
�

����������	

����������
�����������������

�����������������
������������������������������

�

Ph.D. Thesis

������������

Research Supervisors:

István Forgács, Ph.D.

László Zsolt Varga, Ph.D.

Eötvös Loránd University (ELTE), Faculty of Informatics (IK)

Doctoral School of Informatics (András Benczúr, D.Sc.)

Foundations and Methodology of Informatics (János Demetrovics, D.Sc.)

Computer and Automation Research Institute

Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/162468165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

Herewith I confirm that all of the research described in this dissertation is my own original

work and expressed in my own words. Any use made within it of works of other authors in

any form, e.g., ideas, figures, text, tables, are properly indicated through the application of

citations and references. I also declare that no part of the dissertation has been submitted

for any other degree − either from the Eötvös Loránd University or another institution.

��������	�
�

��
���������������������

� �

Acknowledgements

First of all, I wish to thank my supervisor István Forgács for introducing me to the science

of software testing. Without his constant support and guidance this dissertation would have

never been completed. I am also grateful to László Zsolt Varga for his support and

suggestions.

I greatly acknowledge the contribution of the Computer and Automation Research

Institute of the Hungarian Academy of Sciences (MTA SZTAKI), where I performed the

research presented.

Last but not least, I am very thankful for the encouragement of my family.

���������	
�������

Contents

Introduction ... 1

1.1 Program Slicing ... 2

1.2 Program Slicing in Practice ... 5

1.3 Precision .. 6

1.4 Scalability .. 9

1.5 System Issues ... 10

1.6 Motivation .. 11

1.7 Overview .. 12

1.8 Accomplishments .. 13

Slicing via Token Propagation .. 14

2.1 Definitions ... 15

2.2 Forward DataCflow Slicing .. 22

2.3 Forward Slicing ... 40

2.4 Backward Slicing ... 43

2.5 Local Variables, Parameter Passing .. 45

2.6 Related Work ... 47

2.7 Conclusions .. 50

Evaluation ... 51

3.1 Prototype Implementation ... 52

3.2 Subject Programs ... 57

3.3 Empirical Results ... 59

3.4 Comparison with Other Works .. 62

3.5 Conclusions .. 63

Understanding Program Slices ... 64

4.1 The ReasonCwhy Algorithm .. 65

4.2 Related Work ... 72

4.3 Conclusions .. 73

Further Enhancements, Applications .. 74

5.1 Reducing Token Storage via Postorder Processing ... 75

5.2 Reducing Propagations via GREFCGMODCKILL ... 76

5.3 Reuse of Summary Edges .. 78

5.4 OnCdemand Computation of Flow Edges .. 79

5.5 OnCdemand Construction of the DuCgraph .. 79

5.6 Dicing, Chopping ... 80

5.7 Conclusions .. 81

Summary ... 83

6.1 New Scientific Results ... 84

6.2 Further Research Directions .. 85

Abbreviations .. 87

Appendix: Author’s Publications ... 88

Bibliography ... 92

Abstract ... 99

Kivonat ... 100

List of Figures

Fig. 1. The slice of a program fragment wrt. slicing criterion��=(9, {����}) 3

Fig. 2. ContextCinsensitive and contextCsensitive ��� ��
 static program slices of a

program fragment with respect to slicing criterion C = (3, {!}) 7

Fig. 3. Example program graph .. 25

Fig. 4. PseudoCcode of the forward slicing algorithm .. 27

Fig. 5. XML fragment of a CFG, a slicing criterion, and the slice 55

Fig. 6. Slice sizes and computation times (full slicing) .. 61

Fig. 7. Tokens propagated during data flow slicing ... 69

List of Tables

Table 1. Details of the investigated systems... 59

Table 2. Execution results of the slicing algorithm on 1000 random slicing criteria 60

Chapter 1

Introduction

The key concepts of dataCflow analysis were developed in the late 1960s, which technique

had become an important means of program analysis. During dataCflow analysis

information is gathered about the computer code how instructions affect each other through

variable values calculated at various program points. DataCflow analysis is often used by

compilers when optimizing computer programs (loopCinvariant code motion, common

subexpression elimination, simplified arithmetic expression evaluation). Over the past

decades, however, the majority of new applications have focused on software quality.

The concept of program slicing proposed by Mark Weiser in 1979 extends dataCflow

analysis by accommodating ��	���
�
���	
�	��� (effects of dataCflow on control).

Program slicing is a technique for simplifying programs by focusing on selected aspects of

semantics. The original idea comes from the observation that programmers are often

interested in only a portion of the program’s code. The process of slicing “deletes” those

parts of the program that can be determined to have no effect upon the semantics of

interest. Thus program slices are typically much smaller than the whole program which can

be more easily understood or maintained.

Program slicing was originally motivated to aid debugging activities. In the past three

decades, various notions of program slices have been proposed as well as a number of

methods to compute them. By now program slicing has numerous applications in software

engineering, including software testing and maintenance, program comprehension, reC and

reverse engineering, and program integration.

Slicing industrialCscale programs raises new requirements that a practical slicer must

take into account. This chapter investigates the applicability of existing methods to largeC

size legacy COBOL codes.

Section 1.1 introduces the basic concept of program slicing as well as its main forms

and applications. Previous implementations are overviewed in Section 1.2. Sections 1.3,

1.4, and 1.5 discuss the barriers of application of existing techniques on industrialCscale

COBOL codes. Section 1.6 presents the motivation of this work. Section 1.7 overviews the

INTRODUCTION� 2

structure of the remainder of the thesis. The main contributions are introduced in Section

1.8.

1.1 Program Slicing

The concept of ���������
"�"	� was first introduced by Mark Weiser in his Ph.D. thesis in

1979. His work was also presented at a conference [Weiser 1981] and in a software

engineering journal in 1984 [Weiser 1984]. The rapid admission of his idea reflected the

growing demand for such analysis and its high potential for application in different

software engineering areas. The motivation for slicing derives from the observation that

large computer programs are more easily understood or maintained when broken into

smaller pieces. Unlike designCtime decomposition techniques, slicing is applied to

programs after they are written and allows slicing to be performed automatically on the

actual program text.

Weiser summarized program slicing as follows:

#��������
"�"	��"���������
����
�����!���"�	��
��������������������������

��������"	�� ����� ��������$� %����"	�� ����� �� ������� ��� �� �������&�� ����'"����

�
"�"	�� ��
����� ����� �������� ��� �� �"	"��
� ����� �"��� ��"

� ���
����� �����

����'"��$�������
���
������������

�
���(�
"��(�� "���	� "	
���	
�	����������

�����	���
� ��� ��"����

�� �������	�� ������"�"	�
��������� "��"	� ����
���"	����

��������"�"�
���������������'"��$

Mark Weiser [1981]

Finding such “ideal slices” however proved to be unsolvable in general: there cannot be

a slicing method that can guarantee the minimality of the slices or behaviour equivalence,

respectively. Syntactic restriction, namely, the slice is an independent program that can be

compiled and run is also relaxed in some techniques later. Weiser therefore proposed a

more practical definition for slicing based on
��� and ��	���
��
� [Weiser 84] to enable

exact slicing algorithms.

The motivation of program slicing was to answer the question: “Which are the

statements that (potentially) ������ the variable values computed at some program point?”

Weiser presented experimental evidence that programmers already use slicing during

debugging − mentally. Having picked a statement and a variable (or a set of variables) at

INTRODUCTION� 3

which the error becomes visible, the program slice can show the statements that may

participate in the computation of the erroneous value. The selected program point) and the

set of variables of interest * are called a �
"�"	����"���"�	, denoted as �=(), *). A slice is

typically much smaller than the whole program, thus the bug can be found easier and

faster.

For illustration, consider the following program fragment shown in Figure 1 and the

related program slice with respect to slicing criterion ��= (9, {fact}) (statement in line 9

and variable fact). The slice contains statements in lines 2, 4, and 6, in addition to the

print statement of the slicing criterion. The assignment statement in line 6 has
"���� effect

on the variable value printed in line 9 (
����
���	
�	��), furthermore, the value assigned

in line 6 is
���	
�	� on the initialization statement in line 2. The outcome of the

conditional statement in line 4 determines the execution of statement 6 (��	���
�

���	
�	��), therefore it is also included in the slice. Other statements have no effect on

the slicing criterion. The defect, which is due to the erroneous initialization of variable

fact, can be found easier, as the slice contains the relevant statements only.

#�������������	�+�

...

1 var sum := 0;

2 var fact := 0;

3 var qsum := 0;

4 for (var i := 1; i <= 10; i++)

 {

5 sum := sum + i;

6 fact := fact * i;

7 qsum := qsum + i * i;

 }

8 print(sum);

9 print(fact);

10 print(qsum);

...

#��������
"��+�

2 var fact := 0;

4 for(var i := 1; i <= 10; i++)

 {

6 fact := fact * i;

 }

9 print(fact);

���������� ���������
���
�������
��������������������������������!"#$�%����&'�

INTRODUCTION� 4

Weiser’s method has been “classified” later as a ���� ��
� ����"� program slicing

technique. ���� ��
, because in constructing the slice, statements affecting the selected

statement are traced backwards (in the opposite direction of the program execution); and

����"�, because the analysis is made without having specified any particular program

execution (all possible program executions are taken into account). Forward static program

slicing determines the part of the program that is directly or indirectly affected by the

selected statement.

Since Weiser’s method, other forms of program slicing have been evolved such as

dynamic slicing [Korel and Laski 1988; Agrawal and Horgan 1990], quasiCstatic slicing

[Venkatesh 1991], conditioned slicing [Canfora et al. 1998], amorphous slicing [Harman

and Danicic 1997], hybrid slicing [Gupta et al. 1997], and relevant slicing [Gyimóthy et al.

1999].

While a static slice represents the original program’s behaviour for any of the program

inputs with respect to the slicing criterion, a dynamic slice discovers effects along a given

execution trace only. ��	��"�� �
"��� can therefore be much “thinner” than their static

counterparts. ,���"-����"�� �
"�"	� achieves smaller slices by fixing some of the input

variables while others may vary. ��	
"�"�	�
� �
"�"	� is a generalization of quasiCstatic

slicing in the sense that it enables specifying any set of input variables by a first order logic

formula (used by a symbolic executor). .����������
"�"	� removes the limitation related

to traditional syntax preserving slicing (i.e. simplification via statement deletion), so it can

also obtain smaller, and sometimes more meaningful slices, retaining the semantic property

of the original program. ����"
��
"�"	� integrates dynamic information into static slicing to

more accurately estimate the potential paths taken by the program. /�
�'�	���
"�"	� extends

dynamic slicing by including potentially affecting statements as well, which actually did

not affect the variable of interest but could have affected it had they been evaluated

differently.

Weiser presented two main applications of slicing. One is to aid program debugging and

maintenance; the other is to derive slicingCbased program metrics about structuring of the

program (��'�����, �'��
��, �
�����"	�, ����

�
"��, �"���	���). Since then, program

slicing has found its applications in other areas of software engineering as well, including

software testing [Gupta et al. 1992; Harman and Danicic 1995; Binkley 1997; Binkley

1998; Forgács et al. 1998; Hierons et al. 1999; Hierons et al. 2002], software maintenance

[Gallagher et al. 1991; Gallagher 1992; Canfora et al. 1994a; Cimitile et al. 1996], program

INTRODUCTION� 5

comprehension [De Lucia et al. 1996; Harman et al. 2001], reverse engineering [Canfora et

al. 1994b], and program integration [Horwitz et al. 1989; Binkley et al. 1995].

Static program slicing can support software maintenance and testing in determining that

the modification of a component does not interfere with unmodified components, in

dividing the program into smaller parts for test case creation, and in focusing regression

testing effort on the part of the code that is really affected by a change. Dynamic slicing

can be especially useful in debugging by narrowing the focus on the statements potentially

containing the bug. Conditioned and amorphous slicing can be an efficient means of

program comprehension, reverse engineering, program integration, function isolation, and

reusable component extraction.

Among the supporters of the papers published on this topic we can find several leading

IT companies such as AT&T, DEC, Hewlett Packard, IBM, Intel, Xerox, as well as

military related companies and organizations such as Lockheed Martin, Air Force Office of

Scientific Research, Defense Advanced Research Projects Agency, Office of Naval

Research, and U.S. Army Research Office. It shows that program slicing is an important

means of aiding development and maintenance of highly reliable, safetyCcritical systems.

This thesis concerns with the fundamental issues related to static program slicing; other

forms of program slicing and particular applications are not investigated in details.

1.2 Program Slicing in Practice

In the past decades there has been a substantial research effort devoted to program slicing,

resulting in over five hundred papers on this topic [Xu et al. 2005]. A number of static

slicers have been implemented for C programs such as Aristotle [Harrold and Rothermel

1997], CANTO [Antoniol et al. 1997], ChopShop [Jackson and Rollins 1994a],

CodeSurfer [CodeSurfer], Ghinsu [Livadas and Alden 1993], Sprite [Atkinson and

Griswold 1996], Spyder [Agrawal et al. 1993], Surgeon’s Assistant [Gallagher 1990],

Unravel [Lyle and Wallace 1997], ValSoft [Krinke and Snelting 1998]. Furthermore, there

are slicers for Java [Indus], FORTRAN (FOCUS [Lyle 1984]), Pascal (Osaka [Nishimatsu

et al. 1999]), and Oberon (Steindl’s slicer [1998])1. To our knowledge, only CodeSurfer

has become a commercial product.

1 A more detailed description and evaluation of these tools can be found in: [Hoffner et al. 1995; Krinke

2003].

INTRODUCTION� 6

Why program slicing tools are not widely used today? William Griswold pointed out

some of the possible reasons in his talk: 0��"	�� %
"�"	�� #����"��
+� ���� 1"	�
� 0"
�

[Griswold 2001]:

�� precise algorithms are too expensive in practice,

�� algorithms that lack scalability are impractical for realCworld programs,

�� system issues play a considerable role in the performance,

�� slices without explanation are often too difficult to understand.

The last point is discussed in Chapter 4 in details; the first three problems are

investigated in the following sections.

1.3 Precision

Imprecision in the computed slices may derive from different sources. Some of them are

not avoidable, as they relate to problems that cannot be solved in general. One of such a

problem is the undecidability of whether a statically selected program path (a potential

execution trace) is ����"�
� or not, i.e., there exists a program input that forces the actual

execution of that path. A solution to this problem would require solving the system of

conditions represented by predicates along the path, which can be arbitrary in general. The

same problem arises in domain testing, where only heuristics can be used to find input

inside predicate borders [Forgács and Hajnal 1998a].

Another problem is with the use of pointers (pointers to data, function pointers,

references in objectCoriented programming, etc.) that take their particular values at runC

time, since statically it is not possible to determine which data they actually point to. Static

program slicing techniques, hence, typically use safe approximations, heuristics to narrow

the set of potential pointer values as much as possible, or apply a conservative approach.

Unlike these problems, it can be decided whether a program path is ���
"2��
�. The

problem derives from the most fundamental program structuring principle to extract

commonly used computations: the decomposition of the program into procedures

(subroutines, functions, methods). Procedures can be called from different sites, but when

the execution of a procedure body finishes, the program execution must continue after the

site of the procedure’s most recent call. In other words, realizable paths correctly nest call

and return sites. Omitting the calling context during the analysis, i.e., returning to all

INTRODUCTION� 7

calling procedures at procedure exits, however, increases the number of paths to be

investigated by involving those ones that cannot occur during real program execution. In

this way, a large amount of unnecessary statements may be included in the slice due to

“false” effects along nonCrealizable paths which reduces the usefulness of the resulting

slice.

In Figure 2, a program fragment and the related contextC"	sensitive and contextC

sensitive forward static program slices are shown with respect to slicing criterion ��= (3,

{x}). The assignment statement in line 3 affects the increment statement in line 8 (through

the call in line 4), which affects the print statement in line 5 after return. If the callingC

context is ignored, the effect of the increment statement in line 8 is analyzed in both

callers: main and B, therefore the print statement in line 12 will also be included in the

resulting slice. It is incorrect, since the effect of assignment in line 3 is "	'�
"
���
 in line

10 prior to line 12 along all realizable paths.

There are studies [Agrawal and Guo 2001; Krinke 2002; Binkley and Harman 2003;

Krinke 2006] investigating whether considering the callingCcontext has significant affect

on the slice sizes. These studies showed that inaccurate slices due to following nonC

realizable paths can be several times larger than the ones that consider realizable program

Program fragment:

1 var x;

2 proc main () {

3 x := 1;

4 call A();

5 print(x);

6 call B();

 }

7 proc A () {

8 x++;

 }

9 proc B () {

10 x := 0;

11 call A ();

12 print(x);

 }

ContextC"	��	�"�"'� slice:

1 var x;

2 proc main () {

3 x := 1;

4 call A();

5 print(x);

6 call B();

 }

7 proc A () {

8 x++;

 }

9 proc B () {

11 call A ();

12 print(x);

 }

ContextC��	�"�"'� slice:

1 var x;

2 proc main () {

3 x := 1;

4 call A();

5 print(x);

 }

7 proc A () {

8 x++;

 }

�

�����(���)����*�+���������,�����������*�+�������,�����	��
��������
���������������
���
�������

����������� ����
�������������������������)�!�"-$�%�&'�

INTRODUCTION� 8

paths. What is more, the computation of these extra large slices may take more time that

makes imprecise solutions impractical for slicing largeCsize programs.

There are two fundamental approaches to accounting for the callingCcontext problem.

One is based on explicitly maintaining the call stack [Atkinson and Griswold 1996;

Agrawal and Guo 2001; Krinke 2002]. The other is based on a twoCpass traversal over the

�������
���	
�	��������� (SDGs) [Horwitz et al. 1990; Reps et al. 1994].

The first approach however may cause the reCanalysis of procedures several times for

different call stacks; moreover, it suffers combinatorial explosion in the case of recursion

due to the infinite number of possible call stacks. (The limitation of the considered context

depth results in reduced precision [Krinke 2002].) Experimental investigations showed that

full precision (unbounded context depth) is unaffordable even at slicing mediumCsize

applications; therefore the approach is impractical for slicing industrialCscale programs.

The other approach is based on SDGs. A program dependence graph (PDG) [Ottenstein

and Ottenstein 1984; Ferrante et al. 1987] is a directed graph in which nodes represent

statements, and there are two types of edges between nodes:
��� �
� and ��	���
. Data

flow edges represent
���� dependences, whereas control edges represent ��	���
�

���	
�	��� between statements. An SDG is a collection of PDGs assigned to the

procedures of a program. Parameter passing between procedures is represented by a

collection of vertices associated with each call site corresponding to in and out actual

parameters, and a collection of formalCin and formalCout vertices corresponding to the

formal parameters at each procedure entry. Global variables are treated as “extra”

parameters. Call vertices are connected to the entry vertex of the called procedure’s PDG

by a ��

� �
��, actualCin vertices are connected to their matching formalCin vertices via

���������-"	� �
���, and actualCout vertices are connected to their matching formalCout

vertices via ���������-�����
���. Summary edges represent the transitive dependences due

to procedure calls that are computed in advance for each procedure (between formal in and

out parameters) and applied at call sites (edges are added between the corresponding actual

in and out parameters).

Using SDGs, precise backward static slices (up to realizable paths) can be calculated by

performing graph reachability in two passes, where each pass traverses only certain kinds

of edges. In Pass 1, the traversal starts from the node of the slicing criterion and goes

backwards along data flow edges, control edges, call edges, summary edges, and

parameterCin edges, but not along parameterCout edges. Pass 2 starts from all actualCout

vertices reached in Pass 1, and goes backwards along data flow edges, control edges,

INTRODUCTION� 9

summary edges, and parameterCout edges, but not along call or parameterCin edges. The

twoCpass traversal of the graph traverses all but only the realizable paths.

The slice computation of the SDGCbased approach is efficient. It is due to summary

edges computed in advance by which we can move across calls without descending into

the called procedure. The method is often considered as the quasiCstandard technique for

precise interprocedural slicing. However, as we will see in the next section, the cost of

preprocessing requirements of the approach may be prohibitive in the case of industrialC

scale programs.

1.4 Scalability

%��
��"
"�� of the slicing technique to be applied is crucial in the case of realCworld

programs. A slicing method is considered to be scalable if the slice computation time is

more or less proportional with the size of the resulting slice − rather than the size of the

program. As it is described earlier, when the call stack is recorded explicitly, the

computation time may become exponential because of the infinite number of possible call

stacks. Therefore the slice computation time does not merely depend on the slice size.

Using SDGs, the disproportion is due to the preprocessing requirements of the approach,

i.e., SDG construction, summary edge computation. (In some papers, the cost of the slice

computation is considered to be the cost of the SDG traversal, which is incorrect, since

they omit SDG construction cost.)

The construction of the SDG can be very expensive. Atkinson and Griswold [1996]

reported that the application of SDGs for larger C programs may require prohibitive space

and time. In the case of COBOL programs, we had similar experiences: the construction of

the SDG may take several hours (occasionally, even days) for largeCsize programs. It is

because to build the SDG we need to perform exhaustive data flow analysis in every

procedure to discover all data dependences between statements. It is independent of what

data dependences will be used at determining the program slice.

Because of the large number of global variables, which is common in COBOL

programs, we need to add extra parameter vertices (in and out) at each procedure entry

node and call site, and we have to compute their dependences as well (formalCin parameter

vertices and actual parameterCout parameter vertices are considered as assignments).

The computation of all the summary edges can be very expensive. Even at using the

improved summary edge computation technique proposed by Reps et al. [1994] − which is

INTRODUCTION� 10

currently the most efficient known global technique, the cost can be very high because of

the potentially large number of summary edges. It can reach several hundred millions in

realCworld systems.

These factors make slice computation time of the SDGCbased approach dependent on

the program size rather than the size of the slice. If we wish to compute only a few slices,

or the resulting slices are small, respectively, the cost of preprocessing dominates the cost

of slice computation. The situation is even worse when the subject program changes

frequently (in interactive contexts such as debugging), since we need to reconstruct the

SDG after every program change.

Scalability, instead, would require a
���	
-
�"'�	 approach that computes only the

necessary information related to the actual program slice − at the time when needed. The

only demandCdriven summary edge computation technique was published by Orso et al.

[2001], which is however not applicable to programs containing recursive procedures.

1.5 System Issues

Programs written in different programming languages pose different challenges to static

source code analysis. Program slicing algorithms are based on some graph representation

of the program (system dependence graphs, control flow graphs), therefore the proper

construction of the given graph representation is crucial, which also influences the

precision of the resulting slice. Variable types, control structures, and the complexity of the

instruction set can significantly differ in different programming languages. For example,

the use of pointers in the C programming language or polymorphism in C++ make hard to

figure out statically the exact memory location(s) that the variables actually point to.

Traditional control structures such as conditional branches, loops, and procedure calls are

often not sufficient to represent control structures in programming languages with explicit

concurrency (like Ada or Java). The set of supported operations can be simple in some

programming language (e.g., in C), and they can be complex in others (e.g., in COBOL).

In order to have an efficient slicing tool, we need to consider programming language

specific characteristics, and choose the appropriate representation.

COBOL differs from “modern” programming languages in many aspects. One of the

main differences was identified as the massive use of global variables. Our experiments

showed that SDGs are not adequate for representing COBOL programs because of the

large number of global variables. SDGs require introducing extra parameter vertices (in

INTRODUCTION� 11

and out) at each procedure entry and call site for each global variable. Thus, the memory

requirements can be very high in the case of realCworld programs. Moreover, because of

COBOL’s complex instructions, for each statement that assigns values to more (even

several hundreds of variables at once, e.g., MOVE statement) we have to create multiple

nodes in the SDG in such a way that each contains at most one definition (SDGCbased

slicing uses graph reachability). Control flow graphs (CFGs) are not sensitive to these

characteristics, where basically each node represents one statement, and one node can

contain assignments to arbitrary number of variables − the connection between inCnode

variable references and assignments can be specified as "	�
��	��� separately. For

comparison, the control flow graph representation constructed for one of the investigated

program systems (Chapter 3) contained a total of 210,965 nodes, whereas SDG would have

required introducing more than 85 million extra parameter vertices to represent parameter

passing via global variables.

Program slicing research has been mainly focused on developing general algorithms and

most of the experiments concerned with analyzing source codes written in the C

programming language. Other programming languages have been addressed only to some

extent. This work was motivated by COBOL that has not yet been or only partly addressed

by previous papers on program slicing.

