentrations were observed [100-102]. Maximum concentrations of 5OH-MEHP, 

5oxo-MEHP, 5cx-MEPP and MEHP were observed 4 h after the procedure. 2cx-MMHP 

was excreted at highest concentrations after 8 h (Figure 4.6). As an indication of longer 

elimination half-lives, the major metabolites excreted in urine 24 h after the exposure 

were 5cx-MEPP and 2cx-MMHP [103]. The elimination characteristics and relative 

distribution of the DEHP metabolites in urine were found to be similar to that after oral 

administration, which indicates that the toxicokinetic behaviour of DEHP in humans 

appears to be qualitatively unaffected by the route of administration [2,103]. 

 

 

Figure 4.6: Time course of excretion of the DEHP metabolites in urine (μg/l) after intravenous 

exposure to DEHP [103]. 

 

Athletes are thought to have blood transfusions only a short time before competition, 

therefore the measurement of DEHP metabolites provides a sufficient detection window 

to test for blood doping. The most suitable metabolites are the oxidative secondary 

metabolites, such as 5OH-MEHP and 5oxo-MEHP. Although the elimination rate of 

5cx-MEPP is higher than the elimination rate of 5oxo-MEHP, its elimination is slower, 

therefore the concentration of 5oxo-MEHP is higher in spot urine samples collected after 

administration. 
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In humans, at least 65% of metabolites are eliminated as conjugates following phase-II 

glucuronidation [91,97,20]. While the carboxylic acid metabolites were found to be 

excreted only partially in their glucuronidated form, the alcohol and ketone metabolites 

are excreted mainly as glucuronic acid conjugates [2,104]. 

The data regarding metabolism and bioavailability following inhalation and dermal 

exposure are limited. It can be assumed that only a fraction of the amount inhaled will be 

available to the lungs while the majority will probably be swallowed and become orally 

bioavailable. The dermal absorption appears to be poor in human [2,35]. 

 

 
Figure 4.7: DEHP metabolism in humans [3,15,91,97]. 
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4.1.4. Di(2-ethylhexyl) phthalate exposure 

4.1.4.1. Di(2-ethylhexyl) phthalate exposure of the general population 

Humans are exposed to DEHP via oral, dermal and inhalation routes of exposure. 

General population intake estimates for DEHP have been developed using probabilistic 

analysis [45]. The average level of exposure to DEHP from all sources in the general 

population has been estimated to be in the range of 3 to 30 μg/kg body weight/day [7]. 

Dietary intake has been identified as an important route of exposure [45,105]. More than 

90% of estimated daily DEHP intake in people over the age of 6 months is from food. 

Estimated DEHP intakes by age group and from different sources of exposure are shown 

in Table 4.6 and Table 4.7. It was noted that exposure estimates, back-calculated based 

on measurements of urinary metabolites, gave lower estimates of daily intake compared 

to probabilistic analysis. They suggested that the current study may have overestimated 

food exposure to DEHP due to the use of outdated food measurements or due to failure 

to account for cooking-associated loss of DEHP in food. Nevertheless, important 

differences exist among populations and individuals associated with various dietary 

habits and lifestyles; therefore, in certain cases daily intakes can reach the order of a few 

mg/kg [7,45]. 

 

Table 4.6: Estimated DEHP intake by age group [45]. 

Age group Median DEHP intake (μg/kg/day) 

Adult (20-70 years) 8.2 

Teen (12-19 years) 10 

Child (5-11 years) 18.9 

Toddler (7 months-4 years) 25.8 

Infant (0-6 months)  

Formula-fed 5.0 

Breast-fed 7.3 

 

DEHP has also been shown to be a constituent of dust in households. Ingested dust 

represents the most important non-food source of exposure, accounting for 4.3% of total 

exposure to DEHP. Inhalation of indoor air represents approximately 1% of exposure. 

Fromme et al. found 775.5 mg/kg DEHP in dust collected from 30 apartments in 

Germany [105]. Bornehag et al. investigated 346 dust samples from children’s bedrooms 
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in Denmark and the geometric mean of DEHP concentration was 789 mg/kg of dust 

[106]. 

 

Table 4.7: DEHP Intake (μg/kg/day) from environmental and food sources [45]. 

Source Adult 

(20-70 years) 

Teen 

(12-19 years) 

Child 

(5-11 years) 

Toddler 

(7 months-4 years) 

Infant 

(0-6 months) 

     Formula-fed Breast-fed 

Outdoor air  0.0 0.0 0.0 0.0 0.1 0.0 

Indoor air  1.0 0.9 1.0 0.9 1.5 1.1 

Drinking water  0.1 0.1 0.1 0.1 0.7 0.0 

Ingested soil  0.0 0.0 0.0 0.0 0.0 0.0 

Ingested dust  4.3 4.2 5.0 6.6 54.1 39.3 

Beverages a  11.2 5.2 3.3 2.2 0.0 0.0 

Cereals  2.4 2.0 3.5 5.5 0.0 0.0 

Dairy products b  13.2 11.7 12.2 12.9 0.0 0.0 

Eggs  1.1 0.7 0.8 1.3 0.0 0.0 

Fats and oils  16.9 19.1 16.5 11.1 0.0 0.0 

Fish  1.6 0.8 0.7 0.4 0.0 0.0 

Fruit products  0.9 0.8 1.1 1.4 0.0 0.0 

Grains  13.4 16.6 18.1 11.1 0.0 0.0 

Meats  5.5 5.2 3.7 3.3 0.0 0.0 

Milk  3.1 6.7 8.6 12.6 0.0 0.0 

Nuts and beans  1.0 1.0 0.9 0.8 0.0 0.0 

Other foods  10.3 11.2 11.3 18.9 0.0 0.0 

Poultry  3.9 3.5 3.5 3.6 0.0 0.0 

Processed meats  3.4 3.4 3.4 2.5 0.0 0.0 

Vegetable products  6.6 6.1 6.1 4.9 0.0 0.0 

Formula/breast milk  – – – – 43.7 59.6 
a Excluding water. 
b Excluding milk. 

 

The EU Scientific Committee on Food (SCF) has recommended a tolerable daily intake 

(TDI) for DEHP of 50 μg/kg/day [107]. Likewise, for the exposure of children to DEHP 

from PVC toys a TDI of 50 μg/kg/day was estimated by the EU Scientific Committee on 

Toxicity, Ecotoxicity and the Environment [108]. The Reference Dose (RfD) for DEHP 

recommended by the US Environmental Protection Agency (EPA) is 20 μg/kg/day [109]. 

DEHP and its metabolites can be measured in the blood and urine to confirm recent 

exposures. For monitoring purposes urine samples are preferred since they can be 

collected by using noninvasive techniques. Being the major urinary metabolites, 

5oxo-MEHP and 5OH-MEHP may be sensitive predictors of DEHP exposure due to 

their relatively high concentration in urine and their lack of susceptibility to 
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contaminants in the sample collection process or during the analytical procedure 

[14,3,15,21]. 

Calculations of population exposure based on urinary metabolites are generally within 

the range of 3 to 30 μg/kg/day, but estimates made from the upper 95th percentile of 

measured ranges in some studies exceed this range by up to a factor of 2 [14,15]. 

Contrarily, alternative estimates have been calculated using different methods as much as 

5-fold lower [110]. 

DEHP exposure levels have been shown to have high geographical variability. Estimates 

based on the urinary MEHP measurements obtained by Blount et al. [11] suggest that the 

average total daily ambient exposure of individuals in the United States to DEHP is 

likely to be <3.6 μg/kg/day [111,112]. Another regional exposure calculated by EUSES 

(The European Union System for the Evaluation of Substances) based on measured 

urinary excretion of DEHP metabolites in a German adult population [15] was estimated 

at 17 μg/kg/day (95th percentile) [35]. The chosen exposure estimates can be compared 

with measured DEHP concentrations in food from Denmark and Japan, indicating intake 

levels up to 16 μg/kg/day and 59.9 μg/kg/day, respectively [35]. Guo et al. compare 

urinary DEHP metabolite levels in humans from seven Asian countries during 2006-

2007 indicating widespread exposure to phthalates [113]. Urine samples from Kuwait 

contained the highest concentrations of the metabolites of DEHP followed by samples 

from India, China, Japan, Vietnam Korea and Malaysia. The estimated exposure doses to 

DEHP in Kuwait exceeded the 20 μg/kg/day RfD value recommended by the EPA. 

The National Health and Nutrition Examination Survey (NHANES) of the Centers for 

Disease Control and Prevention 2001–2002 measured monoester metabolites of various 

phthalate esters (including MEHP, 5OH-MEHP and 5oxo-MEHP) in 2782 urine samples 

from adults and children of the US population [114]. The NHANES database was 

updated regularly for the following periods: 2003–2004 (n = 2605), 2005-2006 

(n = 2548) and 2007-2008 (n = 2604). The phthalate levels in these different periods 

were found to be similar (Table 4.8). Mean concentrations vary by age with younger age 

groups having higher urinary concentrations of the metabolites than older children and 

adults. In addition, a number of investigators have evaluated the concentrations of 

urinary DEHP metabolites in small populations (without known elevated exposure) for a 

variety of purposes and these results are summarized in Table 4.8. 
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Table 4.8: Urinary concentrations of DEHP metabolite in different populations without known elevated exposure. 

Population Gender Origin Year n Sample type 

Urinary DEHP metabolite concentration (ng/mL) 

References References MEHP 5oxo-MEHP 5OH-MEHP 

Mean Max Mean Max Mean Max 

Adult  

(35 - 49 years) 
women 

Washington, DC, 
U.S. 

1996–
1997  

46 first morning   16.5 143.9         
Hoppin et al., Environ. Health Perspect. 

110:515-518 (2002) 
[115] 

Student and 
adult  

(7 – 64 years) 

53 women, 

32 men 
Erlangen, 
Germany 

2002  85 first morning  15.7 177 57.2 544 79.6 818 
Koch et al., Environ. Res. 93:177–185 
(2003) 

[15] 

Adult 
14 women,  

5 men 
Germany   19 first morning  9.0* 43.1 19.6* 55.1 32.1* 103 

Koch et al., Int. J. Hyg. Environ. Health 

207:15-22 (2004) 
[99] 

Adult 11 men MA, U.S.   369   5.7 110** - - - - 
Hauser et al., Environ. Health Perspect. 

112:1734-1740 (2004) 
[116] 

Adult   U.S. 2001 127 spot na 20.4** 14.8 243** 19.3 220** 
Kato et al., Environ. Health Perspect. 

112 (3):327-330 (2004) 
[13] 

Adult 

(25 - 51 years) 
men Germany   5 spot 15.5 44.5 38.2 100.8 52.3 125.8 

Koch et al., Int. J. Hyg. Environ.-Health 
208:489–498  (2005) 

[102] 

Adult men MA, U.S. 
1999-
2003 

295   5.9 131**         
Duty et al., Hum. Reprod. 20 (3):604-
610 (2005) 

[117] 

Adult   U.S.   43   <0.9* 11.84 5.68* 116.38 7.99* 134.90 
Kato et al., Anal. Chem. 77 (9):2985-
2991 (2005) 

[118] 

Adult ad 
children 

  Germany   19 spot 14.0 49.9 41.3 72.5 52.1 96.1 
Preuss et al., J. Chromatogr. B 816 (1-
2):269-280 (2005) 

[16] 

Student   

(20 - 29 years) 
326 women, 
308 men 

Münster, 
Germany 

1988-
2003 

634 24 h  7.6* 129 16.7* 251 21* 275 
Wittassek et al., Int. J. Hyg. Environ.-

Health 210:319–333 (2007) 
[18] 

Adult 

(14 - 60 years) 
27 women  

Munich,  

Germany  
2005 399 spot 5.6 206.5 17.3 439.9 22.0 674.3 

Fromme et al., Int. J. Hyg. Environ. 

Health 210 (1):21-33 (2007) 
[12] 

Adult 

(14 - 60 years) 
23 men 

Munich,  

Germany  
2005 399 spot 5.4 55.4 15.6 215.4 23.0 309.3 

Fromme et al., Int. J. Hyg. Environ. 

Health 210 (1):21-33 (2007) 
[12] 

Adult 28 women NY, U.S.   246 spot 4.8* 46.8** 18.2* 107.6** 20.2* 149.6** 
Adibi et al., Environ. Health Perspect. 

116:467–473 (2008) 
[119] 

Adult 

(23 - 39 years) 
women Sweden 2001 38   13 57 19 83 25 126 

Högberg et al., Environ. Health 
Perspect. 116 (3):334-339 (2008) 

[120] 



Literature Overview 

 31 

Population Gender Origin Year n Sample type 

Urinary DEHP metabolite concentration (ng/mL) 

References References MEHP 5oxo-MEHP 5OH-MEHP 

Mean Max Mean Max Mean Max 

Adult  

(>20 years) 
  U.S. 

2001-
2002 

1647 first morning 4.20 39.5** 12.0 116** 18.1 175** NHANES 2001-2002 [114] 

Adult  

(>20 years) 
  U.S. 

2003-
2004 

1534 first morning 2.23 29.5** 12.9 139** 19.5 225** NHANES 2003-2004 [114] 

Adult  

(>20 years) 
  U.S. 

2005-
2006 

1490 first morning 2.94 41.5** 14.7 182** 23.4 306** NHANES 2005-2006 [114] 

Adult  

(>20 years) 
  U.S. 

2007-
2008 

1814 first morning 2.62 27.3** 11.1 108** 20.5 214** NHANES 2007-2008 [114] 

Adult men 
Giessen, 
Germany 

2004-
2005 

349 spot 4.35* 175.43 9.02* 224.65 12.66* 325.73 
Herr et al., Int. J. Hyg. Environ. Health 
212 (6):648-653 (2009) 

[121] 

Adult  

(18 - 26 years) 
men 

Copenhagen, 
Denmark 

 2006 60 spot 9.18 59.12 34.4 264.89 46.56 423.87 
Frederiksen et al., J. Anal. Toxicol. 
34:400-410 (2010) 

[122] 

Adult  

(21 - 26 years) 

15 women,  

15 men 

Barcelona,  

Spain 
  30   11.7* 47.7 34.7* 105.3 27.7* 90.9 

Monfort et al. Transfusion 50 (1):145-
149 (2010) 

[29] 

Athletes       127 spot 7.1 19.7*** 18.4 49.8*** 18.4 51.7*** 
Monfort et al. Transfusion 50 (1):145-
149 (2010) 

[29] 

Adult  

(30 - 50 years) 
men Seoul, Korea   25 spot 2.14 83.50 2.56 72.4 3.45 154.00 

Park et al., J. Prev. Med. Public. Healt. 
43:301-308 (2010) 

[123] 

Adult women 
Green Bay, WI, 
U.S. 

1999-
2005 

45 first morning 3.6 30.8 13.9 164.3 20.9 268.2 
Peck et al., J. Expo. Anal. Environ. 

Epidemiol. 20:90-100 (2010) 
[124] 

All women  China 2010 99 spot 5.9 56.9 12.3 111 20.4 299 
Guo et al., Environ. Int. 37 (5):893-898 
(2011) 

[125] 

All men China 2010 84 spot 11.3 207 22.0 564 36.2 1120 
Guo et al., Environ. Int. 37 (5):893-898 
(2011) 

[125] 

Adult  

(21 - 31 years) 

15 women,  

15 men 

Barcelona,  

Spain 
  30 24 h 16.0* 26.4*** 38.2* 111.7*** 51.4* 112.7*** 

Monfort et al., J. Chromatogr. B 
908:113-121 (2012) 

[126] 

Athletes       464 spot 5.5* 15.3*** 13.6* 39.8*** 27.3* 76.0*** 
Monfort et al., J. Chromatogr. B 
908:113-121 (2012) 

[126] 

*Median value; ** 95th percentile value; *** 90th percentile value. 
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4.1.4.2. Occupational exposure to di(2-ethylhexyl) phthalate 

Workers in industries manufacturing or using DEHP plasticisers might be frequently 

exposed to above average levels of this compound [1]. Those living near industrial 

facilities or hazardous waste sites, with higher than average levels of DEHP in water, 

might also be exposed to higher than average concentration of DEHP. 

