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Introduction

Overview

In this thesis we present results about blocking sets in the finite projective space
PG(n,q). The results presented here are based on articles [1] [2], [3] and [4].

In Chapter 1 the notation, definitions, and most important preliminary results

are presented. We aim at using standard notation.

Chapter 2 deals with small minimal (n — k)-blocking sets of PG(n,q). These
blocking sets are of special interest, as there is hope to characterize them. Sziklai’s
Linearity Conjecture claims that all small minimal (n—k)-blocking sets are linear.
Sz6ényi and Weiner prove in [45] that small minimal (n — k)-blocking sets meet
every k-space in 1 mod p points, where ¢ = p” is the order of the projective space.
It is also proved that the sizes of small minimal blocking sets are contained in
disjoint intervals. In Chapter 2 we prove the Linearity Conjecture in one of these
intervals. The proof is separated into 3 cases (n =3, k = 1;n > 4, k =1 and
n > 3, k > 2) and a section is devoted to every case. The first two cases are solved
by the same method, while the last case is solved by a slightly different technique.
Section 2.2 collects some properties of linear point sets of the projective space,

and Section 2.6 gives a classification of a class of blocking sets in PG(3, ¢3).

In Chapter 3 we turn our attention to multiple blocking sets. In a multiple
blocking set one can always find a minimal multiple blocking set by throwing
away the points that are not necessary to the set. In this chapter we prove
that if B is a weighted t¢-fold (n — k)-blocking set of PG(n, q) with size at most
(t+1)g" %+ ¢ %1+ ...+ ¢+ 1, then the minimal ¢-fold (n — k)-blocking set
contained in B is unique. Our result is a generalization of the one given by Sz6nyi

in [43] and of a result by Lavrauw, Storme and Van de Voorde in [29]. Examples
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of the last section show that our result is sharp in certain cases.

In Chapter 4 planar blocking set constructions are presented. The first construc-
tion is a generalization of the Megyesi construction and also of a construction
given by Gécs in [22]. We consider PG(2,q) as AG(2,q) U {. A set of g points
is selected in AG(2,¢) with the aid of a subgroup of the multiplicative group
GF(q)*, and the ideal points determined by the set are added, which make it a
minimal blocking set. The size of the resulting set is estimated, and some ex-
amples are given for sizes which can be achieved. The blocking set constructed
this way will have the property that it is contained in the union of 4 lines, three
of which are concurrent. The next construction of Chapter 4 is a generalization
of the first to more than 4 lines. The resulting blocking set is contained in the
union of n + 1 lines, precisely n of which are concurrent. The last section of
this chapter presents two constructions which produce blocking sets of PG(2, ¢")

starting from a blocking set of PG(2, q).
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Chapter 1

Preliminary results

In this chapter we will introduce the geometrical objects and the most important

results that will be used in the following chapters. For more details, please turn
to books [26], [25] and [27].

1.1 Definitions, notation

In this thesis we will mostly be working in PG(n, ¢) and AG(n, q), the n-dimen-
sional projective and affine spaces over the Galois field GF(q), of order ¢, where

g = p" and p is a prime.

Let V. = V(n + 1,q) denote the (n + 1)-dimensional vector space over GF(q).
Then PG(n,q) can be derived from V', if we view subspaces of V' of rank 1 as
points, subspaces of rank 2 as lines, subspaces of rank k£ 4+ 1 as k-dimensional
subspaces, and subspaces of rank n as hyperplanes. A point of PG(n,q) can be
represented by homogeneous coordinates, which is any # 0 vector of the subspace
of V' of rank 1 corresponding to that point. Thus, if A € GF(q) \ {0}, then

(21,22, ..., xnq1) # (0,...,0) and (Axy, Axa, ..., Az, 41) represent the same point.

The number of points of an m-dimensional subspace of PG(n, ¢) will be denoted
:qm+qm_1+"+1

. qm+171

by 6,,., and clearly 6,, |

If we select a hyperplane H, of PG(n, ¢), then PG(n, ¢) \ Hw is an n-dimensional
affine space of order ¢, denoted by AG(n,q). The points of AG(n,q) can be

represented by affine coordinates (z1,xs,...,2,), with z; € GF(¢). A natural
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correspondence can be defined between the points of AG(n,q) and the elements
of GF(¢™). With this representation, three points A, B and C' of AG(n,q) are
collinear if and only if (a — b)7™! = (a — ¢)?7! for the corresponding elements
a,b,c € GF(q). Thus, to every line of AG(n, q) a 6, _1-st root of unity of GF(¢")
can be associated, and parallel lines are associated with the same root of unity.
This gives a one to one correspondence between the points of H,, and the 6,,_;-st
roots of unity of GF(¢").

When n = 2, it is more convenient to use the notation (z,y) (or any other two
letters) for the points of AG(2, ¢). In this case lines can be given by the equations
Y = mX + b and X = ¢, where in the first case the slope of the line is m, and
in the second case we have a vertical line with slope co. We will denote by (m)
and (00) the ideal (or infinite) points and I, = {(m)|m € GF(q)}U{(c0)} is the

tdeal line or line at infinity.

1.2 Projections in PG(n, q)

If a point set S C PG(n,q) with the subsets
{E N S|¥ is a subspace of PG(n,q)}

forms a projective space PG(n’, ¢’), then we say that S is an embedded PG(n/, ¢")
subgeometry in PG(n,q). The order of the embedded subgeometry is either g,
or GF(¢') is a subfield of GF(q), so (¢')™ = ¢ for a certain integer m. If S =
{(x1, 22, ..., 2ns1)|z; € GF(¢')}, then S is a canonical subgeometry of PG(n, q).
If ¢ is square and ¢’ = ,/q, then the subgeometry is called a Baer subgeometry (a

Baer subline when n’ = 1, and a Baer subplane when n’ = 2).

If Sy, .S,,... are point sets or subspaces of PG(n, ¢) then (51, Ss,...) will denote
the subspace generated by Si, S, ..., which is the meet of all the subspaces of
PG(n, q) containing these sets. For two points P and () the unique line connecting
them can be denoted by (P, @), but often we will simply write PQ).

Let ¥, be an r-dimensional subspace of PG(n,q). Consider the vector space
V' associated to PG(n,q), and the subspace N of rank r + 1 associated to %,.
Then the projective space defined by the quotient space V/N will be called the
quotient geometry PG(n, q)/%,., and isomorphic to PG(n—r—1,¢). Another way
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of viewing PG(n, q)/%, is to consider the (r + 1 + k)-dimensional subspaces of
PG(n, ¢q) containing ¥, as k-dimensional subspaces for —1 < k <n—r—2. If we
select an (n — r — 1)-dimensional subspace %, _,_; of PG(n, ¢), which is disjoint
from ¥, then every (r + 1)-dimensional subspace on X, meets 3, . 1 in exactly
one point. This gives a one to one correspondence between the points of 3, . 4
and the (r + 1)-dimensional subspaces on %,. For any point P ¢ X, the point
P =%, .1 N(PX%,) is called the projection of P from ¥, to 3, . ;. For any
point set S C PG(n,q) \ X,, the set of projected points is the projection of S

from ¥, to X,,_,_1.

Note that it may happen that more than one points are projected onto the same
point. If a point of the resulting set is the image of one point only, then it will

be called an ordinary point of the projected point set.

If ¢ = p" and e|h, and we choose S to be a canonical subgeometry S = PG(s, p°),
then the resulting set will be called a projected PG(s, p®) subgeometry. An em-
bedded subgeometry can also be regarded as a projected subgeometry: in this

case the vertex of the projection is the empty set, the subspace of dimension —1.

1.3 Linear point sets

Definition 1.3.1 (Lunardon [30], Polito and Polverino [33]). Let GF(p®) be a
subfield of GF(q).

(a) A point set S of PG(n,q) is said to be GF(p®)-linear, if there is a projec-
tive space PG(n’, q) containing PG(n, ¢) such that S is the projection of a

subgeometry PG(s,p®) C PG(n/, q) from a suitable subspace (vertex) onto
PG(n,q).

(b) A point set S of PG(n,q) is said to be GF(p®)-linear, if the (n + 1)-
dimensional GF(q) vector space V' defining PG(n,q) has a GF(p®)-linear
subspace W such that a point of PG(n, q) belongs to S if and only if it is
defined by a vector of W.

Result 1.3.2 (Lundardon, Polito, Polverino, [31]). The two definitions above are

equivalent.



Thus, GF(p®)-linear point sets are exactly the projected PG(s, p®) subgeometries.
When the subfield and the dimension is obvious, then S will simply be called a

linear point set or a projected subgeometry.

The intersection of a subspace of PG(n, ¢) and a PG(s, p¢) projected subgeometry
is a PG(t, p°) projected subgeometry with —1 < ¢ < s. For the dimensions of

these subgeometries the following result holds.

Lemma 1.3.3. Let ¢ = (p°)™. If a subspace of dimension k of PG(n,q) meets a
projected PG(s, p°®) in a projected PG(t, p¢), then

s—m—km<t<(k+1)m-—1.

12

Proof. A k-dimensional subspace can be viewed as PG(k,q) = V(k + 1,¢)
V((k+1)m,p?) = PG((k+1)m—1,p°),s0t < (k+1)m—1. Similarly PG(n, q)
PG((n + 1)m — 1,p°), and if a ((k + 1)m — 1)-dimensional subspace and an s-

I

dimensional subspace of PG((n 4+ 1)m — 1, p®) meet in a t-dimensional subspace,
then
(k+1m—-1+s<(n+1)m—-1+t,

from which the lower bound follows. ]

1.4 Blocking sets

Definition 1.4.1 (Blocking set). A set B of points in PG(n, ¢), which intersects
each k-dimensional subspace is called an (n — k)-blocking set or a blocking set

with respect to k-spaces.

To exclude trivial cases, 0 < k < n will always be assumed. When n = 2 (and
so k = 1), blocking sets are called planar blocking sets. A 1-blocking set (i.e. a
blocking set with respect to hyperplanes) is often simply called a blocking set.

Result 1.4.2 (Bose and Burton, [13]). An (n—k)-blocking set of PG(n, q) has at
least Oy, points. In case of equality the (n—k)-blocking set is an (n—k)-dimensional

subspace.

An (n — k)-blocking set containing an (n — k)-dimensional subspace is called

trivial.
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A point P of B is essential to B, if there exists a k-space through P intersecting
B in P only. Such a k-space is called a tangent of B at P. The blocking set B is

minimal, if each point of it is essential.

Following [17] we will call a point P a critical point of the blocking set B, if there
is exactly one tangent k-space to B at P. Such a subspace then will be called a
critical tangent of B. If a subspace ¥ meets B in ¢ points, then we say that X is

a t-secant of B.

Result 1.4.3 (Bruen, [15, 16]). In PG(2,q) a non-trivial blocking set has size at
least > q + \/q + 1. In case of equality the blocking set is a Baer subplane.

Actually, Bruen’s proof is combinatorial, so Result 1.4.3 is valid for any projec-
tive plane of order ¢, not only for PG(2,q). A Baer subplane of PG(2,q) is an
embedded PG(2, ,/q) subgeometry. Projected subgeometries can also be blocking
sets, such sets are called linear blocking sets. See Result 1.3.3 for the correctness

of the following construction.

Construction 1.4.4 (Linear blocking sets). A projected PG(m(n — k), q) sub-

geometry in PG(n,¢™) is a minimal (n — k)-blocking set.

1.5 Blocking sets of Rédei type

Now we present a different construction of blocking sets in PG(2, q).

Definition 1.5.1. Consider the projective plane PG(2, ¢) as the union AG(2, ¢)U
ls. We say that the ideal point ) € (o is determined by the affine points
Py, Py € AG(2,q), if the line (P;, P,) meets {, in Q. If P, = (a1,b1), P = (az, bs)
and Q = (m), with ay,as,b1,b0 € GF(q) and m € GF(q) U {co0}, then @Q is
determined by P, and P if and only if (by — b1)/(az — a;) = m. Note that if
a1 = ag, then m = oo. Sometimes m will be called the direction determined by
P, and P,.

Construction 1.5.2 (Rédei’s construction). Select a g-element point set U =
{(ai,b;) :1=1,...,q} in AG(2, q). Denote by D the set of ideal points determined
by the points of U. If |D| < g+ 1 then the set U U D is a minimal blocking set
of PG(2,q).
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Proof. Clearly all lines meeting the line at infinity in a point of D are blocked by
U U D. Now consider a pencil of lines through a point P € I, \ D. Since P is
not determined by U, every such line can contain at most one point of U. Since
|U| = ¢ and the pencil consists of ¢ lines other than [, each line has to contain

exactly one point of U. [

Simple counting argument shows that the following statement is true in all pro-

jective planes.

Proposition 1.5.3. If B is any blocking set of a projective plane of order q, then

for any line | not contained in B, we have |B\ 1| > q.

The blocking set in Construction 1.5.2 has a line for which equality holds.

Definition 1.5.4 (Rédei type blocking set of the plane). Let B be a minimal

blocking set of a projective plane of order ¢. If there is a line [ for which
BNl =|B|—q,

then B is called a Rédei type blocking set. Such a line is called a Rédei line of
the set.

The following proposition shows, that the notion Rédei type blocking set is more

or less equivalent to a g-element set together with its determined directions.

Proposition 1.5.5. Let B be a minimal blocking set of Rédei type with Rédei
line l. With U := B\ I, the determined ideal points in Construction 1.5.2 will be
exactly the points BN 1.

There are several different methods for constructing Rédei type minimal blocking
sets with Construction 1.5.2 (see for example [42],[22],[37]). One well-known and

basic example is due to Megyesi.

We will use the notation GF(g)* for the multiplicative group GF(q) \ {0}.

Result 1.5.6 (Megyesi). Let d be a divisor of ¢ — 1 and let G be a multiplicative
subgroup of GF(q)* of size d. Consider the set

U={0,0;U{(0,h):h &G}t U{(g,0):9€G}.

Then U determines exactly g + 1 — d directions, and B = U U D 1s a minimal
blocking set of size 2q + 1 — d. Similarly, if d divides q, then using additive

subgroups and two parallel lines we get a minimal blocking set B of size 2q+1—d.
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Note that the points of the resulting blocking set will be on three lines. The first
blocking set is often referred to as the projective triangle when d = (¢ — 1)/2,
while the second is the projective triad when d = q/2.

A different example, contained in the union of four lines, was constructed by
Gécs in [22], giving an infinite series of examples determining 7¢/9 directions

approximately, and yielding a minimal blocking set with size approximately (2 —
2/9)q.

Result 1.5.7 (Gdcs [22]). Let 3 be a divisor of ¢ — 1, and let 1,a,a? be coset
representatives of the multiplicative subgroup G of GF(q)* of index 3. Let

Ui ={0,00}U{(x,0): 2 € a’'G}U{(z,z): 2 € GYU{(0,7) : v € &'G}.

Denote by |D;| the number of directions determined by U;. Then |Dy| + |Dsy| +
|D3| =3q+1—-2(q—1)/3, and |D;| = 7q/9+ O(\/q).

In both the Megyesi and the Gécs constructions the cosets of a subgroup of
GF(q)* were used to select the points of U. We will say, that the cosets were
placed on lines. In Chapter 4 we present a more general construction, where the
number of cosets can be larger than three, and the number of lines from which

points are taken can also be increased.

The definition of a Rédei type blocking set can be generalized to higher dimensions

also.

Definition 1.5.8 (Rédei type (n — k)-blocking set). Let B be a minimal (n — k)-
blocking set of PG(n, ¢). If there is a hyperplane H for which

BN H|=|B]-¢""

(which is equivalent to |B\ H| = ¢"*%), then B is called a Rédei type (n — k)-
blocking set. Such a hyperplane is called a Rédei hyperplane of the set.

1.6 Small minimal blocking sets

Definition 1.6.1 (Small blocking set). An (n — k)-blocking set B is small if
1Bl < 3(¢"* +1)/2.
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Small minimal (n — k)-blocking sets are of special interest, since there is hope
to classify them, as all the known examples of small minimal blocking sets are
linear. Linear blocking sets have the property that every subspace meets them
in 1 mod p points. Szényi shows in [43], that the same is true for small minimal
blocking sets of PG(2, ¢), and this result is generalized to higher dimensions by
Sz6nyi and Weiner in [45].

Result 1.6.2 (Sz6nyi [43], Szényi and Weiner [45]). Let B be a small minimal
(n — k)-blocking set in PG(n,q), ¢ = p", p prime. Then each subspace of dimen-

sion at least k intersects B in 1 mod p points.

Conjecture 1.6.3 (Linearity Conjecture, Sziklai [40]). All small minimal (n—k)-
blocking sets of PG(n,q) are linear.

In the following case the conjecture is proved to be true.

Result 1.6.4 (Lunardon [30], Storme and Sziklai [41]). Small minimal blocking

sets of Rédei type are linear.

For a small minimal (n— k)-blocking set B of PG(n, ¢) we can define the ezponent
of B as the largest integer such that B intersects each k-space in 1 modulo p°

points.

Result 1.6.5 (Sziklai [40]). Let B be a small minimal (n — k)-blocking set in
PG(n,q), ¢ =p", 2 < p prime.

(1) Let e be the largest integer such that B intersects each k-space in 1 modulo
p¢ points (from above 1 < e < h). Then e|lh, so GF(p®) is a subfield of
GF(q).

(2) Furthermore, if the k-space L intersects B in p® + 1 points, then L N B is
isomorphic to PG(1, p®).

Result 1.6.6 (Szényi and Weiner [45]). Denote by
[llI(nv ka 6)7 Uq(?’L, ka 6)]

the smallest interval containing the sizes of all the small minimal (n — k)-blocking
sets of PG(n,q), ¢ = p", 2 < p prime, with exponent e. These intervals are

disjoint, furthermore, if €'|m and €' < e, then ugy(n, k,e) < l,(n,k,€’).
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Thus, minimal (n—k)-blocking sets with size in the interval [I,(n, k, €), u,(n, k, €)]
intersect each k-space in 1 mod p® points. The next statement summarizes some

corollaries of the 1 mod p result.
Result 1.6.7 (Szényi and Weiner [45]). Assume that B is a point set in PG(n, q),
q=17p", 2 < p prime. Lete and k be integers, so that 0 < k < n and suppose that
|B| < 3(¢" % +1)/2. Then the following statements are equivalent:

(1) B is a minimal (n — k)-blocking set and |B| < uy(n, k,e).

(2) B intersects each k-space in 1 mod p® points.

(3) Every subspace with dimension at least k intersects B; and any subspace

that intersects B intersects it in 1 mod p® points.

The best bounds for [,(2,1,e) and u,(2,1, e) are due to Blokhuis and Polverino,
and the case n > 2 was studied in [45].

Result 1.6.8. Assume that p¢ # 2,4, 8, then

(1) (Blokhuis [10]) ¢ + 1+ p°[(q/p® + 1)/ (p° + 1)] < 1,(2,1,€).

(2) (Polverino [34]) uy(2, 1,¢) < HHO VIO NP s Do),

(3) (Szényi and Weiner, [45]) l4(n, k,e) > ln-1(2,1,e) and
ug(n, k,e) <ugm-r(2,1,¢).

Result 1.6.9 (Polverino [34]). A small minimal blocking set of PG(n,q), ¢ = p™"

intersecting each line in 1 mod p" points has size at most

n—1 n—1 n—1

q
— o +3

ug(n,1,h) < ¢" '+ .
q p2h p2h

p

By Result 1.6.6, the sizes of the minimal (n— k)-blocking sets of PG(n, q), ¢ = p",

2 < p prime, are contained in disjoint intervals
ly(n, K e1),uq(n, ker)], ..., [lg(n, kye), ug(n, k, e;)],
where e; > --- > e; are the divisors of h, and u,(n, k, e;) < l,(n, k,ej41).

Starting from the smallest one, the first interval consists of one value only,

lyn,k,h) = uy(n, k,h) = 0,_k, because an (n — k)-dimensional subspace is the

15



only (n — k)-blocking set with the property that every subspace of dimension at

least k intersects it in 1 mod ¢ points.

When ¢ is a square (hence 2|h), then [l,(n,k, h/2),u,(n, k, h/2)] is the second
interval, and it contains the sizes of the (n — k)-blocking sets intersecting each
(n—k)-space in 1 mod ,/q points. Weiner proves in [47], that all minimal (n— k)-

blocking sets of this interval are linear.

Result 1.6.10 (Weiner [47]). Small minimal (n — k)-blocking sets of PG(n,q),
q = p®™", 2 < p prime, 81 < q, intersecting each k-space in 1 mod V4 points are

linear.

These blocking sets are so called Baer-cones.

A cone with base a set S and vertex a subspace X is the union of all subspaces
(3, P), where P is a point of S. A Baer-cone is a cone with base an embedded
GF(/q)-linear subgeometry. It is not hard to see that projected PG(m,/q)

subgeometries are always Baer-cones.