Unique control structures such as indirect calls, STOP RUN, GOBACK, PERFORM SUB1

THRU SUBNn as well as data elements such as REDEFINES, RENAMES, and MOVE make

the construction of the CFGs for COBOL nonCtrivial [Field and Ramalingam 1999;

Deursen and Moonen 1999]. This thesis does not indent to describe how to construct CFGs

for COBOL, which would require a much longer discussion. Instead, we focus on a novel

slicing algorithm presented in the next chapter that operates over CFGs. We note that the

application of the method is however not limited to COBOL, but allows a wider

application to a larger class of programming languages.

1.6 Motivation

Rethinking of previous techniques and the development of a novel program slicing method

were motivated by the difficulties raised at analyzing legacy COBOL systems. Some years

ago, before the year of millennium, we proposed a theoretic solution to solve the “bomb of

millennium” [Forgács and Hajnal 1998b]. At that time we faced the fact that what a large

amount of COBOL codes are actively used − estimated over 240 billion lines of code, in

INTRODUCTION� 12

almost every major industry from banking to manufacturing. Program slicing could had

been an efficient means in helping localizing potential bugs related to the twoCdigit year

storage, however, when we tried to apply existing techniques, we found that none of them

is suitable indeed to slice legacy COBOL programs in practice.

Though the year of 2000 has been passed without IT catastrophe, the difficulties of

maintaining aging legacy systems have remained unsolved. Many of the legacy systems

are more than 30−40 years old, whose maintenance is very laborCintensive and costly task.

The lack of proper documentation, adChoc maintenance activities over such long lifetimes,

and the poor logical structure of these programs make maintenance even more difficult.

What is more, there is a huge risk involved in transforming and modernizing such

applications, which companies are typically unwilling to undertake.

Program slicing could be a powerful tool of aiding such maintenance activities. COBOL

has been fallen out of the focus of the program slicing research so far. Probably this is why

previous program slicing techniques proved to be inappropriate for industrialCscale

COBOL programs. However, COBOL is still the dominant language for business

applications [Brown 2000]. Preliminary experimental results show that the algorithm

proposed in this thesis is applicable for largeCsize programs. We hope that this work helps

in making program slicing more widely used and practical.

1.7 Overview

This chapter introduced the basic concepts of program slicing, its main forms and

applications. We reviewed previous program slicing techniques and identified their

strengths and weaknesses with respect to their applicability to largeCsize programs. The

remainder of the thesis is structured into five chapters.

Chapter 2 presents a novel program slicing approach based on control flow graphs.

After introducing the basic concepts and definitions, an algorithm is introduced that uses

token propagation to calculate precise dataCflow and full program slices. The basic

algorithm is then extended to local variables and parameter passing. Related work is also

discussed.

Chapter 3 presents the solutions we used at implementing the slicer prototype and its

evaluation on realCworld COBOL systems. The results are based on a large number of test

cases. Slice sizes and computation times are reported. Scalability of the approach is also

discussed.

INTRODUCTION� 13

Chapter 4 presents the so called reasonCwhy algorithm aimed at reasoning about the

computed slice elements that can help users in comprehending program slices.

Chapter 5 investigates further improvement and application possibilities of the method.

Different timeCspace tradeoffs of the algorithm design are discussed such as using

postorder processing, preprocessing, reusing previous calculations, or computing flow

edges on demand, respectively. DefinitionCuse graph construction and the application of

the method to other slicing variants called dicing and chopping are also described.

Chapter 6 summarizes the thesis.

1.8 Accomplishments

This thesis is aimed at being selfCcontained as much as possible for clarity reasons,

therefore it contains presentations of other authors’ work as indicated by citations. Besides

the introduction and overview of program slicing concept, variants, and applications the

main accomplishments of this thesis are:

�� Analysis of existing static techniques with respect to their applicability to largeC

size, legacy COBOL codes and the use of program slicing in software testing and

maintenance (this chapter).

�� Proposal of a novel token propagationCbased static program slicing approach

(Chapter 2).

�� Evaluation of the proposed method on industrialCscale COBOL programs

(Chapter 3).

�� Proposal of a novel “slice explainer” technique to aid slice comprehension

(Chapter 4).

�� Proposal and analysis of further possible improvements and applications

(Chapter 5).

Chapter 2

Slicing via Token Propagation

A practical slicing method is precise, scalable, and adaptable to consider different

programming language constructs and features. Approaches addressing precision by

explicitly maintaining the call stack proved to be impractical in the case of largeCsize

programs. Limiting the considered callingCcontext stack improves the performance but

causes a reduced precision; reaching full precision (unbounded context depth) is

unaffordable in the case of realCworld programs (or even impossible, in the presence of

recursion). The system dependence graphCbased (SDG) approach calculates precise slices;

however, with the increase of the investigated program size exhaustive analysis becomes

overly expensive. It is especially crucial, when the program changes frequently (interactive

contexts), which would require a demandCdriven approach. System dependence graphs are

more sensitive to program constructs often occur in legacy systems, such as the use of

global variables and complex instructions, than control flow graphs.

This chapter proposes a novel static program slicing technique based on token

propagation. The method calculates accurate program slices with respect to realizable

program paths, and is based on control flow graphs, which have less space requirements

compared to SDGs. The algorithm is conceptually simple, which allows of easy

implementation, but general enough to adapt to a larger class of programming languages.

Precision is obtained by propagating tokens along realizable program paths (using

backtrack indices). The token propagation method is inherently demandCdriven: it

computes the necessary information only, when they are needed.

After having defined the basic concepts in Section 2.1, a forward dataCflow slicing

algorithm is introduced in Section 2.2, which presents the basic idea of the approach. DataC

flow slicing considers data dependences only. In Section 2.3, the method is extended to

compute full forward program slices by accommodating control dependences. Section 2.4

describes how the token propagation can be reversed to compute backward program slices.

Section 2.5 describes how the method can be applied to programs using local variables and

SLICING VIA TOKEN PROPAGATION 15

parameter passing between procedures (or programs). Finally, the presented method is

compared to other related techniques in Section 2.6.

2.1 Definitions

Computer programs can be represented by directed graphs called ��	���
� �
� � ������

(CFGs), in which nodes correspond to the statements and edges represent the possible flow

of control between them.

First, we define the "	��������
���
 control flow graph for one procedure; then we

assemble the "	��������
���
 graph representation of the program composed of multiple

procedures.

DEFINITION� 2.1 (INTRAPROCEDURAL CONTROL FLOW GRAPH).� An "	��������
���

��	���
� �
� � ����� (iCFG) 3� 4� (5, 6) of procedure # is a directed graph in which 5

contains one node for each statement (or basic block2) in #, and 6 contains edges that

represent the possible flow of control between the statements in #. 5 contains two

distinguished nodes: 	� and 	!, representing unique entry and exit points of #. A ���
"�����

	�
� that represents the predicate of a conditional statement has exactly two successors. 	!

has no successors, 	� has exactly one successor. Each node in 5 is reachable from 	�, and

	! is reachable from each node in 5.

We note that �	�������
� �������	�� are not represented in the iCFG, and if # contains

multiple exit points, 6 contains an edge from these nodes to 	!
7.

DEFINITION� 2.2 (INTERPROCEDURAL CONTROL FLOW GRAPH).� An "	��������
���
�

��	���
��
� ������ (ICFG) 3�4�(5, 6) is a directed graph composed of one or more iCFGs

associated with each procedure of the program that are linked interprocedurally by ��

 and

�����	 �
��� as follows: 5 is composed of the set of iCFG nodes but each node that

represents a call statement is split into two nodes: a ��

� �"�� and a �����	� �"��. The

��

%"��8�, �����	%"��8� operators are used to refer to call site � and return site � belonging

2 CFGs can also be built from basic blocks that represent singleCentry, singleCexit statement sequences.
3 It is the classical method of treating multiple exit points that was adequate in the case of COBOL. We

note that in some programming languages multiple exit points cannot be handled in this way, and so another

sort of augmentation of the CFG might be necessary.

SLICING VIA TOKEN PROPAGATION 16

together such that �4��

%"��8�9�: and �4�����	%"��8�9�:. 6 is composed of the set of iCFG

edges, and it is augmented with "	��������
���
 edges such that a ��

��
�� is added from

every call site � to the entry node of the iCFG associated to the called procedure, and a

�����	� �
�� from the exit node of the called procedure’s iCFG to the return site

�����	%"��8�9�:.

This definition of interprocedural control flow graphs corresponds to the definition of

������ ������ of Myers [1981]. Note that call sites and return sites are not (directly)

connected.

In the literature, both intraC and interprocedural control flow graphs are often referred to

as ��	���
� �
� � ������ (CFGs), for short. In the following, we shall also use the short

notation, wherever the distinction is not relevant. We also note that edges of the CFG are

referred to as ��	���
� �
� �
��� to distinguish from ��	���
 �
��� representing ��	���
�

���	
�	��� (described later).

Calling relationships between procedures can be represented by a directed graph:

DEFINITION�2.3 (CALL GRAPH).�The ��

������ is a directed graph 3�4�(5, 6) in which 5

contains one node for each procedure, and there is an edge in 6 from node 	" to node 	� (",

	� ∈ 5) if procedure corresponding to 	" contains call to procedure corresponding to 	�.

Call graphs are often defined as directed multiCgraphs, where there can be more than

one edge between nodes 	" and 	� if 	" calls 	� multiple times.

The call graph contains a distinguished node corresponding to the ��"	 procedure that

gets the control first when the program is being executed. It is assumed that every

procedure is reachable from the main procedure in the call graph.

In the absence of recursion, procedures can be sorted such that calling procedures

precede the called ones:

DEFINITION�2.4 (RPOSTORDER).��#�����
�� is a linear ordering of nodes of the (acyclic)

call graph 3 in which each node comes before all nodes to which it has call.

rPostorder (��'����-������
��, �-������
��, also known as topological sorting) can be

determined by using a depthCfirst search in the call graph starting from the node of the

main procedure.

SLICING VIA TOKEN PROPAGATION 17

A program may contain recursive procedures. The recursive regions of the call graph

are called ����	�
����		����
������	�	��:

DEFINITION�2.5 (STRONGLY CONNECTED COMPONENT).�A ����	�
����		����
������	�	�

(SCC) of a call graph 3 is a (maximal) subgraph of 3 in which each node is reachable

from every other node.

Strongly connected components can be contracted to a single node; the resulting graph

is a directed acyclic graph (DAG) for which rPostorder sequence can be determined.

Potential program executions can be represented by paths in the CFG:

DEFINITION� 2.6 (PATH).�A ���� �� 4� 	1, 	2, … , 	� (�>1) in the CFG 3�4� (5, 6) is a

sequence of nodes such that for every consecutive pair ("��	"+1) there is an edge in�6 for "�4�

1, 2, …, �C1.

Note that paths − in contrast to real program executions − do not necessarily start from

the entry node of the main procedure.

We define an abstract ��

������ for paths:

DEFINITION�2.7 (CALL STACK).�The ��

������ of a path � 4�	1��	2�� $$$��	� in the CFG at

node 	" (∈ �) is a stack of call sites (initially empty), onto which node 	� is pushed if 	� is a

call site, or the topmost node is popped off (no operation when the stack is empty) if 	� is

an exit node, for the sequence of nodes ��4�1 to "-1.

Paths that incorrectly nest call and return sites cannot occur during real program

execution, therefore we distinguish ���
"2��
� paths:

DEFINITION�2.8 (REALIZABLE PATH).�A path � 4�	1��	2��$$$��	� is ���
"2��
� if at each exit

node 	! (∈ �) either the call stack is empty or for return site � following 	! and call site �

popped off at 	! the condition �4�����	%"��8�9�: holds.

Realizable paths are also known as '�
"
 paths and they can also be defined using a

contextCfree grammar [Reps 1993]. Note that when the call stack is not empty on return,

SLICING VIA TOKEN PROPAGATION 18

the return site must ����� the call site on the top of the call stack. At empty call stack,

realizable paths are allowed to ascend to calling procedures, and/or descend to called

procedures without a return, respectively (unbalanced paths). Any ������� (subsequence)

of a realizable path is also realizable.

We distinguish ����-
�'�
 realizable paths. A sameClevel realizable path is a realizable

path that starts and ends in the same procedure and every call has the corresponding return

(and vice versa):

DEFINITION�2.9 (SAMECLEVEL REALIZABLE PATH).�A path � 4�	1��	2��$$$��	��is a ����-
�'�

realizable path if � is realizable, nodes 	1 and 	� are contained by the iCFG assigned to the

same procedure, and the call stack of � is empty at 	�.

CFGs can be extended to model data elements:

DEFINITION� 2.10 (VARIABLE DEFINITION).� A node 	 in the CFG
��"	�� a program

variable ' if a value is assigned to ' at statement corresponding to 	.

DEFINITION�2.11 (VARIABLE USE).�A node 	 in the CFG ���� a program variable ' if the

value of variable ' is referenced at statement corresponding to 	.

DEFINITION� 2.12 (INFLUENCE).� The definition of variable � is "	�
��	��
 by a use of

variable ' in node 	 in the CFG if ' is used in 	, � is defined in 	, and the value assigned to

� is dependent on the value of the referenced variable '.

A variable definition in a node 	 ������� another node � if � can be reached by a path

from 	 in the CFG which contains no (reC)definition for the variable defined at 	. Such a

path is called a
��"	"�"�	-�
��������:

DEFINITION�2.13 (DEFINITIONCCLEAR PATH).�A path � in the CFG is a
��"	"�"�	-�
����

���� with respect to variable ' if none of the nodes on � (excluding start and end nodes)

contain definition for '.

SLICING VIA TOKEN PROPAGATION 19

DEFINITION�2.14 (DEFINITIONCUSE PAIR).�The definition of variable ' in node 	 and the

use of ' in node � form a
��"	"�"�	-������"� (
����"�) if there is a definitionCclear path

with respect to ' from 	 to �.

Du pairs represent
"����
����
���	
�	��� between program statements.

Conditional statements (such as if, for, while, switch, etc.) introduce a different

kind of dependence between program statements, called ��	���
�
���	
�	��. As the

outcome of a ���
"���� (the logical expression representing the condition of a conditional

statement) determines the program branch to be executed, it has direct impact on the

execution (or not execution) of the statements contained by the conditionally executed

branches. Prior to defining control dependence, we need to define (intraprocedural)

����
��"	��"�	 relationship between control flow graph nodes:

DEFINITION�2.15 (POST DOMINATION).�A node � (���"��
�) ����
��"	���� a node 	 in the

CFG if every path from 	 to 	! contains �, and 	�≠��.

DEFINITION�2.16 (CONTROL DEPENDENCE).�A node � is ��	���
�
���	
�	� on node 	 in

the CFG if (1) there is a path � from 	 to � such that every node �; on � (excluding 	 and

�) is postdominated by 	, and (2) � is not postdominated by 	.

We note that there are different notions of control dependence in the literature. The

definition above is the most widely used, and considered to be the “standard”, representing

"���� control dependences. Programs that contain infinite loops (e.g., event listeners in

reactive programs) or procedures with multiple or no exit nodes (where the unique end

node property cannot be guaranteed [Venkatesh et al. 2007]) may require alternative

definitions, such as ������	���
�
���	
�	�� [Podgurski and Clarke 1990]. The transitivity

of control dependences − which is not captured by present definition − is however

considered in another way when computing �
����� �
"��� (described later). In many

applications of slicing, such as debugging or program understanding, having slices that

preserve termination behaviour is less important than having smaller slices. Since these

applications are on focus in this thesis, the classical definition is appropriate for our

purpose. We also note that conditionally executed explicit halt statements (abort, exit,

halt, STOP RUN, etc.) may necessitate introducing additional interprocedural control

SLICING VIA TOKEN PROPAGATION 20

dependences (other than control dependences due to procedure calls), which would make

the presentation of the idea much more complicated; hence, it is omitted in this work.

Methods and algorithms for computing control dependences can be found in [Loyall and

Mathisen 1993; Harrold et al. 1998; Ranganath et al. 2007].

We will assume that intraprocedural control dependences are computed in advance and

are represented in the CFG by ��	���
��
���: there is a control edge from 	 to � if � is

control dependent on 	. In Figure 3, there are control edges between nodes �< and �=, and

�< and �>. Interprocedural control dependences due to control dependent procedure calls

are represented by introducing control edges from call sites to the entry node of the called

procedures, and from entry nodes to all the nodes in the procedure (except entry, exit, and

return sites), respectively. In Figure 3, an interprocedural control edge has been added

between nodes �= and ��, and one intraprocedural control edge between nodes �� and ��.

(We omit interprocedural control edges where call sites are not control dependent, and

control edges from entry nodes where the entry node is not control dependent.)

Direct and indirect effects between statements can be defined as a transitive flow of data

and control dependences:

DEFINITION�2.17 (DEPENDENCE CHAIN).�A
���	
�	������"	 is a sequence of nodes 	1��

	2��$$$��	�, where each node 	"+1 is either directly data or control dependent on node 	" for "�

4 1, 2, …, �C1.

Nodes 	2��	3��$$$��	� are said to be �������
 by node 	1, which corresponds to the concept

of ��	����"��
���	
�	�� of Podgurski and Clarke [1990]. Nodes 	1�� 	2�� $$$�� 	� of the

dependence chain are referred to as ���"	� 	�
��. A dependence chain containing data

dependences only is called a
��"	"�"�	-�������"	 (
�����").

For simplicity of the presentation and without loss of generality, we assume one

definition per node such that it is influenced by all the (potential) uses in that node.

Statements corresponding to complex instructions (which may contain more than one

variable assignment) can be represented by multiple CFG nodes, each containing a single

definition and zero or more uses corresponding to the influencing variable uses.

Similarly to paths, not all dependence chains are ���
"2��
�. A dependence chain is

realizable if it can be ��'���
 by a realizable path.

SLICING VIA TOKEN PROPAGATION 21

DEFINITION�2.18 (COVERAGE PATH).�A path � ��'��� a dependence chain 	1��	2��$$$��	� if it

goes through chain nodes 	1��	2��$$$��	�, and each subpath �" of � between nodes 	" and 	"+1

is either definitionCclear with respect to the variable defined at 	" (data dependence), or all

the nodes of �" are control dependent on 	" (control dependence), respectively, for "�4�1, 2,

…,��C1.

DEFINITION�2.19 (REALIZABLE DEPENDENCE CHAIN).�A dependence chain�is����
"2��
��if

it can be covered by a realizable path.

A slicing criterion specifies a program point and a set of program variables:

DEFINITION�2.20 (SLICING CRITERION).�The �
"�"	����"���"�	 is a pair ��4�?)��*@, where)

is a program statement and * is a subset of program variables.

Though Weiser’s original definition allows selecting arbitrary set of program variables

at program point), * is typically a subset of program variables used at), or a single

variable used at), respectively. As program statements correspond to nodes in the control

flow graph, by “program point”) we will also refer to a node in the CFG.

The backward static program slice % with respect to slicing criterion �4?)��*@ consists

of all the statements of the program that have direct or indirect effect on the values

computed for variables * at). The forward static program slice with respect to slicing

criterion �4?)��*@ consists of all the statements that depend on the definitions made to

program variable(s) * at). As program instructions can directly be related to CFG nodes,

program slices can be defined as the set of chain nodes of the possible dependence chains

in the CFG that end (backward slicing), or start (forward slicing) at the node of the slicing

criterion, respectively:

DEFINITION�2.21 (BACKWARD STATIC SLICE).�The ���� ��
�����"���
"�� % of a program

with respect to slicing criterion �4?)��*@ is a set of nodes in the CFG such that for each

node 	 in % there exist a dependence chain from 	 to the node corresponding to).

DEFINITION�2.22 (FORWARD STATIC SLICE).�The ��� ��
�����"���
"�� % of a program with

respect to slicing criterion �4?)��*@ is a set of nodes in the CFG such that for each node 	

in % there exist a dependence chain from the node corresponding to) to 	.

SLICING VIA TOKEN PROPAGATION 22

The slicing method is called ����"�� – up to realizable program paths – if the slice is

computed upon realizable dependence chains. According to Weiser's original definition a

slice is also executable that can be compiled and run. Similarly to other recent approaches,

we compute �
�������
"��� [Binkley 1993] that contain all components that might affect a

given computation but are not necessarily executable.

2.2 Forward Data-flow Slicing

DataCflow slicing is a reduction of full slicing which considers data dependences only.

A forward dataCflow slice consists of the set of chain nodes of all the possible definitionC

use chains that start from the node of the slicing criterion.

We assume that we are given the control flow graph of the program and a slicing

criterion that consists of a node and a single variable defined at that node. We first also

assume that the program contains global and scalar variables only, and there is no

parameter passing between procedures (other than via global variables).

We note that the assumption that the variable of the slicing criterion is defined at the

node of the slicing criterion is not a restriction, but makes the presentation simpler. We

also note that the algorithm provides safe results4 in the case of arrays and records as well

by treating them as a whole (conservative approach).

The basic idea of the method is to explore definitionCuse chains by propagating ����	�

over the control flow graph. A token is sort of reaching definition information (in forward

slicing) associated with a definition, or definitions of the same variable, respectively. The

token propagation starts from the node of the slicing criterion with a token created for the

initial definition, which is propagated to successor nodes iteratively along definitionCclear

paths with respect to the defined variable. Those nodes that are reached by the token and

contain use of the defined variable are marked as “in the slice” (definitionCuse pairs).

Definitions influenced by these uses induce new token propagations from the affected

nodes to explore indirect dependences (definitionCuse chains).

In order to propagate tokens along definitionCclear paths tokens carry the identifier of

the defined variable denoted as the index of the token, referred to as ����	� "	
�!. For

slicing criterion �4<	, {!}> (definition of variable ! at node) a token /�! (Reaching

Definition) is created and propagated to the successor node of 	. Nodes that contain

4 Results are referred to as “safe” if all possible dependences are taken into account, though some of the

dependences might not occur during real program execution.

SLICING VIA TOKEN PROPAGATION 23

definition (redefinition5) of the variable corresponding the token index block the

propagation, otherwise the token is propagated through. Nodes that contain use of the

token index are marked as in the slice, and if this use influences a definition of a variable 2,

a new propagation starts at that node with token /�2. This is similar to the conventional

reaching definition computation [Hecht 1977] apart from that instead of using bitCvectors,

we treat reaching definitions belonging to different variables separately.

Without context information the propagation would traverse all possible program paths,

including nonCrealizable ones. To avoid it we introduce ���������� "	
�! into tokens to

control propagations from procedure exit nodes. The backtrack index is also a variable

identifier, denoted as upper index in tokens. The token created for the slicing criterion is

initialized with a special Ø backtrack index (no context). Backtrack indices of tokens

remain unchanged during the intraprocedural propagation. New tokens created for

influenced definitions get the backtrack index of the token affecting the use.

Tokens entering the entry node of a called procedure store their token index as

backtrack index, whereas tokens leaving procedure exit nodes are forced to return to those

callers only that contain a �����"	� token: a token having token index identical with the

backtrack index of the token to be returned. The backtrack index of the token on return is

“restored” to the backtrack index of the original token stored in the call site; if the call site

contains several matching tokens (identical token indices), the token is returned as multiple

tokens with backtrack indices corresponding to the different backtrack indices. Tokens

having Ø backtrack index are propagated to all return sites unchanged.

5 Any definition made to a ���
�� variable ��
��"	�� its former value, and so it breaks the effect of any

previous definitions made to that variable. In the case of array variables, where a definition made to one array

element does not invalidate the effect of definitions made to other array elements, definitions are not

considered as redefinitions. Therefore, in the presence of arrays, the distinction between terms
��"	"�"�	 and

��
��"	"�"�	 is important.

SLICING VIA TOKEN PROPAGATION 24

The token propagation method can be summarized by the following rules below:

Rule 0.� A token /�!Ø is created for slicing criterion �4<	, {!}>, which is propagated to

the successor node of 	. Node 	 is marked as in the slice.

Rule 1.� If a token /�!�
� is propagated to a node 	 that does not (re)define variable !, the

token is propagated to the successor node(s) of 	 unchanged.

Rule 2.� If a token /�!�
�� is propagated to a node 	 that uses variable !, 	 is marked as in the

slice. A new token /�2� is created for definition of variable 2 influenced by use of

!, which is propagated to the successor node of 	.

Rule 3.� If a token /�!� is propagated to a call site, a token /�!! is propagated to the entry

node of the called procedure.

Rule 4.� Any call site � that contains a token /�!� and exit node � (of the called procedure)

that contains a token /�2! induce the propagation of a token /�2� from return site

�����	%"��8�9�:A. Token /�2Ø is propagated from an exit node to all return sites

unchanged.

