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Chapter 1 

Introduction 

The key concepts of dataCflow analysis were developed in the late 1960s, which technique 

had become an important means of program analysis. During dataCflow analysis 

information is gathered about the computer code how instructions affect each other through 

variable values calculated at various program points. DataCflow analysis is often used by 

compilers when optimizing computer programs (loopCinvariant code motion, common 

subexpression elimination, simplified arithmetic expression evaluation). Over the past 

decades, however, the majority of new applications have focused on software quality. 

The concept of program slicing proposed by Mark Weiser in 1979 extends dataCflow 

analysis by accommodating ��	���
� 
���	
�	��� (effects of dataCflow on control). 

Program slicing is a technique for simplifying programs by focusing on selected aspects of 

semantics. The original idea comes from the observation that programmers are often 

interested in only a portion of the program’s code. The process of slicing “deletes” those 

parts of the program that can be determined to have no effect upon the semantics of 

interest. Thus program slices are typically much smaller than the whole program which can 

be more easily understood or maintained.  

Program slicing was originally motivated to aid debugging activities. In the past three 

decades, various notions of program slices have been proposed as well as a number of 

methods to compute them. By now program slicing has numerous applications in software 

engineering, including software testing and maintenance, program comprehension, reC and 

reverse engineering, and program integration. 

Slicing industrialCscale programs raises new requirements that a practical slicer must 

take into account. This chapter investigates the applicability of existing methods to largeC

size legacy COBOL codes. 

Section 1.1 introduces the basic concept of program slicing as well as its main forms 

and applications. Previous implementations are overviewed in Section 1.2. Sections 1.3, 

1.4, and 1.5 discuss the barriers of application of existing techniques on industrialCscale 

COBOL codes. Section 1.6 presents the motivation of this work. Section 1.7 overviews the 
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structure of the remainder of the thesis. The main contributions are introduced in Section 

1.8. 

1.1    Program Slicing 

The concept of ���������
"�"	� was first introduced by Mark Weiser in his Ph.D. thesis in 

1979. His work was also presented at a conference [Weiser 1981] and in a software 

engineering journal in 1984 [Weiser 1984]. The rapid admission of his idea reflected the 

growing demand for such analysis and its high potential for application in different 

software engineering areas. The motivation for slicing derives from the observation that 

large computer programs are more easily understood or maintained when broken into 

smaller pieces. Unlike designCtime decomposition techniques, slicing is applied to 

programs after they are written and allows slicing to be performed automatically on the 

actual program text.  

Weiser summarized program slicing as follows: 

 

#��������
"�"	��"���������
����
�����!���"�	��
��������������������������

��������"	�� ����� ��������$� %����"	�� ����� �� ������� ��� �� �������&�� ����'"����

�
"�"	�� ��
����� ����� �������� ��� �� �"	"��
� �����  �"��� ��"

� ���
����� �����

����'"��$�������
���
������������

�
���(�
"��(�� "���	� "	
���	
�	����������

�����	���
� ��� ��"����

�� �������	�� ������"�"	�
��������� "��"	� ����
���"	����

��������"�"�
���������������'"��$ 

Mark Weiser [1981] 

 

Finding such “ideal slices” however proved to be unsolvable in general: there cannot be 

a slicing method that can guarantee the minimality of the slices or behaviour equivalence, 

respectively. Syntactic restriction, namely, the slice is an independent program that can be 

compiled and run is also relaxed in some techniques later. Weiser therefore proposed a 

more practical definition for slicing based on 
��� and ��	���
��
�  [Weiser 84] to enable 

exact slicing algorithms.  

The motivation of program slicing was to answer the question: “Which are the 

statements that (potentially) ������ the variable values computed at some program point?” 

Weiser presented experimental evidence that programmers already use slicing during 

debugging − mentally. Having picked a statement and a variable (or a set of variables) at 
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which the error becomes visible, the program slice can show the statements that may 

participate in the computation of the erroneous value. The selected program point ) and the 

set of variables of interest * are called a �
"�"	����"���"�	, denoted as �=(), *). A slice is 

typically much smaller than the whole program, thus the bug can be found easier and 

faster.  

For illustration, consider the following program fragment shown in Figure 1 and the 

related program slice with respect to slicing criterion ��= (9, {fact}) (statement in line 9 

and variable fact). The slice contains statements in lines 2, 4, and 6, in addition to the 

print statement of the slicing criterion. The assignment statement in line 6 has 
"���� effect 

on the variable value printed in line 9 (
����
���	
�	��), furthermore, the value assigned 

in line 6 is 
���	
�	� on the initialization statement in line 2. The outcome of the 

conditional statement in line 4 determines the execution of statement 6 (��	���
�


���	
�	��), therefore it is also included in the slice. Other statements have no effect on 

the slicing criterion. The defect, which is due to the erroneous initialization of variable 

fact, can be found easier, as the slice contains the relevant statements only.  

 

 

 

 

  

 

#�������������	�+�

... 

1  var sum := 0; 

2  var fact := 0; 

3  var qsum := 0; 

4  for (var i := 1; i <= 10; i++)  

   { 

5    sum := sum + i; 

6    fact := fact * i; 

7    qsum := qsum + i * i; 

   } 

8  print(sum);  

9  print(fact);  

10 print(qsum);  

... 

#��������
"��+�

 

 

2  var fact := 0; 

 

4  for(var i := 1; i <= 10; i++) 

   { 

 

6    fact := fact * i; 

 

   } 

 

9  print(fact); 

 

 

 

���������� ���������
���
�������
��������������������������������!"#$�%����&'�
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Weiser’s method has been “classified” later as a ���� ��
� ����"� program slicing 

technique. ���� ��
, because in constructing the slice, statements affecting the selected 

statement are traced backwards (in the opposite direction of the program execution); and 

����"�, because the analysis is made without having specified any particular program 

execution (all possible program executions are taken into account). Forward static program 

slicing determines the part of the program that is directly or indirectly affected by the 

selected statement.  

Since Weiser’s method, other forms of program slicing have been evolved such as 

dynamic slicing [Korel and Laski 1988; Agrawal and Horgan 1990], quasiCstatic slicing 

[Venkatesh 1991], conditioned slicing [Canfora et al. 1998], amorphous slicing [Harman 

and Danicic 1997], hybrid slicing [Gupta et al. 1997], and relevant slicing [Gyimóthy et al. 

1999].  

While a static slice represents the original program’s behaviour for any of the program 

inputs with respect to the slicing criterion, a dynamic slice discovers effects along a given 

execution trace only. ��	��"�� �
"��� can therefore be much “thinner” than their static 

counterparts. ,���"-����"�� �
"�"	� achieves smaller slices by fixing some of the input 

variables while others may vary. ��	
"�"�	�
� �
"�"	� is a generalization of quasiCstatic 

slicing in the sense that it enables specifying any set of input variables by a first order logic 

formula (used by a symbolic executor). .����������
"�"	� removes the limitation related 

to traditional syntax preserving slicing (i.e. simplification via statement deletion), so it can 

also obtain smaller, and sometimes more meaningful slices, retaining the semantic property 

of the original program. ����"
��
"�"	� integrates dynamic information into static slicing to 

more accurately estimate the potential paths taken by the program. /�
�'�	���
"�"	� extends 

dynamic slicing by including potentially affecting statements as well, which actually did 

not affect the variable of interest but could have affected it had they been evaluated 

differently. 

Weiser presented two main applications of slicing. One is to aid program debugging and 

maintenance; the other is to derive slicingCbased program metrics about structuring of the 

program (��'�����, �'��
��, �
�����"	�, ����

�
"��, �"���	���). Since then, program 

slicing has found its applications in other areas of software engineering as well, including 

software testing [Gupta et al. 1992; Harman and Danicic 1995; Binkley 1997; Binkley 

1998; Forgács et al. 1998; Hierons et al. 1999; Hierons et al. 2002], software maintenance 

[Gallagher et al. 1991; Gallagher 1992; Canfora et al. 1994a; Cimitile et al. 1996], program 
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comprehension [De Lucia et al. 1996; Harman et al. 2001], reverse engineering [Canfora et 

al. 1994b], and program integration [Horwitz et al. 1989; Binkley et al. 1995]. 

Static program slicing can support software maintenance and testing in determining that 

the modification of a component does not interfere with unmodified components, in 

dividing the program into smaller parts for test case creation, and in focusing regression 

testing effort on the part of the code that is really affected by a change. Dynamic slicing 

can be especially useful in debugging by narrowing the focus on the statements potentially 

containing the bug. Conditioned and amorphous slicing can be an efficient means of 

program comprehension, reverse engineering, program integration, function isolation, and 

reusable component extraction. 

Among the supporters of the papers published on this topic we can find several leading 

IT companies such as AT&T, DEC, Hewlett Packard, IBM, Intel, Xerox, as well as 

military related companies and organizations such as Lockheed Martin, Air Force Office of 

Scientific Research, Defense Advanced Research Projects Agency, Office of Naval 

Research, and U.S. Army Research Office. It shows that program slicing is an important 

means of aiding development and maintenance of highly reliable, safetyCcritical systems. 

This thesis concerns with the fundamental issues related to static program slicing; other 

forms of program slicing and particular applications are not investigated in details. 

1.2    Program Slicing in Practice 

In the past decades there has been a substantial research effort devoted to program slicing, 

resulting in over five hundred papers on this topic [Xu et al. 2005]. A number of static 

slicers have been implemented for C programs such as Aristotle [Harrold and Rothermel 

1997], CANTO [Antoniol et al. 1997], ChopShop [Jackson and Rollins 1994a], 

CodeSurfer [CodeSurfer], Ghinsu [Livadas and Alden 1993], Sprite [Atkinson and 

Griswold 1996], Spyder [Agrawal et al. 1993], Surgeon’s Assistant [Gallagher 1990], 

Unravel [Lyle and Wallace 1997], ValSoft [Krinke and Snelting 1998]. Furthermore, there 

are slicers for Java [Indus], FORTRAN (FOCUS [Lyle 1984]), Pascal (Osaka [Nishimatsu 

et al. 1999]), and Oberon (Steindl’s slicer [1998])1. To our knowledge, only CodeSurfer 

has become a commercial product. 

                                                 
1 A more detailed description and evaluation of these tools can be found in: [Hoffner et al. 1995; Krinke 

2003]. 
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Why program slicing tools are not widely used today? William Griswold pointed out 

some of the possible reasons in his talk: 0��"	�� %
"�"	�� #����"��
+� ���� 1"	�
� 0"
� 

[Griswold 2001]: 

 

�� precise algorithms are too expensive in practice, 

�� algorithms that lack scalability are impractical for realCworld programs, 

�� system issues play a considerable role in the performance, 

�� slices without explanation are often too difficult to understand. 

 

The last point is discussed in Chapter 4 in details; the first three problems are 

investigated in the following sections. 

1.3    Precision 

Imprecision in the computed slices may derive from different sources. Some of them are 

not avoidable, as they relate to problems that cannot be solved in general. One of such a 

problem is the undecidability of whether a statically selected program path (a potential 

execution trace) is ����"�
� or not, i.e., there exists a program input that forces the actual 

execution of that path. A solution to this problem would require solving the system of 

conditions represented by predicates along the path, which can be arbitrary in general. The 

same problem arises in domain testing, where only heuristics can be used to find input 

inside predicate borders [Forgács and Hajnal 1998a].  

Another problem is with the use of pointers (pointers to data, function pointers, 

references in objectCoriented programming, etc.) that take their particular values at runC

time, since statically it is not possible to determine which data they actually point to. Static 

program slicing techniques, hence, typically use safe approximations, heuristics to narrow 

the set of potential pointer values as much as possible, or apply a conservative approach.  

Unlike these problems, it can be decided whether a program path is ���
"2��
�. The 

problem derives from the most fundamental program structuring principle to extract 

commonly used computations: the decomposition of the program into procedures 

(subroutines, functions, methods). Procedures can be called from different sites, but when 

the execution of a procedure body finishes, the program execution must continue after the 

site of the procedure’s most recent call. In other words, realizable paths correctly nest call 

and return sites. Omitting the calling context during the analysis, i.e., returning to all 
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calling procedures at procedure exits, however, increases the number of paths to be 

investigated by involving those ones that cannot occur during real program execution. In 

this way, a large amount of unnecessary statements may be included in the slice due to 

“false” effects along nonCrealizable paths which reduces the usefulness of the resulting 

slice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 2, a program fragment and the related contextC"	sensitive and contextC

sensitive forward static program slices are shown with respect to slicing criterion ��= (3, 

{x}). The assignment statement in line 3 affects the increment statement in line 8 (through 

the call in line 4), which affects the print statement in line 5 after return. If the callingC

context is ignored, the effect of the increment statement in line 8 is analyzed in both 

callers: main and B, therefore the print statement in line 12 will also be included in the 

resulting slice. It is incorrect, since the effect of assignment in line 3 is "	'�
"
���
 in line 

10 prior to line 12 along all realizable paths. 

There are studies [Agrawal and Guo 2001; Krinke 2002; Binkley and Harman 2003; 

Krinke 2006] investigating whether considering the callingCcontext has significant affect 

on the slice sizes. These studies showed that inaccurate slices due to following nonC

realizable paths can be several times larger than the ones that consider realizable program 

 

Program fragment: 

1  var x; 

 

2  proc main () { 

3    x := 1; 

4    call A(); 

5    print(x); 

6    call B(); 

   } 

 

7  proc A () { 

8    x++; 

   } 

 

9  proc B () { 

10   x := 0; 

11   call A ();    

12   print(x); 

   } 

ContextC"	��	�"�"'� slice: 

1  var x; 

 

2  proc main () { 

3    x := 1; 

4    call A(); 

5    print(x); 

6    call B(); 

   } 

 

7  proc A () { 

8    x++; 

   } 

 

9  proc B () { 

 

11   call A ();    

12   print(x); 

   } 

ContextC��	�"�"'� slice: 

1  var x; 

 

2  proc main () { 

3    x := 1; 

4    call A(); 

5    print(x); 

 

   } 

 

7  proc A () { 

8    x++; 

   } 

 

�

�����(���)����*�+���������,�����������*�+�������,�����	��
��������
���������������
���
�������

����������� ����
�������������������������)�!�"-$�%�&'�
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paths. What is more, the computation of these extra large slices may take more time that 

makes imprecise solutions impractical for slicing largeCsize programs.  

There are two fundamental approaches to accounting for the callingCcontext problem. 

One is based on explicitly maintaining the call stack [Atkinson and Griswold 1996; 

Agrawal and Guo 2001; Krinke 2002]. The other is based on a twoCpass traversal over the 

�������
���	
�	��������� (SDGs) [Horwitz et al. 1990; Reps et al. 1994]. 

The first approach however may cause the reCanalysis of procedures several times for 

different call stacks; moreover, it suffers combinatorial explosion in the case of recursion 

due to the infinite number of possible call stacks. (The limitation of the considered context 

depth results in reduced precision [Krinke 2002].) Experimental investigations showed that 

full precision (unbounded context depth) is unaffordable even at slicing mediumCsize 

applications; therefore the approach is impractical for slicing industrialCscale programs.  

The other approach is based on SDGs. A program dependence graph (PDG) [Ottenstein 

and Ottenstein 1984; Ferrante et al. 1987] is a directed graph in which nodes represent 

statements, and there are two types of edges between nodes: 
��� �
�  and ��	���
. Data 

flow edges represent 
���� dependences, whereas control edges represent ��	���
�


���	
�	��� between statements. An SDG is a collection of PDGs assigned to the 

procedures of a program. Parameter passing between procedures is represented by a 

collection of vertices associated with each call site corresponding to in and out actual 

parameters, and a collection of formalCin and formalCout vertices corresponding to the 

formal parameters at each procedure entry. Global variables are treated as “extra” 

parameters. Call vertices are connected to the entry vertex of the called procedure’s PDG 

by a ��

� �
��, actualCin vertices are connected to their matching formalCin vertices via 

���������-"	� �
���, and actualCout vertices are connected to their matching formalCout 

vertices via ���������-�����
���. Summary edges represent the transitive dependences due 

to procedure calls that are computed in advance for each procedure (between formal in and 

out parameters) and applied at call sites (edges are added between the corresponding actual 

in and out parameters).  

Using SDGs, precise backward static slices (up to realizable paths) can be calculated by 

performing graph reachability in two passes, where each pass traverses only certain kinds 

of edges. In Pass 1, the traversal starts from the node of the slicing criterion and goes 

backwards along data flow edges, control edges, call edges, summary edges, and 

parameterCin edges, but not along parameterCout edges. Pass 2 starts from all actualCout 

vertices reached in Pass 1, and goes backwards along data flow edges, control edges, 
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summary edges, and parameterCout edges, but not along call or parameterCin edges. The 

twoCpass traversal of the graph traverses all but only the realizable paths. 

The slice computation of the SDGCbased approach is efficient. It is due to summary 

edges computed in advance by which we can move across calls without descending into 

the called procedure. The method is often considered as the quasiCstandard technique for 

precise interprocedural slicing. However, as we will see in the next section, the cost of 

preprocessing requirements of the approach may be prohibitive in the case of industrialC

scale programs. 

1.4    Scalability 

%��
��"
"�� of the slicing technique to be applied is crucial in the case of realCworld 

programs. A slicing method is considered to be scalable if the slice computation time is 

more or less proportional with the size of the resulting slice − rather than the size of the 

program. As it is described earlier, when the call stack is recorded explicitly, the 

computation time may become exponential because of the infinite number of possible call 

stacks. Therefore the slice computation time does not merely depend on the slice size. 

Using SDGs, the disproportion is due to the preprocessing requirements of the approach, 

i.e., SDG construction, summary edge computation. (In some papers, the cost of the slice 

computation is considered to be the cost of the SDG traversal, which is incorrect, since 

they omit SDG construction cost.) 

The construction of the SDG can be very expensive. Atkinson and Griswold [1996] 

reported that the application of SDGs for larger C programs may require prohibitive space 

and time. In the case of COBOL programs, we had similar experiences: the construction of 

the SDG may take several hours (occasionally, even days) for largeCsize programs. It is 

because to build the SDG we need to perform exhaustive data flow analysis in every 

procedure to discover all data dependences between statements. It is independent of what 

data dependences will be used at determining the program slice.  

Because of the large number of global variables, which is common in COBOL 

programs, we need to add extra parameter vertices (in and out) at each procedure entry 

node and call site, and we have to compute their dependences as well (formalCin parameter 

vertices and actual parameterCout parameter vertices are considered as assignments). 

The computation of all the summary edges can be very expensive. Even at using the 

improved summary edge computation technique proposed by Reps et al. [1994] − which is 
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currently the most efficient known global technique, the cost can be very high because of 

the potentially large number of summary edges. It can reach several hundred millions in 

realCworld systems.  

These factors make slice computation time of the SDGCbased approach dependent on 

the program size rather than the size of the slice. If we wish to compute only a few slices, 

or the resulting slices are small, respectively, the cost of preprocessing dominates the cost 

of slice computation. The situation is even worse when the subject program changes 

frequently (in interactive contexts such as debugging), since we need to reconstruct the 

SDG after every program change.  

Scalability, instead, would require a 
���	
-
�"'�	 approach that computes only the 

necessary information related to the actual program slice − at the time when needed. The 

only demandCdriven summary edge computation technique was published by Orso et al. 

[2001], which is however not applicable to programs containing recursive procedures.  

1.5    System Issues 

Programs written in different programming languages pose different challenges to static 

source code analysis. Program slicing algorithms are based on some graph representation 

of the program (system dependence graphs, control flow graphs), therefore the proper 

construction of the given graph representation is crucial, which also influences the 

precision of the resulting slice. Variable types, control structures, and the complexity of the 

instruction set can significantly differ in different programming languages. For example, 

the use of pointers in the C programming language or polymorphism in C++ make hard to 

figure out statically the exact memory location(s) that the variables actually point to. 

Traditional control structures such as conditional branches, loops, and procedure calls are 

often not sufficient to represent control structures in programming languages with explicit 

concurrency (like Ada or Java). The set of supported operations can be simple in some 

programming language (e.g., in C), and they can be complex in others (e.g., in COBOL). 

In order to have an efficient slicing tool, we need to consider programming language 

specific characteristics, and choose the appropriate representation. 

COBOL differs from “modern” programming languages in many aspects. One of the 

main differences was identified as the massive use of global variables. Our experiments 

showed that SDGs are not adequate for representing COBOL programs because of the 

large number of global variables. SDGs require introducing extra parameter vertices (in 
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and out) at each procedure entry and call site for each global variable. Thus, the memory 

requirements can be very high in the case of realCworld programs. Moreover, because of 

COBOL’s complex instructions, for each statement that assigns values to more (even 

several hundreds of variables at once, e.g., MOVE statement) we have to create multiple 

nodes in the SDG in such a way that each contains at most one definition (SDGCbased 

slicing uses graph reachability). Control flow graphs (CFGs) are not sensitive to these 

characteristics, where basically each node represents one statement, and one node can 

contain assignments to arbitrary number of variables − the connection between inCnode 

variable references and assignments can be specified as "	�
��	��� separately. For 

comparison, the control flow graph representation constructed for one of the investigated 

program systems (Chapter 3) contained a total of 210,965 nodes, whereas SDG would have 

required introducing more than 85 million extra parameter vertices to represent parameter 

passing via global variables.  

Program slicing research has been mainly focused on developing general algorithms and 

most of the experiments concerned with analyzing source codes written in the C 

programming language. Other programming languages have been addressed only to some 

extent. This work was motivated by COBOL that has not yet been or only partly addressed 

by previous papers on program slicing.  

Unique control structures such as indirect calls, STOP RUN, GOBACK, PERFORM SUB1 

THRU SUBNn as well as data elements such as REDEFINES, RENAMES, and MOVE make 

the construction of the CFGs for COBOL nonCtrivial [Field and Ramalingam 1999; 

Deursen and Moonen 1999]. This thesis does not indent to describe how to construct CFGs 

for COBOL, which would require a much longer discussion. Instead, we focus on a novel 

slicing algorithm presented in the next chapter that operates over CFGs. We note that the 

application of the method is however not limited to COBOL, but allows a wider 

application to a larger class of programming languages.  

1.6    Motivation 

Rethinking of previous techniques and the development of a novel program slicing method 

were motivated by the difficulties raised at analyzing legacy COBOL systems. Some years 

ago, before the year of millennium, we proposed a theoretic solution to solve the “bomb of 

millennium” [Forgács and Hajnal 1998b]. At that time we faced the fact that what a large 

amount of COBOL codes are actively used − estimated over 240 billion lines of code, in 
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almost every major industry from banking to manufacturing. Program slicing could had 

been an efficient means in helping localizing potential bugs related to the twoCdigit year 

storage, however, when we tried to apply existing techniques, we found that none of them 

is suitable indeed to slice legacy COBOL programs in practice.  

Though the year of 2000 has been passed without IT catastrophe, the difficulties of 

maintaining aging legacy systems have remained unsolved. Many of the legacy systems 

are more than 30−40 years old, whose maintenance is very laborCintensive and costly task. 

The lack of proper documentation, adChoc maintenance activities over such long lifetimes, 

and the poor logical structure of these programs make maintenance even more difficult. 

What is more, there is a huge risk involved in transforming and modernizing such 

applications, which companies are typically unwilling to undertake.  

Program slicing could be a powerful tool of aiding such maintenance activities. COBOL 

has been fallen out of the focus of the program slicing research so far. Probably this is why 

previous program slicing techniques proved to be inappropriate for industrialCscale 

COBOL programs. However, COBOL is still the dominant language for business 

applications [Brown 2000]. Preliminary experimental results show that the algorithm 

proposed in this thesis is applicable for largeCsize programs. We hope that this work helps 

in making program slicing more widely used and practical. 

1.7    Overview 

This chapter introduced the basic concepts of program slicing, its main forms and 

applications. We reviewed previous program slicing techniques and identified their 

strengths and weaknesses with respect to their applicability to largeCsize programs. The 

remainder of the thesis is structured into five chapters.  

Chapter 2 presents a novel program slicing approach based on control flow graphs. 