The next interval to be observed is [l,(n, k, h/3), u,(n, k, h/3)], if h is divisible by

3. The next result solves the planar case.

Result 1.6.11 (Polverino [34], Polverino and Storme [35]). A non-trivial blocking
set in PG(2,p*™), p > 7, meeting every line in 1 mod p™ points is either a Baer

subplane (and m is even) or one of the following sets:

(1) a minimal blocking set of size p>™ + p*™ + 1, projectively equivalent to the

set
{(z,Tr(z), )|z € GF(*™)} U {(z,Tr(x),0)z € GF(p°™) \ {0}},

where Tris the trace function from GF(p*™) to GF(p™) (i.e. Tr : GF(p*™) —
GF(p™) : & — x + 2P + 22°™);

(2) a minimal blocking set of size p>™ + p*™ + p™ + 1, projectively equivalent to
the set

{(z, 2™ D]z € GF(p™™)} U{(z,2"",0)||x € GF(p™™) \ {0}}.

The next remark summarizes some properties of the blocking sets of Result 1.6.11.
For more details the reader is referred to [34] and [35].
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Remark 1.6.12. (Polverino [34], Polverino and Storme [35]) All three types of
blocking sets in Result 1.6.11 are linear (and hence each line intersects them in a

linear point set). Furthermore, they are all of Rédei type.

The Baer subplane has p*” 4+ p*™/2 + 1 points and every line meets it in 1 or

p*™/2 4+ 1 points.

The minimal blocking set of size p>™ +p*™+p™+1 has exactly one (p*™ +p™+1)-
secant, and all other lines are 1-secants (i.e. tangents) or (p™ + 1)-secants. Every

(p™ + 1)-secant meets the (p*™ + p™ + 1)-secant in a point belonging to the set.

The minimal blocking set of size p*™ 4+ p?™ 4+ 1 has a unique point lying on
(p*™ + 1)-secants and tangents only. There are p™ + 1 (p*™ + 1)-secants on this
point. All other lines are (p™+ 1)-secants or tangents. A (p™+ 1)-secant contains

one point from each of the (p*™ + 1)-secants.

It will be the main result of Chapter 2, to prove a similar result for higher di-
mensional projective spaces. We prove that point sets of PG(n,p*™), n > 2,
p > 7 prime, with size less than 3(p*™("=%) + 1)/2 and intersecting each k-space

in 1 mod p™ points are linear blocking sets.

In certain projective spaces the Linearity Conjecture has been proved to be true.

Result 1.6.13 (Heim, [24]). For g = p prime, there are no small minimal non-
trivial (n — k)-blocking sets in PG(n,p) at all. For n = 2 this was proved by
Blokhuis in [9].

The next result is a corollary of Result 1.6.10. For n = 2 it was proved by Szdényi
in [43].

Corollary 1.6.14 (Weiner, [47]). If ¢ = p*, 11 < p prime, then all small minimal
(n — k)-blocking sets in PG(n,p?) are linear.

The following result is a corollary of Result 1.6.11.

Corollary 1.6.15. If ¢ = p?, p > 7 prime, then all small minimal non-trivial
blocking sets in PG(2,p®) are one of the linear sets described in (1) and (2) of
Result 1.6.11.

The case n > 3 will be proved in Chapter 2.
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1.7 Multiple blocking sets

Definition 1.7.1 (¢-fold (n — k)-blocking set). A t-fold (n — k)-blocking set of
PG(n,q) is a set of points which meets every k-dimensional subspace in at least
t points. If the points of the set are not all different, so the set is a multiset of

points, then it is called a weighted t-fold (n — k)-blocking set.

To exclude trivial cases, 0 < k < n will always be assumed.

A weight function w of PG(n,q) is a mapping from the point set of PG(n, q) to
the set of nonnegative integers. For a point P the integer w(P) is the weight of
P.

There is a natural correspondence between multisets and weight functions of
PG(n,q): let the weight of a point be the multiplicity of that point in the set.
For a given weight function the weight of a set M of points is by definition the
sum of the weights of all its points, denoted by w(M). We will call w(PG(n,q))
the total weight of w, and denote it by |w|.

We will use the following notation: for the multisets B; and By, with associated
weight functions w; and wsy respectively, By U By will denote the multiset defined
by the weight function max{w;, w,}, while B+ Bs will denote the multiset defined
by the weight function w; + ws.

The multiset associated to a weight function w is a t-fold (n — k)-blocking set
if and only if the weight of every k-dimensional subspace is at least ¢. If this is
the case, then we will call the weight function w a t-fold (n — k)-blocking set for
short. When we speak of weighted ¢-fold (n — k)-blocking sets, we will use both

notations B and w, always choosing the one which makes descriptions simpler.

If w is a t-fold (n — k)-blocking set, then a point P will be called an essential
point of w, if w(P) > 1 and there is a k-subspace ¥; containing P such that
w(Xy) = t. The point P is a nonessential point of w, if w(P) > 1 and the weight
of every k-subspace containing P is at least ¢+ 1. In this case the weight function
w’ defined by



is also a t-fold (n — k)-blocking set.

If w and w’ are weight functions, then we will say that w’ is contained in w, and
denote this by v’ < w, if w’'(P) < w(P) for all points P € PG(n, q).

The t-fold (n — k)-blocking set w is said to be minimal if w' = w for any t-fold
(n — k)-blocking set w’ contained in w. Clearly a t-fold (n — k)-blocking set is

not minimal if and only if it has nonessential points.

Definition 1.7.2. A t-fold blocking set of PG(2,q), ¢ = p", p prime, is called
small, if it has less than tq + (¢ + 3)/2 points.

Result 1.7.3 (Blokhuis, Lovasz, Storme and Szényi, [11]). Let B be a small
minimal t-fold blocking set in PG(2,q), ¢ = p", p prime, h > 1. Then B intersects

every line in t mod p points.

Conjecture 1.7.4 (General Linearity Conjecture, Sziklai [40]). If t is small
enough, then a small minimal t-fold (n — k)-blocking set in PG(n,q) is the sum
of GF(p®)-linear (n — k)-blocking sets.

Result 1.7.5 (Ferret, Storme, Sziklai and Weiner, [21]). Let B be a minimal
weighted t-fold (n — k)-blocking set of PG(n,q), ¢ = p", p prime, h > 1, of
size |B] = t¢" F +t+ K, with t + k' < (¢" % — 1)/2. Then B intersects every

k-dimensional subspace in t mod p points.

Using this result, a characterization result similar to Result 1.6.10 was proved in
[20].

Result 1.7.6 (Ferret, Storme, Sziklai and Weiner, [20]). Let B be a minimal
t-fold (n — k)-blocking set of PG(n,q), q square, of size at most |B| < tg" % +
thn—k—l\/a < tqn—k+qn—k—1/3‘

Then B is the union of pairwise disjoint Baer-cones.
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Chapter 2

Small point sets of PG(n, ¢°)
intersecting each k-space in

1 mod ¢ points

This chapter is based on joint work with Zsuzsa Weiner, Klaus Metsch and Tamas

Sz6nyi and appeared in [4] and [3].

2.1 The main theorem

There has been a lot of work aiming at finding a proof for Sziklai’s Linearity
Conjecture, yet only partial results have been achieved. According to Result
1.6.6, the sizes of the minimal blocking sets of PG(n, q), ¢ = p", p > 2 prime, are

contained in disjoint intervals
[lg(n,kyer),uq(n, kyer)], ... [lg(n, k,e;),uq (n, k,e;)],
where e; > --- > ¢; are the divisors of h, and u,(n, k, e;) < l,(n, k,ej41).

Starting from the smallest one, the first interval where the Linearity Conjec-
ture has not been proved yet is [l,(n, k, h/3),u,(n, k, h/3)], if h is divisible by
3. In this chapter we prove that the Linearity Conjecture is valid here also,

that is all minimal (n — k)-blocking sets with size belonging to the interval
[ly(n, Kk, h/3),us(n, k, h/3)] are linear.

21



Notation. Throughout this chapter we will be working in projective spaces of
order p*", p prime, h > 1, and with point sets meeting certain subspaces in
1 mod p” points. For the sake of simplicity, instead of ¢, we will use ¢* for the
order of the space, and have ¢ = p”, p prime, h > 1. So please keep in mind, that
from here on, throughout this chapter, we will be working in the projective space
PG(n,¢?).

The aim of this chapter is to prove the following theorem, which can be found in
[4] (k =n —1) and [3] (arbitrary k).

Theorem 2.1.1. Let B be a point set of PG(n,q¢3), g =p", 1 < h, 7 < p prime,
intersecting each k-space in 1 mod q points, and with size |B| < %(q3(”_k) +1).

Then B is a linear (n — k)-blocking set.

In [29] Lavrauw, Storme and Van de Voorde prove the same result using an

approach different from ours.

A corollary of Theorem 2.1.1 and Result 1.6.7 is that all minimal (n — k)-blocking
sets of size in the interval [[,3(n, k, h), u,s(n, k, h)] are linear. Moreover, the upper
bound of this interval can be raised until the lower bound of the next interval.
Thus, any improvement on the bound of the lower end of the fourth interval leads

to an immediate improvement of the next corollary.

Corollary 2.1.2. Let s be the smallest integer such that 3 < s < 3h and s|3h.
Then the minimal (n — k)-blocking sets of size < l;(n, k,3h/s) are linear.

Another important corollary of Theorem 2.1.1 is that it proves the Linearity

Conjecture in projective spaces of order p3, with p > 7 prime.

Corollary 2.1.3. Small minimal blocking sets of PG(n,p3), p > T prime are

linear.
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2.2 GF(g)-linear blocking sets of PG(n, ¢°)

In this section some important properties of GF(q)-linear sets of PG(n, ¢®) are

collected. Most of these results are simple corollaries of Lemma 1.3.3.

Lemma 2.2.1. If a point meets a projected subgeometry in a projected PG(m, q),
then 0 < m < 2.

If m = 0, then the point is an ordinary point of the projection. We will call the

point special, if m = 1 and superspecial, if m = 2.

Notation. Consider a PG(m, ¢) subgeometry embedded in PG(n, ¢*). For every
subspace U of PG(m, q), we call the subspace of PG(n, ¢) generated by the points
of U the extension of U, and denote this subspace by e(U). In other words, e(U) is
the unique subspace of PG(n, ¢*) containing U and having dim(U) = dim(e(U)).

Now we examine the linear point sets of a line PG(1, ¢®).

Lemma 2.2.2. Let S be a projected PG(m,q) subgeometry contained in a line
[ =PG(1,¢%), and not contained in a point.

(1) Then 1 <m <5.

(2) If m =1, then |S| = q+1 and S is an embedded PG(1,q) subgeometry (a
subline of 1).

(3) If m = 2, then S is a projected PG(2,q) subplane. There are two cases:
either |S| = ¢*> + ¢+ 1 and all points of S are ordinary, or |S| = ¢*+ 1 and

one point of S s special, while all the other are ordinary.
(4) If m >3, then |S| = ¢®> + 1, so every point of the line belongs to S.

(5) If m = 3, then there are two cases: either S has one superspecial point and

¢ ordinary points, or S has q+ 1 special points and ¢* — q ordinary points.
(6) If m =4, then S has 1 superspecial point and ¢* special points.

(7) m =5, then all points of S are superspecial.

Proof. The preimages of the points of S yield a partition of PG(m, ¢) into disjoint
subspaces of dimension 0, 1, or 2. The statements above follow from this and

Lemma 1.3.3. n
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Corollary 2.2.3. If S is a projected PG(m, q) subgeometry in PG(n, ¢*), and the
line | is a (q+ 1)-secant of S, then every point of S N1 is ordinary.

Corollary 2.2.4. If S is a projected PG(m, q) subgeometry in PG(n, ¢*), and P
1s a special point of S, then a non-tangent line on P is either contained in S, or
is a (¢* + 1)-secant of S. If P is superspecial, then every non-tangent line on P

18 contained in S.

Corollary 2.2.5. If S is a projected PG(m,q) subgeometry in PG(n,q*), and
Py, Py, ... are the superspecial points of S, then either S is the subspace (Py, Py, .. .),

or S is a cone with vertex the subspace (P, Py, ...).

Suppose that PG(m,q) is projected to PG(n,q¢®) and the resulting set is S.

Y

Now clearly there can be several ways we can choose a set S” = PG(m,q) in
PG(N,q¢*) D PG(n,¢®) and a subspace C, with C NS’ = (), such that S is the
projection of S’ from C' to PG(n,¢®). For a point P € S, can the dimension of
the subgeometry projected to P be different for different choices of S’ and C?

For the case |S| = ¢* + 1, this question is answered in [19].

Result 2.2.6 (Fancsali and Sziklai, [19]). Let S be a linear point set of PG(1,¢%),
|S| = ¢*> + 1. Then the special point of S is unique, that is, for any construction

of S the special point is always the same.

Corollary 2.2.7. Let S be a projected PG(m, q) subgeometry in PG(n,q*), such
that S is not a subspace, and let P € S be any point. Then for any construction

of S the dimension of the subgeometry projected to P is the same.

Proof. 1f there is a line [ on P which is a (¢+1)-, a (¢*+1)- or a (¢*+¢+1)-secant
of S, then the dimension of the subgeometry projected to P is clear. If all non-
tangent lines on P are contained in S, and S is not a subspace, then we can find
a plane 7 on P which meets S in ¢+1, ¢+ 1 or ¢> + ¢+ 1 concurrent lines. With
inspection of the possibilities of the preimages of these lines, and by Lemma 1.3.3,
we have that in the first case ™ meets S in a projected PG(4, ¢) subgeometry, and
in the second and third cases a projected PG(5, ¢) subgeometry. In all cases P is

superspecial. n

Remark. Let S be a projected PG(m, q) subgeometry in PG(n, ¢®) and assume
that a construction of S has been selected. In other words, a set S" = PG(m, q)
in PG(N, ¢*) 2 PG(n, ¢®) and a subspace C of PG(N, ¢*), with C NS’ = () and

24



dim(C') = N —n—1 has been given, such that S is the projection of S’ from C to
PG(n, ¢*). Another way of looking at this, is to view S as a subset of the quotient
geometry PG(N, ¢*)/C'. In this case S corresponds to the set of subspaces (P, C)
where P is a point of S’. It is not hard to see, that if we replace C' by e(S") N C
and the sets (P, C) by (P, e(S")NC), then the set we obtain in e(S’) & PG(m, ¢*)
is projectively equivalent to S. Thus, we can assume that in the construction we

choose for S we have N = m and dim(C') =m —n — 1.

Definition 2.2.8. A nonempty set R of skew lines of a 3-dimensional projective

space PG(3, q) is called a regulus, if the following are true:

(1) Through each point of each line of R there is a transversal of R (i.e. a line

which meets every element of R).

(2) Through each point of a transversal of R there is a line of R.

It is clear that the set of all transversals of a regulus R again form a regulus. We
call it the opposite regulus of R. And it is also clear that |R| = ¢+ 1. Any three

skew lines of PG(3, q) are contained in a unique regulus.

Lemma 2.2.9. Let S be a projected PG(m, q) subgeometry on a linel = PG(1, ¢*).
Let b =2 PG(1,q) be a line of PG(m, q), which is projected to the points Py, P, . ..,
P,

7+1 € L. Then if at least three of the points P; are not ordinary points, then nei-

ther of them are.

Proof. By Lemma 2.2.2, the only case which needs to be observed is when m = 3,
and S has ¢+ 1 special points, and ¢® — ¢ ordinary points. Then the preimages of
the special points are ¢ + 1 skew lines Iy, s, . .., 41 of the PG(3, ¢) subgeometry.
We will prove that they form a regulus. Then any line which meets at least 3 of

them, has to meet all.

By the Remark above, we can consider the following construction of S: embed
[ into a projective space PG(3,¢?), and select 3-dimensional subgeometry S’ C
PG(3,¢%), and a line t C PG(3,¢?), t skew to [, t NS’ = (), such that S is the
projection of S’ from t to [. Then the extensions of the lines /; are skew lines
e(ly), e(ly), ..., of the space PG(3,¢?), and all of them meet ¢ and .

Now let R be the regulus of S” determined by three of the lines, say [y, l» and I3.
Let R¢ be the regulus of PG(3, ¢*) determined by e(l1), e(ly) and e(l3). For every
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line of R, the extension is an element of R¢. Clearly ¢ and [ are elements of the
opposite of R¢, so every element of R¢ meets both [ and ¢. This proves that every

element of R corresponds to a special point P;, so R = {l1,la,... 541} [

The following lemma collects some of the properties of GF(g)-linear point sets of

PG(2,¢%).

Lemma 2.2.10. Let S be a projected PG(m,q) subgeometry in a plane m =
PG(2,¢%), but not contained in a line.

(1) Then2 <m <8.
(2) If S is a blocking set of m, then m > 3.
(3) If m =3, then S is one of the sets in Result 1.6.11 (1) and (2).

(3) If m =4, and P is an ordinary point of S, then there are no tangents on P
to S. There are two cases: either there is one line on P which is contained
in S and all other lines are (q + 1)-secants to S, or there are g + 1 lines
that are (¢* + 1)- or (¢* + ¢ + 1)-secants of S and all the other lines are
(q + 1)-secants.

(4) If m > 5, then S has no (q+ 1)-secants in 7.

(5) If m > 6, then S contains every point of T.

Proof. (3) Let P be an ordinary point of S and [y,...,l;.; the lines on P in 7.
By Lemma 1.3.3, every line [; contains a projected PG(t,q) with ¢ > 1. These
are all subspaces of PG(4,¢) and they all meet in one point (the preimage of
P). Counting the points of PG(4, ¢) in these subspaces yields that either one line
[; contains a projected 3-dimensional subspace, and all others contain projected

lines, or ¢ + 1 have projected planes and all others lines.

The other statements are direct consequences of Lemma 1.3.3. [

Y

Lemma 2.2.11. Let S be a projected PG(4,q) subgeometry in a plane m =
PG(2,¢%). Let P € S be an ordinary point of S such that there are ¢ + 1 lines Iy,
la, ..., lys1 on P, which meet S in projected PG(2, q) subgeometries, and all other
lines on P are (q + 1)-secants to S. Let b = PG(1,q) be a line of the PG(4, q)
subgeometry, which is projected to the points Py, Ps,..., Pyi1. Then if at least 3
of these points lie on the lines [;, then all of them do.
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Proof. Embed the plane 7 in a projective space PG(4, ¢*), and select a 4-dimensional
subgeometry S’ = PG(4,q), and a line t C PG(4, ¢®), such that S is the projec-
tion of S’ from t to m. The points of 7w correspond to planes on ¢, and the lines

of 7 correspond to 3-dimensional spaces on t.

The preimages of [; NS are planes my, 7o, ..., Tyr1 of PG(4,¢) meeting in one

point P, which is the preimage of P.

Select lines r; C m and 79 C 79 such that P’ ¢ r;. Then e(ry) and e(ry) are skew
lines, which meet the plane (¢, P’') in different points Ry and Ry. Let X = (ry, ro)
be the 3-dimensional subspace generated by 1 and ro. Then e(3) = (e(r1), e(rq)).
Y. does not contain P’, so ¥ N (¢, P’) is a line, in fact, it is the line r := (R, Ry).
And ¥ meets every plane 7; in a line r;, such that e(r;) meets (¢, P') in a point

of r.

We will prove that the planes 7; form a cone with vertex P’ and base a regulus of
Y. Then the assertion follows, because any line of PG(4, ¢) which meets at least

3 of these planes, will meet them all.

Let R be the unique regulus of ¥ which contains the lines rq, 9 and r3. Then
the regulus R¢ of e(X), which contains e(ry), e(ry) and e(r3) will contain the
extension of every element of R. Clearly, r is an element of the opposite of R°.
We will show that

(71, g} = {(P )]l € RY.

If [ € R, then e(l) meets the line r, thus it meets the plane (¢, P'), which means
that the plane (P’,[) is contained in a 3-dimensional subspace on ¢, and so cor-

responds to a line on P meeting S in a projected PG(2, q). ]

Lemma 2.2.12. Let S be a projected PG(m,q) subgeometry of PG(n,q¢*), and
H = PG(2,q) a subplane of S such that the points of H are projected onto the
concurrent lines ty,ta, ..., tg11. Then either |t;N S| > q¢*>+1 for each t; or this is

true only for at most two of these lines.

Proof. The lines t; span a plane 7 of PG(n,¢*) which meets S in a projected
PG(t,q) subgeometry. By Corollary 2.2.4 and Lemma 2.2.10, we may assume
that ¢ = 4, and the lines ¢; meet in an ordinary point P. We may also assume
that there are ¢ + 1 lines on P, say [y, lo,..., {441, which meet S in projected

PG(2, q) subgeometries, and all other lines on P are (q + 1)-secants to S. Let
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b= PG(1,q) be a line of H with P’ ¢ b. Then the number of lines belonging to
both {ly,...,l;+1} and {t1,...,t,41} equals the number of points of b on the lines

li,...,lg+1, and we can use Lemma 2.2.11. [

In the following lemmas S is not only a GF(g)-linear set of PG(n, ¢*), but also a
minimal (n — k)-blocking set. Thus, m = 3(n — k).