A given /�!� token can be propagated to a given node once, therefore a token is

propagated over intraC or interprocedural loops at most once. The token propagation stops

when no more propagation is possible. Reaching this fixed point, nodes of the slice are

marked as in the slice as a result. Note the difference from maintaining the call stack

explicitly: the presented method propagates one token for a given variable to a called

procedure (e.g., /�!!�), thus it avoids the reCanalysis of procedures multiple times for

different call stacks.

EXAMPLE 2.1. In the example shown in Figure 3 the token propagation starts with token

/�!Ø from slicing criterion node ��, which is marked as in the slice (Rule 0). /�!Ø is

propagated to nodes �7, �< (�< marked as in the slice),��=, �>, and �B (Rules 1, 2). /�!! is

propagated to entry node �� from call site �= (Rule 3). Tokens /�!! and /�2! (created at ��,

marked as in the slice) are propagated to exit node �7; tokens /�!Ø , /�2Ø are propagated to

return site �A (Rule 4).

6 Note that it is just the same whether an /�2

! reaches the exit or an /�!
� reaches the call site node prior

to the other.

SLICING VIA TOKEN PROPAGATION 25

Variable ! is defined at node �B, therefore /�!Ø is not propagated through �B. /�2Ø is

propagated to exit node �C and nodes �<, �=, �A (marked as in the slice), and �>. From

call site �>, /�22 and /��� (started by Rule 2 from node �A, marked as in the slice) are

propagated to entry node ��, and from �� to ��. Variable 2 is defined at ��, therefore only

/��� is propagated back to return site �7 and node �= (marked as in the slice). /��� is

returned to the MAIN procedure, and the token propagation stops. As a result, nodes ��, �<,

��, �A, and �= are marked as in the slice (highlighted in boldface characters in Figure 3).

Note that the algorithm ensures contextCsensitive propagation. Thus /�2
! from exit node

�7 is not propagated to �7 (because it does not contain a matching token) and �< is

(correctly) not included in the slice that a token propagation along nonCrealizable path

would have caused.

Intuitively, the idea of the method can be interpreted as the combination of two

conventional techniques: the "	���procedural token propagation is similar to the classical

reaching definition computation over CFGs [Hecht 1977], however, we treat definitions of

CFG node

call site

return site

control flow edge

control edge

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

�

�

�

�����

����

�����

����

�����

����

�����

����

��+!

��+�

���+!

��+�

���+�
���+!

��+!

���+2

���+2

���+�

���+!

��+�

��+2

��+!

�

�����-���.*��
���
����������
 �

SLICING VIA TOKEN PROPAGATION 26

different variables by different tokens instead of using bitCvectors.)	���procedural token

propagation can be related to the use of summary edges in the SDGs: a token /�2
!

propagated to a procedure exit node represents (and is directly equivalent with) procedure

summary edge !→2. The backward propagation of a token /�2! to call site � containing

/�!� and the continuation of the propagation with token /�2� from return site

�����	%"��8�9�:, can be interpreted as the propagation of /�!� from � to �����	%"��8�9�:�

considering the transitive dependence !→2 due to call (reflected in the token index). This

is similar to how ������
����are extended at call sites in [Reps et al. 1994], but we compute

summary edges onCdemand and perform token propagation over CFGs.

The pseudoCcode of the forward dataCflow slicing algorithm is shown in Figure 4 in

lines 5–41 (excluding lines 36–38). Algorithm ComputeSlice has two inputs: the

interprocedural control flow graph 3 and the slicing criterion �4(�, '), where � is a node in

3 and ' is a program variable. The result of the algorithm is the set of nodes in 3 that are

marked as in the slice. The token propagation is implemented using a ���
"�� algorithm,

where worklist elements are pairs containing a token and a node from where the token is to

be propagated. The auxiliary procedure Propagate is used to store a token at a given

node, and to add this token (and the node) to the worklist if this token has not been yet

contained by that node. The initialization of the worklist is performed in lines 5 and 6

(Rule 0); the intraprocedural token propagation is described in lines 26–35 (Rules 1 and 2);

the forward interprocedural token propagation is described in lines 11–15 (Rule 3, 4); and

the backward interprocedural token propagation is described in lines 16–25 (Rule 4). Note

that Rule 4 is to be applied in two cases: when a new token is propagated to an exit node

(lines 21–23) and when a new token is propagated to a call site (lines 13–15). It ensures

that tokens in return sites are always “synchronized” with tokens in call sites and exit

nodes. Lines 13–15 achieve reuse of the previous tokens propagated to the exit node of the

called procedure, thus the algorithm avoids reanalysis of a procedure called from different

call sites.

SLICING VIA TOKEN PROPAGATION 27

������� ��ComputeSlice
��
/� �4(�, '): slicing criterion for node � and variable '�
 3: program graph
�/�
/�� nodes of the slice are marked in 3
���0�� D���
"��: set of pairs (token, node), initially empty

�����/�� Propagate (/�!

�
��: token ��	�: node)

0����
[1] �
 /�!

�
 ∉ 	 � ��

[2] Insert /�!
�
 into 	

[3] Insert (/�!
�
��,) into D���
"��

[4] ����

���
���������
0���� ComputeSlice
[5] Insert (/�'

Ø��, �) into D���
"�� // /�
���
[6] Mark �
[7] � ��� D���
"�� ≠ Ø ���
[8] Select and remove a pair (/�!

�
����) from D���
"��

[9] �
 ! ≠ � � �� //
��������	��
[10] ����� 	�

[11] ���� call site for called procedure #: // /�
��7�
[12] Propagate (/�!

!� ,��	���5�
�8�9#:)
[13]
����� 2� | /�2

! ∈ �!"�5�
�8�9#: ��
[14] Propagate (/�2

�
� ,������	%"��8�9	:) //�/�
��<

[15] ���
��

[16] ���� exit node: // /�
��<�
[17]
����� return site � connected with 	 ��
[18] �
 y = Ø � ��
[19] Propagate (/�!

Ø� , �)
[20] ����
[21]
����� � 2 | /��

2 ∈ ��

%"��8�9�: ��
[22] Propagate (/�!

2 , �)
[23] ���
��
[24] ����

[25] ���
��

[26] ��
�/��: �
[27]
����� successor � of 	 ��
[28] �
 � does not redefine ! � �� // /�
���
[29] Propagate (/�!

�
�����)

[30] ����

[31] �
 � uses ! � �� // /�
���
[32] Mark �
[33]
����� defined variable 2 influenced by use of !
 ���
[34] Propagate (/�2

�
� ,��)

[35] ���
��
[36] �
 � is a predicate � �� // /�
��=
[37] Propagate (/��

�
� ,��)

[38]������������������
�
[39] ����
�
[40] ���
���
�
[41] ��������

[42] ���� // ��	���
�����	�
[43] ����� 	�

[44] ���� call site for called procedure #:
[45] Propagate (/��

���,��	���5�
�8�9#:) // /�
��7
[46]
����� � 2 | /�2

� ∈ �!"�5�
�8�9#:� ��
[47] Propagate (/�2

�
� ,������	%"��8�9	:) // /�
��<

[48] ���
��

[49] ���� entry node: // /�
��B
[50]
����� node � within the procedure ��
[51] Mark �
[52] Propagate (/��

��� , �)
[53] ���
��

[54] ���� predicate: // /�
��=��A
[55]
����� control dependent node � of 	 ��
[56] Mark �
[57] Propagate (/��

��� , �)
[58] ���
��

[59] ��
�/��: // /�
��>
[60]
����� defined variable 2 ���
[61] Propagate (/�2

�
�����)

[62] ���
��

[63] ��������
[64] ����
�
[65] ���� ����

��� ComputeSlice

�����1������/��+������
�� ��
���������������������� ��

SLICING VIA TOKEN PROPAGATION 28

By applying the token propagation method we obtain correct dataCflow slices with

respect to realizable program paths. Before the proof, let us make some remarks about the

token propagation rules. Except for the very first token propagation rule (Rule 0) every

rule is triggered as a consequence� of a previously applied rule. Each rule considers a

������� ����	 propagated to some �������	�
�, and propagates a ������� ����	 to a �������

	�
�. The target node is the successor node of the source node in the CFG. In whatever

order we apply the propagation rules, for each token we could reconstruct the actual chain

of rules (��
����E��	��) that resulted in that token in that node. What is more, as it will be

shown later, for each propagated token there exists a ���
"2��
� ��
����E��	�� that caused

(or could have been caused) the token to be propagated to that node. This realizable rule

sequence corresponds to a series of consecutive edges in the CFG, i.e. a path, which starts

from the node of the slicing criterion, and which is realizable. This path serves as a

coverage path for a definitionCuse chain, hence, whenever a token is propagated to a node

� that uses the token index and � is marked as in the slice, a ���
"2��
� definitionCuse

chain from the slicing criterion to the marked node � can be presented that proves the

correctness of the computed slice.

First we define the necessary concepts and lemmas used during proof of correctness and

completeness.

DEFINITION�2.23 (RULE SEQUENCE). Given the CFG 3 of a program. A ��
����E��	�� is a

chain of consecutive token propagation rules %4(1, /�1)→(2, /�2)→…→(�, /��)

(�@1), where /"4(", /�")→("+1, /�"+1) is one of the token propagation rules applied to

�����������	 /�" in �������	�
��	" (∈3) that propagates �����������	 /�"+1 to �������	�
�

	"+1 (∈3) for "�4�1, 2, …, �C1.

Note that in a rule sequence, the target node and the target token of one rule application

correspond to the source node and source token of the next one. Each rule application can

be associated with an edge in the CFG: application of Rules 0, 1, or 2 can be associated

with an intraprocedural edge, application of Rules 3 or 4 can be associated with call or

return edges, respectively. In the case of application of Rule 4, the source token is

considered to be the token in the procedure exit node. The series of consecutive edges in

the CFG forms a path, called ��������	
"	������.

SLICING VIA TOKEN PROPAGATION 29

Depending on whether this path is realizable we distinguish ���
"2��
� rule sequences:

DEFINITION�2.24 (REALIZABLE RULE SEQUENCE). Given the CFG 3 of a program. A rule

sequence %4(1, /�1)→(2, /�2) →…→(�, /��) is ���
"2��
� if path �4(1, 	2, …,�	�) is

a realizable path in 3.

In the case of Rules 0, 1, 2, and 3, the target token is determined by considering merely

the source token, as well as in the case of Rule 4, when the backtrack index of the source

token is Ø. However, when the backtrack index of the source token is not Ø, Rule 4 also

takes a �����"	� token in the selected call site into consideration − to determine the

backtrack index of the target token to be returned. These tokens are not explicit (or even

included) in a rule sequence defined above. To make them selfCcontained we define the

notion of ������	����
����E��	��. A coherent rule sequence is a realizable rule sequence in

which at each application of Rule 4 where the backtrack index of the source token is not Ø,

the considered token corresponds to the one propagated in the rule sequence from the call

site matching the return site corresponding to the target node:

DEFINITION�2.25 (COHERENT RULE SEQUENCE). A rule sequence % is ������	� if path �

corresponding to % is realizable and for each application of Rule 4 of the form

 (!, /�2!���)→(�, /�2
�������), where !≠Ø, there is a call site � matching return site � on � such that

Rule 3 applied at � is of the form (�, /�!�)→(�, /�!!). (� is the entry node and 	! is the

exit node of the same procedure called by �.)

Note that a subsequence of a coherent rule sequence is also coherent if its corresponding

path is a sameClevel realizable path, since on this path every call has the corresponding

return.

As intraprocedural token propagation rules do not change the backtrack index, and the

backtrack index value is restored on return, tokens propagated in coherent rule sequences

have identical backtrack indices within the “same calling context”, which is formalized by

the following lemma:

SLICING VIA TOKEN PROPAGATION 30

LEMMA 2.1. Given the CFG 3 of a program, a coherent rule sequence %��and path � in 3

corresponding to %. Considering any two nodes 	, � on � such that the subpath of � from 	

to � is a sameClevel realizable path, the backtrack index of the token propagated from 	

and the backtrack index of the token propagated to � in % are identical.

PROOF $�Let us consider subpath �; of � between nodes 	 and �, and subsequence %; of %

corresponding to �;. Since �; is a sameClevel realizable path, %; is coherent.

If �; does not contain any procedure calls, %; consists of a series of intraprocedural

token propagation rules. Since in applications of Rules 0, 1, and 2 the backtrack index of

the target token is identical with the backtrack index of the source token, the backtrack

index of the token propagated to � must be identical with the backtrack index of the token

propagated from 	.

If �; contains exactly one procedure call, i.e., there is one call site � and one return site �

matching �, the backtrack index of the token propagated from � must be identical with the

backtrack index of the token propagated to � (Definition 2.25). Since %; contains

intraprocedural token propagation rules between 	 and �, and � and �, the backtrack index

of the token propagated from 	 and to � must be identical as well.

If �; contains a sequence of procedure calls and returns, the identity of backtrack indices

holds for all (outermost) call and return site pairs. As backtrack indices are identical in the

intervening intraprocedural sections between calls, the identity of backtrack indices of

tokens propagated from 	 and to � holds in this case as well.

□

Regarding the presented token propagation method, we distinguish relevant rule

sequences that start with Rule 0, i.e. /�=(�, /�'Ø)→(�, /�'Ø), where � is the node of the

slicing criterion,�' is the variable of the slicing criterion, and � is the successor node of �.

Such rule sequences are referred to as ��

 ������	����
����E��	���. Note that Rule 0 is the

only applicable rule at the beginning of the slice computation (without having the source

token actually being propagated to the source node), and is to be applied once.

In a coherent rule sequence %, if the backtrack index of the source token is not Ø at any

procedure exit node 	!, the call stack of path � corresponding to % cannot be empty (a

necessary and satisfactory condition to have a call site matching the target return site,

Definition 2.25). The following lemma shows that it also holds for any node in a full

SLICING VIA TOKEN PROPAGATION 31

coherent rule sequence other than procedure exit nodes; and conversely, Ø backtrack index

indicates empty call stack at any node of �:

LEMMA 2.2. Given the CFG 3 of a program, a full coherent rule sequence %��and path � in

3 corresponding to %. Considering a source (or target) token /�!� propagated from (or to) a

node 	 in %, � is Ø if and only if the call stack of � is empty at 	.

PROOF$� The very first rule application of the full coherent rule sequence % is the

application of Rule 0 with source node � corresponding to the slicing criterion and source

token /�'Ø, where ' is the variable of the slicing criterion. The call stack is empty at �, and

the backtrack index of the source token is Ø, thus the lemma holds for the very first node

of �. In the following we show that the lemma holds for all target nodes in %.

The 	�������� condition requires showing that if the call stack of � is empty at some

target node, the backtrack index of the target token propagated to that node is Ø. It is

proved by contradiction. Assume that there is a rule application in % such that the call stack

of � is empty at the target node but the backtrack index of the target token is not Ø. If there

is one or more such rule applications in %, there must be a first one. Let us denote it by /.

 / cannot be the application of Rule 3, because the call stack of � is not empty at a

procedure entry node following a call site, and / cannot be not the very first rule

application of %, since the backtrack index of the target token is Ø in the application of

Rule 0.

If / is the application of an intraprocedural rule (Rule 1 or 2), the backtrack indices of

source and target tokens must be identical: nonCØ, as assumed; as well as the call stack of �

at source and target nodes: empty. Considering the rule application /; in % directly

preceding /, we can see that the call stack of � is empty at the target node of /; (source

node of /), and the backtrack index of the target token of /; is nonCØ (source token of /).

It contradicts the initial assumption that / is the first such a rule application.

/ cannot be the application of Rule 4 to a source token having Ø backtrack index,

because, according to the rule definition, the backtrack index of the target token is also Ø

(contradicts the assumption).

If / is the application of Rule 4 to a source token having nonCØ backtrack index applied

at some procedure exit node 	!, which propagates its target token to target return site �,

since % is coherent, according to Definition 2.25, there must a call site � matching � on �

such that the backtrack index of the source token of Rule 3 applied at � and the backtrack

SLICING VIA TOKEN PROPAGATION 32

index of the target token propagated by Rule 4 to � are identical. As assumed, the backtrack

index of the target token of / (Rule 4) is not Ø, therefore the backtrack index of the source

token of Rule 3 applied at � must be nonCØ either. As the call stack of � is identical at �

and �, and it is empty at ��(assumed), it is empty at � too. Considering the rule application

/; in % directly preceding the application of Rule 3 at �, we can see that the call stack of �

is empty at the target node of /; (�), moreover, the backtrack index of the target token of

/; (source token of Rule 3) is nonCØ. As /; precedes / in %, / is not the first such rule

application as assumed, which is a contradiction again.

The ����"�"�	� condition requires showing that if the call stack of � is nonCempty at some

target node, the backtrack index of the token propagated to that node cannot be Ø. The

proof is by contradiction again. Assume that there is a rule application in % such that the

call stack of � is not empty at the target node but the backtrack index of the target token is

Ø. If there is such rule application, there is a first one, let us denote it by /.

/ cannot be the application of Rule 3, since the backtrack index of the target token

propagated to a procedure entry node is identical with the token index of the source token

in the call site, which cannot be Ø. (Token indices always correspond to variable

identifiers, set by Rule 0 or 2, and are unchanged by other propagation rules.)

If / is the application of an intraprocedural rule (Rule 1 or 2), backtrack indices of

target and source tokens are identical (Ø, as assumed), as well as the call stack of � at its

source and target nodes (not empty, as assumed). Considering the rule application /; in %

directly preceding /, we can see that the call stack of � is not empty at the target node of

/; (source node of /), and the backtrack index of the target token of /; is Ø (source token

of /). It contradicts the initial assumption that / is the first such rule application.

It is assumed that the call stack of � is not empty at the target node. If / is the

application of Rule 4 (return edge) and the call stack of � is not empty at the return site

(target node), the call stack of � cannot be empty at the preceding procedure exit node

(source node) either. (If the call stack is nonCempty after return, the call stack contained at

least two elements before.)

If / is the application of Rule 4 to a source token having Ø backtrack index, hence, in

the rule application /; in % directly preceding /, the call stack of � is not empty at the

target node of /; (source node of /), and the backtrack index of the target token of /; is Ø

(source token of /). So, the assumption that / is the first such rule application does not

hold.

SLICING VIA TOKEN PROPAGATION 33

If / is the application of Rule 4 to a source token having nonCØ backtrack index applied

at some procedure exit node 	!, according to Definition 2.25, there must a call site �

matching � on � such that the backtrack index of the source token of Rule 3 applied at �

and the backtrack index of the target token propagated by Rule 4 to � are identical, i.e., Ø,

as assumed. The call stack of � is not empty at � either, which is the same as at � (assumed

to be nonCempty). Hence, in the rule application /; in % directly preceding the application

of Rule 3 at �, the call stack is not empty at the target node of /; (�) and the backtrack

index of the target token of /; is Ø, which contradicts the initial assumption that / is the

first such rule application.

□

The lemma implies that if the call stack of the path � corresponding to a full coherent

rule sequence % is not empty at some node 	 on �, the backtrack index of the token

propagated to (or from) 	 cannot be Ø.

Full coherent rule sequences can be related to realizable definitionCuse chains starting

from the slicing criterion. It is shown by the following lemma below:

LEMMA 2.3. Given the CFG 3 of a program, a slicing criterion �4?��� {'}@, a full

coherent rule sequence %, and path � in 3 corresponding to %. If the variable corresponding

to the token index of the target token of the last rule application in % is used at target node

	, there exists a realizable definitionCuse chain in 3 from � to 	.

PROOF $�The very first rule application in % is the application of Rule 0 with source node �

corresponding to the node of the slicing criterion, and source and target token /�'Ø, where '

is the variable of the slicing criterion.

First assume that % does not contain any application of Rule 2. In this case, % consists of

the application of Rule 0 followed by zero or more applications of Rules 1, 3, or 4. (If % is

composed solely of the application of Rule 0, i.e., the variable defined at �� is used in its

successor node 	, (�,) is a realizable definitionCuse chain; thus the lemma holds.) Since

token indices of source and target tokens are identical in applications of Rules 1, 3, 4,

token indices of all the tokens propagated in % are identical and equal to '. Neither call

sites nor procedure exit nodes contain variable definition (Rule 3 and 4), and none of the

source nodes of the applications of Rule 1 can contain a definition for the token index of

the source token. Therefore � is a definitionCclear path wrt. '. Since variable ' is used in

SLICING VIA TOKEN PROPAGATION 34

target node 	 of the last rule application of %, (�,) is a definitionCuse chain. � is realizable,

since % is coherent, hence (�,) is a realizable definitionCuse chain, so the lemma holds.

If % contains one or more applications of Rule 2, let us consider the node sequence (1,

	2, …,� 	�), where 	1� = �, 	� = 	, and nodes 	" (1<"<�) are the source nodes of the

applications of Rule 2 in % (in the order they occur). Let us denote the subsequence of %

between nodes 	"�and 	"+1 by %" (1≤"<�). The first rule application in subsequence %1 is the

application of Rule 0; while in any other subsequence %" ("≠1) the first rule application is

the application of Rule 2. In either case, the token index of the target token of the first rule

application corresponds to the variable defined at its source node ("), and this rule

application is followed by zero or more applications of Rules 1, 3, or 4. For the same

reasons described above, token indices of target tokens in %" are equal and identical to the

variable defined at 	", and the path corresponding to %" is definitionCclear. The variable

defined at node 	" is used at node 	"+1, because either at node 	"+1 % contains an application

of Rule 2 (which implies a use in node 	"+1� for the token index corresponding to the

variable defined in node 	"), or 	"+1 is 	, which contains a use for token index of the target

token as assumed by the lemma. Hence, node sequence (1, 	2, …,�	�) is a definitionCuse

chain from � to 	 covered by path �. Since � is realizable, it is a realizable definitionCuse

chain, so the lemma holds.

□

The following lemma shows the reverse direction: realizable definitionCuse chains can

be associated with full coherent rule sequences.

LEMMA 2.4. Given the CFG 3 of a program and a slicing criterion �4?���{'}@. If there is

a realizable definitionCuse chain in 3 from slicing criterion node � to a node 	, there exists

a full coherent rule sequence % such that the variable corresponding to the token index of

the target token of the last rule application of % is used in its target node 	.

�

PROOF. To prove the lemma we show that a full coherent rule sequence can be constructed

for any realizable definitionCuse chain (1, 	2, …,�	�) (�>1), where 	1�= � and 	� = 	. Let us

consider the realizable coverage path � of the definitionCuse chain (1, 	2, …,�	�) (such a

path must exist according to Definition 2.19), which is composed of subpaths �1, �2, …,��

��C1, where subpath �" (1≤"<�) is a path in 3 from 	" to 	"+1, and it is definitionCclear wrt. the

variable defined at 	" (Definition 2.18). First, we show that a rule sequence %� can be

SLICING VIA TOKEN PROPAGATION 35

constructed for � by assigning one token propagation rule to each edge of �; then, we prove

that % is a full coherent rule sequence.

Let us consider the first subpath �1 of �, and assign the application of Rule 0:

 (11
, /�'Ø)→(12

, /�'Ø) to the first edge of �1, where�	11
is the node of the slicing criterion

(�), ' is the variable of the slicing criterion, and 	12
is the second node on subpath �1. The

source token and the source node of the following rule application to be assigned are given

by the target token and the target node of the preceding rule application, and depending on

the edge type, we assign one of the rule applications to the next edge ��= (, �) on �1

below:

(1)�Rule 1: (, /�!����)→(�, /�!����) if � is an "	��������
���
 edge,

(2)�Rule 3: (, /�!�)→(�, /�!!) if � is a ��

��
��,

(3)�Rule 4: (, /�!Ø)→(�, /�!Ø) if � is a �����	��
�� and the backtrack index of the

source token is Ø,

(4)�Rule 4: (, /�!�)→(�, /�!2) if � is a �����	��
�� and the backtrack index of the

source token is not Ø, where 2 is the backtrack index of the source token

propagated in % from the call site matching return site �.

We apply the above assignments for subsequent edges of �1, iteratively, until to every

edge of �1 a rule application has been assigned. Note that case (4) assumes a rule

application assigned previously to a call edge matching the current return edge; as it will

be shown later, such a rule application must exist. The target node of the last rule

application assigned to the last edge of �1 is 	2, which is the first node of the next subpath

of �2.

