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Introduction

Overview

In this thesis we present results about blocking sets in the finite projective space

PG(n, q). The results presented here are based on articles [1] [2], [3] and [4].

In Chapter 1 the notation, definitions, and most important preliminary results

are presented. We aim at using standard notation.

Chapter 2 deals with small minimal (n − k)-blocking sets of PG(n, q). These

blocking sets are of special interest, as there is hope to characterize them. Sziklai’s

Linearity Conjecture claims that all small minimal (n−k)-blocking sets are linear.

Szőnyi and Weiner prove in [45] that small minimal (n − k)-blocking sets meet

every k-space in 1 mod p points, where q = ph is the order of the projective space.

It is also proved that the sizes of small minimal blocking sets are contained in

disjoint intervals. In Chapter 2 we prove the Linearity Conjecture in one of these

intervals. The proof is separated into 3 cases (n = 3, k = 1; n ≥ 4, k = 1 and

n ≥ 3, k ≥ 2) and a section is devoted to every case. The first two cases are solved

by the same method, while the last case is solved by a slightly different technique.

Section 2.2 collects some properties of linear point sets of the projective space,

and Section 2.6 gives a classification of a class of blocking sets in PG(3, q3).

In Chapter 3 we turn our attention to multiple blocking sets. In a multiple

blocking set one can always find a minimal multiple blocking set by throwing

away the points that are not necessary to the set. In this chapter we prove

that if B is a weighted t-fold (n − k)-blocking set of PG(n, q) with size at most

(t + 1)qn−k + qn−k−1 + · · · + q + 1, then the minimal t-fold (n − k)-blocking set

contained in B is unique. Our result is a generalization of the one given by Szőnyi

in [43] and of a result by Lavrauw, Storme and Van de Voorde in [29]. Examples
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of the last section show that our result is sharp in certain cases.

In Chapter 4 planar blocking set constructions are presented. The first construc-

tion is a generalization of the Megyesi construction and also of a construction

given by Gács in [22]. We consider PG(2, q) as AG(2, q) ∪ `∞. A set of q points

is selected in AG(2, q) with the aid of a subgroup of the multiplicative group

GF(q)∗, and the ideal points determined by the set are added, which make it a

minimal blocking set. The size of the resulting set is estimated, and some ex-

amples are given for sizes which can be achieved. The blocking set constructed

this way will have the property that it is contained in the union of 4 lines, three

of which are concurrent. The next construction of Chapter 4 is a generalization

of the first to more than 4 lines. The resulting blocking set is contained in the

union of n + 1 lines, precisely n of which are concurrent. The last section of

this chapter presents two constructions which produce blocking sets of PG(2, qh)

starting from a blocking set of PG(2, q).
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Chapter 1

Preliminary results

In this chapter we will introduce the geometrical objects and the most important

results that will be used in the following chapters. For more details, please turn

to books [26], [25] and [27].

1.1 Definitions, notation

In this thesis we will mostly be working in PG(n, q) and AG(n, q), the n-dimen-

sional projective and affine spaces over the Galois field GF(q), of order q, where

q = ph and p is a prime.

Let V = V (n + 1, q) denote the (n + 1)-dimensional vector space over GF(q).

Then PG(n, q) can be derived from V , if we view subspaces of V of rank 1 as

points, subspaces of rank 2 as lines, subspaces of rank k + 1 as k-dimensional

subspaces, and subspaces of rank n as hyperplanes. A point of PG(n, q) can be

represented by homogeneous coordinates, which is any 6= 0 vector of the subspace

of V of rank 1 corresponding to that point. Thus, if λ ∈ GF(q) \ {0}, then

(x1, x2, . . . , xn+1) 6= (0, . . . , 0) and (λx1, λx2, . . . , λxn+1) represent the same point.

The number of points of an m-dimensional subspace of PG(n, q) will be denoted

by θm, and clearly θm = qm+1−1
q−1

= qm + qm−1 + · · ·+ 1.

If we select a hyperplane H∞ of PG(n, q), then PG(n, q)\H∞ is an n-dimensional

affine space of order q, denoted by AG(n, q). The points of AG(n, q) can be

represented by affine coordinates (x1, x2, . . . , xn), with xi ∈ GF(q). A natural
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correspondence can be defined between the points of AG(n, q) and the elements

of GF(qn). With this representation, three points A,B and C of AG(n, q) are

collinear if and only if (a − b)q−1 = (a − c)q−1 for the corresponding elements

a, b, c ∈ GF(q). Thus, to every line of AG(n, q) a θn−1-st root of unity of GF(qn)

can be associated, and parallel lines are associated with the same root of unity.

This gives a one to one correspondence between the points of H∞ and the θn−1-st

roots of unity of GF(qn).