Lemma 2.2.13. Let S be a projected PG(3(n — k), q) subgeometry of PG(n,¢®),

and suppose that S is not a subspace.

(a) FEvery point that meets S in a projected PG(s,q), 0 < s < 2, lies on a line
meeting S in a projected PG(s + 1, q).

(b) Ewvery line | that meets S in a projected PG(s, q), 2 < s <5, lies in a plane
that meets S in a projected PG(s+1,q). If k > 2, this also holds for s < 1.

Proof. If (S) is an n/-dimensional subspace of PG(n,¢?), then S meets every
(n' + k — n)-dimensional subspace of (S), i.e. S is an (n — k)-blocking set of (S).

Thus, we may assume that S generates PG(n, ¢®).

Let ¥; be a t-subspace (t < n — 2) that meets S in a projected PG(s,q) and
suppose that every (¢ + 1)-subspace on ¥; which meets S not only in the points
of ¥; NS meets S in at least a projected PG(s+2, q). Consider a (¢ +2)-subspace
Y12 spanned by two of these (¢ + 1)-subspaces. Then ;5 meets S in at least a
PG(s +4,q). Therefore by Lemma 1.3.3, every (¢ + 1)-subspace of ¥;,5 meets S
in at least a PG(s + 1,¢). Applying this to the (¢ + 1)-subspaces of ¥;,9 on %,
the assumption implies that all these meet S in at least a PG(s + 2, q).

This argument shows that the union of the (¢ + 1)-subspaces on ¥; that meet S
not only in ¥; NS is a subspace. As S generates PG(n, ¢?), it follows that each
(t 4+ 1)-subspace on ¥; meets S in at least a PG(s + 2,¢). As S is a projected
PG(m,q), it follows that |PG(m,q)| is at least the number of (¢ + 1)-subspaces
on Y times ¢*2 + ¢**1. This implies that m > 3(n — 1 —t) + s + 2. Using
m = 3(n — k) and k > 1, this gives s < 3(t — k) + 1. In the situation of (a) and

(b), this is a contradiction. "

Lemma 2.2.14. Let S be a projected PG(3(n — k), q) subgeometry of PG(n, ¢*),
and suppose that S is not a subspace. If P is an ordinary point of S, then there
are at least > F=D+2 — 30=k=1) (g 1 1)-secants on P to S.
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Proof. We will proceed by induction on k. The case k = 1 follows from Lemma
2.4.7, where it is proved that if B is a non-trivial blocking set of PG(n,¢?) of
size < %(q3("_1) + 1) and meeting every line in 1 mod ¢ points, but not having a
(¢3/% + 1)-secant, and P is a point of B which is on a (g + 1)-secant to B, then
the number of (¢ + 1)-secants on P is at least ¢®*~* — ¢®*~¢. The set S has these
properties, and by Lemma 2.2.13(1) we can find a (¢ + 1)-secant on an ordinary

point P.

For the induction step suppose that £ > 2. Again by Lemma 2.2.13(1) we can find
a (q+ 1)-secant on any ordinary point. Consider a tangent on the ordinary point
P and project S form a point T" # P of this tangent to a hyperplane H. This
results in a set S’ that is a projected PG(m, ¢) meeting all (k — 1)-subspaces of
H. The image P’ of P is an ordinary point of S’ and clearly, every (¢ + 1)-secant
of S is the image of a (unique, which we do not need) (¢ + 1)-secant of S. As

the assertion is true for k — 1, it follows for general k. [
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2.3 Proof of Theorem 2.1.1 for k=1, n=3

Throughout this section it will be assumed that B is a point set of PG(3,q?),

q =7p", 1 < h, 7 < p prime, intersecting each line in 1 mod q points, and

|B| < 3(¢5 + 1).

The following lemma is a direct consequence of Result 1.6.9.

Lemma 2.3.1. |B| < ¢% + ¢® + ¢* + 3¢>.

The next lemma is crucial when we characterize these point sets.

Lemma 2.3.2. A plane 7 either intersects B in a small minimal blocking set, or

contains more than ¢* — ¢* points from B.

Proof. Let x = |B N x|, where 7 is a plane of PG(3,¢*). Let b; be the number
of lines of m meeting B in exactly i points. As 7 has b := ¢% + ¢ + 1 lines and
r := ¢® + 1 lines on each point, standard counting arguments give the following

three equations.
Zbii = ar

Combining these we find
D bi(i—1)(i—qg—1)=a(z—1) = (g+ Dar + (¢ + 1)b. (2.1)

As every line meets B in 1 mod ¢ points, the left-hand side is non-negative. As
the right-hand side is quadratic in  and negative for x = %q?’ +1land z = ¢* — ¢,

the assertion follows. n

Corollary 2.3.3. On any line | of PG(3,¢?) there has to be a plane which in-
tersects B in a small minimal blocking set. Thus, | N B s a linear set of size 1,
q+1, P +1, P +q+1, ¢ +1, or ®?+1 (then q is a square).
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Proof. Suppose on the contrary, that all the planes on [ contain more than ¢* — ¢*

points from B. Then counting the points of B on these planes we get
Bl > (@ +1)(¢" —¢* = 1N B|) + INn Bl > ¢" = ¢" = 1N B¢,
but |l N B| < ¢* + 1, which contradicts the bound of Lemma 2.3.1, as p > 7.

Every secant of B has to be a secant of a small minimal planar blocking set. The

secants of these sets are described in Remark 1.6.12. m

The following is a technical lemma which will be useful for us.

Lemma 2.3.4. (1) On a (q + 1)-secant there are less than 4 planes intersecting

B in more than ¢* — ¢ points.

(2) On a (¢*+1)- or a (¢*+q+1)-secant there are less than 2q planes intersecting

B in more than ¢* — ¢ points.

(3) On a line totally contained in B there are less than ¢* + 3q planes containing
further points of B.

Proof. Let [ be a line and denote by K the number of planes on [ which intersect

B in more than ¢* — ¢* points.

(1) If  is a (g + 1)-secant, then counting the points of B on the planes through [
gives
Bl > K(¢' = ¢’ —q— 1)+ (¢* +1 - K)(¢’ + ¢" — q).

For K > 4 this is in contradiction with Lemma 2.3.1.

(2) Summing the number of points on the planes through a (¢*+1)- or a (¢*>+¢+1)-

secant gives
Bl >K(¢'—¢—¢—q-1)+(*+1-K)¢".
For K > 2q this is in contradiction with Lemma 2.3.1.

(3) A plane on a line totally contained in B and containing a further point of B
intersects B in at least ¢* 4+ ¢ + 1 points, as B intersects every line in 1 mod ¢
points. Having at least ¢ + 3¢ such planes on a line totally contained in B would

lead to a contradiction with Lemma 2.3.1. m

In case 2|h we will now characterize the blocking sets having a (¢*2 4 1)-secant.
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Lemma 2.3.5. If 2|h and B has a (¢*/% + 1)-secant, then a line can intersect B

32 41 or ¢ + 1 points only. In this case B is linear.

m 1, q
Proof. If B has a (¢*? + 1)-secant, then by Corollary 2.3.3 and Result 1.6.11
there has to be a plane 7 intersecting B in a Baer subplane. Through a point
P € 7N B, there are ¢*/? +1 (¢*? + 1)-secants in 7. Suppose now that there is a
line [ through P, not in 7, which intersects B in ¢+ 1, ¢+ 1 or ¢* + ¢+ 1 points.
The planes containing [ and a (¢*? + 1)-secant have to intersect B in more than
q* — @3 points (see Result 1.6.11 that a small minimal planar blocking set having
a (¢%% + 1)-secant can have tangents or (¢%2 + 1)-secants only), but there are

¢*/? + 1 such planes, which is in contradiction with (1) and (2) of Lemma 2.3.4.

3/2

Thus, B meets all lines in 1 mod ¢°/“ points, so by Result 1.6.10 B is linear. =

For the rest of this section we will assume that B has no (¢*? 4 1)-secants, and
thus no Baer plane sections. All lines intersect B in a linear set of size 1, ¢ + 1,
@ +1,¢+qg+1,or ¢+ 1. A plane can intersect B in a line, a small minimal

blocking set described in (1) or (2) of Result 1.6.11 or in more than ¢* —¢* points.
Definition 2.3.6. We will call a point P € B a special point of B, if there is a
plane 7 through P for which 7 N B is the small minimal blocking set described
in (1) of Result 1.6.11, and P is the special point of this point set.

The following lemma summarizes some properties of special points of B.

Lemma 2.3.7. (1) On every (¢* + 1)-secant there is exactly one special point.

(2) The lines through a special point can be tangents, lines totally contained in

B, or (¢* + 1)-secants only.

(3) Two special points are always connected by a line contained in B.

Proof. (1) Result 2.2.6.

(2) Let P be a special point, [ a (¢* + 1)-secant through P. According to Lemma
2.3.4, more than ¢ + 1 — 2q¢ of the planes on [ intersect B in the small minimal
blocking set (1) of Result 1.6.11, thus more than (¢*> + 1 — 2¢)q + 1 of the lines
through P have to be (¢ + 1)-secants.

If mis a (¢*> + ¢ + 1)-secant on P, then because of Corollary 2.3.3 there has to

be a plane on m in which there are (¢ + 1)-secants on P.
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Now let m be a (¢+ 1)-secant on P. Assume that a plane 7 on m intersects B in
the small minimal blocking set (1) of Result 1.6.11. From Remark 1.6.12 it is clear
that in this blocking set, on a special point there are tangents or (¢* + 1)-secants
only. Thus, the special point of 7 N B has to be a point @), different from P and
the line PQ is a (¢* + 1)-secant of 7N B. But this would be in contradiction with
(1), because P and @) would be two special points of the line PQ. Thus, all the
planes on m intersect B in the small minimal blocking set (2) of Result 1.6.11
or in more than ¢* — ¢* points. By (1) of Lemma 2.3.4, there can be at most 3
planes meeting B in more than ¢* — ¢ points, and thus, there can be at most
3 planes on m containing (¢? + 1)-secants on P, which means that the number
of (¢* + 1)-secants on P can be at most 3¢%, a contradiction. Thus, there are no
(¢ + 1)- or (¢* 4+ q + 1)-secants on P.

(3) is a direct consequence of (1) and (2). n

Proposition 2.3.8. If 7 is a plane of PG(3,¢®) such that |7 N B| > ¢* + 3¢,
then B is of Rédei type and 7 is a Rédei plane.

Proof. First observe that there are no special points outside w. If S € B were a
special point, S ¢ 7, then according to Lemma 2.3.7(2), all lines connecting S
with a point of B N7 would intersect B in at least ¢ 4+ 1 points. This would give
|B| > (¢" + 3¢®)¢* + 1, contradicting Lemma 2.3.1.

Now we will prove that there are no (¢+ 1)-secants in 7. Suppose on the contrary
that [ is a (¢+1)-secant in 7. If a plane through [ intersects B in a small minimal
blocking set, it has to be the one given in (2) of Result 1.6.11, as there are no
special points outside . But even if all the planes through [ (other than )
would intersect B in small minimal blocking sets, we would reach contradiction
with Lemma 2.3.1, because counting the points of B in these planes would give
|B] > ¢* + 3¢ + ¢*(¢* + ¢*). Thus, 7 N B has no (q + 1)-secants.

Let | ¢ m be a line meeting 7 in the point P € 7\ B. Assume |[[ N B| > 1,
that is (as there are no special points outside 7) |l N B| = ¢+ 1 or ¢> + ¢ + 1.
Let o be a plane on [, and let m := aNm. If [ is a (¢ + 1)-secant of B and
m a (¢> + q + 1)-secant, then the plane o meets B in more than ¢* — ¢ points,
because in a small minimal planar blocking set every (¢ + 1)-secant has to meet
the (¢*> + ¢ + 1)-secant in a point belonging to the set (see Result 1.6.11), but
P =1nm ¢ B. With similar arguments |a N B| > ¢* — ¢® if [ is a (¢ + 1)-secant
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and m a (¢* + 1)-secant, and clearly |a N B| > ¢* — ¢ if [ is a (¢*> + ¢ + 1)-secant
and m a (¢* + 1)-secant or a (¢* + ¢ + 1)-secant.

By Lemma 2.3.4, as [ is a (¢ + 1)-secant or a (¢> + ¢ + 1)-secant, then there are
less than 2¢ planes on [ intersecting B in more than ¢* — ¢® points. By these
reasonings there are less than 2¢ lines on P meeting B N 7 in more than one
point. As every line of m on P contains at most ¢> + ¢ + 1 points of B, we have
|BN7| < ¢+ 1+ 2q(¢* + q), but this is in contradiction with the lower bound
on |BNml.

Thus, for the point P € 7w\ B, all the lines through P, but not in 7 are tangents
to B, and this means that |B \ 7| = ¢°, and so B is of Rédei type with 7 a Rédei

plane. [

Corollary 2.3.9. If there is a line contained in B and a special point of B not
on this line, then B is a Rédei type blocking set.

Proof. 1f a plane contains a line of B and a special point of B not on the line,
then it contains at least ¢>(¢°>+ 1) + 1 points of B, because by (2) of Lemma 2.3.7
any line on a special point which intersects B in at least 2 points, has to intersect

it in at least ¢? + 1 points. "

The following is a technical lemma, which will be useful for us.

Lemma 2.3.10. Let P € B be a non-special point and t a tangent on P. Denote
by N the number of planes on t which intersect B in the small minimal blocking
set of type (1) of Result 1.6.11 and M is the number of planes on t which intersect
B in a line. Suppose that M < q and N < ¢*. Then all the planes on t intersect

B in small minimal blocking sets and

Bl =(¢*+1)(¢*+ ¢ +q)+1—M(¢*+q) — Nq.

Proof. Having a plane on t which intersects B in more than ¢* — ¢® points would

result in

1Bl >¢" -+ PP+ +q) +1—q(@+9) — g,

which is in contradiction with the bound of Lemma 2.3.1. Thus, |B| = N(¢* +
P)+MP+ (P +1-N—-M(P+¢+q) +1. .

Lemma 2.3.11. At least one line is totally contained in B.
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Proof. Suppose on the contrary that there are no lines contained in B. Then
by Lemma 2.3.7(3), there can be at most one special point in B. Let P be a
nonspecial point of B and ¢ a tangent on P. By Lemma 2.3.10,

1Bl = (¢* + 1)(¢’ + ¢* +¢) — Nqg + 1,
where N <1 is the number of special points in B.

Now if N = 1, then let [ be a (¢ + 1)-secant of B in a plane which intersects B
in the small minimal blocking set (1) of Result 1.6.11, while if N = 0 then let [
be any (q + 1)-secant of B. Counting the points of B in the planes on [ yields
that one plane 7 has to intersect B in exactly ¢* + ¢* + ¢* + ¢ + 1 points. By
the choice of [, there is no special point in 7. From this it follows, that there
are no (¢* + 1)-secants on 7. There are no tangents on 7 either, because having
a tangent ¢t would lead to a contradiction with Lemma 2.3.10 (with P := ¢t N B,
N <1, M =0, and 7 N B not being a small minimal blocking set).

Thus, through a point of 7 not belonging to B there can be (¢ + 1)-secants or
(¢* + q + 1)-secants in 7 only. Denote by L the number of (¢* 4+ ¢ + 1)-secants in
7 on a point Q € 7w\ B. We have:

BN7|=L(g>+q+1)+ (¢ +1—L)(g+1),

from which L = 1. Now denote by K the number of (¢* + ¢ + 1)-secants in 7.
Double-counting the number of pairs (Q,m), Q@ € 7\ B, m a (¢*> + q + 1)-secant
on @), we get:

@+ +1-|rnB|) 1=K (¢~ ¢ —q),
which has no integer solutions for K. [
Proposition 2.3.12. If there are at least two lines contained in B, then B is of

Rédei type.

Proof. Any two lines totally contained in B must intersect, as two skew lines
would contradict Lemma 2.3.4(3). Let /; and [y be lines contained in B and let
P =1y Nly. If there is a special point in B\ {P} or if P is special and there are
further lines in B that are not on P, then by Corollary 2.3.9, B is of Rédei type.

Case 1: Suppose now that P is the only special point of B and all the lines of
B go through P. Let () be any point on a line of B through P. From Lemma
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2.3.10,
Bl=(@+1)(@+¢+9+1—¢ —q.

Now let R be any point of B which is on a (¢®+ 1)-secant through P. Then again

from Lemma 2.3.10,
Bl = (¢’ +1)(¢’ +¢* +q) +1—q,

but this is a contradiction. Thus, there are no (¢* + 1)-secants through P, and

P is not a special point.

Case 2: Suppose now that there are no special points in B at all and again P =
I1Nly, where [; and [y are lines contained in B. If thereis a (¢+1)- or a (¢*+q+1)-
secant on P then by (1) and (2) of Lemma 2.3.4 we can find a (¢ + 1)-secant [ on
P which is not in the plane (ly,l5). As the planes ([, ;) and ([, ls) both contain at
least ¢* + ¢+ 1 points of B, we have |B| > 2(¢*+¢* —q)+ (¢* — D) (¢* +¢*) +q+1,
which is in contradiction with Lemma 2.3.1. Thus, there are no (¢ + 1)- or
(¢* +q+1)-secants on P and B has to be a cone with vertex P. The base of this
cone is a plane section of B, but from Lemma 2.3.1 |B| > ¢*(¢* — ¢*) + 1 is not
possible. Thus, the base is a small minimal blocking set, which is either a line,
or a blocking set of type (2) of Result 1.6.11. This planar blocking set is of Rédei

type, and so the cone is of Rédei type also. [

Proposition 2.3.13. B s either of Rédei type, or is a blocking set with the
following properties:
e Bl=¢"++¢" +@+ 1

o There is exactly one line | contained in B. There are q + 1 special points

i B and all are on the line [.

e On a nonspecial point of | there are tangents and (q + 1)-secants only. On

a special point of | there are tangents and (¢* + 1)-secants only.

o There are ¢>+q+1 planes on | containing further points of B. These planes
meet B in ¢* + ¢ + 1 points.

e On a (q+ 1)-secant meeting the line , there is one plane meeting B in
q* + ¢ + 1 points (the plane on 1), and all other planes intersect B in the
small minimal blocking set (2) of Result 1.6.11.
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Proof. By Lemma 2.3.11, Proposition 2.3.12 and Corollary 2.3.9, we can assume
that there is exactly one line [ totally contained in B and all the special points of B
(if there are any) are on [. If there are at least 4¢ special points on [, then a plane
on [ which contains further points of B will contain at least 4¢¢*+ (¢>+1—4q)q+1
points of B, and thus by Proposition 2.3.8, B is of Rédei type.

Suppose now, that the number of special points is less than 4¢. Let P be any
non-special point of the line [ containing the special points and let ¢ be a tangent
of P such that the plane (¢,[) intersects B in the points of [ only. By Lemma
2.3.10,

Bl =¢(*+¢* +q)+¢* + 1.

Now let P be a point of B not on the line [, and t a tangent of P. Again by

Lemma 2.3.10, we have
1Bl = (¢* + 1)(¢’ + ¢* +¢) — Nqg + 1,
with N the number of special points in B. From this N = ¢ + 1.

Let 7 be a plane on the line [ and containing further points of B. As there are ¢+1
special points on [, counting the points of B N7 on the lines through a point of
mNB not on [ we have: |BN7| > (¢+1)¢*+(¢*>—¢q)q+1. Counting the points of B in
the planes on any (g+1)-secant m of 7, we have |B| > ¢3(¢*+¢*)+|BN|, because
there are no special points outside 7, and so the small sections on m can be of
type (2) of Result 1.6.11 only. From the size of B we have |BN7|=¢'+ ¢ +1,
and equality has to hold above. From this it is clear that a point of 7 \ [ is
connected to the special points of [ by (¢* + 1)-secants, and to the non-special
points by (¢+ 1)-secants. It is also clear, that on a (¢+ 1)-secant which intersects
[, all the planes not containing [ will intersect B in the small minimal blocking
set (2) of Result 1.6.11. Counting the points of B in the planes on [, we see that
there are exactly ¢? + ¢+ 1 planes containing ¢* + ¢® + 1 points of B, and all other

planes meet B in [. [

Remark 2.3.14. The blocking set with the properties above is not a Rédei type
blocking set. The Rédei plane would have to contain |B| —¢® = ¢° + ¢* + ¢ + 1
points and (by the proof of Proposition 2.3.8) would have to contain all the
special points of B. But the planes containing the special points of B all contain
¢* + ¢® + 1 points of B.
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Notation: Let V be the GF(¢*)-vector space of rank 4 defining PG(3, ¢*). For a
line e we will use the notation e” := e N B. Suppose that P is a point of B and
e1,...,es are lines on P such that all sets e? are sublines isomorphic to PG(1, q).
Let v € V be any vector representing P. Then V' has a unique GF(q)-subspace
V; of rank two containing v and representing exactly the points of . Consider
the GF(g)-span of the vectors in V; U --- U V;. The set of all points of PG(3, ¢%)

generated by vectors in this GF(g)-span will be denoted by (e?, ..., e?),. Notice

that this definition does not depend on the choice of the vector v representing P:
using a vector v/ = A\ with A € GF(¢?), A # 0, will result in the set of all points
of PG(3, ¢*) generated by the GF(g)-span of vectors in AV; U - - - U AV, which is
the same set. If the V; subspaces are GF(g)-independent, then (e?, ... eP), is an

rs

s-dimensional GF(q)-linear subspace.