After introducing the basic concepts and definitions, an algorithm is introduced that uses 

token propagation to calculate precise dataCflow and full program slices. The basic 

algorithm is then extended to local variables and parameter passing. Related work is also 

discussed. 

Chapter 3 presents the solutions we used at implementing the slicer prototype and its 

evaluation on realCworld COBOL systems. The results are based on a large number of test 

cases. Slice sizes and computation times are reported. Scalability of the approach is also 

discussed. 
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Chapter 4 presents the so called reasonCwhy algorithm aimed at reasoning about the 

computed slice elements that can help users in comprehending program slices. 

Chapter 5 investigates further improvement and application possibilities of the method. 

Different timeCspace tradeoffs of the algorithm design are discussed such as using 

postorder processing, preprocessing, reusing previous calculations, or computing flow 

edges on demand, respectively. DefinitionCuse graph construction and the application of 

the method to other slicing variants called dicing and chopping are also described. 

Chapter 6 summarizes the thesis. 

1.8    Accomplishments 

This thesis is aimed at being selfCcontained as much as possible for clarity reasons, 

therefore it contains presentations of other authors’ work as indicated by citations. Besides 

the introduction and overview of program slicing concept, variants, and applications the 

main accomplishments of this thesis are:  

 

�� Analysis of existing static techniques with respect to their applicability to largeC

size, legacy COBOL codes and the use of program slicing in software testing and 

maintenance (this chapter). 

 

�� Proposal of a novel token propagationCbased static program slicing approach           

(Chapter 2). 

 

�� Evaluation of the proposed method on industrialCscale COBOL programs   

(Chapter 3). 

 

�� Proposal of a novel “slice explainer” technique to aid slice comprehension 

(Chapter 4). 

 

�� Proposal and analysis of further possible improvements and applications     

(Chapter 5). 

 

 



  

 

Chapter 2 

Slicing via Token Propagation 

A practical slicing method is precise, scalable, and adaptable to consider different 

programming language constructs and features. Approaches addressing precision by 

explicitly maintaining the call stack proved to be impractical in the case of largeCsize 

programs. Limiting the considered callingCcontext stack improves the performance but 

causes a reduced precision; reaching full precision (unbounded context depth) is 

unaffordable in the case of realCworld programs (or even impossible, in the presence of 

recursion). The system dependence graphCbased (SDG) approach calculates precise slices; 

however, with the increase of the investigated program size exhaustive analysis becomes 

overly expensive. It is especially crucial, when the program changes frequently (interactive 

contexts), which would require a demandCdriven approach. System dependence graphs are 

more sensitive to program constructs often occur in legacy systems, such as the use of 

global variables and complex instructions, than control flow graphs. 

This chapter proposes a novel static program slicing technique based on token 

propagation. The method calculates accurate program slices with respect to realizable 

program paths, and is based on control flow graphs, which have less space requirements 

compared to SDGs. The algorithm is conceptually simple, which allows of easy 

implementation, but general enough to adapt to a larger class of programming languages. 

Precision is obtained by propagating tokens along realizable program paths (using 

backtrack indices). The token propagation method is inherently demandCdriven: it 

computes the necessary information only, when they are needed. 

After having defined the basic concepts in Section 2.1, a forward dataCflow slicing 

algorithm is introduced in Section 2.2, which presents the basic idea of the approach. DataC

flow slicing considers data dependences only. In Section 2.3, the method is extended to 

compute full forward program slices by accommodating control dependences. Section 2.4 

describes how the token propagation can be reversed to compute backward program slices. 

Section 2.5 describes how the method can be applied to programs using local variables and 
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parameter passing between procedures (or programs). Finally, the presented method is 

compared to other related techniques in Section 2.6.  

2.1    Definitions 

Computer programs can be represented by directed graphs called ��	���
� �
� � ������ 

(CFGs), in which nodes correspond to the statements and edges represent the possible flow 

of control between them.  

First, we define the "	��������
���
 control flow graph for one procedure; then we 

assemble the "	��������
���
 graph representation of the program composed of multiple 

procedures.  

 

DEFINITION� 2.1 (INTRAPROCEDURAL CONTROL FLOW GRAPH).� An "	��������
���
 

��	���
� �
� � ����� (iCFG) 3� 4� (5, 6) of procedure # is a directed graph in which 5 

contains one node for each statement (or basic block2) in #, and 6 contains edges that 

represent the possible flow of control between the statements in #. 5 contains two 

distinguished nodes: 	� and 	!, representing unique entry and exit points of #. A ���
"�����

	�
� that represents the predicate of a conditional statement has exactly two successors. 	! 

has no successors, 	� has exactly one successor. Each node in 5 is reachable from 	�, and 

	! is reachable from each node in 5. 

 

We note that �	�������
� �������	�� are not represented in the iCFG, and if # contains 

multiple exit points, 6 contains an edge from these nodes to 	!
7.  

 

DEFINITION� 2.2 (INTERPROCEDURAL CONTROL FLOW GRAPH).� An "	��������
���
�

��	���
��
� ������ (ICFG) 3�4�(5, 6) is a directed graph composed of one or more iCFGs 

associated with each procedure of the program that are linked interprocedurally by ��

 and 

�����	 �
��� as follows: 5 is composed of the set of iCFG nodes but each node that 

represents a call statement is split into two nodes: a ��

� �"�� and a �����	� �"��. The 

��

%"��8�, �����	%"��8� operators are used to refer to call site � and return site � belonging 

                                                 
2 CFGs can also be built from basic blocks that represent singleCentry, singleCexit statement sequences. 
3 It is the classical method of treating multiple exit points that was adequate in the case of COBOL. We 

note that in some programming languages multiple exit points cannot be handled in this way, and so another 

sort of augmentation of the CFG might be necessary. 



SLICING VIA TOKEN PROPAGATION 16 
 

together such that �4��

%"��8�9�: and �4�����	%"��8�9�:. 6 is composed of the set of iCFG 

edges, and it is augmented with "	��������
���
 edges such that a ��

��
�� is added from 

every call site � to the entry node of the iCFG associated to the called procedure, and a 

�����	� �
�� from the exit node of the called procedure’s iCFG to the return site 

�����	%"��8�9�:.  

 

This definition of interprocedural control flow graphs corresponds to the definition of 

������ ������ of Myers [1981]. Note that call sites and return sites are not (directly) 

connected.  

In the literature, both intraC and interprocedural control flow graphs are often referred to 

as ��	���
� �
� � ������ (CFGs), for short. In the following, we shall also use the short 

notation, wherever the distinction is not relevant. We also note that edges of the CFG are 

referred to as ��	���
� �
�  �
��� to distinguish from ��	���
 �
��� representing ��	���
�


���	
�	��� (described later). 

Calling relationships between procedures can be represented by a directed graph: 

 

DEFINITION�2.3 (CALL GRAPH).�The ��

������ is a directed graph 3�4�(5, 6) in which 5 

contains one node for each procedure, and there is an edge in 6 from node 	" to node 	� (	", 

	� ∈ 5) if procedure corresponding to 	" contains call to procedure corresponding to 	�.  

 

Call graphs are often defined as directed multiCgraphs, where there can be more than 

one edge between nodes 	" and 	� if 	" calls 	� multiple times.  

The call graph contains a distinguished node corresponding to the ��"	 procedure that 

gets the control first when the program is being executed. It is assumed that every 

procedure is reachable from the main procedure in the call graph. 

In the absence of recursion, procedures can be sorted such that calling procedures 

precede the called ones: 

 

DEFINITION�2.4 (RPOSTORDER).��#�����
�� is a linear ordering of nodes of the (acyclic) 

call graph 3 in which each node comes before all nodes to which it has call.  

 

rPostorder (��'����-������
��, �-������
��, also known as topological sorting) can be 

determined by using a depthCfirst search in the call graph starting from the node of the 

main procedure.  
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A program may contain recursive procedures. The recursive regions of the call graph 

are called ����	�
����		����
������	�	��: 

 

DEFINITION�2.5 (STRONGLY CONNECTED COMPONENT).�A ����	�
����		����
������	�	� 

(SCC) of a call graph 3 is a (maximal) subgraph of 3 in which each node is reachable 

from every other node. 

 

Strongly connected components can be contracted to a single node; the resulting graph 

is a directed acyclic graph (DAG) for which rPostorder sequence can be determined.  

Potential program executions can be represented by paths in the CFG: 

 

DEFINITION� 2.6 (PATH).�A ���� �� 4� 	1, 	2, … , 	� (�>1) in the CFG 3�4� (5, 6) is a 

sequence of nodes such that for every consecutive pair (	"��	"+1) there is an edge in�6 for "�4�

1, 2, …, �C1. 

 

Note that paths − in contrast to real program executions − do not necessarily start from 

the entry node of the main procedure. 

We define an abstract ��

������ for paths: 

 

DEFINITION�2.7 (CALL STACK).�The ��

������ of a path � 4�	1��	2�� $$$��	� in the CFG at 

node 	" (∈ �) is a  stack of call sites (initially empty), onto which node 	� is pushed if 	� is a 

call site, or the topmost node is popped off (no operation when the stack is empty) if 	� is 

an exit node, for the sequence of nodes ��4�1 to "-1.  

 

Paths that incorrectly nest call and return sites cannot occur during real program 

execution, therefore we distinguish ���
"2��
� paths: 

 

DEFINITION�2.8 (REALIZABLE PATH).�A path � 4�	1��	2��$$$��	� is ���
"2��
� if at each exit 

node 	! (∈ �) either the call stack is empty or for return site � following 	! and call site � 

popped off at 	! the condition �4�����	%"��8�9�: holds.  

 

Realizable paths are also known as '�
"
 paths and they can also be defined using a 

contextCfree grammar [Reps 1993]. Note that when the call stack is not empty on return, 
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the return site must ����� the call site on the top of the call stack. At empty call stack, 

realizable paths are allowed to ascend to calling procedures, and/or descend to called 

procedures without a return, respectively (unbalanced paths). Any ������� (subsequence) 

of a realizable path is also realizable. 

We distinguish ����-
�'�
 realizable paths. A sameClevel realizable path is a realizable 

path that starts and ends in the same procedure and every call has the corresponding return 

(and vice versa):  

 

DEFINITION�2.9 (SAMECLEVEL REALIZABLE PATH).�A path � 4�	1��	2��$$$��	��is a ����-
�'�
 

realizable path if � is realizable, nodes 	1 and 	� are contained by the iCFG assigned to the 

same procedure, and the call stack of � is empty at 	�. 

 

CFGs can be extended to model data elements:  

 

DEFINITION� 2.10 (VARIABLE DEFINITION).� A node 	 in the CFG 
��"	�� a program 

variable ' if a value is assigned to ' at statement corresponding to 	. 

 

DEFINITION�2.11 (VARIABLE USE).�A node 	 in the CFG ���� a program variable ' if the 

value of variable ' is referenced at statement corresponding to 	. 

 

DEFINITION� 2.12 (INFLUENCE).� The definition of variable � is "	�
��	��
 by a use of 

variable ' in node 	 in the CFG if ' is used in 	, � is defined in 	, and the value assigned to 

� is dependent on the value of the referenced variable '. 

 

A variable definition in a node 	 ������� another node � if � can be reached by a path 

from 	 in the CFG which contains no (reC)definition for the variable defined at 	. Such a 

path is called a 
��"	"�"�	-�
��������: 

 

DEFINITION�2.13 (DEFINITIONCCLEAR PATH).�A path � in the CFG is a 
��"	"�"�	-�
����

���� with respect to variable ' if none of the nodes on � (excluding start and end nodes) 

contain definition for '. 
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DEFINITION�2.14 (DEFINITIONCUSE PAIR).�The definition of variable ' in node 	 and the 

use of ' in node � form a 
��"	"�"�	-������"� (
����"�) if there is a definitionCclear path 

with respect to ' from 	 to �. 

 

Du pairs represent 
"���� 
����
���	
�	��� between program statements. 

Conditional statements (such as if, for, while, switch, etc.) introduce a different 

kind of dependence between program statements, called ��	���
� 
���	
�	��. As the 

outcome of a ���
"���� (the logical expression representing the condition of a conditional 

statement) determines the program branch to be executed, it has direct impact on the 

execution (or not execution) of the statements contained by the conditionally executed 

branches. Prior to defining control dependence, we need to define (intraprocedural) 

����
��"	��"�	 relationship between control flow graph nodes:   

 

DEFINITION�2.15 (POST DOMINATION).�A node � (���"��
�) ����
��"	���� a node 	 in the 

CFG if every path from 	 to 	! contains �, and 	�≠��.  

 

DEFINITION�2.16 (CONTROL DEPENDENCE).�A node � is ��	���
�
���	
�	� on node 	 in 

the CFG if (1) there is a path � from 	 to � such that every node �; on � (excluding 	 and 

�) is postdominated by 	, and (2) � is not postdominated by 	. 

 

We note that there are different notions of control dependence in the literature. The 

definition above is the most widely used, and considered to be the “standard”, representing 


"���� control dependences. Programs that contain infinite loops (e.g., event listeners in 

reactive programs) or procedures with multiple or no exit nodes (where the unique end 

node property cannot be guaranteed [Venkatesh et al. 2007]) may require alternative 

definitions, such as  ������	���
�
���	
�	�� [Podgurski and Clarke 1990]. The transitivity 

of control dependences − which is not captured by present definition − is however 

considered in another way when computing �
����� �
"��� (described later). In many 

applications of slicing, such as debugging or program understanding, having slices that 

preserve termination behaviour is less important than having smaller slices. Since these 

applications are on focus in this thesis, the classical definition is appropriate for our 

purpose. We also note that conditionally executed explicit halt statements (abort, exit, 

halt, STOP RUN, etc.) may necessitate introducing additional interprocedural control 
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dependences (other than control dependences due to procedure calls), which would make 

the presentation of the idea much more complicated; hence, it is omitted in this work. 

Methods and algorithms for computing control dependences can be found in [Loyall and 

Mathisen 1993; Harrold et al. 1998; Ranganath et al. 2007]. 

We will assume that intraprocedural control dependences are computed in advance and 

are represented in the CFG by ��	���
��
���: there is a control edge from 	 to � if � is 

control dependent on 	. In Figure 3, there are control edges between nodes �< and �=, and 

�< and �>. Interprocedural control dependences due to control dependent procedure calls 

are represented by introducing control edges from call sites to the entry node of the called 

procedures, and from entry nodes to all the nodes in the procedure (except entry, exit, and 

return sites), respectively. In Figure 3, an interprocedural control edge has been added 

between nodes �= and ��, and one intraprocedural control edge between nodes �� and ��. 

(We omit interprocedural control edges where call sites are not control dependent, and 

control edges from entry nodes where the entry node is not control dependent.) 

Direct and indirect effects between statements can be defined as a transitive flow of data 

and control dependences: 

 

DEFINITION�2.17 (DEPENDENCE CHAIN).�A 
���	
�	������"	 is a sequence of nodes 	1��

	2��$$$��	�, where each node 	"+1 is either directly data or control dependent on node 	"  for "�

4 1, 2, …, �C1.  

 

Nodes 	2��	3��$$$��	� are said to be �������
 by node 	1, which corresponds to the concept 

of ��	����"�� 
���	
�	�� of Podgurski and Clarke [1990]. Nodes 	1�� 	2�� $$$�� 	� of the 

dependence chain are referred to as ���"	� 	�
��. A dependence chain containing data 

dependences only is called a 
��"	"�"�	-�������"	 (
�����"	).  

For simplicity of the presentation and without loss of generality, we assume one 

definition per node such that it is influenced by all the (potential) uses in that node. 

Statements corresponding to complex instructions (which may contain more than one 

variable assignment) can be represented by multiple CFG nodes, each containing a single 

definition and zero or more uses corresponding to the influencing variable uses.  

Similarly to paths, not all dependence chains are ���
"2��
�. A dependence chain is 

realizable if it can be ��'���
 by a realizable path. 
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DEFINITION�2.18 (COVERAGE PATH).�A path � ��'��� a dependence chain 	1��	2��$$$��	� if it 

goes through chain nodes 	1��	2��$$$��	�, and each subpath �" of � between nodes 	" and 	"+1 

is either definitionCclear with respect to the variable defined at 	" (data dependence), or all 

the nodes of �" are control dependent on 	" (control dependence), respectively, for "�4�1, 2, 

…,��C1. 

 

DEFINITION�2.19 (REALIZABLE DEPENDENCE CHAIN).�A dependence chain�is����
"2��
��if 

it can be covered by a realizable path. 

 

A slicing criterion specifies a program point and a set of program variables: 

 

DEFINITION�2.20 (SLICING CRITERION).�The �
"�"	����"���"�	 is a pair ��4�?)��*@, where ) 

is a program statement and * is a subset of program variables.  

 

Though Weiser’s original definition allows selecting arbitrary set of program variables 

at program point ), * is typically a subset of program variables used at ), or a single 

variable used at ), respectively. As program statements correspond to nodes in the control 

flow graph, by “program point” ) we will also refer to a node in the CFG. 

The backward static program slice % with respect to slicing criterion �4?)��*@ consists 

of all the statements of the program that have direct or indirect effect on the values 

computed for variables * at ). The forward static program slice with respect to slicing 

criterion �4?)��*@ consists of all the statements that depend on the definitions made to 

program variable(s) * at ). As program instructions can directly be related to CFG nodes, 

program slices can be defined as the set of chain nodes of the possible dependence chains 

in the CFG that end (backward slicing), or start (forward slicing) at the node of the slicing 

criterion, respectively:   

 

DEFINITION�2.21 (BACKWARD STATIC SLICE).�The ���� ��
�����"���
"�� % of a program 

with respect to slicing criterion �4?)��*@ is a set of nodes in the CFG  such that for each 

node 	 in % there exist a dependence chain from 	 to the node corresponding to  ). 

 

DEFINITION�2.22 (FORWARD STATIC SLICE).�The ��� ��
�����"���
"�� % of a program with 

respect to slicing criterion �4?)��*@ is a set of nodes in the CFG such that for each node 	 

in % there exist a dependence chain from the node corresponding to ) to 	. 
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The slicing method is called ����"�� – up to realizable program paths – if the slice is 

computed upon realizable dependence chains. According to Weiser's original definition a 

slice is also executable that can be compiled and run. Similarly to other recent approaches, 

we compute �
�������
"��� [Binkley 1993] that contain all components that might affect a 

given computation but are not necessarily executable.  

2.2    Forward Data-flow Slicing 

DataCflow slicing is a reduction of full slicing which considers data dependences only. 

A forward dataCflow slice consists of the set of chain nodes of all the possible definitionC

use chains that start from the node of the slicing criterion.  

We assume that we are given the control flow graph of the program and a slicing 

criterion that consists of a node and a single variable defined at that node. We first also 

assume that the program contains global and scalar variables only, and there is no 

parameter passing between procedures (other than via global variables).  

We note that the assumption that the variable of the slicing criterion is defined at the 

node of the slicing criterion is not a restriction, but makes the presentation simpler. We 

also note that the algorithm provides safe results4 in the case of arrays and records as well 

by treating them as a whole (conservative approach). 

The basic idea of the method is to explore definitionCuse chains by propagating ����	� 

over the control flow graph. A token is sort of reaching definition information (in forward 

slicing) associated with a definition, or definitions of the same variable, respectively. The 

token propagation starts from the node of the slicing criterion with a token created for the 

initial definition, which is propagated to successor nodes iteratively along definitionCclear 

paths with respect to the defined variable. Those nodes that are reached by the token and 

contain use of the defined variable are marked as “in the slice” (definitionCuse pairs). 

Definitions influenced by these uses induce new token propagations from the affected 

nodes to explore indirect dependences (definitionCuse chains). 

In order to propagate tokens along definitionCclear paths tokens carry the identifier of 

the defined variable denoted as the index of the token, referred to as ����	� "	
�!. For 

slicing criterion �4<	, {!}> (definition of variable ! at node 	) a token /�! (Reaching 

Definition) is created and propagated to the successor node of 	. Nodes that contain 

                                                 
4 Results are referred to as “safe” if all possible dependences are taken into account, though some of the 

dependences might not occur during real program execution.  
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definition (redefinition5) of the variable corresponding the token index block the 

propagation, otherwise the token is propagated through. Nodes that contain use of the 

token index are marked as in the slice, and if this use influences a definition of a variable 2, 

a new propagation starts at that node with token /�2. This is similar to the conventional 

reaching definition computation [Hecht 1977] apart from that instead of using bitCvectors, 

we treat reaching definitions belonging to different variables separately.  

Without context information the propagation would traverse all possible program paths, 

including nonCrealizable ones. To avoid it we introduce ���������� "	
�! into tokens to 

control propagations from procedure exit nodes. The backtrack index is also a variable 

identifier, denoted as upper index in tokens. The token created for the slicing criterion is 

initialized with a special Ø backtrack index (no context). Backtrack indices of tokens 

remain unchanged during the intraprocedural propagation. New tokens created for 

influenced definitions get the backtrack index of the token affecting the use. 

Tokens entering the entry node of a called procedure store their token index as 

backtrack index, whereas tokens leaving procedure exit nodes are forced to return to those 

callers only that contain a �����"	� token: a token having token index identical with the 

backtrack index of the token to be returned. The backtrack index of the token on return is 

“restored” to the backtrack index of the original token stored in the call site; if the call site 

contains several matching tokens (identical token indices), the token is returned as multiple 

tokens with backtrack indices corresponding to the different backtrack indices. Tokens 

having Ø backtrack index are propagated to all return sites unchanged. 

                                                 
5 Any definition made to a ���
�� variable ��
��"	�� its former value, and so it breaks the effect of any 

previous definitions made to that variable. In the case of array variables, where a definition made to one array 

element does not invalidate the effect of definitions made to other array elements, definitions are not 

considered as redefinitions. Therefore, in the presence of arrays, the distinction between terms 
��"	"�"�	 and 

��
��"	"�"�	 is important.  
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The token propagation method can be summarized by the following rules below: 

 

Rule 0.� A token /�!Ø  is created for slicing criterion �4<	, {!}>, which is propagated to 

the successor node of 	. Node 	 is marked as in the slice. 

Rule 1.� If a token /�!�
� is propagated to a node 	 that does not (re)define variable !, the 

token is propagated to the successor node(s) of 	 unchanged. 

Rule 2.� If a token /�!�
�� is propagated to a node 	 that uses variable !, 	 is marked as in the 

slice. A new token /�2� is created for definition of variable 2 influenced by use of 

!, which is propagated to the successor node of 	.  

Rule 3.� If a token /�!�  is propagated to a call site, a token /�!!  is propagated to the entry 

node of the called procedure. 

Rule 4.� Any call site � that contains a token /�!� and exit node � (of the called procedure) 

that contains a token /�2! induce the propagation of a token /�2� from return site 

�����	%"��8�9�:A. Token /�2Ø is propagated from an exit node to all return sites 

unchanged.  

 

A given /�!� token can be propagated to a given node once, therefore a token is 

propagated over intraC or interprocedural loops at most once. The token propagation stops 

when no more propagation is possible. Reaching this fixed point, nodes of the slice are 

marked as in the slice as a result. Note the difference from maintaining the call stack 

explicitly: the presented method propagates one token for a given variable to a called 

procedure (e.g., /�!!�), thus it avoids the reCanalysis of procedures multiple times for 

different call stacks.  

 

EXAMPLE 2.1. In the example shown in Figure 3 the token propagation starts with token 

/�!Ø from slicing criterion node ��, which is marked as in the slice (Rule 0). /�!Ø is 

propagated to nodes �7, �< (�< marked as in the slice),��=, �>, and �B (Rules 1, 2). /�!! is 

propagated to entry node �� from call site �= (Rule 3). Tokens /�!!  and /�2! (created at ��, 

marked as in the slice) are propagated to exit node �7; tokens /�!Ø    , /�2Ø  are propagated to 

return site �A (Rule 4).  