Maximum occupational exposures to DEHP, mainly by inhalation, are generally set at 

0.7 mg/kg/day when the workplace air concentrations meet the Occupational Safety and 

Health Administration's Permissible Exposure Limit (PEL) expressed as a Time 

Weighted Average (TWA) standard for 8 h, usually 5 mg/m3 [7,127]. Workplace air 

levels ranging from 0.02 to 4.1 mg/m3 were reported at facilities using or manufacturing 

DEHP [128]. Exposures of phthalate and PVC production workers to DEHP are 

estimated to be typically less than 143 and 286 μg/kg/day, respectively [3]. Between 

2003 and 2005, Hines et al. estimated DEHP exposure of 156 workers from eight 

industries handling DEHP. The combined estimates based on the urinary concentrations 

of three DEHP metabolites ranged from 0.6 to 850 μg/kg/day [129]. The external and 

internal exposure of DEHP in occupationally exposed population is summarised in Table 

4.9. 

 

Table 4.9: The external and internal exposure of DEHP in occupationally exposed adults [35]. 

Population Inhalation Dermal Total 
multiple routes 

 External Internal External Internal Internal 

 (mg/m3) (μg/kg/day) (mg/day) (μg/kg/day) (μg/kg/day) 
Production of DEHP 5 530 650 460 990 

Industrial use of DEHP 10 1060 420 300 1360 

Industrial end-products containing DEHP 10 1060 1300 928 1988 
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4.1.4.3. Di(2-ethylhexyl) phthalate exposure from medical devices 

DEHP is currently the primary plasticiser used in PVC-containing medical devices such 

as containers for blood or liquid nutrients, tubing and catheters [2]. Thus, patients 

undergoing medical treatment may be exposed to DEHP released from PVC medical 

devices. The exposure to DEHP varies depending on the medical procedure as it is a 

function of the lipophilicity of the fluid that comes into contact with the medical device, 

the relative surface area of the PVC material, the temperature, the flow rate and the 

contact time [130-136]. Substances such as blood [6], plasma [6,134,137], red blood cell 

[6,134,138] or platelet concentrates [6,134], intravenous lipid emulsion [134-

136,139,140] or total parenteral nutrition solution [140,133] and formulation aids used to 

solubilise IV medications [130,131,134,141-143] can extract DEHP from PVC tubing 

and containers. In contrast, nonlipid-containing fluids, such as crystalloid IV solutions, 

saline priming solutions for extracorporeal membrane oxygenation (ECMO) and 

hemodialysis and peritoneal dialysis solutions extract relatively small amounts of DEHP 

from the PVC constituents of the devices [7]. 

The exposure can be long- or short-term. Long-term exposures in adults are 

haemodialysis, continuous ambulatory peritoneal dialysis (CAPD), transfusions of blood 

and blood products to patients with leukemia, aplastic anaemia, sickle cell anaemia, 

clotting disorders, administration of TPN and enteral nutrition of critically ill patients. 

Short-term DEHP exposures include blood transfusions, e.g. in trauma patients, patients 

undergoing surgical procedures or ECMO procedures, and intravenous infusion of drugs 

[2]. Estimated upper-bound doses of DEHP received by patients undergoing various 

medical procedures are summarised in Table 4.10 [3]. 

Transfusion of blood and its components is one of the major source of exposure to DEHP 

in infants and adults. DEHP leaches from the PVC blood bag during storage and from the 

tubing used during infusion. MEHP is formed through the hydrolysis of DEHP by 

plasma lipases in blood during storage [92,57]. The conversion was shown to increase 

with increasing storage time and temperature, while storage at low temperatures reduced 

the rate of hydrolysis [56]. Blood transfusion of trauma patients was found to be the 

short-term procedure that gives the highest acute DEHP exposure in adults up to 

8.5 mg/kg/day. MEHP exposure due to exchange transfusion has been estimated to be in 

the range of 5 to 680 μg/kg/day [144,145]. 
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Exposure to DEHP can also occur through voluntary medical treatments such as blood 

donation. Buchta et al. determined serum DEHP concentrations in donors after apheresis 

procedure [100]. The median amount of DEHP exposed during a single plateletpheresis 

procedure was estimated to be 6.5 mg/kg, with a broad inter-individual variation ranking 

from 1.8 to 20.3 mg/kg. Koch et al. estimated DEHP exposure of plasma donors, 

discontinuous-flow platelet donors and continuous-flow platelet donors by determining 

three DEHP metabolites in urine (5OH-MEHP, 5oxo-MEHP and MEHP). The highest 

exposure was observed for continuous-flow plateletpheresis with daily DEHP intakes of 

28.2-38.1 μg/kg/day. For discontinuous-flow platelet donors values were lower 

(14-24 μg/kg/day), while the internal burden after plasma donation (3.1-9.6 μg/kg/day) 

was not elevated in comparison to controls (3.0-11.6 μg/kg/day). This may be due to the 

fact that the lipid-rich plasma may contain most of the DEHP which is removed from the 

body by the procedure [2]. 
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Table 4.10: Estimated upper-bound dose of DEHP received by adult and neonatal patients 

undergoing various medical procedures [3]. 

Medical procedure Estimated DEHP dose (mg/kg/day) 

 Adult (70 kg) Neonate (4 kg) 

Crystalloid intravenous (IV) solution infusion  0.005 0.03 

Infusion of pharmaceuticals with solubilisation vehicles   

Administered according to manufacturer instructions  0.04 0.03 

Mixed and stored at room temperature for 24 hours  0.15  

TPN administration   

Without added lipid  0.03 0.03 

With added lipid  0.13 2.5 

Administered via ethyl vinyl acetate bag and PVC tubing  0.06  

Blood transfusion   

Trauma patient  8.5  

Transfusion/extracorporeal membrane oxygenation (ECMO) 

 in adult patients 
3.0  

Exchange transfusion in neonates   22.6 

Replacement transfusions in neonates in NICU   0.3 

Replacement transfusions to treat anaemia in chemotherapy and  

sickle cells disease patients  
0.09  

Replacement transfusions in patients undergoing  

coronary artery bypass grafting  
0.28  

Treatment of cryodisorders with cryoprecipitate  0.03  

Cardiopulmonary bypass   

Coronary artery bypass grafting  1  

Orthotopic heart transplant 0.3  

Artificial heart transplant  2.4  

ECMO   14 

Apheresis  0.03  

Haemodialysis  0.36  

Peritoneal dialysis  < 0.01  

Enteral nutrition  0.14 0.14 

Aggregate exposures of NICU infants undergoing IV administration  

of sedatives, IV administration of TPN and replacement transfusion 
 2.83 
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4.1.5. Alternatives to di(2-ethylhexyl) phthalate-plasticised poly(vinyl 

chloride) 

After DEHP was classified as toxic to reproduction (Repr. Cat. 2), it has been replaced 

by alternative substances for many applications, which is reflected in the decline in the 

total consumption of the substance. In addition, for some applications the plasticised 

PVC has been replaced with other materials. The main alternatives to DEHP are 

diisononyl phthalate (DINP) and diisodecyl phthalate (DIDP). Since 2000 DINP and 

DIDP have been exclusively used in PVC flooring, wall covering and in carpets with 

PVC back-coating. DEHP was mainly replaced by DINP and DIDP in synthetic (PVC) 

leather for upholstery, in toys and childcare products and in soft PVC for medical 

applications. Non-phthalate alternatives are used in PVC for applications where there has 

been a concern regarding human exposure to the substance (e.g. toys, medical devices 

and food packaging). Alternatives marketed specifically for these product groups include 

adipates, citrates, carboxylates, alkylsulphonic acid ester and castor oil derivatives. The 

alternatives are in general more expensive than DEHP with DINP being the least 

expensive alternative at an incremental cost of about 10%. Applications for which the 

selected alternatives are specifically mentioned by certain suppliers are shown in Table 

4.11, but the substances may be used for other applications as well [36]. 

 

Table 4.11: Applications specifically mentioned by suppliers of selected alternatives of DEHP [36]. 

 DINPa DEHTa BTHCa DINCHa ASEa 

Polymer applications      

Flooring and wall covering x x    

Film/sheet and coated products x x  x x 

Medical products   x x  

Wire and cable x     

Coated fabric and footwear  x  x x 

Toys  x   x 

Automotive x     

Non-polymer applications      

Adhesives    x x 

Printing inks    x x 

Sealants (glass insulation, construction) x    x 
a DINP: diisononyl phthalate, DEHT: di(2-ethylhexyl) terephthalate, BTHC: butyril trihexyl citrate, 

DINCH: 1,2-cyclohexanedicarboxylic acid diisononyl ester, ASE: alkyl sulphonic acid phenyl ester. 
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4.1.5.1. Alternatives to di(2-ethylhexyl) phthalate-plasticised poly(vinyl chloride) in 

medical devices 

There have been several attempts trying to eliminate or reduce the use of DEHP in 

medical devices. As it has been discussed above DEHP is beneficial for maintaining the 

viability and long-term storage of RBCs. Other components in blood, such as platelets, 

have a higher metabolic rate therefore suitable containers must have higher permeability 

to oxygen and carbon dioxide. This is achieved by using other plasticisers, such as 

trimellitates and citrates [146]. In medical tubing and parenteral infusion bags DEHP has 

been almost completely substituted. However, for RBCs only a limited number of 

DEHP-free products are available [147,148]. 

The most important factors influencing the viability of RBCs are the content of ATP, 

2,3-diphosphoglycerate, haemoglobin (Hb), the integrity of RBC membrane lipids and 

proteins and the flexibility of the RBC membrane in the microcirculation. Metabolic 

changes and oxidative damage depend strongly on the storage medium, its pH and the 

temperature. The requirements necessary for a blood bag material are resistance to heat 

and chemicals, especially during the sterilisation, and permeability of gases to assure that 

the pH and the oxygen level are kept constant [147]. 

Other plasticisers have been considered to substitute DEHP in PVC medical devices, 

such as acetyl tri-n-butyl citrate (ATBC), 1,2-cyclohexanedicarboxylic acid diisononyl 

ester (DINCH), di(2-ethylhexyl) adipate (DEHA), butyril trihexyl citrate (BTHC) [89] 

and tri-(2-ethylhexyl) trimellitate (TEHTM, also known as TOTM) [73]. Possible 

alternatives for blood bags are ATBC, TEHTM and BTHC, the latter being the most 

satisfactory plasticiser [146]. It was found to be effective for the storage of blood, red 

cell concentrates and platelet rich plasma [81-85,89]. ATBC might be used in medical 

tubing, DINCH for tubing and nutrient solution bags and TEHTM in infusion equipment 

[148,149]. Since the leaching rates of these plasticisers are usually lower than that of 

DEHP they seem to be promising alternatives, however, insufficient information is 

available to assess the use and safety of these compounds in medical devices. 

Another alternative to phthalate plasticisers is using polymeric plasticisers [2]. In order 

to minimise migration their molecular weight must be medium-high. In addition, 

polymeric plasticisers generally make processing of the plastic more difficult [150]. 

Another possibility is to replace PVC in blood bags with other polymers. Several 

polymer materials and their blends have been suggested, including ethylene vinyl acetate 
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(EVA), polyethylene (PE), polypropylene (PP), polyurethane (PU), thermoplastic 

elastomers (TPE) and fluoropolymers (e.g. polytetrafluoroethylene, PTFE) [2,151]. At 

the moment PVC is the most economical material for medical applications and unless 

other alternatives match in price, PVC will continue as the market leader in medical 

applications [146]. 

Recently, the addition of polyethylene oxide (PEO) to plasticised PVC bags has been 

suggested either as an additive or copolymer [152,153]. Furthermore, PEO was used as 

an inner coating of PVC bags in order to reduce the migration of DEHP into lipophilic 

solutions [154]. 

The main difficulty for the substitution of DEHP-plasticised PVC in blood bags is caused 

by the improved survival rate of erythrocytes facilitated by DEHP (see Section 

4.1.2.3.2). These alternative materials and the elimination of DEHP can lead to shorter 

RBC storage time and further health risks for patients receiving blood transfusions. In 

order to improve RBC survival different additive solutions have been proposed which 

seem to be promising in combination with some of the alternative materials 

[80,155,156]. 

The safety evaluation of medical devices and their composing materials including 

material characteristics, leaching and toxicology is described in the EN ISO 10993 series 

on Biological Evaluation of Medical Devices (ISO, Geneva, Switzerland; CEN, Brussels, 

Belgium). 

For some compounds sufficient toxicological data is available to indicate a lower hazard 

compared to DEHP. However, a risk assessment of these alternative materials could not 

yet be performed due to a lack of human exposure data. For others, information on the 

toxicological profile is inadequate to identify the hazard. This limits the proper 

evaluation of the potential to replace DEHP-plasticised PVC in medical devices. The risk 

and benefit should be carefully evaluated for each individual medical device and each 

medical procedure in which the alternative needs to be used [2]. 
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4.2. BLOOD TRANSFUSION IN SPORTS DRUG TESTING 

The World Anti-Doping Agency (WADA) defines blood doping as “the misuse of 

certain techniques and/or substances to increase one’s red blood cell mass, which allows 

the body to transport more O2 to muscles and therefore increase stamina and 

performance” [157]. The most widely known prohibited methods are the stimulation of 

erythropoiesis, the use of synthetic oxygen carriers and the transfusion of blood. 

Blood transfusion is the process of transferring blood or a blood-based product into the 

circulatory system of a person [158]. Homologous blood transfusion is the transfusion of 

blood from another person compatible for ABO and Rhesus D blood groups, whereas 

autologous blood transfusion is the reinfusion of the individual’s own stored blood [158]. 

Using blood transfusion in order to improve physical performance first appeared in the 

1970s among elite endurance athletes [159,160]. It became less popular at the end of the 

1980s due to the introduction of recombinant erythropoietin and the prohibition of blood 

transfusion methods by the International Olympic Committee for the 1988 Olympic 

Games [158]. The implementation of a direct test to detect exogenous erythropoietin in 

urine in 2001 [161] compelled cheating athletes to start using blood transfusion 

procedures again [162,163]. 

In order to further improve detection of abnormal blood profiles, WADA is leading the 

development of a strategy against doping in sport called the Athlete Biological Passport 

[164-166] which follows the athlete's biological variables over time. The objective of this 

strategy is to detect abnormal variations of determined biological parameters (e.g. 

haematocrit, haemoglobin, red blood cell count, percentage of reticulocytes and 

reticulocyte count) in order to better target testing and/or sanction those found with 

abnormal variations [157]. WADA’s Athlete Biological Passport Operating Guidelines 

were approved by WADA’s Executive Committee and took effect on December 1st, 2009 

[167]. 
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4.2.1. Methods for the investigation of blood transfusion 

Detection of homologous blood transfusion was implemented by Nelson et al. using 

blood group antibodies to identify minor RBC populations in blood samples by 

fluorescence-based flow cytometry even 2-3 weeks after infusion [26,168]. The method 

was later validated by Giraud et al. analysing 140 blood samples containing different 

percentages (0-5%) of a minor RBCs population and most samples containing 1.5% 

minor RBC population were unambiguously detected, yielding 78% sensitivity [24]. An 

improved method was published by Voss et al. which allowed clear identification of 

mixed red blood cell populations in homologous blood transfusion samples containing 

0.3-2.0% of donor blood [25]. 