Let us consider the following subpath �" (" = 2, 3, …, �C1), and assign the application of

Rule 2: ("1, /�!
�)→("2, /�2

�) to the first edge of �", where 2 is the variable defined at 	"1

("), and source token /�!� is given by the target token of the last rule application assigned

to the last edge of the preceding subpath (�"C1). For subsequent edges of �" we apply the

same assignments (1)–(4) as on �1.

The above procedure is continued as long as to every edge of � the appropriate rule

application has been assigned, i.e. the complete rule sequence % has been constructed.

SLICING VIA TOKEN PROPAGATION 36

The applications of rules 0 and 2 (assigned to the first edges of the subpaths) as well as

the applications of rules assigned in cases (2) and (3) are '�
"
, they fulfill to the related

rule definitions. The application of Rule 1 assigned in (1) is also valid, because subpath �"

(1≤"<�) is definitionCclear wrt. the variable defined at 	" that corresponds to the token index

of the propagated source token. Rule assignment in case (4) can be performed only if (�)

there is a call site � on � matching target return site �, and is valid if (�) the token index of

the token propagated from � corresponds the backtrack index of the source token at 	. Note

that if both conditions hold at each assignment (4), rule sequence % is coherent, as

applications of Rule 4 in % fulfill Definition 2.25. Also note that % is a full coherent rule

sequence, as it starts with Rule 0.

To prove that conditions (�) and (�) hold at each assignment (4) assume that, by

contradiction, there is a return edge � = (, �) on � such that either (¬�) there is no call site

� on � matching return site �, or (¬�) the token index of the source token in the rule

application assigned to the call edge from � is not identical with the backtrack index of the

token to be propagated from 	. Let � be the first such return edge on �, where the

construction of the rule sequence fails. Let us denote by %; the rule sequence successfully

constructed for subpath �; of � from 	1 up to 	. Note that �; is realizable (as � is

realizable), and %; is a full coherent rule sequence. Since the backtrack index of the token

propagated to 	 is not Ø (because case (4) is applicable at �), according to Lemma 2.2, the

call stack of �; cannot be empty at 	, so there must exist a call site � on �; matching return

site �, which contradicts (¬�). According to Lemma 2.1, since %; is coherent and the

subpath of �; between procedure entry node 	� following � on �; and procedure exit node 	

is a sameClevel realizable path, the backtrack index of the token propagated from 	� must

have the same backtrack index as the backtrack index of the token propagated to 	.

According to Rule 3, the backtrack index of the token propagated to 	� is identical with the

token index of the token propagated from �, hence, the token index of the token propagated

from � must be identical with the backtrack index of the token propagated to 	, which

contradicts (¬�). Since there cannot be such return edge along �, where conditions (a) or

(b) fail, the constructed rule sequence % is a full coherent rule sequence.

The token index of the target token propagated in the last rule application of % to target

node 	� corresponds to the variable defined at node 	�C1, which�is used in target node 	� = 	

(definitionCuse chain), thus the lemma holds.

□

SLICING VIA TOKEN PROPAGATION 37

We say that a token /�!� propagated to a node�� is �������
� by a full coherent rule

sequence if there exists a full coherent rule sequence % in which the target node and target

token of the last rule application are � and /�!�, respectively. In the following we show

that in whatever order we apply the token propagation rules, each propagated token is

reachable by a full coherent rule sequence.

LEMMA 2.5. Given the CFG 3 of a program and a slicing criterion �4?���{'}@. If we

apply the token propagation rules for � over 3, any token /�!� propagated to a node � is

reachable by a full coherent rule sequence.

�

PROOF$�We use induction to prove the lemma. First we show that the lemma holds for the

token propagated by the very first propagation rule; then we show that if the lemma holds

for all the previously propagated tokens, it will also hold for any token propagated by a

subsequent token propagation rule.

���������: Token /�'Ø propagated by Rule 0 to a node �, where ' is the variable of the

slicing criterion and � is the successor node of the slicing criterion node �, is reachable by

a full coherent rule sequence.

Rule sequence (�, /�'Ø)→(�, /�'Ø) is a full coherent rule sequence, because its first rule

application is the application of Rule 0, path (�, �) is a realizable path in 3, and it contains

no applications of Rule 4. The target node and the target token of the last rule application is

� and /�'Ø, thus token /�'Ø propagated by Rule 0 to � is reachable by a full coherent rule

sequence, hence, the base case holds. Note that Rule 0 is the first and only applicable rule

at the beginning of any token propagation.

)	
���"'��%���+ If all the previously propagated tokens are reachable by a full coherent rule

sequence and we apply any of the relevant propagation rules / to a token /�2! propagated

to a node 	, the token propagated by / to a node � is also reachable by a full coherent rule

sequence.

If / is one of the applications of Rules 1, 2, 3, or / is the application of Rule 4 to a

source token having Ø backtrack index, respectively, let us consider the full coherent rule

SLICING VIA TOKEN PROPAGATION 38

sequence % that reaches /�2! propagated to 	 (induction hypothesis). Let us denote by � the

realizable path corresponding to %, and by �; the path corresponding to the extended rule

sequence %; obtained by appending / to %. In the case of Rules 1, 2 or 3, �; is given by the

concatenation of a realizable path (that is �) and an intraprocedural edge corresponding to

/, which also results in a realizable path. In the case of Rule 4, �; is given by

concatenating a return edge corresponding to / to �. From Lemma 2.2 it follows that, since

the backtrack index of the token propagated in % from 	 is Ø, the call stack of � is empty at

	. As at empty call stack, appending return edge to a realizable path results in a realizable

path, �; is realizable, and so is %;. As % is a full coherent sequence, and no new application

of Rule 4 has been added by / to % to a source token having nonCØ backtrack index, %; is

also a full coherent rule sequence. The target node and the target token of the last rule

application of %; are � and /�2!, therefore the token propagated by / to � is reachable by a

full coherent rule sequence, so the inductive step holds.

If / is the application of Rule 4 to a source token having nonCØ backtrack index, i.e. /

is of the form (, /�2!���)→(�, /�2���), where x ≠ Ø, the definition of Rule 4 implies that call

site � = ��

%"��8�(�) already contains a token /�!�, and 	 contains a token /�2!��. Let us

denote the full coherent rule sequence that reaches /�2! propagated to 	 by %	, and the full

coherent rule sequence that reaches /�!� propagated to � (induction hypothesis) by %�. From

Lemma 2.2 it follows that, as the backtrack index of the token propagated in %	 to 	 is not

Ø, the call stack of �	 is not empty at 	. Therefore, there must be a call site on��	 such that

the subpath �	; of �	 between the procedure entry node 	� following call site � and

procedure exit node 	 is a sameClevel realizable path, so subsequence %	; of %	

corresponding to��	; is coherent; furthermore, from Lemma 2.1 it follows that, as a token

having backtrack index ! (/�2!�) is propagated to 	, the source token in the first rule

application of %	; is /�!!�. Let us consider the rule sequence %; obtained by concatenating

rule sequences: %�, (�, /�!�����)→(�, /�!!), %	;, (, /�2!���)→(�, /�2
�). Path �; corresponding to

%; is realizable, because the subpath of �; between nodes 	� and 	 (�	;) is a sameClevel

realizable path, as well as the subpath of �; between nodes � and �, which is appended to

the realizable path corresponding to %�. %; is coherent, because %� and %	; are coherent, and

for the application of Rule 4, (, /�2!)→(�, /�2�), the matching application of Rule 3,

(�, /�!�)→(�, /�!!������), can be found in�%; at the call site � matching � (Definition 2.25). %;

starts with the application of Rule 0 (%�), and the target node and the target token of the last

SLICING VIA TOKEN PROPAGATION 39

rule application of %; are � and /�2
�. Hence, the token propagated by / to � is reachable

by a full coherent rule sequence, and the inductive step holds.

□

After defining the necessary concepts and the related lemmas we can turn to the proof

of correctness and completeness. To prove correctness of the slice computed by the token

propagation method we show that each node marked during the token propagation is

affected by the slicing criterion; completeness requires showing that every affected node

will be marked during the token propagation.

THEOREM 2.6 (CORRECTNESS OF THE DATACFLOW SLICE).�Given the CFG 3 of a program

and a slicing criterion �4?��� {'}@. A node 	 is marked as in the slice by the token

propagation rules applied for � over 3 only if 	�4�� or there exists a realizable definitionC

use chain in 3 from � to 	.

PROOF$ The two propagation rules that mark a node as in the slice are Rules 0 and 2. By

definition, the slicing criterion is included in the resulting slice. The node marked by Rule

0 corresponds to the node of the slicing criterion �, which fulfills the first condition of the

theorem. A node 	 is marked by applying Rule 2 only if a token, say /�!�, has been

propagated to 	 such that 	 contains a use of variable !. If such a token is propagated to 	,

from Lemma 2.5 it follows that 	 is reachable by a full coherent rule sequence %. As %

reaches 	, the target token of the last rule application of % is /�!� , whose token index used

in target node 	. Hence, considering %, from Lemma 2.3 it follows that there exist a

realizable definitionCuse chain in 3 from � to 	, which proves the theorem.

□

The token propagation stops if no more token propagation is possible, because either

none of the rules applicable to any of the previously propagated tokens or the token that

would be propagated by any of the relevant rules had already been propagated to the target

node by some other rule before. The following theorem shows that when the token

propagation stops, all affected nodes are marked by the token propagation rules.

SLICING VIA TOKEN PROPAGATION 40

THEOREM 2.7 (COMPLETENESS OF THE DATACFLOW SLICE).� Given the CFG 3 of a

program and a slicing criterion �4?���{'}@. If there exists a realizable definitionCuse chain

from slicing criterion node � to a node 	 in 3, or 	�4��, respectively, 	 is marked as in the

slice by the propagation rules applied to � over 3.

PROOF$�The node of the slicing criterion � is marked by the very first rule application of the

token propagation, by Rule 0, which fulfills the second implication (�4��) of the theorem.

The first implication requires showing that if there exists a realizable definitionCuse

chain from � to 	 in 3, 	 is marked before no more token propagation is possible. From

Lemma 2.4 it follows that there is a full coherent rule sequence % such that the variable

corresponding to the token index of the target token of the last rule application in %, say

/�!� , is used in its target node 	. If /�!�� is propagated to 	, 	 is marked by Rule 2 fulfilling

the theorem. Now we show that /�!�� must be propagated to 	 before the token propagation

stops, what is more, every target token in % must be propagated to the target node by the

end of the token propagation.

Assume that by contradiction there is a rule application in % whose target token has not

been propagated to its target node but the token propagation stops. If there is such a rule

application in %, there is a first one; let us denote it by /. / cannot be the very first rule

application of %, as Rule 0 is applicable at the beginning of the token propagation, and so

the propagation cannot stop yet. Since / is the first such rule application, the source token

of / has been propagated to its source node. / is a valid and so an applicable propagation

rule that would result in a new token in its target node, which contradicts the assumption

that the token propagation can already stop.

□

We note that we assume finiteCsize programs − of practical relevance − having finiteC

size CFGs and a finite number of program variables. In this case, as there can only be a

finite number of possible tokens propagated to a finite number of nodes, the token

propagation method terminates in finite steps. Note that it holds even if there are an infinite

number of program paths, or definitionCuse chains, respectively, due to potential loops.

2.3 Forward Slicing

The token propagation can be extended to accommodate control dependences by

introducing ��	���
� ����	�. Control tokens are created at predicate nodes and propagated

SLICING VIA TOKEN PROPAGATION 41

along control edges. Nodes reached by control tokens are marked as in the slice;

definitions in control dependent nodes start new token propagations to reveal indirect

dependences.

In ��	���
�����	�, a special token index: � is used to distinguish from
��������	� where

token indices are variable identifiers7. When a data token /�!� is propagated to a predicate

node that uses variable ! a new control token /��
� is created and propagated to the nodes

that are control dependent on the predicate. Each node to which /��
� is propagated is

marked as in the slice; and if this node contains a definition of a variable 2, a new

propagation starts with data token /�2�.

Data tokens created due to interprocedural control dependences are to be returned to the

call site from where the control dependence originates. For this reason, backtrack index �

is stored in control tokens entering called procedures, and data tokens having backtrack

index � are returned to the call site(s) containing control token. From procedure entry

nodes control tokens are propagated to all the nodes within the procedure (except entry,

exit, and return sites). Note that the same rules, Rule 3 and 4 (described in the previous

section), can be applied to propagate control tokens to called procedures, or to return data

tokens having backtrack index �, respectively.

The rules related to the control token propagation are summarized below:

Rule 5.� If a token /�!� is propagated to a predicate node 	 that uses variable !, a new

token /��
�� is created and propagated to the nodes that are control dependent on 	.

Rule 6.� If a token /��
� is propagated to a predicate node 	, token /��

�� is propagated to

the nodes that are control dependent on 	.8

Rule 7.� If a token /��
� is propagated to a node 	, 	 is marked as in the slice. A new token

/�2� is created for definition of variable 2, which is propagated to the successor

node of 	.

Rule 8.� If a token /��
� is propagated to an entry node, token /��

� is propagated to all the

nodes of the procedure (except entry, exit, and return sites).

7 Note that though control tokens are not related to �����"	��
��"	"�"�	�, because of the similarity of the

propagation, using the same notation /� simplifies the presentation and the pseudoCcode.
8 This rule serves as propagating control tokens inside nested predicates. Depending on the definition and

computation of control dependences (whether it considers transitivity or not) this rule may or may not be

required.

SLICING VIA TOKEN PROPAGATION 42

Intraprocedurally, control tokens thus simply transfer the backtrack index of the token

affecting the predicate to data tokens created at control dependent definition nodes that

ensures contextCsensitive propagation of the newly created tokens. Interprocedurally,

backtrack index ��assigned to data tokens created in the called procedures due to control

dependences ensures that these tokens are returned to the call site(s) from where the

control dependence originates (containing control token), which is analogous to the

backward propagation of data tokens having variable identifiers as backtrack index.

EXAMPLE 2.2. In the example shown in Figure 3, a new control token /��

Ø is created when

data token /�!Ø is being inserted into predicate node �<, and /��
Ø is propagated to nodes �=

and �> along control edges (Rule 5). Nodes �= and �> are marked as in the slice, and a new

data token /��Ø is created at node �> (Rule 7). From call site �=, control token /��
� is

propagated to entry node �� (Rule 3) and node �� (Rule 8). Node �� is marked as in the

slice, and a new data token /�2� is created and propagated to exit node �7. /�2Ø is

propagated to return site �A (Rule 4). /��Ø , which is created at �>, and /�2Ø , which is

returned to �A, are propagated in the following steps according to the data token

propagation rules (Rules 1–4). Node �B is marked as in the slice by /��Ø , where a new data

token /�!Ø is created. Tokens /�!Ø ,�/��Ø , and /�2Ø are propagated to return site �7. /�!Ø is

propagated to nodes �< (marked as in the slice) and �=, where variable ! is defined

(hence, the propagation of this token stops). /��Ø is propagated to nodes �<, �=, and �A,

where variable � is defined. The propagation steps of token /�2
Ø from return site �7 have

been described in the previous section. In the case of full slicing, nodes �=, �>, �B, and �<

are marked as in the slice, in addition to the nodes added by dataCflow slicing.

Considering control dependences, slicing is extended to explore dependence chains. The

pseudoCcode related to the propagation of control tokens is shown in Figure 4 in lines 36–

38 and 42–65. Control tokens are propagated from predicates to control dependent nodes in

lines 36–38, 54–58 (Rule 5, 6); data tokens are created at control dependent nodes in lines

59–62 (Rule 7); the forward interprocedural control token propagation is described in lines

44–48 (Rule 3, 4); and the propagation of control tokens from entry nodes is described in

lines 49–53 (Rule 8). Data tokens having backtrack index � are propagated backwards in

lines 21–23 (Rule 4). Note that no control tokens can be propagated to exit nodes because

there are no control edges to them.

SLICING VIA TOKEN PROPAGATION 43

Theorems of correctness and completeness presented for dataCflow slicing are valid in

the case of full slicing as well: a node is marked by the token propagation rules if and only

if there is a dependence chain from the slicing criterion to that node. Since the proof is

quite analogous to one presented in the previous section, we discuss the key differences

only.

Correctness requires showing that each propagated token can be associated with a rule

sequence (Lemma 2.5) composed of rule applications chosen from the extended rule set,

which can be associated with a dependence chain (Lemma 2.3). With regard to Lemma 2.5,

as propagating control tokens along control edges extends previous rule sequences either

intraprocedurally (control edges from predicates or procedure entry nodes) or

interprocedurally forwards (control edges from call sites), it does not violate realizability

nor coherence. (Definition 2.24 still applies to rule sequences built upon the extended rule

set, considering that Rule 4 is also applicable to return tokens with control backtrack

index.) The amendment of Lemma 2.3 involves that nodes of the dependence chain

covered by the corresponding path are pointed by source nodes of potential applications of:

Rule 5 (dataCcontrol), Rule 6 (controlCcontrol), and Rule 7 (controlCdata) − in addition to

the application of Rule 2 (dataCdata). As control tokens propagate along control edges to

directly or indirectly control dependent nodes, subpaths between chain nodes fulfill

Definition 2.18, that is, the corresponding path is a coverage path for the dependence

chain.

Completeness requires showing that for any dependence chain an appropriate rule

sequence can be constructed. The coverage path of the dependence chain potentially

contains control edges, hence, the amendment of Lemma 2.4 involves extending rule

application assignments to control edges (Rules 5−8) that can be constructed analogously.

In both cases, Lemmas 2.1 and 2.2 apply to rule sequences based on the extended rule

set unchanged, and the token index of the target token of the last rule application of the

rule sequence (Lemmas 2.3, 2.4) can be either used in its target node (data dependence), or

it is � (control dependence).

2.4 Backward Slicing

The algorithm of backward slicing can be obtained by reversing the token propagation

rules of forward slicing. We refer to tokens as F* (Live Variable) tokens in the case of

backward slicing. F* tokens are propagated to predecessor nodes along definitionCclear

SLICING VIA TOKEN PROPAGATION 44

paths with respect to the used variable. Nodes reached by F* tokens that define the used

variable are marked as in the slice; new token propagations start from all uses influencing

the definition. Interprocedurally, F* tokens are propagated from return sites to exit nodes

and from entry nodes to call sites, respectively. Backtrack indices of F* tokens are used

analogously to forward slicing.

Control tokens are created at each node wherever a new data F* token is created

(including the slicing criterion node), and propagated along control edges backwards.

Control tokens reaching predicate nodes start new F* token propagations from all the uses

in the predicate. Control tokens reaching procedure entry nodes are propagated to call sites,

and from call sites to other predicates, or entry nodes, respectively, on which this node is

control dependent.

The pseudoCcode of the backward slicing algorithm is omitted, since it is quite similar to

the forward one. The propagation rules of F* tokens are shown below:

Rule 0.� A token F*!Ø is created for slicing criterion �4<	, {!}>, which is propagated to

the predecessor node(s) of 	. Node 	 is marked as in the slice.

Rule 1.� If a token F*!
� is propagated to a node 	 that does not define variable !, the token

is propagated to the predecessor node(s) of 	 unchanged.

Rule 2.� If a token F*!
� is propagated to a node 	 that defines variable !, 	 is marked as in

the slice. A new token�F*2
� is created for use of variable 2 influencing definition !,

which is propagated to the predecessor node(s) of 	.

Rule 3.� If a token F*!
� is propagated to a return site �, token F*!

! is propagated to the exit

node of the called procedure.

Rule 4.� Any return site � that contains a token F*!
� and entry node � (of procedure called

by ��

%"��8�9�:) that contains a token F*2
! induce the propagation of token F*2

�

from call site ��

%"��8�9�:. Token F*2Ø is propagated from an entry node to all call

sites unchanged.

Rule 5.� If a token F*�
� is propagated to predicate node �, � is marked as in the slice. A

new token F*2
� is created for use of variable 2 in �, which is propagated to the

predecessor node(s) of �.

SLICING VIA TOKEN PROPAGATION 45

Rule 6.� If a token F*!
� is propagated to a node 	 that defines variable !, a new token F*�

�

is created and propagated to nodes on which 	 is control dependent. For slicing

criterion �4<	, {!}> a token�F*�
Ø �is created and propagated to nodes on which 	

is control dependent.

Rule 7.� If a token F*�
� is propagated to a call site �, token F*�

� is propagated to nodes on

which � is control dependent.

Note the asymmetry in forward and backward slicing (Rules 6 and 7) which is due to

that control edges are not symmetric in the different directions: entry nodes typically have

more outgoing control edges, whereas exit nodes have no incoming control edge;

predicates have more outgoing control edges, whereas nodes have typically one incoming

control edge. Rule 6 and 7 also ensure the propagation of control tokens to entry nodes

(which is performed by Rule 8 in the forward direction), or to the predicates of the

enclosing conditional statement, respectively.

2.5 Local Variables, Parameter Passing

This section discusses how the presented token propagation method can be extended to

local variables and parameter passing. Keywords and constructs mentioned below basically

derive from COBOL (which was the programming language motivated this work), but

similar concepts can be found in other programming languages. We restrict to describing

the forward case (the backward case is analogous).

We consider COBOL program systems where programs contain “local” variables and

use parameter passing at external program calls. In the following we describe how the

propagation rules can be extended to this case.

F���
� '��"��
��$ COBOL applications typically consist of several programs that call

each other. Each program can be represented by a CFG, called a �������������, where

����������

��"��� and �������������	��"��� (CALL statements) are linked to the entry and

exit nodes of the called program’s main procedure. We refer to such set of program graphs

as a ��������������������. Variables declared in one program are not accessible in other

programs (unless they are explicitly passed by reference), therefore from program call sites

tokens are propagated directly to the related program return sites when the index variable

of the token is not passed (or passed by value, respectively), as these variables cannot be

redefined (�"

�
) during the call. From program exit nodes, only tokens related to formal

SLICING VIA TOKEN PROPAGATION 46

parameters passed by reference are propagated back to calling programs; definitions made

to other variables have no effect after return.

�#��������� ����"	�$ There are two standard ways of passing parameters between

programs: ��

-��-'�
�� and ��

-��-������	��. In the first case, the value of the actual

parameter is passed to the formal parameter; in the latter case, its memory reference9 is

passed, thus any modification of the formal parameter is reflected back the passed actual

parameter. Parameter passing requires a conversion of token indices – from actual to

formal parameter, and vice versa – during the interCprogram token propagation. A token

/��� from a program call site is propagated to the entry node of the called program as token

/��� if actual parameter � is passed as formal parameter � (either by value or by reference).

A token /��� from a program exit node is propagated to program call site � only if �

contains a token having token index � (say /����������������), where � is the actual parameter passed as

formal parameter �. On return, the token index (�, which is a formal parameter passed by

reference) is converted back to the matching actual parameter (say �), and the backtrack

index is restored correspondingly to the backtrack index of the token stored in the call site

(i.e., /��
� is propagated to the program return site).

The rules below complete the rule set of forward slicing (described in Sections 2.1 and

2.2) for the case of programClocal variables and parameter passing:

Rule 3.b�If a token /�!� is propagated to a program call site �, where actual parameter ! is

passed as formal parameter �, token /��� is propagated to the entry node of the

called program’s main procedure. If ! is not passed by reference, token /�!� is

propagated to program return site �����	%"��8�9�:.

Rule 4.b�Any program call site � that contains a token /�!
� and exit node � of the called

program’s main procedure that contains a token /��� induce the propagation of

token /�2� to program return site �����	%"��8�9�: if actual parameter ! is passed as

formal parameter �, and actual parameter 2 is passed as formal parameter � by

reference. Token /��Ø is propagated from � to �����	%"��8�9�: as token /�2Ø.

9 COBOL (before COBOLC97) supports no pointer type variables. The variable reference cannot be

accessed explicitly or modified. The same reference is passed on a potential subsequent passCbyCreference.

SLICING VIA TOKEN PROPAGATION 47

These rules can be adapted analogously for programs containing procedureClocal

variables. Token indices and backtrack indices related to global variables (as well as value

�, respectively, representing control dependence) require no token index conversion during

the interprocedural token propagation.

2.6 Related Work

Various algorithms for calculating interprocedural slices exist. The first method published

by Weiser [1984] is not contextCsensitive. There are studies [Agrawal and Guo 2001;

Krinke 2002; Binkley and Harman 2003; Krinke 2006] investigating whether considering

callingCcontext has significant affect on the size of the slices. It may occur that inaccurate

slices due to following nonCrealizable paths are several times larger than precise ones.

What is more, the computation of these extra large slices may take more time. Therefore,

we concentrate on precise slicing methods.