When n = 2, it is more convenient to use the notation (x, y) (or any other two

letters) for the points of AG(2, q). In this case lines can be given by the equations

Y = mX + b and X = c, where in the first case the slope of the line is m, and

in the second case we have a vertical line with slope ∞. We will denote by (m)

and (∞) the ideal (or infinite) points and l∞ = {(m)|m ∈ GF(q)}∪ {(∞)} is the

ideal line or line at infinity.

1.2 Projections in PG(n, q)

If a point set S ⊂ PG(n, q) with the subsets

{Σ ∩ S|Σ is a subspace of PG(n, q)}

forms a projective space PG(n′, q′), then we say that S is an embedded PG(n′, q′)

subgeometry in PG(n, q). The order of the embedded subgeometry is either q,

or GF(q′) is a subfield of GF(q), so (q′)m = q for a certain integer m. If S =

{(x1, x2, . . . , xn+1)|xi ∈ GF(q′)}, then S is a canonical subgeometry of PG(n, q).

If q is square and q′ =
√
q, then the subgeometry is called a Baer subgeometry (a

Baer subline when n′ = 1, and a Baer subplane when n′ = 2).

If S1, S2, . . . are point sets or subspaces of PG(n, q) then 〈S1, S2, . . .〉 will denote

the subspace generated by S1, S2, . . . , which is the meet of all the subspaces of

PG(n, q) containing these sets. For two points P and Q the unique line connecting

them can be denoted by 〈P,Q〉, but often we will simply write PQ.

Let Σr be an r-dimensional subspace of PG(n, q). Consider the vector space

V associated to PG(n, q), and the subspace N of rank r + 1 associated to Σr.

Then the projective space defined by the quotient space V/N will be called the

quotient geometry PG(n, q)/Σr, and isomorphic to PG(n−r−1, q). Another way
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of viewing PG(n, q)/Σr is to consider the (r + 1 + k)-dimensional subspaces of

PG(n, q) containing Σr as k-dimensional subspaces for −1 ≤ k ≤ n− r− 2. If we

select an (n− r − 1)-dimensional subspace Σn−r−1 of PG(n, q), which is disjoint

from Σr, then every (r+ 1)-dimensional subspace on Σr meets Σn−r−1 in exactly

one point. This gives a one to one correspondence between the points of Σn−r−1

and the (r + 1)-dimensional subspaces on Σr. For any point P /∈ Σr, the point

P ′ = Σn−r−1 ∩ 〈P,Σr〉 is called the projection of P from Σr to Σn−r−1. For any

point set S ⊂ PG(n, q) \ Σr, the set of projected points is the projection of S

from Σr to Σn−r−1.

Note that it may happen that more than one points are projected onto the same

point. If a point of the resulting set is the image of one point only, then it will

be called an ordinary point of the projected point set.

If q = ph and e|h, and we choose S to be a canonical subgeometry S = PG(s, pe),

then the resulting set will be called a projected PG(s, pe) subgeometry. An em-

bedded subgeometry can also be regarded as a projected subgeometry: in this

case the vertex of the projection is the empty set, the subspace of dimension −1.

1.3 Linear point sets

Definition 1.3.1 (Lunardon [30], Polito and Polverino [33]). Let GF(pe) be a

subfield of GF(q).

(a) A point set S of PG(n, q) is said to be GF(pe)-linear, if there is a projec-

tive space PG(n′, q) containing PG(n, q) such that S is the projection of a

subgeometry PG(s, pe) ⊂ PG(n′, q) from a suitable subspace (vertex) onto

PG(n, q).

(b) A point set S of PG(n, q) is said to be GF(pe)-linear, if the (n + 1)-

dimensional GF(q) vector space V defining PG(n, q) has a GF(pe)-linear

subspace W such that a point of PG(n, q) belongs to S if and only if it is

defined by a vector of W .

Result 1.3.2 (Lundardon, Polito, Polverino, [31]). The two definitions above are

equivalent.
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Thus, GF(pe)-linear point sets are exactly the projected PG(s, pe) subgeometries.

When the subfield and the dimension is obvious, then S will simply be called a

linear point set or a projected subgeometry.

The intersection of a subspace of PG(n, q) and a PG(s, pe) projected subgeometry

is a PG(t, pe) projected subgeometry with −1 ≤ t ≤ s. For the dimensions of

these subgeometries the following result holds.

Lemma 1.3.3. Let q = (pe)m. If a subspace of dimension k of PG(n, q) meets a

projected PG(s, pe) in a projected PG(t, pe), then

s− (n− k)m ≤ t ≤ (k + 1)m− 1.