Lemma 2.3.15. Suppose that B is as described in Proposition 2.3.13. Let P be
a point not on | and consider two (q+ 1)-secants l; and ly on P such that l; meets

[. Then (I2,18), is contained in B.

Proof. Case 1: Iy is skew to [. Then the plane (l,l5) meets B in a small blocking
set and the assertion follows by inspection of the small blocking sets. Alterna-

tively, the small blocking set is GF(g)-linear, which also proves the claim.

Case 2: [y meets [, that is the plane m = (ly, l3) contains [. Then E; := 1Nl and
E, := 1Ny are non-special points of {. It suffices to show for all points R € ¥
that the set EyRN (IP,18), is contained in B. This holds for R = P and R = E»
(because the line F1Ey = [ is contained in B). Suppose therefore that R # P, Es.

As stated in Proposition 2.3.13, all planes on [l other than 7 intersect B in small
minimal blocking sets (2) of Result 1.6.11. Thus, we can find a point Ej5 outside
7 such that [3 := PFE3 and E3R are (q + 1)-secants. By Proposition 2.3.13, the
line E1FE3 is a (¢ + 1)-secant also.

From Case 1 we see that (12, 1P), is contained in B. As E;Fj3 contains the points
E4, E5 of this set, it follows that

(EsE1)" C(I7,15),.
Similarly
(EsR)” C (17,15), and (E1R)” C ((E3E1)”, (E3R)"),.
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Hence (E1R)? C (IB,181P),. As E\R is also contained in n, it follows that
(E\R)” C (7, 15)q. .

Lemma 2.3.16. Let B be a point set with the properties given in Lemma 2.3.13.

Then B is a linear blocking set.

Proof. Let P be any point of B not on the line [ containing the special points, and
let 7 be the plane on P and [. Take any two (¢ + 1)-secants eq, e; through P in 7,
let Ey :=e; Nl and Ey := ey N 1. By the previous lemma, we have (e?,ef), C B.
Let e3 be a third (¢ + 1)-secant of m on P meeting the set (e?, ef), only in point
P, and let E5 :=e3NI.

We will now prove that (e?,e? eP), is also contained in B. Because of Lemma

2.3.15, (eP ef), and (eZ,el), are contained in B, thus, for any point R € e it
is true that (e? el ef), N REy; C REy N B and (ef el ), N RE, C RE, N
B. Equality holds, if and only if R ¢ [, because in this case RE; and RFj
are (q + 1)-secants of B N w. Applying Lemma 2.3.15 to R and the (¢ + 1)-
secants RE;, and RE,, we have that ((RE;)?, (RE,)P), C B. Every point of
(eB eB eB), is contained in one of the sets ((RE})%Z, (RE2)?), with R € £, and

thus (e?,e¥ ef), C B follows.

With this we have found a 3-dimensional GF(g)-linear subspace containing P
and contained in B. The number of (¢ 4+ 1)-secants a 3-dimensional subspace
can generate on a point is at most ¢> + ¢ + 1, but in 7 the number of (q + 1)-
secants on P is ¢° — ¢ (see Proposition 2.3.13) and thus there have to be further
(¢ + 1)-secants of m on P. Take one and denote it by e4, and let E, := e, N1. We
will prove (e?, e, el eP), € BN n. By Lemma 2.3.15 we have that (e ,64B>q,
(el el), and (ef eP), are contained in B. Thus, for any point R € ef \ E4
the set (eP, el ef eP), meets the lines RE,, REy and RE3 in the sets RE; N B,
RE>;N B and RE;N B respectively (these are all (¢4 1)-secants). Clearly from the
reasonings of the previous paragraph ((RE;)?, (RFE,)®, (RF3)B), C Bif R € €f.
(Note that (RE3)? ¢ ((RE))®,(RFE,)®),, but we don’t need it in the proof.)

From this (e?,ef el ef), € BN clearly follows.

The number of (¢?+1)-secants on P in 7 is ¢+ 1 and the number of (¢+1)-secants
on P in 7 is ¢* — ¢, thus the lines on P in 7 can contain at most (¢* — q) + (¢ +
1)(q + 1) sublines, and this proves (e?, el ef ef), = BN.

Now let o be a plane on e; different from 7. By the properties of B, a N B is
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the small minimal blocking set (2) of Result 1.6.11. This is a linear blocking set,
thus there are (g + 1)-secants e; and eg on P such that (eP, eB ef), = anB. We

will now prove that (e? el ef el eP ef), C B.

There is exactly one (¢* + ¢ + 1)-secant on «, and we may suppose that P is not
contained in it (if it were, then choose another point as P). Thus, for any point
R € an B the line PR is a (¢ + 1)-secant. By Lemma 2.3.15, {((PR)?,e?) c B
foralli=1,...,4and all R € «aNB, R # E;. Then the lines RE; all meet the set
(eB el eB eB B el), in exactly the points of RE; N B, as these are all (¢ + 1)-
secants of B. We can apply the reasonings of the previous paragraphs of this proof
to R in place of P, and then we obtain ((RE;)?, (RFE»)®, (RE3)®, (RE,)®,), C B.

But from this (e?, el ef ef B el), C B follows.

Thus, B contains a 6-dimensional GF(g)-linear subspace, in other words a pro-
jected PG(6, q) subgeometry. Such a projected subgeometry blocks all the lines
of PG(3,¢?), and so if B contained further points, it would be in contradiction

with the minimality of B. ]

Proof of Theorem 2.1.1 for n = 3 and k£ = 1. In this section, through a series

of lemmas we proved the following theorem.

Theorem 2.3.17. Let B be a point set of PG(3,¢%), ¢ = p", p > 7 prime,
intersecting each line in 1 mod q points, and with size |B| < %(qg("*l) +1). Then

B is a linear blocking set.

Proof. Clearly by Result 1.6.7, B is a small minimal blocking set of PG(3, ¢%).
If 2|h and B has a (¢%? 4 1)-secant, then B is linear by Lemma 2.3.5. If B has
no (¢*? 4 1)-secants, then by Proposition 2.3.13, B is either a blocking set of
Rédei type, and thus linear by Result 1.6.4, or B is the blocking set described in
Lemma 2.3.13, and linear by Lemma 2.3.16. [
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2.4 Proof of Theorem 2.1.1 for k=1, n >4

Throughout the section it will be assumed that B is a point set of PG(n,q?),
q=p", 1 <h, 7<pprime, and n > 4. Furthermore, |B| < 3(¢*"~Y +1) and B

intersects every line of PG(n, ¢®) in 1 mod q points.

Our technique will be to prove that the plane sections of such point set are always
linear, and then prove the linearity of the whole set similarly as in Lemma 2.3.16.
For the size of B, we will again use an upper bound which follows from Result
1.6.9.

Lemma 2.4.1. |B| < 3"V 4 g3(n=2+42 4 8(n=2)+1 4 33(n=2)

Lemma 2.4.2. A 3-dimensional subspace of PG(n,q>) either intersects B in a

small minimal blocking set, or contains more than q" — ¢ points from B.

Proof. A 3-dimensional subspace has b := (¢% + 1)(¢® + ¢® + 1) lines, and r :=
¢® + ¢ + 1 lines on every point. With these values for b and r, equation (2.1)
in the proof of Lemma 2.3.2 remains true in our situation. As the right-hand
side of this equation is negative for = 2¢° +1 and 2 = ¢" — ¢, the assertion

follows. m

Corollary 2.4.3. On any plane of PG(n,q>) there has to be a 3-dimensional

subspace which intersects B in a small minimal blocking set.

Proof. If all 3-spaces on a plane 7 contained more than ¢” — ¢° points from B,

then counting the points of B in these 3-spaces would yield
1Bl 2 (¢*™ P + ¢+ + 1"~ ¢~ [N B]) + |7 N B,

which is in contradiction with Lemma 2.4.1, as [t N B| < ¢° + ¢ + 1. n

Corollary 2.4.4. Every plane 7 of PG(n, ¢®) intersects B in a linear point set.
Thus, ™ N B is either a line, a projected PG(m, q) subgeometry, with 3 < m < 8,

or a Baer subplane (then q is a square).

Proof. By Corollary 2.4.3, every plane 7 is contained in a 3-dimensional space
which intersects B in a small minimal blocking set. Theorem 2.3.17 proves that

the intersection is a linear point set, and thus 7 N B is also a linear point set.
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By Lemma 2.2.10, if 7 N B is a GF(q)-linear blocking set of 7, then it has to be
a projected PG(m, q), with 3 < m < 8. If 7 N B is GF(¢*?)-linear, then it is a

Baer subplane. [

Corollary 2.4.5. An arbitrary line intersects B in a linear point set of size 1,

q+1,¢+1, P +q+1, ¢ +1, or¢*?+1 (then q is a square).

In case 2|h we will now characterize the blocking sets which have a (¢2 + 1)-

secant.

Lemma 2.4.6. If 2|h and B has a (¢*/% +1)-secant, then B intersects every line

3/2

i 1 mod ¢°/* points. In this case B s linear.

Proof. If B has a (¢*? +1)-secant m and a (¢ + 1)-, a (¢*> + 1)- or a (¢* + ¢+ 1)-
secant [, then these lines have to be skew by Corollary 2.4.4. Now for any points
P €1\ B and @Q € m the line PQ has to be a tangent to B, as any other
intersection number would lead to contradiction. Thus, the plane (P, m) meets
B in ¢ + 1 points which are not collinear, contradicting Corollary 2.4.4. This
proves that if B has a (¢ + 1)-secant, then B has no (g + 1)-, (¢*> + 1)- or

3/2

(¢*> + ¢ + 1)- secants. B meets every line in 1 mod ¢*? points, and is linear by

Result 1.6.10. -

Lemma 2.4.7. Suppose now that B has no (¢*/* + 1)-secants. If there is a
(g + 1)-secant on a point P € B, then the number of (¢ + 1)-secants on P is at

least q3n74 _ q3n*6 .

Proof. Let [ be a (q + 1)-secant on the point P € B. By Corollary 2.4.4 and
Lemma 2.2.10, a plane on [ meets B in a projected PG(3,¢q) or a projected
PG(4, q). In both cases P is an ordinary point by Corollary 2.2.3. In the first case
there are at least ¢ — 1 further (¢ + 1)-secants on P (see Remark 1.6.12). In the
latter case there are at least ¢ —q further (g+1)-secants on P by Lemma 2.2.10(4).
Thus, in any plane on [ there are at least ¢* — 1 further (¢ + 1)-secants on P, and
the number of (¢+1)-secants on P is at least (¢ —1)(¢*™ 2 + ¢33 ... 4-1) >

3n—4 3n—6
q —(q . | |

We are now ready to prove the main theorem. We will again use the notation

(eB, ..., eP), given before Lemma 2.3.15.

]
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Theorem 2.4.8. Let B be a point set of PG(n,¢®), ¢ =p", 1 < h, 7 < p prime,
n > 4. Let |B| < 3(*"Y + 1) and assume that B intersects every line of
PG(n,¢*) in 1 mod q points. Then B is a linear point set.

Proof. By Result 1.6.7, B is a minimal blocking set of PG(n,q¢®). If B is a
hyperplane, or B has a (¢3/? + 1)-secant, then B is a linear point set (Corollary
2.4.6).

Now we may assume that B has no (¢*? + 1)-secants, and so by Corollary 2.4.4,
every plane meets B in a projected PG(m, q), with 3 < m < 8. If B has a (¢*+1)-
or a (¢*> + ¢ + 1)-secant, then B has to have (q + 1)-secants also, or else all the
planes on such a secant would meet B in a projected PG(5, ¢), which would be

in contradiction with the size of B.

Let P € B be a point on a (¢ + 1)-secant. By Lemma 2.4.7, there are many
(q+1)-secants on P. Let e and f be two (q+ 1)-secants of B meeting in the point
P. The plane (e, f) meets B in a projected PG(m, q) subgeometry, and P is an
ordinary point of (e, f) N B (Corollary 2.2.3). Thus, e? and f? are projections of
intersecting lines of PG(m, ¢). Then the subplane (e?, f?), generated by them is
the image of the plane of PG(m, q) generated by the pre-images, so (e?, f?), C B.

Now suppose that ej,es,...,es are (¢ + 1)-secants through P € B, such that
eB g (eB .. eB ), fori =2 ... sand (P ... eB), C B. If s < 3(n—1)
then we can find further (¢ + 1)-secants through P, as the subspace (e, ... eF),
has at most ¢* ' +¢* 2 + -+ + 1 (¢ + 1)-secants through P, and from Lemma

2.4.7 there are more. Let e,y be any further (¢4 1)-secant through P, such that
esi1 N (el ... eB), = {P}.

’ s

Let ¥ be a 3-dimensional GF(g)-linear subspace of (ef,... el ef ), containing
(ef,eB, 1), T meets (ef, ..., el), in a subplane on e; which contains by Lemma

2.2.12 further lines f; (i = 1,...,¢ — 2) which are all (¢ + 1)-secants of B going
through P. From the reasonings above, the subplane (e;1, e1), and the subplanes
(€s+1, fi)q are all contained in B. Suppose now that ) € ¥ is not on any of these
planes. Again by Lemma 2.2.12, among the ¢ further GF(g)-linear subplanes on
the line PQ in ¥ we can find a subplane which intersects two of the subplanes
(€s41, fi)q in sublines which are both (¢ + 1)-secants of B. Then the subplane
generated by these two (¢ + 1)-secants is contained in B and @ is an element of

this subplane.
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With this we have proved that any 3-dimensional GF(g)-linear subspace of the

subgeometry (ef,... e eB ), containing ef and e? | is contained in B, thus
B B B . . .
(€7, ..., e5,e5.1)q is contained in B.

From this it is clear that B contains a projected PG(3(n — 1), ¢) subgeometry.
This projected subgeometry is a blocking set of PG(n, ¢?), and so it is equal to
B by the minimality of B. [
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2.5 Proof of Theorem 2.1.1 for 1<k <n,n >3

The strategy used in the previous two sections was to prove that every plane
section of the blocking set B is a linear point set, find a point P with many
(¢ + 1)-secants on it, and then ’build’ a linear point set in B. This last case
(k > 2, n > 3) can also be proved this way, but now we present a different
method. We will project the blocking set B into a hyperplane, use induction on
k to represent the projected set B’ in the hyperplane as a linear set, and finally
lift the linear structure back to B. In [29] Lavrauw, Storme and Van de Voorde

present a third method to solve the same problem.

Our methods have the advantage that one needs to study only the plane sections
of the blocking set. There is hope that these techniques may be generalized in
order to help solving similar problems. For example in the classification of small
blocking sets in PG(n, ¢") for h > 3, or even in the classification of sets of points

in PG(n, ¢") that meet every plane in a linear set.

Throughout this section it will be assumed that B is a point set of PG(n, ¢3), with
gq=p" 1 <h, 7<poprimeand?2 < k < n—1, meeting all k-subspaces in
1 mod ¢ points and |B| < 3(g*"% +1).

We will be using the fact that every subspace of PG(n, ¢®) that meets B, meets
it in 1 mod ¢ points by Result 1.6.7.

Lemma 2.5.1. If U is a point not in B, then projecting B from U into a hyper-
plane H produces a small minimal blocking set B' of H with respect to (k — 1)-

subspaces. If B’ is a subspace, then B is a linear blocking set.

Proof. As B meets all k-subspaces, so B’ meets all (k —1)-subspaces of H. Every
subspace that meets B meets it in 1 mod ¢ points, so the same is true for B’.
Result 1.6.7 implies that B’ is a minimal (n — k)-blocking set of H.

Assume that B’ is a subspace ¥ of H. Then X has dimension n — k, and the
subspace (U, ) of dimension n—k+ 1 contains B. As B meets every k-subspace,
it follows that B meets every line of (U, ¥). The case k = 1 being handled in the

previous section, it follows that B is linear. [

Lemma 2.5.2. Let T be a (t — 1)-dimensional subspace meeting B in at least
q" points, with 2r an integer. If r > 3(t — k) — 1, then there is a t-dimensional
subspace on T meeting B in the points T'N B only.
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Proof. Assume that this is not true. Every line that meets B in 2 points, meets
it in at least ¢ + 1 points. Thus, every t-dimensional subspace on T contains at
least ¢"(¢ — 1) + 1 points of B outside T'N B. The number of ¢-subspaces on T’
is more than ¢*"~", and thus: 2(¢*" ™™ 4+ 1) > |B| > ¢*""(q — 1)¢", which is a
contradiction if r +1 > 3(t — k) and ¢ > 7. n

Lemma 2.5.3. Fuvery line meets B in a linear point set. Let S = {1,q+ 1,¢* +
L@ +q+1,3+1}, and T = {1,¢*? +1,¢3 + 1}. Then either for all lines | of
PG(n, %) it is true that |IN B| € S or for all lines |IlN B| € T. In the latter case

B is linear.

Proof. We will prove this by induction on k. The case k = 1 is proved in Corollary
2.4.5 and Lemma 2.4.6. By Lemma 2.5.2, on any line [ such that |[IN B| > ¢+ 1,
we can find a plane 7 such that 7N B = [N B. Projecting B from a point U € 7\,
the resulting point set is a blocking set with respect to (k — 1)-spaces and having
an |l N Bl-secant. By the induction hypothesis [ N B is a linear point set, and
INBleSUT.

Assume that there exist intersecting lines s and ¢ such that |t N B| = ¢*/2 +1 and
|sN B| € S\ T. By the 1 mod ¢ property of B, we have |(s,t) N B| > (¢*/% +1)q,
and so we can use Lemma 2.5.2 to find a 3-dimensional subspace on (s,t) which
meets B in the points B N (s, t) only. Projecting B from a point of this 3-space
not on (s,t) results in a blocking set of H with respect to (k — 1)-spaces of H
and having an |s N Bl-secant and a |t N B|-secant, which is in contradiction with

the induction hypothesis.

Now assume that there are lines s and ¢ such that [tNB| = ¢*?+1 and [sN B| €
S\ T, but only skew lines s, t have these intersection numbers. Then all the lines
connecting points of s N B and ¢t N B have to be contained in B. Thus, in the
3-space generated by s and ¢ there are more than (¢*2+1)(g+1)(¢>—1) points of
B. Using Lemma 2.5.2 we find a 4-space on (s, t) which intersects B in the points
of (s,t) N B only. Projecting B from a point of this 4-space not on (s, t) results
in a blocking set with respect to (k — 1)-spaces and having an |s N B|-secant and

a |t N Bl-secant, which is in contradiction to the induction hypothesis.

3/2 3/2

If B meets all lines in 1 mod ¢°/* points, then B meets all k-spaces in 1 mod ¢

points, and is linear by Result 1.6.10. [

For the rest of this section we will assume that B has no (¢*/? 4 1)-secants, so all
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lines intersect B in a linear set of 1, ¢+ 1, ¢*+1, ¢* +¢q+1 or ¢* + 1 points. Also,
for the rest of the section we fix a point U not in B and a hyperplane H not on U
and consider the projection B’ of B into H. In view of the preceding lemmas and
the induction hypothesis, we may assume that B’ is a linear minimal blocking set,
a projected PG(3(n — k), q) subgeometry and that B’ is not a subspace. Recall
that a point P of a linear point set is ordinary, it is the projection of one point

only.

Lemma 2.5.4. Every ordinary point P’ of B’ is the projection of only one point
of B.

Proof. As every line meets B in no point or in 1 mod ¢ points, every point of B’ is
the image of exactly one or at least ¢ + 1 points of B. Suppose that the ordinary
point P’ is the projection of x > ¢+ 1 points of B. By Lemma 2.2.14, the number
of (¢ + 1)-secants of B’ on P’ is at least ¢*™F~1 — 3=k~ The number of
points of B that are projected onto a point ()’ € B’, which is connected to P’ by
a (q + 1)-secant is at least . To prove this, assume that P, € B, i =1,...,z
are the points projected onto P’ and R € B, R # P, is a point projected onto
the (¢ + 1)-secant connecting P’ with )’. Then the lines RP; are all (¢ + 1)-
secants of B, which have to meet the line (@', U) in a point of B. This proves
|B| > (¢*"=R=1 — ¢3=k)=3)gz which leads to a contradiction with the upper

bound on |B|. Hence x = 1. n

Lemma 2.5.5. If a line I" meets B’ in a PG(1,q), then the plane (I',U) meets
B in a PG(1,q).