Most of the methods are based on system dependence graphs published first by Horwitz

et al. [1990]. System dependence graphs can be considered as the whole program extension

of the program dependence graph [Ottenstein and Ottenstein 1984; Ferrante et al. 1987].

Using SDGs, slicing is reduced to a graph reachability problem. The key element of the

approach is the computation of transitive dependences due to procedure calls (summary

edges).

Reps et al. [1994] introduced an improved summary edge computation algorithm to

speed up slicing using graph reachability between formal parameter vertices. Considering

COBOL programs, where practically all the variables are global, the cost of Reps’

summary edge computation technique is bounded by 896%�3G*H����
%"���G*
7:, where

6%�3 is the number of edges in the SDG, ����
%"��� is the total number of call sites, and *

is the number of (global) variables in the program. This is followed by a twoCpass traversal

of the SDG to calculate the slice that requires linear time in the size of the SDG.

The cost of the presented full slicing algorithm is bounded by

896�13G*
�H����
%"���G*7:, where 6�13 is the number of edges in the program graph. In

the worst case, every possible token is propagated along every CFG edge, and from exit

nodes every token is propagated as * different tokens to return sites. Although at our

COBOL systems�6�13 was much less than 6%�3 (by at least two orders of magnitude), the

* multiplier in the first term is due to the token propagation used to reveal du pairs (for

SLICING VIA TOKEN PROPAGATION 48

each backtrack index10), whereas Reps’ method exploits a priori flow edges between nodes

that however necessitates the construction of the SDG. We note that Reps’ summary edges

are also derived by our method, on demand: a token /�!� in the exit node corresponds to

procedure summary �→!.

As mentioned earlier, the key difference in our algorithm (in addition to exhaustive

versus onCdemand nature) is that SDGs are huge monolithic graphs that usually exceed the

internal memory in the case of realCworld applications. It is very difficult to predict which

part of the graph should be kept in the main memory. The presented algorithm has the

potential to process one program (or one procedure) at a time, resulting in a limited number

of timeCconsuming read and write operations.

Agrawal and Guo [2001] have presented an explicitly contextCsensitive slicing method

over the SDG (without summary edges), in which the call stack is maintained during the

propagation. Krinke [2002] showed that this algorithm has flaws, and presented a corrected

explicitly contextCsensitive algorithm. The approach however proved to be impractical to

calculate precise program slices due to combinatorial explosion of the set of the potential

call stacks.

Livadas and Croll [1992] introduced parseCtreeCbased SDGs, and considered aliasing,

global and static variables. Sinha et al. [1999] extended the SDG method for programs with

arbitrary interprocedural control flow, which allows a more precise analysis of program

codes containing stop run, exit, tryBthrowBcatch, and similar instructions.

Atkinson and Griswold [1996] also reported that the application of the SDG for larger

systems may require prohibitive space and time. They used CFGs and the invocation graph

approach [Emami et al. 1994] for contextCsensitive slicing. However, that method is

exponential in cost at unbounded contextCdepth. Mock et al. [2002] limited the considered

contextCdepth to two, as they were not able to compute fully contextCsensitive slices in a

reasonable time. Liang and Harrold [1999] proposed a precise slice computation method

that is also based on dataCflow information propagation over the CFG. Their algorithm runs

in polynomial time, but its actual complexity is not clear, as no analysis is given.

Slicing is a demand problem, and though some of the previously discussed methods are

demandCdriven to some extent ([Atkinson and Griswold 1996; Liang and Harrold 1999;

10 The very first token propagation (for any backtrack index) reveals all the intraprocedural du pairs of a

given node. The addition of explicit flow edges (that could be reused by subsequent propagations) would

however increase the size of the program graph.

SLICING VIA TOKEN PROPAGATION 49

Agrawal and Guo 2001]), the most wide spread algorithm based on the SDG is exhaustive.

Reps [1993] presented a general demand version of contextCsensitive interprocedural

analysis problems. Application of his magicCsets method to interprocedural slicing called

valid path algorithm was presented. Though the complexity of the algorithm has not been

explicitly written, considering the experimental results it seems that the computation time

for one slice element significantly increases with the size of the slice. On the contrary, in

the presented method, the computation time of one slice element is independent from the

resulting slice size. Horwitz et al. [1995] and Reps et al. [1995] have converted a large

class of dataCflow analysis problems to a special kind of graph reachability problem using

�!�
�
�
� �����������. The construction of the exploded supergraph, in which flow

functions are represented explicitly at nodes, however, requires substantial time and space.

Duesterwald et al. [1997] proposed a general framework for demandCdriven dataCflow

analysis using fixedCpoint computation over the CFG. They also yield polynomialCtime

algorithms, but the efficiency of the approach to solve dataCflow analysis problems (other

than slicing) was shown only on moderate size programs. Orso et al. [2001] published an

incremental slicing method based on dataCdependence types using SDGs. They compute

summary edges on demand, but that algorithm is not applicable to recursive programs (the

recursively called ComputeSummaryEdges function potentially gets into infinite loop).

The presented slicing technique is demandCdriven and applicable to recursive procedures

(programs) as well due its fixedCpoint computation (the token propagation is continued as

long as new token can be propagated).

Hajnal and Forgács [2002] proposed a token propagationCbased method to compute

realizable definitionCuse chains. That method does not consider control dependences,

parameter passing, and is not fully demandCdriven (relies on �"

 sets computed in

advance). Furthermore, definition identifiers were used as token indices which can cause

procedures to be reanalyzed several times for different definitions of the same variable.

Hajnal and Forgács [2012a] presented an improved algorithm to compute precise program

slices on demand (presented in this thesis) which avoids these limitations and reanalysis of

procedures. By using variable identifiers as token indices, it has become possible to reduce

the slice computation time from hours to minutes or seconds.

SLICING VIA TOKEN PROPAGATION 50

2.7 Conclusions

As described in Chapter 1, existing CFGCbased dataflow techniques can have prohibitive

time requirements to calculate precise program slices in the presence of recursion, while

SDGCbased approaches rely on exhaustive analysis that poses space requirements and

scalability problems. The technique proposed in this chapter attains the accuracy of the

SDG approach at avoiding its space requirements by computing summary edges onC

demand.

The presented method is conceptually simple which allows of easy implementation and

computes precise slices up to realizable program paths. Scalability is addressed by its

demandCdriven nature, i.e., the method computes the necessary information with regard to

the slice currently being computed. As the technique is based on control flow graphs, it is

more easily adaptable to accommodate specific system issues (such as complex

instructions, massive use of globals) at moderate space requirements, and less sensitive to

program modifications.

) �
����-�

Evaluation

COBOL is often thought as an oldCfashioned programming language which is of little

importance by now. The fact is that several hundred billion lines of COBOL codes are

actively used today in almost every major industry; what is more, COBOL’s dominance is

expected to last over the next ten years. Many of the legacy systems are more than 30−40

years old, whose maintenance is very laborCintensive and costly task. Program slicing is a

potentially useful analysis for aiding different maintenance activities, including program

comprehension, reC and reverse engineering.

To evaluate the presented slicing approach a prototype of the slicing algorithm has been

implemented and evaluated on a large COBOL system, which is in use at a company from

the financial domain. During the implementation of the algorithm presented in the previous

chapter, practical problems had to be solved such as how to interface with tools capable of

providing the necessary input to the slicer, how to represent programming language

specific constructs, and how the token propagation method can be implemented efficiently.

To evaluate the performance of the slicing method we selected a considerably large set

of test cases randomly, on which both slice computation times (dataCflow and full slicing in

both directions) and slice sizes were measured. Our objective was to measure how fast

slices can be calculated for a given slicing criterion “from scratch” without reusing any

results of previous token propagations to assess the usability of the method in interactive

contexts.

Section 3.1 provides details about the most important design and implementation

decisions. Section 3.2 presents the subject system of the experiments. Empirical results are

given in Section 3.3. Section 3.4 discusses related tools; finally, section 3.5 concludes the

chapter.

EVALUATION 52

3.1 Prototype Implementation

A prototype of the presented slicing algorithm has been implemented in the Java

programming language. Though C or C++ potentially outperforms Java, features like

automatic garbage collection, exception handling, and strict type safety along with objectC

oriented design made Java an attractive choice for developing robust codes quickly.

In the following subsections, we describe the most important design and

implementation solutions applied during the prototype development.

Interfaces

The implemented slicer prototype operates over control flow graphs (CFGs), i.e., on an

abstract representation of a program. On its own the slicer prototype is not able to parse

specific source codes, visualize the resulting slice, or associate control flow graph nodes

with the related source code lines or variables, respectively, instead, the slicer was

designed to be an individual, programming language independent component which can be

connected to any Integrated Development Environment (IDE) in the future – inasmuch as

it is capable of constructing the control flow graph of the subject program written in a

specific source code language.

To be able to pass input to the slicer, namely, the CFG and the slicing criterion, and

return the output, the slice, it was necessary to define proper interfaces. The format of the

interface was chosen to be XML. XML is a generalCpurpose description language, which is

widely accepted and standard format. To formalize how CFGs can be described in XML

we constructed an XML Schema Definition (XSD). This schema includes all the concepts

of the traditional control flow graphs in the proper structure: programs, procedures, nodes,

edges, variables, variable definitions and uses. By parsing the XML description of a CFG,

the slicer constructs an internal representation of the CFG in the system memory over

which the token propagation will be performed.

The other input of the slicer is the slicing criterion. As a slicing criterion defines a

program point and a program variable (i.e., a part of the CFG), it was convenient to specify

its format in XML too using (basically) the same XSD. Similarly, we applied the same

format to the resulting slice.

At analyzing COBOL source codes, it early turned out that traditional control flow

graph concepts are not sufficient to capture all COBOL constructs, which necessitated the

introduction of new concepts.

EVALUATION 53

COBOL systems typically consist of several programs calling each other; hence, we

introduced the concept of �������������� that represents a set of interconnected ��������

������ (CFGs). To represent program calls (CALL statements) we introduced new node

types, called �������� ��

� �"��� and �������� �����	� �"���, such that program calls

accommodate parameter passing in contrast to procedure call and return sites (PERFORM

statements) where no parameter passing occurs (other than via global variables). In

COBOL, the number of actual parameters may differ at different call sites calling the same

program, e.g., it may occur that at a program call site, more than one actual parameters are

passed to a single formal parameter (of some compound type), while at another place, the

number of actualC and formal parameters are equal. For this reason, we introduced the

concept of '"����
� ���������� ���"�"�	� such that actual parameters influence virtual

parameter positions at call sites, and virtual parameter positions influence the

corresponding formal parameters of the called program at program entry points,

respectively. Using this indirection, it became possible to bind variable number of actual

parameters to a fixed number of formal parameters, and vice versa.11

The use of compound data (arrays, structures, records) necessitated the distinction of

���
�� and ����� variables. In contrast to definitions made to scalar variables (of primitive

data types) where definitions count as ��definitions, definitions made to array variables are

treated differently during the token propagation: the propagation of a token having token

index corresponding to a variable of array type is not blocked at a node containing

definition for that variable (Rule 1).

For illustration, in Figure 5, the XML fragment of a CFG (a), a slicing criterion (b), and

the slice (c) are shown. In Figure 5.a, the XML description of a program named

Program1 is shown, whose main procedure’s id is 1 (mainProcId attribute). It

contains a global variable with id 1 which is of scalar type, and a global variable of array

type having id 2. The first formal parameter corresponding to the first virtual parameter

position (position attribute) is represented by variable 47, whereas the second formal

parameter in the second virtual parameter position corresponds to variable 49. Procedure 1

has unique entry and exit nodes (<entry> and <exit> elements). The successor of the

entry node is node 1 (succ attribute). Node 1 is a definition node defining variable 1

11 Actual parameters are associated with virtual parameter positions by the parser, which information is

available during parseCtime; whereas the slicer handles influences to virtual parameter positions during the

token propagation.

EVALUATION 54

(defs attribute). Node 3 is a useCdefinition node (it contains both uses and defs

attributes), where the use of variable 1 influences the definition of variable 2 (influence

attribute). Node 2 is a predicate node: it contains use and has control dependent nodes

(controls attribute). The entry node controls all the nodes within the procedure

(controls attribute) except the exit node. Node 4 is a procedure call site calling

procedure 15 (proc attribute); its return site is node 5 (retId attribute), whose successor

is node 6 (succ attribute). Node 6 is a program call site calling another program

Program2 (prg attribute) and passing variable 17 in the first virtual parameter position

(params attribute); its return site is node 7 (retId attribute), whose successor is node 8.

The slicing criterion shown in Figure 5.b specifies slicing criterion node: node 1 in

procedure 1 in program Program1, and variable 1 defined at that node. Slicing is to be

performed in the forward direction (type attribute). The slice shown in Figure 5.c

contains two programs: Program1 and Program2. Program1 contains two

procedures: 1 and 15 in program Program1. In procedure 1, node 1 is the slicing criterion

(by definition included in the slice), nodes 2 and 3 are dataCdependent (uses attribute),

whereas nodes 3, 4, 5, 6, and 7 are controlCdependent (controlDependent attribute).

Procedure 15 in Program1, as well as Program2 is �	�"��
� controlCdependent

(controlDependent attribute), which implies that all the nodes of these components

are in the slice (controlCdependent).

EVALUATION 55

(a)� XML fragment of a program’s CFG

(b)� XML fragment of a slicing criterion

(c) XML fragment of the slice

�����2���3�4�
���������
���)�5$��������������������$������ ��������

<prg name="Program1" mainProcId="1">

 <vars>

 <var id="1" type="scalar" />

 <var id="2" type="array" />

...

</vars>

<params>

 <var id="47" position="1" />

 <var id="49" position="2" />

...

</params>

<proc id="1">

 <entry id="0" succ="1" controls="1 2 ... 64" />

<node id="1" succ="2" defs="1" />

<node id="2" succ="3 8" uses="1" controls="3 4 5 6 7" />

<node id="3" succ="4" uses="1" defs="2" influence="1 2" />

<proccall id="4" proc="15" retId="5" succ="6" />

<prgcall id="6" prg="Program2" retId="7" succ="8" params=”17 1” />

...

<exit id="65" />

 </proc>

 ...

<proc id="15">

...

 </proc>

</prg>

<slicingcriterion name="Program1" type="forward">

 <prg name="Program1">

 <proc id="1">

 <node id="1" defs="1" />

 </proc>

 </prg>

</slicingcriterion>

<slice>

<prg name="Program1">

<proc id="1">

<node id="1" defs="1" />

<node id="2" uses="1" />

<node id="3" uses="1" controlDependent="true" />

<proccall id="4" retId="5" controlDependent="true" />

<prgcall id="6" retId="7" controlDependent="true" />

 </proc>

<proc id="15" controlDependent="true">

...

 </proc>

</prg>

 <prg name="Program2" controlDependent="true">

 </prg>

</slice>

EVALUATION 56

Efficient Token Propagation

The storage how control flow graphs are built in memory as well as the proper algorithmic

solutions used to implement the token propagation was highly important regarding the

performance. These issues are discussed in the following paragraphs.

Using a single worklist for all the tokens to be propagated as proposed in the pseudoC

code in Chapter 2 is inefficient, as this list can grow extremely large, moreover, tokens

belonging to different contexts are mixed (frequent context switching might be necessary

when only a part of the program system fits into main memory). In the implemented slicer,

therefore we used individual worklists, called �����
��������	� ���
"���, in each procedure

that contain tokens to be propagated intraprocedurally (propagations through call sites

insert elements into the called procedures’ token worklists).

After selecting and removing an element from a token worklist (a token and a source

node), graph reachability is used within the procedure to determine the nodes reachable

from the source node along definitionCclear paths. Using graph reachability, we avoided

the repeated applications of Rule 1 on the same token. During classical graph reachability

successor nodes are �����
 iteratively until each marked node has marked successors

only, where marking is usually implemented by setting a boolean '"�"��
 state (attribute) of

nodes. To ensure mark propagation along definitionCclear paths, we used an additional

boolean attribute called ��
�� mark to indicate nodes containing (re)definition of the token

index of the token currently being propagated. Nodes marked as ��
�� block the

propagation of '"�"��
 marks. ��
�� marking is performed prior to '"�"��
 mark propagation,

and all ��
�� marks are cleared when the propagation of a given token finishes.

Among the '"�"��
 nodes tokens are inserted into ��
�'�	� nodes only from where new

propagation may start. These nodes are the procedure entry and exit nodes, call and return

sites, and nodes containing use/definition of the token index. It reduces the memory

requirements of the method and avoids reCpropagation of tokens from the same node

multiple times.

Classical graph reachability requires resetting '"�"��
 attribute in all nodes after each

search. To avoid it we used an integerCvalued '"�"��
 field in nodes and an integer counter

named �����	�0���*�
�� such that the value of �����	�0���*�
�� is incremented before

each graph search. This value is propagated from the source node, and once the

propagation of this value finishes, reached nodes have '"�"��
 attribute equal to

EVALUATION 57

�����	�0���*�
��; all other nodes hold a different (some previous) value. '"�"��
 attributes

in nodes are reset only when �����	�0���*�
�� reaches the upper bound of its range.

To perform ��
�� marking efficiently we stored nodes associated to uses/definitions in

procedures at building the CFG. Using a hash table indexed by variable definitions/uses (as

keys) we can rapidly fetch the list of nodes containing definitions or uses for that variable,

and mark or clear ��
�� marks, respectively.

Efficient Token Storage

During slicing several tens or hundreds of millions of token propagations may occur.

Selecting a proper storage for tokens is crucial from both time (token insertion and fetching

time) and space (memory requirements) points of view. We found no a uniform solution

efficient in all nodes but depending on the node type different storage method had been

applied. In the case of nodes containing uses, definitions, and return sites, we perform

token insertions only (forward slicing), and hence, binary trees are used to achieve fast

insertion time and low space requirements.

Token storage at call sites and exit nodes are interrelated: inserting a token into a call

site triggers getting all the tokens in the exit node of the called procedure having backtrack

index corresponding to the inserted token (forward slicing), while inserting a token into a

procedure exit node triggers getting tokens from call sites having token index identical

with the backtrack index of the inserted token, respectively (Rule 4). These two operations

implied that tokens at call sites are hashed by token indices (backtrack indices are stored in

binary trees), while tokens at exit nodes are hashed by backtrack indices (token indices are

stored in binary trees, respectively).

Using the storage above, we achieved the performance of several hundred thousand

token propagations per second on an average personal computer in 2012.

3.2 Subject Programs

COBOL is often thought as an oldCfashioned programming language which is of little

importance by now. The fact is that COBOL is still the dominant language for business

applications, and almost every major industry relies on it. In 1997, it was estimated that as

much as 80 percent of the world’s computer code ran on COBOL, and there were 240

billion lines of COBOL code in use [Brown 2000]. Although the role of COBOL has been

EVALUATION 58

slightly reduced during the past decades, COBOL’s dominance is still expected to last over

the next ten years as well [Binkley 2007].

COBOL applications are often very large, many of them consist of more than 1,000,000

lines of code, and even applications over 10,000,000 lines are not considered unusually

large. COBOL programs typically deal with enormous volumes of data, and rely on a huge

number (possibly tens of thousands) of global variables (DATA DIVISION), as the

principal program structuring mechanism is the PERFORM statement.

Many of the legacy systems are more than 30−40 years old, whose maintenance is very

laborCintensive and costly task. The lack of proper documentation, adChoc maintenance

activities over such long lifetimes, and the poor logical structure of programs can make

maintenance very difficult. What is more, there is a huge risk involved in transforming and

modernizing such applications, which companies are typically unwilling to undertake.

Program slicing is a potentially useful analysis for aiding different maintenance activities,

including program comprehension, reverse engineering, debugging, and testing. Hence, the

empirical results presented in the following section have an important practical relevance.

The subject of our experiments was a large COBOL system from the financial domain,

which consisted of over 8 million lines of code (LOC, including variable declaration part,

comments, and empty lines). This large system could be decomposed into independent

subsystems of which we investigated five of different sizes (with total of 166 programs and

1.2 million LOC). Table 1 presents details about the subsystems: the total number of

programs and procedures, global variables, and program graph nodes. The least subsystem

contained 67,000 LOC (%������ in Table 1), whereas the largest one contained 532,000

LOC (%�����= in Table 1). We were given the �������� ������� representation of the

subsystems, which was constructed using Panorama Analyser12.

12 Panorama Analyser is a commercial COBOL analyzer tool. Currently this product is not available.

EVALUATION 59

��0�������6��������
�� ����,�����������7������

 8��������� 8������/���� 85��0���

,����0����

8�����������
 �

������

%������� 15 233 14 386 11 126

%������� 18 369 41 685 18 958

%�����7� 25 525 52 367 25 275

%�����<� 32 1955 64 884 132 085

%�����=� 76 3183 189 405 210 965

3.3 Empirical Results

We carried out our experiments on a P4 3GHz PC with 2GB RAM under JDK 1.6, using a

maximum heap size of 1.5GB (JVM option Xmx). For each subsystem we selected 1000

random definitions as slicing criteria for forward slicing, and 1000 random uses for

backward slicing. We performed dataCflow and full slicing in both directions − thus we

computed a total of 4000 slices per subsystem. Our objective was to measure how fast

slices can be calculated for a given slicing criterion “from scratch” − without reusing any

results of previous token propagations.

We note that the total of 20,000 test cases is only a portion of the possible slicing

criteria. Yet, considering that the size of some slices was close to the size of the whole

subsystem, we expect no worse results for the rest of the slicing criteria and believe that

the preliminary results provide a fair basis for demonstrating the practical applicability of

the approach.

The results of the slice computations are summarized in Table 2: execution times and

slice sizes. It shows that dataCflow slicing gives prompt result for any of the slicing criteria:

it takes less than three seconds on average and only 24 seconds in the worst case (with over

2,000 slice elements). The performance of backward slicing was also very good in all the

investigated systems: it took around two minutes in the worst case (with over 36,000 slice

elements). We also obtained slices quickly at forward slicing in three of the five

subsystems: within nine seconds on average and around one minute in the worst case. In

spite of the fair average results in the last two systems (less than four minutes), forward

slicing can be time consuming in some cases: it took almost 30 minutes in the worst case

(although, in 78% of the slicing criteria in %�����< and in 83% of the slicing criteria in

%�����= slices were computed in less than one minute). However, when the computation

EVALUATION 60

time exceeded 60 seconds, the resulting slices were very large: they contained more than

10,000 nodes – which roughly correspond to the number of affected source code lines.

These large slices are less useful for human users, as they are very difficult or impossible

to understand, respectively (in practice, slicing can be aborted after one minute). The

increase in the slice size was caused by control dependences escalated over the whole

subsystem due to recursion (via program calls – in some COBOL versions, recursion

between procedures is also possible), which was present in all the five investigated

subsystems. The same criteria were used at dataCflow slicing, which resulted in much

smaller slices.

��0���(���.*��/��������/�����
�� ����������������� ������999�������������������������

 ������������+
����

��������

:������������+

������������

���������������� :����������������

�*����

�����

������

��;��

�*����

�����

������

��;��

�*����

�����

������

��;��

�*����

�����

������

��;��

%�������

0.1

0.4

2.7

1

34

967

0.1

0.4

1.4

1

42

667

0.1

1.7

21

1

745

11 029

0.2

1.6

7.5

13

646

2143

%�������

0.1

0.7

4.4

1

43

1102

0.1

0.7

2.2

1

89

813

0.1

4.0

42

1

2897

17 930

0.4

8.8

12.8

2

2953

4306

%�����7�

0.1

0.6

3.0

1

18

773

0.1

0.7

2.3

1

31

698

0.1

5.5

69

1

2353

24 193

0.4

5.0

12

3

2801

4751

%�����<�

0.1

2.5

18.4

1

150

1907

0.1

1.2

9.6

1

127

4143

0.1

185

994

1

28 613

131 424

0.6

36

53

3

20 470

22 228

%�����=�

0.1

1.8

24

1

149

2835

0.1

1.4

17

1

162

4052

0.1

230

1793

1

26 001

187 879

0.1

35

129

5

16 046

36 024

Execution times are given in seconds, slice sizes are given in number of nodes. Minimum/average/maximum

values are shown.

Figure 6 presents slice computation times and slice sizes (on a logarithmic scale) in the

case of full slicing. Figure 6.b shows the slicing results for all the backward slicing criteria.

Figure 6.a shows the results for those forward slicing criteria for which the computation

time was less than 60 seconds (beyond 60 seconds, slice sizes always exceeded 10,000

nodes).