Proof. A k-dimensional subspace can be viewed as PG(k, q) ∼= V (k + 1, q) ∼=
V ((k+1)m, pe) ∼= PG((k+1)m−1, pe), so t ≤ (k+1)m−1. Similarly PG(n, q) ∼=
PG((n + 1)m − 1, pe), and if a ((k + 1)m − 1)-dimensional subspace and an s-

dimensional subspace of PG((n+ 1)m− 1, pe) meet in a t-dimensional subspace,

then

(k + 1)m− 1 + s ≤ (n+ 1)m− 1 + t,

from which the lower bound follows.

1.4 Blocking sets

Definition 1.4.1 (Blocking set). A set B of points in PG(n, q), which intersects

each k-dimensional subspace is called an (n − k)-blocking set or a blocking set

with respect to k-spaces.

To exclude trivial cases, 0 < k < n will always be assumed. When n = 2 (and

so k = 1), blocking sets are called planar blocking sets. A 1-blocking set (i.e. a

blocking set with respect to hyperplanes) is often simply called a blocking set.

Result 1.4.2 (Bose and Burton, [13]). An (n−k)-blocking set of PG(n, q) has at

least θk points. In case of equality the (n−k)-blocking set is an (n−k)-dimensional

subspace.

An (n − k)-blocking set containing an (n − k)-dimensional subspace is called

trivial.
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A point P of B is essential to B, if there exists a k-space through P intersecting

B in P only. Such a k-space is called a tangent of B at P . The blocking set B is

minimal, if each point of it is essential.

Following [17] we will call a point P a critical point of the blocking set B, if there

is exactly one tangent k-space to B at P . Such a subspace then will be called a

critical tangent of B. If a subspace Σ meets B in t points, then we say that Σ is

a t-secant of B.

Result 1.4.3 (Bruen, [15, 16]). In PG(2, q) a non-trivial blocking set has size at

least ≥ q +
√
q + 1. In case of equality the blocking set is a Baer subplane.

Actually, Bruen’s proof is combinatorial, so Result 1.4.3 is valid for any projec-

tive plane of order q, not only for PG(2, q). A Baer subplane of PG(2, q) is an

embedded PG(2,
√
q) subgeometry. Projected subgeometries can also be blocking

sets, such sets are called linear blocking sets. See Result 1.3.3 for the correctness

of the following construction.

Construction 1.4.4 (Linear blocking sets). A projected PG(m(n − k), q) sub-

geometry in PG(n, qm) is a minimal (n− k)-blocking set.

1.5 Blocking sets of Rédei type

Now we present a different construction of blocking sets in PG(2, q).

Definition 1.5.1. Consider the projective plane PG(2, q) as the union AG(2, q)∪
`∞. We say that the ideal point Q ∈ `∞ is determined by the affine points

P1, P2 ∈ AG(2, q), if the line 〈P1, P2〉 meets `∞ in Q. If P1 = (a1, b1), P2 = (a2, b2)

and Q = (m), with a1, a2, b1, b2 ∈ GF(q) and m ∈ GF(q) ∪ {∞}, then Q is

determined by P1 and P2 if and only if (b2 − b1)/(a2 − a1) = m. Note that if

a1 = a2, then m = ∞. Sometimes m will be called the direction determined by

P1 and P2.

Construction 1.5.2 (Rédei’s construction). Select a q-element point set U =

{(ai, bi) : i = 1, ..., q} in AG(2, q). Denote by D the set of ideal points determined

by the points of U . If |D| < q + 1 then the set U ∪D is a minimal blocking set

of PG(2, q).
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Proof. Clearly all lines meeting the line at infinity in a point of D are blocked by

U ∪ D. Now consider a pencil of lines through a point P ∈ l∞ \ D. Since P is

not determined by U , every such line can contain at most one point of U . Since

|U | = q and the pencil consists of q lines other than l∞, each line has to contain

exactly one point of U .

Simple counting argument shows that the following statement is true in all pro-

jective planes.

Proposition 1.5.3. If B is any blocking set of a projective plane of order q, then

for any line l not contained in B, we have |B \ l| ≥ q.

The blocking set in Construction 1.5.2 has a line for which equality holds.

Definition 1.5.4 (Rédei type blocking set of the plane). Let B be a minimal

blocking set of a projective plane of order q. If there is a line l for which

|B ∩ l| = |B| − q,

then B is called a Rédei type blocking set. Such a line is called a Rédei line of

the set.

The following proposition shows, that the notion Rédei type blocking set is more

or less equivalent to a q-element set together with its determined directions.

Proposition 1.5.5. Let B be a minimal blocking set of Rédei type with Rédei

line l. With U := B \ l, the determined ideal points in Construction 1.5.2 will be

exactly the points B ∩ l.