Proof. By Corollary 2.2.3, the points of [N B’ are ordinary and then the previous
lemma shows that the plane (I', U) meets B in exactly ¢ + 1 points. The 1 mod ¢
property proves that they have to be collinear and thus form a PG(1, q). [

Lemma 2.5.6. Let " be a line of H such that the points of B in the plane

7 :=(I',U) are not collinear.

(a) Ifl" meets B' in a projected PG(2,q), then T meets B in a PG(2,q).

(b) If the line l' meets B’ in a projected PG(3, q), then T meets B in a projected
PG(3,q).
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Proof. (a) If |I' N B'| = ¢*> + ¢+ 1, then by Lemma 2.2.2, all points of I’ N B’ are
ordinary, so |[TNB| = ¢*+¢+1 by Lemma 2.5.4. The 1 mod ¢ result for B implies
that 7 N B is a projective plane of order ¢, an embedded PG(2, ¢q) subplane. The
other possibility is that [I'N B’| = ¢>+ 1 and that ¢* points of I’N B’ are ordinary
and one point S’ € B’ is not. Then the plane (I,U) meets B in x + ¢* points,
where z is the number of points of B on the line US’. In view of the 1 mod ¢
result for B, we see that B N (I',U) must have at least xq + 1 points. From
r+¢®=|BN{l',;U)| > zq+1 it follows that < ¢+ 1. The 1 mod ¢ result shows
therefore that x = ¢ + 1 and that the plane (I, U) meets B in a PG(2, q).

(b) In this case, every point of I’ lies in B’ and so | N B| > ¢® + 1. By Lemma
2.5.2, we can find a 3-space X on 7 which meets B only in points of 7. Choose
a point in ¥\ 7 and project B from this point into a hyperplane. From Lemma
2.5.1 and the induction hypothesis we have that this gives a projected PG(m, ¢q).
The image of the plane 7 meets this projected PG(m, q) in a projected PG(t, q)
for some ¢, and thus 7 meets B in a projected PG(¢,q). We have to show that
t = 3. On the line I" we have a projected PG(3,¢) and this has ordinary points
X'. The corresponding lines UX meet B then in only one point. This implies
that ¢t < 3, since for ¢t > 3 a projected PG(t, ¢) in a plane meets every line of that
plane in more than one point (Lemma 1.3.3). As |7 N B| > |I'| = ¢* + 1, we have
t=3. [

Notation. Let W be the vector space of rank n + 1 over GF(¢?®) defining
PG(n,q*). As B’ is a projected PG(3(n — k), q) subgeometry, there exists a
GF(g)-subspace V' of W of rank 3(n — k) + 1 such that B’ consists of the points
which are represented by vectors 0 £ o' € V’; also a point of B’ is represented
by a subspace of GF(g)-rank s+ 1 of V' if and only if it meets B’ a projected
PG(s,q).

For the remaining of this section we will use the following notation: for any vector
0 # v € W, the point of PG(n, ¢%) represented by this vector will be denoted by

(v).

Let u € W with U = (u), and define V' to be the set of all vectors v € W with

the following properties

e v =20+ \u with A € GF(¢®) and 0 £ v € V|
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e (v) is a point of B, and

e (v) projects from U to an ordinary point of B’ (which is (v')).

We also put
Vi={v+w]|v,weVU{0}}

As V' is GF(q)-homogeneous, the same is true for V and V. We shall show that
V is a GF(q)-subspace of W representing exactly the points of B. We start by
showing that the vectors # 0 in V represent points of B. For this, the following

notation is convenient.

Notation. A line h' of H will be called suitable, if it has the property that the
point (v+w) lies in B for any two vectors v, w € V that represent distinct points
(v), (w) in the plane (b, U).

It will be showed in the next two lemmas that all lines of H are suitable.

Remark. Notice that (v 4+ w) € B is trivial, if v and w represent the same
point, since v = v/ + Au and w = w' + pu with v/, w’ € V/ and A\, u € GF(¢%)
implies v +w = (v + w') + (A + p)u (notice that v’ + w' represents a point of
B’ by the definition of V’). Therefore we will consider only the case when v and
w represent different points, which implies that their projections to B’ are also
different (because v,w € V implies by definition that (v') and (w’) are ordinary

points and thus the projection of a unique point of B).

Lemma 2.5.7. Let !’ be a line of H and suppose that the points of B in the plane

(I',U) are collinear. Then l' is suitable.

Proof. Consider two different points (v) and (w) with v,w € V of the plane (', U)
and write v = v’ + A and w = w’ + pu with v/, w’ € V' and A\, u € GF(¢?). Then
the line on (v + w) and U meets I’ in the point (v/ + w’). As v/, w' € V', then
v +w" € V' and hence X’ := (v +w') € B’. Thus, the line on this point and U
meets B in a point X. But as the points of B in the plane (I, U) are collinear,
X is the intersection of the line on (v) and (w) with X'U, so X = (v + w). This
shows that (v 4+ w) € B. =

Lemma 2.5.8. All lines of H are suitable.

49



Proof. This is trivial for lines of H meeting B’ in at most one point. Thus, it
suffices to consider lines I’ of H that meet B’ in at least two points, so they meet
B’ in a projected PG(s,q) with s > 1. If s > 4, then I’ does not contain ordinary
points and then there is nothing to show. Notice that |I'N B| can be ¢+ 1, ¢*> +1,
¢>+q+1or ¢>+1. We handle these cases separately. We always use the following

technique.

Technique. Assume that v/, w’ € V' represent ordinary points of I’ and let the
vectors v = v/ + Au and w = w' + pu of V represent the points of B that are
projected to these. We use a point 7" = (') € B’, with 7" ¢ I’ and ¢ € V', and
the points R’ = (v' +t') and §" = (w' —t') of B’. We shall choose ' in such a way
that R',S’,T" will be ordinary points, and that the three lines R'S’, R'T", S"T’
are already known to be suitable. Then we consider the pre-images T', R, S under
the projection from U, and write T' = (t) with t = ¢’ + vu. As RT and ST are
suitable, then r := v+t and s := v — t are vectors of V. Thus, r and s represent
the points of B projecting to R and S’. As the line RS is suitable, it follows that

r+s=v-+wlies in V and we are done.

(1) |I'nB| = g+1. It follows from Lemmas 2.5.5 and 2.5.7 that all (¢+1)-secants

of B’ are suitable.

(2) I'NB| =¢*+q+ 1. By Lemma 2.2.13, there exists a plane ©’ in H on I
such that 7' N B’ is a projected PG(3,¢). Then all lines other than I’ of 7’
meet B’ in one or g+ 1 points, so all lines other than [’ of 7" are suitable by
(1). All points of 7’ N B” are ordinary by Lemma 2.2.3 and Corollary 2.2.2.
Thus, the above technique applies and shows that (v + w) € B. Hence, all

lines meeting B’ in ¢ 4+ ¢ + 1 points are suitable.

(3) [I'NB'| = ¢*+1. In view of Lemma 2.5.7, we may assume that the points of
B in the plane (U, ") are not collinear, so that these points form a PG(2, q)
by Lemma 2.5.6.

As in (2), there exists a plane 7’ on " meeting B’ in a projected PG(3,q)
subgeometry. See Remark 1.6.12 that 7’ N B’ has a unique non-ordinary
(special) point N, and every line of 7’ on N’ is either a tangent, or a (¢*+1)-
secant of B’, while all lines of 7’ that do not pass through N’ are either
tangents, or meet B’ in a PG(1, q). Clearly, N’ € I'. As the (¢ + 1)-secants

are suitable by (1), the general technique therefore shows the following,.
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If v,w € V such that the points (v) and (w) project to distinct ordinary
points of I'N B’ and such that (v+w) does not project to N’, then (v+w) €
B. As Aw also represents (w), we see that (v+Aw) € B for all except exactly
one value A of GF(q) \ {0}. If we now take three non-collinear points (v),
(w) and (t) of (I, U) that project to ordinary points of I’'NB’, then it follows
that the subplane PG(2, ¢) obtained from the GF(g)-linear combinations of
v, w,t shares at least ¢ points with the subplane (I’,U) N B. Then clearly
both subplanes are equal (¢ > 3), and thus, (v+Aw) € B for all A € GF(q).
Hence, (v + w) € B.

We have shown that all (¢* 4+ 1)-secants are suitable.

(4) I'NB'| = ¢®*+1 and I’ meets B in a projected PG(3,¢). In view of Lemma
2.5.7, we may assume that the points of B in the plane (U,!’) are not
collinear, so that these points form a projected PG(3, ¢) by Lemma 2.5.6.

As "N B’ is a projected PG(3, ¢q), then by Lemma 2.2.13 I’ lies in a plane
7' meeting B’ in a projected PG(4,¢). Then all points of B" in #' \ I’ are

ordinary. There are two possibilities.

The first is that 7’ has ¢+ 1 non-ordinary (special) points. In this case, I’ is
the only line of 7’ contained in B. Hence, all other lines of ©’ are suitable

and the general technique can be used to show that [’ is suitable.

The second possibility is that 7’/ has a unique non-ordinary point N’ (a
superspecial point). In this case, N’ lies on g+1 lines of 7’ that are contained
in B, and all lines of 7’ that do not pass through N’ are (¢ + 1)-secants

and hence suitable. The general technique therefore shows the following.

If v,w € V such that the points (v) and (w) project to distinct ordinary
points of I'N B’ and such that (v+w) does not project to N’, then (v+w) €
B. As Aw also represents (w), we see that (v+Aw) € B for all except exactly
one value A of GF(¢q) \ {0}.

As the points of B in the plane (I, U) form a projected PG(3,q), we find
four points (v;), 1 <1i <4 of (I',U) N B that project to ordinary points of
' B, where vy, vy,v3,v4 € V are GF(g)-independent. Then the GF(q)-
linear combinations of the v; define a projected PG(3, ¢) in the plane (', U).
Our arguments show that this shares at least ¢> points with the projected
PG(3, q) that is formed by the points of B in (I',U). Hence, both projected
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PG(3, q) subgeometries are equal and thus, (v+ Aw) € B for all A € GF(q).
Hence, (v+ w) € B. =

Proposition 2.5.9. Every vector # 0 of V represents a point of B.

Proof. This means for any v, w € V with v 4+ w # 0 that (v+ w) is a point of B.
This is clear, if v and w represent the same point. For different points, it follows

from the fact that all lines are suitable. m

Lemma 2.5.10. V is closed under addition.

Proof. Tt suffices to consider v,w,t € V and show that v +w+t € V.

Case 1: If two of the vectors, say v and w represent the same point of B, then we
have v = v' + A\,u and w = w' + A\,u with w’ being a GF(¢) multiple of v". Thus,
eitherv+w=0o0rv+w=v+w+ AN+ A)u=1+XN"+ AN +A)ueV
by the definition of V. In both cases v +w +t € V, also by definition.

Case 2: We may suppose now that the points v, w,t € V represent different points
of B. We have v = v+ A\u and w = w' + A\,u and t =t/ + \ju with o', ', ¢ € V’
and Ay, Ay, Ay € GF(¢?). Then v/, w’" and t’ represent ordinary points of B’. The
two points v and ¢ define a subline with points ¢ and v + A, A € GF(gq). So the
point v' + At’ is not ordinary for at most two values A # 0, 1, see Lemma 2.2.9.
Similarly, the point w’ + (1 — A\)¢’ is not ordinary for at most two values A # 0, 1.
As ¢ > 7, wefind 0,1 # A € GF(q) such that v'+ At and w’'+ (1 —\)t’ correspond
to ordinary points of B’. They are projected from the points of B belonging to
the vectors v + A\t and w + (1 — A)¢; notice that these vectors represent in fact
points of B, as v,w, \t, (1 — A\)t € V (Proposition 2.5.9). Hence, v + A\t € V' and
w+ (1 — A\t € V, so their sum v +w +t is in V.

Lemma 2.5.11. The GF(q)-vector space V represents exactly the points of B.

Proof. We already know that V is a GF(g)-vector space and that all its vectors
represent points in B. Let P = (v) be any point of B with v € V, and let P’
be its projection to B’. Then the number of (¢ + 1)-secants to B’ on the point
3(n—k)—1 __ (]3(

are ordinary points of B’ (Corollary 2.2.3) and thus project from exactly one

P’ is at least ¢ n=k)=3 by Lemma 2.2.14. The points on these lines

point of B (Lemma 2.5.4); by definition, these are represented by vectors of V.

(n—k) __ q3(n7k)72

It follows that V represents at least ¢3 points of B, and so V has

52



rank at least 3(n — k) + 1. But such a vector space represents a blocking set with
respect to k-spaces, and so has to represent exactly the points of B, because of

the minimality of B. ]

Thus, we have proved that B is a linear point set, which proves Theorem 2.1.1
for2<k<n-—1andn>3.

2.6 Blocking sets PG(6,q) in PG(n, ¢°)

In the previous sections we proved that all small minimal (n — k)-blocking sets of
PG(n,q¢*), ¢ =p", 1 < h, 7 < p prime, with size in the interval [0,,_, us(n, k, h)]

are linear.

For n — k = 1 this means that such a blocking set is either a line, a projected
PG (3, q) subgeometry, or an embedded PG (2, ¢*/?) subgeometry, if ¢ is a square.
These are all well-known sets: an embedded PG(2, ¢*/?) subgeometry is a Baer
subplane, while a projected PG(3, ¢) subgeometry can either be a PG(3, ¢) sub-
geometry embedded in a 3-space of PG(n, ¢®) or one of the planar blocking sets
described in Result 1.6.11, contained in a plane of PG(n, ¢*).

If n — k = 2, then our result shows that a small minimal 2-blocking set of
PG(n,q%), n > 3, with size in the given interval is either a plane, a projected
PG (6, q) subgeometry, or a projected PG (4, ¢*?) subgeometry, if ¢ is a square.
Simple calculations reveal that a projected PG (4, ¢*?) subgeometry is either an
embedded PG (4, ¢*/?) subgeometry (n > 4), or a cone with base a Baer-subplane,
vertex a point. The situation is much more interesting in the case of projected
PG(6, q) subgeometries. In this section we will give a complete classification of
the projections of PG(6, ¢) into PG(3, ¢*). This classification is of special interest,
because one case will lead to a linear blocking set which is not of Rédei type, and

the existence of such a set was not known for some time.

As for n —k > 3: the projected PG(2(n — k), ¢*?) subgeometries are again either
embedded subgeometries or cones (see [47]), and the projected PG(3(n — k), q)
subgeometries can be examined with the techniques of this section, but with the

growth of n — k the number of cases to be examined increases.
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Notation. Consider a PG(m,q) subgeometry embedded in PG(m, ¢). Recall
that for every subspace S of PG(m, q), we call the subspace of PG(m, ¢) gener-
ated by the points of S the extension of S. For every subspace U of PG(m, ¢3)
consider the smallest subspace of PG(m, ¢) whose extension contains U; this is the

meet of all subspaces whose extension contains U. We will denote this subspace
by S(U).

For a point P, the dimension of S(P) can be 0, 1 or 2, and clearly dim S(P) =0
if and only if P is a point of PG(m,q). A point of PG(m,¢*) will be called a
stabbing point, if dim S(P) = 1. These are the points on the extensions of the
lines of PG(m, ¢) which are not in PG(m, q).

Note that if Pj, P, ..., P, are points generating the subspace U, then S(U) =
(S(P1),...,S(Pg)). The next lemma follows from this fact, but it can also be

easily seen algebraically.

Lemma 2.6.1. For any subspace U of PG(m, ¢°)
dim S(U) < 3dim(U) + 2.

Lemma 2.6.2. Consider PG(m,q) embedded in PG(m,q*), m > 4. If the line |
of PG(m, ¢®) is disjoint from PG(m,q), then the number of stabbing points on |
is 0, 1, ¢+ 1, or ¢* + q+ 1, with dim S(1) being 5, 4, 3 or 2 respectively.

Proof. By Lemma 2.6.1, 2 < dim S(l) < 5.

If dim S(I) = 5, then for any two points P, @ of | we have S(I) = (S(P), S(Q))
and thus, dim S(P) = dim S(Q) = 2. This is true for any point of . Hence, in

this case [ has no stabbing point.

If S(I) is a plane, then the ¢* + ¢ + 1 lines of this plane all meet [ and therefore
has ¢% 4+ ¢ + 1 stabbing points.

When dim S(I) = 3, then the extension of S(I) is a solid on I. The ¢ + 1 planes
on [ of this solid all meet S(I) (see Lemma 1.3.3) and thus provide a partition of
S(1) in ¢3+1 parts. Clearly every part is a line or a point, so a counting argument
shows that exactly ¢+ 1 planes meet S(I) in lines, and and ¢ — ¢ meet S(I) only
in points. The extensions of these ¢+ 1 lines will be meeting [ in different points,

and thus the number of stabbing points is ¢ + 1.
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The last case to consider is dim S(I) = 4. First select a plane 7 on the line [, such
that 7 is contained in e(S(l)), the extension of S(I), but disjoint from S(I). We
can select such a plane, since e(S(1)) is a 4-dimensional subspace of PG(m, ¢%),
so [ lies in ¢% 4+ ¢® + 1 planes contained in this subspace, which is more than the
number of points of S(I), which is a 4-dimensional subspace of PG(m,q). By
Lemma 1.3.3 dim S(7) > 4, so dim S(7) = 4.

Again by Lemma 1.3.3, each 3-space on 7 contained by e(S()) meets S(I) in at
least a line. Then counting the intersection of these ¢ + 1 solids with S(I) shows
that exactly one of these intersections is a plane while all other intersections are
lines. This implies that 7 has a line h containing ¢? + ¢ + 1 stabbing points
(dim(S(h)) = 2) and ¢* further stabbing points not on h.

Now we prove that these ¢ + ¢? + ¢ + 1 stabbing points form a minimal blocking
set in 7. Suppose that ¢ is a line of © which contains no stabbing points. Then
P = hNg is not a stabbing point. Consider the ¢> — 1 lines of 7 on P other than
h and g. One of them, say f has to contain at least 2 stabbing points by the
pigeonhole principle. Then dim S(f) = 3, because if )7 and @5 are the stabbing
points, then S(Q;) and S(Q2) are skew lines, and S(f) = (S(Q1), 5(Q2)). But
then dim(S(f), S(h)) = 4 implies that dim S(P) = dim S(h N f) = dim(S(h) N
S(f)) = 1. This is a contradiction. =

Lemma 2.6.3. Consider PG(m,q) embedded in PG(m,q¢®), m > 6. There are
siz types of planes in PG(m, ¢*), skew to the embedded PG(m,q), and they have
the following properties:

(1) dim S(m) = 4, and there are ¢*+q*+q+1 stabbing points on m, which form
a blocking set of type (2) of Result 1.6.11.

(2) dim S(7) =5, and there are ¢* + ¢ + 1 collinear stabbing points on .

(3) dim S(7) =5, and there are ¢* + q + 1 stabbing points on w, which form a
PG(2,q).

(4) dim S(7w) = 6, and there are ¢ + 1 collinear stabbing points on .
(5) dim S(w) =7, and there is 1 stabbing point on 7.

(6) dim S(m) = 8, and there are no stabbing points on .
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Proof. As 7 is disjoint from PG(m, ¢), then Lemma 1.3.3 shows that dim S(7) >
4. The case dim S(7) = 4 follows from Result 1.6.11 and the last case of the proof
of Lemma 2.6.2.

We may thus assume that dim S(7) > 5.

We will first show that 7 has a line [ with dim S(I) = 5. Assume that this is not
true. Then, by Lemma 2.6.2, the stabbing points in 7 form a blocking set. If
there is a line m containing ¢* + ¢ + 1 stabbing points, then dim S(m) = 2 and
with P ¢ m a stabbing point of 7 we have dim S(7) = dim(S(m), S(P)) < 4,
a contradiction. Thus, every line of 7 has 1 or ¢ + 1 stabbing points. But it is
easy to see that PG(2, ¢*) has no point-set meeting every line in 1 or ¢+ 1 points.

This is a contradiction.

Hence, 7 has a line [ with dim S(I) = 5, which means that there are no stabbing
points on [. The planes S(P) with P € [ are mutually skew planes, which form
a plane-spread of S(I). Let @ € m \ [ be a point with dim S(Q)) = 2. For any
point P € [ the line PQ contains 0, 1, ¢ + 1 or ¢> + ¢ + 1 stabbing points, which
is equivalent to dim S(PQ) being 5, 4, 3 or 2 respectively, which is equivalent to
dim(S(P) N S(Q)) being -1, 0, 1 or 2 respectively (see Lemma 2.6.2). Thus, the
number of stabbing points on the line PQ is equal to the number of points in
S(P)NS(Q). As the S(P) with P € [ partition S(I), it follows that the number
of stabbing points in 7 is equal to [S(1)NS(Q)|. This is ¢>+¢+1 if dim S(7) = 5,
g+ 1ifdimS(7) =6, 1 if dim S(7r) =7, and 0 if dim S(7) = 8.