                                                 
6 Note that it is just the same whether an /�2

!  reaches the exit or an /�!
�  reaches the call site node prior 

to the other. 
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Variable ! is defined at node �B, therefore /�!Ø  is not propagated through �B. /�2Ø  is 

propagated to exit node �C and nodes �<, �=, �A (marked as in the slice), and �>. From 

call site �>, /�22  and /���  (started by Rule 2 from node �A, marked as in the slice) are 

propagated to entry node ��, and from �� to ��. Variable 2 is defined at ��, therefore only 

/��� is propagated back to return site �7 and node �= (marked as in the slice). /���  is 

returned to the MAIN procedure, and the token propagation stops. As a result, nodes ��, �<, 

��, �A, and �= are marked as in the slice (highlighted in boldface characters in Figure 3).  

Note that the algorithm ensures contextCsensitive propagation. Thus /�2
! from exit node 

�7 is not propagated to �7 (because it does not contain a matching token) and �< is 

(correctly) not included in the slice that a token propagation along nonCrealizable path 

would have caused. 

Intuitively, the idea of the method can be interpreted as the combination of two 

conventional techniques: the "	���procedural token propagation is similar to the classical 

reaching definition computation over CFGs [Hecht 1977], however, we treat definitions of 
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different variables by different tokens instead of using bitCvectors. )	���procedural token 

propagation can be related to the use of summary edges in the SDGs: a token /�2
! 

propagated to a procedure exit node represents (and is directly equivalent with) procedure 

summary edge !→2. The backward propagation of a token /�2!  to call site � containing 

/�!� and the continuation of the propagation with token /�2� from return site 

�����	%"��8�9�:, can be interpreted as the propagation of /�!�  from � to �����	%"��8�9�:�

considering the transitive dependence !→2 due to call (reflected in the token index). This 

is similar to how ������
����are extended at call sites in [Reps et al. 1994], but we compute 

summary edges onCdemand and perform token propagation over CFGs.  

The pseudoCcode of the forward dataCflow slicing algorithm is shown in Figure 4 in 

lines 5–41 (excluding lines 36–38). Algorithm ComputeSlice has two inputs: the 

interprocedural control flow graph 3 and the slicing criterion �4(�, '), where � is a node in 

3 and ' is a program variable. The result of the algorithm is the set of nodes in 3 that are 

marked as in the slice. The token propagation is implemented using a  ���
"�� algorithm, 

where worklist elements are pairs containing a token and a node from where the token is to 

be propagated. The auxiliary procedure Propagate is used to store a token at a given 

node, and to add this token (and the node) to the worklist if this token has not been yet 

contained by that node. The initialization of the worklist is performed in lines 5 and 6 

(Rule 0); the intraprocedural token propagation is described in lines 26–35 (Rules 1 and 2); 

the forward interprocedural token propagation is described in lines 11–15 (Rule 3, 4); and 

the backward interprocedural token propagation is described in lines 16–25 (Rule 4). Note 

that Rule 4 is to be applied in two cases: when a new token is propagated to an exit node 

(lines 21–23) and when a new token is propagated to a call site (lines 13–15). It ensures 

that tokens in return sites are always “synchronized” with tokens in call sites and exit 

nodes. Lines 13–15 achieve reuse of the previous tokens propagated to the exit node of the 

called procedure, thus the algorithm avoids reanalysis of a procedure called from different 

call sites. 

  



SLICING VIA TOKEN PROPAGATION 27 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

������� ��ComputeSlice 
��
/�    �4(�, '):  slicing criterion for node � and variable '�
             3:             program graph 
�/�
/�� nodes of the slice are marked in 3 
���0��   D���
"��: set of pairs (token, node), initially empty 
 

�����/�� Propagate (/�!

�
��: token ��	�: node) 

0���� 
[1]   �
 /�!

�
  ∉ 	 � �� 

[2]     Insert /�!
�
  into 	  

[3]     Insert (/�!
�
��, 	) into D���
"�� 

[4]   ����
 
��� 
���������
0���� ComputeSlice  
[5]   Insert (/�'

Ø��, �) into D���
"��                                // /�
��� 
[6]   Mark � 
[7]   � ��� D���
"�� ≠ Ø ���
[8]     Select and remove a pair (/�!

�
����	) from D���
"�� 

[9]     �
 ! ≠ � � ��                                               // 
��������	��
[10]      �����  	�
 
[11]        ���� call site for called procedure #:             // /�
��7�
[12]          Propagate (/�!

!� ,��	���5�
�8�9#:) 
[13]          
�����   2� | /�2

!    ∈ �!"�5�
�8�9#: �� 
[14]            Propagate   (/�2

�
� ,������	%"��8�9	:)           //�/�
��< 

[15]          ���
�� 
                    
[16]        ���� exit node:                                               // /�
��<�
[17]          
�����  return site � connected with 	 ��  
[18]            �
 y = Ø  � ��    
[19]              Propagate (/�!

Ø� , �) 
[20]            ����                            
[21]              
����� � 2 | /��

2    ∈ ��

%"��8�9�: �� 
[22]                Propagate  (/�!

2       ,  �) 
[23]              ���
�� 
[24]            ����
 
[25]          ���
�� 
                    
[26]        ��
�/��: �
[27]          
�����  successor � of 	 ��          
[28]            �
 � does not redefine ! � ��                      // /�
��� 
[29]              Propagate (/�!

�
�����)  

[30]            ����
 
[31]            �
 � uses ! � ��                                          // /�
��� 
[32]              Mark � 
[33]              
�����  defined variable 2 influenced by use of ! 
                     ���
[34]                Propagate (/�2

�
� ,��) 

[35]              ���
�� 
[36]              �
 � is a predicate � ��                            // /�
��= 
[37]                Propagate (/��

�
� ,��)  

[38]������������������
�
[39]            ����
�
[40]          ���
���
�
[41]        ��������  
 

 

[42]    ����                                                   // ��	���
�����	� 
[43]      �����  	�
 
[44]        ���� call site for called procedure #:         
[45]          Propagate (/��

���,��	���5�
�8�9#:)        // /�
��7 
[46]          
����� � 2  | /�2

�     ∈ �!"�5�
�8�9#:� �� 
[47]            Propagate   (/�2

�
� ,������	%"��8�9	:)     // /�
��< 

[48]          ���
�� 
                       
[49]        ���� entry node:                                        // /�
��B 
[50]          
�����  node � within the procedure ��  
[51]            Mark � 
[52]            Propagate (/��

���   , �) 
[53]          ���
�� 
                      
[54]        ���� predicate:                                          // /�
��=��A 
[55]          
�����  control dependent node � of 	 ��  
[56]            Mark � 
[57]            Propagate (/��

���   , �) 
[58]          ���
�� 
 
[59]        ��
�/��:                                                     // /�
��> 
[60]          
�����  defined variable 2 ���
[61]            Propagate (/�2

�
�����) 

[62]          ���
�� 
 
[63]      ��������        
[64]    ����
�
[65]  ���� ����
 
��� ComputeSlice 

 

�����1������/��+������
�� ��
���������������������� ��
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By applying the token propagation method we obtain correct dataCflow slices with 

respect to realizable program paths. Before the proof, let us make some remarks about the 

token propagation rules. Except for the very first token propagation rule (Rule 0) every 

rule is triggered as a consequence� of a previously applied rule. Each rule considers a 

������� ����	 propagated to some �������	�
�, and propagates a ������� ����	 to a �������

	�
�. The target node is the successor node of the source node in the CFG. In whatever 

order we apply the propagation rules, for each token we could reconstruct the actual chain 

of rules (��
����E��	��) that resulted in that token in that node. What is more, as it will be 

shown later, for each propagated token there exists a ���
"2��
� ��
����E��	�� that caused 

(or could have been caused) the token to be propagated to that node. This realizable rule 

sequence corresponds to a series of consecutive edges in the CFG, i.e. a path, which starts 

from the node of the slicing criterion, and which is realizable. This path serves as a 

coverage path for a definitionCuse chain, hence, whenever a token is propagated to a node 

� that uses the token index and � is marked as in the slice, a ���
"2��
� definitionCuse 

chain from the slicing criterion to the marked node � can be presented that proves the 

correctness of the computed slice.  

 

First we define the necessary concepts and lemmas used during proof of correctness and 

completeness. 

 

DEFINITION�2.23 (RULE SEQUENCE). Given the CFG 3 of a program. A ��
����E��	�� is a 

chain of consecutive token propagation rules %4(	1, /�1)→(	2, /�2)→…→(	�, /��) 

(�@1), where /"4(	", /�")→(	"+1, /�"+1) is one of the token propagation rules applied to 

�����������	 /�" in �������	�
��	" (∈3) that propagates �����������	 /�"+1 to �������	�
� 

	"+1 (∈3) for "�4�1, 2, …, �C1. 

 

Note that in a rule sequence, the target node and the target token of one rule application 

correspond to the source node and source token of the next one. Each rule application can 

be associated with an edge in the CFG: application of Rules 0, 1, or 2 can be associated 

with an intraprocedural edge, application of Rules 3 or 4 can be associated with call or 

return edges, respectively. In the case of application of Rule 4, the source token is 

considered to be the token in the procedure exit node. The series of consecutive edges in 

the CFG forms a path, called ��������	
"	������.  
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Depending on whether this path is realizable we distinguish ���
"2��
� rule sequences:  

 

DEFINITION�2.24 (REALIZABLE RULE SEQUENCE). Given the CFG 3 of a program. A rule 

sequence %4(	1, /�1)→(	2, /�2) →…→(	�, /��) is ���
"2��
� if path �4(	1, 	2, …,�	�) is 

a realizable path in 3.  

 

In the case of Rules 0, 1, 2, and 3, the target token is determined by considering merely 

the source token, as well as in the case of Rule 4, when the backtrack index of the source 

token is Ø. However, when the backtrack index of the source token is not Ø, Rule 4 also 

takes a �����"	� token in the selected call site into consideration − to determine the 

backtrack index of the target token to be returned. These tokens are not explicit (or even 

included) in a rule sequence defined above. To make them selfCcontained we define the 

notion of ������	����
����E��	��. A coherent rule sequence is a realizable rule sequence in 

which at each application of Rule 4 where the backtrack index of the source token is not Ø, 

the considered token corresponds to the one propagated in the rule sequence from the call 

site matching the return site corresponding to the target node:  

 

DEFINITION�2.25 (COHERENT RULE SEQUENCE). A rule sequence % is ������	� if path � 

corresponding to % is realizable and for each application of Rule 4 of the form 

 (	!, /�2!��� )→(�, /�2
������� ), where !≠Ø, there is a call site � matching return site � on � such that 

Rule 3 applied at � is of the form (�, /�!� )→(	�, /�!! ). (	� is the entry node and 	! is the 

exit node of the same procedure called by �.) 

 

Note that a subsequence of a coherent rule sequence is also coherent if its corresponding 

path is a sameClevel realizable path, since on this path every call has the corresponding 

return. 

As intraprocedural token propagation rules do not change the backtrack index, and the 

backtrack index value is restored on return, tokens propagated in coherent rule sequences 

have identical backtrack indices within the “same calling context”, which is formalized by 

the following lemma: 

 



SLICING VIA TOKEN PROPAGATION 30 
 

LEMMA 2.1. Given the CFG 3 of a program, a coherent rule sequence %��and path � in 3 

corresponding to %. Considering any two nodes 	, � on � such that the subpath of � from 	 

to � is a sameClevel realizable path, the backtrack index of the token propagated from 	 

and the backtrack index of the token propagated to � in % are identical. 

 

PROOF $�Let us consider subpath �; of � between nodes 	 and �, and subsequence %; of % 

corresponding to �;. Since �; is a sameClevel realizable path, %; is coherent. 

If �; does not contain any procedure calls, %; consists of a series of intraprocedural 

token propagation rules. Since in applications of Rules 0, 1, and 2 the backtrack index of 

the target token is identical with the backtrack index of the source token, the backtrack 

index of the token propagated to � must be identical with the backtrack index of the token 

propagated from 	.  

If �; contains exactly one procedure call, i.e., there is one call site � and one return site � 

matching �, the backtrack index of the token propagated from � must be identical with the 

backtrack index of the token propagated to � (Definition 2.25). Since %; contains 

intraprocedural token propagation rules between 	 and �, and � and �, the backtrack index 

of the token propagated from 	 and to � must be identical as well.  

If �; contains a sequence of procedure calls and returns, the identity of backtrack indices 

holds for all (outermost) call and return site pairs. As backtrack indices are identical in the 

intervening intraprocedural sections between calls, the identity of backtrack indices of 

tokens propagated from 	 and to � holds in this case as well.  

□ 

Regarding the presented token propagation method, we distinguish relevant rule 

sequences that start with Rule 0, i.e. /�=(�, /�'Ø  )→(�, /�'Ø  ), where � is the node of the 

slicing criterion,�' is the variable of the slicing criterion, and � is the successor node of �. 

Such rule sequences are referred to as ��

 ������	����
����E��	���. Note that Rule 0 is the 

only applicable rule at the beginning of the slice computation (without having the source 

token actually being propagated to the source node), and is to be applied once. 

In a coherent rule sequence %, if the backtrack index of the source token is not Ø at any 

procedure exit node 	!, the call stack of path � corresponding to % cannot be empty (a 

necessary and satisfactory condition to have a call site matching the target return site, 

Definition 2.25). The following lemma shows that it also holds for any node in a full 
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coherent rule sequence other than procedure exit nodes; and conversely, Ø backtrack index 

indicates empty call stack at any node of �:  

 

LEMMA 2.2. Given the CFG 3 of a program, a full coherent rule sequence %��and path � in 

3 corresponding to %. Considering a source (or target) token /�!�  propagated from (or to) a 

node 	 in %, � is Ø if and only if the call stack of � is empty at 	.  

 

PROOF$� The very first rule application of the full coherent rule sequence % is the 

application of Rule 0 with source node � corresponding to the slicing criterion and source 

token /�'Ø, where ' is the variable of the slicing criterion. The call stack is empty at �, and 

the backtrack index of the source token is Ø, thus the lemma holds for the very first node 

of �. In the following we show that the lemma holds for all target nodes in %. 

The 	�������� condition requires showing that if the call stack of � is empty at some 

target node, the backtrack index of the target token propagated to that node is Ø. It is 

proved by contradiction. Assume that there is a rule application in % such that the call stack 

of � is empty at the target node but the backtrack index of the target token is not Ø. If there 

is one or more such rule applications in %, there must be a first one. Let us denote it by /. 

 / cannot be the application of Rule 3, because the call stack of � is not empty at a 

procedure entry node following a call site, and / cannot be not the very first rule 

application of %, since the backtrack index of the target token is Ø in the application of 

Rule 0. 

If / is the application of an intraprocedural rule (Rule 1 or 2), the backtrack indices of 

source and target tokens must be identical: nonCØ, as assumed; as well as the call stack of � 

at source and target nodes: empty. Considering the rule application /; in % directly 

preceding /, we can see that the call stack of � is empty at the target node of /; (source 

node of /), and the backtrack index of the target token of /; is nonCØ (source token of /). 

It contradicts the initial assumption that / is the first such a rule application.  

/ cannot be the application of Rule 4 to a source token having Ø backtrack index, 

because, according to the rule definition, the backtrack index of the target token is also Ø 

(contradicts the assumption). 

If / is the application of Rule 4 to a source token having nonCØ backtrack index applied 

at some procedure exit node 	!, which propagates its target token to target return site �, 

since % is coherent, according to Definition 2.25, there must a call site � matching � on � 

such that the backtrack index of the source token of Rule 3 applied at � and the backtrack 
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index of the target token propagated by Rule 4 to � are identical. As assumed, the backtrack 

index of the target token of / (Rule 4) is not Ø, therefore the backtrack index of the source 

token of Rule 3 applied at � must be nonCØ either. As the call stack of � is identical at � 

and �, and it is empty at ��(assumed), it is empty at � too. Considering the rule application 

/; in % directly preceding the application of Rule 3 at �, we can see that the call stack of � 

is empty at the target node of /; (�), moreover, the backtrack index of the target token of 

/; (source token of Rule 3) is nonCØ. As /; precedes / in %, / is not the first such rule 

application as assumed, which is a contradiction again.  

The ����"�"�	� condition requires showing that if the call stack of � is nonCempty at some 

target node, the backtrack index of the token propagated to that node cannot be Ø. The 

proof is by contradiction again. Assume that there is a rule application in % such that the 

call stack of � is not empty at the target node but the backtrack index of the target token is 

Ø. If there is such rule application, there is a first one, let us denote it by /.  

/ cannot be the application of Rule 3, since the backtrack index of the target token 

propagated to a procedure entry node is identical with the token index of the source token 

in the call site, which cannot be Ø. (Token indices always correspond to variable 

identifiers, set by Rule 0 or 2, and are unchanged by other propagation rules.)  

If / is the application of an intraprocedural rule (Rule 1 or 2), backtrack indices of 

target and source tokens are identical (Ø, as assumed), as well as the call stack of � at its 

source and target nodes (not empty, as assumed). Considering the rule application /; in % 

directly preceding /, we can see that the call stack of � is not empty at the target node of 

/; (source node of /), and the backtrack index of the target token of /; is Ø (source token 

of /). It contradicts the initial assumption that / is the first such rule application. 

It is assumed that the call stack of � is not empty at the target node. If / is the 

application of Rule 4 (return edge) and the call stack of � is not empty at the return site 

(target node), the call stack of � cannot be empty at the preceding procedure exit node 

(source node) either. (If the call stack is nonCempty after return, the call stack contained at 

least two elements before.)  

If / is the application of Rule 4 to a source token having Ø backtrack index, hence, in 

the rule application /; in % directly preceding /, the call stack of � is not empty at the 

target node of /; (source node of /), and the backtrack index of the target token of /; is Ø 

(source token of /). So, the assumption that / is the first such rule application does not 

hold.  
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If / is the application of Rule 4 to a source token having nonCØ backtrack index applied 

at some procedure exit node 	!, according to Definition 2.25, there must a call site � 

matching � on � such that the backtrack index of the source token of Rule 3 applied at � 

and the backtrack index of the target token propagated by Rule 4 to � are identical, i.e., Ø, 

as assumed. The call stack of � is not empty at � either, which is the same as at � (assumed 

to be nonCempty). Hence, in the rule application /; in % directly preceding the application 

of Rule 3 at �, the call stack is not empty at the target node of /; (�) and the backtrack 

index of the target token of /; is Ø, which contradicts the initial assumption that / is the 

first such rule application. 

□ 

The lemma implies that if the call stack of the path � corresponding to a full coherent 

rule sequence % is not empty at some node 	 on �, the backtrack index of the token 

propagated to (or from) 	 cannot be Ø.  

Full coherent rule sequences can be related to realizable definitionCuse chains starting 

from the slicing criterion. It is shown by the following lemma below: 

 

LEMMA 2.3. Given the CFG 3 of a program, a slicing criterion �4?��� {'}@, a full 

coherent rule sequence %, and path � in 3 corresponding to %. If the variable corresponding 

to the token index of the target token of the last rule application in % is used at target node 

	, there exists a realizable definitionCuse chain in 3 from � to 	.  

 

PROOF $�The very first rule application in % is the application of Rule 0 with source node � 

corresponding to the node of the slicing criterion, and source and target token /�'Ø, where ' 

is the variable of the slicing criterion. 

First assume that % does not contain any application of Rule 2. In this case, % consists of 

the application of Rule 0 followed by zero or more applications of Rules 1, 3, or 4. (If % is 

composed solely of the application of Rule 0, i.e., the variable defined at �� is used in its 

successor node 	, (�, 	) is a realizable definitionCuse chain; thus the lemma holds.) Since 

token indices of source and target tokens are identical in applications of Rules 1, 3, 4, 

token indices of all the tokens propagated in % are identical and equal to '. Neither call 

sites nor procedure exit nodes contain variable definition (Rule 3 and 4), and none of the 

source nodes of the applications of Rule 1 can contain a definition for the token index of 

the source token. Therefore � is a definitionCclear path wrt. '. Since variable ' is used in 
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target node 	 of the last rule application of %, (�, 	) is a definitionCuse chain. � is realizable, 

since % is coherent, hence (�, 	) is a realizable definitionCuse chain, so the lemma holds. 

If % contains one or more applications of Rule 2, let us consider the node sequence (	1, 

	2, …,� 	�), where 	1� = �, 	� = 	, and nodes 	" (1<"<�) are the source nodes of the 

applications of Rule 2 in % (in the order they occur). Let us denote the subsequence of % 

between nodes 	"�and 	"+1 by %" (1≤"<�). The first rule application in subsequence %1 is the 

application of Rule 0; while in any other subsequence %" ("≠1) the first rule application is 

the application of Rule 2. In either case, the token index of the target token of the first rule 

application corresponds to the variable defined at its source node (	"), and this rule 

application is followed by zero or more applications of Rules 1, 3, or 4. For the same 

reasons described above, token indices of target tokens in %" are equal and identical to the 

variable defined at 	", and the path corresponding to %" is definitionCclear. The variable 

defined at node 	" is used at node 	"+1, because either at node 	"+1 % contains an application 

of Rule 2 (which implies a use in node 	"+1� for the token index corresponding to the 

variable defined in node 	"), or 	"+1 is 	, which contains a use for token index of the target 

token as assumed by the lemma. Hence, node sequence (	1, 	2, …,�	�) is a definitionCuse 

chain from � to 	 covered by path �. Since � is realizable, it is a realizable definitionCuse 

chain, so the lemma holds. 

□ 

The following lemma shows the reverse direction: realizable definitionCuse chains can 

be associated with full coherent rule sequences. 

 

LEMMA 2.4. Given the CFG 3 of a program and a slicing criterion �4?���{'}@. If there is 

a realizable definitionCuse chain in 3 from slicing criterion node � to a node 	, there exists 

a full coherent rule sequence % such that the variable corresponding to the token index of 

the target token of the last rule application of % is used in its target node 	. 

�

PROOF. To prove the lemma we show that a full coherent rule sequence can be constructed 

for any realizable definitionCuse chain (	1, 	2, …,�	�) (�>1), where 	1�= � and 	� = 	. Let us 

consider the realizable coverage path � of the definitionCuse chain (	1, 	2, …,�	�) (such a 

path must exist according to Definition 2.19), which is composed of subpaths �1, �2, …,��

��C1, where subpath �" (1≤"<�) is a path in 3 from 	" to 	"+1, and it is definitionCclear wrt. the 

variable defined at 	" (Definition 2.18). First, we show that a rule sequence %� can be 
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constructed for � by assigning one token propagation rule to each edge of �; then, we prove 

that % is a full coherent rule sequence.  

Let us consider the first subpath �1 of �, and assign the application of Rule 0: 

 (	11
, /�'Ø  )→(	12

, /�'Ø  ) to the first edge of �1, where�	11
is the node of the slicing criterion 

(�), ' is the variable of the slicing criterion, and 	12
is the second node on subpath �1. The 

source token and the source node of the following rule application to be assigned are given 

by the target token and the target node of the preceding rule application, and depending on 

the edge type, we assign one of the rule applications to the next edge ��= (	, �) on �1 

below:  

 

(1)�Rule 1: (	, /�!���� )→(�, /�!���� ) if � is an "	��������
���
 edge, 

(2)�Rule 3: (	, /�!� )→(�, /�!! ) if � is a ��

��
��, 

(3)�Rule 4: (	, /�!Ø )→(�, /�!Ø ) if � is a �����	��
�� and the backtrack index of the 

source token is Ø, 

(4)�Rule 4: (	, /�!� )→(�, /�!2 ) if � is a �����	��
�� and the backtrack index of the 

source token is not Ø, where 2 is the backtrack index of the source token 

propagated in % from the call site matching return site �. 

 

We apply the above assignments for subsequent edges of �1, iteratively, until to every 

edge of �1 a rule application has been assigned. Note that case (4) assumes a rule 

application assigned previously to a call edge matching the current return edge; as it will 

be shown later, such a rule application must exist. The target node of the last rule 

application assigned to the last edge of �1 is 	2, which is the first node of the next subpath 

of �2.  

Let us consider the following subpath �" (" = 2, 3, …, �C1), and assign the application of 

Rule 2: (	"1, /�!
� )→(	"2, /�2

� ) to the first edge of �", where 2 is the variable defined at 	"1 

(	"), and source token /�!�  is given by the target token of the last rule application assigned 

to the last edge of the preceding subpath (�"C1). For subsequent edges of �" we apply the 

same assignments (1)–(4) as on �1.  