There are several different methods for constructing Rédei type minimal blocking

sets with Construction 1.5.2 (see for example [42],[22],[37]). One well-known and

basic example is due to Megyesi.

We will use the notation GF(q)∗ for the multiplicative group GF(q) \ {0}.

Result 1.5.6 (Megyesi). Let d be a divisor of q− 1 and let G be a multiplicative

subgroup of GF(q)∗ of size d. Consider the set

U = {(0, 0)} ∪ {(0, h) : h 6∈ G} ∪ {(g, 0) : g ∈ G}.

Then U determines exactly q + 1 − d directions, and B = U ∪ D is a minimal

blocking set of size 2q + 1 − d. Similarly, if d divides q, then using additive

subgroups and two parallel lines we get a minimal blocking set B of size 2q+1−d.
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Note that the points of the resulting blocking set will be on three lines. The first

blocking set is often referred to as the projective triangle when d = (q − 1)/2,

while the second is the projective triad when d = q/2.

A different example, contained in the union of four lines, was constructed by

Gács in [22], giving an infinite series of examples determining 7q/9 directions

approximately, and yielding a minimal blocking set with size approximately (2−
2/9)q.

Result 1.5.7 (Gács [22]). Let 3 be a divisor of q − 1, and let 1, α, α2 be coset

representatives of the multiplicative subgroup G of GF(q)∗ of index 3. Let

Ui = {(0, 0)} ∪ {(x, 0) : x ∈ αiG} ∪ {(x, x) : x ∈ G} ∪ {(0, x) : x ∈ αiG}.

Denote by |Di| the number of directions determined by Ui. Then |D1| + |D2| +
|D3| = 3q + 1− 2(q − 1)/3, and |Di| = 7q/9 +O(

√
q).

In both the Megyesi and the Gács constructions the cosets of a subgroup of

GF(q)∗ were used to select the points of U . We will say, that the cosets were

placed on lines. In Chapter 4 we present a more general construction, where the

number of cosets can be larger than three, and the number of lines from which

points are taken can also be increased.

The definition of a Rédei type blocking set can be generalized to higher dimensions

also.

Definition 1.5.8 (Rédei type (n−k)-blocking set). Let B be a minimal (n−k)-

blocking set of PG(n, q). If there is a hyperplane H for which

|B ∩H| = |B| − qn−k

(which is equivalent to |B \ H| = qn−k), then B is called a Rédei type (n − k)-

blocking set. Such a hyperplane is called a Rédei hyperplane of the set.

1.6 Small minimal blocking sets

Definition 1.6.1 (Small blocking set). An (n − k)-blocking set B is small if

|B| < 3(qn−k + 1)/2.
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Small minimal (n − k)-blocking sets are of special interest, since there is hope

to classify them, as all the known examples of small minimal blocking sets are

linear. Linear blocking sets have the property that every subspace meets them

in 1 mod p points. Szőnyi shows in [43], that the same is true for small minimal

blocking sets of PG(2, q), and this result is generalized to higher dimensions by

Szőnyi and Weiner in [45].

Result 1.6.2 (Szőnyi [43], Szőnyi and Weiner [45]). Let B be a small minimal

(n− k)-blocking set in PG(n, q), q = ph, p prime. Then each subspace of dimen-

sion at least k intersects B in 1 mod p points.

Conjecture 1.6.3 (Linearity Conjecture, Sziklai [40]). All small minimal (n−k)-

blocking sets of PG(n, q) are linear.

In the following case the conjecture is proved to be true.

Result 1.6.4 (Lunardon [30], Storme and Sziklai [41]). Small minimal blocking

sets of Rédei type are linear.

For a small minimal (n−k)-blocking set B of PG(n, q) we can define the exponent

of B as the largest integer such that B intersects each k-space in 1 modulo pe

points.

Result 1.6.5 (Sziklai [40]). Let B be a small minimal (n − k)-blocking set in

PG(n, q), q = ph, 2 < p prime.

(1) Let e be the largest integer such that B intersects each k-space in 1 modulo

pe points (from above 1 ≤ e ≤ h). Then e|h, so GF(pe) is a subfield of

GF(q).

(2) Furthermore, if the k-space L intersects B in pe + 1 points, then L ∩ B is

isomorphic to PG(1, pe).

Result 1.6.6 (Szőnyi and Weiner [45]). Denote by

[lq(n, k, e), uq(n, k, e)]

the smallest interval containing the sizes of all the small minimal (n−k)-blocking

sets of PG(n, q), q = ph, 2 < p prime, with exponent e. These intervals are

disjoint, furthermore, if e′|m and e′ < e, then uq(n, k, e) < lq(n, k, e
′).
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Thus, minimal (n−k)-blocking sets with size in the interval [lq(n, k, e), uq(n, k, e)]

intersect each k-space in 1 mod pe points. The next statement summarizes some

corollaries of the 1 mod p result.