However, as the direct detection of autologous blood transfusion is still not possible, 

indirect methods are in development evaluating blood parameters such as haematocrit 

value, haemoglobin concentration, percentage of reticulocytes and corresponding 

parameters (ratios or total number of cell types). With the combination of haemoglobin, 

bilirubin, iron and erythropoietin measurements in serum 50% of autologous blood 

transfusion was detectable during the first week after transfusion [169]. Examining 

haematological response to blood withdrawal and reinfusion, Damsgaard et el. found that 

individual variations in [Hb] exceeding 15% between samples obtained shortly before 

competition may be indicative of autologous blood manipulation [170]. However, these 

variables are mainly based on concentrations and therefore highly affected by 

fluctuations in plasma volume; consequently they may not adequately reflect the absolute 

changes of Hb mass induced by blood transfusions [28,27]. Thus, a more sensitive 

parameter is the determination of loss in total Hb mass through blood donation using CO 

rebreathing [171,172]. It is still unproven if Hb mass measurements are suitable to detect 

the absolute changes induced by blood transfusions. Furthermore, the individual 

variability of Hb mass and the impact of other biological factors need to be investigated 

[27,173]. The total Hb mass showed moderate variation (approximately 2%) in subjects 

undertaking regular exercise [174] and was not influenced by short periods of training 

[175,176]. In contrast, total Hb mass was found to be increased in elite athletes following 

exercise in combination with altitude exposure [177-179]. Prommer et al. reported the 

high stability of total Hb mass over a period of 1 year (variation <6%), suggesting that it 

should be included in the Athlete Biological Passport and analysed by probabilistic 
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inference techniques that define subject-based reference ranges [180]. Compared to the 

currently used indirect parameters, the ratio between the mass of Hb in the mature 

erythrocyte population and in the reticulocyte fraction (RBCHb/RetHb) is the best 

indicator of autologous blood doping [181,182]. 

Besides the difficulties related to the practical applicability of CO rebreathing method for 

detecting nonphysiologic increases in Hb mass, its integration into the Biological 

Passport may be problematic due to the lack of clear standardisation and harmonisation 

in the determination of Hb mass [183,184]. In addition, blood samples for doping control 

are available in some selected situations only and therefore they cannot be considered as 

a general screening approach. 

In the recent years, research focused on the development of further indirect markers of 

autologous blood transfusion, such as a marker of degradation during storage 

(2,3-bisphosphoglycerate levels), markers of alteration of the red cell membrane 

structure, gene expression levels and transcriptional markers, proteomic and 

metabolomic approaches and markers of neocytolosis [158]. These markers may be 

included in the Biological Passport in the future. 

Current research on direct testing of autologous blood transfusion is based on the 

detection of exogenous substances in the athletes blood or urine samples spread during 

the withdrawal, the storage or the reinfusion of the blood, such as plasticisers leaked 

from the blood bags and residues of solvents used for cryogenic storage of the blood 

[158]. Monfort et al. compared the urinary concentrations of DEHP metabolites in 

patients subjected to clinical care and to blood transfusion. It was noticed that urine 

samples collected up to two days after blood transfusion contained significantly higher 

amounts of DEHP metabolites compared to control samples, indicating that DEHP 

metabolites could be used in sports drug testing as alert markers for the potential misuse 

of blood transfusion [29]. 
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4.3. METHODS USED FOR THE DETERMINATION OF URINARY 

DI(2-ETHYLHEXYL) PHTHALATE METABOLITES 

Due to the increased use of plasticised PVC products in the last few decades and the 

toxic properties of phthalate plasticisers the need for testing phthalate esters and their 

metabolites in environmental, biological and food samples gained remarkable 

importance. 

Monitoring the concentration of DEHP in biological samples might underestimate 

exposure since it is quickly and extensively metabolised in vivo. Therefore, for 

biomonitoring purposes mainly MEHP and the secondary metabolites 5oxo-MEHP and 

5OH-MEHP have been tested in various matrices, such as urine, blood, plasma, serum, 

saliva, sweat and milk. 

Since DEHP and its metabolites are present in environmental and biological samples at 

low level different techniques have been used for their extraction and concentration from 

the matrices. For DEHP measurement mainly gas chromatographic (GC) methods were 

used in combination with electron capture (ECD), flame ionisation (FID) or mass 

spectrometric (MS) detection. In some cases high performance liquid chromatographic 

(HPLC) methods were applied using UV spectrometric detection and found to be useful 

for the analysis of isomeric mixtures and metabolites of phthalates without derivatisation. 

Recently, several LC-MS and LC-MS/MS methods have been developed mainly 

applying electrospray ionisation in positive ionisation mode for DEHP and negative 

mode for the monoesters, 5oxo-MEHP and 5OH-MEHP. 

4.3.1. Sample extraction and clean-up 

Due to its highly apolar characteristic DEHP is mainly extracted using apolar organic 

solvents, such as dichloromethane, cyclohexane, hexane, isooctane or by non-polar solid 

phase extraction (SPE). The extraction is usually carried out by shaking the samples; 

however, there are examples for Soxhlet extraction, accelerated solvent extraction and 

ultrasonic or microwave assisted extraction procedures in solid matrices. 

Since DEHP metabolites are less apolar and excreted in urine as glucuronide conjugates, 

the samples are usually hydrolysed using β-glucuronidase prior to extraction. In some 
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cases liquid-liquid extraction was applied using ethyl acetate as the solvent [29,185,126]. 

A more common procedure is the SPE technique using C8 [16,186,187], C18 

[188,118,189] on other mixed-mode solid phase materials [190-193]. In order to avoid 

contamination from the laboratory environment automated SPE [191,194] and online-

SPE, so-called column-switching techniques [16,186-188,118,195,196], have been 

developed as well. 

Though the sample extract can be purified by gel permeation chromatography [197] or 

by SPE using sorbents, such as aluminium oxide [198], silica [199] or Florisil [200], it is 

most commonly analysed without any additional clean-up. 

4.3.2. Measurement techniques 

DEHP was primarily measured using gas chromatography coupled to mass spectrometry. 

In some cases flame ionisation or electron capture detection in combination with gas 

chromatography was applied. However, FID is not specific for phthalates and ECD 

detectors respond more sensitively towards halogenated compounds. 

Using electron ionisation (EI) for GC-MS, the major fragment at m/z 149 corresponds to 

the protonated phthalic acid anhydride ion which is generally used for quantification. 

Besides the most abundant ion at m/z 149, the spectrum is rather poor and the molecular 

ion (m/z 390) is not detectable. Additional ions at m/z 279 and 167 confirm the identity 

of the peak (Figure 4.8) [201]. 

 

 

Figure 4.8: EI mass fragmentation of DEHP [201]. 
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Positive chemical ionisation (PCI), applying methane or ammonia as reagent gas, 

provides a mass spectra containing more abundant peaks for high-mass ions allowing 

better identification and distinction of the different phthalates [202,203]. 

The free fatty acid group on the monoester metabolites can cause adsorption of the 

molecule on the column during gas chromatographic analysis. Therefore, derivatisation 

is necessary to allow quantitative analysis of trace level monoester by GC. This can be 

achieved by esterification [95] or oximation [204] and silylation of the acid group. 

However, derivatisation can lead to further hydrolysis with the formation of phthalic acid 

dimethyl ester or to the hydrolysis of the parent molecule causing false positive results 

for the monoesters [201]. 

Alternatively, phthalate monoesters were analysed in urine samples without 

derivatisation using HPLC coupled to UV detection. Separation of the DEHP metabolites 

were reported by using CN [205], C18 [29,126,187-189,193], phenyl [118,190-192,194] 

and phenyl-hexyl [16,186] columns showing reasonable separations. 

Recently, several LC-MS or LC-MS/MS methods have been developed for the analysis 

of DEHP and its metabolites in biological samples. The ionisation of the compounds 

were achieved by either using electrospray ionisation (ESI) in negative [16,186-

188,118,191,194] and positive mode [29,126] or atmospheric pressure chemical 

ionisation in negative mode [185,190,192]. 

The product ion spectra of MEHP produced by collision-induced dissociation (CID) was 

described by Blount et al. [190] and phthalate specific negative ions were found at 

m/z 77, 105, 121, and 147, corresponding to putative benzyl, benzaldehyde, benzoate and 

phthalic anhydride fragment anions (Figure 4.9). Later Koch et al. published ESI 

negative Q1 mass spectra of the secondary metabolites 5OH-MEHP and 5oxo-MEHP 

with the predicted structures of the fragment ions (Figure 4.10) [186]. 

 

Figure 4.9: ESI negative product ion spectra of MEHP presented by Blount et al. [190]. 
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Figure 4.10: ESI negative Q1 mass spectra of MEHP, 5OH-MEHP, 5oxo-MEHP and 

D4-5OH-MEHP with the predicted structures of the fragments published by Koch et al. [186]. 

4.3.3. Quality assurance and blank values 

Due to their widespread use and physicochemical properties many phthalates are 

ubiquitous; therefore, their direct measurement is difficult. The samples can be 

contaminated during sample collection, transportation, storage and the analytical testing 

procedure. Consequently, caution should be taken to keep background concentrations at 

low levels, blank values should be controlled and a correction has to be made. 

In bioanalytical applications mostly phthalate metabolites are analysed which are usually 

not subject to contamination [206]. In particular, the secondary metabolites of DEHP 

were found to be more sensitive biomarkers of exposure to DEHP than MEHP [207]. 
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4.4. SCREENING METHODS IN SPORTS DRUGS TESTING 

In sports drug testing the number of samples and doping agents constantly increases; 

thus, multi-target approaches, combining high-throughput, simplified sample preparation 

and a reliable detection for various classes of compounds are required. On the basis of 

modern and powerful analytical instruments, consisting of liquid chromatographs 

coupled to sensitive mass spectrometers, e.g. triple-quadrupole, time-of-flight (TOF) or 

Fourier transform (OrbiTrap) instruments, numerous new multi-target assays have been 

developed providing reliable detection of prohibited substances. Currently, different 

screening procedures are utilised for the analysis of diuretics [208-215], beta2-agonists 

[213,214,216], stimulants [211,213,214,217], narcotics [214,213,218-220] and plasma 

volume expanders (PVE) [221-223]. With the ongoing progress in the field of liquid 

chromatography and triple quadrupole mass spectrometry, new generation instruments 

have become accessible with the possibility of enhanced scan speed and scan-to-scan 

polarity switching. These achievements allow the development of new multi-target 

approaches by combining classical “stand-alone” screening procedures to detect several 

different categories of prohibited substances with versatile chemical structures. In 

contrast to TOF based approaches fast polarity switching allows the detection of acidic 

and basic compounds within a single run. Moreover, the high sensitivity of such 

instruments enables the identification of many prohibited substances without pre-

concentration steps, resulting in very simple and fast “dilute-and-shoot” methods. In 

sports drug testing two assays have demonstrated its applicability for the combined 

detection of diuretics, stimulants and narcotics using direct injection of urine specimens 

based on ultra-high performance liquid chromatography/tandem mass spectroscopy 

(UHPLC-MS/MS) and ultra-high performance liquid chromatography/quadrupole time-

of-flight mass spectrometry (UHPLC-QTOF-MS) [224,225]. 
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4.5. STATISTICAL METHODS 

4.5.1. Huber’s statistics 

Most estimates of central tendency (e.g. arithmetic mean) and dispersion (e.g. standard 

deviation) depend on an implicit assumption that the data comprises a random sample 

from a normal distribution. Analytical data often contains a higher than expected 

proportion of results far from the arithmetic mean, as well as outliers. In such cases 

statistical models which assume normal distribution of the data points are inappropriate 

to describe the dataset. As Figure 4.11 illustrated the mean has a high bias and the 

standard deviation is too large. In addition the actual values of the outliers have a great 

influence on the estimate values. 

 

 

Figure 4.11: Illustration of the statistics using the model based on a normal distribution on data 

containing outliers [226]. 

 

A more reasonable interpretation of the dataset is to exclude the outliers from the 

calculations resulting in a plausible normal model for most of the data points (Figure 

4.12). Although it provides us with no warning about the possible outliers, this model is 

often preferable in applications in analytical science [227]. 
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Figure 4.12: Illustration of the statistics using the model based on a normal distribution on data 

excluding outliers [227]. 

 

A typical solution to handle suspect values is the identification of the outliers at 

particular confidence levels by employing tests such as Dixon’s or Grubbs’. These 

procedures are not necessarily straightforward, since the test may be misleading if two or 

more outliers are present and it raises the question of when it is justifiable to exclude 

outliers [227]. 

Robust statistical models provide alternative solutions as describing the dataset without 

excluding any outliers. Huber’s method, for example transforms the original data by a 

process called Winsorisation, in which an outlying value is ‘moved’ so that its residual is 

reduced (i.e. the difference between the single value and the sample mean) [228]. 

Starting with initial estimates    as the median or arithmetic mean and    as the standard 

deviation, if a value    falls above         , it will be changed to  ̃          . 
Similarly, if a value    falls below         , it will be changed to  ̃          . All 

the other data remains unchanged ( ̃    ). From the new data, improved estimates of 

the mean        ( ̃ ) and standard deviation               ( ̃ ) are calculated. 

The factor 1.134 is derived from the normal distribution, given a value 1.5 for the 

multiplier most often used in the Winsorisation process. This procedure is then iterated 

using the improved estimates for the Winsorisation at each cycle. The process converges 

to an acceptable degree of accuracy and the resulting values are the robust estimates    

and    [227]. 
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4.5.2. Intraclass correlation 

Intraclass correlation was introduced by Fisher et al. as descriptive statistic that can be 

used to describe how strongly values of the same group coincide with each other [229]. 

The coefficient ( ) can be described as the proportion of the total variance which is 

attributed to variation between groups (   ):             , 

where     is the within-group variability. 

The intraclass correlation coefficient (ICC) approaches 0 in the case of low within-group 

homogeneity and it approaches 1 when the between-group variation is large compared to 

the within-group variation. 
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5. AIM OF THE THESIS 

The overall aim of this thesis was to investigate the possibility of the detection of blood 

transfusion by testing athletes’ urine samples for DEHP metabolites. 

The main objectives were:  

 To develop a straightforward and rapid assay for the identification and 

quantification of the three major DEHP metabolites (MEHP, 5oxo-MEHP and 

5OH-MEHP) in urine samples. 

 To determine the levels of the phthalate metabolites in control samples, in 

athletes’ samples and in post-transfusion samples. 

 To estimate an upper reference limit for the urinary concentrations of the 

metabolites in subjects without extraordinary DEHP exposure. 

 To investigate the possible intra-individual variability of the metabolites over 

time. 

 To integrate the DEHP metabolites into an existing screening procedure and 

apply the method for routine doping control samples. 
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6. MATERIALS AND METHODS 

6.1. DETERMINATION OF URINARY DI(2-ETHYLHEXYL) PHTHALATE 

METABOLITES 

6.1.1. Materials 

6.1.1.1. Chemicals and reagents 

MEHP, 5oxo-MEHP, 5OH-MEHP, 13C4-MEHP and 13C4-5oxo-MEHP were obtained 

from Cambridge Isotope Laboratories Inc. (Andover, MA, USA) and they were of 

analytical purity (Table 6.1). β-Glucuronidase (from E. coli K12, 140 U/mL at 37.0°C) 

was acquired from Roche Diagnostics GmbH (Mannheim, Germany). Acetic acid and 

ammonium acetate were purchased from Sigma (Steinheim, Germany). All reagents were 

of analytical grade. Acetonitrile (LC-MS grade) was supplied by VWR International 

GmbH (Darmstadt, Germany). Standard solutions and other aqueous solutions were 

prepared using deionised water (Sartorius AG, Goettingen, Germany). 