The above procedure is continued as long as to every edge of � the appropriate rule 

application has been assigned, i.e. the complete rule sequence % has been constructed. 
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The applications of rules 0 and 2 (assigned to the first edges of the subpaths) as well as 

the applications of rules assigned in cases (2) and (3) are '�
"
, they fulfill to the related 

rule definitions. The application of Rule 1 assigned in (1) is also valid, because subpath �" 

(1≤"<�) is definitionCclear wrt. the variable defined at 	" that corresponds to the token index 

of the propagated source token. Rule assignment in case (4) can be performed only if (�) 

there is a call site � on � matching target return site �, and is valid if (�) the token index of 

the token propagated from � corresponds the backtrack index of the source token at 	. Note 

that if both conditions hold at each assignment (4), rule sequence % is coherent, as 

applications of Rule 4 in % fulfill Definition 2.25. Also note that % is a full coherent rule 

sequence, as it starts with Rule 0. 

To prove that conditions (�) and (�) hold at each assignment (4) assume that, by 

contradiction, there is a return edge � = (	, �) on � such that either (¬�) there is no call site 

� on � matching return site �, or (¬�) the token index of the source token in the rule 

application assigned to the call edge from � is not identical with the backtrack index of the 

token to be propagated from 	. Let � be the first such return edge on �, where the 

construction of the rule sequence fails. Let us denote by %; the rule sequence successfully 

constructed for subpath �; of � from 	1 up to 	. Note that �; is realizable (as � is 

realizable), and %; is a full coherent rule sequence. Since the backtrack index of the token 

propagated to 	 is not Ø (because case (4) is applicable at �), according to Lemma 2.2, the 

call stack of �; cannot be empty at 	, so there must exist a call site � on �; matching return 

site �, which contradicts (¬�). According to Lemma 2.1, since %; is coherent and the 

subpath of �; between procedure entry node 	� following � on �; and procedure exit node 	 

is a sameClevel realizable path, the backtrack index of the token propagated from 	� must 

have the same backtrack index as the backtrack index of the token propagated to 	. 

According to Rule 3, the backtrack index of the token propagated to 	� is identical with the 

token index of the token propagated from �, hence, the token index of the token propagated 

from � must be identical with the backtrack index of the token propagated to 	, which 

contradicts (¬�). Since there cannot be such return edge along �, where conditions (a) or 

(b) fail, the constructed rule sequence % is a full coherent rule sequence.  

The token index of the target token propagated in the last rule application of % to target 

node 	� corresponds to the variable defined at node 	�C1, which�is used in target node 	� = 	 

(definitionCuse chain), thus the lemma holds. 

□ 
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We say that a token /�!� propagated to a node�� is �������
� by a full coherent rule 

sequence if there exists a full coherent rule sequence % in which the target node and target 

token of the last rule application are � and /�!�, respectively. In the following we show 

that in whatever order we apply the token propagation rules, each propagated token is 

reachable by a full coherent rule sequence. 

 

LEMMA 2.5. Given the CFG 3 of a program and a slicing criterion �4?���{'}@. If we 

apply the token propagation rules for � over 3, any token /�!� propagated to a node � is 

reachable by a full coherent rule sequence. 

�

PROOF$�We use induction to prove the lemma. First we show that the lemma holds for the 

token propagated by the very first propagation rule; then we show that if the lemma holds 

for all the previously propagated tokens, it will also hold for any token propagated by a 

subsequent token propagation rule.  

 

���������: Token /�'Ø propagated by Rule 0 to a node �, where ' is the variable of the 

slicing criterion and � is the successor node of the slicing criterion node �, is reachable by 

a full coherent rule sequence.  

 

Rule sequence (�, /�'Ø   )→(�, /�'Ø   ) is a full coherent rule sequence, because its first rule 

application is the application of Rule 0, path (�, �) is a realizable path in 3, and it contains 

no applications of Rule 4. The target node and the target token of the last rule application is 

� and /�'Ø, thus token /�'Ø propagated by Rule 0 to � is reachable by a full coherent rule 

sequence, hence, the base case holds. Note that Rule 0 is the first and only applicable rule 

at the beginning of any token propagation. 

 

)	
���"'��%���+ If all the previously propagated tokens are reachable by a full coherent rule 

sequence and we apply any of the relevant propagation rules / to a token /�2! propagated 

to a node 	, the token propagated by / to a node � is also reachable by a full coherent rule 

sequence.  

 

If / is one of the applications of Rules 1, 2, 3, or / is the application of Rule 4 to a 

source token having Ø backtrack index, respectively, let us consider the full coherent rule 
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sequence % that reaches /�2! propagated to 	 (induction hypothesis). Let us denote by � the 

realizable path corresponding to %, and by �; the path corresponding to the extended rule 

sequence %; obtained by appending / to %. In the case of Rules 1, 2 or 3, �; is given by the 

concatenation of a realizable path (that is �) and an intraprocedural edge corresponding to 

/, which also results in a realizable path. In the case of Rule 4, �; is given by 

concatenating a return edge corresponding to / to �. From Lemma 2.2 it follows that, since 

the backtrack index of the token propagated in % from 	 is Ø, the call stack of � is empty at 

	. As at empty call stack, appending return edge to a realizable path results in a realizable 

path, �; is realizable, and so is %;. As % is a full coherent sequence, and no new application 

of Rule 4 has been added by / to % to a source token having nonCØ backtrack index, %; is 

also a full coherent rule sequence. The target node and the target token of the last rule 

application of %; are � and /�2!, therefore the token propagated by / to � is reachable by a 

full coherent rule sequence, so the inductive step holds.  

If / is the application of Rule 4 to a source token having nonCØ backtrack index, i.e. / 

is of the form (	, /�2!���)→(�, /�2���), where x ≠ Ø, the definition of Rule 4 implies that call 

site � = ��

%"��8�(�) already contains a token /�!�, and 	 contains a token /�2!��. Let us 

denote the full coherent rule sequence that reaches /�2! propagated to 	 by %	, and the full 

coherent rule sequence that reaches /�!� propagated to � (induction hypothesis) by %�. From 

Lemma 2.2 it follows that, as the backtrack index of the token propagated in %	 to 	 is not 

Ø, the call stack of �	 is not empty at 	. Therefore, there must be a call site on��	 such that 

the subpath �	; of �	 between the procedure entry node 	� following call site � and 

procedure exit node 	 is a sameClevel realizable path, so subsequence %	; of %	 

corresponding to��	; is coherent; furthermore, from Lemma 2.1 it follows that, as a token 

having backtrack index ! (/�2!�) is propagated to 	, the source token in the first rule 

application of %	; is /�!!�. Let us consider the rule sequence %; obtained by concatenating 

rule sequences: %�, (�, /�!����� )→(	�, /�!! ), %	;, (	, /�2!��� )→(�, /�2
� ). Path �; corresponding to 

%; is realizable, because the subpath of �; between nodes 	� and 	 (�	;) is a sameClevel 

realizable path, as well as the subpath of �; between nodes � and �, which is appended to 

the realizable path corresponding to %�. %; is coherent, because %� and %	; are coherent, and 

for the application of Rule 4, (	, /�2! )→(�, /�2� ), the matching application of Rule 3,     

(�, /�!� )→(	�, /�!!������), can be found in�%; at the call site � matching � (Definition 2.25). %; 

starts with the application of Rule 0 (%�), and the target node and the target token of the last 
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rule application of %; are � and /�2
�. Hence, the token propagated by / to � is reachable 

by a full coherent rule sequence, and the inductive step holds. 

□ 

After defining the necessary concepts and the related lemmas we can turn to the proof 

of correctness and completeness. To prove correctness of the slice computed by the token 

propagation method we show that each node marked during the token propagation is 

affected by the slicing criterion; completeness requires showing that every affected node 

will be marked during the token propagation.  

 

THEOREM 2.6 (CORRECTNESS OF THE DATACFLOW SLICE).�Given the CFG 3 of a program 

and a slicing criterion �4?��� {'}@. A node 	 is marked as in the slice by the token 

propagation rules applied for � over 3 only if 	�4�� or there exists a realizable definitionC

use chain in 3 from � to 	. 

 

PROOF$ The two propagation rules that mark a node as in the slice are Rules 0 and 2. By 

definition, the slicing criterion is included in the resulting slice. The node marked by Rule 

0 corresponds to the node of the slicing criterion �, which fulfills the first condition of the 

theorem. A node 	 is marked by applying Rule 2 only if a token, say /�!�, has been 

propagated to 	 such that 	 contains a use of variable !. If such a token is propagated to 	, 

from Lemma 2.5 it follows that 	 is reachable by a full coherent rule sequence %. As % 

reaches 	, the target token of the last rule application of % is /�!� , whose token index used 

in target node 	. Hence, considering %, from Lemma 2.3 it follows that there exist a 

realizable definitionCuse chain in 3 from � to 	, which proves the theorem.  

□ 

The token propagation stops if no more token propagation is possible, because either 

none of the rules applicable to any of the previously propagated tokens or the token that 

would be propagated by any of the relevant rules had already been propagated to the target 

node by some other rule before. The following theorem shows that when the token 

propagation stops, all affected nodes are marked by the token propagation rules. 
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THEOREM 2.7 (COMPLETENESS OF THE DATACFLOW SLICE).� Given the CFG 3 of a 

program and a slicing criterion �4?���{'}@. If there exists a realizable definitionCuse chain 

from slicing criterion node � to a node 	 in 3, or 	�4��, respectively, 	 is marked as in the 

slice by the propagation rules applied to � over 3. 

 

PROOF$�The node of the slicing criterion � is marked by the very first rule application of the 

token propagation, by Rule 0, which fulfills the second implication (	�4��) of the theorem.  

The first implication requires showing that if there exists a realizable definitionCuse 

chain from � to 	 in 3, 	 is marked before no more token propagation is possible. From 

Lemma 2.4 it follows that there is a full coherent rule sequence % such that the variable 

corresponding to the token index of the target token of the last rule application in %, say 

/�!� , is used in its target node 	. If /�!��  is propagated to 	, 	 is marked by Rule 2 fulfilling 

the theorem. Now we show that /�!��  must be propagated to 	 before the token propagation 

stops, what is more, every target token in % must be propagated to the target node by the 

end of the token propagation. 

Assume that by contradiction there is a rule application in % whose target token has not 

been propagated to its target node but the token propagation stops. If there is such a rule 

application in %, there is a first one; let us denote it by /. / cannot be the very first rule 

application of %, as Rule 0 is applicable at the beginning of the token propagation, and so 

the propagation cannot stop yet. Since / is the first such rule application, the source token 

of / has been propagated to its source node. / is a valid and so an applicable propagation 

rule that would result in a new token in its target node, which contradicts the assumption 

that the token propagation can already stop. 

□ 

We note that we assume finiteCsize programs − of practical relevance − having finiteC

size CFGs and a finite number of program variables. In this case, as there can only be a 

finite number of possible tokens propagated to a finite number of nodes, the token 

propagation method terminates in finite steps. Note that it holds even if there are an infinite 

number of program paths, or definitionCuse chains, respectively, due to potential loops. 

2.3    Forward Slicing 

The token propagation can be extended to accommodate control dependences by 

introducing ��	���
� ����	�. Control tokens are created at predicate nodes and propagated 
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along control edges. Nodes reached by control tokens are marked as in the slice; 

definitions in control dependent nodes start new token propagations to reveal indirect 

dependences. 

In ��	���
�����	�, a special token index: � is used to distinguish from 
��������	� where 

token indices are variable identifiers7. When a data token /�!�  is propagated to a predicate 

node that uses variable ! a new control token /��
�  is created and propagated to the nodes 

that are control dependent on the predicate. Each node to which /��
� is propagated is 

marked as in the slice; and if this node contains a definition of a variable 2, a new 

propagation starts with data token /�2�.  

Data tokens created due to interprocedural control dependences are to be returned to the 

call site from where the control dependence originates. For this reason, backtrack index � 

is stored in control tokens entering called procedures, and data tokens having backtrack 

index � are returned to the call site(s) containing control token. From procedure entry 

nodes control tokens are propagated to all the nodes within the procedure (except entry, 

exit, and return sites). Note that the same rules, Rule 3 and 4 (described in the previous 

section), can be applied to propagate control tokens to called procedures, or to return data 

tokens having backtrack index �, respectively. 

The rules related to the control token propagation are summarized below: 

 

Rule 5.� If a token /�!�  is propagated to a predicate node 	 that uses variable !, a new 

token /��
��  is created and propagated to the nodes that are control dependent on 	. 

Rule 6.� If a token /��
�  is propagated to a predicate node 	, token /��

��  is propagated to 

the nodes that are control dependent on 	.8 

Rule 7.� If a token /��
�  is propagated to a node 	, 	 is marked as in the slice. A new token 

/�2� is created for definition of variable 2, which is propagated to the successor 

node of 	. 

Rule 8.� If a token /��
� is propagated to an entry node, token /��

� is propagated to all the 

nodes of the procedure (except entry, exit, and return sites). 

                                                 
7 Note that though control tokens are not related to �����"	��
��"	"�"�	�, because of the similarity of the 

propagation, using the same notation /� simplifies the presentation and the pseudoCcode.   
8 This rule serves as propagating control tokens inside nested predicates. Depending on the definition and 

computation of control dependences (whether it considers transitivity or not) this rule may or may not be 

required. 
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Intraprocedurally, control tokens thus simply transfer the backtrack index of the token 

affecting the predicate to data tokens created at control dependent definition nodes that 

ensures contextCsensitive propagation of the newly created tokens. Interprocedurally, 

backtrack index ��assigned to data tokens created in the called procedures due to control 

dependences ensures that these tokens are returned to the call site(s) from where the 

control dependence originates (containing control token), which is analogous to the 

backward propagation of data tokens having variable identifiers as backtrack index. 

 
EXAMPLE 2.2. In the example shown in Figure 3, a new control token /��

Ø  is created when 

data token /�!Ø   is being inserted into predicate node �<, and /��
Ø  is propagated to nodes �= 

and �> along control edges (Rule 5). Nodes �= and �> are marked as in the slice, and a new 

data token /��Ø  is created at node �> (Rule 7). From call site �=, control token /��
�  is 

propagated to entry node �� (Rule 3) and node �� (Rule 8). Node �� is marked as in the 

slice, and a new data token /�2� is created and propagated to exit node �7. /�2Ø  is 

propagated to return site �A (Rule 4). /��Ø  , which is created at �>, and /�2Ø , which is 

returned to �A, are propagated in the following steps according to the data token 

propagation rules (Rules 1–4). Node �B is marked as in the slice by /��Ø , where a new data 

token /�!Ø  is created. Tokens /�!Ø ,�/��Ø , and /�2Ø   are propagated to return site �7. /�!Ø  is 

propagated to nodes �< (marked as in the slice) and �=, where variable ! is defined 

(hence, the propagation of this token stops). /��Ø  is propagated to nodes �<, �=, and �A, 

where variable � is defined. The propagation steps of token /�2
Ø from return site �7 have 

been described in the previous section. In the case of full slicing, nodes �=, �>, �B, and �< 

are marked as in the slice, in addition to the nodes added by dataCflow slicing. 

 

Considering control dependences, slicing is extended to explore dependence chains. The 

pseudoCcode related to the propagation of control tokens is shown in Figure 4 in lines 36–

38 and 42–65. Control tokens are propagated from predicates to control dependent nodes in 

lines 36–38, 54–58 (Rule 5, 6); data tokens are created at control dependent nodes in lines 

59–62 (Rule 7); the forward interprocedural control token propagation is described in lines 

44–48 (Rule 3, 4); and the propagation of control tokens from entry nodes is described in 

lines 49–53 (Rule 8). Data tokens having backtrack index � are propagated backwards in 

lines 21–23 (Rule 4). Note that no control tokens can be propagated to exit nodes because 

there are no control edges to them.  
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Theorems of correctness and completeness presented for dataCflow slicing are valid in 

the case of full slicing as well: a node is marked by the token propagation rules if and only 

if there is a dependence chain from the slicing criterion to that node. Since the proof is 

quite analogous to one presented in the previous section, we discuss the key differences 

only.  

Correctness requires showing that each propagated token can be associated with a rule 

sequence (Lemma 2.5) composed of rule applications chosen from the extended rule set, 

which can be associated with a dependence chain (Lemma 2.3). With regard to Lemma 2.5, 

as propagating control tokens along control edges extends previous rule sequences either 

intraprocedurally (control edges from predicates or procedure entry nodes) or 

interprocedurally forwards (control edges from call sites), it does not violate realizability 

nor coherence. (Definition 2.24 still applies to rule sequences built upon the extended rule 

set, considering that Rule 4 is also applicable to return tokens with control backtrack 

index.) The amendment of Lemma 2.3 involves that nodes of the dependence chain 

covered by the corresponding path are pointed by source nodes of potential applications of: 

Rule 5 (dataCcontrol), Rule 6 (controlCcontrol), and Rule 7 (controlCdata) − in addition to 

the application of Rule 2 (dataCdata). As control tokens propagate along control edges to 

directly or indirectly control dependent nodes, subpaths between chain nodes fulfill 

Definition 2.18, that is, the corresponding path is a coverage path for the dependence 

chain. 

Completeness requires showing that for any dependence chain an appropriate rule 

sequence can be constructed. The coverage path of the dependence chain potentially 

contains control edges, hence, the amendment of Lemma 2.4 involves extending rule 

application assignments to control edges (Rules 5−8) that can be constructed analogously.  

In both cases, Lemmas 2.1 and 2.2 apply to rule sequences based on the extended rule 

set unchanged, and the token index of the target token of the last rule application of the 

rule sequence (Lemmas 2.3, 2.4) can be either used in its target node (data dependence), or 

it is � (control dependence). 

2.4    Backward Slicing 

The algorithm of backward slicing can be obtained by reversing the token propagation 

rules of forward slicing. We refer to tokens as F* (Live Variable) tokens in the case of 

backward slicing. F* tokens are propagated to predecessor nodes along definitionCclear 
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paths with respect to the used variable. Nodes reached by F* tokens that define the used 

variable are marked as in the slice; new token propagations start from all uses influencing 

the definition. Interprocedurally, F* tokens are propagated from return sites to exit nodes 

and from entry nodes to call sites, respectively. Backtrack indices of F* tokens are used 

analogously to forward slicing. 

Control tokens are created at each node wherever a new data F* token is created 

(including the slicing criterion node), and propagated along control edges backwards. 

Control tokens reaching predicate nodes start new F* token propagations from all the uses 

in the predicate. Control tokens reaching procedure entry nodes are propagated to call sites, 

and from call sites to other predicates, or entry nodes, respectively, on which this node is 

control dependent. 

The pseudoCcode of the backward slicing algorithm is omitted, since it is quite similar to 

the forward one. The propagation rules of F* tokens are shown below: 

 
Rule 0.� A token F*!Ø is created for slicing criterion �4<	, {!}>, which is propagated to 

the predecessor node(s) of 	. Node 	 is marked as in the slice. 

Rule 1.� If a token F*!
�  is propagated to a node 	 that does not define variable !, the token 

is propagated to the predecessor node(s) of 	 unchanged. 

Rule 2.� If a token F*!
�  is propagated to a node 	 that defines variable !, 	 is marked as in 

the slice. A new token�F*2
� is created for use of variable 2 influencing definition !, 

which is propagated to the predecessor node(s) of 	.  

Rule 3.� If a token F*!
� is propagated to a return site �, token F*!

! is propagated to the exit 

node of the called procedure. 

Rule 4.� Any return site � that contains a token F*!
� and entry node � (of procedure called 

by ��

%"��8�9�:) that contains a token F*2
! induce the propagation of token F*2

� 

from call site ��

%"��8�9�:. Token F*2Ø is propagated from an entry node to all call 

sites unchanged. 

Rule 5.� If a token F*�
� is propagated to predicate node �, � is marked as in the slice. A 

new token F*2
�  is created for use of variable 2 in �, which is propagated to the 

predecessor node(s) of �. 
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Rule 6.� If a token F*!
�  is propagated to a node 	 that defines variable !, a new token F*�

� 

is created and propagated to nodes on which 	 is control dependent. For slicing 

criterion �4<	, {!}> a token�F*�
Ø �is created and propagated to nodes on which 	 

is control dependent. 

Rule 7.� If a token F*�
� is propagated to a call site �, token F*�

� is propagated to nodes on 

which � is control dependent. 

 

Note the asymmetry in forward and backward slicing (Rules 6 and 7) which is due to 

that control edges are not symmetric in the different directions: entry nodes typically have 

more outgoing control edges, whereas exit nodes have no incoming control edge; 

predicates have more outgoing control edges, whereas nodes have typically one incoming 

control edge. Rule 6 and 7 also ensure the propagation of control tokens to entry nodes 

(which is performed by Rule 8 in the forward direction), or to the predicates of the 

enclosing conditional statement, respectively.  

2.5    Local Variables, Parameter Passing 

This section discusses how the presented token propagation method can be extended to 

local variables and parameter passing. Keywords and constructs mentioned below basically 

derive from COBOL (which was the programming language motivated this work), but 

similar concepts can be found in other programming languages. We restrict to describing 

the forward case (the backward case is analogous). 

We consider COBOL program systems where programs contain “local” variables and 

use parameter passing at external program calls. In the following we describe how the 

propagation rules can be extended to this case. 

F���
� '��"��
��$ COBOL applications typically consist of several programs that call 

each other. Each program can be represented by a CFG, called a �������������, where 

����������

��"��� and �������������	��"��� (CALL statements) are linked to the entry and 

exit nodes of the called program’s main procedure. We refer to such set of program graphs 

as a ��������������������. Variables declared in one program are not accessible in other 

programs (unless they are explicitly passed by reference), therefore from program call sites 

tokens are propagated directly to the related program return sites when the index variable 

of the token is not passed (or passed by value, respectively), as these variables cannot be 

redefined (�"

�
) during the call. From program exit nodes, only tokens related to formal 
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parameters passed by reference are propagated back to calling programs; definitions made 

to other variables have no effect after return.  

�#��������� ����"	�$ There are two standard ways of passing parameters between 

programs: ��

-��-'�
�� and ��

-��-������	��. In the first case, the value of the actual 

parameter is passed to the formal parameter; in the latter case, its memory reference9 is 

passed, thus any modification of the formal parameter is reflected back the passed actual 

parameter. Parameter passing requires a conversion of token indices – from actual to 

formal parameter, and vice versa – during the interCprogram token propagation. A token 

/��� from a program call site is propagated to the entry node of the called program as token 

/���  if actual parameter � is passed as formal parameter � (either by value or by reference). 

A token /��� from a program exit node is propagated to program call site � only if � 

contains a token having token index � (say /����������������), where � is the actual parameter passed as 

formal parameter �. On return, the token index (�, which is a formal parameter passed by 

reference) is converted back to the matching actual parameter (say �), and the backtrack 

index is restored correspondingly to the backtrack index of the token stored in the call site 

(i.e., /��
�  is propagated to the program return site).  

The rules below complete the rule set of forward slicing (described in Sections 2.1 and 

2.2) for the case of programClocal variables and parameter passing: 

 

Rule 3.b�If a token /�!�  is propagated to a program call site �, where actual parameter ! is 

passed as formal parameter �, token /���  is propagated to the entry node of the 

called program’s main procedure. If ! is not passed by reference, token /�!�  is 

propagated to program return site �����	%"��8�9�:. 

Rule 4.b�Any program call site � that contains a token /�!
�  and exit node � of the called 

program’s main procedure that contains a token /���  induce the propagation of 

token /�2�  to program return site �����	%"��8�9�: if actual parameter ! is passed as 

formal parameter �, and actual parameter 2 is passed as formal parameter � by 

reference. Token /��Ø  is propagated from � to �����	%"��8�9�: as token /�2Ø.  

 

                                                 
9 COBOL (before COBOLC97) supports no pointer type variables. The variable reference cannot be 

accessed explicitly or modified. The same reference is passed on a potential subsequent passCbyCreference. 
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These rules can be adapted analogously for programs containing procedureClocal 

variables. Token indices and backtrack indices related to global variables (as well as value 

�, respectively, representing control dependence) require no token index conversion during 

the interprocedural token propagation. 