Result 1.6.7 (Szőnyi and Weiner [45]). Assume that B is a point set in PG(n, q),

q = ph, 2 < p prime. Let e and k be integers, so that 0 < k < n and suppose that

|B| < 3(qn−k + 1)/2. Then the following statements are equivalent:

(1) B is a minimal (n− k)-blocking set and |B| ≤ uq(n, k, e).

(2) B intersects each k-space in 1 mod pe points.

(3) Every subspace with dimension at least k intersects B; and any subspace

that intersects B intersects it in 1 mod pe points.

The best bounds for lq(2, 1, e) and uq(2, 1, e) are due to Blokhuis and Polverino,

and the case n > 2 was studied in [45].

Result 1.6.8. Assume that pe 6= 2, 4, 8, then

(1) (Blokhuis [10]) q + 1 + ped(q/pe + 1)/(pe + 1)e ≤ lq(2, 1, e).

(2) (Polverino [34]) uq(2, 1, e) ≤
1+(pe+1)(q+1)−

√
[1+(pe+1)(q+1)]2−4(pe+1)(q2+q+1)

2
.

(3) (Szőnyi and Weiner, [45]) lq(n, k, e) ≥ lqn−k(2, 1, e) and

uq(n, k, e) ≤ uqn−k(2, 1, e).

Result 1.6.9 (Polverino [34]). A small minimal blocking set of PG(n, q), q = pmh

intersecting each line in 1 mod ph points has size at most

uq(n, 1, h) < qn−1 +
qn−1

ph
+
qn−1

p2h
+ 3

qn−1

p2h
.

By Result 1.6.6, the sizes of the minimal (n−k)-blocking sets of PG(n, q), q = ph,

2 < p prime, are contained in disjoint intervals

[lq(n, k, e1), uq(n, k, e1)], . . . , [lq(n, k, ei), uq(n, k, ei)],

where e1 > · · · > ei are the divisors of h, and uq(n, k, ej) < lq(n, k, ej+1).

Starting from the smallest one, the first interval consists of one value only,

lq(n, k, h) = uq(n, k, h) = θn−k, because an (n − k)-dimensional subspace is the
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only (n− k)-blocking set with the property that every subspace of dimension at

least k intersects it in 1 mod q points.

When q is a square (hence 2|h), then [lq(n, k, h/2), uq(n, k, h/2)] is the second

interval, and it contains the sizes of the (n − k)-blocking sets intersecting each

(n−k)-space in 1 mod
√
q points. Weiner proves in [47], that all minimal (n−k)-

blocking sets of this interval are linear.

Result 1.6.10 (Weiner [47]). Small minimal (n − k)-blocking sets of PG(n, q),

q = p2m, 2 < p prime, 81 ≤ q, intersecting each k-space in 1 mod
√
q points are

linear.

These blocking sets are so called Baer-cones.

A cone with base a set S and vertex a subspace Σ is the union of all subspaces

〈Σ, P 〉, where P is a point of S. A Baer-cone is a cone with base an embedded

GF(
√
q)-linear subgeometry. It is not hard to see that projected PG(m,

√
q)

subgeometries are always Baer-cones.

The next interval to be observed is [lq(n, k, h/3), uq(n, k, h/3)], if h is divisible by

3. The next result solves the planar case.

Result 1.6.11 (Polverino [34], Polverino and Storme [35]). A non-trivial blocking

set in PG(2, p3m), p ≥ 7, meeting every line in 1 mod pm points is either a Baer

subplane (and m is even) or one of the following sets:

(1) a minimal blocking set of size p3m + p2m + 1, projectively equivalent to the

set

{(x, Tr(x), 1)|x ∈ GF(p3m)} ∪ {(x, Tr(x), 0)|x ∈ GF(p3m) \ {0}},

where Tr is the trace function from GF(p3m) to GF(pm) (i.e. Tr : GF(p3m)→
GF(pm) : x 7→ x+ xp

m
+ xp

2m
);

(2) a minimal blocking set of size p3m + p2m + pm + 1, projectively equivalent to

the set

{(x, xpm , 1)||x ∈ GF(p3m)} ∪ {(x, xpm , 0)||x ∈ GF(p3m) \ {0}}.

The next remark summarizes some properties of the blocking sets of Result 1.6.11.

For more details the reader is referred to [34] and [35].
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Remark 1.6.12. (Polverino [34], Polverino and Storme [35]) All three types of

blocking sets in Result 1.6.11 are linear (and hence each line intersects them in a

linear point set). Furthermore, they are all of Rédei type.

The Baer subplane has p3m + p3m/2 + 1 points and every line meets it in 1 or

p3m/2 + 1 points.