 

Table 6.1: Reference materials 

Analyte Name Abbreviation Formula CAS No. Molecular Weight 

mono(2-ethylhexyl) 
phthalate 

MEHP C16H22O4 4376-20-9 278.3435 

mono(2-ethyl-5-oxohexyl)  
phthalate 

5oxo-MEHP C16H20O5 40321-98-0 292.3270 

mono(2-ethyl-5-hydroxyhexyl)  
phthalate 

5OH-MEHP C16H22O5 40321-99-1 294.3429 

13C4-mono(2-ethylhexyl)  
phthalate 

13C4-MEHP *C4C12H22O4 n.a. 282.3141 

13C4-mono(2-ethyl-5-oxohexyl)  
phthalate 

13C4-5oxo-MEHP *C4C12H20O5 n.a. 296.2976 
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6.1.1.2. Reference solutions 

A stock standard solution was prepared of each individual compound with a 

concentration of 100 µg/mL in acetonitrile and stored at +4°C. The working solutions of 

the compounds were prepared at the concentration level of 1 µg/mL in 

acetonitrile:water (1:1, v:v). 

6.1.2. LC-MS/MS method development 

6.1.2.1. Chromatographic parameters 

For the chromatographic separation an Agilent 1100 HPLC system was used which 

consisted of a vacuum degasser, an autosampler and a binary pump. Reversed phase 

liquid chromatography was performed on a Phenomenex Gemini C6-phenyl 

column (100 x 2 mm; 3 µm) connected to a Phenomenex Gemini C6-phenyl 

pre-column (2 x 4 mm). The mobile phase consisted of 5 mM ammonium acetate buffer 

containing 0.1% acetic acid (pH = 3.5, mobile phase A) and acetonitrile (mobile phase 

B). The flow rate was set to 0.25 mL/min. The gradient program started at 0% B, then 

increased to 100% B in 8 min and then was held at 100% B for 2 min. The analysis run 

time was 10 min with a 4.5 min post-run equilibration time resulting in a 14.5 min 

injection-to-injection duration. The injection volume was 10 µL. 

6.1.2.2. Mass spectrometric parameters 

Mass spectrometric detection was carried out using a hybrid triple quadrupole/linear ion 

trap mass spectrometer (AB SCIEX 5500 QTrap; Darmstadt, Germany) using negative 

electrospray ionisation in multiple reaction monitoring (MRM) mode. The ion source 

was operated at 400°C and the applied ionspray voltage was set to -4500 V. Nitrogen 

was used as curtain, nebuliser, and auxiliary gas delivered from a nitrogen generator 

(CMC Instruments, Eschborn, Germany). Collision energy and declustering potential 

were optimised for each analyte via direct injection of pure reference compounds using a 

1 mL syringe at a flow rate of 10 µL/min (Table 6.3). Enhanced product ion spectra were 

acquired using linear ion trap (LIT) mode. Detailed method parameters are listed in 

Table 6.2. To evaluate the acquired data Analyst 1.5 software was used. 
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Table 6.2: LC-MS/MS method parameters. 

Chromatographic Parameters 

HPLC system Agilent 1100 Series LC System   

HPLC column Phenomenex Gemini C6-phenyl (100 x 2.0 mm; 3 µm) column 

 Phenomenex Gemini C6-phenyl (4 x 2.0 mm) pre-column 

Mobile Phase A: 5 mM ammonium acetate, 0.1% acetic acid (pH = 3.5) B: acetonitrile 

Gradient 0 min 100% A 0% B 

 8 min 0% A 100% B 

 10 min 0% A 100% B 

 re-equilibration 4.5 min at 100% A   

Flow rate 0.25 mL/min   

Injection Volume 10 µL   

Mass spectrometric parameters 

Mass spectrometer AB SCIEX 5500 QTrap  

Ionisation ESI in negative ionisation mode  

Scan Mode MRM  

Interface Temperature 400°C  

Nebulizer Gas N2, 40 psi 

Auxiliary Gas N2, 20 psi 

Curtain Gas N2, 20 psi 

Ionspray Voltage -4500 V 

Entrance Potential -10 V 

Collision Gas N2, 3.5 x 10-3 Pa 

Collision Cell Exit Potential -10 V 
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Table 6.3: Chromatographic and mass spectrometric parameters of phthalate monoesters. 

Urinary phthalate 
monoesters 

Abbreviation Retention 
timea 

Precursor 
ionb 

Product 
ionc 

Collision 
energy 

Declustering 
potential 

(min) (m/z) (m/z) (eV) (V) 

Mono(2-
ethylhexyl) phthalate 

MEHP 10.96 277 134 -22 -70 

    127 -24 -70 

    77 -36 -70 

Mono(2-ethyl-5-
oxohexyl) phthalate 

5oxo-MEHP 9.41 291 143 -20 -70 

    121 -26 -70 

    77 -46 -70 

Mono(2-ethyl-5-
hydroxyhexyl) phthalate 

5OH-MEHP 9.25 293 121 -28 -70 

    77 -46 -70 

    145 -20 -70 

Mono(2-
ethylhexyl) phthalate-13C4

 
13C4-MEHP 10.95 281 137 -22 -70 

    79 -38 -70 

    127 -24 -70 

Mono(2-ethyl-5-
oxohexyl) phthalate-13C4

 

13C4-5oxo-
MEHP 

9.40 295 143 -20 -70 

    124 -26 -70 

    79 -46 -70 
a Retention time was calculated as the mean value of six replicates. 
b The analysis was performed in negative ionisation mode. 
c The values in bold font indicate the quantifier ions. 
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6.1.3. Sample preparation 

A 1 mL aliquot of the urine sample was fortified with 100 ng of the internal standards 

(13C4-MEHP and 13C4-5oxo-MEHP), then 25 µL of β-glucuronidase (140 U/mL at 

37.0°C) was added. The enzymatic hydrolysis was carried out at room temperature 

within 10 min. The hydrolyzed samples were prepared by appropriate dilution (1:5, v:v) 

with a mixture of acetonitrile:water (1:1, v:v) and an aliquot of 10 µL was injected into 

the instrument. 

6.1.4. Quantification of target compounds 

To enable quantification of the target compounds the peak area ratios of the quantifier 

ion transitions of the analytes and the respective internal standards (MEHP to 
13C4-MEHP, 5oxo-MEHP and 5OH-MEHP to 13C4-5oxo-MEHP) were used. Calibration 

graphs were obtained by analysing spiked blank urine samples at concentration levels of 

1, 10, 50, 100, 150, 200 and 250 ng/mL. Samples with concentrations above the highest 

calibration point were diluted with water to fit the calibration range. 

Due to the lack of phthalate-free urine matrices the quantitative results were corrected to 

the physiological amount of the respective analytes in the used blank matrix and adjusted 

to a standard urine density of 1.020 g/mL according to WADA guidelines [230]. 

For quantification purposes the most suitable ion transitions were m/z 277/134 for 

MEHP, m/z 291/143 for 5oxo-MEHP and m/z 293/121 for 5OH-MEHP. The chosen 

qualifier transitions were m/z 277/127 and m/z 277/77 for MEHP, m/z 291/121 and m/z 

291/77 for 5oxo-MEHP, and m/z 293/77 and m/z 293/145 for 5OH-MEHP. 

Compound identification was performed based on the relative retention time and the 

relative ratios of three ion transitions for each analyte. 
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6.1.5. Assay validation 

For validation the following parameters were determined; specificity, linearity, ion 

suppression, accuracy, intra- and inter-day precision, limit of detection (LOD) and limit 

of quantification (LOQ). The validation was performed according to the guidelines of the 

International Conference on Harmonisation and WADA [231,232]. All calibration 

samples were prepared as described above, using 1 mL of blank urine spiked with 

respective amounts of reference standards and subsequent dilution with 

acetonitrile:water (1:1, v:v) to a volume of 5 mL. 

6.1.5.1. Specificity 

Evaluation of the specificity was carried out by analyzing six different spiked and blank 

urine samples collected from healthy volunteers to test for interfering signals in the 

selected MRM chromatograms at the expected retention times of the analytes. 

6.1.5.2. Linearity 

Calibration curves (n = 6) for the metabolites were generated using aliquots of a blank 

urine sample spiked at concentrations of 1, 10, 50, 100, 150, 200, 250 ng/mL. The ratio 

of peak areas for the analytes and the corresponding internal standards (ISTDs) were 

used to calculate the correlation coefficient, intercept and slope. 

6.1.5.3. Ion suppression / enhancement 

The extent of ion suppression or enhancement was investigated by analysing six different 

blank urine samples via post-column continuous infusion of a mixture of the reference 

compounds (100 ng/mL, 20 µL/min) [233]. 

6.1.5.4. Accuracy and precision 

The accuracy and precision were determined using six replicates of spiked urine samples 

at the concentration levels of 10, 100 and 250 ng/mL (QClow, QCmedium, QChigh). To test 

for accuracy the concentrations of the respective aliquots were calculated utilising an 

external calibration curve. To establish the inter-day precision the same samples were 

prepared and analysed on three consecutive days (n = 6+6+6). The precision of the 
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method was determined by calculation of the coefficient of variation (CV) of the area 

ratio of the quantifier ion transition of the analytes and the respective internal standards. 

6.1.5.5. Stability 

In earlier studies the decomposition of DEHP metabolites was noticed in urine above 

4°C [234]. To ensure accurate analytical results the stability of the DEHP metabolites in 

the prepared samples was tested. Therefore, three different quality control (QC) samples 

were prepared at the concentration level of 100 ng/mL stored for up to 4 months at -20, 

4°C and room temperature, respectively. 

6.1.5.6. Limit of detection and limit of quantification 

LOD and LOQ were defined as the lowest concentrations of the analyte in a sample that 

gave signal-to-noise ratios of 3:1 and 10:1 for the quantifier ion transition with a 

precision of less than 20% and an accuracy of 80 to 120%. Six blank urine samples were 

analysed to establish the noise intensity. Three parallel artificial urine samples spiked at a 

concentration of 0.5 ng/mL for LOD and 1 ng/mL for LOQ were prepared and analysed. 
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6.1.5.7. Uncertainty of the method 

The uncertainty of the measurement (  ) was calculated according to WADA 

guidelines [235]. It is based on the data obtained through the validation of the method.   ( )  √ (  )   ( ) , 
where    is the intermediate precision,   is the average recovery bias and  ( ) 

was calculated using the equation:  ( )  √( )  (  √ )  (    ) , 
where    is the standard deviation of the average bias of   replicate analysis 

(   ) and      is a random error contribution (      ). 

For determination of the expanded uncertainty (    ) a coverage factor     can be 

applied if    has a 95% confidence level.           (   ). 
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6.1.6. Density and creatinine measurement 

The density of the urine samples was measured using an Anton Paar DMA 38 density 

meter (Graz, Austria). 

Creatinine measurements were carried out using a Creatinine Assay Kit (Cayman 

Chemical Company, Ann Arbor, MI, USA). The assay relies on the Jaffe’ reaction [236]. 

The dynamic range of the kit is 0-15 mg/dL of creatinine. Since creatinine levels in 

human urine typically range from 25 to 400 mg/dL urine samples were diluted 1:20 with 

HPLC-grade water. The sample creatinine concentration was determined using a 

creatinine standard curve (0, 2, 4, 6, 8, 10, 12, and 15 mg/dL). 

6.1.7. Study subjects 

6.1.7.1. Reference populations 

6.1.7.1.1.  Control samples 

In order to determine the physiological levels of DEHP metabolites, urine samples were 

collected from 100 healthy volunteers (68 male, 31 female, 1 unknown) from the 

German Sport University Cologne (control samples). The participants were between 20 

and 59 years of age and regularly exercised. 

6.1.7.1.2. Athletes’ samples 

In addition, 468 official doping control urine samples were analysed (374 male, 90 

female, 4 unknown), received between January 2010 and June 2010 from national and 

international federations, taken in-competition (n = 217, IC) and out-of-competition 

(n = 251, OOC) covering different sporting disciplines. 
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6.1.7.2. Post-transfusion samples 

6.1.7.2.1. Excretion urine samples 

Urine samples of patients receiving autologous blood transfusion were collected between 

0 to 24 hours after transfusion (n = 10, 2 samples from each volunteer after blood 

transfusion, 2 female and 3 male, age 44-79, Surface-Zentrum für Orthopädie, Neuss, 

Germany) and blank samples of each volunteer were taken before transfusion to estimate 

the individual reference values. Written consent was received from each volunteer. 

6.1.7.2.2. Post-transfusion samples with 14 and 28 days storage of transfused blood 

Urine samples were collected from 25 healthy volunteers, who partake in moderate 

training, and receive autologous RBC transfusions. 

Blood collection, preparation, storage of RBCs and the autologous RBC transfusion were 

performed by a specialised laboratory according to usual clinical practice, using blood 

bags (Macopharma, Tourcoing, France) and leukoreduction filtration systems (Fenwal 

Inc., Lake Zurich, IL, USA) with the approval of the Ethics Committee of the 

Ruhr-University Bochum (Reg. No. 3200-08). 

The subjects were separated into two groups in terms of transfusion. The first group 

consisted of 12 subjects (5 female, 7 male, aged 15-40 n = 161) who received the RBC 

transfusions (500 ml) 14 days after the phlebotomy, and the 13 subjects of the second 

group (5 female, 8 male, aged 21-28, n = 220) were reinfused after 28 days of RBC 

storage (500 ml). Urine samples were collected several days before blood transfusion 

(including the day of blood collection), on the day of the reinfusion and up to 21 days 

after transfusion (Figure 6.1). Samples from the first group were collected on days 3, 4 

(blood collection), 5, 11, 17, 18 (blood transfusion), 19, 20, 21, 23, 25, 28, 32, 39 and 

from the second group on days 0, 3, 4 (blood collection), 5, 11, 18, 25, 31, 32 (blood 

transfusion), 33, 34, 35, 37, 39, 42, 46 and 53. On the day of the blood collection and the 

reinfusion samples were obtained from 1 to 3 hours after procedure. 

An independent blind analysis was carried out on this set of samples using a different 

analytical procedure by the Bioanalysis Research Group, IMIM-Hospital del Mar 

(Barcelona, Spain). The correlation between the results obtained by the two laboratories 

was published by Monfort et al. [237]. In this study only our results are shown. 
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Figure 6.1: Sample collection protocol from 25 healthy volunteers, who partake in moderate 

training, and receive autologous RBC transfusions: Group 1 (a), Group 2 (b). Green arrows indicate 

the days of phlebotomy and red arrows indicate the days of transfusion. 

 

6.1.7.3. Longitudinal study 

In order to determine the intra-individual variability of urinary concentrations of DEHP 

metabolites, urine samples were collected from seven healthy volunteers (3 female, 4 

male; age: 27-37 years) during one week (29-45 samples per volunteer, n = 253). The 

samples were collected from a different starting date and during a different period of time 

(153 h-193 h) from each volunteer. The study was not a specially designed experiment. 

The volunteers did not follow any restrictions and did not answer questionnaires. 

 

All samples were stored in polyethylene bottles at -20°C until analysis. 

Informed consent was obtained from all medicated patients and volunteers. 
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6.1.8. Statistical evaluation 

6.1.8.1. Reference populations  

The values of all investigated compounds exhibited heavily skewed distributions. 