EVALUATION 61

(a) Forward slicing

(b) Backward slicing

�����<�����������;����������
/�������������"
/����������'�

�

��

���

����

�����

������

� �� �� ��

��������	�
��	���
��

�
�	
�
�
��
	�
�
��

�
�
�
�
�

��	
���

��	
���

��	
��

��	
���

��	
���

�

��

���

����

�����

������

� �� �� �� �� ��� ��� ���

��������	�
��	���
��

�
�	
�
�
��
	�
�
�

�
�
�
�
�

��	
���

��	
���

��	
��

��	
���

��	
���

EVALUATION 62

We can see that when the computation time took more than 20 seconds, slices contained

more than 1,000 slice elements; above one minute, slices were over 10,000 nodes. This

characteristic makes the approach suitable for applications in interactive contexts, because

if the computation would take more than one minute, the size of the slice will likely be too

big to be evaluated by a human user. Nevertheless, in most cases the resulting slices were

small and could be computed quickly.

The average number of the required token propagations was 6,579 at dataCflow slicing

in our least subsystem, and 9,872 in the biggest one. The average value varied between

148,788 and 13 million at full slicing. In the worst case, we had to perform 98 million

token propagations. These values indicate the total number of tokens that need to be stored

in CFG nodes, that is, the memory requirements of the slicing algorithm. In order to get a

quantitative picture about the number of summary edges determined (required at

computing a single slice), we counted the number of tokens propagated to entry and exit

nodes. We measured 1,672–7,837 tokens on average propagated to entry/exit nodes at

dataCflow slicing, and 36,699–969,367 tokens at full slicing. In the worst case, 12.7 million

tokens were propagated to the exit nodes.

3.4 Comparison with Other Works

The author is aware of only a few papers concerning with slicing COBOL. Ning et al.

[1994] presented a toolset called Cobol/SRE (Cobol System Renovation Environment) that

supports different reengineering tasks of legacy COBOL systems. Among others, the

toolset allows the user to compute forward and backward (and conditionCbased) slices to

help in extracting meaningful business functions. The paper provides no details about the

applied method, so it is not clear how precise the computed slices are with regard to

realizable program paths. Lanubile and Visaggio [1993] presented a transform slicing

method to aid the extraction of reusable functions from illCstructured programs. The slice is

obtained by iteratively solving data flow equations based on the program’s control flow

graph, similarly to Weiser’s original method. The approach was demonstrated on an

example COBOL program. In [Lanubile and Visaggio 1997], the method was extended to

the interprocedural case by maintaining interprocedural walks explicitly. However, as with

recording the call stack explicitly, this solution suffers combinatorial explosion in the case

of recursion.

EVALUATION 63

There are other types of analysis techniques that can efficiently support maintenance

tasks for COBOL [Canfora et al. 1996; Komondoor et al. 2005; Ramalingam et al. 2006].

These techniques concern with recovering and inferring data models and types, but are not

directly related to program slicing.

There are a number of empirical studies performed on evaluating contextCsensitive

slicing [Atkinson and Griswold 1996; Liang and Harrold 1999; Agrawal and Guo 2001;

Krinke 2002; Binkley and Harman 2003; Krinke 2006]; however, we found no empirical

results on slicing COBOL, neither data on the actual cost of SDG construction for realC

world programs.

3.5 Conclusions

After having described some of the most important design and implementation solutions of

the prototype slicer, the applicability of the novel slicing approach has been evaluated on

largeCsize COBOL systems on a considerably large set of test cases. The empirical results

show that the method is capable of computing accurate program slices quickly, whereas

longer computation times always result in large slices.

The computation times of dataCflow as well as full backward slices were short in all the

investigated systems; also, we obtained fair average computation times for full forward

slices. In some cases, forward slicing was time consuming, however, in all these cases, the

resulting slices were too big to be evaluated by human users: slice sizes exceeded 1,000

slice elements after 20 seconds of computation. This characteristic makes the presented

approach suitable for application in interactive context.

) �
����1�

Understanding Program Slices

Program slicing allows the users to focus on the selected aspects of semantics by breaking

the whole program into smaller pieces, and when these slices are small they can be more

easily maintained. However, larger program slices, but even slices containing only some

tens of program instructions can be very difficult to understand. As William Griswold

pointed out in his talk: 0��"	��%
"�"	��#����"��
+�����1"	�
�0"
� [Griswold 2001], one of

the problems why slicers are not widely used is that it is not enough to dump the results

onto the screen without explanation.

Slices computed based on execution traces (dynamic) are typically smaller than the ones

that consider all possible program executions (static). Furthermore, as a particular

execution history is available during dynamic slicing, the chain of dependences caused a

given program statement to be included in the slice can be more easily discovered. This is

not the case in static slicing, where neither a particular dependence chain nor an execution

trace covering these dependences are presented. Some applications such as program

comprehension, reC and reverse engineering rely on static slicing, and it may occur that

code under analysis cannot be even compiled and run (legacy systems, program under

development).

Static program slicing gives a wider view to the connected parts of the program code,

which is essential in program comprehension or at extracting reusable functions from

legacy systems – considering all possible program executions. Note that without an

automated slicing tool revealing dependences in the program text is very laborCintensive,

tedious, and time consuming task. Program slicing, however, beyond claiming that there is

dependence between the slicing criterion and the computed slice element gives no

explanation of the result that could help in understanding the effects between different

parts of the program code by a human user.

For example, in regression testing, one can use static program slicing to determine those

parts of the code that are affected by the program modification. It can occur that one or

more slice elements fall out of the software component that the change supposed to be

UNDERSTANDING PROGRAM SLICES 65

influenced, so the user may be curious how the effect has reached that point. By showing a

actual chain of dependences from the slicing criterion to the selected slice element the user

could be convinced that the influence indeed exists, and there is an unforeseen, undesired

side effect of the modification that has not been taken into consideration at determining the

impact of the change.

The more precise the applied slicing technique the less the resulting slice sizes are.

There are no fully precise static slicing methods for real programming languages, so ��
���

���"�"'��, i.e., slice elements identified on dependences that actually cannot occur during

real program executions, are unavoidable. Such imprecision, for example, can be due to

infeasible program paths (no such program input that results in the execution of the

traversed conditional branches) or programming language constructs that make impossible

to recover statically the precise flow of data (use of pointers, dynamic constructs).

In this case, reasoning about slice elements could help programmers to recognize false

positives. In regression testing, for example, an unexpected impact of a program change

may be proven to be false, when the presented chain of dependences is infeasible (it cannot

be realized along any feasible path), and it is rejected by a human user. This is a manual

process, but it can still be less expensive than retesting all the slicer indicated parts of the

code.

Section 4.1 presents a method to provide explanation for the computed slice elements

called the “reasonCwhy algorithm”. Section 4.2 discusses the related work; finally, Section

4.3 concludes the chapter.

4.1 The Reason-why Algorithm

This section presents a method capable of reasoning about an arbitrarily selected element

of the resulting slice, called the “reasonCwhy algorithm”. First, we restrict to forward dataC

flow slices; then we extended to full forward slices. Reasoning about backward slices is

just the dual of the presented method, which is hence omitted. For clarity of the

presentation we consider programs containing global and scalar variables. Local variables

and parameter passing can be treated as described in Chapter 2.

UNDERSTANDING PROGRAM SLICES 66

4.1.1 Reasoning Data-flow Slices

We assume that we are given a slicing criterion �=<	��{!}> for which the dataCflow slice

has been computed using the token propagation method presented in Chapter 2. We also

assume all the tokens propagated during slicing are available, and the resulting slice

contains a node � to be explained; � contains a use of variable � and a token /��2�caused �

to be marked as in the slice (Rule 2). To justify why � is included in the slice our goal is to

present a definitionCuse chain from 	 to � – along with a potential execution trace that

covers it. The pair (, /�!Ø�) will be referred to as the ������; the pair (�, /��2�) is referred

to as the ������. We note that we provide a single, any of the possible definitionCuse chains

between the source and the target, which is not necessarily the shortest one.

To our experiences providing a complete CFG path covering a definitionCuse chain

contains too much detail (instructions) to overview by a human user; providing merely the

nodes of the chain is not enough to see how this dependence chain can be covered by a

potential program execution. The path to be constructed, called the “reasonCwhy path”, will

hence be a definitionCuse chain augmented with procedure calls and returns

(intraprocedural path segments between useCdefinition nodes and procedure boundaries are

omitted).

To reveal a definitionCuse chain between 	 and � we trace back the token propagation

performed during slicing. We start from target node �, and investigate the tokens

propagated to the predecessor nodes. Based on this information we can deduce to the

previously applied token propagation rule(s), and determine the node(s) from where the

token propagated to � may have been originated. The predecessor node and the token

propagated to the predecessor node become the new target. Then, we continue finding such

predecessors as long as we reach the source. From procedure entry nodes we “return” to

call sites, and from return sites we enter procedure exit nodes, respectively. The traversed

definitionCuse chain nodes, as well as procedure call and return sites are recorded; finally,

this node sequence is reversed. We bypass recovering applications of Rule 1 (which

propagates tokens unchanged to successors iteratively) by identifying reachable nodes

along definitionCclear paths backwards.

The construction of the reasonCwhy path is performed in two passes: in Pass 1, we

traverse intraproceduralC, summaryC and call edges backwards (to callers), whereas in Pass

2, we traverse intraproceduralC, summaryC and return edges (to called procedures). As

procedure summary edges – represented by exit node tokens in the called procedures – are

UNDERSTANDING PROGRAM SLICES 67

available, we can cross procedure calls without ascending into the called procedures.

Exploited summary edges are resolved in a subsequent step. Finally, the path is reversed to

get a forward path. Note that, using the twoCpass method, procedure calls and returns will

be correctly nested, i.e., the resulting reasonCwhy path will be realizable.

�������

Pass 1 (as well as Pass 2) consists of a series of intraC and interprocedural path search

steps. In the intraprocedural step, our goal is to get to the entry node of the current

procedure, whereas in the interprocedural step we select one of the potential callers of the

current procedure from where the token propagation had been originated.

First, we consider the initial target: node � and token /��2, where 2 ≠ Ø. (If 2 = Ø, we

skip Pass 1.) To determine the node from where /��2� had been propagated to �, we

determine the set of nodes in the current procedure reachable along definitionCclear path

wrt. � backwards. The possible source(s) of� /��2� among these nodes is either (a) the

procedure entry node if 2 = � and the entry node contains /��� , (b) a node containing a

definition of variable �, a use of a variable ', and a token /�'2 (/��2�had been started by

Rule 2), or (c) a return site of a called procedure # such that the related call site of #

contains a token /�'2�and there is a summary edge '→� (Rule 4 had been applied to token

/��' in the called procedure’s exit node). Note that as the backtrack index is not Ø, slicing

criterion node 	 cannot be the source of /��2. In either case, we recordC and set the new

node and the new token as the new ������. In the case of (b) or (c), we continue searching

for the next predecessor of the current target as long as we reach the entry. In the case of

(c), we record the call and the return site, as well as the summary edge used to cross the

call (resolved later). To avoid infinite loop we traverse each nodeCtoken pair at most once,

and use backtracking if necessary.

On reaching the entry node, in the following interprocedural step, we select one of the

potential callers that resulted in the propagation of /��� to the entry. These call sites

contain a token /��' (Rule 3 had been applied). We select one of them, and apply the above

intraprocedural path search for the new target (call site and /��'
�����) to get to the entry node of

the caller procedure.

We continue the above procedure as long as any of the call sites contains a token /��Ø ,

when we turn to Pass 2. In the presence of stronglyCconnected components (SCCs), we

visit each call site and call site token at most once, which avoids infinite cycle.

UNDERSTANDING PROGRAM SLICES 68

As an example, let us consider the program shown in Figure 7. For slicing criterion

�=(��, {!}), we obtain the dataCflow slice: %={��, �<, ��, �A, �=}. (The related

instructions are highlighted in boldface characters; tokens propagated during slicing are

indicated next to the nodes in the figure). Assume that we choose node �= to be explained.

In Pass 1, we start from target (�=, /����). After identifying the set of nodes reachable

(backwards) along definitionCclear paths wrt. � we find return site �7, whose call site

contains a token /���� and the called procedure contains summary edge �→� (exit node

token /���� in procedure B; case �). The new target is set as node �� and token /�����. In the

next step, we reach procedure entry node �� (case �).

In the interprocedural step we return to call site �>, as it contains a token /��
Ø�, so we

finish Pass 1. The reasonCwhy path constructed during Pass 1 is shown below:

�����(�

During Pass 2 we traverse intraprocedural and return edges, and trace back the propagation

of /��
Ø towards the slicing criterion.

The intraprocedural path search starts from a call site (following Pass 2), or from node

�, respectively (if � contains a token /��Ø). The potential source of this token is a node

reachable from the current target along definition clearCpath wrt. � backwards, which is

either (a) node 	 if � = !, (b) a node containing a definition of variable �, a use of a variable

', and a token /�'Ø (Rule 2), (c) a return site such that the related call site contains a token

/�'Ø� and there is summary edge '→� (Rule 4), or (d) a return site such that the called

procedure’s exit node contains the token /��Ø (Rule 4 is applied to a token with Ø

backtrack index). In the case of (a), we finish Pass 2; in the case of (b) or (c), we continue

the intraprocedural search; in the case of (d), we set the exit node of the called procedure

and /��
Ø as the new target (interprocedural step). We continue the above procedure as long

as we reach 	.

1. (��, ���
�) BB use of y

2. (��, ���
�) y→y BB return from B

3. (��, ���
�) BB call B

4. (��, ���
�) BB entry C

5. (��, ���
Ø) BB call C

UNDERSTANDING PROGRAM SLICES 69

In the example, in Pass 2, we start from node �> and token�/��Ø . The only reachable

node is node �A, which defines �, uses 2, and contains a token /�2Ø� � (case �). The new

target is set as (�A, /�2Ø�). In the next steps, we select return site �7 and exit node �C of

procedure A, which contains /�2Ø (case
). The source of token /�2Ø propagated to �C is

return site �A, since there is a token /�!Ø��in �=, and the called procedure contains summary

edge !→2. From target (�=, /�!Ø�) slicing criterion node �� is reachable, and token index !�

corresponds to the variable of the slicing criterion (case �), so Pass 2 finishes.

The path constructed in Pass 2 is as follows:

CFG node

call site

return site

control flow edge

control edge

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

�

�

�

�����

����

�����

����

�����

����

�����

����

��+!

��+�

���+!

��+�

���+�
���+!

��+!

���+2

���+2

���+�

���+!

��+�

��+2

��+!

/�!!

/�!!

/�!!

/���

/���

/���/�2!

/�22

/�22

/�!
I

/�!
I

/�!
I

/�!
I

/�!
I/�2

I

/�!
I /�2

I

/�2
I

/���

/���

/���

/���

/���

/���

/�22

/�22

/�2
I

/�2
I

/�2
I

/�2
I

/��
I

/��
I

/�2
I

/��
I

�

�����=����������
��
��������/����������
������������

6. (��, ���
Ø) BB use of z, definition of y

7. (��, ���
Ø) BB return from A

8. (�
, ���
Ø) BB exit A

9. (��, ���
Ø) x→z BB return from B

10. (��, ���
Ø) BB call B

11. (a2, ���
Ø) BB definition of x

UNDERSTANDING PROGRAM SLICES 70

>����,�����/����7�.�����

The reasonCwhy path potentially contains “jumps” from return to call sites via summary

edges that need to be resolved. It requires constructing a coverage path for a dependenceC

chain realizing the procedure summary. We iterate over each adjacent call and return sites

contained in the reasonCwhy path, resolve them oneCbyCone, and insert the related summary

edge coverage path into the original reasonCwhy path between the related call and return

site pair.

The construction of the coverage path for a summary edge '→� is done correspondingly

to the intraprocedural path search applied in Pass 1: for a given call site � and return site �

we construct a reasonCwhy path from the exit node of the called procedure and token /��
'

(target) to the entry node of the called procedure and token /�'' (source). Once this path

has been constructed, it is inserted between the call and return site pair.

Resolving a summary edge may introduce new summary edges (case �), which also

need to be resolved, recursively. In the presence of SCCs, during resolving a summary

edge, the same summary edge could potentially be reused. As during resolving a summary

edge there must exist a path that does not reuse itself (otherwise, it would mean an infinite

loop in the code, so the summary edge would have never been computed). Excluding the

reuse of the same summary edge currently being resolved, the infinite loop can be avoided.

By reversing the resulting path we obtain the expected definitionCuse chain containing a

proper sequence of call and return sites.

Continuing with the example, the reasonCwhy path contains two summary edges, at

positions 2 and 9, which need to be resolved. The first summary edge �→� is resolved by

starting from exit node �7 in procedure B and token /����(target). Since the entry node is

reachable from the exit, and the entry node contains /����(source), the path search finishes.

The path to be inserted between positions 2 and 3 is as follows:

1. (
�, ���
�) BB exit B

2. (
�, ���
�) BB entry B

UNDERSTANDING PROGRAM SLICES 71

During resolving summary edge�!→2 of procedure B we have to go through node ��,

which results in the following path to be inserted between positions 9 and 10:

The resulting reasonCwhy path is then reversed. The reasonCwhy path from �� to �= is

shown below (only target token indices are indicated corresponding to the most recently

defined variable; procedure calls and returns are indented; comments are substituted by

actual program instructions):

4.1.2 Reasoning Full Slices

In full slicing, data dependent predicates induce propagation of control tokens along

control edges, which also need to be considered at constructing the reasonCwhy path.

If target node � contains control token only, the initial target is of the form (�, /��
2����).

During the intraprocedural path search we determine the set of ��	���

"	� nodes, i.e., the

nodes from where there is control edge to �. The possible source(s) of token /��
2�among

these nodes is either (a) a predicate node containing a use of a variable ' and a token /�'2

1. (
�, ���
�) BB exit B

2. (
�, ���
�) BB use of x, definition of z

3. (
�, ���
�) BB entry B

1. ��, x BB ���������	

2. ��, x BB call B ()

3.
�, x BB entry B

4.
�, x BB ������

5.
�, z BB exit B

6. ��, z BB return from B

7. �
, z BB exit A

8. ��, z BB return from A

9. ����� BB ������

10. ��,�� BB call C ()�

11. ��, y BB entry C

12. ��, y BB call B ()

13.
�, y BB entry B

14.
�, y BB exit B

15. ��, y BB return from B

16. ��, y BB
�����	�

UNDERSTANDING PROGRAM SLICES 72

(Rule 5), (b) a predicate node containing /��
2�(Rule 6), or (c) the procedure entry node if 2

= � and the entry node contains /��
� (Rule 8). The new node and the new token are set as

the new target. This intraprocedural search step is applied in both passes 1 and 2 each time

the origin of a control token needs to be determined.

Another change in reasoning full slices is that control tokens induce dataCtokens at

definition nodes (Rule 7); hence, at determining the possible sources of a data token /��2,

nodes containing definition of variable � and token /��
2�need to be investigated too. If it

holds for some node, this node and /��
2 are also a potential new target during the

intraprocedural path search.

When the target token is a control token, the interprocedural step in Pass 1 requires

determining the set of call sites containing control token. In Pass 2, as no control token can

be propagated to procedure exit nodes, the interprocedural traversal is unchanged.

Using the above extensions, a reasonCwhy path can be constructed for elements of full

slices.

4.2 Related Work

Various algorithms for calculating interprocedural slices exist, however, we are aware of

no reasoning technique have been proposed to justify slice elements computed by these

methods.

Chopping [Jackson and Rollins 1994b] is a variant of program slicing capable of

revealing statements involved in a transitive dependence from one specific statement

(source criterion) to another one (target criterion). A chop is basically the intersection of

the forward slice of the forward criterion and the backward slice of the backward criterion,

which provides a more focused approach to investigating how one statement affects the

other. A chop thus gives the set of nodes composed of (all) the dependence chains between

the source and the target, but does not provide information about a particular dependence

chain from source to target, neither an appropriate calling sequence that covers is.

The solution proposed in this chapter answers both questions. We are aware of no other

similar techniques for this problem.

UNDERSTANDING PROGRAM SLICES 73

4.3 Conclusions

To our knowledge no automated reasoning technique about the computed slice elements

has been proposed in the literature so far. Without such a tool, verification or

comprehension of the resulting program slices requires considerable expertise and time.

This chapter proposes a solution to “explain” slice elements by computing an actual

dependence chain from the slicing criterion to the chosen slice element.

We implemented the presented reasonCwhy algorithm in the Java programming

language and integrated with the slicing tool presented in Chapter 3. We carried out several

experiments on the same COBOL system and slices computed in programs of different

sizes. The results showed that in all the cases slice computation time dominates the time of

the reasonCwhy path computation (it took only a few seconds in the worst case). It is

because the reasonCwhy algorithm only reads the available token information and performs

no computeCintensive operations (in contrast to slicing). Note that slice computation has to

be performed once, then several reasoning tasks can be initiated on the resulting slice

elements. To our experiences these dependence chains are easily overviewed or analyzed

by a human user, which is also due to control information included.

) �
����2�

Further Enhancements,

Applications

In the case of largeCsize programs, the number of tokens to be propagated and stored can

be very high. This chapter investigates different timeCspace tradeoffs and alternatives for

the algorithm design.

The number of tokens to be stored during the slice computation can be reduced by

calculating the topological sorting of procedures, then processing them in postorder. This

processing order allows discarding tokens stored in procedures calling already processed

procedures. The number of tokens to be propagated can be reduced by preCcomputing the

so called GREFCGMODCKILL information. These sets can be used to filter unnecessary

token propagations in advance. Between program modifications, subsequent slicing tasks

can be sped up by reusing the results of previous calculations, namely, the summary edges.

Furthermore, the token propagation method can be adapted to calculate and exploit flow

edges, which can also reduce the number of required token propagations at the cost of

increased space requirements.

A variant of the algorithm is capable of constructing definitionCuse (du) graphs, which

can aid program comprehension and dataCflow based testing. Finally, it is shown that how

the token propagation method can be applied to calculate slicing variants called dicing and

chopping.

For clarity of the presentation, we restrict to discussing forward slicing in this chapter,

unless explicitly noted.

Section 5.1 describes how the number of stored tokens can be reduced via postorder

processing of procedures. Section 5.2 discusses how the slice computation can be sped up

by preprocessing the program. Section 5.3 describes how previous calculations can be

reused. Section 5.4 discusses how the token propagation method can explore and exploit

flow edges on demand. Section 5.5 presents how the token propagation method can be

FUTHER ENHANCEMENENTS, APPLICATIONS� 75

applied to construct definitionCuse graphs. Section 5.6 describes how the method can be

applied to other variants of slicing; finally, section 5.7 concludes the chapter.

5.1 Reducing Token Storage via Postorder

Processing

Because of the possibly large number of tokens to be propagated in the case of realCworld,

largeCsize codes – which reached about one hundred million in our experiments – it might

be necessary to reduce the memory requirements of the method. At implementing the slicer

prototype (Chapter 3), we already used a kind of token storage reduction: we stored tokens

in "	���procedurally� relevant nodes only. This section describes an "	���proceduralClevel

solution, during which, we determine the topological sorting of procedures and process

them in postorder. Such processing order allows discarding tokens stored previously in

internal nodes of the already processed procedures, at keeping entry and exit node tokens

(summary edges) only.

The topological order of procedures can efficiently be calculated by a depthCfirst search

in the call graph (first, assuming directed acyclic graphs), after which each procedure can

be assigned a unique rPostorder index such that the index of each procedure is less than the

index of any of the called procedures. Postorder processing of procedures means we

always select a procedure (among the procedures to be processed) with the highest

rPostorder index; processing a procedure means we apply the propagation rules to source

tokens in the procedure as long as there is applicable one. Using procedure token worklists,

as described in Chapter 3, a procedure is to be processed, when its token worklist is not

empty, and its processing is continued until its worklist becomes empty. (Initially all the

token worklists are empty except the procedure containing the node of the slicing

criterion.) On selecting a procedure having index " to process, token worklists of all

procedures having index greater than " are empty; after having completed processing this

procedure, the index of the procedure to be selected next may be greater than " when a

token is propagated out of a call site to a called procedure, or less than ", respectively,

when no more intraprocedural propagation is possible and tokens are propagated

interprocedurally from the exit node to caller procedures only (if any).