2.6    Related Work 

Various algorithms for calculating interprocedural slices exist. The first method published 

by Weiser [1984] is not contextCsensitive. There are studies [Agrawal and Guo 2001; 

Krinke 2002; Binkley and Harman 2003; Krinke 2006] investigating whether considering 

callingCcontext has significant affect on the size of the slices. It may occur that inaccurate 

slices due to following nonCrealizable paths are several times larger than precise ones. 

What is more, the computation of these extra large slices may take more time. Therefore, 

we concentrate on precise slicing methods.  

Most of the methods are based on system dependence graphs published first by Horwitz 

et al. [1990]. System dependence graphs can be considered as the whole program extension 

of the program dependence graph [Ottenstein and Ottenstein 1984; Ferrante et al. 1987]. 

Using SDGs, slicing is reduced to a graph reachability problem. The key element of the 

approach is the computation of transitive dependences due to procedure calls (summary 

edges).  

Reps et al. [1994] introduced an improved summary edge computation algorithm to 

speed up slicing using graph reachability between formal parameter vertices. Considering 

COBOL programs, where practically all the variables are global, the cost of Reps’ 

summary edge computation technique is bounded by 896%�3G*H����
%"���G*
7:, where 

6%�3 is the number of edges in the SDG, ����
%"��� is the total number of call sites, and * 

is the number of (global) variables in the program. This is followed by a twoCpass traversal 

of the SDG to calculate the slice that requires linear time in the size of the SDG.  

The cost of the presented full slicing algorithm is bounded by 

896�13G*
�H����
%"���G*7:, where 6�13 is the number of edges in the program graph. In 

the worst case, every possible token is propagated along every CFG edge, and from exit 

nodes every token is propagated as * different tokens to return sites. Although at our 

COBOL systems�6�13 was much less than 6%�3 (by at least two orders of magnitude), the 

* multiplier in the first term is due to the token propagation used to reveal du pairs (for 
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each backtrack index10), whereas Reps’ method exploits a priori flow edges between nodes 

that however necessitates the construction of the SDG. We note that Reps’ summary edges 

are also derived by our method, on demand: a token /�!� in the exit node corresponds to 

procedure summary �→!. 

As mentioned earlier, the key difference in our algorithm (in addition to exhaustive 

versus onCdemand nature) is that SDGs are huge monolithic graphs that usually exceed the 

internal memory in the case of realCworld applications. It is very difficult to predict which 

part of the graph should be kept in the main memory. The presented algorithm has the 

potential to process one program (or one procedure) at a time, resulting in a limited number 

of timeCconsuming read and write operations.  

Agrawal and Guo [2001] have presented an explicitly contextCsensitive slicing method 

over the SDG (without summary edges), in which the call stack is maintained during the 

propagation. Krinke [2002] showed that this algorithm has flaws, and presented a corrected 

explicitly contextCsensitive algorithm. The approach however proved to be impractical to 

calculate precise program slices due to combinatorial explosion of the set of the potential 

call stacks.  

Livadas and Croll [1992] introduced parseCtreeCbased SDGs, and considered aliasing, 

global and static variables. Sinha et al. [1999] extended the SDG method for programs with 

arbitrary interprocedural control flow, which allows a more precise analysis of program 

codes containing stop run, exit, tryBthrowBcatch, and similar instructions. 

Atkinson and Griswold [1996] also reported that the application of the SDG for larger 

systems may require prohibitive space and time. They used CFGs and the invocation graph 

approach [Emami et al. 1994] for contextCsensitive slicing. However, that method is 

exponential in cost at unbounded contextCdepth. Mock et al. [2002] limited the considered 

contextCdepth to two, as they were not able to compute fully contextCsensitive slices in a 

reasonable time. Liang and Harrold [1999] proposed a precise slice computation method 

that is also based on dataCflow information propagation over the CFG. Their algorithm runs 

in polynomial time, but its actual complexity is not clear, as no analysis is given. 

Slicing is a demand problem, and though some of the previously discussed methods are 

demandCdriven to some extent ([Atkinson and Griswold 1996; Liang and Harrold 1999; 

                                                 
10 The very first token propagation (for any backtrack index) reveals all the intraprocedural du pairs of a 

given node. The addition of explicit flow edges (that could be reused by subsequent propagations) would 

however increase the size of the program graph.  
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Agrawal and Guo 2001]), the most wide spread algorithm based on the SDG is exhaustive. 

Reps [1993] presented a general demand version of contextCsensitive interprocedural 

analysis problems. Application of his magicCsets method to interprocedural slicing called 

valid path algorithm was presented. Though the complexity of the algorithm has not been 

explicitly written, considering the experimental results it seems that the computation time 

for one slice element significantly increases with the size of the slice. On the contrary, in 

the presented method, the computation time of one slice element is independent from the 

resulting slice size. Horwitz et al. [1995] and Reps et al. [1995] have converted a large 

class of dataCflow analysis problems to a special kind of graph reachability problem using 

�!�
�
�
� �����������. The construction of the exploded supergraph, in which flow 

functions are represented explicitly at nodes, however, requires substantial time and space. 

Duesterwald et al. [1997] proposed a general framework for demandCdriven dataCflow 

analysis using fixedCpoint computation over the CFG. They also yield polynomialCtime 

algorithms, but the efficiency of the approach to solve dataCflow analysis problems (other 

than slicing) was shown only on moderate size programs. Orso et al. [2001] published an 

incremental slicing method based on dataCdependence types using SDGs. They compute 

summary edges on demand, but that algorithm is not applicable to recursive programs (the 

recursively called ComputeSummaryEdges function potentially gets into infinite loop). 

The presented slicing technique is demandCdriven and applicable to recursive procedures 

(programs) as well due its fixedCpoint computation (the token propagation is continued as 

long as new token can be propagated).  

Hajnal and Forgács [2002] proposed a token propagationCbased method to compute 

realizable definitionCuse chains. That method does not consider control dependences, 

parameter passing, and is not fully demandCdriven (relies on �"

 sets computed in 

advance). Furthermore, definition identifiers were used as token indices which can cause 

procedures to be reanalyzed several times for different definitions of the same variable. 

Hajnal and Forgács [2012a] presented an improved algorithm to compute precise program 

slices on demand (presented in this thesis) which avoids these limitations and reanalysis of 

procedures. By using variable identifiers as token indices, it has become possible to reduce 

the slice computation time from hours to minutes or seconds. 
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2.7    Conclusions 

As described in Chapter 1, existing CFGCbased dataflow techniques can have prohibitive 

time requirements to calculate precise program slices in the presence of recursion, while 

SDGCbased approaches rely on exhaustive analysis that poses space requirements and 

scalability problems. The technique proposed in this chapter attains the accuracy of the 

SDG approach at avoiding its space requirements by computing summary edges onC

demand. 

The presented method is conceptually simple which allows of easy implementation and 

computes precise slices up to realizable program paths. Scalability is addressed by its 

demandCdriven nature, i.e., the method computes the necessary information with regard to 

the slice currently being computed. As the technique is based on control flow graphs, it is 

more easily adaptable to accommodate specific system issues (such as complex 

instructions, massive use of globals) at moderate space requirements, and less sensitive to 

program modifications. 

 



  

 

) �
����-�

Evaluation 

COBOL is often thought as an oldCfashioned programming language which is of little 

importance by now. The fact is that several hundred billion lines of COBOL codes are 

actively used today in almost every major industry; what is more, COBOL’s dominance is 

expected to last over the next ten years. Many of the legacy systems are more than 30−40 

years old, whose maintenance is very laborCintensive and costly task. Program slicing is a 

potentially useful analysis for aiding different maintenance activities, including program 

comprehension, reC and reverse engineering.  

To evaluate the presented slicing approach a prototype of the slicing algorithm has been 

implemented and evaluated on a large COBOL system, which is in use at a company from 

the financial domain. During the implementation of the algorithm presented in the previous 

chapter, practical problems had to be solved such as how to interface with tools capable of 

providing the necessary input to the slicer, how to represent programming language 

specific constructs, and how the token propagation method can be implemented efficiently.  

To evaluate the performance of the slicing method we selected a considerably large set 

of test cases randomly, on which both slice computation times (dataCflow and full slicing in 

both directions) and slice sizes were measured. Our objective was to measure how fast 

slices can be calculated for a given slicing criterion “from scratch” without reusing any 

results of previous token propagations to assess the usability of the method in interactive 

contexts. 

Section 3.1 provides details about the most important design and implementation 

decisions. Section 3.2 presents the subject system of the experiments. Empirical results are 

given in Section 3.3. Section 3.4 discusses related tools; finally, section 3.5 concludes the 

chapter. 
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3.1    Prototype Implementation 

A prototype of the presented slicing algorithm has been implemented in the Java 

programming language. Though C or C++ potentially outperforms Java, features like 

automatic garbage collection, exception handling, and strict type safety along with objectC

oriented design made Java an attractive choice for developing robust codes quickly.  

In the following subsections, we describe the most important design and 

implementation solutions applied during the prototype development. 

Interfaces 

The implemented slicer prototype operates over control flow graphs (CFGs), i.e., on an 

abstract representation of a program. On its own the slicer prototype is not able to parse 

specific source codes, visualize the resulting slice, or associate control flow graph nodes 

with the related source code lines or variables, respectively, instead, the slicer was 

designed to be an individual, programming language independent component which can be 

connected to any Integrated Development Environment (IDE) in the future – inasmuch as 

it is capable of constructing the control flow graph of the subject program written in a 

specific source code language.  

To be able to pass input to the slicer, namely, the CFG and the slicing criterion, and 

return the output, the slice, it was necessary to define proper interfaces. The format of the 

interface was chosen to be XML. XML is a generalCpurpose description language, which is 

widely accepted and standard format. To formalize how CFGs can be described in XML 

we constructed an XML Schema Definition (XSD). This schema includes all the concepts 

of the traditional control flow graphs in the proper structure: programs, procedures, nodes, 

edges, variables, variable definitions and uses. By parsing the XML description of a CFG, 

the slicer constructs an internal representation of the CFG in the system memory over 

which the token propagation will be performed.  

The other input of the slicer is the slicing criterion. As a slicing criterion defines a 

program point and a program variable (i.e., a part of the CFG), it was convenient to specify 

its format in XML too using (basically) the same XSD. Similarly, we applied the same 

format to the resulting slice. 

At analyzing COBOL source codes, it early turned out that traditional control flow 

graph concepts are not sufficient to capture all COBOL constructs, which necessitated the 

introduction of new concepts.  
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COBOL systems typically consist of several programs calling each other; hence, we 

introduced the concept of �������������� that represents a set of interconnected ��������

������ (CFGs). To represent program calls (CALL statements) we introduced new node 

types, called �������� ��

� �"��� and �������� �����	� �"���, such that program calls 

accommodate  parameter passing in contrast to procedure call and return sites (PERFORM 

statements) where no parameter passing occurs (other than via global variables). In 

COBOL, the number of actual parameters may differ at different call sites calling the same 

program, e.g., it may occur that at a program call site, more than one actual parameters are 

passed to a single formal parameter (of some compound type), while at another place, the 

number of actualC and formal parameters are equal. For this reason, we introduced the 

concept of '"����
� ���������� ���"�"�	� such that actual parameters influence virtual 

parameter positions at call sites, and virtual parameter positions influence the 

corresponding formal parameters of the called program at program entry points, 

respectively. Using this indirection, it became possible to bind variable number of actual 

parameters to a fixed number of formal parameters, and vice versa.11  

The use of compound data (arrays, structures, records) necessitated the distinction of 

���
�� and ����� variables. In contrast to definitions made to scalar variables (of primitive 

data types) where definitions count as ��definitions, definitions made to array variables are 

treated differently during the token propagation: the propagation of a token having token 

index corresponding to a variable of array type is not blocked at a node containing 

definition for that variable (Rule 1).  

For illustration, in Figure 5, the XML fragment of a CFG (a), a slicing criterion (b), and 

the slice (c) are shown. In Figure 5.a, the XML description of a program named 

Program1 is shown, whose main procedure’s id is 1 (mainProcId attribute). It 

contains a global variable with id 1 which is of scalar type, and a global variable of array 

type having id 2. The first formal parameter corresponding to the first virtual parameter 

position (position attribute) is represented by variable 47, whereas the second formal 

parameter in the second virtual parameter position corresponds to variable 49. Procedure 1 

has unique entry and exit nodes (<entry> and <exit> elements). The successor of the 

entry node is node 1 (succ attribute). Node 1 is a definition node defining variable 1 

                                                 
11 Actual parameters are associated with virtual parameter positions by the parser, which information is 

available during parseCtime; whereas the slicer handles influences to virtual parameter positions during the 

token propagation. 
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(defs attribute). Node 3 is a useCdefinition node (it contains both uses and defs 

attributes), where the use of variable 1 influences the definition of variable 2 (influence 

attribute). Node 2 is a predicate node: it contains use and has control dependent nodes 

(controls attribute). The entry node controls all the nodes within the procedure 

(controls attribute) except the exit node. Node 4 is a procedure call site calling 

procedure 15 (proc attribute); its return site is node 5 (retId attribute), whose successor 

is node 6 (succ attribute). Node 6 is a program call site calling another program 

Program2 (prg attribute) and passing variable 17 in the first virtual parameter position 

(params attribute); its return site is node 7 (retId attribute), whose successor is node 8. 

The slicing criterion shown in Figure 5.b specifies slicing criterion node: node 1 in 

procedure 1 in program Program1, and variable 1 defined at that node. Slicing is to be 

performed in the forward direction (type attribute). The slice shown in Figure 5.c 

contains two programs: Program1 and Program2. Program1 contains two 

procedures: 1 and 15 in program Program1. In procedure 1, node 1 is the slicing criterion 

(by definition included in the slice), nodes 2 and 3 are dataCdependent (uses attribute), 

whereas nodes 3, 4, 5, 6, and 7 are controlCdependent (controlDependent attribute). 

Procedure 15 in Program1, as well as Program2 is �	�"��
� controlCdependent 

(controlDependent attribute), which implies that all the nodes of these components 

are in the slice (controlCdependent). 
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(a)� XML fragment of a program’s CFG 

 

 

 

 

 

 

  

 

(b)� XML fragment of a slicing criterion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) XML fragment of the slice 

 

 

�����2���3�4�
���������
���)�5$��������������������$������ ��������

<prg name="Program1" mainProcId="1"> 

 <vars> 

  <var id="1" type="scalar" /> 

  <var id="2" type="array" /> 

... 

</vars> 

<params> 

 <var id="47" position="1" /> 

  <var id="49" position="2" /> 

... 

</params> 

<proc id="1"> 

  <entry id="0" succ="1" controls="1 2 ... 64" /> 

<node id="1" succ="2" defs="1" /> 

<node id="2" succ="3 8" uses="1" controls="3 4 5 6 7" /> 

<node id="3" succ="4" uses="1" defs="2" influence="1 2" /> 

<proccall id="4" proc="15" retId="5" succ="6" /> 

<prgcall id="6" prg="Program2" retId="7" succ="8" params=”17 1” /> 

... 

<exit id="65" /> 

 </proc> 

 ... 

<proc id="15"> 

... 

 </proc> 

</prg> 

 

<slicingcriterion name="Program1" type="forward"> 

 <prg name="Program1"> 

  <proc id="1"> 

   <node id="1" defs="1" /> 

  </proc> 

 </prg> 

</slicingcriterion>  

 

<slice> 

<prg name="Program1"> 

<proc id="1"> 

<node id="1" defs="1" /> 

<node id="2" uses="1" /> 

<node id="3" uses="1" controlDependent="true" /> 

<proccall id="4" retId="5" controlDependent="true" /> 

<prgcall id="6" retId="7" controlDependent="true" /> 

  </proc> 

<proc id="15" controlDependent="true"> 

... 

  </proc> 

</prg> 

 <prg name="Program2" controlDependent="true"> 

 </prg> 

</slice> 
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Efficient Token Propagation 

The storage how control flow graphs are built in memory as well as the proper algorithmic 

solutions used to implement the token propagation was highly important regarding the 

performance. These issues are discussed in the following paragraphs.  

Using a single worklist for all the tokens to be propagated as proposed in the pseudoC

code in Chapter 2 is inefficient, as this list can grow extremely large, moreover, tokens 

belonging to different contexts are mixed (frequent context switching might be necessary 

when only a part of the program system fits into main memory). In the implemented slicer, 

therefore we used individual worklists, called �����
��������	� ���
"���, in each procedure 

that contain tokens to be propagated intraprocedurally (propagations through call sites 

insert elements into the called procedures’ token worklists).  

After selecting and removing an element from a token worklist (a token and a source 

node), graph reachability is used within the procedure to determine the nodes reachable 

from the source node along definitionCclear paths. Using graph reachability, we avoided 

the repeated applications of Rule 1 on the same token. During classical graph reachability 

successor nodes are �����
 iteratively until each marked node has marked successors 

only, where marking is usually implemented by setting a boolean '"�"��
 state (attribute) of 

nodes. To ensure mark propagation along definitionCclear paths, we used an additional 

boolean attribute called ��
�� mark to indicate nodes containing (re)definition of the token 

index of the token currently being propagated. Nodes marked as ��
�� block the 

propagation of '"�"��
 marks. ��
�� marking is performed prior to '"�"��
 mark propagation, 

and all ��
�� marks are cleared when the propagation of a given token finishes. 

Among the '"�"��
 nodes tokens are inserted into ��
�'�	� nodes only from where new 

propagation may start. These nodes are the procedure entry and exit nodes, call and return 

sites, and nodes containing use/definition of the token index. It reduces the memory 

requirements of the method and avoids reCpropagation of tokens from the same node 

multiple times.  

Classical graph reachability requires resetting '"�"��
 attribute in all nodes after each 

search. To avoid it we used an integerCvalued '"�"��
 field in nodes and an integer counter 

named �����	�0���*�
�� such that the value of �����	�0���*�
�� is incremented before 

each graph search. This value is propagated from the source node, and once the 

propagation of this value finishes, reached nodes have '"�"��
 attribute equal to 
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�����	�0���*�
��; all other nodes hold a different (some previous) value. '"�"��
 attributes 

in nodes are reset only when �����	�0���*�
�� reaches the upper bound of its range.  

To perform ��
�� marking efficiently we stored nodes associated to uses/definitions in 

procedures at building the CFG. Using a hash table indexed by variable definitions/uses (as 

keys) we can rapidly fetch the list of nodes containing definitions or uses for that variable, 

and mark or clear ��
�� marks, respectively.  

Efficient Token Storage 

During slicing several tens or hundreds of millions of token propagations may occur. 

Selecting a proper storage for tokens is crucial from both time (token insertion and fetching 

time) and space (memory requirements) points of view. We found no a uniform solution 

efficient in all nodes but depending on the node type different storage method had been 

applied. In the case of nodes containing uses, definitions, and return sites, we perform 

token insertions only (forward slicing), and hence, binary trees are used to achieve fast 

insertion time and low space requirements.  

Token storage at call sites and exit nodes are interrelated: inserting a token into a call 

site triggers getting all the tokens in the exit node of the called procedure having backtrack 

index corresponding to the inserted token (forward slicing), while inserting a token into a 

procedure exit node triggers getting tokens from call sites having token index identical 

with the backtrack index of the inserted token, respectively (Rule 4). These two operations 

implied that tokens at call sites are hashed by token indices (backtrack indices are stored in 

binary trees), while tokens at exit nodes are hashed by backtrack indices (token indices are 

stored in binary trees, respectively).  

Using the storage above, we achieved the performance of several hundred thousand 

token propagations per second on an average personal computer in 2012.    

3.2    Subject Programs 

COBOL is often thought as an oldCfashioned programming language which is of little 

importance by now. The fact is that COBOL is still the dominant language for business 

applications, and almost every major industry relies on it. In 1997, it was estimated that as 

much as 80 percent of the world’s computer code ran on COBOL, and there were 240 

billion lines of COBOL code in use [Brown 2000]. Although the role of COBOL has been 
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slightly reduced during the past decades, COBOL’s dominance is still expected to last over 

the next ten years as well [Binkley 2007].  

COBOL applications are often very large, many of them consist of more than 1,000,000 

lines of code, and even applications over 10,000,000 lines are not considered unusually 

large. COBOL programs typically deal with enormous volumes of data, and rely on a huge 

number (possibly tens of thousands) of global variables (DATA DIVISION), as the 

principal program structuring mechanism is the PERFORM statement. 

Many of the legacy systems are more than 30−40 years old, whose maintenance is very 

laborCintensive and costly task. The lack of proper documentation, adChoc maintenance 

activities over such long lifetimes, and the poor logical structure of programs can make 

maintenance very difficult. What is more, there is a huge risk involved in transforming and 

modernizing such applications, which companies are typically unwilling to undertake. 

Program slicing is a potentially useful analysis for aiding different maintenance activities, 

including program comprehension, reverse engineering, debugging, and testing. Hence, the 

empirical results presented in the following section have an important practical relevance. 

The subject of our experiments was a large COBOL system from the financial domain, 

which consisted of over 8 million lines of code (LOC, including variable declaration part, 

comments, and empty lines). This large system could be decomposed into independent 

subsystems of which we investigated five of different sizes (with total of 166 programs and 

1.2 million LOC). Table 1 presents details about the subsystems: the total number of 

programs and procedures, global variables, and program graph nodes. The least subsystem 

contained 67,000 LOC (%������ in Table 1), whereas the largest one contained 532,000 

LOC (%�����= in Table 1). We were given the �������� ������� representation of the 

subsystems, which was constructed using Panorama Analyser12.  

 

                                                 
12 Panorama Analyser is a commercial COBOL analyzer tool. Currently this product is not available. 
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��0�������6��������
�� ����,�����������7������

 8��������� 8������/���� 85��0���

,����0����

8�����������
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������

%������� 15 233 14 386 11 126 

%������� 18 369 41 685 18 958 

%�����7� 25 525 52 367 25 275 

%�����<� 32 1955 64 884 132 085 

%�����=� 76 3183 189 405 210 965 

 

3.3    Empirical Results 

We carried out our experiments on a P4 3GHz PC with 2GB RAM under JDK 1.6, using a 

maximum heap size of 1.5GB (JVM option Xmx). For each subsystem we selected 1000 

random definitions as slicing criteria for forward slicing, and 1000 random uses for 

backward slicing. We performed dataCflow and full slicing in both directions − thus we 

computed a total of 4000 slices per subsystem. Our objective was to measure how fast 

slices can be calculated for a given slicing criterion “from scratch” − without reusing any 

results of previous token propagations.  

We note that the total of 20,000 test cases is only a portion of the possible slicing 

criteria. Yet, considering that the size of some slices was close to the size of the whole 

subsystem, we expect no worse results for the rest of the slicing criteria and believe that 

the preliminary results provide a fair basis for demonstrating the practical applicability of 

the approach.  

The results of the slice computations are summarized in Table 2: execution times and 

slice sizes. It shows that dataCflow slicing gives prompt result for any of the slicing criteria: 

it takes less than three seconds on average and only 24 seconds in the worst case (with over 

2,000 slice elements). The performance of backward slicing was also very good in all the 

investigated systems: it took around two minutes in the worst case (with over 36,000 slice 

elements). We also obtained slices quickly at forward slicing in three of the five 

subsystems: within nine seconds on average and around one minute in the worst case. In 

spite of the fair average results in the last two systems (less than four minutes), forward 

slicing can be time consuming in some cases: it took almost 30 minutes in the worst case 

(although, in 78% of the slicing criteria in %�����< and in 83% of the slicing criteria in 

%�����= slices were computed in less than one minute). However, when the computation 
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time exceeded 60 seconds, the resulting slices were very large: they contained more than 

10,000 nodes – which roughly correspond to the number of affected source code lines. 

These large slices are less useful for human users, as they are very difficult or impossible 

to understand, respectively (in practice, slicing can be aborted after one minute). The 

increase in the slice size was caused by control dependences escalated over the whole 

subsystem due to recursion (via program calls – in some COBOL versions, recursion 

between procedures is also possible), which was present in all the five investigated 

subsystems. The same criteria were used at dataCflow slicing, which resulted in much 

smaller slices. 
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Execution times are given in seconds, slice sizes are given in number of nodes. Minimum/average/maximum 

values are shown. 