Log-transformation yielded nearly symmetric distributions which, however, still 

contained numerous high values. Therefore, calculation of mean and standard deviation 

to describe the population was inappropriate. Instead, Huber's method [227] was applied 

to the log-transformed values for descriptive statistics as well as for the calculation of 

reference limits. Huber's M-estimator yields robust estimates for the central tendency 

(µH) and for the dispersion (σH) of an empirical distribution. The distribution should be 

symmetrical but may contain a limited number of outliers. Ideally, µH will reflect the 

mean or median of the uncontaminated distribution. Similarly, σH approximates the 

standard deviation under ideal conditions. Therefore, these parameters were used in 

analogous fashion to mean and standard deviation in order to estimate the probability of 

given values falling outside a certain interval. 

On a logarithmic scale, the σH of all compounds except MEHP was multiplied with the 

0.999 quantile of the Gaussian distribution (3.09). This value was then added to the 

respective values of µH to obtain upper 99.9% reference limits. These resulting values 

were transformed back to concentrations. The data below LOQ were substituted with the 

value of the LOQ divided by two (LOQ/2). Statistical analysis was performed using the 

latest version of the software “R” [238] where the functions for Huber's statistics can be 

found in library “MASS” [239] and STATISTICA software version 7.0 (StatSoft Inc., 

Tulsa, OK, USA). 

6.1.8.2. Longitudinal study 

Within-subject variability was assessed using intra-class correlation. Intra-class 

correlation coefficients (ICCs) were calculated for each metabolite using random effects 

models, which were applied for the log-transformed data. As markers for reliability, ICCs 

range from 0 to 1, with values near 1 indicating high reliability. 
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6.2. INTEGRATION OF DI(2-ETHYLHEXYL) PHTHALATE METABOLITES 

INTO AN EXISTING SCREENING PROCEDURE FOR SPORTS DRUG 

TESTING 

6.2.1. Materials 

6.2.1.1. Chemicals and reagents 

Internal standard mefruside was acquired from Bayer AG (Leverkusen, Germany). 

Glacial acetic acid and ammonium acetate were purchased from Sigma (Steinheim, 

Germany). All references and reagents were of analytical grade. Acetonitrile (LC-MS 

grade) was supplied by VWR International GmbH (Darmstadt, Germany). Standard 

solutions and other aqueous solutions were prepared using deionised water (Sartorius 

Stedim Biotech GmbH., Göttingen, Germany). 

6.2.1.2. Reference solutions 

A stock standard solution of the internal standard was prepared at a concentration of 

1 mg/mL in methanol and stored at -20°C. The reference working solution of the 

compound was prepared at a concentration level of 10 µg/mL in methanol. 

6.2.1.3. Quality Control samples 

For the phthalate glucuronides, quantified post-transfusion samples were analysed as 

QCs. 
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6.2.2. Sample preparation 

An aliquot of 90 µL of urine sample was fortified with 50 ng of the internal standard 

mefruside (corresponding to 10 µL of a 5 µg/mL solution of the ISTD in methanol) the 

samples were then mixed, and an aliquot of 5 µL was injected into the instrument. 

6.2.3. LC-MS/MS analysis 

Chromatographic separation of target analytes was achieved on an Agilent 1100 Series 

HPLC system equipped with a Nucleodur C18 Pyramid analytical column (50 x 2 mm, 

3 µm particle size; Macherey-Nagel, Düren, Germany) connected to a Phenomenex 

Gemini C6-phenyl (2 x 4 mm) pre-column. The mobile phase consisted of 5 mM 

ammonium acetate buffer containing 0.1% glacial acetic acid (pH = 3.5, mobile phase A) 

and acetonitrile (mobile phase B). A linear gradient at a flow rate of 0.35 mL/min was 

employed starting at 0% B, increasing to 90% B within 4.5 min and then re-equilibrating 

(0.5 mL/min) at 0% B for 6.25 min. The overall runtime was 10.75 min injection-to-

injection. The injection volume used was 5 µL. 

Tandem mass spectrometry was carried out using a hybrid triple quadrupole / linear ion 

trap mass spectrometer (AB Sciex 5500 QTrap; Darmstadt, Germany) controlled by 

Analyst Software 1.5 (AB Sciex). Fast polarity switching (50 msec) electrospray 

ionisation was used with the following conditions: ionspray voltage +5500 V (positive) 

and -4500 V (negative), ion source temperature 450°C, nitrogen was used as curtain, 

nebuliser, and auxiliary gas. The analytes and the ISTD (mefruside) were detected 

utilising multiple reaction monitoring (MRM) of diagnostic ion transitions at dwell times 

of 10 msec. For optimisation of the orifice potential and the collision energy solutions of 

pure reference compounds for each analyte were directly injected using a 1 mL syringe at 

a flow rate of 10 µL/min. Nitrogen was used as the collision gas (3.5 x 10-3 Pa) delivered 

from a nitrogen generator (CMC Instruments, Eschborn, Germany). Detailed method 

parameters are listed in Table 6.4. Target ion transition of MRM experiments are listed in 

Table 6.5. 
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Table 6.4: LC-MS/MS screening method parameters. 

Chromatographic Parameters 

HPLC system Agilent 1100 Series LC System   

HPLC column Macherey-Nagel Nucleodur C18 Pyramid analytical column (2 x 50 mm, 3 µm) 

 Phenomenex Gemini C6-phenyl (4 x 2.0 mm) pre-column 

Mobile Phase A: 5 mM ammonium acetate, 0.1% acetic acid (pH = 3.5) B: acetonitrile 

Gradient 0 min 100% A 0% B 

 4.5 min 10% A 90% B 

 10 min 0% A 100% B 

 6.25 min post-run equilibration time (using 0.5 mL/min flow rate) 

Flow rate 0.35 mL/min   

Injection Volume 5 µL   

Mass spectrometric parameters 

Mass spectrometer AB SCIEX 5500 QTrap 

Ionisation ESI in polarity switching mode (50 msec) 

Scan Mode MRM 

Interface Temperature 450°C 

Nebulizer Gas N2, 60 psi 

Auxiliary Gas N2, 30 psi 

Curtain Gas N2, 30 psi 

Ionspray Voltage +5500 V, -4500 V 

Entrance Potential +/-10 V 

Collision Gas N2, 3.5 x 10-3 Pa 

Collision Cell Exit Potential -10 V (for DEHP metabolites) 
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Table 6.5: Chromatographic and mass spectrometric parameters of phthalate glucuronide 

conjugates. 

Compound RTa 
(min) 

RRTb Ionisation 
Modec 

Precursor 
ion (m/z) 

Product 
ion (m/z) 

Collision 
Energy 

(eV) 

Declustering 
Potential (V) 

mefruside (ISTD) 5.43 1.00 - 381 78 -80 -100 

5OH-MEHP-gluc 5.15 0.95 - 469 293 -20 -70 

5oxo-MEHP-gluc 5.18 0.95 - 467 291 -20 -70 

a RT: retention time 
b RRT: relative retention time 
c – negative ionisation mode 

6.2.4. Validation of the method 

For validation the following parameters were determined; specificity, ion suppression, 

intra- and inter-day precision, limit of detection (LOD) and robustness. Additionally, to 

test for linearity and accuracy correlation between the conjugated metabolites and the 

unconjugated analogues were investigated. The validation for identification of target 

analytes was performed according to the guidelines of the International Conference on 

Harmonisation and WADA [240,241]. All calibration samples were prepared and 

analysed as described above. 

6.2.4.1. Specificity 

Evaluation of specificity was carried out by analysing six different spiked and six 

different blank urine samples collected from healthy volunteers (5 female, 1 male) to test 

for interfering signals in the selected MRM chromatograms at expected retention times 

of the analytes. 

6.2.4.2. Ion suppression / enhancement 

The extent of ion suppression or enhancement was investigated by analysing six different 

blank urine samples via post-column continuous infusion of a mixture of the reference 

compounds (1 µg/mL, 20 µL/min) [233]. 
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6.2.4.3. Accuracy and linearity 

To ensure the ability of the method for semi-quantitative purposes the correlation of 

5OH-MEHP and 5oxo-MEHP concentrations and the relative intensities of the 

corresponding 5OH-MEHP-gluc and 5oxo-MEHP-gluc were determined. 

6.2.4.4. Precision 

Intra-day precision was determined at three concentration levels for each compound 

(QClow, QCmedium, QChigh) using six replicates of spiked urine samples. The 

corresponding inter-assay precision was calculated from samples prepared and analysed 

on three different days. The precision of the method was determined by calculation of the 

coefficient of variation (CV) of the area ratio of the ion transition of the analytes and the 

internal standard. 

6.2.4.5. Limit of detection 

LOD was estimated via the signal to noise ratio (S/N) of the respective ion traces using 

ten blank samples and ten fortified samples at concentration levels of 50 ng/mL. 

6.2.4.6. Robustness 

Robustness was tested by comparison of the relative retention times of the analytes in the 

QC samples over a month. 

6.2.5. Post-transfusion samples 

Post-transfusion samples provided by Surface-Zentrum für Orthopädie (Neuss, 

Germany) were analysed for 5oxo-MEHP-gluc and 5OH-MEHP-gluc. Urine samples 

were collected from 5 volunteers between 0 to 24 h after blood transfusion (2 female, 

3 male, age 44-79). Informed consent was obtained from all medicated patients and 

volunteers. 
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6.2.6. Routine samples 

Approximately 13,000 samples were tested for the glucuronide conjugates of DEHP 

metabolites using the screening procedure (Section 6.2.2 and 6.2.3) within a year. 

Samples showing higher relative intensities (5oxo-MEHP-gluc and 5OH-MEHP-gluc 

related to the internal standard) than the relative intensities corresponding to the 99.9% 

reference limits were tested using the original method (Section 6.1.2 and 6.1.3) in order 

to confirm the results and determine the accurate concentrations of the DEHP 

metabolites. 
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7. RESULTS AND DISCUSSION 

7.1. DETERMINATION OF URINARY DI(2-ETHYLHEXYL) PHTHALATE 

METABOLITES 

7.1.1. Chromatographic and mass spectrometric parameters 

Good chromatographic separation was achieved using a Phenomenex Gemini 

phenyl-hexyl column. Phenyl-hexyl columns have the structure of a phenyl column in 

which the hexyl group acts as a spacer. It shows high selectivity for aromatic compounds 

due to the π – π interactions which can lead to increased retention of polar aromatic 

compounds compared to an alkyl-bonded phase [242]. 

After optimization, electrospray ionisation of all DEHP metabolites produced negatively 

charged molecular ions [M-H]ˉ in suitable abundance. Product ion mass spectra 

generated after collision-induced dissociation (CID) of deprotonated molecules yielded 

phthalate-specific fragment ions for all DEHP monoesters using appropriate collision 

energies (Figure 7.1). All metabolites produced common ions at m/z 77 and 121 

corresponding to benzyl and benzoate fragments. The most abundant fragments were 

observed at m/z 127, 134 and 147 for MEHP corresponding to the anions of 

2-ethylhexanol, methylbenzoate and phthalic anhydride, respectively, as demonstrated in 

earlier studies [186,190]. The stable isotope-labelled internal standard of MEHP 

dissociated similarly showing ions at m/z 79, 124, 127, 137 and 151 consistent with the 

presence of two, three or four 13C-atoms. Furthermore, a characteristic ion was found at 

m/z 143 and m/z 145 in the case of 5oxo-MEHP and 5OH-MEHP corresponding to 

deprotonated analogues of 5-(hydroxymethyl)heptane-2-one and 2-ethylhexane-1,5-diol. 
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The relative retention time and the relative ratios of three ion transitions of each 

compound were used to confirm the identity of the analyte (Table 7.1). The average 

retention times of the target compounds under the chosen conditions were 10.99 min for 

MEHP, 9.41 min for 5oxo-MEHP and 9.25 min for 5OH-MEHP (Table 7.1, Figure 7.2).  

 

 

Figure 7.2: Extracted ion chromatograms of human urine samples: (a) blank urine sample; (b) 

quality control (QC) sample (urine sample fortified with 100 ng/mL of phthalate monoesters). Only 

quantifier ion transitions of analytes are shown. 
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7.1.2. Sample preparation aspects  

Phthalate metabolites are excreted into urine mainly as glucuronides. Within the present 

study, the effect of incubation time on enzymatic hydrolysis was tested by determining 

deconjugated phthalate metabolites released after 2, 10, 20, 30 and 60 minutes of 

incubation at room temperature and also at 50°C for 30 minutes. Enzymatic hydrolysis of 

the analytes was found to be complete after 10 minutes at room temperature for all 

analytes (Figure 7.3). No improvement was observed in the case of incubation at 50°C 

from 30 minutes onwards. Further dilution yielded the final solution that was injected 

into the LC-MS/MS system resulting in a very simple and rapid sample preparation. 
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Figure 7.3: Optimization of enzyme deconjugation time of phthalate monoester glucuronides in 

urine at room temperature. 
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7.1.3. Validation results 

In order to test for assay suitability, the following parameters were determined; 

specificity, linearity, ion suppression, accuracy, intra- and inter-day precision, LOD and 

LOQ. 

7.1.3.1. Specificity 

In terms of specificity, no significant interfering signals of the blank samples were 

detected at the expected retention times of the analytes. As expected, low basal levels of 

the analytes were always detectable with stable relative ion ratios identical to the 

reference compound. 

7.1.3.2. Linearity 

The assay demonstrated a linear correlation between analyte concentration and response 

within the given concentration range (1-250 ng/mL) with the correlation coefficients (R2) 

above 0.99. The slope and the intercept of the calibration curves were 0.004 and 0.009 

for MEHP, 0.008 and 0.001 for 5oxo-MEHP, 0.014 and -0.015 for 5OH-MEHP, 

respectively. 

7.1.3.3. Ion suppression / enhancement 

With regard to ion suppression or enhancement there was no significant decrease or 

increase of the electrospray response at the expected retention times of the analytes while 

the urinary matrix was injected. 

7.1.3.4. Accuracy and precision 

For accuracy, the relative recoveries were determined at three concentration levels (10, 

100, 250 ng/mL) by means of comparison of theoretical and calculated concentrations 

ranging from 84% to 106% as shown in Table 7.1. The intra- and inter-day precisions 

were determined at three concentration levels with coefficients of variation less than 10% 

for low (10 ng/mL), medium (100 ng/mL), and high (250 ng/mL) concentration levels. 
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7.1.3.5. LOD and LOQ 

At the required signal-to-noise ratio of 3, the LODs were estimated at 0.2-0.3 ng/mL and 

the corresponding LOQs at 1 ng/mL for MEHP, 5oxo-MEHP and 5OH-MEHP (Table 

7.1) with CVs below 6.2% and accuracies ranging from 92.1 to 106.6%. The analytes 

were identified at the concentration level of the LOD using two and at the LOQ using 

three ion transitions. This assay demonstrated good sensitivity, although samples were 

diluted (1:5) and injected directly without any preconcentration steps. 

7.1.3.6. Stability 

Within this study the stability of the DEHP metabolites in the prepared samples (QCs) 

was tested. No significant decrease of the phthalate concentrations was observed in the 

quality control samples stored at -20, 4°C and room temperature for up to 4 months 

ensuring accurate quantification. Although in earlier studies the decomposition of DEHP 

metabolites was observed in urine samples stored above 4°C [234], quality control 

samples in this study were found to be stable, this was probably influenced by sample 

dilution (acetonitrile/water). 