The minimal blocking set of size p3m+p2m+pm+1 has exactly one (p2m+pm+1)-

secant, and all other lines are 1-secants (i.e. tangents) or (pm + 1)-secants. Every

(pm + 1)-secant meets the (p2m + pm + 1)-secant in a point belonging to the set.

The minimal blocking set of size p3m + p2m + 1 has a unique point lying on

(p2m + 1)-secants and tangents only. There are pm + 1 (p2m + 1)-secants on this

point. All other lines are (pm+1)-secants or tangents. A (pm+1)-secant contains

one point from each of the (p2m + 1)-secants.

It will be the main result of Chapter 2, to prove a similar result for higher di-

mensional projective spaces. We prove that point sets of PG(n, p3m), n > 2,

p ≥ 7 prime, with size less than 3(p3m(n−k) + 1)/2 and intersecting each k-space

in 1 mod pm points are linear blocking sets.

In certain projective spaces the Linearity Conjecture has been proved to be true.

Result 1.6.13 (Heim, [24]). For q = p prime, there are no small minimal non-

trivial (n − k)-blocking sets in PG(n, p) at all. For n = 2 this was proved by

Blokhuis in [9].

The next result is a corollary of Result 1.6.10. For n = 2 it was proved by Szőnyi

in [43].

Corollary 1.6.14 (Weiner, [47]). If q = p2, 11 ≤ p prime, then all small minimal

(n− k)-blocking sets in PG(n, p2) are linear.

The following result is a corollary of Result 1.6.11.

Corollary 1.6.15. If q = p3, p ≥ 7 prime, then all small minimal non-trivial

blocking sets in PG(2, p3) are one of the linear sets described in (1) and (2) of

Result 1.6.11.

The case n ≥ 3 will be proved in Chapter 2.
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1.7 Multiple blocking sets

Definition 1.7.1 (t-fold (n − k)-blocking set). A t-fold (n − k)-blocking set of

PG(n, q) is a set of points which meets every k-dimensional subspace in at least

t points. If the points of the set are not all different, so the set is a multiset of

points, then it is called a weighted t-fold (n− k)-blocking set.

To exclude trivial cases, 0 < k < n will always be assumed.

A weight function w of PG(n, q) is a mapping from the point set of PG(n, q) to

the set of nonnegative integers. For a point P the integer w(P ) is the weight of

P .

There is a natural correspondence between multisets and weight functions of

PG(n, q): let the weight of a point be the multiplicity of that point in the set.

For a given weight function the weight of a set M of points is by definition the

sum of the weights of all its points, denoted by w(M). We will call w(PG(n, q))

the total weight of w, and denote it by |w|.

We will use the following notation: for the multisets B1 and B2, with associated

weight functions w1 and w2 respectively, B1 ∪B2 will denote the multiset defined

by the weight function max{w1, w2}, whileB1+B2 will denote the multiset defined

by the weight function w1 + w2.

The multiset associated to a weight function w is a t-fold (n − k)-blocking set

if and only if the weight of every k-dimensional subspace is at least t. If this is

the case, then we will call the weight function w a t-fold (n− k)-blocking set for

short. When we speak of weighted t-fold (n− k)-blocking sets, we will use both

notations B and w, always choosing the one which makes descriptions simpler.

If w is a t-fold (n − k)-blocking set, then a point P will be called an essential

point of w, if w(P ) ≥ 1 and there is a k-subspace Σk containing P such that

w(Σk) = t. The point P is a nonessential point of w, if w(P ) ≥ 1 and the weight

of every k-subspace containing P is at least t+1. In this case the weight function

w′ defined by

w′(Q) =

w(Q) if Q 6= P ;

w(P )− 1 if Q = P
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is also a t-fold (n− k)-blocking set.

If w and w′ are weight functions, then we will say that w′ is contained in w, and

denote this by w′ ≤ w, if w′(P ) ≤ w(P ) for all points P ∈ PG(n, q).

The t-fold (n − k)-blocking set w is said to be minimal if w′ ≡ w for any t-fold

(n − k)-blocking set w′ contained in w. Clearly a t-fold (n − k)-blocking set is

not minimal if and only if it has nonessential points.

Definition 1.7.2. A t-fold blocking set of PG(2, q), q = ph, p prime, is called

small, if it has less than tq + (q + 3)/2 points.

Result 1.7.3 (Blokhuis, Lovász, Storme and Szőnyi, [11]). Let B be a small

minimal t-fold blocking set in PG(2, q), q = ph, p prime, h ≥ 1. Then B intersects

every line in t mod p points.

Conjecture 1.7.4 (General Linearity Conjecture, Sziklai [40]). If t is small

enough, then a small minimal t-fold (n − k)-blocking set in PG(n, q) is the sum

of GF(pei)-linear (n− k)-blocking sets.