Assume that we have just processed a procedure with rPostorder index " and all token

worklists of procedures having index greater than " are still empty. If we discard all tokens

– except the ones stored in entry and exit nodes – in all procedures with index greater than

FUTHER ENHANCEMENENTS, APPLICATIONS� 76

or equal to ", and continue the token propagation, the resulting slice will not differ from the

one that would have been computed without token deletion, as it is shown below.

The intraprocedural propagation in untouched procedures (having index less than ") is

unaffected by the deletion, the only change could be due to interprocedural propagation

Rules 3 and 4. As tokens in exit nodes are kept, even at calling a “cleanedCup” procedure

the application of Rule 4 still results in the same tokens in the return sites. At applying

Rule 3, two cases may occur: the token is already contained by the entry node of the called

procedure (no propagation is performed), which case still corresponds to the propagation

without deletion, or a new token, not yet contained by the entry node is propagated to it,.

The latter case is relevant only when propagation is performed to a cleanedCup procedure.

When a new token /���� is propagated to an entry node, all the tokens propagated

intraprocedurally as a consequence of this token (including new propagations induced at

affected nodes) have common backtrack index, identical to �. Or conversely, as /���� is a

new token to the entry node, no other tokens may have existed in this procedure before

with backtrack index �. Therefore, new propagations from entry nodes are surely

propagated in the same way as no deletion would have happened (new and deleted tokens

are �������	�
). In conclusion, since subsequent token propagations are unchanged from

the point of token deletion on, we get the same slice as a result.

In the case of cyclic call graphs, we can still determine a generalized invocation order of

procedures [Forgács 1994] – giving the same index to all the members of the SCC. Token

deletion, in the presence SCCs, can be deduced form the acyclic case.

 As the cost of determining the topological sorting of procedures as well as the cost of

discarding unnecessary tokens is relatively low, the proposed timeCspace tradeoff may

effectively reduce the memory requirements of the method.

5.2 Reducing Propagations via GREF-GMOD-KILL

The token propagation method presented in Chapter 2 represents a fully demandCdriven

approach to slicing that does not require any preprocessing information about the program

– other than the control flow graph. Preprocessing means a preliminary analysis of the

program (code or its graph representation) during which the whole program is analyzed

gathering certain information in advance. This information can assist and speed up latter

tasks. When one or only a few slices need to be computed (or the resulting slice is small,

respectively), only a portion of the globally obtained information is exploited, hence, a

FUTHER ENHANCEMENENTS, APPLICATIONS� 77

demandCdriven solution likely to calculate slices the fastest – also considering the overhead

of preprocessing. When several slicing tasks need to be performed, however, this cost can

return.

Such a preprocessing possibility is the computation of GREF, GMOD, and KILL

information about procedures. The GREF set is the set of program variables to which a

procedure (or the procedures called by the procedure, respectively) contains variable

reference, the GMOD set is the set of variables that a procedure may modify, whereas the

KILL set is the set of program variables that the procedure surely defines during its call (all

paths from entry to exit contains definition). This preprocess information needs to be

computed once and can be reused in any subsequent slicing task later as long as the

program code has not been changed. (Algorithms for computing these sets can be found in

[Banning 1979; Forgács 1994].)

Regarding the token propagation method, the GREF set can be applied to block the

propagation of a token /�!� through a call site when ! is not in the GREF set of the called

procedure – and so no use or further dependences can arise; thus, token /�!� can directly be

propagated to the return site, unless ! is in the KILL set.

In the method presented in Chapter 2, if a control token /��
� is propagated to a call site

�, it induces in the propagation of control tokens over all nodes of every (directly or

indirectly) called procedure, and results in each variable 2 defined in these procedures to

return as data token /�2
���to return site �. Using the GMOD set, instead of propagating the

control token to the called procedure from call site �, we can directly propagate data tokens

corresponding to variables in the GMOD set to return site �, and simply mark called

procedure(s) as “control dependent”. (A control dependent procedure implies all its nodes

to be included into the resulting slice.) Tokens propagated from the return site get the

backtrack index of the control token propagated to the call site (i.e., �).

We implemented the above solution and measured both preprocessing and slicing times.

We used the same subject programs and slicing criteria described in Chapter 3. The

computation times of the GREF, GMOD, KILL sets (altogether) varied between 1 (%������

�) and 43 seconds (%������=). In dataCflow slicing, we observed no significant speed up,

neither in full backward slicing. Full forward slicing also resulted in similar computation

times in the case of smaller programs (%�������,��, and 7). In larger programs (%������<

and =), however, the average computation time has reduced to 19−40% of the slicing time

without preprocessing. Hence, we can conclude that, in the case of large programs, the

FUTHER ENHANCEMENENTS, APPLICATIONS� 78

performance of slicing may improve using the GREF, GMOD, KILL sets, and the cost of

preprocessing can return even at performing a single slicing task.

5.3 Reuse of Summary Edges

As long as the program code has not been changed, summary edges remain unchanged as

well. During subsequent slicing tasks, the propagation of the same token from the same

procedure entry node results in the same tokens in the procedure exit node; therefore, by

saving and loading entry and exit node tokens, the reCpropagation of tokens from entry

nodes can be avoided. However, simply saving and loading these tokens may result in

incomplete slices, as “blocked” token propagations from procedure entry nodes due to

loaded tokens omit potential slice nodes in the called procedures in latter slice

computations (no marking will be performed by Rule 2).

Hence, in addition to entry and exit node tokens, “partial slices”�7 need to be

maintained. A partial slice is composed of nodes marked as a consequence of a token

propagated from a procedure entry node. These partial slices are related to tokens stored in

entry nodes; or to be more specific, as tokens in entry nodes have identical token and

backtrack indices, partial slices can directly be associated with program variables at

procedures.

The backtrack index of the token currently being propagated determines the ������

����	 propagated from the entry node: if a token /��! with backtrack index ! is inserted

into a node in a procedure, this token necessarily derives from a token /�!! propagated

from the entry node of this procedure. In this way, on token insertations, marked nodes,

i.e., elements of the partial slices, can be associated with (added to) the partial slice of the

corresponding backtrack index variable. (Nodes marked due to token insertions having Ø

backtrack index are not maintained in any partial slices.)

Once a slice computation has been finished, we can save and later load these partial

slices in addition to summary edges. In a subsequent slicing task, when the propagation of

a token /�!� is propagated from a call site to a procedure entry node already containing /�!!

(loaded) and so its propagation is blocked, we simply include the partial slice of the called

procedure associated with program variable ! into the resulting slice, and continue the

13 A similar concept but with different computation was proposed in [Harrold and Ci 1998].

FUTHER ENHANCEMENENTS, APPLICATIONS� 79

token propagation from the return site considering summary edges of the called procedure,

i.e., exit node tokens (loaded).

Because of the interprocedurally induced token propagations, partial slices obtained due

to the propagation of a token /�!
! from a procedure entry node does not limit to a single

procedure; a token /��
! propagated from a call site to the called procedure potentially

induces new propagation with token /����from its entry node. The partial slice belonging to

variable � obtained in the called procedure therefore has to be
"	��
 to the partial slice

associated with variable ! of the caller procedure. On blocked token propagations, all

linked partial slices are to be included in order to obtain correct slices.

With new propagations potentially new summary edges and new partial slices are

computed, which can be saved incrementally.

5.4 On-demand Computation of Flow Edges

The presented token propagation method operates over control flow graphs and does not

require revealing intraprocedural dependences between statements in advance, which is a

prerequisite of the SDGCbased approach. On the other hand, using the current technique, it

may occur that different tokens with the same tokenC but different backtrack indices are

propagated from the same node redundantly – exploring the same paths intraprocedurally.

To avoid it, once the token propagation from a node for a given token index has been

completed, the revealed flow edges can be stored between the source and the reached node

(from entry nodes, definition nodes, and return sites to use nodes, call sites, and exit nodes,

respectively). Later, when a token with the same tokenC but a different backtrack index is

to be propagated from the same node again, tokens can directly be propagated through the

previously explored flow edges omitting propagations over intermediate control flow graph

nodes.

This solution corresponds to a demandCdriven construction of the programCdependence

graph; however, the space requirements of maintaining flow edges in addition to the

control flow graph can be very high in the case of large programs.

5.5 On-demand Construction of the Du-graph

The token propagation method presented in Chapter 2 uses variable identifiers as tokenC

and backtrack indices by which a significant speed up can be gained compared to the

FUTHER ENHANCEMENENTS, APPLICATIONS� 80

method proposed by Hajnal and Forgács [2002]. That solution used definition identifiers as

token indices. By contracting tokens belonging to different definitions of the same

variable, however, we lose the information which are the actual definitions affecting the

use being marked. In some applications, this information is more important than computing

slices quickly.

A definitionCuse (du) graph is a directed graph in which nodes represent program

statements and edges represent potential dataCdependences between them. Using definition

identifiers as token and backtrack indices, we can construct the du graph during the token

propagation (in the context of the current slice). The constructed du graph can then be

visualized that can aid program analysis, program comprehension, regression testing, or

support dataCflow based testing criteria, respectively. Note that when creating test cases to

satisfy such a criterion it is highly important to consider realizable definitionCuse pairs,

definitionCuse chains, respectively. If we apply the method for all definitions contained by

the program, the set of definitionCuse pairs can be computed simultaneously. These

definitionCuse pairs need to be covered by test cases to satisfy the allCuses (�

�
����"��)

criterion [Rapps and Weyuker 1985]. In addition, by controlling the length of the

investigated definitionCuse chains, this algorithm can support other testing criteria such as

Ntafos’ required kCtuples [Ntafos 1984] or all programCfunctions [Forgács and Bertolino

2002]. Note that flow edges of PDGs differ from du graph edges: flow edges restrict to

intraprocedural dependences, whereas du graph edges represent dependences crossing

procedure boundaries as well.

5.6 Dicing, Chopping

There are other variants of slicing based on set operations on one or more slices, called

dicing [Lyle 1984] and chopping [Jakson and Rollins 1994b]. They provide a more focused

approach at localizing the set of statements likely to contain the bug during debugging.

Dicing uses the information that the results of some variables fail on some test cases

while other variables pass all tests. It reduces the number of statements to be examined. A

program dice is obtained by subtracting the successful execution slices (slices of variables

showing correct values) from the failed execution slice (slices of variables showing

incorrect results).

The token propagation method is capable of computing the union slice of several slicing

criteria simultaneously by starting multiple initial tokens corresponding to a “compound

FUTHER ENHANCEMENENTS, APPLICATIONS� 81

slicing criterion”14 (all tokens having Ø backtrack index). Note that the computation of the

union slice is likely faster than computing individual slices, as token propagations common

in different computations are to be performed once.

It can be exploited in dicing at computing the union slice of all statements resulting in

correct values. During the first phase, we use mark label �����
 to mark nodes (instead of

“in the slice” in Chapter 2). In the next phase, at keeping �����
 marks, we compute the

slice of the failed variable, using mark label ��"
�
, with the modification that we do not

mark or start new token propagations from nodes marked as �����
. The dice (subtracted

slice) is given by the set of nodes marked as ��"
�
. Note that the computation cost of the

latter slice is likely less than computing the full backward slice, as it skips previous token

propagations from �����
 nodes.

Chopping reveals statements involved in a transitive dependence from one specific

statement (source criterion) to another one (target criterion). It shows how one variable

affects the other. A chop for a chopping criterion (�,��) is the set of nodes that are part of a

dependence chain from source node � to target node �. A program chop can be defined as

the intersection of the backward and the forward slice, from �, and from �, respectively. As

it has been shown in Chapter 3, backward slice computation times are typically shorter

than forward slice computation times, for a chopping criterion (�, �) we compute the

backward slice of �, and use mark label ���� ��
 in the first phase. In the next phase, the

forward slice of � is computed with the modification that new token propagations are

started from ���� ��
 marked nodes only, and we use mark label ��� ��
, respectively.

The chop (intersection slice) is given by the set of nodes marked by labels both ��� ��

and ���� ��
. Note that the computation time of the forward slice is likely shorter than the

computation time of the full forward slice from �, as in the second phase, token

propagations are started from ���� ��
 marked nodes only.

5.7 Conclusions

The algorithm presented in Chapter 2 is a demandCdriven approach requiring no

preliminary, exhaustive analysis of the program’s code, which results in low computation

times when only a few slices need to be computed, or in interactive use, respectively. In

14 A union slice of a “compound slicing criterion” composed of more program points and possibly more

program variables is the union of slices computed for its “atomic slicing criteria” composed of a single

program point and a single variable.

FUTHER ENHANCEMENENTS, APPLICATIONS� 82

other cases, however, performing some preprocessing of the program, the time and space

requirements of the technique can further be reduced.

By computing the topological sorting of procedures and processing them in postorder

numerous tokens stored previously can be discarded that reduces the space requirements of

the method. By computing the GREFCGMODCKILL sets several token propagation can be

filtered in advance that potentially reduces both time and space requirements of the method

at the cost of some preprocessing overhead. Another timeCspace tradeoff is the reuse of the

results of previous calculation by maintaining summary edges and partial slices. In this

way, repeated computation of summary edges and reCpropagation of tokens can be

avoided. It is also discussed how flow edges can be identified and exploited on the fly to

reduce the number redundant token propagations.

A variant of the token propagation method is presented that can be applied to construct

definitionCuse graphs to aid program comprehension and testing dataCflow based testing. It

is also discussed how the method can be adapted to calculate program dices and chops.

) �
����<�

Summary

DataCflow analysis is an important technique of program analysis, which is already used in

optimizing compilers. The key concepts of dataCflow analysis were developed in the late

60s. Over the past decades, the majority of new applications have focused on software

quality.

The concept of program slicing extends dataCflow analysis to accommodate control

dependences. Using program slicing, parts of the code can be extracted automatically,

called a �
"��, which focuses on selected aspects of semantics. As program slices are

typically much smaller than the whole program code they can be more easily understood or

maintained.

Program slicing was originally motivated to aid debugging activities. Various notions of

program slices have been proposed as well as a number of methods to compute them. By

now numerous applications of program slicing exist in software engineering, including

software testing, software maintenance, program comprehension, reC and reverse

engineering, and program integration.

The motivation of the dissertation was to be able to analyze legacy COBOL systems.

We found that previous techniques are not adequate to slice large COBOL systems. By

applying existing methods either precision or scalability is violated. System issues are

often omitted in previous approaches; moreover, interactive contexts require a demandC

driven solution.

The proposed novel static program slicing technique is based on token propagation over

the control flow graph. The algorithm is conceptually simple, which allows of easy

implementation, but general enough to adapt to a larger class of programming languages.

Tokens are propagated along realizable program paths by which we obtain accurate results.

The method is inherently demandCdriven, that is, it computes the necessary information

when they are needed. The technique is compared to other related solutions.

SUMMARY� 84

An efficient implementation of the proposed algorithm has been presented, and its

performance was evaluated on realCworld COBOL codes. Experiments were performed on

a large number of test cases to provide details about its real efficiency, applicability.

To make slicing more userCfriendly we proposed a method to reason about slice

elements that aids slice comprehension.

We also investigated different timeCspace tradeoffs and alternatives for the algorithm

design. We described how to reduce the number of tokens to be stored and how to speed up

slicing by preprocessing, computing flow edges, or reusing the results of previous

calculations, respectively. Construction of the definitionCuse graphs as well as the

adaptation of the method to dicing and chopping is also discussed.

6.1 New Scientific Results

In this section the main contributions of the dissertation are summarized.

THESIS 1.)���'���	�
�2�
��!"��"	������"�����������
"�"	������	"E���� "�����������������"��

���
"���"
"������
����-�"2���
�������8�8F���
�����	
���	�
�
�
���������'"���������
��

���� "������"��
�
��� ��� ���"�� ����"�"�"'�� �"��� ��� ������ ��E�"����	��J� �����"��
� ���� ���

���������
"�"	���	�"	
����"�
-���
����
�����E�"������
���	
-
�"'�	���������$�

These results are shown in Sections 1.3–1.5. Author’s publications related to the thesis

are: [Forgács and Hajnal 1998b; Forgács et al. 1998; Hajnal and Forgács 2002; Hajnal

and Forgács 2012a]

THESIS 2.�)���'��
�'�
���
���	�'�
�
���	
-
�"'�	�����"�����������
"�"	������	"E�������
�

�	� ����	� ��������"�	� �'��� ��	���
� �
� � �������� �"��� ��������� ��������� ��������

�
"���� "�����������������
"2��
���������������$�)����'�
��������	�����	
�����
���	����

������������
$

These results are shown in Sections 2.2–2.5. Author’s publications related to the thesis

are: [Hajnal and Forgács 2002; Hajnal and Forgács 2012a]

SUMMARY� 85

THESIS 3.�)� "��
���	��
� ���� �������
�
���	
-
�"'�	� ����	"E��� �	
� �'�
����
� "���

��������	����	�"	
����"�
-���
���8�8F���
��$�)���	�
�
�
���������������
�"�������
��

������"�"�	�
����
��
��"	������"������������
"������������	��
���"2�J�
�	������������"�	�

�"��������
��"	��'��
��
������
"�����	"	���������
����������	������$

These results are shown in Sections 3.1–3.3. Author’s publication related to the thesis

is: [Hajnal and Forgács 2012a]

THESIS 4.�)� ��'��
�'�
���
� �� 	�'�
� K�
"��� �!�
�"	��L� ����	"E��� ��� �"
� �
"���

��������	�"�	$� ���� �
���"���� "�� ���
"���
�� ��� ��
��
���� �����	"	�� ������ �������
�

�
"����
���	���"	������������������
�
���	
�	������"	�����
� ������� �"���"����	�"���
�

������"�"��
�����
��$

These results are shown in Sections 4.1, 4.3. Author’s publication related to the thesis

is: [Hajnal and Forgács 2012b]

THESIS 5.�)��������
�����"�
��"����'���	������������
���"����
��"�	���	
���� �
���������

���
�"	�� ������ ����	"E����� �"��� ��� ������ ���"�"�	��� ��� ���� ����	� ��������"�	-����
�

�
"�"	�� ��	� ��� �������� "	������
$�)� ��'��
�'�
���
���
"�"�
� �
���"����� ���
�����"	��

��"	"�"�	-��������������������
"�����	
������$

These results are shown in Sections 5.1C5.6. Author’s publication related to the thesis is:

[Hajnal and Forgács 2002]

6.2 Further Research Directions

In Chapter 5, we proposed several enhancement possibilities that are not yet fully

evaluated experimentally. The presented demandCdriven token propagation method

assumes interactive contexts in which only a few slices need to be computed between

program modifications. There can be however other usage scenarios that require more

program slicing tasks to be performed (e.g. program comprehension). We are planning to

study such usage scenarios and design ���"��
 slicing criterion sequences. Based on that,

the proposed timeCspace tradeoffs can be more precisely evaluated.

SUMMARY� 86

We considered no pointer variables (references, function pointers, etc.), which are

present in modern programming languages. #�"	��-�� analysis during which we determine

the set of possible variables to which a pointer may point to and its integration with the

proposed token propagation method are also a great challenge. ObjectCoriented

programming constructs rise other problems haven’t been investigated yet, but are also

worth researching.

Abbreviations

.#1� All ProgramCFunctions

�13� Control Flow Graph

�.3� Directed Acyclic Graph

"�13� Intraprocedural Control Flow Graph

)�13� Interprocedural Control Flow Graph

)�6� Integrated Development Environment

#�3� Program Dependence Graph

%��� Strongly Connected Component

%�3� System Dependence Graph

Appendix: Author’s Publications

Publications on the topic of the thesis

[J] JOURNALS

[J1] Ákos Hajnal, István Forgács. 2012. A demandCdriven approach to slicing legacy

COBOL systems. JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS,

24(1), pp. 67–82, John Wiley & Sons. (IF: 0.844)

[J2] Ákos Hajnal, István Forgács. 2012. Understanding program slices. ACTA

CYBERNETICA (to appear).

[C] CONFERENCES

[C1] Ákos Hajnal, István Forgács. 2002. A precise demandCdriven defCuse chaining

algorithm. In: 6th European Conference on Software Maintenance and

Reengineering (CSMR’2002), IEEE Computer Society, pp. 77–86.

[C2] Ákos Hajnal, István Forgács. 1998. An applicable test data generation algorithm for

domain errors. In: 1998 ACM/SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA '98), ACM New York, pp. 63–72. SOFTWARE

ENGINEERING NOTES, 23(2), ACM New York, pp. 63–72.

 [C3] István Forgács, Ákos Hajnal. 1998. Automated test data generation to solve the Y2k

problem. In: 2nd International Software Quality Week Europe 1998 (QWE'98), p.

10 (paper 2S).

 [C4] István Forgács, Ákos Hajnal, Éva Takács. 1998. Regression slicing and its use in

regression testing. In: 22nd Annual International Computer Software and

Applications Conference (COMPSAC'98), IEEE Computer Society, pp. 464–469.

APPENDIX: PUBLICATIONS�� 89

[O] OTHER

[O1] István Forgács, Ákos Hajnal. 2011. ForráskódCanalízis: Olvassunk a sorok között!

COMPUTERWORLD SZÁMÍTÁSTECHNIKA, XLII:(41), pp. 10–12 (in

Hungarian).

[O2] István Forgács, Ákos Hajnal. 1997. Szoftver tesztelés. Jegyzet Szoftver minıség és

tesztelés tárgyhoz, BME, ELTE Doktori Iskola, 1997/1998Cas tanév, p. 41 (in

Hungarian).

Further publications

[J] JOURNALS

[J3] David Isern, Antonio Moreno, David Sánchez, Ákos Hajnal, Gianfranco Pedone,

László Zsolt Varga. 2011. AgentCbased execution of personalised home care

treatments. APPLIED INTELLIGENCE, 34(2), SpringerCVerlag, pp. 155–180. (IF:

0.849)

[B] BOOK CHAPTERS

[B1] Ákos Hajnal, Tamás Kifor, Gergely Lukácsy, László Zsolt Varga. 2011. Web

services as XML data sources in enterprise information integration. In: Enterprise

Information Systems: Concepts, Methodologies, Tools and Applications, 2011,

Hershey PA: Information Science Reference, pp. 972–985. Services and Business

Computing Solutions with XML: Applications for Quality Management and Best

Processes (P. Hung, Ed.), 2009, IGI Global, pp. 82–97.

[B2] Ákos Hajnal, Antonio Moreno, Gianfranco Pedone, David Riano, László Zsolt

Varga. 2009. Formalizing and leveraging domain knowledge in the K4CARE home

care platform. In: Semantic knowledge management: An ontologyCbased framework

(A. Zilli, E. Damiani, P. Ceravolo, A. Corallo, G. Elia, Eds.), Information Science

Reference, pp. 279–302.

APPENDIX: PUBLICATIONS�� 90

[B3] László Zsolt Varga, Ákos Hajnal, Zsolt Werner. 2005. The WSDL2Agent tool. In:

Software AgentCBased Applications, Platforms and Development Kits (R. Unland,

M. Klusch, M. Calisti, Eds.), Whitestein Series in Software Agent Technologies,

Birkhauser Basel, pp. 197–223.

[C] CONFERENCES

[C5] Tamás Kifor, Tibor Gottdank, Ákos Hajnal, Péter Baranyi, Brúnó Korondi, Péter

Korondi. 2011. Smartphone emotions based on humanCdog interaction. In: 2nd

International Conference on Cognitive Infocommunications: CogInfoCom 2011,

 IEEE Computer Society, pp. 1–6.

 [C6] Tamás Kifor, Tibor Gottdank, Ákos Hajnal, Csanád Szabó, András Róka, Brúnó

Korondi, Péter Korondi. 2011. EthoPhone, humanCdog interaction inspired affective

computing for smartphone. In: Proceedings IEEE/ASME International Conference

on Advanced Intelligent Mechatronics, IEEE Computer Society, pp. 542–547.

 [C7] Ákos Hajnal, David Isern, Antonio Moreno, Gianfranco Pedone, László Zsolt

Varga. 2007. The role of knowledge in designing an agent platform for home care.

In: 2nd International Conference on Knowledge Management in Organizations

(KMO), pp. 16–26.

[C8] Ákos Hajnal, David Isern, Antonio Moreno, Gianfranco Pedone, László Zsolt

Varga. 2007. Knowledge driven architecture for home care. In: MultiCagent systems

and applications V: 5th International Central and Eastern European Conference on

MultiCagent Systems (CEEMAS 2007), pp. 173–182. LECTURE NOTES IN

ARTIFICIAL INTELLIGENCE, Vol. 4696, SpringerCVerlag, pp. 173–182.