7.1.3.7. Uncertainty of the measurement 

The uncertainty of the measurement is 12.88% for MEHP, 11.15% for 5oxo-MEHP and 

19.84% for 5OH-MEHP which represents the expanded uncertainties at 95% confidence 

level using a coverage factor of k = 2. 
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Table 7.1: Summary of assay validation results. 

 Accuracy  Precision  LOD LOQ 

 QClow  QCmedium  QChigh  QClow  QCmedium  QChigh  
Retention 

Time 
 MRM ratioc 

 
(S/N>3) (S/N>10) 

 Relative Recovery (%)a CV (%)  CV (%)  CV (%)  Meana CVa  Meana CVa  Conc. Conc. 

       intra-daya inter-dayb  intra-daya inter-dayb  intra-daya inter-dayb  (min) (%)  (%) (%)  (ng/mL) (ng/mL) 

MEHP 94.8  99.4  97.7  6.10 2.89  3.61 2.63  3.33 2.70  10.99 0.32  34.35 0.88  0.2 1.0 

5oxo-
MEHP 

96.1  105.2  97.9  3.41 3.92  3.17 3.07  0.71 3.10  9.41 0.25  30.31 1.45 
 

0.3 1.0 

5OH-
MEHP 

84.9  91.8  89.0  1.69 4.26  3.99 2.38  2.92 3.66  9.25 0.28  16.13 0.35 
 

0.2 1.0 

a Intra-day precision was calculated as the mean value of six replicates (n=6). 
b Inter-day precision was calculated as the mean value of six replicates measured on three different days (n=18). 
C MRM ratio: Ratio of the peak area detected at the quantifier and the qualifier ion transitions. The quantifier and qualifier ion transitions are m/z 277/134 and 277/127 for MEHP, 291/143 and 291/121 for 5oxo-MEHP, 

293/121 and 293/77 for 5OH-MEHP, respectively. 
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7.1.4. Correlation of the results corrected to creatinine and specific gravity 

In this study, creatinine was assayed in samples collected from healthy volunteers of the 

control group (n = 100) and of the longitudinal study (n = 253). In addition, the density 

was measured in all of the samples. Pearson correlation showed high correlation between 

the density and creatinine values (Figure 7.4). 
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Longitudinal study: y = -68.7546 + 68.7516*x; r = 0.7606, p = 0.0000

 

Figure 7.4: Correlation of density and creatinine values in urine samples from healthy volunteers: 

control group (blue circles), longitudinal study (red triangles). 

 

However, Lorber et al. found that creatinine may not be suitable for the correction of 

DEHP metabolite concentration due to the short elimination time of the metabolites. 

Creatinine correction predicted higher concentrations when the ratio of the analytes 

suggested that the DEHP exposure was close in time and it began to underpredict the 

intake after approximately 8 hours [243]. Therefore, correction to specific gravity was 

used for statistical evaluation and routine purpose. 
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7.1.5. Reference populations 

7.1.5.1. Control samples 

In order to determine physiological levels of DEHP metabolites, urine samples from 100 

healthy volunteers were analysed. The primary metabolite MEHP was quantifiable in 

100% of the control samples (n = 100), the secondary metabolites 5OH-MEHP and 

5oxo-MEHP could be quantified in 93% and 91% of the control specimens, with 

concentrations of MEHP, 5oxo-MEHP and 5OH-MEHP ranging from 2.1 ng/mL to 

50.4 ng/mL, from < LOQ to 36.2 ng/mL and from < LOQ to 65.5 ng/mL in the control 

samples (Table 7.2, Figure 7.5), respectively.  

 

Table 7.2: Results of statistical evaluation of phthalate monoester levels in the control urine samples 

(n = 100). 

Urinary phthalate 
monoester 

µH
a Min Max Upper reference limit, 

99.9%a 
Frequency of 
quantification 

 (ng/mL) (ng/mL) (ng/mL) (ng/mL) % 

5oxo-MEHP 6.2 < LOQ 36.2 54.4 93 

5OH-MEHP 12.5 < LOQ 65.5 94.8 91 

MEHP 9.3 2.1 50.4 74.6 100 
a Estimators for the central tendency (µH) and upper reference limit (99.9%) of the control group (ng/mL). Estimates based on Huber's 

robust statistical method (see 6.1.8.1 for the precise meaning of µH). 

 

The log-transformed data of MEHP demonstrated a bimodal distribution compared to 

secondary metabolites that yielded approximate gaussianity. Additionally, the maximum 

concentration for MEHP in the investigated control group was higher than the minimum 

concentration determined in samples after blood transfusion (Table 7.4). Thus, 

5oxo-MEHP and 5OH-MEHP represented more appropriate markers to indicate blood 

transfusion. 
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7.1.5.2. Athletes’ samples 

For the determination of the concentration levels of secondary DEHP metabolites in elite 

athletes, 468 official doping control samples covering different kind of sport and origin 

were investigated. It is stressed that the athletes’ samples cannot fulfil the criteria of a 

controlled study, since medical treatment cannot be excluded. 

MEHP, 5OH-MEHP and 5oxo-MEHP were quantifiable in 58%, 95% and 80% of the 

samples, respectively. The highest concentration in the doping control samples was 

found for 5OH-MEHP, followed by 5oxo-MEHP and MEHP (Table 7.3). Figure 7.5 

shows the histogram and the density plot for log-normal distribution of urinary 

5oxo-MEHP and 5OH-MEHP monoester levels quantified in 468 athlete specimens. The 

99.9% upper reference limits of the athletes’ group were determined as 157.3 ng/mL for 

5oxo-MEHP and 193.0 ng/mL for 5OH-MEHP. Within the investigated athletes’ group 

there were 4 outliers (0.85%) identified, yielding concentrations in the range found after 

blood transfusion (Figure 7.6). Since information regarding the medical treatment of 

these athletes was not available, increased levels of secondary DEHP metabolites may 

indicate an unusual increased environmental exposure or blood transfusion. Three out of 

four outliers were taken out-of competition at the same time, originating from one 

cycling team. As recommended by Monfort et al. the basal levels of DEHP metabolites 

may be implemented to athletes’ Biological Passport [164-167] to suspect the misuse of 

blood transfusions [29]. 

 

Table 7.3: Results of statistical evaluation of phthalate monoester levels in athletes’ urine samples 

(n = 468). 

Urinary phthalate 
monoester 

µH
a Min Max Upper reference limit, 

99.9%a 
Frequency of 
quantification 

 (ng/mL) (ng/mL) (ng/mL) (ng/mL) % 

5oxo-MEHP 6.1 < LOQ 590.7 157.3 80 

5OH-MEHP 18.9 < LOQ 1125.0 193.0 95 

MEHP 2.1 < LOQ 203.3 96.1 58 
a Estimators for the central tendency (µH) and upper reference limit (99.9%) of the athletes group (ng/mL). Estimates based on 

Huber's robust statistical method (see 6.1.8.1 for the precise meaning of µH). 
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Figure 7.5: Histograms and density plots for log-normal distributions of urinary DEHP monoester 

values in 100 urine samples of the control group: 5OH-MEHP (a), 5oxo-MEHP (b); and in 468 urine 

samples from athletes: 5OH-MEHP (c), 5oxo-MEHP (d). Labels represented above bars indicate the 

percentage values. 

(a) (b) 

(c) 

(d) 
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7.1.6. Post-transfusion samples 

7.1.6.1. Excretion study 

Urine samples of the excretion study showed elevated DEHP metabolite concentrations 

up to 24 hours after blood transfusion. In comparison to the control group (Table 7.2) 

significantly higher concentrations of the secondary DEHP metabolites were observed in 

urine samples collected after blood transfusion (Table 7.4). The maximum concentrations 

of 5oxo-MEHP and 5OH-MEHP in the control samples were 18- and 13-times lower 

than the minimum concentrations determined after transfusion. 

 

Table 7.4: Concentrations of phthalate monoesters in the urine samples of transfused patients. 

Patient Time after transfusion Concentration (ng/mL) 

(hours)a 5oxo-MEHP 5OH-MEHP MEHP 

1 

12 634.4 908.2 239.7 

24 484.5 540.8 204.3 

Blank 24.7 41.6 15.2 

2 

6 740.9 876.1 351.8 

12 250.4 279.6 116.6 

Blank 24.7 41.6 15.2 

3 

6 1098.0 2122.0 46.2 

12 980.2 2333.3 29.8 

Blank 0.5 25.3 10.7 

4 

6 1374.4 1720.8 139.8 

12 390.0 532.0 39.6 

Blank 31.2 67.8 4.5 

5 

5 4995.0 8605.0 471.3 

14 940.4 1692.4 98.0 

Blank 9.8 68.0 15.8 
a Blank samples were taken before blood transfusion. 

 

The 99.9% upper reference limits of the control group were determined as 54.4 ng/mL 

for 5oxo-MEHP and 94.8 ng/mL for 5OH-MEHP which are 12- and 9-times lower than 

the lowest value measured after blood transfusion. The chromatogram of a control 

sample and a post-transfusion sample are shown in Figure 7.7. 
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Figure 7.6: Concentrations of urinary DEHP metabolites 5OH-MEHP (a) and 5oxo-MEHP (b) in 

athletes’ samples, in the control group and in transfused patients (TF). Horizontal bars indicate the 

medians, boxes enclose the 25
th

 and 75
th

 percentiles, whiskers indicate the minimum and maximum 

data values excluding the outliers and circles illustrate the outside values. The 99.9% reference limits 

are calculated from the log-transformed concentrations. 

(a) 

(b) 
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The 99.9% upper reference limits of the athletes’ group were determined as 157.3 ng/mL 

for 5oxo-MEHP and 193.0 ng/mL for 5OH-MEHP which are 4- and 5-times lower than 

the lowest concentration received after blood transfusion. Within the investigated 

athletes’ group there were 4 outliers (0.85%) identified, yielding concentrations in the 

range found after blood transfusion (Figure 7.6). 

 

 

Figure 7.7: Extracted ion chromatograms of human urine samples: (a) control sample containing 

13 ng/mL of 5oxo-MEHP, 32.8 ng/mL of 5OH-MEHP and 5.1 ng/mL of MEHP and (b) undiluted 

sample of transfused patient containing 1374.4 ng/mL of 5oxo-MEHP, 1720.8 ng/mL of 5OH-MEHP 

and 139.8 ng/mL of MEHP. Only quantifier ion transitions of analytes are shown. 
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7.1.6.2. Urinary concentrations of the metabolites related to the storage time of the 

transfused blood 

Samples collected at the Ruhr-University Bochum were divided into three groups: 

control samples (collected from Group 1 and Group 2 excluding the day of blood 

transfusion), samples collected on the day of transfusion from Group 1 (TF-1, blood 

stored for 14 days before transfusion) and from Group 2 (TF-2, blood stored for 

28 days). 

5oxo-MEHP, 5OH-MEHP and MEHP were quantified in 80%, 89% and 57% of the 

specimens of the control group, with concentrations ranging from < LOQ to 

175.0 ng/mL, from < LOQ to 496.5 ng/mL and from < LOQ to 9.5 ng/mL, respectively. 

The 99.9% upper reference limits of the control group were determined as 198.5 ng/mL 

for 5oxo-MEHP and 341.6 ng/mL for 5OH-MEHP (Table 7.5). The urinary levels of the 

metabolites significantly increased on the day of transfusion compared to the day before 

with maximum concentrations of 8440 ng/mL and 11200 ng/mL for 5oxo-MEHP and 

5OH-MEHP respectively (Table 7.6 , Figure 7.8). 

 

Table 7.5: Results of statistical evaluation of phthalate monoester levels in the control samples 

collected at the Ruhr-University Bochum (n = 356). 

Urinary phthalate 
monoester 

µH
a Min Max Upper reference limit, 

99.9%a 
Frequency of 
quantification 

 (ng/mL) (ng/mL) (ng/mL) (ng/mL) % 

5oxo-MEHP 5.9 < LOQ 175.0 198.5 80 

5OH-MEHP 12.1 < LOQ 496.5 341.6 89 

MEHP 2.5 < LOQ 9.5 60.8 57 
a Estimators for the central tendency (µH) and upper reference limit (99.9%) of the hospitalized patients (ng/mL). Estimates based on 

Huber's robust statistical method (see 6.1.8.1 for the precise meaning of µH). 
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Figure 7.8: Concentrations of urinary DEHP metabolites 5OH-MEHP (a,c) and 5oxo-MEHP (b,d) in 

samples collected from subjects receiving blood transfusions at the Ruhr-University Bochum. Group 

1: transfusion of blood stored for 14 days (a,b), Group 2: transfusion of blood stored for 28 days 

(c,d). Vertical red lines indicate the day of phlebotomy (4
th

 day) and the day of blood transfusion 

(18
th

 day (a,b) and 32
nd

 day (c,d)). 

 

Median (µH) values of the control group were in agreement with the other reference 

populations (Section 7.1.5). However, the 99.9% reference limits were higher than the 

ones calculated from the athletes’ populations. A possible reason for the higher values is 

that the concentration of the phthalate metabolites can be elevated up to 24 hours after 

transfusion [103] and the values from the day after transfusion were included in the 

control group. The concentrations on the day after transfusion in some cases were 

slightly but not significantly higher than the median values of the control group. Some 

samples from TF-2 showed higher levels of the metabolites than samples from TF-1 

(Figure 7.9) which is in agreement with data showing increasing DEHP concentration 

over time in blood stored in PVC bags [6]. 

(a) (b) 

(c) (d) 
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Table 7.6: Concentrations of phthalate monoesters in urine samples collected on the day of 

reinfusion at the Ruhr-University Bochum (n = 25). 

Subjects Concentration (ng/mL) 

5oxo-MEHP 5OH-MEHP MEHP 

Group TF-1    

1 354.7 506.0 80.0 

2 656.0 976.0 295.6 

3 76.6 131.3 42.0 

4 753.3 1306.7 458.7 

5 554.7 693.3 211.3 

6 288.8 548.0 44.4 

7 210.0 282.0 112.6 

8 362.9 617.1 228.9 

9 245.0 356.7 78.0 

10 766.0 1270.0 324.0 

11 366.9 590.0 318.5 

12 399.3 648.7 174.0 

Average 419.5 660.5 197.3 

Min 76.6 131.3 42.0 

Max 766.0 1306.7 458.7 

Group TF-2 

1 886.0 1320.0 396.0 

2 2105.0 3325.0 1550.0 

3 559.1 796.4 750.0 

4 3080.0 4433.3 2050.0 

5 894.4 1122.2 498.9 

6 126.8 213.3 100.0 

7 8440.0 11200.0 5860.0 

8 580.0 1110.0 193.5 

9 436.3 687.5 393.8 

10 200.0 288.3 118.0 

11 195.7 392.2 149.6 

12 170.0 293.0 185.0 

13 1400.0 1914.3 654.3 

Average 1467.2 2084.3 992.2 

Min 126.8 213.3 100.0 

Max 8440.0 11200.0 5860.0 
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Figure 7.9: Concentrations of urinary DEHP metabolites 5OH-MEHP (a) and 5oxo-MEHP (b) in samples 

collected from subjects receiving blood transfusions at the Ruhr-University Bochum; in the control samples 

(Control), after transfusion of blood stored for 14 days (TF-1), after transfusion of blood stored for 28 days 

(TF-2). Horizontal bars indicate the medians, boxes enclose the 25
th

 and 75
th

 percentiles, whiskers indicate the 

minimum and maximum data values excluding the outliers and circles illustrate the outside values. 

 

 

(a) 

(b) 
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Independent analysis was performed on this set of samples by the Bioanalysis Research 

Group, IMIM-Hospital del Mar (Barcelona, Spain) using a different analytical method. 