 

Figure 6 presents slice computation times and slice sizes (on a logarithmic scale) in the 

case of full slicing. Figure 6.b shows the slicing results for all the backward slicing criteria. 

Figure 6.a shows the results for those forward slicing criteria for which the computation 

time was less than 60 seconds (beyond 60 seconds, slice sizes always exceeded 10,000 

nodes).  
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(a) Forward slicing 

 

 

 

(b) Backward slicing 
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We can see that when the computation time took more than 20 seconds, slices contained 

more than 1,000 slice elements; above one minute, slices were over 10,000 nodes. This 

characteristic makes the approach suitable for applications in interactive contexts, because 

if the computation would take more than one minute, the size of the slice will likely be too 

big to be evaluated by a human user. Nevertheless, in most cases the resulting slices were 

small and could be computed quickly. 

The average number of the required token propagations was 6,579 at dataCflow slicing 

in our least subsystem, and 9,872 in the biggest one. The average value varied between 

148,788 and 13 million at full slicing. In the worst case, we had to perform 98 million 

token propagations. These values indicate the total number of tokens that need to be stored 

in CFG nodes, that is, the memory requirements of the slicing algorithm. In order to get a 

quantitative picture about the number of summary edges determined (required at 

computing a single slice), we counted the number of tokens propagated to entry and exit 

nodes. We measured 1,672–7,837 tokens on average propagated to entry/exit nodes at 

dataCflow slicing, and 36,699–969,367 tokens at full slicing. In the worst case, 12.7 million 

tokens were propagated to the exit nodes.  

3.4    Comparison with Other Works 

The author is aware of only a few papers concerning with slicing COBOL. Ning et al. 

[1994] presented a toolset called Cobol/SRE (Cobol System Renovation Environment) that 

supports different reengineering tasks of legacy COBOL systems. Among others, the 

toolset allows the user to compute forward and backward (and conditionCbased) slices to 

help in extracting meaningful business functions. The paper provides no details about the 

applied method, so it is not clear how precise the computed slices are with regard to 

realizable program paths. Lanubile and Visaggio [1993] presented a transform slicing 

method to aid the extraction of reusable functions from illCstructured programs. The slice is 

obtained by iteratively solving data flow equations based on the program’s control flow 

graph, similarly to Weiser’s original method. The approach was demonstrated on an 

example COBOL program. In [Lanubile and Visaggio 1997], the method was extended to 

the interprocedural case by maintaining interprocedural walks explicitly. However, as with 

recording the call stack explicitly, this solution suffers combinatorial explosion in the case 

of recursion. 



EVALUATION 63 
 

There are other types of analysis techniques that can efficiently support maintenance 

tasks for COBOL [Canfora et al. 1996; Komondoor et al. 2005; Ramalingam et al. 2006]. 

These techniques concern with recovering and inferring data models and types, but are not 

directly related to program slicing. 

There are a number of empirical studies performed on evaluating contextCsensitive 

slicing [Atkinson and Griswold 1996; Liang and Harrold 1999; Agrawal and Guo 2001; 

Krinke 2002; Binkley and Harman 2003; Krinke 2006]; however, we found no empirical 

results on slicing COBOL, neither data on the actual cost of SDG construction for realC

world programs. 

3.5    Conclusions 

After having described some of the most important design and implementation solutions of 

the prototype slicer, the applicability of the novel slicing approach has been evaluated on 

largeCsize COBOL systems on a considerably large set of test cases. The empirical results 

show that the method is capable of computing accurate program slices quickly, whereas 

longer computation times always result in large slices.  

The computation times of dataCflow as well as full backward slices were short in all the 

investigated systems; also, we obtained fair average computation times for full forward 

slices. In some cases, forward slicing was time consuming, however, in all these cases, the 

resulting slices were too big to be evaluated by human users: slice sizes exceeded 1,000 

slice elements after 20 seconds of computation. This characteristic makes the presented 

approach suitable for application in interactive context.   

 



  

 

) �
����1�

Understanding Program Slices 

Program slicing allows the users to focus on the selected aspects of semantics by breaking 

the whole program into smaller pieces, and when these slices are small they can be more 

easily maintained. However, larger program slices, but even slices containing only some 

tens of program instructions can be very difficult to understand. As William Griswold 

pointed out in his talk: 0��"	��%
"�"	��#����"��
+�����1"	�
�0"
� [Griswold 2001], one of 

the problems why slicers are not widely used is that it is not enough to dump the results 

onto the screen without explanation. 

Slices computed based on execution traces (dynamic) are typically smaller than the ones 

that consider all possible program executions (static). Furthermore, as a particular 

execution history is available during dynamic slicing, the chain of dependences caused a 

given program statement to be included in the slice can be more easily discovered. This is 

not the case in static slicing, where neither a particular dependence chain nor an execution 

trace covering these dependences are presented. Some applications such as program 

comprehension, reC and reverse engineering rely on static slicing, and it may occur that 

code under analysis cannot be even compiled and run (legacy systems, program under 

development).  

Static program slicing gives a wider view to the connected parts of the program code, 

which is essential in program comprehension or at extracting reusable functions from 

legacy systems – considering all possible program executions. Note that without an 

automated slicing tool revealing dependences in the program text is very laborCintensive, 

tedious, and time consuming task. Program slicing, however, beyond claiming that there is 

dependence between the slicing criterion and the computed slice element gives no 

explanation of the result that could help in understanding the effects between different 

parts of the program code by a human user.  

For example, in regression testing, one can use static program slicing to determine those 

parts of the code that are affected by the program modification. It can occur that one or 

more slice elements fall out of the software component that the change supposed to be 
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influenced, so the user may be curious how the effect has reached that point. By showing a 

actual chain of dependences from the slicing criterion to the selected slice element the user 

could be convinced that the influence indeed exists, and there is an unforeseen, undesired 

side effect of the modification that has not been taken into consideration at determining the 

impact of the change. 

The more precise the applied slicing technique the less the resulting slice sizes are. 

There are no fully precise static slicing methods for real programming languages, so ��
���

���"�"'��, i.e., slice elements identified on dependences that actually cannot occur during 

real program executions, are unavoidable. Such imprecision, for example, can be due to 

infeasible program paths (no such program input that results in the execution of the 

traversed conditional branches) or programming language constructs that make impossible 

to recover statically the precise flow of data (use of pointers, dynamic constructs).  

In this case, reasoning about slice elements could help programmers to recognize false 

positives. In regression testing, for example, an unexpected impact of a program change 

may be proven to be false, when the presented chain of dependences is infeasible (it cannot 

be realized along any feasible path), and it is rejected by a human user. This is a manual 

process, but it can still be less expensive than retesting all the slicer indicated parts of the 

code. 

Section 4.1 presents a method to provide explanation for the computed slice elements 

called the “reasonCwhy algorithm”. Section 4.2 discusses the related work; finally, Section 

4.3 concludes the chapter. 

4.1    The Reason-why Algorithm 

This section presents a method capable of reasoning about an arbitrarily selected element 

of the resulting slice, called the “reasonCwhy algorithm”. First, we restrict to forward dataC

flow slices; then we extended to full forward slices. Reasoning about backward slices is 

just the dual of the presented method, which is hence omitted. For clarity of the 

presentation we consider programs containing global and scalar variables. Local variables 

and parameter passing can be treated as described in Chapter 2. 
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4.1.1    Reasoning Data-flow Slices 

We assume that we are given a slicing criterion �=<	��{!}> for which the dataCflow slice 

has been computed using the token propagation method presented in Chapter 2. We also 

assume all the tokens propagated during slicing are available, and the resulting slice 

contains a node � to be explained; � contains a use of variable � and a token /��2�caused � 

to be marked as in the slice (Rule 2). To justify why � is included in the slice our goal is to 

present a definitionCuse chain from 	 to � – along with a potential execution trace that 

covers it. The pair (	, /�!Ø�) will be referred to as the ������; the pair (�, /��2�) is referred 

to as the ������. We note that we provide a single, any of the possible definitionCuse chains 

between the source and the target, which is not necessarily the shortest one.  

To our experiences providing a complete CFG path covering a definitionCuse chain 

contains too much detail (instructions) to overview by a human user; providing merely the 

nodes of the chain is not enough to see how this dependence chain can be covered by a 

potential program execution. The path to be constructed, called the “reasonCwhy path”, will 

hence be a definitionCuse chain augmented with procedure calls and returns 

(intraprocedural path segments between useCdefinition nodes and procedure boundaries are 

omitted).  

To reveal a definitionCuse chain between 	 and � we trace back the token propagation 

performed during slicing. We start from target node �, and investigate the tokens 

propagated to the predecessor nodes. Based on this information we can deduce to the 

previously applied token propagation rule(s), and determine the node(s) from where the 

token propagated to � may have been originated. The predecessor node and the token 

propagated to the predecessor node become the new target. Then, we continue finding such 

predecessors as long as we reach the source. From procedure entry nodes we “return” to 

call sites, and from return sites we enter procedure exit nodes, respectively. The traversed 

definitionCuse chain nodes, as well as procedure call and return sites are recorded; finally, 

this node sequence is reversed. We bypass recovering applications of Rule 1 (which 

propagates tokens unchanged to successors iteratively) by identifying reachable nodes 

along definitionCclear paths backwards. 

The construction of the reasonCwhy path is performed in two passes: in Pass 1, we 

traverse intraproceduralC, summaryC and call edges backwards (to callers), whereas in Pass 

2, we traverse intraproceduralC, summaryC and return edges (to called procedures). As 

procedure summary edges – represented by exit node tokens in the called procedures – are 
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available, we can cross procedure calls without ascending into the called procedures. 

Exploited summary edges are resolved in a subsequent step. Finally, the path is reversed to 

get a forward path. Note that, using the twoCpass method, procedure calls and returns will 

be correctly nested, i.e., the resulting reasonCwhy path will be realizable. 

�������

Pass 1 (as well as Pass 2) consists of a series of intraC and interprocedural path search 

steps. In the intraprocedural step, our goal is to get to the entry node of the current 

procedure, whereas in the interprocedural step we select one of the potential callers of the 

current procedure from where the token propagation had been originated.  

First, we consider the initial target: node � and token /��2, where 2 ≠ Ø. (If 2 = Ø, we 

skip Pass 1.) To determine the node from where /��2� had been propagated to �, we 

determine the set of nodes in the current procedure reachable along definitionCclear path 

wrt. � backwards. The possible source(s) of� /��2� among these nodes is either (a) the 

procedure entry node if 2 = � and the entry node contains /��� , (b) a node containing a 

definition of variable �, a use of a variable ', and a token /�'2 (/��2�had been started by 

Rule 2), or (c) a return site of a called procedure # such that the related call site of # 

contains a token /�'2�and there is a summary edge '→� (Rule 4 had been applied to token 

/��'  in the called procedure’s exit node). Note that as the backtrack index is not Ø, slicing 

criterion node 	 cannot be the source of /��2. In either case, we recordC and set the new 

node and the new token as the new ������. In the case of (b) or (c), we continue searching 

for the next predecessor of the current target as long as we reach the entry. In the case of 

(c), we record the call and the return site, as well as the summary edge used to cross the 

call (resolved later). To avoid infinite loop we traverse each nodeCtoken pair at most once, 

and use backtracking if necessary. 

On reaching the entry node, in the following interprocedural step, we select one of the 

potential callers that resulted in the propagation of /���  to the entry. These call sites 

contain a token /��' (Rule 3 had been applied). We select one of them, and apply the above 

intraprocedural path search for the new target (call site and /��'
����� ) to get to the entry node of 

the caller procedure.  

We continue the above procedure as long as any of the call sites contains a token /��Ø     , 

when we turn to Pass 2. In the presence of stronglyCconnected components (SCCs), we 

visit each call site and call site token at most once, which avoids infinite cycle. 
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As an example, let us consider the program shown in Figure 7. For slicing criterion 

�=(��, {!}), we obtain the dataCflow slice: %={��, �<, ��, �A, �=}. (The related 

instructions are highlighted in boldface characters; tokens propagated during slicing are 

indicated next to the nodes in the figure). Assume that we choose node �= to be explained.  

In Pass 1, we start from target (�=, /����). After identifying the set of nodes reachable 

(backwards) along definitionCclear paths wrt. � we find return site �7, whose call site 

contains a token /���� and the called procedure contains summary edge �→� (exit node 

token /���� in procedure B; case �). The new target is set as node �� and token /�����. In the 

next step, we reach procedure entry node �� (case �).  

In the interprocedural step we return to call site �>, as it contains a token /��
Ø�, so we 

finish Pass 1. The reasonCwhy path constructed during Pass 1 is shown below: 

 

 

 

 

 

 

�����(�

During Pass 2 we traverse intraprocedural and return edges, and trace back the propagation 

of /��
Ø  towards the slicing criterion.  

The intraprocedural path search starts from a call site (following Pass 2), or from node 

�, respectively (if � contains a token /��Ø  ). The potential source of this token is a node 

reachable from the current target along definition clearCpath wrt. � backwards, which is 

either (a) node 	 if � = !, (b) a node containing a definition of variable �, a use of a variable 

', and a token /�'Ø  (Rule 2), (c) a return site such that the related call site contains a token 

/�'Ø� and there is summary edge '→� (Rule 4), or (d) a return site such that the called 

procedure’s exit node contains the token /��Ø  (Rule 4 is applied to a token with Ø 

backtrack index). In the case of (a), we finish Pass 2; in the case of (b) or (c), we continue 

the intraprocedural search; in the case of (d), we set the exit node of the called procedure 

and /��
Ø  as the new target (interprocedural step). We continue the above procedure as long 

as we reach 	. 

 

1. (��, ���
� )  BB use of y 

2. (��, ���
� ) y→y BB return from B 

3. (��, ���
� )  BB call B 

4. (��, ���
� )  BB entry C 

5. (��, ���
Ø ) BB call C 
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In the example, in Pass 2, we start from node �> and token�/��Ø  . The only reachable 

node is node �A, which defines �, uses 2, and contains a token /�2Ø� � (case �). The new 

target is set as (�A, /�2Ø�). In the next steps, we select return site �7 and exit node �C of 

procedure A, which contains /�2Ø  (case 
). The source of token /�2Ø  propagated to �C is 

return site �A, since there is a token /�!Ø��in �=, and the called procedure contains summary 

edge !→2. From target (�=, /�!Ø�) slicing criterion node �� is reachable, and token index !�

corresponds to the variable of the slicing criterion (case �), so Pass 2 finishes. 

The path constructed in Pass 2 is as follows: 
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6.  (��, ���
Ø )   BB use of z, definition of y 

7.  (��, ���
Ø )   BB return from A 

8.  (�
, ���
Ø )   BB exit A 

9.  (��, ���
Ø ) x→z  BB return from B 

10. (��, ���
Ø )  BB call B 

11. (a2, ���
Ø )  BB definition of x 
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The reasonCwhy path potentially contains “jumps” from return to call sites via summary 

edges that need to be resolved. It requires constructing a coverage path for a dependenceC

chain realizing the procedure summary. We iterate over each adjacent call and return sites 

contained in the reasonCwhy path, resolve them oneCbyCone, and insert the related summary 

edge coverage path into the original reasonCwhy path between the related call and return 

site pair. 

The construction of the coverage path for a summary edge '→� is done correspondingly 

to the intraprocedural path search applied in Pass 1: for a given call site � and return site � 

we construct a reasonCwhy path from the exit node of the called procedure and token /��
' 

(target) to the entry node of the called procedure and token /�'' (source). Once this path 

has been constructed, it is inserted between the call and return site pair. 

Resolving a summary edge may introduce new summary edges (case �), which also 

need to be resolved, recursively. In the presence of SCCs, during resolving a summary 

edge, the same summary edge could potentially be reused. As during resolving a summary 

edge there must exist a path that does not reuse itself (otherwise, it would mean an infinite 

loop in the code, so the summary edge would have never been computed). Excluding the 

reuse of the same summary edge currently being resolved, the infinite loop can be avoided.  

By reversing the resulting path we obtain the expected definitionCuse chain containing a 

proper sequence of call and return sites. 

Continuing with the example, the reasonCwhy path contains two summary edges, at 

positions 2 and 9, which need to be resolved. The first summary edge �→� is resolved by 

starting from exit node �7 in procedure B and token /����(target). Since the entry node is 

reachable from the exit, and the entry node contains /����(source), the path search finishes. 

The path to be inserted between positions 2 and 3 is as follows: 

 

 

 

 

  

1. (
�, ���
� ) BB exit B 

2. (
�, ���
� )  BB entry B 
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During resolving summary edge�!→2 of procedure B we have to go through node ��, 

which results in the following path to be inserted between positions 9 and 10: 

 

 

 

 

 

 

 

The resulting reasonCwhy path is then reversed. The reasonCwhy path from �� to �= is 

shown below (only target token indices are indicated corresponding to the most recently 

defined variable; procedure calls and returns are indented; comments are substituted by  

actual program instructions): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.2    Reasoning Full Slices 

In full slicing, data dependent predicates induce propagation of control tokens along 

control edges, which also need to be considered at constructing the reasonCwhy path.  

If target node � contains control token only, the initial target is of the form (�, /��
2����). 

During the intraprocedural path search we determine the set of ��	���

"	� nodes, i.e., the 

nodes from where there is control edge to �. The possible source(s) of token /��
2�among 

these nodes is either (a) a predicate node containing a use of a variable ' and a token /�'2 

1. (
�, ���
� ) BB exit B 

2. (
�, ���
� ) BB use of x, definition of z 

3. (
�, ���
� )  BB entry B 

1.    ��, x  BB ���������	
 

2.    ��, x  BB call B () 

3.      
�, x BB entry B 

4.      
�, x BB ������ 

5.      
�, z BB exit B 

6.    ��, z  BB return from B 

7.    �
, z   BB exit A 

8.  ��, z   BB return from A 

9.  �����   BB ������ 

10. ��,��  BB call C ()�

11.   ��, y   BB entry C 

12.   ��, y   BB call B () 

13.     
�, y BB entry B 

14.     
�, y BB exit B 

15.   ��, y  BB return from B 

16.   ��, y   BB 
�����	�
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(Rule 5), (b) a predicate node containing /��
2�(Rule 6), or (c) the procedure entry node if 2 

= � and the entry node contains /��
� (Rule 8). The new node and the new token are set as 

the new target. This intraprocedural search step is applied in both passes 1 and 2 each time 

the origin of a control token needs to be determined.  

Another change in reasoning full slices is that control tokens induce dataCtokens at 

definition nodes (Rule 7); hence, at determining the possible sources of a data token /��2, 

nodes containing definition of variable � and token /��
2�need to be investigated too. If it 

holds for some node, this node and /��
2 are also a potential new target during the 

intraprocedural path search.  

When the target token is a control token, the interprocedural step in Pass 1 requires 

determining the set of call sites containing control token. In Pass 2, as no control token can 

be propagated to procedure exit nodes, the interprocedural traversal is unchanged. 

Using the above extensions, a reasonCwhy path can be constructed for elements of full 

slices. 

4.2    Related Work 

Various algorithms for calculating interprocedural slices exist, however, we are aware of 

no reasoning technique have been proposed to justify slice elements computed by these 

methods. 

Chopping [Jackson and Rollins 1994b] is a variant of program slicing capable of 

revealing statements involved in a transitive dependence from one specific statement 

(source criterion) to another one (target criterion). A chop is basically the intersection of 

the forward slice of the forward criterion and the backward slice of the backward criterion, 

which provides a more focused approach to investigating how one statement affects the 

other. A chop thus gives the set of nodes composed of (all) the dependence chains between 

the source and the target, but does not provide information about a particular dependence 

chain from source to target, neither an appropriate calling sequence that covers is.  

The solution proposed in this chapter answers both questions. We are aware of no other 

similar techniques for this problem. 
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4.3    Conclusions 

To our knowledge no automated reasoning technique about the computed slice elements 

has been proposed in the literature so far. Without such a tool, verification or 

comprehension of the resulting program slices requires considerable expertise and time. 

This chapter proposes a solution to “explain” slice elements by computing an actual 

dependence chain from the slicing criterion to the chosen slice element.  

We implemented the presented reasonCwhy algorithm in the Java programming 

language and integrated with the slicing tool presented in Chapter 3. We carried out several 

experiments on the same COBOL system and slices computed in programs of different 

sizes. The results showed that in all the cases slice computation time dominates the time of 

the reasonCwhy path computation (it took only a few seconds in the worst case). It is 

because the reasonCwhy algorithm only reads the available token information and performs 

no computeCintensive operations (in contrast to slicing). Note that slice computation has to 

be performed once, then several reasoning tasks can be initiated on the resulting slice 

elements. To our experiences these dependence chains are easily overviewed or analyzed 

by a human user, which is also due to control information included. 
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Further Enhancements, 

Applications 

In the case of largeCsize programs, the number of tokens to be propagated and stored can 

be very high. This chapter investigates different timeCspace tradeoffs and alternatives for 

the algorithm design.  

The number of tokens to be stored during the slice computation can be reduced by 

calculating the topological sorting of procedures, then processing them in postorder. This 

processing order allows discarding tokens stored in procedures calling already processed 

procedures. The number of tokens to be propagated can be reduced by preCcomputing the 

so called GREFCGMODCKILL information. These sets can be used to filter unnecessary 

token propagations in advance. Between program modifications, subsequent slicing tasks 

can be sped up by reusing the results of previous calculations, namely, the summary edges. 

Furthermore, the token propagation method can be adapted to calculate and exploit flow 

edges, which can also reduce the number of required token propagations at the cost of 

increased space requirements.  

A variant of the algorithm is capable of constructing definitionCuse (du) graphs, which 

can aid program comprehension and dataCflow based testing. Finally, it is shown that how 

the token propagation method can be applied to calculate slicing variants called dicing and 

chopping.  

For clarity of the presentation, we restrict to discussing forward slicing in this chapter, 

unless explicitly noted. 

Section 5.1 describes how the number of stored tokens can be reduced via postorder 

processing of procedures. Section 5.2 discusses how the slice computation can be sped up 

by preprocessing the program. Section 5.3 describes how previous calculations can be 

reused. Section 5.4 discusses how the token propagation method can explore and exploit 

flow edges on demand. Section 5.5 presents how the token propagation method can be 
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applied to construct definitionCuse graphs. Section 5.6 describes how the method can be 

applied to other variants of slicing; finally, section 5.7 concludes the chapter. 

5.1    Reducing Token Storage via Postorder 

Processing 

Because of the possibly large number of tokens to be propagated in the case of realCworld, 

largeCsize codes – which reached about one hundred million in our experiments – it might 

be necessary to reduce the memory requirements of the method. At implementing the slicer 

prototype (Chapter 3), we already used a kind of token storage reduction: we stored tokens 

in "	���procedurally� relevant nodes only. This section describes an "	���proceduralClevel 

solution, during which, we determine the topological sorting of procedures and process 

them in postorder. Such processing order allows discarding tokens stored previously in 

internal nodes of the already processed procedures, at keeping entry and exit node tokens 

(summary edges) only. 

The topological order of procedures can efficiently be calculated by a depthCfirst search 

in the call graph (first, assuming directed acyclic graphs), after which each procedure can 

be assigned a unique rPostorder index such that the index of each procedure is less than the 

index of any of the called procedures. Postorder processing of procedures means we 

always select a procedure (among the procedures to be processed) with the highest 

rPostorder index; processing a procedure means we apply the propagation rules to source 

tokens in the procedure as long as there is applicable one. Using procedure token worklists, 

as described in Chapter 3, a procedure is to be processed, when its token worklist is not 

empty, and its processing is continued until its worklist becomes empty. (Initially all the 

token worklists are empty except the procedure containing the node of the slicing 

criterion.) On selecting a procedure having index " to process, token worklists of all 

procedures having index greater than " are empty; after having completed processing this 

procedure, the index of the procedure to be selected next may be greater than " when a 

token is propagated out of a call site to a called procedure, or less than ", respectively, 

when no more intraprocedural propagation is possible and tokens are propagated 

interprocedurally from the exit node to caller procedures only (if any).  