Result 1.7.5 (Ferret, Storme, Sziklai and Weiner, [21]). Let B be a minimal

weighted t-fold (n − k)-blocking set of PG(n, q), q = ph, p prime, h ≥ 1, of

size |B| = tqn−k + t + k′, with t + k′ ≤ (qn−k − 1)/2. Then B intersects every

k-dimensional subspace in t mod p points.

Using this result, a characterization result similar to Result 1.6.10 was proved in

[20].

Result 1.7.6 (Ferret, Storme, Sziklai and Weiner, [20]). Let B be a minimal

t-fold (n − k)-blocking set of PG(n, q), q square, of size at most |B| ≤ tqn−k +

2tqn−k−1√q < tqn−k + qn−k−1/3.

Then B is the union of pairwise disjoint Baer-cones.
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Chapter 2

Small point sets of PG(n, q3)

intersecting each k-space in

1 mod q points

This chapter is based on joint work with Zsuzsa Weiner, Klaus Metsch and Tamás

Szőnyi and appeared in [4] and [3].

2.1 The main theorem

There has been a lot of work aiming at finding a proof for Sziklai’s Linearity

Conjecture, yet only partial results have been achieved. According to Result

1.6.6, the sizes of the minimal blocking sets of PG(n, q), q = ph, p > 2 prime, are

contained in disjoint intervals

[lq(n, k, e1), uq(n, k, e1)], . . . , [lq(n, k, ei), uq(n, k, ei)],

where e1 > · · · > ei are the divisors of h, and uq(n, k, ej) < lq(n, k, ej+1).

Starting from the smallest one, the first interval where the Linearity Conjec-

ture has not been proved yet is [lq(n, k, h/3), uq(n, k, h/3)], if h is divisible by

3. In this chapter we prove that the Linearity Conjecture is valid here also,

that is all minimal (n − k)-blocking sets with size belonging to the interval

[lq(n, k, h/3), uq(n, k, h/3)] are linear.

21



Notation. Throughout this chapter we will be working in projective spaces of

order p3h, p prime, h ≥ 1, and with point sets meeting certain subspaces in

1 mod ph points. For the sake of simplicity, instead of q, we will use q3 for the

order of the space, and have q = ph, p prime, h ≥ 1. So please keep in mind, that

from here on, throughout this chapter, we will be working in the projective space

PG(n, q3).

The aim of this chapter is to prove the following theorem, which can be found in

[4] (k = n− 1) and [3] (arbitrary k).

Theorem 2.1.1. Let B be a point set of PG(n, q3), q = ph, 1 ≤ h, 7 ≤ p prime,

intersecting each k-space in 1 mod q points, and with size |B| < 3
2
(q3(n−k) + 1).

Then B is a linear (n− k)-blocking set.

In [29] Lavrauw, Storme and Van de Voorde prove the same result using an

approach different from ours.

A corollary of Theorem 2.1.1 and Result 1.6.7 is that all minimal (n−k)-blocking

sets of size in the interval [lq3(n, k, h), uq3(n, k, h)] are linear. Moreover, the upper

bound of this interval can be raised until the lower bound of the next interval.

Thus, any improvement on the bound of the lower end of the fourth interval leads

to an immediate improvement of the next corollary.

Corollary 2.1.2. Let s be the smallest integer such that 3 < s ≤ 3h and s|3h.

Then the minimal (n− k)-blocking sets of size < lq3(n, k, 3h/s) are linear.

Another important corollary of Theorem 2.1.1 is that it proves the Linearity

Conjecture in projective spaces of order p3, with p ≥ 7 prime.

Corollary 2.1.3. Small minimal blocking sets of PG(n, p3), p ≥ 7 prime are

linear.
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2.2 GF(q)-linear blocking sets of PG(n, q3)

In this section some important properties of GF(q)-linear sets of PG(n, q3) are

collected. Most of these results are simple corollaries of Lemma 1.3.3.

Lemma 2.2.1. If a point meets a projected subgeometry in a projected PG(m, q),

then 0 ≤ m ≤ 2.

If m = 0, then the point is an ordinary point of the projection. We will call the

point special, if m = 1 and superspecial, if m = 2.

Notation. Consider a PG(m, q) subgeometry embedded in PG(n, q3). For every

subspace U of PG(m, q), we call the subspace of PG(n, q3) generated by the points

of U the extension of U , and denote this subspace by e(U). In other words, e(U) is

the unique subspace of PG(n, q3) containing U and having dim(U) = dim(e(U)).

Now we examine the linear point sets of a line PG(1, q3).