The results obtained by the two laboratories were compared by Monfort et al. showing 

high correlation between the two sets of data [237]. 

The 99.9% reference limits calculated from the control samples of this study were found 

to be 198.5 ng/mL and 341.6 ng/mL for 5oxo-MEHP and 5OH-MEHP, respectively 

(Table 7.5). The values are comparable with the reference limits established by 

Monfort et al. at 158.5 ng/mL for 5oxo-MEHP and 338.8 ng/mL for 5OH-MEHP [126]. 

The lower reference limit calculated for 5oxo-MEHP by Monfort et al. is possibly due to 

the use of a different analytical procedure or different statistical calculation. The higher 

value for 5OH-MEHP compared to the reference limit originating from the athletes’ 

population (Table 7.3) is probably due to the different origin of the samples. 

Urinary concentrations of DEHP metabolites obtained from transfused patients were in 

agreement with the results of other publications testing urine samples of plasma and 

platelet donors shortly after apheresis [103,102] and hospitalized patients receiving 

autologous blood transfusion [29]. 
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7.1.7. Longitudinal study 

To indicate homologous or autologous blood transfusion in sports drug testing, 

quantification of increased urinary concentrations of DEHP metabolites presents a 

promising approach; however, the possible intra-individual variation of the metabolite 

concentrations over time has not been well characterized. 

Intra-individual variability of urinary DEHP metabolites was tested among seven 

volunteers without special occupational exposure to DEHP during one week (n = 253) in 

order to investigate the possibility of increased urinary concentrations of the metabolites 

caused by e.g. residential, dietary or environmental exposure. 

Within this study the primary metabolite MEHP was quantified in 57% of the samples, 

the secondary metabolites 5oxo-MEHP and 5OH-MEHP could be quantified in 87% and 

96% of the specimens, with maximum concentrations for MEHP, 5oxo-MEHP and 

5OH-MEHP of 56.0 ng/mL, 77.7 ng/mL and 154.3 ng/mL, respectively (Table 7.7). The 

calculated median values for each volunteer ranged from 2.5 to 10.1 ng/mL for 

5oxo-MEHP, from 10.8 to 22.9 ng/mL for 5OH-MEHP and from 1.0 to 3.8 ng/mL for 

MEHP. 

 

Table 7.7: Results of statistical evaluation of phthalate monoester levels in the samples collected for 

the longitudinal study (n = 253). 

Urinary phthalate 
monoester 

µH
a Min Max Upper reference limit, 

99.9%a 
Frequency of 
quantification 

 (ng/mL) (ng/mL) (ng/mL) (ng/mL) % 

5oxo-MEHP 6.0 < LOQ 77.7 86.2 87 

5OH-MEHP 14.6 < LOQ 154.3 103.6 96 

MEHP 1.9 < LOQ 56.0 48.3 57 
a Estimators for the central tendency (µH) and upper reference limit (99.9%) of the longitudinal study group (ng/mL). Estimates based 

on Huber's robust statistical method (see 6.1.8.1 for the precise meaning of µH). 

 

The urinary concentrations of MEHP, 5oxo-MEHP and 5OH-MEHP corrected to specific 

gravity are plotted for each subject in Figure 7.10. 
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In accordance with earlier studies, moderate ICCs for the DEHP metabolites were 

observed, with calculated values of 0.43, 0.19 and 0.22 for MEHP, 5oxo-MEHP and 

5OH-MEHP for the concentrations corrected to specific gravity. The values indicate high 

within-subject variability and low reliability of the measurement over time. As illustrated 

in Figure 7.10, some of the studied subjects demonstrated only weak variability 

(volunteers 1-5) while others showed considerable variance (volunteers 6 and 7). 

However, no correlation between the elevated values of volunteers 6 and 7 could be 

identified (Figure 7.10 (b)). 

Generally, the median values within this study were in agreement with earlier results 

[29,244,245,123,119], although slightly higher median concentrations were observed in 

some cases [12,15,246,124]. Regarding the maximum concentrations, the values were 

consistent with the maximum concentrations found in the reference populations (Section 

7.1.5.1 and 7.1.5.2). However, some studies reported significantly higher maximum 

concentrations. In 2007, Fromme et al. demonstrated a substantial within-subject 

variability of urinary DEHP metabolites by investigating 50 healthy volunteers (Munich, 

Germany) on 8 consecutive days, with maximum concentrations for 5oxo- and 

5OH-MEHP ranging from 439.9 to 674.3 ng/mL for women and from 215.4 to 

309.3 ng/mL for men [12]. Inter-individual variability of urinary DEHP metabolites was 

also studied by Preau et al. analysing samples collected from 8 volunteers (Atlanta, 

USA) over one week. While some of the subjects demonstrated moderate intra-individual 

variability others showed substantial variance with maximum concentration for 

5OH-MEHP of 706.3 µg/g creatinine [246]. Analysis of samples from 25 men working in 

dental laboratories (Seoul, Korea), with possible occupational exposure to DEHP, 

showed a significant difference in the concentrations of urinary DEHP metabolites before 

and after work with maximum post-shift concentrations for 5oxo- and 5OH-MEHP of 

97.9 and 276.0 ng/mL [123]. Contrarily, when analysing first morning urine samples the 

level of DEHP metabolites was observed to be more reproducible over time [124,115]. 
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As described above, samples of transfused patients and reference populations were 

investigated, and the determined 99.9% upper reference limits of an athletes’ population 

(n = 468) provided values of 157.3 ng/mL for 5oxo-MEHP and 193.0 ng/mL for 

5OH-MEHP (Section 7.1.5.2). In this work, the determined concentrations of each 

subject did not exceed this upper reference limits. Although urinary concentrations of the 

metabolites showed considerable intra-individual variation, no increased values have 

been observed comparable to the concentrations measured in urine specimens collected 

after blood transfusion (Section 7.1.6). The results confirm our findings that 

determination of the urinary concentration of DEHP metabolites has a high potential to 

indicate homologous or autologous blood transfusion, and may provide supporting 

evidence to prove blood doping. Additionally, longitudinal studies would present 

valuable data that can be utilised for interpretation of abnormally high DEHP metabolite 

concentrations in athletes. 
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7.1.8. Comparison of reference populations 

Control samples were classified into 4 groups: samples collected from healthy volunteers 

at the German Sport University Cologne (Control-1), samples collected from healthy 

volunteers for the longitudinal study (Control-2), samples collected from subjects 

receiving blood transfusions at the Ruhr-University Bochum (Control-3) and the official 

doping-control urine samples (Athletes). 

All control populations tested in this study gave consistent results (Figure 7.11). Higher 

values were found only in the athletes’ samples which were considered as outliers 

(Section 7.1.5.2). Compared to the athletes’ population (Table 7.3) the slightly increased 

concentration of MEHP in the control samples (Control-1, Table 7.2) is probably caused 

by contamination of urine specimens since MEHP is also present ubiquitously in the 

environment (e.g. light induced conversion of DEHP) [10,22,190]. The basal 

concentration of the metabolites in the reference populations were on the lower side of 

the usual range reported earlier [12,15,245,246,122] probably due to the more 

homogenous nature of these populations. The mean values were in accordance with most 

of the studies [12,13,18,29,118,237,244,245,123,119,246,124,115,126], only slightly 

higher values were found in some cases [15,16,99,122,125]. Other studies showed 

considerably higher maximum urinary concentrations of DEHP metabolites 

[12,15,246,122,125] probably due to higher occupational or environmental exposure or 

the different origin of the samples. 

It is noteworthy that in most studies of DEHP exposure first morning urine samples were 

collected which are known to have slightly higher phthalate levels than spot urine 

samples collected throughout the day [246,247]. 

No correlation was observed between the concentrations of the metabolites and the 

gender or the age of the subjects. In the case of the athletes’ population no significant 

difference in the urinary DEHP metabolite levels was found for samples collected in-

competition and out-of competition or regarding the sport type. 

Since in different countries there is a trend in substituting DEHP according to its toxicity. 

This may result in lower general exposure in humans, and thus, decreasing urinary 

concentrations over time [18]. 
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Figure 7.11: Concentrations of urinary DEHP metabolites 5OH-MEHP (a) and 5oxo-MEHP (b) in athletes’ 

samples and in different control groups. 100 samples collected from healthy volunteers (Control-1), samples 

collected from healthy volunteers for the longitudinal study (Control-2), and control samples collected from 

subjects receiving blood transfusions at the Ruhr-University Bochum (Control-3). Horizontal bars indicate the 

medians, boxes enclose the 25th and 75th percentiles, whiskers indicate the minimum and maximum data values 

excluding the outliers and circles illustrate the outside values. 

(a) 

(b) 
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7.1.9. Comparison of reference populations and post transfusion samples 

Post-transfusion samples were classified into 3 groups: the samples collected at the Ruhr-

University Bochum from volunteers receiving transfusion of blood stored for 14 days 

(Group TF-1) and for 28 days (Group TF-2, Section 7.1.6.2), and the excretion urine 

samples collected in Neuss (Group TF-3, Section 7.1.6.1). 

92% of the samples from Group TF-1 showed higher levels of 5oxo-MEHP and 

5OH-MEHP than the 99.9% reference limit of 157.3 ng/mL and 193.0 ng/mL, 

respectively. Regarding TF-2, 92% of 5oxo-MEHP and all 5OH-MEHP concentrations 

were found to be higher than the reference limits. Levels of both metabolites exceeded 

the corresponding reference limits in all post-transfusion samples of Group TF-3 (Figure 

7.12). 

The findings of Monfort et al. suggest that transfusion of DEHP seems to promote an 

increase in the rate of oxidative metabolism of MEHP to secondary metabolites, or a 

rapid elimination of MEHP [237]. In contrast, in this study the ratios of the secondary 

metabolites to MEHP did not show significant difference in the post-transfusion samples 

compared to the control groups (Table 7.8). Earlier studies showed that the relative 

distribution of the metabolites excreted in urine after intravenous exposure was similar to 

the distribution after oral administration [98,103]. Due to the rapid metabolism of DEHP 

and the different elimination half-life times of the metabolites, the main factor 

influencing the ratios of the metabolites is the time between the exposure and the 

collection of the urine specimens. 

The ratios of both oxidative metabolites relative to MEHP were consistent which is in 

agreement with earlier studies showing that the kinetic profiles of these two metabolites 

are similar [103]. The data may suggest a lower ratio of 5OH-MEHP to 5oxo-MEHP in 

post-transfusion samples compared to their ratio in the control samples. This could be a 

result of different pharmacokinetic behaviour of the metabolites after parenteral 

exposure, however, due to the limited amount of data it needs to be investigated further. 
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Table 7.8: Average ratios of DEHP metabolite concentrations in different study groups. 

Sample Group Average ratio of the metabolites 

 5oxo-MEHP / MEHP 5OH-MEHP / MEHP 5OH-MEHP / 5oxoMEHP 

Athletes 5.74 15.84 3.76 

Control-1 0.90 1.84 2.04 

Control-2 4.92 10.62 2.68 

Control-3 3.01 6.16 2.28 

TF-1 2.64 4.21 1.57 

TF-2 1.58 2.47 1.56 

TF-3 9.49 18.06 1.71 
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Figure 7.12: Concentrations of urinary DEHP metabolites 5OH-MEHP (a) and 5oxo-MEHP (b) in athletes’ 

samples, in different control groups and in transfused patients. 100 samples collected from healthy volunteers 

(Control-1), samples collected from healthy volunteers for the longitudinal study (Control-2), control samples 

collected from subjects receiving blood transfusions at the Ruhr-University Bochum (Control-3), samples from 

subjects receiving transfusions after 14 days blood storage (TF-1), after 28 days blood storage (TF-2) and 

samples from transfused patients of the excretion study (TF-3). Horizontal bars indicate the medians, boxes 

enclose the 25th and 75th percentiles, whiskers indicate the minimum and maximum data values excluding the 

outliers and circles illustrate the outside values. 

(a) 

(b) 
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7.1.10. Conclusion 

A direct injection HPLC-(ESI)-MS/MS method is presented for the quantification of 

three DEHP metabolites in human urine as a marker for illicit blood transfusion in sports 

drug testing. The straightforward assay provides good sensitivity and reliability for the 

determination of phthalate monoesters using 13C-labelled internal standards without 

purification, concentration or further sample preparation steps resulting in a high-

throughput method, that ensures compatibility to existing “dilute-and-shoot” screening 

methods in doping control. Currently, the presented assay covers only DEHP. However, 

an implementation of alternatively used plasticisers in blood bags or other medical 

devices seems to be promising assuming that the substances used have comparable 

physical properties [147]. As a future prospect the applicability of the method on 

different plasticisers has to be investigated. 

Within this study it was clearly demonstrated that urinary concentration levels of the 

secondary DEHP metabolites 5OH-MEHP and 5oxo-MEHP after blood transfusion 

significantly differs from concentrations found in a control group. The reference limits 

(99.9%) obtained from the investigation of control and athletes’ specimens enables the 

identification of abnormally high concentrations of DEHP metabolites indicating 

homologous or autologous blood transfusion. Nevertheless, to prosecute blood doping 

this assay provides valuable data that can be used as supporting evidence in 

interpretation of conspicuous Biological Passport data. Based on this study, the 

abnormally high concentrations of DEHP metabolites analysed at the Laboratory for 

Doping Analysis at the Institute of Biochemistry of the German Sports University 

Cologne are reported to federations which adopted the biological passport program. 
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7.2. INTEGRATION OF DI(2-ETHYLHEXYL) PHTHALATE METABOLITES 

INTO SCREENING PROCEDURE 

The phthalate metabolites are excreted into urine mainly as conjugates following 

phase-II glucuronidation [20]. Commonly, these conjugates are enzymatically 

hydrolysed and determined with LC-MS/MS [29]. To ensure compatibility with direct 

injection screening procedures and enable the comprehensive monitoring of 

concentration levels in routine doping control samples the implementation of 

glucuronidated DEHP metabolites as target analytes into a multi-target approach was 

required. 

7.2.1. Chromatographic and mass spectrometric parameters 

The assay is based on LC-(ESI)-MS/MS using direct injection of urine specimens to 

screen for various classes of prohibited substances. Using a highly sensitive new 

generation hybrid mass spectrometer enables a combined screening of diuretics, beta2-

agonists, narcotics, stimulants and their sulfo-conjugates, plasma volume expanders, 

selective androgen receptor modulators and 5-amino-4-imidazolecarboxyamide 

ribonucleoside (AICAR). The possibility of fast polarity switching (50 ms) ensures an 

optimized ionisation, regardless of differences in the acidic or basic character of the 

molecules. Therefore, the detection of a wide range of doping agents can be 

accomplished in one analytical run. Analysing native urine specimens using direct 

injection provides the ability to screen for many different compounds and their 

metabolites without time-consuming sample preparation steps. 

The chromatographic run was optimised taking into account the chemical versatility of 

the analytes, resulting in a wide range of polarities. A gradient starting at 100% aqueous 

buffer (5 mM ammonium acetate, 0.1% glacial acetic acid, pH = 3.5) was required to 

ensure sufficient retention for hydrophilic compounds. To avoid column blockage a pre-

column was used. Over 2000 analyses were conducted with the same analytical column 

without any loss in chromatographic performance. As presented (Table 7.10) the relative 

retention times of the analytes proved to be stable with CVs of less than 2%, fulfilling 

the recommended identification criteria [248]. 
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Due to the lack of reference material the glucuronidated DEHP metabolites were 

characterised and identified using liquid chromatography coupled to 

high resolution / high accuracy mass spectrometry (Exactive OrbiTrap®, Thermo Fisher) 

(for method see Table 11.1). A post-transfusion sample was analysed containing known 

amounts of 5OH-MEHP (665 ng/mL) and 5oxo-MEHP (421 ng/mL), in which the 

glucuronidated conjugates of 5OH-MEHP and 5oxo-MEHP were identified as 

deprotonated molecular ions [M-H]ˉ at m/z 469.1708 Da and 467.1559 Da with 

calculated errors of 1.48 ppm and 0.03 ppm, respectively (Table 7.9, Figure 11.1, Figure 

11.2). 