The proposition follows from this, as ¢> + ¢+ 1 or ¢+ 1 points meeting every line
in 0, 1, ¢+ 1 or ¢> + ¢ + 1 points have to form one of the sets given in (2), (3) or
(4). ]

Now let us examine the projected PG(6, q) subgeometries of PG(3,¢*). Consider
PG(6,q) embedded in PG(6,¢®) as a subgeometry, and let the plane 7 be the
vertex of the projection. A point, a line, or a plane of PG(3,¢?) corresponds to
a 3-space, a 4-space or a b-space on m respectively. Clearly the structure of the
resulting point set depends only on the relation of the PG(6, ¢) subgeometry and

the vertex of the projection.

Lemma 2.6.4. There are four types of projected PG(6, q) subgeometries in PG(3, ¢*),

which have the following properties:
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number of points Rédei | cone
1) "+ +¢+1 yes | yes
2) ¢+ +¢ "+ +1| yes | yes
3) ¢+ +q¢t+1 yes no
4) ¢+ +d"+¢+1| no | no

Proof. First observe that dim S(7) < 6. Clearly the projection is of Rédei type,

if and only if dim S(7) < 5, because then we can find a 5-space on m meeting the
PG(6, q) in a 5-dimensional subspace. Then every point of PG(6, q) \ PG(5,¢q) is

projected once, which is equivalent to PG(3,¢®) having a plane which contains

all but ¢° points of the projection.

The projection is a cone if and only if it has a point having a PG(2, ¢) projected
onto it. (see Corollaries 2.2.4 and 2.2.5 and Lemma 2.2.13(a)). This is equivalent

to PG(6, ¢) having a plane whose extension meets 7 in a line, which is equivalent

to 7 having a line containing (¢ + ¢ + 1) stabbing points.

(1)

Suppose that 7 has properties as in (1) of Lemma 2.6.3. As dim S(7) = 4,
then all the points of S(7) are projected onto a line, that is onto ¢3+1 points,
which gives the number of points stated in (1). Clearly the projection will
be of Rédei type and a cone.

Suppose now that 7 has properties as in (2) of Lemma 2.6.3. Clearly the
projection is of Rédei type and a cone. It has one point having a PG(2, q)
projected onto it, and all other points are ordinary. From this the number

of points of the projection is clear.

Assume that 7 has properties as in (3) of Lemma 2.6.3. The projection will
be of Rédei type, but not a cone. For the stabbing points P € m, the lines
S(P) are all skew, and every 3-space on 7 can contain at most one (or else
a 3-space on m would meet the PG(6, ) subgeometry in a PG(3, ¢), which
is impossible by Lemma 1.3.3). From this the number of the points of the
projection is clearly ¢® + ¢® +--- +1— (¢* + ¢+ 1)q.

Assume that 7 has properties as in (4) of Lemma 2.6.3. For m the only line
of 7 containing stabbing points, S(m) is projected onto a line, and thus the
given number of points in the projection follows. The projection will not

be of Rédei type and it will not be a cone. [
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Some more properties of these sets:

The sets given in (1) and (2) are the cones with base the plane blocking sets
described in (1) and (2) of Result 1.6.11.

The set given in (3) has a Rédei plane in which the special points form a PG(2, q)
subgeometry, and the lines of this PG(2, q) subgeometry are all lines contained
in B. A line of the Rédei plane either meets the set in ¢? + ¢+ 1 points (if it does
not contain a special point), in ¢* + 1 point (if it contains one special point) or
in ¢ + 1 points (if it contains g + 1 special points). Every line not in the Rédei

plane can meet the set in 1, ¢ + 1 or ¢> + 1 points.

The properties of the set given in (4) can be found in Lemma 2.3.13. It contains
a unique line [. There are ¢ + 1 non-ordinary points on [, all other points of the
set are ordinary. Every point not on [ is connected to the ordinary points of [
by (q + 1)-secants, and to the non-ordinary points of [ by (¢* + 1)-secants. This
example is of special interest, because the existence of linear blocking sets that

are not of Rédei type were unknown for some time.

In [4] a different construction was given for finding the vertex of projection for this
last linear blocking set. For the sake of completeness, we include this construction

also.

Construction 2.6.5. Let PG(6, ¢) be embedded in PG(6, ¢®) as a subgeometry.
Suppose that ¥ = PG(3,q) is a 3-dimensional subspace of the embedded sub-
geometry, denote by e(X) the extension of . Let R be a regulus of ¥. The
extensions of the lines of R are elements of a regulus R* of e(X). Let v be a line
of the opposite regulus of R* such that v is skew to ¥ (that is v is not the ex-
tension of an element of ROFF). Let Q be a further point of PG(6,¢) \ PG(6, q)
such that () is not contained in the extension of any of the 5-dimensional sub-
spaces of PG(6,¢) containing ¥. We can find such a point, because the number
of 5-dimensional subspaces of PG(6,¢) containing ¥ is ¢? + ¢ + 1, the extension
of such a 5-dimensional subspace contains ¢! + ¢'? points from PG(6, ¢%) \ e(X)
and thus even if these were all different points, the extensions would be cover-
ing at most (¢* + ¢ + 1)(¢"® + ¢'?) + |e(2)| points, but the number of points in
PG(6,¢%) \ PG(6, q) is larger than ¢'®. Let 7 := (v, Q). Then dim S(7) = 6. The
lines of R are the only lines of PG(6, q) with the property that their extension

meets w. All other properties can be derived from these. [
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Remark. Starting with the same line v, but choosing the point ) to be a point
contained in the extension of a 5-space on X, but not contained in the extension

of a 4-space on ¥ will result in the blocking set (3) of Lemma 2.6.4.
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Chapter 3

Unique reducibility of multiple
blocking sets

3.1 The main theorem

Consider a weight function which corresponds to a t-fold (n — k)-blocking set
that is not minimal. If we start reducing the weight of the non-essential points
one by one, always checking carefully that the resulting weight function is still a
t-fold (n— k)-blocking set, then after some steps we will arrive at a minimal ¢-fold
(n — k)-blocking set. Thus, every t-fold (n — k)-blocking set contains a minimal
t-fold (n — k)-blocking set. It is a natural question to ask if there are conditions
which guarantee the uniqueness of this minimal ¢-fold (n — k)-blocking set. This

chapter is based on [1].

In [43] such a condition is given for non-weighted 1-fold 1-blocking sets of PG(2, q).

Result 3.1.1 (Szényi, [43]). A non-weighted 1-fold 1-blocking set of PG(2, q) with

size smaller than 2q + 1 contains a unique minimal 1-fold 1-blocking set.

This result was recently generalized to non-weighted 1-fold (n — k)-blocking sets
of PG(n,q) in [29].

Result 3.1.2 (Lavrauw, Storme and Van de Voorde, [29]). A non-weighted 1-fold
(n — k)-blocking set of PG(n,q) with size smaller than 2¢"* contains a unique

minimal 1-fold (n — k)-blocking set.
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In this chapter we will prove the following theorem.

Theorem 3.1.3. A weighted t-fold (n — k)-blocking set of PG(n,q), with total
weight smaller than

(t + 1)qnik + enfkfl

contains a unique minimal weighted t-fold (n — k)-blocking set.

Note that Theorem 3.1.3 is stronger than Result 3.1.2. Examples in section 3.5
show that the bound is sharp if t =1, orif k =n — 1.

In this chapter a t-fold (n — k)-blocking set will sometimes be denoted by B,
and then be viewed as a multiset of points, while at other times we will use the
notation w and view the blocking set as a weight function. These two notions are

equivalent, and we will switch between them according to our needs.

3.2 t-fold (n—k)-blocking sets which contain two

minimal ¢-fold (n — k)-blocking sets

Let w be a t-fold (n — k)-blocking set. We will now define a new weight function
sy on the points of PG(n,q). For a point P let s, (P) be the largest integer for
which the weight function w’ defined by

w(Q) ifQ#P,
w(P) — s,(P) Q=P

is also a t-fold (n — k)-blocking set. Then w(P) > s,(P) > 0, so if w(P) = 0,

then s, (P) = 0. It is also clear that w is minimal if and only if s, = 0.

Lemma 3.2.1. For at-fold (n—k)-blocking set w and P € PG(n,q) the following

are true.

(1) s4(P) = min{w(P), minpe, (w(lly) — t)}, where Il runs along the k-

dimensional subspaces containing P;

(2) s84(P) = maxy<,{w(P) — w'(P)}, where w' runs along the t-fold (n — k)-

blocking sets contained in w.
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Lemma 3.2.2. Ifw is a t-fold (n — k)-blocking set which contains two different
minimal t-fold (n — k)-blocking sets, then there is a weight function v < w and a

line I* with the following properties:

(1) v(Ilg) >t for any k-subspace 11y not containing l*;
(2) v(Ily) >t —1 for any k-subspace 1, containing I*;
(3) there is a k-subspace 11}, containing I* for which v(1I}) =t —1;

(4) and w(PG(n,q)) > v(PG(n,q)) + 2.

Proof. Let w' and w” be two different minimal ¢-fold (n — k)-blocking sets con-
tained in w. Then there is a point P* € PG(n, q), such that w'(P*) > w"(P*).
Define w as follows:

w(@) i Q# P

w'(P*) if Q = P*.

Then @ is a t-fold (n — k)-blocking set and w',w” < w. Lemma 3.2.1(b) yields
that sg(P*) > w(P*) — w"(P*) = w'(P*) — w"(P*) > 0. (*)

As @ contains the minimal ¢-fold (n — k)-blocking set w’, we can start reducing
the weight of the points with w(P) > w'(P), one at a time, until we arrive at
w'. Formally, let @ = w; > wy > -+ > w,, = w’ be a sequence of t-fold (n — k)-
blocking sets, such that for ¢ € {1,2,...,m—1} the t-fold (n— k)-blocking sets w;
and w; 41 only differ in one point P;, and w;y1(F;) = w;(F;) — 1. Clearly P, # P*,
and the points P; are not necessarily all different. It is also clear that w # w/,
because w = w’ would mean that w” is contained in w’, which is a contradiction,

so m > 2 follows.

By Lemma 3.2.1(a), Su,,, < Su,, in fact, for any point @, either s, (Q) = 54,(Q)
O Su,,, (@) = 54,(Q) — 1. For the point P*, we have s4(P*) > 0 by (*), and
Sw (P*) = 0 by the minimality of w’. So there will be an ¢ € {1,2,...,m — 1}
such that s, (P*) = 1 and s,,,,(P*) = 0. The weight functions w; and w;
only differ in the point P;,. Then by Lemma 3.2.1(a), there is a k-space II} which
contains P; and P*, and has weight w;(II}) = t+ 1. Also by Lemma 3.2.1(a), this
yields s, (P;) < 1, and as w;1(FP;) = w;(FP;) — 1, so P; is a non-essential point
of w;, then s,, (P;) = 1 follows. Thus, for any k-dimensional subspace IIj, which
contains P* and/or P; we have w;(IIy) > ¢ + 1.
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Let I* be the line connecting P; and P*, and define v to be the following weight

function:
w;(Q) if Q¢ {r, P}
wi(Q)—1 if Q € {P* F}.

v(Q) =

Clearly w(PG(n,q)) > w;(PG(n,q)) = v(PG(n,q))+2, and v is a weight function

contained in w.

For any k-subspace 11,

w;—1(ITx) — 2  if I contains both of P* and P;;
v(Ilg) = § w;_1(IIy) — 1 if II; contains one of P* and P;;

w;—1 () if T, contains neither of P* and P,.

Thus, v, {* and II} satisty the properties given in the lemma. ]

3.3 t-fold nuclei

Ift=1,n=2, k=1, then Lemma 3.2.2 yields that if w is a 1-fold 1-blocking
set of PG(2,¢) containing two different minimal 1-fold 1-blocking sets, then w
contains a weight function v, which defines a blocking set of the affine plane
AG(2,q) :=PG(2,q) \ I*. Thus, w(PG(2,q)) > s(q) + 2, where s(q) denotes the
size of the smallest 1-blocking set of AG(2,q). There are several independent
proofs for s(q) = 2¢ — 1, from which Result 3.1.1 follows (see Jamison [28],
Brouwer and Schrijver [14], Blokhuis [8], Sz6nyi [43]).

In [8] Blokhuis proves s(q) = 2¢ —1 as a corollary of a theorem on nuclei of point

sets. Now we generalize the notion of nucleus to multisets/weight functions.

Definition 3.3.1. (1) Let S be a multiset of PG(n,q). A point P ¢ S will be
called a t-fold nucleus of S if every line through P meets S in at least ¢

points, counted with multiplicities.

(2) Let w be a weight function of PG(n, ¢). A point P € PG(n, q) with w(P) =
0 will be called a t-fold nucleus of w if every line through P has weight at

least t.
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For S to have nuclei, clearly |S| > t0,,_; is needed. Let |S| =t0,,_1 +r, r > 0.

Note that for |S| = t0,_y —r, r > 0, a ’symmetric’ version of the definition can
be: a point P ¢ S is a t-fold nucleus of S, if every line through P meets S in at

most ¢ points, counted with multiplicities.

The notion of nucleus was first introduced by Mazzocca for affine sets for n = 2,
t =1 and r = 0. Blokhuis extended the notion to > 0 in [8] and ¢ > 1 in [7],
and Sziklai generalized the definition for sets of the projective space PG(n,q) in

[38]. (The ’symmetric’ version was introduced in [23] and [38].)

Denote by N*(S) the set of t-fold nuclei of S, and let p be the characteristic of

the field GF(q).

Result 3.3.2. (Sziklai, [38]) Let S be a set of points in PG(n,q) with |S| =

t0,_1+1, r>0. Let Hy be a given hyperplane, |S N Hoo| = moo. Then
INY(S)\ Hao| < (r+1)(q — 1),

provided that (w”‘lrfl_mw) # 0 (mod p).

Result 3.3.2 was proved in the case when m, = 0, n = 2 by Blokhuis and
Wilbrink (r = 0, t = 1, see [12]) and by Blokhuis (for » > 0, t = 1, see [8], and
for > 0, t > 1 see [7]). The ‘symmetric’ version was also settled by Sziklai in

[38).

As Result 3.3.2 is not applicable when (w"*:"fmw) = 0 (mod p), to obtain an

upper bound in this case, Ball presented the following theorem.

Result 3.3.3. (Ball, [6]) Let S be a set of points in PG(n, q) with |S| = t0,_1+r,
r >0, and let Hy, be a given hyperplane, |S N Hy| = meo. Then

IN'(S)\ Hool < (r+1+j)(q— 1),

provided that the binomial coefficient

(t@n_l 7 — Moo

rbl 4 )7“) (mod p)

for some j > 0.

The proof of Results 3.3.2 and 3.3.3 can be easily copied for multisets/weight

functions and we obtain the following lemma.
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Lemma 3.3.4. Let w be a weight function on PG(n,q) and Hy, a given hyper-
plane with w(Hy) = Mo. Suppose that w(PG(n,q)) = t0,—1 + r, with r > 0.

If
t0,—1 +7 — Mmoo
d
( r+1+7 >§é0 (mod p)

for some j > 0, then the number of t-fold nuclei of w in PG(n, q)\ Hy is at most
(r+1+7)(¢g—1).

Proof. 1f the binomial coefficient is nonzero, then w(PG(n,q) \ Hs) > 0, so the
number of ¢-fold nuclei in PG(n, q) \ Hy is at most ¢" — 1. Thus, the statement

is trivially true for » +1 > 6,,_1, so from now on we will suppose r < 6,1 — 1.

Identify the points of AG(n,q) := PG(n,q) \ Hw with the elements of GF(¢"),
and the points of H,, with the 6,_1-st roots of unity of GF(¢") in the usual way.
The points of PG(n, ¢) will be denoted by capital letters, and the corresponding
elements of GF(¢™) by the same lowercase letters. Then for points A # B €
AG(n, q), the line AB contains the ideal point C' € H,, if and only if (a—0)7"! = ¢
holds.

Let § = {a1,a9,...,a1, y1r—m. y U{c1,...,Cm.} be the multiset of elements of
GF(¢™) corresponding to the points of nonzero weight of PG(n, q) \ Ho and Ho,
respectively, such that a € S has multiplicity w(A) in S for the corresponding
point A € PG(n,q).

Let X and Y be variables, and define

B(X)={(X - ai)q_1|i =1,..,t0, 1 +r—m}U{ct, .. cm.}

and
Fy,X)= [] v-b).
beB(X)
Then
t0n_1+r
F(Y,X)= Y (=1)o;(B(X))y "1+,
7=0

where 0;(B(X)) denotes the jth elementary symmetric polynomial of the set
B(X).

Suppose that x € GF(¢") is an element corresponding to a t¢-fold nucleus of w.

Then B(x) contains every 6,,_1-st root of unity with multiplicity at least ¢, so

F(Y,z) = (Y% — D)Y(Y" + terms of lower degree).
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As r < 6,_1 — 1, the coefficients of the terms

Yten_lfl Yten_172 Y(tfl)en_1+7"+l
) ).

are 0 in F(Y,z). Thus, 0,414;(B(z)) =0for 0 < j <6,y — 1 —2.

The degree of 0,414;(B(X)) as a polynomial of X is at most (r +1+ j)(¢ — 1),

with equality precisely if the binomial coefficient

(t@n_l +r— moo)
r+1+7
does not vanish. In this case o,414;(B(X)) is not the zero polynomial, and

every nucleus is a root of it, hence the number of nuclei is at most its degree:
(r+1+7)(¢—1). n

We will now use Lemma 3.3.4 forn =2, 7 =0 and m,, =1t — 1.

Lemma 3.3.5. Suppose that v is a weight function of PG(2,q) such that there
is a line I*, with v(l*) =t — 1, while all other lines have weight at least t. Then
lv| > (t+1)g—1.

Proof. Assume first that t < ¢ — 2. Suppose on the contrary that v is such a
weight function, yet the total weight of v is less than (¢ + 1)g — 1. We may
suppose |v] = (t + 1)g — 2 (or else increase the weight of some of the points of
PG(2,q) \ I*). All lines other than [* have weight at least ¢, which means that all
the points of PG(2, ¢) \ I* with weight 0 are t-fold nuclei of v. As v(PG(2,q)\1*) =
(t+1)g—2—(t—1)=tqg+q—t—1, PG(2,q) \!* has at most tq+¢—t— 1 points
with positive v weight (and exactly this many if every point of PG(2,¢) \ [* has
weight < 1). So v has at least ¢> — (t¢+q—t—1) = ¢* —tq—q+t+ 1 t-fold

nuclei.
We will use Lemma 3.3.4 to prove that this is not possible. As
o =(t+1)g—2=t(¢+1)+qg—1t—2

and

<t(q+1)—|—q—t—2—(t—1)> :(tq—l—q—t—l

g—t—2+1 g—t—1 )#O (mod p)

by Lucas’ theorem, so Lemma 3.3.4 yields that the number of ¢-fold nuclei of
vis at most (¢ —t—1)(¢q—1) = ¢* —tq — 2¢ + t + 1, a contradiction. The
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same arguments prove that, if |v| = (¢t + 1)g — 1, then v(P) < 1 for all points
P e PG(2,q) \ I*.

For t > ¢ — 1, the assertion can be proved by summing the weights of all lines
through a carefully selected point P. If we can find a point P € PG(2, ¢) \ I* with
v(P) =0, then |[v| > t(¢+1) =tg+t > tqg+q—1, and we are done. If we choose
a point P € [* with v(P) = 0, then we have |v| > tqg+t — 1. If t > ¢, then we
are done again. If ¢ = ¢ — 1 and all points of PG(2,¢) \ [* have positive weight,
then v(PG(2,¢) \ I*) > ¢*, s0 [v]| > ¢* +t — 1> (t + 1)g — 1. This proves that if
we can select a point P € PG(2, q) with v(P) = 0, then the assertion is true.

Assume now that v(P) > 0 for every point. Let m = minpv(P) and define a
new weight function o, by o(P) := v(P) —m. Then 09(I*) =t —m(qg+1) — 1 and
0(l) > t—m(q+1) for any line I # I*. If t —m(q¢+1) < ¢— 2 then we can use the
first part of the proof to prove |0| > (t—m(q¢+1)+1)¢—1. If t—m(q+1) > g—1
then we can use the second part, as there will be a point with zero v weight.
Then

lv| = [o]+m(¢® +q+1) > (t—m(g+1)+1)g—1+m(¢®+q+1) = (t+1)g—1+m.