Assume that we have just processed a procedure with rPostorder index " and all token 

worklists of procedures having index greater than " are still empty. If we discard all tokens 

– except the ones stored in entry and exit nodes – in all procedures with index greater than 
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or equal to ", and continue the token propagation, the resulting slice will not differ from the 

one that would have been computed without token deletion, as it is shown below. 

The intraprocedural propagation in untouched procedures (having index less than ") is 

unaffected by the deletion, the only change could be due to interprocedural propagation 

Rules 3 and 4. As tokens in exit nodes are kept, even at calling a “cleanedCup” procedure 

the application of Rule 4 still results in the same tokens in the return sites. At applying 

Rule 3, two cases may occur: the token is already contained by the entry node of the called 

procedure (no propagation is performed), which case still corresponds to the propagation 

without deletion, or a new token, not yet contained by the entry node is propagated to it,. 

The latter case is relevant only when propagation is performed to a cleanedCup procedure. 

When a new token /���� is propagated to an entry node, all the tokens propagated 

intraprocedurally as a consequence of this token (including new propagations induced at 

affected nodes) have common backtrack index, identical to �. Or conversely, as /���� is a 

new token to the entry node, no other tokens may have existed in this procedure before 

with backtrack index �. Therefore, new propagations from entry nodes are surely 

propagated in the same way as no deletion would have happened (new and deleted tokens 

are �������	�
). In conclusion, since subsequent token propagations are unchanged from 

the point of token deletion on, we get the same slice as a result. 

In the case of cyclic call graphs, we can still determine a generalized invocation order of 

procedures [Forgács 1994] – giving the same index to all the members of the SCC. Token 

deletion, in the presence SCCs, can be deduced form the acyclic case.  

 As the cost of determining the topological sorting of procedures as well as the cost of 

discarding unnecessary tokens is relatively low, the proposed timeCspace tradeoff may 

effectively reduce the memory requirements of the method.  

5.2    Reducing Propagations via GREF-GMOD-KILL 

The token propagation method presented in Chapter 2 represents a fully demandCdriven 

approach to slicing that does not require any preprocessing information about the program 

– other than the control flow graph. Preprocessing means a preliminary analysis of the 

program (code or its graph representation) during which the whole program is analyzed 

gathering certain information in advance. This information can assist and speed up latter 

tasks. When one or only a few slices need to be computed (or the resulting slice is small, 

respectively), only a portion of the globally obtained information is exploited, hence, a 
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demandCdriven solution likely to calculate slices the fastest – also considering the overhead 

of preprocessing. When several slicing tasks need to be performed, however, this cost can 

return. 

Such a preprocessing possibility is the computation of GREF, GMOD, and KILL 

information about procedures. The GREF set is the set of program variables to which a 

procedure (or the procedures called by the procedure, respectively) contains variable 

reference, the GMOD set is the set of variables that a procedure may modify, whereas the 

KILL set is the set of program variables that the procedure surely defines during its call (all 

paths from entry to exit contains definition). This preprocess information needs to be 

computed once and can be reused in any subsequent slicing task later as long as the 

program code has not been changed. (Algorithms for computing these sets can be found in 

[Banning 1979; Forgács 1994].) 

Regarding the token propagation method, the GREF set can be applied to block the 

propagation of a token /�!�  through a call site when ! is not in the GREF set of the called 

procedure – and so no use or further dependences can arise; thus, token /�!� can directly be 

propagated to the return site, unless ! is in the KILL set.  

In the method presented in Chapter 2, if a control token /��
�  is propagated to a call site 

�, it induces in the propagation of control tokens over all nodes of every (directly or 

indirectly) called procedure, and results in each variable 2 defined in these procedures to 

return as data token /�2
���to return site �. Using the GMOD set, instead of propagating the 

control token to the called procedure from call site �, we can directly propagate data tokens 

corresponding to variables in the GMOD set to return site �, and simply mark called 

procedure(s) as “control dependent”. (A control dependent procedure implies all its nodes 

to be included into the resulting slice.) Tokens propagated from the return site get the 

backtrack index of the control token propagated to the call site (i.e., �). 

We implemented the above solution and measured both preprocessing and slicing times. 

We used the same subject programs and slicing criteria described in Chapter 3. The 

computation times of the GREF, GMOD, KILL sets (altogether) varied between 1 (%������

�) and 43 seconds (%������=). In dataCflow slicing, we observed no significant speed up, 

neither in full backward slicing. Full forward slicing also resulted in similar computation 

times in the case of smaller programs (%�������,��, and 7). In larger programs (%������< 

and =), however, the average computation time has reduced to 19−40% of the slicing time 

without preprocessing. Hence, we can conclude that, in the case of large programs, the 
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performance of slicing may improve using the GREF, GMOD, KILL sets, and the cost of 

preprocessing can return even at performing a single slicing task. 

5.3    Reuse of Summary Edges 

As long as the program code has not been changed, summary edges remain unchanged as 

well. During subsequent slicing tasks, the propagation of the same token from the same 

procedure entry node results in the same tokens in the procedure exit node; therefore, by 

saving and loading entry and exit node tokens, the reCpropagation of tokens from entry 

nodes can be avoided. However, simply saving and loading these tokens may result in 

incomplete slices, as “blocked” token propagations from procedure entry nodes due to 

loaded tokens omit potential slice nodes in the called procedures in latter slice 

computations (no marking will be performed by Rule 2). 

Hence, in addition to entry and exit node tokens, “partial slices”�7 need to be 

maintained. A partial slice is composed of nodes marked as a consequence of a token 

propagated from a procedure entry node. These partial slices are related to tokens stored in 

entry nodes; or to be more specific, as tokens in entry nodes have identical token and 

backtrack indices, partial slices can directly be associated with program variables at 

procedures. 

The backtrack index of the token currently being propagated determines the ������ 

����	 propagated from the entry node: if a token /��! with backtrack index ! is inserted 

into a node in a procedure, this token necessarily derives from a token /�!! propagated 

from the entry node of this procedure. In this way, on token insertations, marked nodes, 

i.e., elements of the partial slices, can be associated with (added to) the partial slice of the 

corresponding backtrack index variable. (Nodes marked due to token insertions having Ø 

backtrack index are not maintained in any partial slices.) 

Once a slice computation has been finished, we can save and later load these partial 

slices in addition to summary edges. In a subsequent slicing task, when the propagation of 

a token /�!� is propagated from a call site to a procedure entry node already containing /�!! 

(loaded) and so its propagation is blocked, we simply include the partial slice of the called 

procedure associated with program variable ! into the resulting slice, and continue the 

                                                 
13 A similar concept but with different computation was proposed in [Harrold and Ci 1998]. 
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token propagation from the return site considering summary edges of the called procedure, 

i.e., exit node tokens (loaded). 

Because of the interprocedurally induced token propagations, partial slices obtained due 

to the propagation of a token /�!
!  from a procedure entry node does not limit to a single 

procedure; a token /��
! propagated from a call site to the called procedure potentially 

induces new propagation with token /����from its entry node. The partial slice belonging to 

variable � obtained in the called procedure therefore has to be 
"	��
 to the partial slice 

associated with variable ! of the caller procedure. On blocked token propagations, all 

linked partial slices are to be included in order to obtain correct slices.  

With new propagations potentially new summary edges and new partial slices are 

computed, which can be saved incrementally. 

5.4    On-demand Computation of Flow Edges 

The presented token propagation method operates over control flow graphs and does not 

require revealing intraprocedural dependences between statements in advance, which is a 

prerequisite of the SDGCbased approach. On the other hand, using the current technique, it 

may occur that different tokens with the same tokenC but different backtrack indices are 

propagated from the same node redundantly – exploring the same paths intraprocedurally.  

To avoid it, once the token propagation from a node for a given token index has been 

completed, the revealed flow edges can be stored between the source and the reached node 

(from entry nodes, definition nodes, and return sites to use nodes, call sites, and exit nodes, 

respectively). Later, when a token with the same tokenC but a different backtrack index is 

to be propagated from the same node again, tokens can directly be propagated through the 

previously explored flow edges omitting propagations over intermediate control flow graph 

nodes.  

This solution corresponds to a demandCdriven construction of the programCdependence 

graph; however, the space requirements of maintaining flow edges in addition to the 

control flow graph can be very high in the case of large programs. 

5.5    On-demand Construction of the Du-graph  

The token propagation method presented in Chapter 2 uses variable identifiers as tokenC 

and backtrack indices by which a significant speed up can be gained compared to the 
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method proposed by Hajnal and Forgács [2002]. That solution used definition identifiers as 

token indices. By contracting tokens belonging to different definitions of the same 

variable, however, we lose the information which are the actual definitions affecting the 

use being marked. In some applications, this information is more important than computing 

slices quickly.  

A definitionCuse (du) graph is a directed graph in which nodes represent program 

statements and edges represent potential dataCdependences between them. Using definition 

identifiers as token and backtrack indices, we can construct the du graph during the token 

propagation (in the context of the current slice). The constructed du graph can then be 

visualized that can aid program analysis, program comprehension, regression testing, or 

support dataCflow based testing criteria, respectively. Note that when creating test cases to 

satisfy such a criterion it is highly important to consider realizable definitionCuse pairs, 

definitionCuse chains, respectively. If we apply the method for all definitions contained by 

the program, the set of definitionCuse pairs can be computed simultaneously. These 

definitionCuse pairs need to be covered by test cases to satisfy the allCuses (�

�
����"��) 

criterion [Rapps and Weyuker 1985]. In addition, by controlling the length of the 

investigated definitionCuse chains, this algorithm can support other testing criteria such as 

Ntafos’ required kCtuples [Ntafos 1984] or all programCfunctions [Forgács and Bertolino 

2002]. Note that flow edges of PDGs differ from du graph edges: flow edges restrict to 

intraprocedural dependences, whereas du graph edges represent dependences crossing 

procedure boundaries as well. 

5.6    Dicing, Chopping 

There are other variants of slicing based on set operations on one or more slices, called 

dicing [Lyle 1984] and chopping [Jakson and Rollins 1994b]. They provide a more focused 

approach at localizing the set of statements likely to contain the bug during debugging.  

Dicing uses the information that the results of some variables fail on some test cases 

while other variables pass all tests. It reduces the number of statements to be examined. A 

program dice is obtained by subtracting the successful execution slices (slices of variables 

showing correct values) from the failed execution slice (slices of variables showing 

incorrect results).  

The token propagation method is capable of computing the union slice of several slicing 

criteria simultaneously by starting multiple initial tokens corresponding to a “compound 
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slicing criterion”14 (all tokens having Ø backtrack index). Note that the computation of the 

union slice is likely faster than computing individual slices, as token propagations common 

in different computations are to be performed once.  

It can be exploited in dicing at computing the union slice of all statements resulting in 

correct values. During the first phase, we use mark label �����
 to mark nodes (instead of 

“in the slice” in Chapter 2). In the next phase, at keeping �����
 marks, we compute the 

slice of the failed variable, using mark label ��"
�
, with the modification that we do not 

mark or start new token propagations from nodes marked as �����
. The dice (subtracted 

slice) is given by the set of nodes marked as ��"
�
. Note that the computation cost of the 

latter slice is likely less than computing the full backward slice, as it skips previous token 

propagations from �����
 nodes. 

Chopping reveals statements involved in a transitive dependence from one specific 

statement (source criterion) to another one (target criterion). It shows how one variable 

affects the other. A chop for a chopping criterion (�,��) is the set of nodes that are part of a 

dependence chain from source node � to target node �. A program chop can be defined as 

the intersection of the backward and the forward slice, from �, and from �, respectively. As 

it has been shown in Chapter 3, backward slice computation times are typically shorter 

than forward slice computation times, for a chopping criterion (�, �) we compute the 

backward slice of �, and use mark label ���� ��
 in the first phase. In the next phase, the 

forward slice of � is computed with the modification that new token propagations are 

started from ���� ��
 marked nodes only, and we use mark label ��� ��
, respectively. 

The chop (intersection slice) is given by the set of nodes marked by labels both ��� ��
 

and ���� ��
. Note that the computation time of the forward slice is likely shorter than the 

computation time of the full forward slice from �, as in the second phase, token 

propagations are started from ���� ��
 marked nodes only.  

5.7    Conclusions 

The algorithm presented in Chapter 2 is a demandCdriven approach requiring no 

preliminary, exhaustive analysis of the program’s code, which results in low computation 

times when only a few slices need to be computed, or in interactive use, respectively. In 

                                                 
14 A union slice of a “compound slicing criterion” composed of more program points and possibly more 

program variables is the union of slices computed for its “atomic slicing criteria” composed of a single 

program point and a single variable. 
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other cases, however, performing some preprocessing of the program, the time and space 

requirements of the technique can further be reduced. 

By computing the topological sorting of procedures and processing them in postorder 

numerous tokens stored previously can be discarded that reduces the space requirements of 

the method. By computing the GREFCGMODCKILL sets several token propagation can be 

filtered in advance that potentially reduces both time and space requirements of the method 

at the cost of some preprocessing overhead. Another timeCspace tradeoff is the reuse of the 

results of previous calculation by maintaining summary edges and partial slices. In this 

way, repeated computation of summary edges and reCpropagation of tokens can be 

avoided. It is also discussed how flow edges can be identified and exploited on the fly to 

reduce the number redundant token propagations.  

A variant of the token propagation method is presented that can be applied to construct 

definitionCuse graphs to aid program comprehension and testing dataCflow based testing. It 

is also discussed how the method can be adapted to calculate program dices and chops. 
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Summary 

DataCflow analysis is an important technique of program analysis, which is already used in 

optimizing compilers. The key concepts of dataCflow analysis were developed in the late 

60s. Over the past decades, the majority of new applications have focused on software 

quality. 

The concept of program slicing extends dataCflow analysis to accommodate control 

dependences. Using program slicing, parts of the code can be extracted automatically, 

called a �
"��, which focuses on selected aspects of semantics. As program slices are 

typically much smaller than the whole program code they can be more easily understood or 

maintained.  

Program slicing was originally motivated to aid debugging activities. Various notions of 

program slices have been proposed as well as a number of methods to compute them. By 

now numerous applications of program slicing exist in software engineering, including 

software testing, software maintenance, program comprehension, reC and reverse 

engineering, and program integration.  

The motivation of the dissertation was to be able to analyze legacy COBOL systems. 

We found that previous techniques are not adequate to slice large COBOL systems. By 

applying existing methods either precision or scalability is violated. System issues are 

often omitted in previous approaches; moreover, interactive contexts require a demandC

driven solution. 

The proposed novel static program slicing technique is based on token propagation over 

the control flow graph. The algorithm is conceptually simple, which allows of easy 

implementation, but general enough to adapt to a larger class of programming languages. 

Tokens are propagated along realizable program paths by which we obtain accurate results. 

The method is inherently demandCdriven, that is, it computes the necessary information 

when they are needed. The technique is compared to other related solutions. 
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An efficient implementation of the proposed algorithm has been presented, and its 

performance was evaluated on realCworld COBOL codes. Experiments were performed on 

a large number of test cases to provide details about its real efficiency, applicability. 

To make slicing more userCfriendly we proposed a method to reason about slice 

elements that aids slice comprehension.  

We also investigated different timeCspace tradeoffs and alternatives for the algorithm 

design. We described how to reduce the number of tokens to be stored and how to speed up 

slicing by preprocessing, computing flow edges, or reusing the results of previous 

calculations, respectively. Construction of the definitionCuse graphs as well as the 

adaptation of the method to dicing and chopping is also discussed.  

6.1    New Scientific Results 

In this section the main contributions of the dissertation are summarized. 
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These results are shown in Sections 1.3–1.5. Author’s publications related to the thesis 

are: [Forgács and Hajnal 1998b; Forgács et al. 1998; Hajnal and Forgács 2002; Hajnal 

and Forgács 2012a] 
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These results are shown in Sections 2.2–2.5. Author’s publications related to the thesis 

are: [Hajnal and Forgács 2002; Hajnal and Forgács 2012a] 
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These results are shown in Sections 3.1–3.3. Author’s publication related to the thesis 

is: [Hajnal and Forgács 2012a] 
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These results are shown in Sections 4.1, 4.3. Author’s publication related to the thesis 

is: [Hajnal and Forgács 2012b] 
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These results are shown in Sections 5.1C5.6. Author’s publication related to the thesis is: 

[Hajnal and Forgács 2002] 

 

6.2    Further Research Directions 

In Chapter 5, we proposed several enhancement possibilities that are not yet fully 

evaluated experimentally. The presented demandCdriven token propagation method 

assumes interactive contexts in which only a few slices need to be computed between 

program modifications. There can be however other usage scenarios that require more 

program slicing tasks to be performed (e.g. program comprehension). We are planning to 

study such usage scenarios and design ���"��
 slicing criterion sequences. Based on that, 

the proposed timeCspace tradeoffs can be more precisely evaluated.  
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We considered no pointer variables (references, function pointers, etc.), which are 

present in modern programming languages. #�"	��-�� analysis during which we determine 

the set of possible variables to which a pointer may point to and its integration with the 

proposed token propagation method are also a great challenge. ObjectCoriented 

programming constructs rise other problems haven’t been investigated yet, but are also 

worth researching.  



  

 

Abbreviations 

.#1� All ProgramCFunctions 

�13� Control Flow Graph 

�.3� Directed Acyclic Graph 

"�13� Intraprocedural Control Flow Graph 

)�13� Interprocedural Control Flow Graph  

)�6� Integrated Development Environment 

#�3� Program Dependence Graph 

%��� Strongly Connected Component 

%�3� System Dependence Graph 

 



  
 

Appendix: Author’s Publications 

Publications on the topic of the thesis 

[J]  JOURNALS  

 

[J1] Ákos Hajnal, István Forgács. 2012. A demandCdriven approach to slicing legacy 

COBOL systems. JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS, 

24(1), pp. 67–82, John Wiley & Sons.  (IF: 0.844) 

[J2] Ákos Hajnal, István Forgács. 2012. Understanding program slices. ACTA 

CYBERNETICA (to appear). 

 

[C]  CONFERENCES  

 

[C1] Ákos Hajnal, István Forgács. 2002. A precise demandCdriven defCuse chaining 

algorithm. In: 6th European Conference on Software Maintenance and 

Reengineering (CSMR’2002), IEEE Computer Society, pp. 77–86.  

[C2] Ákos Hajnal, István Forgács. 1998. An applicable test data generation algorithm for 

domain errors. In: 1998 ACM/SIGSOFT International Symposium on Software 

Testing and Analysis (ISSTA '98), ACM New York, pp. 63–72. SOFTWARE 

ENGINEERING NOTES, 23(2), ACM New York, pp. 63–72. 

 [C3]  István Forgács, Ákos Hajnal. 1998. Automated test data generation to solve the Y2k 

problem. In: 2nd International Software Quality Week Europe 1998 (QWE'98), p. 

10 (paper 2S). 

 [C4] István Forgács, Ákos Hajnal, Éva Takács. 1998. Regression slicing and its use in 

regression testing. In: 22nd Annual International Computer Software and 

Applications Conference (COMPSAC'98), IEEE Computer Society, pp. 464–469. 

 



APPENDIX: PUBLICATIONS�� 89 
 

[O]  OTHER 

 

[O1] István Forgács, Ákos Hajnal. 2011. ForráskódCanalízis: Olvassunk a sorok között! 

COMPUTERWORLD SZÁMÍTÁSTECHNIKA, XLII:(41), pp. 10–12 (in 

Hungarian). 

[O2] István Forgács, Ákos Hajnal. 1997. Szoftver tesztelés. Jegyzet Szoftver minıség és 

tesztelés tárgyhoz, BME, ELTE Doktori Iskola, 1997/1998Cas tanév, p. 41 (in 

Hungarian). 

 

Further publications 

[J]  JOURNALS  

 

[J3] David Isern, Antonio Moreno, David Sánchez, Ákos Hajnal, Gianfranco Pedone, 

László Zsolt Varga. 2011. AgentCbased execution of personalised home care 

treatments. APPLIED INTELLIGENCE, 34(2), SpringerCVerlag, pp. 155–180. (IF: 

0.849) 

 

[B]  BOOK CHAPTERS  

 

[B1] Ákos Hajnal, Tamás Kifor, Gergely Lukácsy, László Zsolt Varga. 2011. Web 

services as XML data sources in enterprise information integration. In: Enterprise 

Information Systems: Concepts, Methodologies, Tools and Applications, 2011, 

Hershey PA: Information Science Reference, pp. 972–985. Services and Business 

Computing Solutions with XML: Applications for Quality Management and Best 

Processes (P. Hung, Ed.), 2009, IGI Global, pp. 82–97. 

[B2] Ákos Hajnal, Antonio Moreno, Gianfranco Pedone, David Riano, László Zsolt 

Varga. 2009. Formalizing and leveraging domain knowledge in the K4CARE home 

care platform. In: Semantic knowledge management: An ontologyCbased framework 

(A. Zilli, E. Damiani, P. Ceravolo, A. Corallo, G. Elia, Eds.), Information Science 

Reference, pp. 279–302. 

 



APPENDIX: PUBLICATIONS�� 90 
 

[B3] László Zsolt Varga, Ákos Hajnal, Zsolt Werner. 2005. The WSDL2Agent tool. In: 

Software AgentCBased Applications, Platforms and Development Kits (R. Unland, 

M. Klusch, M. Calisti, Eds.), Whitestein Series in Software Agent Technologies, 

Birkhauser Basel, pp. 197–223. 

 

[C]  CONFERENCES  

 

[C5] Tamás Kifor, Tibor Gottdank, Ákos Hajnal, Péter Baranyi, Brúnó Korondi, Péter 

Korondi. 2011. Smartphone emotions based on humanCdog interaction. In: 2nd 

International Conference on Cognitive Infocommunications: CogInfoCom 2011, 

 IEEE Computer Society, pp. 1–6. 

 [C6] Tamás Kifor, Tibor Gottdank, Ákos Hajnal, Csanád Szabó, András Róka, Brúnó 

Korondi, Péter Korondi. 2011. EthoPhone, humanCdog interaction inspired affective 

computing for smartphone. In: Proceedings IEEE/ASME International Conference 

on Advanced Intelligent Mechatronics, IEEE Computer Society, pp. 542–547. 

 [C7] Ákos Hajnal, David Isern, Antonio Moreno, Gianfranco Pedone, László Zsolt 

Varga. 2007. The role of knowledge in designing an agent platform for home care. 

In: 2nd International Conference on Knowledge Management in Organizations 

(KMO), pp. 16–26. 

[C8] Ákos Hajnal, David Isern, Antonio Moreno, Gianfranco Pedone, László Zsolt 

Varga. 2007. Knowledge driven architecture for home care. In: MultiCagent systems 

and applications V: 5th International Central and Eastern European Conference on 

MultiCagent Systems (CEEMAS 2007), pp. 173–182. LECTURE NOTES IN 

ARTIFICIAL INTELLIGENCE, Vol. 4696, SpringerCVerlag, pp. 173–182. 

[C9] Ákos Hajnal, Gianfranco Pedone, László Zsolt Varga. 2007. OntologyCdriven agent 

code generation for home care in Protégé. In: 10th International Protégé 

Conference: Budapest, Hungary, pp. 91–93. 

[C10]  Ákos Hajnal, Tamás Kifor, Gianfranco Pedone, László Zsolt Varga. 2007. Benefits 

of provenance in home care. In: Healthgrid 2007. STUDIES IN HEALTH 

TECHNOLOGY AND INFORMATICS, Vol. 126: From genes to personalized 

healthcare: grid solutions for the life sciences (N. Jacq, Y. Legré, H. Muller, I. 

Blanquer, V. Breton, D. Hausser, V. Hernández, T. Solomonides, M. HofmanC

Apitius, Eds.), IOS Press, pp. 330–337. 



APPENDIX: PUBLICATIONS�� 91 
 

[C11] László Zsolt Varga, Ákos Hajnal, Zsolt Werner. 2004. An agent based approach for 

migrating web services to semantic web services. In: 11th International Conference 

on Artificial Intelligence: Methodology, Systems (AIMSA 2004). LECTURE 

NOTES IN COMPUTER SCIENCE, Vol. 3192, SpringerCVerlag, pp. 371–380. 