 

Table 7.9: Results of high accuracy mass measurement of urinary phthalate monoester glucuronides. 

Urinary phthalate monoester RTa 
(min) 

Theoretical Mass 
(Da) 

Measured Mass 
(Da) 

Mass Accuracy 
(ppm) 

5oxo-MEHP-gluc 7.91 467.1559 467.1559 0.0328 

5OH-MEHP-gluc 1 7.64 469.1715 469.1708 -1.4811 

5OH-MEHP-gluc 2 7.98 469.1715 469.1710 -1.1201 

5OH-MEHP-gluc 3 8.40 469.1715 469.1716 0.2181 
a RT: retention time 

 

Additionally, the glucuronides of 5OH-MEHP and 5oxo-MEHP (5OH-MEHP-gluc and 

5oxo-MEHP-gluc) were investigated with liquid chromatography-tandem mass 

spectrometry in enhanced (linear ion trap) product ion mode (Figure 7.13). The most 

abundant product ions at m/z 291 and 293 were generated by the loss of glucuronic acid 

(-176 Da) from the conjugated molecules and consequently the ion corresponding to 

glucuronic acid was observed at m/z 175. The fragment of 5oxo-MEHP-gluc at m/z 143 

and the corresponding fragment of 5OH-MEHP-gluc at m/z 145 were identified as the 

deprotonated analogues of 5-(hydroxymethyl)heptane-2-one and 2-ethylhexane-1,5-diol 

resulting from the loss of 2-formylbenzoic acid from the unconjugated molecules. The 

fragment at m/z 113 is assigned as the product of elimination of formaldehyde (CH2O, 

-30 Da) or methanol (CH3OH, -32 Da) from the fragments at m/z 143 or 145, 

respectively, or by elimination of water (H2O, -18 Da) and carbon-dioxide (CO2, -44 Da) 

from the product ion at m/z  175 (glucuronic acid) [249]. The product ion at m/z 85 was 

characterized as a specific fragment of the glucuronic acid [249]. For screening purposes 

the ion transitions at m/z 469/293 for 5OH-MEHP-gluc and at m/z 467/291 for 

5oxo-MEHP-gluc were monitored. As depicted in Figure 7.14 and Figure 11.2, the peak 







Results and Discussion 

 102 

7.2.3. Validation results 

In order to test for assay suitability, the following parameters were determined; 

specificity, ion suppression / enhancement, intra- and inter-day precision, LOD, accuracy 

and linearity. The method was validated for 5OH-MEHP-gluc and 5oxo-MEHP-gluc 

using post-transfusion samples. 

7.2.3.1. Specificity 

In terms of specificity, no interfering signals of the matrix were detected at the expected 

retention times of the analytes except for low basal levels of phthalate metabolites which 

was also found in earlier studies [29]. 

7.2.3.2. Robustness 

Stable retention times are of the utmost importance for reliable evaluation, especially if 

native urine is injected. Analysis of QC samples over 4 weeks yielded stable retention 

times (CV <2%) for all compounds (Table 7.10). 

7.2.3.3. Ion suppression / enhancement 

There was no evidence of ion suppression or enhancement as no significant decrease or 

increase of the electrospray response was observed at the expected retention times of the 

analytes when urinary matrix was injected. 

7.2.3.4. Precision 

Intra-and inter-day precisions were determined at three concentration levels with 

coefficients of variation of less than 20% for all analytes. 

7.2.3.5. LOD 

At the required signal-to-noise ratio of 3, the LODs were estimated to be 20 and 

30 ng/mL for 5oxo-MEHP-gluc and 5OH-MEHP-gluc respectively (Table 7.10). 
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7.2.3.6. Accuracy and linearity 

Correlation of 5OH-MEHP and 5oxo-MEHP concentrations and the relative intensities 

of the corresponding 5OH-MEHP-gluc and 5oxo-MEHP-gluc were determined to 

demonstrate the suitability of the method for semi-quantitative purposes. The 

unconjugated phthalate concentrations of the samples were measured according to the 

method described earlier (Section 6.1.2 and 6.1.3). The relative intensities of phthalate 

glucuronides were highly correlated to the corresponding phthalate concentrations 

(r = 0.993 for 5oxo-MEHP, r = 0.990 for 5OH-MEHP) suggesting that the method 

provides reliable data to screen for abnormally high concentrations of DEHP metabolites 

indicating homologous or autologous blood transfusion (Figure 7.15). 
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Figure 7.15: Correlation of 5OH-MEHP (a) and 5oxo-MEHP (b) concentrations and the relative 

intensities of the corresponding glucuronide conjugates. 

 

(a) 

(b) 
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Table 7.10: Summary of screening validation results. 

Compound LOD Precision Concentration Intra-day precision Inter-day precision 

RRTa (n=6) (ng/mL) CV (%) (n=6/6/6) CV (%) (n=18/18/18) 

  (ng/mL) CV (%) QClow QCmiddle QChigh QClow QCmiddle QChigh QClow QCmiddle QChigh 

5OH-MEHP-gluc 30 1.36 100 550 1010 10.88 7.85 7.33 10.09 5.51 6.35 

5oxo-MEHP-gluc 20 1.10 100 550 1010 10.89 8.91 7.45 10.91 6.57 4.65 
a RRT: relative retention time 
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7.2.4. Routine samples 

Approximately 13,000 samples were tested for the glucuronide conjugates of DEHP 

metabolites over a year period. From these samples, 160 samples were tested in order to 

quantify the unconjugated metabolites. In 44 cases the concentrations exceeded the 

reference limits calculated from the athletes’ population and the results were reported to 

the federations. 

From the 44 cases 13 samples originated from athletes doing indoor sports and 31 from 

athletes exercising outdoor; 27 were taken in-competition and 17 out-of-competition. 15 

were cyclists’ samples, 12 were taken in-competition (IC) and 3 were taken 

out-of-competition (OOC). In addition, there were adverse analytical findings for 

hydroxyethyl starch in 3 of the cyclists’ samples. 

It is noteworthy, that samples from certain countries outside of the European Union 

showed slightly higher mean urinary DEHP concentrations. 
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7.2.5. Conclusion 

The ongoing increase of the number of prohibited compounds and samples in sports drug 

testing forces doping-control laboratories to develop multi-target assays that combine 

high-throughput, simplified sample preparation and a reliable detection for different 

classes of compounds. Glucuronidated DEHP metabolites were integrated into a 

comprehensive, simple and robust method based on LC-(ESI)-MS/MS enabling the 

monitoring of concentrations far below the required limits after direct injection of urine 

specimens. Using the presented method, screening for such markers in each doping 

control sample is straightforward and provides a valuable tool in the fight against 

blood doping. 
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8. SUMMARY 

Methods of blood doping such as autologous and homologous blood transfusions are 

some of the most challenging doping practices in competitive sports. Whereas 

homologous blood transfusion is detectable via minor blood antigens, the detection of 

autologous blood transfusion is still not feasible. 

A promising approach to indicate homologous or autologous blood transfusion is the 

quantification of increased urinary levels of di(2-ethylhexyl) phthalate (DEHP) 

metabolites found after blood transfusion. 

The commonly used plasticiser for flexible PVC products, such as blood bags, is DEHP 

which is known to diffuse into the stored blood. Therefore, a straightforward, rapid and 

reliable assay was developed for the quantification of the main metabolites 

mono(2-ethyl-5-oxohexyl) phthalate, mono(2-ethyl-5-hydroxyhexyl) phthalate and 

mono(2-ethylhexyl) phthalate that can easily be implemented into existing multi-target 

methods used for sports drug testing.  

Quantification of the DEHP metabolites was accomplished after enzymatic hydrolysis of 

urinary glucuronide conjugates and direct injection using isotope-dilution liquid-

chromatography / tandem mass spectrometry. 

The method was fully validated for quantitative purposes considering the following 

parameters; specificity, linearity (1-250 ng/mL), inter- (2.4-4.3%) and intra-day precision 

(0.7-6.1%), accuracy (85-105%), limit of detection (0.2-0.3 ng/mL), limit of 

quantification (1 ng/mL), stability and ion suppression effects. 

Urinary DEHP metabolites were measured in control groups without special exposure to 

DEHP (n = 100 from Cologne and n = 356 from Bochum), in athletes (n = 468) being 

subject to routine doping control and in hospitalised patients receiving blood transfusions 

(n = 10 from Neuss and n = 25 from Bochum). This investigation demonstrates that 

significantly increased levels of secondary DEHP metabolites were found in urine 

samples collected after blood transfusion. It is emphasised that this assay presents 

additional data in the interpretation of the Athlete Biological Passport and it is not 

intended to be used separately as a proof of blood doping. 

To investigate the possibility of increased urinary concentrations of the metabolites 

caused by e.g. residential, dietary or environmental exposure the intra-individual 

variability of urinary DEHP metabolites among seven volunteers without special 
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occupational exposure to DEHP during one week (n = 253) was accomplished. Although 

urinary concentrations of DEHP metabolites showed considerable intra-individual 

variation, no increased values have been observed comparable to the concentrations 

measured in urine specimens collected after blood transfusion. 

Additionally, the conjugates of secondary DEHP metabolites were integrated into an 

existing multi-target screening procedure based on liquid chromatography / electrospray 

ionisation tandem mass spectrometry (LC-(ESI)-MS/MS). 

The assay was fully validated for qualitative purposes considering the following 

parameters; specificity, intra- (3.2-16.6%) and inter-day precision (0.4-19.9%) at low, 

medium and high concentration, robustness, limit of detection (20 and 30 ng/mL for 

5oxo-MEHP-gluc and 5OH-MEHP-gluc respectively) and ion suppression/enhancement 

effects. 

Analysis of post-transfusion and routine doping control samples demonstrated the 

applicability of the method for sports drug testing. This straightforward and reliable 

approach accomplishes the combination of different screening procedures resulting in a 

high-throughput method that requires only a small volume of urine sample in the µl 

range and increases the efficiency of the laboratories’ daily work. 
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9. ÖSSZEFOGLALÁS 

Az autológ és a homológ vértranszfúzió kimutatása a doppinganalitika legnagyobb 

kihívást jelentő feladatai közé tartozik. Míg a homológ vértranszfúzió kimutatása 2004 

óta lehetséges minor vér antigéneken keresztül, az autológ transzfúzió kimutatása 

jelenleg nem lehetséges. 

Egy ígéretesnek tűnő módszer a homológ és autológ vértranszfúzió kimutatására a 

di(2-ethil-hexil)ftalát (DEHP) metabolitok megemelkedett koncentrációjának vizeletből 

történő meghatározása. 

A módszer alapja, hogy a vér tárolására és szállítására használt PVC zsákok ftalát 

lágyítókat tartalmaznak, amelyek idővel a vérbe diffundálnak. Vértranszfúzió után ezen 

lágyító molekulák metabolitjai meghatározhatóak a vizeletben, lehetővé téve a 

vértranszfúzió kimutatását. A legáltalánosabban alkalmazott lágyító a DEHP, amelynek 

metabolitjai – mono(2-etil-hexil)ftalát (MEHP), mono(2-etil-5-hidroxi-hexil)ftalát 

(5OH-MEHP) és mono(2-etil-5-oxo-hexil)ftalát (5oxo-MEHP) – nagyrészt glükuronid-

konjugátumként ürülnek a vizelettel. 

Munkám során kifejlesztettem és validáltam egy megbízható és gyors analitikai módszert 

a fent említett DEHP metabolitok (MEHP, 5oxo-MEHP és 5OH-MEHP) vizeletből 

történő meghatározására. A komponensek meghatározását a glükuronid-konjugátumok 

enzimatikus hidrolízisét követő direkt injektálással és LC-MS/MS detektálással 

végeztem. 

A DEHP metabolitok koncentrációját vizsgáltam sportolóktól származó rutin 

doppinganalitikai mintákban (n = 468), különböző kontrollcsoportokban (n = 100, Köln 

és n = 356, Bochum), valamint vértranszfúzión átesett betegektől származó 

vizeletmintákban (n = 10, Neuss and n = 25, Bochum). A vértranszfúziót követő 24 

órában gyűjtött vizelet mintákban lényegesen magasabb oxidatív DEHP metabolit 

koncentrációkat mértem a kontrollcsoportokhoz képest. A módszer kiegészítő adatokat 

nyújt a sportolók biológiai útleveléhez (Athlete Biological Passport), így egyéb 

rendellenes vérparaméterekkel együtt (pl.: hematokrit, hemoglobin, retikulocita szám, 

vörösvértest szám stb.) a vérdopping megerősítő bizonyítékául szolgál. 

A DEHP metabolit koncentrációk lakóhelyi, étrendi vagy környezeti kitettség hatására 

esetlegesen bekövetkező egyéni időbeli variabilitását hét önkéntestől egy héten keresztül 

gyűjtött vizeletminták (n = 253) elemzésével határoztam meg. Bár az eredmények 
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jelentős egyéni változékonyságot mutatnak, a vértranszfúzió után gyűjtött mintákban 

mért koncentrációkat megközelítő értéket egy mintában sem mértem. Továbbá, a 

longitudinális vizsgálatok hasznos információval szolgálnak az emelkedett DEHP 

metabolit koncentrációk értelmezéséhez. 

Az oxidatív DEHP metabolitok glükuronid-konjugátumait beépítettem egy LC-MS/MS 

szűrőmódszerbe, amely jelenleg használatban van számos tiltott szer együttes 

vizsgálatára. A módszert kvalitatív és szemi-kvantitatív szempontok szerint validáltam az 

általam vizsgált komponensekre. Az eljárás doppinganalitikai alkalmasságát igazoltam 

vértranszfúzión átesett önkéntesektől, valamint hozzávetőleg 13000 sportolótól származó 

vizeletminta elemzésével. 
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11. APPENDICES 

11.1.TABLES 

Table 11.1: LC-MS method parameters for high accuracy mass spectrometry measurement of 

phthalate glucuronides. 

 

Chromatographic Parameters 

HPLC system Thermo Accela UPLC system 

HPLC column Hypersil Gold, 50 mm x 2.1 m, 1.9 µm 

Mobile Phase A: 0.1% formic acid B: acetonitrile 

Gradient 0 min 100% A 0% B 

 2 min 100% A 0% B 

 8 min 0% A 100% B 

 9 min 0% A 100% B 

 2.5 min post-run equilibration time 

Flow rate 0.25 mL/min   

Injection Volume 10 µL   

Mass spectrometric parameters 

Mass spectrometer 
Thermo Fisher Exactive OrbiTrap® with heated electrospray 
ionisation (HESI-I-probe) 

Ionisation ESI in negative ion mode (50 msec) 

Scan Mode full scan 

Resolution 30000 FWHM 

Capillary Temperature 275°C 

Sheat Gas N2, 40 psi 

Auxiliary Gas N2, 4 psi 

Ionspray Voltage -3500 V 
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11.2.FIGURES 
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Figure 11.1: Chromatogram of 5oxo-MEHP-gluc (see method in Table 11.1). 
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Figure 11.2: Chromatogram of 5OH-MEHP-gluc indicating different locations of the glucuronic 

moiety (see method in Table 11.1). 
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