Hence the result is established. m

3.4 Proof of Theorem 3.1.3

Proof. Assume that w is a weighted ¢-fold (n — k)-blocking set of PG(n, ¢) which
contains two different minimal ¢-fold (n — k)-blocking sets. We will prove |w| >
(t+1)¢" % +6,__1. By Lemma 3.2.2, there is a weight function v < w, a line [*

and a k-subspace II; containing [*, such that

(1) v(Ilg) > t, for every k-subspace Il not containing [*;
(2) v(Ilx) >t — 1 for every k-subspace II; containing [*;
(3) o(lly) =t — 1;

(4) Jw| = |v[ +2.

Case 1 Assume first that £ = 1. Then II; = [*is a line, and v({*) = t—1, while the
v weight of any other line is at least ¢. If n = 2, then |v| > (t+1)g— 1 by Lemma
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3.3.5, which proves the theorem in this case. Now assume n > 3 and let Il be a
plane containing the line [*. Then the weight function v restricted to the plane II
fulfills the requirements of Lemma 3.3.5, so v(Il) > (t+1)g—1. This is true for all
the planes containing the line [*, so clearly |v| > 60, o- ((t+1)g—1—(t —1)) +
t—1=@t+1)g" 1 +0,5—2.

Case 2 For n > 3 and k > 2 we will use induction on n to prove that

lo| > (t 4+ 1)¢"F + 0,1 — 2.

Case 2a Let V € IIf \ I* be a point with v(V) = 0. Consider the quotient
space PG(n,q)/V = PG(n — 1,q), and the weight function ¢ induced by v on
PG(n—1,q). Clearly 9(PG(n—1,q)) = v(PG(n,q)). The plane (V| [*) corresponds
to a line, and a k-space containing V' corresponds to a (k — 1)-space. It is not
hard to check that v fulfills requirements (a)-(c) with (V,1*)/V as [* and II;/V

as II;_,, and so by induction

9(PG(n—1,¢9)) > (t+1)q" "4+ 0, 11 — 2.

Case 2b Suppose now that for all P € II; \ I*: v(P) > 0, but there is a point
v(V)=0. Thent—1 > 6, — (g+1). Increase the weight of one point (# V') of [*
by one to obtain the new weight function v, which is now a t-fold (n—k)-blocking
set of PG(n, q). We will prove that |[v/| > tq" % + 6, — 1. This is generally not
true for ¢-fold (n — k)-blocking sets of PG(n, ¢), only if ¢ is large enough.

Assume on the contrary, that [v/| < t¢" % +6,_, — 2. Then we can find a line 3,

containing V', such that

t— ("' +¢" 2+ +q)

V(X)) <
(1) g1

Y

because if all lines through V' had v weight more than

t— ("' +d" 2+ +q)
qk’—l

I
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t— ("""t 1

then all these weights would be at least > o —» and
q q
then the total weight of v" would be
t_qk_l_qk_Q_"'_q 1
/
1> ( o + o) b
=tq"" + ( =1 1 =1 L) a2 . =1 1 k—i
q q q q

= tqnik + Hn,k —1.

We will now prove that if 1 < j <k —2 and X is a j-space with

B e U A R o)

v'(%5)

)

then we can find a (j + 1)-space ¥;.; D X;, with

t—("7 "+ +q)

If this were not true, then we would have

t— (" 7'+ +q)
\v’\ > ( s

— U'(Ej)) O+ (%)

(=T ) = (@ g T 1) 0
= i1 B ¢ Unmg-l

t— (@7 +¢"7 "+ +g)
q*

+ ="+ 0, + 1.

Thus, we can find a (k — 1)-space ¥y_1, with v/(Xz_1) < th. But all k-spaces

containing Y;_; have v" weight at least ¢, so

t t—
V' > (t_g—i_l)'enk+Tq:tqn_k+9nk_1>

a contradiction.

Case 2c There is one more case remaining to be proved: if v(P) > 0 for all
points P € PG(n,q). Then let m := minpv(P) and let © := v — m. Then ¢
fulfills requirements (a)-(c) with ¢ := t — m - 6. Cases 2a and 2b prove |7| >
t¢" % 4+ 0,_;, — 2 and then
| =0 +m -0, >t —m-0.)¢" "+ 0, —2+m-0,
=tq" 40, —2+mby_j_q.
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3.5 Examples

In this section we investigate the sharpness of Theorem 3.1.3. We are looking for
weighted t-fold (n — k)-blocking sets of size (t + 1)¢" % + 6, _x_1, which contain

two different minimal ¢-fold (n — k)-blocking sets.

3.5.1 The caset =1

Example 3.5.1. Let X! and 32 be two (n—k)-dimensional subspaces of PG(n, q)
meeting in an (n — k — 1)-dimensional subspace. Then B := %! U¥? contains two
different minimal 1-fold (n—k)-blocking sets, ¥3; and ¥y, and | B| = 2¢" *+60,,_1_1.

Corollary 3.5.2. Theorem 3.1.3 is sharp, if t = 1.

The following proposition is a corollary of Theorem 3.1.3, but in fact equivalent
toit if ¢t =1 and k = 1. Corollary 3.5.4 can also be found in [44].

Proposition 3.5.3. Let B be a minimal 1-fold (n — 1)-blocking set of PG(n, q),
and P € B. Then there are at least > 2¢" ' + 0,,_o — | B| tangents through P.

Proof. Suppose that there are k£ tangents through P. Take points P, P, ...,
Py, one from each of the tangents, P, # P. Clearly (B\ {P})U{P,..., Py} is
a 1-fold (n — 1)-blocking set. It contains a minimal 1-fold (n — 1)-blocking set
B, and B # B'. Thus, BU{P,..., P} contains two different minimal 1-fold
(n — 1)-blocking sets, so |B| +k > 2¢" " + 0,,_». =

Corollary 3.5.4. Let B be any 1-fold (n—1)-blocking set of PG(n,q), and P € B
an essential point of B. Then there are at least > 2¢" ' + 0,,_o — |B| tangents
through P.

Construction 3.5.5. (1) Let B be a 1-fold (n—1)-blocking set which has a point
P € B, through which there are exactly 2¢"~! + 6,,_ — | B| tangents to B. Then
adding a point to every tangent will result in a 1-fold (n — 1)-blocking set of size

2¢" ' + 6,,_5, which contains two different minimal 1-fold (n — 1)-blocking sets.

(2) Embed S in an (n — k + 1)-dimensional subspace of PG(n, ¢) to obtain 1-fold
(n — k)-blocking sets of size 2¢" % + 0,,_j_1, which contain two different minimal
1-fold (n — k)-blocking sets. "
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Note that blocking sets used in the construction above exist: let B be a blocking
set of Rédei type with Rédei hyperplane H, and P € B\ H. Then for a point
@ € H the line (P,Q) is a tangent to B if and only if Q ¢ B. Thus, P is on
exactly 0,1 — (|B] — ¢"') = 2¢" " + 6,,_o — | B| tangents (see [41]).

3.5.2 The caset > 2

Note that the proof of Lemma 3.3.5 yields that for n = 2, k = 1 it is not possible
to have v(PG(2,q)) = (t+1)g—1, if t > g+ 1, and so the proof of Theorem 3.1.3
yields that the bound cannot be sharp if ¢ > ¢+1. Also from the proofs of Lemma
3.3.5 and Theorem 3.1.3 it follows that if ¢ < ¢ — 2 and B is a weighted t¢-fold
(n — k)-blocking set which contains two different minimal ¢-fold (n — k)-blocking
sets and |B| = (t+1)¢" %+ 60,_1_1, then only points on one line (the line I*) can
be multiple points.

Example 3.5.6. Let ™ be a plane of PG(n,q), let l1,ls,...,[; be different lines
in 7 through a common point P, and [,;; a further line of 7, with P ¢ [, ;.
Then the multiset B := (I3 + Iy + -+ + {;) Ulyyq is a t-fold (n — 1)-blocking set
in PG(n,q), |B|=tlg+1)+(¢g+1—-t)=(t+1)g+1,and [y +1ls+ -+ +I; and
lLhU(lo+---+1;) Ul are two minimal ¢-fold (n — 1)-blocking sets contained in

B; the latter one differs from B only in the point P.

Corollary 3.5.7. Theorem 3.1.3 is sharp if k=n—1, 2 <t <q.

The following proposition is again a corollary of Theorem 3.1.3, which is in fact

equivalent to it if £k = 1.

Proposition 3.5.8. Let B be a minimal t-fold (n — 1)-blocking set of PG(n, q),
and P € B. Then there are at least > (t + 1)¢" ' + 0,,_o — | B| t-secants through
P.

Proof. Suppose that there are k t-secants through P. Take points Py, P, ..., P,
one from each of the t-secants, P, # P. Clearly the t-fold (n — 1)-blocking set
B\ {P} +{P,..., P} contains a minimal ¢-fold (n — 1)-blocking set B’, and
B # B'. Thus, B + {Py,..., P} contains two different minimal ¢-fold (n — 1)-
blocking sets, so |B| +k > (t + 1)¢" ' + 6,,_». u
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Corollary 3.5.9. Let B be a any t-fold (n — 1)-blocking set of PG(n,q), and
P € B. Then there are at least > (t + 1)q" "' + 0,,_o — | B| t-secants through P.

Proof. Let B’ be a minimal ¢-fold (n — 1)-blocking set contained in B. Then
P € B'. There are at least > (t+1)¢" 4+ 6,,_o — | B| t-secants through P to the
set B'. At most | B\ B’| of these are not t-secants to B. n

For n = 2 this proposition can also be found in papers by Ferret, Storme, Sziklai
and Weiner [21], and Bacsé, Héger and Szényi [5]. A somewhat better result for
non-weighted sets has been presented by Blokhuis, Lovasz, Storme and Szényi in
[11], where it is proved that every essential point of a non-weighted ¢-fold blocking
set B of PG(2, q) lies on at least (¢ + 1)q +t — | B| t-secants.

Construction 3.5.10. (1) Let B be a minimal ¢-fold (n — 1)-blocking set which
has a point P € B, through which there are exactly (t + 1)¢" ' + 6,2 — |B)|
t-secants to B. Adding a point to every t-secant will result in a t-fold (n — 1)-
blocking set S of size (t + 1)¢"~! + 6,5 and containing two different minimal
t-fold (n — 1)-blocking sets.

(2) Embed the set S in an (n — k4 1)-dimensional subspace of PG(n, ¢) to obtain
t-fold (n— k)-blocking sets of size (t+1)¢"*+6,,_j_1, which contain two different
minimal ¢-fold (n — k)-blocking sets. n

Forn =2, k=1 and 2 <t < g one can find ¢t-fold 1-blocking sets in PG(2, q)
which have points that are on exactly (t + 1)g + 1 — |B] t-secants to B. The
sum of t Rédei type blocking sets which have a common Rédei line, and share
exactly one point, which is not on the Rédei line will have this property. Using
such a planar t-fold 1-blocking set and Construction 3.5.10(2), we get examples
forn>3, k=n—1and 1 <t <q. Example 3.5.6 is a special case of this: the

sum of ¢ lines sharing a common point.

Unfortunately, for ¢ > 2, n > 3 and k£ = 1, in the minimal ¢-fold (n — 1)-blocking

n=2 _| B| t-secants to

sets we examined, all points have at least t6,,_1 — (¢+1—t)q
B. Thus, it may be conjectured that the correct bound in Theorem 3.1.3 should
be

t0n i+ (qg+1—1t)g" ",
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Chapter 4

Generalizing the Megyesi

construction

In Rédei’s blocking set construction (see Construction 1.5.2) a set U of ¢ points
is selected in AG(2,q), and U together with the ideal points determined by U
form a minimal blocking set of PG(2,¢q) := AG(2,¢q) U lsw. The Megyesi con-
struction (Result 1.5.6) is a special case of this, where a multiplicative subgroup
of GF(q)* := GF(q) \ {0} is selected, and the points of U are chosen from two
lines of AG(2,q) according to certain cosets of this subgroup. We say that the
cosets were placed on the lines. The resulting minimal blocking sets have size
2q + 1 — |G|. Gécs generalized this method to three lines giving an infinite series
of minimal blocking sets of size approximately 2¢ — %q (see Result 1.5.7). In a
joint work with Csaba Mengyan we generalized this method, and presented it in
[2]. Sections 4.1 and 4.3 can also be found in Mengyan’s PhD dissertation [32],

but for the sake of completeness, it is included here also.

4.1 Placing the cosets on three lines

First we investigate the case when the points are selected from three concurrent
lines in AG(2,q). Without loss of generality, we may assume that the lines are

r=0,y=0and z =y.

Construction 4.1.1. Let s > 3 be a divisor of ¢— 1 and consider a multiplicative
subgroup G of GF(¢)* with index s. Let o € GF(¢)* be an element for which
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G, oG, o®G, ..., o* G are the cosets of G. Form three non-empty subsets
I,J, K C Zs such that |I| + |J|+ |K| = s. Let

U={(0,2): 2 €a'G,ic I}U{(z,0): 2 € G, jc J}U
U{(z,7): 2 € "G,k € K}U{(0,0)}.

If D denotes the set of ideal points determined by U, and |D| < ¢ + 1, then
B =UUD is a minimal blocking set, by Result 1.5.2.

The size of the minimal blocking set B of Construction 4.1.1 can be determined
by determining |D|. First we will consider the question of determined ideal points
in general, and calculate the set of directions determined by two cosets placed on

two lines with slope m; and m..

Remark. A direction determined by two points is by definition a point (m) on
the ideal line. With misuse of notation we will say that m is the direction (or
ideal point) determined and omit the brackets. Thus, the set of directions (ideal

points) determined by a point set will be a subset of GF(¢) U {oo}.

Notation. For K a subset of GF(q) and a,b € GF(q), we will use aK + b =
{az +b:2 € K} and 1/K = {1/z : x € K}. For any element x € GF(q)*, note

that /0 = co and x 4+ 0o = 0.

Lemma 4.1.2. Let mi, Mo € GF(Q), mq 7£ mao, il,iz € ZS.
o The set of directions determined by the sets
{(z,miz) 1 2 € "G} and {(z,mez) : ¥ € G}

(apart from my,ms) is

mo — MMy my —Mmo

my — MoXx i
- = = m - . . -
1 —air—2(G 2T —qaQ

cx € of?"lG} =m +
11—z

e The set of directions determined by the sets
{(z,miz) : 2 € "G} and {(0,7) : v € oG}
(apart from mq,00) is
{mi—z:2€a” "G} =m —a”"G.
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Proof. Basic calculations. [

Corollary 4.1.3. The set of directions determined in Construction 4.1.1 is
. . 1
o i— i—k

i€l,jed i€l ke K jeJkeK

Notation. For my, my € GF(q) U {00}, m1 # ma, u € Zs the notation

mp —mg .
mo + ——— if my, my # 0
1—a*G
f(m17m27u) = mq — OéuG lf mo = OO
moy —a “G if m;y = o0

will be used. Thus, f(mq, mg,u) is a subset of GF(q) U {oo}.

Lemma 4.1.4. For my, my,mg € GF(q) U {oo} all different, and u,v,w € Zs:

(1) o, ma, ) = F(ma, s~
(2) Flom, 1z, ) 0 f (i, 0) = 0, i 0 £

3) U flomn.ma, ) = (GF(@) U foc)) \ fmn, )
(4) Flon, 2, 0) 0,15, 0) € f o, s 0+ )

(5) f(ma,ma,u) N f(ma,ms,v) N f(my, msg,w) =

_{@ ifu+v #w,

B flmg,mg,v) N f(my,m3,w) if u+v=w.

Proof. (1) follows from the definition of f, as 1/G = G. (2) and (3) are direct
consequences of the facts a*G' N oG = 0 if u # v and |J'_|, oG = GF(q) \ {0}

(4) If my, mg # oo, then for any element in the left set there are z,y € G such

that
my — moar Mg — mzaly

l—atz 1—avy

Thus,

mi — mea®s — mia’y + mea U xy = me — msa’y — meatx + msa Uy,
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Simplifying with —mga®z, switching the place of moa® ™ zy and mya*t’zy and

u+2v

adding mga 2y? to both sides yields

u+v

(my — maa" " ay)(1 = a’y) = (mg — mza’y)(1 - " ay),

from which

my — mga Ty my — msa’y

- € I I .
1 —avtozy 1—avy flma,mg, )
If m3 = oo, then there are x,y € GG such that

mi; — maa™x v
——— =my— 'y,
1 — a¥x

from which

mi — mea®s = my — a'y — moaz + o ay.

Simplify with —msa®z and take a**zy to the other side to get

my — a"zy = mg — o’y € f(my,00,u +v).

In the case of m; = oo, similar calculations give the result (or the use of (1)

several times). As for my = oo: there are x,y € G such that
my —atr =mz —a y.

Taking —a“z to the other side, and adding —msa®™x/y to both sides yields

my —msax/y = ms —a Yy —mza Tz /y +ats = (mz —a YY) (1 — " /y).

(5) As a consequence of (4) and (2) the intersection is empty when u + v #
w. In the case of u +v = w, (1) an
u) N f(

can be omitted: f(mq,ma,u) N f

f(mg,my, —w) N f(mg,my, —u) = f(mag, msz,v) N f(my, ms, w). n

d (4) yield that any of the three terms

ma, M3,V ) M f(m17m37w) = f(m27m37v) N

Notation. Let I, J, K be non-empty subsets of Zg, such that |I|+ |J| + |K| = s.
Denote by T'(1, J, K) the set of ordered pairs (u,v) € Zg X Zs, for which I, J+u
and K + v are pairwise disjoint (that is Z, is a disjoint union of I, J + u and
K +v).

It will be more convenient to calculate | D¢|, the number of non-determined points,
and clearly |D| = ¢+ 1 — |D¢|.
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Theorem 4.1.5. If D¢ s the set of directions not determined in Construction
4.1.1, then
D¢ = U (—a"GN1—-a'G),
(u,0)ET(I,J,K)

with the sets (—a"G N1 — a’G) being pairwise disjoint.

Proof. From Corollary 4.1.3,
1 (&
D= {{0,1 U —a 1—a’ —) | .
(0mpu( Y o Y 1-aeu Y o)
uel—J vel-K weJ—K
Because of (2) and (3) of Lemma 4.1.4, we have
C u v 1
ugl—J vgI—-K wgJ-K
Thus, D¢ is the union of intersections of the form

1

_u 1 —a? -
at"GN( OzG’)ﬂl_awG

£(0,00,u) N f(1,00,v) N f(1,0,w),

withu g I-J,v ¢ I-K,w ¢ J—K. By Lemma 4.1.4(5), only those intersections

are non-empty where w + v = v, and for such an intersection

1
—:—u 1— v .
BT "GN (l—a’G)

—a"GN(1—-a'G)N
Thus,
D= J{—o"GNn(1l-a'G)ugI-Jov¢gl-Kv-ug¢J-K}

Because of Lemma 4.1.4(2) these sets are pairwise disjoint, and the following

lemma finishes the proof. [

Lemma 4.1.6. Let A, B be non-empty subsets of Zs, x € Zs. Then

rgA—B<= B+znNA=1.

Proof. x ¢ A — B means x # a — b for any a € A, b € B, that is b+ z # a for
any a € A, b € B. [

The determination of |D°| now comes down to determining |7°(1, J, K')| and the
size of a set —a*G N (1 —a’G).
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Proposition 4.1.7. Let I, J, K be non-empty subsets of Zs, such that |I|+ |J|+
|K| =s. Denote by T'(I, J, K) the set of ordered pairs (u,v) € Zs X Zs, for which
I, J+u and K + v are disjoint. Then

IT(I,J, K)| < 2s%/9.

Equality holds if and only if s is divisible by 8 and I,J, K € {H,H + 1, H 4+ 2}
where H =1{0,3,6,...,s —3} =3 Zs.

Proof. As |T(1,J, K)|is invariant under translations of I, J, K and permutations
of (1,J,K), we may assume [, J, K to be disjoint, and |I| > |J| > |K]|, which
yields |K| < s/3 and |J U K| < 2s/3. Here equality holds if and only if |/| =
|J| = |K| = s/3.

The number of u’s satisfying J+uNI = ) is clearly at most |JUK| (as an element
of J can only be translated to elements of JU K) and for such a u the number of
v’s satisfying K +vN (I UJ+u) =0 is at most |K|. Thus |T(1, J, K)| < 2s%/9.

In the case of equality 3|s and |I| = |J| = |K| = s/3 clearly holds. But
IT(I,J,K)| = 25?/9 means that for any u for which J +« NI = (), there are
s/3 translations mapping K onto itself, which proves that K has to be a coset of

a subgroup of Z,. The same is true for I and J. [

For the estimation of the size of the set —a*G N (1 — a’G), a result from Sziklai
[39] will be used, which is a variant of the Weil estimate. First we define the

d-power independence of polynomials.