[C12] László Zsolt Varga, Ákos Hajnal. 2003. Engineering web service invocations from 

agent systems. In: 3rd International/Central and Eastern European Conference on 

MultiCAgent Systems (CEEMAS 2003). LECTURE NOTES IN COMPUTER 

SCIENCE, Vol. 2691, SpringerCVerlag, pp. 626–636. 

 

[O]  OTHER 

 

[O3] Jonathan Dale, Ákos Hajnal, Martin Kernland, László Zsolt Varga. 2003. 

Integrating web services into Agentcities. Agentcities Technical Recommendation 

Document (actfCrecC00006). 

 

 

 

 



  

 

Bibliography�

AGRAWAL, G., AND GUO, L. 2001. Evaluating explicitly contextCsensitive program slicing. 

In #�����
"	���������������.�0�%)3#F.5-%)3%81��D���������	�#�������.	�
��"��

1���%��� �������
���	
�6	�"	���"	�, 6–12.  

AGRAWAL, H., DEMILLO, R.A, AND SPAFFORD, E.H. 1993. Debugging with dynamic 

slicing and backtracking. %��� �����#����"����	
�6!���"�	�����79A:, 589–616. 

AGRAWAL, H., AND HORGAN, J. 1990. Dynamic program slicing. In .�0� %)3#F.5�

��	����	��� �	� #�������"	�� F�	������ ���"�	� �	
� )��
���	���"�	� 9#F�):$ ACM, 

New York, USA, 246–256. 

ANTONIOL, G., FIUTEM, R, LUTTERI, G, TONELLA, P., ZANFEI, S., AND MERLO, E. 1997. 

Program understanding and maintenance with the CANTO environment. In 

)	���	��"�	�
���	����	����	�%��� ����0�"	��	�	��� 72–81. 

ATKINSON, D.C., AND GRISWOLD, W.G. 1996. The design of wholeCprogram analysis tools. 

In #�����
"	�����������B���)	���	��"�	�
���	����	����	�%��� ����6	�"	���"	�, 16–27.  

BANNING, J.P., 1979. An efficient way to find the side effects of procedure calls and the 

aliases of variables. In #�����
"	������ ����A���.�0�%)3.��-%)3#F.5�������"����	�

#�"	�"�
��������������"	��
�	������, 29–41. 

BINKLEY, D. 1993. Precise executable interprocedural slices. In .�0� F������� �	�

#�������"	��F�	��������	
�%������, 2(1–4), 31–45.  

BINKLEY, D. 1997. Semantics guided regression test cost reduction. In )666����	����"�	��

�	�%��� ����6	�"	���"	�, 23(8), 498–516.  

BINKLEY, D. 1998. The application of program slicing to regression testing. In )	������"�	�

�	
�%��� ��������	�
����%���"�
�)������	�#�������%
"�"	�, 40(11–12), 583–594.  

BINKLEY, D. 2007. Source code analysis: A road map. In� 18%6� &�>+� ���>� 1������ ���

%��� ����6	�"	���"	�, 104–119. 

BINKLEY, D., AND HARMAN, M. 2003. A largeCscale empirical study of forward and 

backward static slice size and context sensitivity. In #�����
"	��� ��� ���� )	���	��"�	�
�

��	����	����	�%��� ����0�"	��	�	��, 44–53.  

BINKLEY, D., HORWITZ, S., AND REPS, T. 1995. Program integration for languages with 

procedure calls. In ���	����"�	���	�#�������"	��F�	��������	
�%������, 4(1), 3–35.  



BIBLIOGRAPHY� 93 
 

BROWN, G.D. 2000. COBOL: The failure that wasn't. �8�8F/�����$���. Available: 

http://web.archive.org/web/20000926032455/ 

www.cobolreport.com/columnists/gary/05152000.htm [28 October 2009]. 

CANFORA, G., CIMITILE, A., AND DE LUCIA, A. 1998. Conditioned program slicing. In 

)	������"�	� �	
� %��� ���� ����	�
���� %���"�
� )����� �	� #������� %
"�"	�, 40(11–12), 

595–607.  

CANFORA, G., CIMITILE, A., DE LUCIA, A., AND DI LUCCA, G.A. 1994a. Software salvaging 

based on conditions. In #�����
"	��� ��� ���� )	���	��"�	�
� ��	����	��� �	� %��� ����

0�"	��	�	��, 424–433. 

CANFORA, G., CIMITILE, A., AND MUNRO, M. 1994b. RE2: Reverse engineering and reuse 

reengineering. In M���	�
����%��� ����0�"	��	�	��+�/���������	
�#����"��, 6(2), 53–72.  

CIMITILE, A., DE LUCIA, A., AND MUNRO, M. 1996. A specification driven slicing process 

for identifying reusable functions. In M���	�
���� %��� ����0�"	��	�	��+�/���������	
�

#����"��, 8(3), 145–178.  

CODESURFER 2009. GrammaTech, Inc., http://www.grammatech.com/products/codesurfer 

[28 October 2009]. 

DE LUCIA, A., FASOLINO, A.R., AND MUNRO, M. 1996. Understanding function behaviours 

through program slicing. In #�����
"	��� ��� ���� <��� )666� D�������� �	� #�������

��������	�"�	, 9–18.  

VAN DEURSEN, A., AND MOONEN, L., 1999. Understanding COBOL systems using inferred 

types. In #�����
"	������ ����>��� )	���	��"�	�
�D���������	�#���������������	�"�	, 

74–81. 

DUESTERWALD, E., GUPTA, R., AND SOFFA, M.L. 1997. A practical framework for demandC

driven interprocedural data flow analysis. In� .�0� ���	����"�	�� �	� #�������"	��

F�	��������	
�%������, 19(6), 992–1030.  

EMAMI, M., GHIYA, R., AND HENDREN, L.J. 1994. ContextCsensitive interprocedural pointsC

to analysis in the presence of function pointers. In #�����
"	������ ����.�0�%)3#F.5�

�CC<���	����	����	�#�������"	��F�	���������"�	��	
�)��
���	���"�	, 20–24. 

FERRANTE, J., OTTENSTEIN, K.J., AND WARREN, J.D. 1987. The program dependence graph 

and its use in optimization. In .�0� ���	����"�	�� �	� #�������"	�� F�	������� �	
�

%������, 9(3), 319–349.  

FIELD, J., AND RAMALINGAM, G. 1999. Identifying procedural structure in Cobol programs. 

In .�0�%)3%81��%��� ����6	�"	���"	��5����, 24(4), 1–10. 

 



BIBLIOGRAPHY� 94 
 

FORGÁCS, I. 1994. Double iterative framework for flowCsensitive interprocedural data flow 

analysis. In .�0����	����"�	���	�%��� ����6	�"	���"	���	
�0����
�
���,�3(1), 29–55. 

FORGÁCS, I., AND BERTOLINO, A. 2002. Preventing untestedness in data flowCbased testing. 

In %��� ��������"	���*��"�"���"�	�N�/�
"��"
"��, 12(1), 29–58. 

FORGÁCS, I., AND HAJNAL, Á. 1998a. An applicable test data generation algorithm for 

domain errors. In #�����
"	�����������CCB�.�0O%)3%81��)	���	��"�	�
�%�����"����	�

%��� ��������"	���	
�.	�
��"�, %��� ����6	�"	���"	��5���� 23(2), 63–72. 

FORGÁCS, I., AND HAJNAL, Á. 1998b. Automated test data generation to solve the Y2k 

problem. In #�����
"	�����������	
�)	���	��"�	�
�%��� ����,��
"���D����6�����, p. 2S. 

FORGÁCS, I., TAKÁCS, É., AND HAJNAL, Á. 1998. Regression slicing and its use in regression 

testing. In #�����
"	��� ��� )666� )	���	��"�	�
� ��������� %��� ���� �	
� .��
"���"�	��

��	����	��, 464–469. 

GALLAGHER, K.B. 1990. Surgeon’s assistant limits side effects. In )666�%��� �����>9A<:, p. 

95. 

GALLAGHER, K.B. 1992. Evaluating the surgeon’s assistant: Results of a pilot study. In 

#�����
"	������������	����	����	�%��� ����0�"	��	�	��, 236–244.  

GALLAGHER, K.B., AND LYLE, J.R. 1991. Using program slicing in software maintenance. 

In )666����	����"�	���	�%��� ����6	�"	���"	�, 17(8), 751–761.  

GRISWOLD, W.G. 2001. Making slicing practical: the final mile. In #�����
"	���������������

.�0� %)3#F.5-%)3%81�� D�������� �	� #������� .	�
��"�� 1��� %��� ���� ���
�� �	
�

6	�"	���"	�, p.1. 

GUPTA, R., HARROLD, M.J., AND SOFFA, M.L. 1992. An approach to regression testing using 

slicing. In #�����
"	������������	����	����	�%��� ����0�"	��	�	��, 299–308.  

GUPTA, R., SOFFA, M.L., AND  HOWARD, J. 1997. Hybrid slicing: Integrating dynamic 

information with static analysis. In .�0� ���	����"�	�� �	� %��� ���� 6	�"	���"	�� �	
�

0����
�
���, 6(4), 370–397.  

GYIMÓTHY, T., BESZÉDES, Á., AND FORGÁCS, I. 1999. An efficient relevant slicing method 

for debugging. In F�������5�����"	����������%�"�	��, 303–321.  

HAJNAL, Á., AND FORGÁCS, I. 2002. A precise demandCdriven defCuse chaining algorithm. 

In #�����
"	��� ��� ��� A��� 6������	� ��	����	��� �	� %��� ���� 0�"	��	�	��� �	
�

/��	�"	���"	�, 77–86. 

HAJNAL, Á., AND FORGÁCS, I. 2012a. A demandCdriven approach to slicing legacy COBOL 

systems. In M���	�
����%��� ���+�6'�
��"�	��	
�#������, 24(1), 67–82. 



BIBLIOGRAPHY� 95 
 

HAJNAL, Á., AND FORGÁCS, I. 2012b. Understanding program slices. In .���������	��"�� 

(to appear). 

HARMAN, M., AND DANICIC, S. 1995. Using program slicing to simplify testing. In %��� ����

����"	���*��"�"���"�	��	
�/�
"��"
"��, 5(3), 143–162.  

HARMAN, M., AND DANICIC, S. 1997. Amorphous program slicing. In #�����
"	������ ����

=���)	���	��"�	�
�D���������	�#���������������	�"�	, 70–79.  

HARMAN, M., HIERONS, R.M., FOX, C., DANICIC, S., AND HOWROYD, J. 2001. Pre/Post 

conditioned slicing. In #�����
"	������ ����)666�)	���	��"�	�
���	����	����	�%��� ����

0�"	��	�	��, 138–147.  

HARROLD, M. J., AND ROTHERMEL, G. 1997. Aristotle: A system for research on and 

development of programCanalysisCbased tools. ����	"��
� /������ 8%P-�)%/�-7OC>-

�/�>, Department of Computer and Information Science, The Ohio State University. 

HARROLD, M.J., ROTHERMEL, G., AND SINHA, S. 1998. Computation of interprocedural 

control dependence. In #�����
"	��� ��� ���� �CCB� .�0� %)3%81�� )	���	��"�	�
�

%�����"����	�%��� ��������"	���	
�.	�
��"�, 11–20.  

HECHT, M.S. 1977. Flow analysis of Computer Programs. 6
��'"���5����-��

�	
 )	�. 

HIERONS, R., HARMAN, M., AND DANICIC, S. 1999. Using program slicing to assist in the 

detection of equivalent mutants. In %��� ��������"	���*��"�"���"�	��	
�/�
"��"
"��, 9(4), 

233–262.  

HIERONS, R., HARMAN, M., FOX, C., OUARBYA, L., AND DAOUDI, M. 2002. Conditioned 

slicing supports partition testing. In %��� ��������"	���*��"�"���"�	��	
�/�
"��"
"��, 12(1), 

23–28.  

HOFFNER, T., KAMKAR, M., AND FRITZSON, P., 1995. Evaluation of program slicing tools. In 
�	
� )	���	��"�	�
�D�������� �	� .�������
� �	
� .
���"���"��������"	�� 9..�6�P3:, 
51–69.  

HORWITZ, S., PRINS, J., AND REPS, T. 1989. Integrating nonCinterfering versions of 

programs. In ���	����"�	���	�#�������"	��F�	��������	
�%��������11(3), 345–387.  

HORWITZ, S., REPS, T., AND BINKLEY, D. 1990. Interprocedural slicing using dependence 

graphs. In .�0����	����"�	���	�#�������"	��F�	��������	
�%������, 12(1), 26–60. 

HORWITZ, S., REPS, T., AND SAGIV, M. 1995. Demand interprocedural dataflow analysis. In 

#�����
"	��� ��� ���� 7�
� .�0� %)3%81�� %�����"��� �	� 1��	
��"�	�� ��� %��� ����

6	�"	���"	�, 104–115. 

INDUS. SAnToS Laboratory: Indus, a toolkit to customize and adapt Java programs. 

http://indus.projects.cis.ksu.edu [8 November 2011] 



BIBLIOGRAPHY� 96 
 

JACKSON, D., AND ROLLINS, E.J. 1994a. Abstraction mechanisms for pictorial slicing. In 

#�����
"	����������)666�D���������	�#���������������	�"�	, 82–88. 

JACKSON, D., AND ROLLINS, E.J. 1994b. A new model of program dependences for reverse 

engineering. In #�����
"	����������%���	
�.�0�%)3%81��%�����"����	�1��	
��"�	��

���%��� ����6	�"	���"	�, 2–10. 

KOREL, B., AND LASKI, J. 1988. Dynamic program slicing. In )	������"�	� #������"	��

F��������C�7,155–163. 

KRINKE, J. 2002. Evaluating contextCsensitive slicing and chopping. In #�����
"	����������

)	���	��"�	�
���	����	����	�%��� ����0�"	��	�	��, 22–31. 

KRINKE, J. 2003. Advanced Slicing of Sequential and Concurrent Programs. Ph.D. Thesis, 

Universität Passau. 

KRINKE, J. 2006. Effects of context on program slicing. In M���	�
� ��� %������� �	
�

%��� ���, 79(9), 1249–1260. 

KRINKE, J., AND SNELTING, G. 1998. Validation of measurement software as an application 

of slicing and constraint solving. )	������"�	��	
�%��� ��������	�
���, Special issue on 

Program Slicing, 661–675. 

LIANG, D., AND HARROLD, M. J. 1999. ReuseCdriven interprocedural slicing in the presence 

of pointers and recursion. In #�����
"	��� ��� ���� )666� )	���	��"�	�
� ��	����	��� �	�

%��� ����0�"	��	�	��, 421–430. 

LIVADAS, P.E., AND ALDEN, S.D. 1993. A toolset for program understanding. In 

#�����
"	����������)666�%���	
�D���������	�#���������������	�"�	, 110–118. 

LIVADAS, P.E., AND CROLL, S. 1992. Program slicing. ����	"��
� /������ %6/�-�/A�� -1, 

Computer Science and Information Services Department, University of Florida, 

Gainesville, FL. 

LOYALL, J.P, AND MATHISEN, S.A. 1993. Using dependence analysis to support the 

software maintenance process. In #�����
"	��� ��� ���� ��	����	��� �	� %��� ����

0�"	��	�	��, 282–291.  

LYLE, J.R. 1984. Evaluating variations of program slicing for debugging. #�$�$� ����"�, 

University of Maryland. 

LYLE, J., AND WALLACE, D. 1997. Using the unravel program slicing tool to evaluate high 

integrity software. In #�����
"	������%��� ����,��
"���D����90����CC>:. 

MOCK, M., ATKINSON, D.C., CHAMBERS, C., AND EGGERS, S.J. 2002. Improving program 

slicing with dynamic pointsCto data. In .�0� %)3%81�� %��� ���� 6	�"	���"	�� 5����, 

27(6), 71–80.  



BIBLIOGRAPHY� 97 
 

MYERS, E. M. 1981. A precise interCprocedural data flow algorithm. In #�����
"	����������

B��� .�0� %)3#F.5-%)3.��� %�����"��� �	� #�"	�"�
��� ��� #�������"	�� F�	������, 

219–230. 

NISHIMATSU, A., JIHIRA , M., KUSUMOTO, S., AND INOUE, K. 1999. CallCmark slicing: An 

efficient and economical way of reducing slice. In #�����
"	��� ��� ���� )	���	��"�	�
�

��	����	������%��� ����6	�"	���"	�, 422–431. 

NTAFOS, S.C. 1984. On required element testing. In� )666� ���	����"�	�� �	� %��� ����

6	�"	���"	�, 10(6), 795–803. 

ORSO, A., ORSO, R., SINHA, S., AND HARROLD, M.J. 2001. Incremental slicing based on 

dataCdependences types. In #�����
"	��� ��� ���� )666� )	���	��"�	�
� ��	����	��� �	�

%��� ����0�"	��	�	��, 158–167. 

OTTENSTEIN, K.J., AND OTTENSTEIN, L.M. 1984. The program dependence graph in a 

software development environment. In A�0�%)3#F.5�5��"���, 19(5), 177–184. 

PODGURSKI, A., AND CLARKE, L.A. 1990. A formal model of program dependences and its 

implications for software testing, debugging, and maintenance. In )666����	����"�	���	�

%��� ����6	�"	���"	�, 16(9), 965–979. 

RANGANATH, V.P., AMTOFT, T., BANERJEE, A., HATCLIFF, J., AND DWYER, M.B. 2007. A 

new foundation for control dependence and slicing for modern program structures. In 

.�0����	����"�	���	�#�������"	��F�	��������	
�%������, 29(5), Article 27.  

RAPPS, S., AND WEYUKER, E.J. 1985. Selecting software test data using data flow 

information. In )666����	����"�	���	�%��� ����6	�"	���"	�, 11(4), 367–375.  

REPS, T.W. 1993. Demand interprocedural program analysis using logic databases. In 

D���������	�#�������"	�� "���F��"�����������, 163–196.  

REPS, T., HORWITZ, S., AND SAGIV, M. 1995. Precise interprocedural dataflow analysis via 

graph reachability. In #�����
"	������������	
�.�0�%)3#F.5-%)3.���%�����"����	�

#�"	�"�
������#�������"	��F�	������, 49–61.  

REPS, T., HORWITZ, S., SAGIV, M., AND ROSAY, G. 1994. Speeding up slicing. In .�0�

%)3%81��%��� ����6	�"	���"	��5����, 19(5), 11–20.  

SINHA, S., HARROLD, M. J., AND ROTHERMEL, G. 1999. SystemCdependenceCgraphCbased 

slicing of programs with arbitrary interprocedural control flow. In #�����
"	��� ��� ����

�����)	���	��"�	�
���	����	����	�%��� ����6	�"	���"	�, 432–441. 

STEINDL, C. 1998. Intermodular slicing of objectCoriented programs. F������� 5����� )	��

���������%�"�	���9�7B7:, 264–278. 



BIBLIOGRAPHY� 98 
 

VENKATESH, G.A. 1991. The semantic approach to program slicing. In #�����
"	����������

.�0� %)3#F.5� �CC�� ��	����	��� �	� #�������"	�� F�	������ ���"�	� �	
�

)��
���	���"�	, 107–119.  

WEISER, M. 1981. Program slicing. In #�����
"	������ ����=���"	���	��"�	�
���	����	����	�

%��� �����	�"	���"	��9)�%6�&B�:, 439–449. 

WEISER, M. 1984. Program slicing. In )666����	����"�	���	�%��� ����6	�"	���"	�, 10(4), 

352–357. 

XU, B., QIAN, J., ZHANG, X., WU, Z., AND CHEN, L. 2005. A brief survey of program slicing. 

In .�0�%)3%81��%��� ����6	�"	���"	��5����, 30 (2), 1–36.  

 



  

 

Abstract 

COBOL is often thought as an oldCfashioned programming language which is of little 

importance by now. However, the fact is that several billion lines of COBOL codes are 

actively used today and COBOL is still the dominant language for business applications. 

Many of the legacy systems are more than 30−40 years old, whose maintenance is very 

laborCintensive and costly task.  

Program slicing is a potentially useful analysis for aiding such maintenance activities. 

The concept of program slicing was proposed by Mark Weiser that extends dataCflow 

analysis by accommodating control dependences (effects of dataCflow on control). Slicing 

has found its applications in different areas of software engineering including software 

testing, software maintenance, program comprehension, reC and reverse engineering, and 

program integration. 

COBOL has been fallen out of the focus of the program slicing research so far, and as it 

is shown that, existing methods are inefficient in performing these tasks� due to their 

prohibitive time or space requirements. The work followed aimed at developing a new 

static program slicing approach that addresses the challenges raise at slicing industrialC

scale COBOL codes. 

The dissertation presents a novel demandCdriven static program slicing technique using 

token propagation, which is based on control flow graphs that are more easily adaptable to 

accommodate different programming language constructs, and attains the accuracy of the 

system dependence graphCbased approach. Experimental results show that the presented 

method is indeed capable of computing precise program slices quickly, whereas longer 

computation times always result in overly large slices uninterpretable for human users.  

A novel technique called the “reasonCwhy algorithm” is proposed to reason about slice 

elements by determining an actual dependence chain from the slicing criterion to the 

chosen slice element. Without such a tool, verification or comprehension of the resulting 

program slice requires considerable expertise and time. 

Different timeCspace tradeoffs and alternatives for the algorithm design are proposed to 

reduce the number of tokens to be propagated and stored. Modified algorithms are 

presented to determine definitionCuse graphs, program dices and chops. 



  

 

Kivonat 

A COBOLCra gyakran, mint egy elavult programozási nyelvre gondolnak, pedig 

napjainkban is több milliárd sornyi COBOL kód fut világszerte, sıt, még mindig ez a 

leggyakrabban használt programnyelv az üzleti alkalmazásokban. A COBOL rendszerek 

nemritkán 30−40 évesek, karbantartásuk rendkívül munkaigényes, költséges feladat. 

A program szeletelés alkalmazása nagy segítséget nyújthat ezen feladatok elvégzésében. 

A program szeletelés ötletét Mark Weiser publikálta elıször, amely az adatfolyamCanalízist 

terjeszti ki a vezérlési függıségekre. A program szeletelés alkalmazhatóságát a szoftver 

technológia számos területén igazolták, köztük a szoftver tesztelésben és karbantartásban, a 

programmegértés és visszafejtésben és a programintegráció területén.  

A program szeletelés területén folytatott kutatás eddig kevés figyelmet fordított a 

COBOL programok szeletelési problémáira, és ahogy ezt megmutatjuk, a feladatra a létezı 

módszerek nem alkalmazhatóak hatékonyan a gyakorlatban. A munka célja egy új statikus 

programszeletelési megközelítés kidolgozása volt, amely megoldásokat keres azokra a 

problémákra, amelyek ipari mérető COBOL programok szeletelésekor merülnek fel. 

A disszertáció egy új igényvezérelt statikus programszeletelési technikát mutat be, 

amely a vezérlési folyamgráfokon történı token terjesztés révén pontos program szeleteket 

képes meghatározni. A folyamgráfok könnyebben adaptálhatóak a különbözı 

programozási nyelvekben használt konstrukciók reprezentálására, és az algoritmus 

megtartja a rendszer függıségi gráfCalapú módszerek által elérhetı szeletpontosságot. A 

kísérleti eredmények azt mutatják, hogy a módszer rövid idı alatt képes pontos program 

szeletek meghatározására, hosszabb számítási idık esetén az eredmény szeletek mérete 

túlságosan nagy lesz, amelyek már amúgy sem értelmezhetık a felhasználók számára. 

A disszertáció bemutat egy új, program szelet megértést támogató technikát is, amely 

alkalmas konkrét függıségi láncok meghatározására a kiválasztott, indokolandó 

szeletelembe. 

Különbözı továbbfejlesztési lehetıségeket, algoritmusCtervezési alternatívákat 

ismerhetünk meg, amelyek segítségével csökkenthetı a módszer futási idıC vagy tárhely 

igénye.� Módosított algoritmusok alkalmasak definícióCfelhasználás gráfok, program 

vágások, darabolások meghatározására. 