[C9] Ákos Hajnal, Gianfranco Pedone, László Zsolt Varga. 2007. OntologyCdriven agent

code generation for home care in Protégé. In: 10th International Protégé

Conference: Budapest, Hungary, pp. 91–93.

[C10] Ákos Hajnal, Tamás Kifor, Gianfranco Pedone, László Zsolt Varga. 2007. Benefits

of provenance in home care. In: Healthgrid 2007. STUDIES IN HEALTH

TECHNOLOGY AND INFORMATICS, Vol. 126: From genes to personalized

healthcare: grid solutions for the life sciences (N. Jacq, Y. Legré, H. Muller, I.

Blanquer, V. Breton, D. Hausser, V. Hernández, T. Solomonides, M. HofmanC

Apitius, Eds.), IOS Press, pp. 330–337.

APPENDIX: PUBLICATIONS�� 91

[C11] László Zsolt Varga, Ákos Hajnal, Zsolt Werner. 2004. An agent based approach for

migrating web services to semantic web services. In: 11th International Conference

on Artificial Intelligence: Methodology, Systems (AIMSA 2004). LECTURE

NOTES IN COMPUTER SCIENCE, Vol. 3192, SpringerCVerlag, pp. 371–380.

[C12] László Zsolt Varga, Ákos Hajnal. 2003. Engineering web service invocations from

agent systems. In: 3rd International/Central and Eastern European Conference on

MultiCAgent Systems (CEEMAS 2003). LECTURE NOTES IN COMPUTER

SCIENCE, Vol. 2691, SpringerCVerlag, pp. 626–636.

[O] OTHER

[O3] Jonathan Dale, Ákos Hajnal, Martin Kernland, László Zsolt Varga. 2003.

Integrating web services into Agentcities. Agentcities Technical Recommendation

Document (actfCrecC00006).

Bibliography�

AGRAWAL, G., AND GUO, L. 2001. Evaluating explicitly contextCsensitive program slicing.

In #�����
"	���������������.�0�%)3#F.5-%)3%81��D���������	�#�������.	�
��"��

1���%��� �������
���	
�6	�"	���"	�, 6–12.

AGRAWAL, H., DEMILLO, R.A, AND SPAFFORD, E.H. 1993. Debugging with dynamic

slicing and backtracking. %��� �����#����"����	
�6!���"�	�����79A:, 589–616.

AGRAWAL, H., AND HORGAN, J. 1990. Dynamic program slicing. In .�0� %)3#F.5�

��	����	��� �	� #�������"	�� F�	������ ���"�	� �	
�)��
���	���"�	� 9#F�):$ ACM,

New York, USA, 246–256.

ANTONIOL, G., FIUTEM, R, LUTTERI, G, TONELLA, P., ZANFEI, S., AND MERLO, E. 1997.

Program understanding and maintenance with the CANTO environment. In

)	���	��"�	�
���	����	����	�%��� ����0�"	��	�	��� 72–81.

ATKINSON, D.C., AND GRISWOLD, W.G. 1996. The design of wholeCprogram analysis tools.

In #�����
"	�����������B���)	���	��"�	�
���	����	����	�%��� ����6	�"	���"	�, 16–27.

BANNING, J.P., 1979. An efficient way to find the side effects of procedure calls and the

aliases of variables. In #�����
"	������ ����A���.�0�%)3.��-%)3#F.5�������"����	�

#�"	�"�
��������������"	��
�	������, 29–41.

BINKLEY, D. 1993. Precise executable interprocedural slices. In .�0� F������� �	�

#�������"	��F�	��������	
�%������, 2(1–4), 31–45.

BINKLEY, D. 1997. Semantics guided regression test cost reduction. In)666����	����"�	��

�	�%��� ����6	�"	���"	�, 23(8), 498–516.

BINKLEY, D. 1998. The application of program slicing to regression testing. In)	������"�	�

�	
�%��� ��������	�
����%���"�
�)������	�#�������%
"�"	�, 40(11–12), 583–594.

BINKLEY, D. 2007. Source code analysis: A road map. In� 18%6� &�>+� ���>� 1������ ���

%��� ����6	�"	���"	�, 104–119.

BINKLEY, D., AND HARMAN, M. 2003. A largeCscale empirical study of forward and

backward static slice size and context sensitivity. In #�����
"	��� ��� ����)	���	��"�	�
�

��	����	����	�%��� ����0�"	��	�	��, 44–53.

BINKLEY, D., HORWITZ, S., AND REPS, T. 1995. Program integration for languages with

procedure calls. In ���	����"�	���	�#�������"	��F�	��������	
�%������, 4(1), 3–35.

BIBLIOGRAPHY� 93

BROWN, G.D. 2000. COBOL: The failure that wasn't. �8�8F/�����$���. Available:

http://web.archive.org/web/20000926032455/

www.cobolreport.com/columnists/gary/05152000.htm [28 October 2009].

CANFORA, G., CIMITILE, A., AND DE LUCIA, A. 1998. Conditioned program slicing. In

)	������"�	� �	
� %��� ���� ����	�
���� %���"�
�)����� �	� #������� %
"�"	�, 40(11–12),

595–607.

CANFORA, G., CIMITILE, A., DE LUCIA, A., AND DI LUCCA, G.A. 1994a. Software salvaging

based on conditions. In #�����
"	��� ��� ����)	���	��"�	�
� ��	����	��� �	� %��� ����

0�"	��	�	��, 424–433.

CANFORA, G., CIMITILE, A., AND MUNRO, M. 1994b. RE2: Reverse engineering and reuse

reengineering. In M���	�
����%��� ����0�"	��	�	��+�/���������	
�#����"��, 6(2), 53–72.

CIMITILE, A., DE LUCIA, A., AND MUNRO, M. 1996. A specification driven slicing process

for identifying reusable functions. In M���	�
���� %��� ����0�"	��	�	��+�/���������	
�

#����"��, 8(3), 145–178.

CODESURFER 2009. GrammaTech, Inc., http://www.grammatech.com/products/codesurfer

[28 October 2009].

DE LUCIA, A., FASOLINO, A.R., AND MUNRO, M. 1996. Understanding function behaviours

through program slicing. In #�����
"	��� ��� ���� <���)666� D�������� �	� #�������

��������	�"�	, 9–18.

VAN DEURSEN, A., AND MOONEN, L., 1999. Understanding COBOL systems using inferred

types. In #�����
"	������ ����>���)	���	��"�	�
�D���������	�#���������������	�"�	,

74–81.

DUESTERWALD, E., GUPTA, R., AND SOFFA, M.L. 1997. A practical framework for demandC

driven interprocedural data flow analysis. In� .�0� ���	����"�	�� �	� #�������"	��

F�	��������	
�%������, 19(6), 992–1030.

EMAMI, M., GHIYA, R., AND HENDREN, L.J. 1994. ContextCsensitive interprocedural pointsC

to analysis in the presence of function pointers. In #�����
"	������ ����.�0�%)3#F.5�

�CC<���	����	����	�#�������"	��F�	���������"�	��	
�)��
���	���"�	, 20–24.

FERRANTE, J., OTTENSTEIN, K.J., AND WARREN, J.D. 1987. The program dependence graph

and its use in optimization. In .�0� ���	����"�	�� �	� #�������"	�� F�	������� �	
�

%������, 9(3), 319–349.

FIELD, J., AND RAMALINGAM, G. 1999. Identifying procedural structure in Cobol programs.

In .�0�%)3%81��%��� ����6	�"	���"	��5����, 24(4), 1–10.

BIBLIOGRAPHY� 94

FORGÁCS, I. 1994. Double iterative framework for flowCsensitive interprocedural data flow

analysis. In .�0����	����"�	���	�%��� ����6	�"	���"	���	
�0����
�
���,�3(1), 29–55.

FORGÁCS, I., AND BERTOLINO, A. 2002. Preventing untestedness in data flowCbased testing.

In %��� ��������"	���*��"�"���"�	�N�/�
"��"
"��, 12(1), 29–58.

FORGÁCS, I., AND HAJNAL, Á. 1998a. An applicable test data generation algorithm for

domain errors. In #�����
"	�����������CCB�.�0O%)3%81��)	���	��"�	�
�%�����"����	�

%��� ��������"	���	
�.	�
��"�, %��� ����6	�"	���"	��5���� 23(2), 63–72.

FORGÁCS, I., AND HAJNAL, Á. 1998b. Automated test data generation to solve the Y2k

problem. In #�����
"	�����������	
�)	���	��"�	�
�%��� ����,��
"���D����6�����, p. 2S.

FORGÁCS, I., TAKÁCS, É., AND HAJNAL, Á. 1998. Regression slicing and its use in regression

testing. In #�����
"	��� ���)666�)	���	��"�	�
� ��������� %��� ���� �	
� .��
"���"�	��

��	����	��, 464–469.

GALLAGHER, K.B. 1990. Surgeon’s assistant limits side effects. In)666�%��� �����>9A<:, p.

95.

GALLAGHER, K.B. 1992. Evaluating the surgeon’s assistant: Results of a pilot study. In

#�����
"	������������	����	����	�%��� ����0�"	��	�	��, 236–244.

GALLAGHER, K.B., AND LYLE, J.R. 1991. Using program slicing in software maintenance.

In)666����	����"�	���	�%��� ����6	�"	���"	�, 17(8), 751–761.

GRISWOLD, W.G. 2001. Making slicing practical: the final mile. In #�����
"	���������������

.�0� %)3#F.5-%)3%81�� D�������� �	� #������� .	�
��"�� 1��� %��� ���� ���
�� �	
�

6	�"	���"	�, p.1.

GUPTA, R., HARROLD, M.J., AND SOFFA, M.L. 1992. An approach to regression testing using

slicing. In #�����
"	������������	����	����	�%��� ����0�"	��	�	��, 299–308.

GUPTA, R., SOFFA, M.L., AND HOWARD, J. 1997. Hybrid slicing: Integrating dynamic

information with static analysis. In .�0� ���	����"�	�� �	� %��� ���� 6	�"	���"	�� �	
�

0����
�
���, 6(4), 370–397.

GYIMÓTHY, T., BESZÉDES, Á., AND FORGÁCS, I. 1999. An efficient relevant slicing method

for debugging. In F�������5�����"	����������%�"�	��, 303–321.

HAJNAL, Á., AND FORGÁCS, I. 2002. A precise demandCdriven defCuse chaining algorithm.

In #�����
"	��� ��� ��� A��� 6������	� ��	����	��� �	� %��� ���� 0�"	��	�	��� �	
�

/��	�"	���"	�, 77–86.

HAJNAL, Á., AND FORGÁCS, I. 2012a. A demandCdriven approach to slicing legacy COBOL

systems. In M���	�
����%��� ���+�6'�
��"�	��	
�#������, 24(1), 67–82.

BIBLIOGRAPHY� 95

HAJNAL, Á., AND FORGÁCS, I. 2012b. Understanding program slices. In .���������	��"��

(to appear).

HARMAN, M., AND DANICIC, S. 1995. Using program slicing to simplify testing. In %��� ����

����"	���*��"�"���"�	��	
�/�
"��"
"��, 5(3), 143–162.

HARMAN, M., AND DANICIC, S. 1997. Amorphous program slicing. In #�����
"	������ ����

=���)	���	��"�	�
�D���������	�#���������������	�"�	, 70–79.

HARMAN, M., HIERONS, R.M., FOX, C., DANICIC, S., AND HOWROYD, J. 2001. Pre/Post

conditioned slicing. In #�����
"	������ ����)666�)	���	��"�	�
���	����	����	�%��� ����

0�"	��	�	��, 138–147.

HARROLD, M. J., AND ROTHERMEL, G. 1997. Aristotle: A system for research on and

development of programCanalysisCbased tools. ����	"��
� /������ 8%P-�)%/�-7OC>-

�/�>, Department of Computer and Information Science, The Ohio State University.

HARROLD, M.J., ROTHERMEL, G., AND SINHA, S. 1998. Computation of interprocedural

control dependence. In #�����
"	��� ��� ���� �CCB� .�0� %)3%81��)	���	��"�	�
�

%�����"����	�%��� ��������"	���	
�.	�
��"�, 11–20.

HECHT, M.S. 1977. Flow analysis of Computer Programs. 6
��'"���5����-��

�	
)	�.

HIERONS, R., HARMAN, M., AND DANICIC, S. 1999. Using program slicing to assist in the

detection of equivalent mutants. In %��� ��������"	���*��"�"���"�	��	
�/�
"��"
"��, 9(4),

233–262.

HIERONS, R., HARMAN, M., FOX, C., OUARBYA, L., AND DAOUDI, M. 2002. Conditioned

slicing supports partition testing. In %��� ��������"	���*��"�"���"�	��	
�/�
"��"
"��, 12(1),

23–28.

HOFFNER, T., KAMKAR, M., AND FRITZSON, P., 1995. Evaluation of program slicing tools. In
�	
�)	���	��"�	�
�D�������� �	� .�������
� �	
� .
���"���"��������"	�� 9..�6�P3:,
51–69.

HORWITZ, S., PRINS, J., AND REPS, T. 1989. Integrating nonCinterfering versions of

programs. In ���	����"�	���	�#�������"	��F�	��������	
�%��������11(3), 345–387.

HORWITZ, S., REPS, T., AND BINKLEY, D. 1990. Interprocedural slicing using dependence

graphs. In .�0����	����"�	���	�#�������"	��F�	��������	
�%������, 12(1), 26–60.

HORWITZ, S., REPS, T., AND SAGIV, M. 1995. Demand interprocedural dataflow analysis. In

#�����
"	��� ��� ���� 7�
� .�0� %)3%81�� %�����"��� �	� 1��	
��"�	�� ��� %��� ����

6	�"	���"	�, 104–115.

INDUS. SAnToS Laboratory: Indus, a toolkit to customize and adapt Java programs.

http://indus.projects.cis.ksu.edu [8 November 2011]

BIBLIOGRAPHY� 96

JACKSON, D., AND ROLLINS, E.J. 1994a. Abstraction mechanisms for pictorial slicing. In

#�����
"	����������)666�D���������	�#���������������	�"�	, 82–88.

JACKSON, D., AND ROLLINS, E.J. 1994b. A new model of program dependences for reverse

engineering. In #�����
"	����������%���	
�.�0�%)3%81��%�����"����	�1��	
��"�	��

���%��� ����6	�"	���"	�, 2–10.

KOREL, B., AND LASKI, J. 1988. Dynamic program slicing. In)	������"�	� #������"	��

F��������C�7,155–163.

KRINKE, J. 2002. Evaluating contextCsensitive slicing and chopping. In #�����
"	����������

)	���	��"�	�
���	����	����	�%��� ����0�"	��	�	��, 22–31.

KRINKE, J. 2003. Advanced Slicing of Sequential and Concurrent Programs. Ph.D. Thesis,

Universität Passau.

KRINKE, J. 2006. Effects of context on program slicing. In M���	�
� ��� %������� �	
�

%��� ���, 79(9), 1249–1260.

KRINKE, J., AND SNELTING, G. 1998. Validation of measurement software as an application

of slicing and constraint solving.)	������"�	��	
�%��� ��������	�
���, Special issue on

Program Slicing, 661–675.

LIANG, D., AND HARROLD, M. J. 1999. ReuseCdriven interprocedural slicing in the presence

of pointers and recursion. In #�����
"	��� ��� ����)666�)	���	��"�	�
� ��	����	��� �	�

%��� ����0�"	��	�	��, 421–430.

LIVADAS, P.E., AND ALDEN, S.D. 1993. A toolset for program understanding. In

#�����
"	����������)666�%���	
�D���������	�#���������������	�"�	, 110–118.

LIVADAS, P.E., AND CROLL, S. 1992. Program slicing. ����	"��
� /������ %6/�-�/A�� -1,

Computer Science and Information Services Department, University of Florida,

Gainesville, FL.

LOYALL, J.P, AND MATHISEN, S.A. 1993. Using dependence analysis to support the

software maintenance process. In #�����
"	��� ��� ���� ��	����	��� �	� %��� ����

0�"	��	�	��, 282–291.

LYLE, J.R. 1984. Evaluating variations of program slicing for debugging. #�$�$� ����"�,

University of Maryland.

LYLE, J., AND WALLACE, D. 1997. Using the unravel program slicing tool to evaluate high

integrity software. In #�����
"	������%��� ����,��
"���D����90����CC>:.

MOCK, M., ATKINSON, D.C., CHAMBERS, C., AND EGGERS, S.J. 2002. Improving program

slicing with dynamic pointsCto data. In .�0� %)3%81�� %��� ���� 6	�"	���"	�� 5����,

27(6), 71–80.

BIBLIOGRAPHY� 97

MYERS, E. M. 1981. A precise interCprocedural data flow algorithm. In #�����
"	����������

B��� .�0� %)3#F.5-%)3.��� %�����"��� �	� #�"	�"�
��� ��� #�������"	�� F�	������,

219–230.

NISHIMATSU, A., JIHIRA , M., KUSUMOTO, S., AND INOUE, K. 1999. CallCmark slicing: An

efficient and economical way of reducing slice. In #�����
"	��� ��� ����)	���	��"�	�
�

��	����	������%��� ����6	�"	���"	�, 422–431.

NTAFOS, S.C. 1984. On required element testing. In�)666� ���	����"�	�� �	� %��� ����

6	�"	���"	�, 10(6), 795–803.

ORSO, A., ORSO, R., SINHA, S., AND HARROLD, M.J. 2001. Incremental slicing based on

dataCdependences types. In #�����
"	��� ��� ����)666�)	���	��"�	�
� ��	����	��� �	�

%��� ����0�"	��	�	��, 158–167.

OTTENSTEIN, K.J., AND OTTENSTEIN, L.M. 1984. The program dependence graph in a

software development environment. In A�0�%)3#F.5�5��"���, 19(5), 177–184.

PODGURSKI, A., AND CLARKE, L.A. 1990. A formal model of program dependences and its

implications for software testing, debugging, and maintenance. In)666����	����"�	���	�

%��� ����6	�"	���"	�, 16(9), 965–979.

RANGANATH, V.P., AMTOFT, T., BANERJEE, A., HATCLIFF, J., AND DWYER, M.B. 2007. A

new foundation for control dependence and slicing for modern program structures. In

.�0����	����"�	���	�#�������"	��F�	��������	
�%������, 29(5), Article 27.

RAPPS, S., AND WEYUKER, E.J. 1985. Selecting software test data using data flow

information. In)666����	����"�	���	�%��� ����6	�"	���"	�, 11(4), 367–375.

REPS, T.W. 1993. Demand interprocedural program analysis using logic databases. In

D���������	�#�������"	�� "���F��"�����������, 163–196.

REPS, T., HORWITZ, S., AND SAGIV, M. 1995. Precise interprocedural dataflow analysis via

graph reachability. In #�����
"	������������	
�.�0�%)3#F.5-%)3.���%�����"����	�

#�"	�"�
������#�������"	��F�	������, 49–61.

REPS, T., HORWITZ, S., SAGIV, M., AND ROSAY, G. 1994. Speeding up slicing. In .�0�

%)3%81��%��� ����6	�"	���"	��5����, 19(5), 11–20.

SINHA, S., HARROLD, M. J., AND ROTHERMEL, G. 1999. SystemCdependenceCgraphCbased

slicing of programs with arbitrary interprocedural control flow. In #�����
"	��� ��� ����

�����)	���	��"�	�
���	����	����	�%��� ����6	�"	���"	�, 432–441.

STEINDL, C. 1998. Intermodular slicing of objectCoriented programs. F������� 5�����)	��

���������%�"�	���9�7B7:, 264–278.

BIBLIOGRAPHY� 98

VENKATESH, G.A. 1991. The semantic approach to program slicing. In #�����
"	����������

.�0� %)3#F.5� �CC�� ��	����	��� �	� #�������"	�� F�	������ ���"�	� �	
�

)��
���	���"�	, 107–119.

WEISER, M. 1981. Program slicing. In #�����
"	������ ����=���"	���	��"�	�
���	����	����	�

%��� �����	�"	���"	��9)�%6�&B�:, 439–449.

WEISER, M. 1984. Program slicing. In)666����	����"�	���	�%��� ����6	�"	���"	�, 10(4),

352–357.

XU, B., QIAN, J., ZHANG, X., WU, Z., AND CHEN, L. 2005. A brief survey of program slicing.

In .�0�%)3%81��%��� ����6	�"	���"	��5����, 30 (2), 1–36.

Abstract

COBOL is often thought as an oldCfashioned programming language which is of little

importance by now. However, the fact is that several billion lines of COBOL codes are

actively used today and COBOL is still the dominant language for business applications.

Many of the legacy systems are more than 30−40 years old, whose maintenance is very

laborCintensive and costly task.

Program slicing is a potentially useful analysis for aiding such maintenance activities.

The concept of program slicing was proposed by Mark Weiser that extends dataCflow

analysis by accommodating control dependences (effects of dataCflow on control). Slicing

has found its applications in different areas of software engineering including software

testing, software maintenance, program comprehension, reC and reverse engineering, and

program integration.

COBOL has been fallen out of the focus of the program slicing research so far, and as it

is shown that, existing methods are inefficient in performing these tasks� due to their

prohibitive time or space requirements. The work followed aimed at developing a new

static program slicing approach that addresses the challenges raise at slicing industrialC

scale COBOL codes.

The dissertation presents a novel demandCdriven static program slicing technique using

token propagation, which is based on control flow graphs that are more easily adaptable to

accommodate different programming language constructs, and attains the accuracy of the

system dependence graphCbased approach. Experimental results show that the presented

method is indeed capable of computing precise program slices quickly, whereas longer

computation times always result in overly large slices uninterpretable for human users.

A novel technique called the “reasonCwhy algorithm” is proposed to reason about slice

elements by determining an actual dependence chain from the slicing criterion to the

chosen slice element. Without such a tool, verification or comprehension of the resulting

program slice requires considerable expertise and time.

Different timeCspace tradeoffs and alternatives for the algorithm design are proposed to

reduce the number of tokens to be propagated and stored. Modified algorithms are

presented to determine definitionCuse graphs, program dices and chops.

Kivonat

A COBOLCra gyakran, mint egy elavult programozási nyelvre gondolnak, pedig

napjainkban is több milliárd sornyi COBOL kód fut világszerte, sıt, még mindig ez a

leggyakrabban használt programnyelv az üzleti alkalmazásokban. A COBOL rendszerek

nemritkán 30−40 évesek, karbantartásuk rendkívül munkaigényes, költséges feladat.

A program szeletelés alkalmazása nagy segítséget nyújthat ezen feladatok elvégzésében.

A program szeletelés ötletét Mark Weiser publikálta elıször, amely az adatfolyamCanalízist

terjeszti ki a vezérlési függıségekre. A program szeletelés alkalmazhatóságát a szoftver

technológia számos területén igazolták, köztük a szoftver tesztelésben és karbantartásban, a

programmegértés és visszafejtésben és a programintegráció területén.

A program szeletelés területén folytatott kutatás eddig kevés figyelmet fordított a

COBOL programok szeletelési problémáira, és ahogy ezt megmutatjuk, a feladatra a létezı

módszerek nem alkalmazhatóak hatékonyan a gyakorlatban. A munka célja egy új statikus

programszeletelési megközelítés kidolgozása volt, amely megoldásokat keres azokra a

problémákra, amelyek ipari mérető COBOL programok szeletelésekor merülnek fel.

A disszertáció egy új igényvezérelt statikus programszeletelési technikát mutat be,

amely a vezérlési folyamgráfokon történı token terjesztés révén pontos program szeleteket

képes meghatározni. A folyamgráfok könnyebben adaptálhatóak a különbözı

programozási nyelvekben használt konstrukciók reprezentálására, és az algoritmus

megtartja a rendszer függıségi gráfCalapú módszerek által elérhetı szeletpontosságot. A

kísérleti eredmények azt mutatják, hogy a módszer rövid idı alatt képes pontos program

szeletek meghatározására, hosszabb számítási idık esetén az eredmény szeletek mérete

túlságosan nagy lesz, amelyek már amúgy sem értelmezhetık a felhasználók számára.

A disszertáció bemutat egy új, program szelet megértést támogató technikát is, amely

alkalmas konkrét függıségi láncok meghatározására a kiválasztott, indokolandó

szeletelembe.

Különbözı továbbfejlesztési lehetıségeket, algoritmusCtervezési alternatívákat

ismerhetünk meg, amelyek segítségével csökkenthetı a módszer futási idıC vagy tárhely

igénye.� Módosított algoritmusok alkalmasak definícióCfelhasználás gráfok, program

vágások, darabolások meghatározására.