Definition 4.1.8. Let f1,..., fi, € GF(q)[X] be given polynomials. We say that
their system is d-power independent, if no partial product f;' fi>... fisjj (1<j5<
m;l < iy <dp < .o < iy <m;l < 8q,89,...,8; < d— 1) can be written as a
constant multiple of a d-th power of a polynomial (that is f;' ;7 ... fl-sjj # cg?).
Lemma 4.1.9 (Sziklai, [39]). Let fi,..., fm € GF(q)[X] be a set of d-power in-

dependent polynomials, where d|(q — 1); d,m > 2. Denote by N the number of
solutions {x € GF(q) : fi(z) is a d-th power in GF(q) for alli=1,...,m}. Then

q m
IN =Ll <va) degf:
=1

Corollary 4.1.10. The number of elements in —a*GN(1—a" Q) is approzimately

q/s*.
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Proof. © € G is equivalent to z = y* for some y € GF(¢q)*. Thus, x € m — a*G
is equivalent to x = m — a"y*®, which is equivalent to a~*(m — z) being an s-th

power. But then | — oG N (1 — aG)| equals the number of solutions

{r € GF(q) : —a "X and a "(1 — X) are both s-th powers in GF(q)}.

The number of such solutions is ¢/s* + C/q, with |C] < 2. n

Thus, Theorem 4.1.5, Proposition 4.1.7 and Corollary 4.1.10 prove the following

theorem.

Theorem 4.1.11. Let D¢ be the set of non-determined directions by the set U

in Construction 4.1.1. Then

T(I,J, K 2

with |C] < 4s%/9. If s = o(/q), then
2
B2 (2-3) 0+ 03"

This is a result is in harmony with the result of Gécs [22]. And now we present

some constructions:

Theorem 4.1.12. Let s be a divisor of g—1, s > 3. In PG(2, q) minimal blocking
sets of sizes (2 — 5)q+ C\/q exist, where t € {1,2,k, kl} with k|s, and l|s such
that kl < s, and |C| < 2t.

Proof. Here are some examples for the given t’s:

t=1: ForI=2,\{0,1,2},J={1}, K = {0,2},
T(I,J,K)={(0,0)}, D° = -GN (1-G), | D < q/s* + 2,/4.

t=2: For I =7\ {u,v}, J={u}, K ={v},
T(I,J,K)=1{(0,0), (v —u,u—v)},
D¢=(-GN1-G)U(—=a""GN1-a""q),
|D°| < 2¢/s* 4+ 4,/4.

t =k: Let H be a proper subgroup of Zg, |H| = k (note that 1 ¢ H).
For I =7Z,\ (HU{1}), J=H, K = {1},
T(1,J,K)=1{(0,0),(h,0),(2h,0),...}, with h a generator
element of H. D° =J,.y (—a"G N (1 - G)),
1D < k(q/s® +2\/q).
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t =k: Let H be a proper subgroup of Z,, |H| =k, a € H.
For I =Z,\ H, J=H\{a}, K ={a},
T(1,J,K)=1{(0,0),(h,h),(2h,2h),...}, with h a generator
element of H. D° = J,cpy (—a"G N (1 - a"G)),
|D°| < k(q/s* +2\/q).
Note that instead of H the union of some cosets of H could
be used, and for K an arbitrary subset of the union,
while J =UH \ K and I = Z, \ (J U K). This and

the previous case are the same in this sense (switch I and J).

t = kl: Let Hy and Hy be proper subgroups of Z,, Hy; # Hs, |Hy| = k,
|Hy| = [, such that kIl < s. Then there is an element x € Z;
such that H; N (Hy + ) = 0 (because if none of the sets
HiN(Hy+z), x=0,...,s/l — 1 were empty, it would lead to
k>s/l). For I =Z;\ (JUK), J=Hy, K = Hy + z,
T(I,J,K) = Hy x Hy, D° = Up, ety mer,(—aG N1 — a/2G)
and |D°| < lk(q/s* 4+ 2\/q). =

In our examples when T'(I, J, K') > 2, at least one of I, J or K is a union of some
cosets of a subgroup of Z,. If I, J, K are the unions of some cosets of the same
subgroup H C Z,, then in Construction 4.1.4 G can be replaced by the subgroup
Unen @G of index s/|H|.

4.2 Placing the cosets on n > 4 lines

Now we investigate the case when the points of U are selected from n concurrent
lines of AG(2,q). Without loss of generality, we may assume that the lines are
xr=0and y =mx,i=2,...,n. The theorems and proofs will be very much the

same as when n = 3.

Construction 4.2.1. Consider a multiplicative subgroup G of GF(¢)* with index
s (s > n) and an o € GF(q)* such that o’G, i = 0,...,s — 1 are the cosets of
G. Let m; = oo and {mg, ms,...,m,} C GF(q) be the set of slopes. Form n
non-empty subsets Ay, As, ..., A, in Z, such that |A;| + |As| + ... + |An] = s. Let

U={0,0}U{(0,z):2€a’G,ac A} U O{(:p,mlx) cx € a'Goa € A}

=2
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If D is the set of directions determined by U and |D| < ¢ + 1, then the set
B =UUD is a minimal blocking set.

Notation. For A;, A,, ..., A, non-empty subsets of Zj, such that " | |4;| = s,
denote by T'(Ay,...A,) the set of ordered (n — 1)-tuples (ug, ug, ..., u,) € Zs X

-+« X Zg, for which Ay, Ay + us, ..., A, + u, are pairwise disjoint.

Theorem 4.2.2. With the previous notation, D¢ is the union of pairwise disjoint

sets

De — U {(my —a™G)N---N (M, — a"G)|(ug,...,u,) € T(Ay, Ag, ..., An)}.

Proof. From Lemma 4.1.2,

D={oc}U{m;:i=2,...n}u [J U flmy mi, )

1<i<j<n uEAifAj

By Lemma 4.1.4 (2) and (3),

D= ﬂ U f<mjvmi7u):U ﬂ Fmg,mi, uzq).

1<i<j<n ’U,QAifAj 1<i<j<n

By Lemma 4.1.4 (5), only those intersections

f(ma,my,ugq1) N f(mg, my,usy) N f(ma, my,war) O -0 f (M, Mp—1, Upn—1)

are non-empty for which for any 3 indices ¢ > 7 > k: u;; + u;r = w;; holds,
and if this is the case, then for any three terms f(m;,m;,u;;), f(m;, my, ujx),
f(m;, mg,u; ) one can be omitted. Thus, for any two indices ¢ > j the intersec-
tion:
S(mi,ma,wia) O f(mg,ma,uga) O f (mg, my, ug )
can be replaced by
f(mg,my,us 1) O f(my, ma,w)

with Us 1 g_ﬁ Al — Ai, Uj1 g_ﬁ Al — Aj and Ui 5 = Uzl — Ujn §é Aj — Ai, which is
equivalent to the sets A;, A; +w;1 and A; + u;; being pairwise disjoint. n
Proposition 4.2.3. Let Ay, As, ..., A,, be non-empty subsets of Zs such that | Ay |+
|Aa| + ... +|A,| = s. Denote by T(Ay, As, ..., A,) the ordered (n — 1)-tuples
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(U, ooy Uy), With Ug, ..., u, € Zs, for which Ay, Ay + us, ..., A, + u, are pairwise

disjoint. Then
(n—1)ls"!

nn—l

IT(Aq, Ag, ..., Ap)| <

FEquality holds if and only if s is divisible by n and A; € {H,H+1, H+2,...,H +
(n—1)} where H = {0,n,2n,...,s—n} (that is the A;’s are cosets of the subgroup
n-Zs).

Proof. The proof is exactly as in Proposition 4.1.7:

IT(Ay, Ay, ..., Ay)| < (Z'Ai‘) : (Z\AJ) <Z ]Ai|> .

If [Ay| > |A| > ... > |A,] holds, then Y77, ) |A;| < (n—k)s/n. n

Proposition 4.2.4.

(m — 02G) 011 (my — 0 G <~ 4 (0~ 1)y

Proof. Identical to that of Proposition 4.1.10. Use Lemma 4.1.9 for the polyno-
mials f;(X) = a % (m; — X). "

Theorem 4.2.2, Proposition 4.2.3 and Proposition 4.2.4 together prove the follow-

ing theorem.

Theorem 4.2.5. If D¢ is the set of directions not determined by the set U in
Construction 4.2.1, then

|T(Aq,..., A

— q+C\/c_1§<n_ )

1
nnfl q + C\/a’

|D°| =
with |C] < %s"fl.
If s and n are fized, such that Cs,, == %s”_l << \/q, then

1B| > (2 - mﬂ;})!) 1+ O(ViCln).

For s, n relatively small compared to ¢ minimal blocking sets of sizes 2q — Sn%q%—

O(\/qCs,,) exist, where ¢ is a number depending on some elementary equations.
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4.3 Constructions in PG(2,¢")

From the existing minimal blocking sets some new ones can be constructed using
embeddings of PG(2, ¢) into PG(2, ¢") for some h > 1. In this section we investi-
gate two possible methods and use them on the minimal blocking sets constructed

in this chapter and in a paper by Danielsson [18].

Construction 4.3.1. Consider a minimal blocking set B of PG(2,¢). Embed
PG(2,q) into PG(2, ¢") for some h > 1. Denote by [ and m two lines of PG(2, ¢")
which are extensions of lines of PG(2,¢q). If @ := [N m is not a point of B, then
suppose also that |[BNI| < ¢ and |BNm| < ¢, and in this case denote by C' the
set of critical points of B which have their critical tangents through (). Consider

the point set

B'= BU{I\ PG(2,q)} U {m \ PG(2,9)} U{Q}\ C.

Remark. If B is a nontrivial blocking set of size less than 2¢, then by Proposition

1.5.3 all lines intersect B in at most ¢ — 1 points.

Proposition 4.3.2. In Construction 4.3.1, if |C| < 1, then B’ is a minimal
blocking set of PG(2,q") of size

(1) 2¢" —2q+|BJ, if Q € B;

(2) 2¢" =2+ |B|+1-C|, if Q ¢ B.

Proof. Observe that any line of PG(2, ¢") through a point of INPG(2, q) is blocked
by the points of B, m\PG(2, ¢) or the point (), and the points of B’ on [\ PG(2, q)

block the remaining lines. Thus, B’ is a blocking set.

To prove minimality, we will show that there is a tangent at every point of B’. At
a point of B the extension of the line which is tangent to B in PG(2, ¢) will be a
tangent to B’, as such a line intersects [ and m in N PG(2, ¢) and m NPG(2, q),
respectively. If through a point of B there is only one tangent, which is on ) ¢ B,
then by definition this point is not in B’. At the points of B" on [\ PG(2, q) the
lines through the points of {m NPG(2,¢q) \ B} are tangents, and at the points of
B’ on m\ PG(2, ¢) the lines through the points of {{NPG(2,¢)\ B} are tangents.
At @Q all the lines of PG(2, ¢") intersecting PG(2, q) in exactly Q are tangents to
B’
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The size of B’ is simply |l \ PG(2,¢)| + |m \ PG(2,q)| + |B| if @ € B and
1\ PG(2,q)| + |m\ PG(2 )] + |B| + 1~ |C| if @ ¢ B. .

When @ ¢ B and |C| > 1, then the set B’ in Construction 4.3.1 may not be a
blocking set at all, because in B a line through two points of C' may have been
blocked by only these points. In this case some of the points of C' have to be
added to B’, and thus the size of the resulting blocking set can be only determined
given the concrete case. But as the next proposition shows, this problem does

not arise when |B| < 2q.

Proposition 4.3.3. Let x > 1 be an integer. If the size of the minimal blocking
set B is 2q — x, then the number of tangents at any point of B is at least x + 1.

Hence there are no critical points of B.

Proof. Direct consequence of Proposition 3.5.3. [

Theorem 4.3.4. Let x > 1 be an integer. If there is a minimal blocking set of
size 2q — xz in PG(2,q), then there are minimal blocking sets of size 2¢" — x and
2¢" —x+1in PG(2,¢"). If we start from a Rédei type minimal blocking set, then
the resulting blocking sets can be chosen to be of Rédei type, and also not to be of

Rédei type.

Proof. Use Construction 4.3.1. Note that m N PG(2,q) (or equivalently [ N
PG(2,q)) is a Rédei line of B if and only if m is a Rédei line of B’, as |B' \ m| =
|B\ m| + ¢" — q. All other lines intersect B’ in less than ¢ points. ]

In [18] Danielsson proves the existence of Rédei type minimal blocking sets of size
2p — 3 and 2p — 2.

Theorem 4.3.5 (Danielsson, [18]). Let p > 5 be a prime. If p = 1 (mod 4),
then there are Rédei type minimal blocking sets of size 2p — 3. If p =3 (mod 4),

then there are Rédei type minimal blocking sets of size 2p — 2.

Using the previous constructions the following can be proved:

Corollary 4.3.6. Let ¢ = p" with h > 1 and p > 5 a prime. In PG(2,q) there
are minimal blocking sets of size 2q—2 (both of Rédei type and not of Rédei type).
If p=1 (mod 4), then in PG(2,q) there are minimal blocking sets of size 2q — 3
(both of Rédei type and not of Rédei type).
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We now turn attention to another embedding method, which is described in [36]
and [44]. Here we only repeat the construction and a theorem from these papers,
and investigate what this method means for the minimal blocking sets obtained

in this chapter. For further details of this construction we refer to the papers
(36, 44].

Construction 4.3.7. Let B be a minimal blocking set in PG(2,¢). Embed
PG(2,¢q) into PG(h + 1,¢). Choose an (h — 2)-dimensional subspace ¥, so that
PG(2,q) N X = (. Let B’ be the cone with base B and vertex ¥. Embed
PG(h + 1,q) as a subgeometry in PG(h + 1,¢"). Assume that R is an (h — 1)-
dimensional subspace of PG(h + 1, ¢), and let R* be the extension of R. Choose
an (h — 2)-dimensional subspace P in R*, such that P does not intersect the
subgeometry PG(h + 1,¢), and project B’ from this subspace onto a plane 7 of
PG(h + 1,¢"), where 7 N P = (). The cardinality of the projection, B” satisfies
|B"| = |B'|+1—|RNB|.

Note that B’ is a minimal blocking set of PG(h + 1, ¢) with respect to lines and

|B'| = ¢" VB + £, thus if | B| < 2¢ then |B'| < 2",

Theorem 4.3.8. Let B’ be a minimal blocking set of PG(h+ 1, q) with respect to
lines and suppose that |B'| < 2¢" — 1. Then the projection B" of B’ is a minimal
blocking set of PG(2,q").

By Theorem 4.3.8, starting from any of the minimal blocking sets constructed
in this chapter and using Construction 4.3.7 will result in minimal blocking sets
for ¢ sufficiently large. The size of the resulting blocking set B” depends on the
choice of R. Following the reasonings of [44] (page 262) it can be proved that,
depending on the dimension of RNY (which can vary between h — 2 and h — 4),

h

the size of [RN B’| can be: qh;fl, g g2 1 % (where B has an

) h— h—371
r-secant in PG(2,q)) and |B|¢" ™3 + ¢ —1 -

Theorem 4.3.9. Let B be a minimal blocking set of PG(2,q) with |B| = 2q — z,
where v > 1. Using Construction 4.3.7 one can obtain blocking sets of PG(2, ¢"),
h > 1 with sizes

2¢" —2¢" '+ 1,

2" — (z + 1)g" 1t + 1,
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2¢" — x¢" "t — (r — 1)¢" 2 + 1, where B has an r-secant in PG(2,q).

It is not difficult to see that starting from a Rédei type minimal blocking set, we
can choose R in such a way that the projection will be of Rédei type, or not. For
simplicity let h = 2, so R is a line of PG(h + 1,¢) and X is a point (with either
Y€ Ror X ¢ R). Let B be a minimal blocking set of size 2¢ — x with > 1.

There will be three types of lines in the projection:

(i) lines that were projected from lines of PG(h + 1,¢): these intersect B” in
at most ¢ + 1 points;

(ii) lines that were projected from a plane g through R, with ¥ ¢ 3 (only if
Y. ¢ R): these intersect B” in |B| + 1 — |R N B’| points;

(iii) lines that were projected from a plane S through R, with ¥ € [: these
intersect B” in rq + 2 — |R N B’'| points, where r = |5 N B|.

(For a precise discussion on intersection numbers of B” with respect to lines see
[36], p.742.) For B” to be a minimal blocking set of Rédei type we must have
some lines intersect B” in |B|q¢+2— |RNB'| —¢* = ¢* — gz +2 — |RN B’| points.
For the lines of type (i) this is impossible. For a line of type (ii) to be a Rédei
line, the equation |B|g+2 —|RN B'| —¢*> = |B|+ 1 —|RN B'| has to hold, which
leads to |B| = ¢ + 1, a contradiction. For a line of type (iii) to be a Rédei line,
the equation |B|¢+2 — |RN B'| — ¢* = rq+ 2 —|RN B’| has to hold, from which
|B| — g = r, which is equivalent to § N PG(2, ¢) being a Rédei line of B. Thus,
B" will be of Rédei type if and only if there is a plane on R and ¥ intersecting
PG(2,q) in a Rédei line of B.
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Summary

In this thesis we present results about blocking sets in the finite projective space
PG(n,q). The results presented here are based on articles [1], [2], [3] and [4].

In Chapter 1 the notation, definitions, and most important preliminary results

are presented. We aim at using standard notation.

Small minimal (n — k)-blocking sets of PG(n, q) are of special interest, as there
is hope to characterize them. Sziklai’s Linearity Conjecture claims that all small
minimal (n — k)-blocking sets are linear. Szényi and Weiner prove in [45] that
small minimal (n — k)-blocking sets meet every k-space in 1 mod p points, where
q = p" is the order of the projective space. It is also proved that the sizes of small
minimal blocking sets are contained in disjoint intervals. In Chapter 2 we prove

the Linearity Conjecture in one of these intervals.

In Chapter 3 we turn our attention to multiple blocking sets. In a multiple
blocking set one can always find a minimal multiple blocking set. In this chapter
we prove that if B is a weighted t-fold (n — k)-blocking set of PG(n, ¢) with size
at most (t+1)¢" *+¢" %1 4...4+¢+1, then the minimal ¢-fold (n — k)-blocking
set contained in B is unique. Examples of the last section show that our result

is sharp in certain cases.

In Chapter 4 planar blocking set constructions are presented. The main construc-
tion of this chapter is a generalization of the Megyesi construction and also of a
construction given by Gécs in [22]. A set of ¢ points is selected with the aid of
a subgroup of the multiplicative group GF(q)*. This set, together with the ideal
points determined by it forms a minimal blocking set, which is contained in the
union of n + 1 lines, precisely n of which are concurrent. The last section of this
chapter presents constructions which produce blocking sets of PG(2, ¢") starting
from a blocking set of PG(2, q).
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Magyar nyelvii osszefoglald

Doktori értekezésemben véges projektiv terek lefogd ponthalazaival kapcsolatos
allitasok és konstrukecids eljardsok szerepelnek. Eredményeim az [1], [2], [3] és [4]

cikkekben jelentek meg.

Az 1. fejezetben a sziikséges definiciokat, jeloléseket, valamint a kordbbi eredmé-

nyeket mutatom be.

Az utébbi években megkiilonboztetett figyelem 6vezi a PG(n, ¢) projektiv tér kicsi
minimalis lefogd ponthalmazait, mivel ezek karakterizdcidja reményteljes vallalko-
zasnak tlnik. Sziklai fogalmazta meg az in. Linearitasi Sejtést, mely szerint min-
den kicsi minimalis lefogé ponthalmaz linedris. Szényi és Weiner a [45] cikkben
bizonyitotta, hogy egy kicsi minimalis lefogé ponthalmaz minden k-dimenzids
alteret 1 mod p pontban metsz. Azt is belattak, hogy a kicsi minimalis lefogo
ponthalmazok méretei diszjunkt intervallumokba tartoznak. A 2. fejezetben az

egyik interallumban bizonyitjuk a Linearitasi Sejtést.

A 3. fejezetben tobbszorosen lefogé ponthalmazokat vizsgalunk. Egy silyozott
t-szeres (n — k)-lefog6 ponthalmazban mindig taldlhatunk minimélis silyozott t-
szeres (n — k)-lefogé ponthalmazt. A 3. fejezetben belatjuk, hogy ha a sulyozott
t-szeres (n—k)-lefogd ponthalmaz mérete legfeljebb (t+1)¢" *+¢" %1+ - 4q+1,

akkor egyértelmii a bennefoglalt minimalis rész.

A 4. fejezet lefogd ponthalmaz konstrukcidkat mutat be. A legfontosabb kon-
strukciénk a Megyesi féle konstrukeid, illetve Gacs [22] cikkben bemutatott kon-
strukcidjanak altalanositasa. A GF(q)* multiplikativ csoport egy részcsoportja
segitségével valasztunk ki egy ¢ elemii ponthalmazt a PG(2,q) projektiv tér
AG(2, q) affin részében, majd ehhez hozzavéve a meghatarozott idedlis pontokat,
minimalis lefogd ponthalmazt nyeriink. Az igy kapott minimalis lefogé ponthal-

mazok n + 1 egyenesen helyezkednek el, melybdl n konkurrens.
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