Lemma 2.2.2. Let S be a projected PG(m, q) subgeometry contained in a line

l = PG(1, q3), and not contained in a point.

(1) Then 1 ≤ m ≤ 5.

(2) If m = 1, then |S| = q + 1 and S is an embedded PG(1, q) subgeometry (a

subline of l).

(3) If m = 2, then S is a projected PG(2, q) subplane. There are two cases:

either |S| = q2 + q+ 1 and all points of S are ordinary, or |S| = q2 + 1 and

one point of S is special, while all the other are ordinary.

(4) If m ≥ 3, then |S| = q3 + 1, so every point of the line belongs to S.

(5) If m = 3, then there are two cases: either S has one superspecial point and

q3 ordinary points, or S has q+ 1 special points and q3− q ordinary points.

(6) If m = 4, then S has 1 superspecial point and q3 special points.

(7) m = 5, then all points of S are superspecial.

Proof. The preimages of the points of S yield a partition of PG(m, q) into disjoint

subspaces of dimension 0, 1, or 2. The statements above follow from this and

Lemma 1.3.3.
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Corollary 2.2.3. If S is a projected PG(m, q) subgeometry in PG(n, q3), and the

line l is a (q + 1)-secant of S, then every point of S ∩ l is ordinary.

Corollary 2.2.4. If S is a projected PG(m, q) subgeometry in PG(n, q3), and P

is a special point of S, then a non-tangent line on P is either contained in S, or

is a (q2 + 1)-secant of S. If P is superspecial, then every non-tangent line on P

is contained in S.

Corollary 2.2.5. If S is a projected PG(m, q) subgeometry in PG(n, q3), and

P1, P2, . . . are the superspecial points of S, then either S is the subspace 〈P1, P2, . . .〉,
or S is a cone with vertex the subspace 〈P1, P2, . . .〉.

Suppose that PG(m, q) is projected to PG(n, q3) and the resulting set is S.

Now clearly there can be several ways we can choose a set S ′ ∼= PG(m, q) in

PG(N, q3) ⊇ PG(n, q3) and a subspace C, with C ∩ S ′ = ∅, such that S is the

projection of S ′ from C to PG(n, q3). For a point P ∈ S, can the dimension of

the subgeometry projected to P be different for different choices of S ′ and C?

For the case |S| = q2 + 1, this question is answered in [19].

Result 2.2.6 (Fancsali and Sziklai, [19]). Let S be a linear point set of PG(1, q3),

|S| = q2 + 1. Then the special point of S is unique, that is, for any construction

of S the special point is always the same.

Corollary 2.2.7. Let S be a projected PG(m, q) subgeometry in PG(n, q3), such

that S is not a subspace, and let P ∈ S be any point. Then for any construction

of S the dimension of the subgeometry projected to P is the same.

Proof. If there is a line l on P which is a (q+1)-, a (q2 +1)- or a (q2 +q+1)-secant

of S, then the dimension of the subgeometry projected to P is clear. If all non-

tangent lines on P are contained in S, and S is not a subspace, then we can find

a plane π on P which meets S in q+ 1, q2 + 1 or q2 + q+ 1 concurrent lines. With

inspection of the possibilities of the preimages of these lines, and by Lemma 1.3.3,

we have that in the first case π meets S in a projected PG(4, q) subgeometry, and

in the second and third cases a projected PG(5, q) subgeometry. In all cases P is

superspecial.

Remark. Let S be a projected PG(m, q) subgeometry in PG(n, q3) and assume

that a construction of S has been selected. In other words, a set S ′ ∼= PG(m, q)

in PG(N, q3) ⊇ PG(n, q3) and a subspace C of PG(N, q3), with C ∩ S ′ = ∅ and
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dim(C) = N −n−1 has been given, such that S is the projection of S ′ from C to

PG(n, q3). Another way of looking at this, is to view S as a subset of the quotient

geometry PG(N, q3)/C. In this case S corresponds to the set of subspaces 〈P,C〉
where P is a point of S ′. It is not hard to see, that if we replace C by e(S ′) ∩ C
and the sets 〈P,C〉 by 〈P, e(S ′)∩C〉, then the set we obtain in e(S ′) ∼= PG(m, q3)

is projectively equivalent to S. Thus, we can assume that in the construction we

choose for S we have N = m and dim(C) = m− n− 1.

Definition 2.2.8. A nonempty set R of skew lines of a 3-dimensional projective

space PG(3, q) is called a regulus, if the following are true:

(1) Through each point of each line of R there is a transversal of R (i.e. a line

which meets every element of R).

(2) Through each point of a transversal of R there is a line of R.

It is clear that the set of all transversals of a regulus R again form a regulus. We

call it the opposite regulus of R. And it is also clear that |R| = q + 1. Any three

skew lines of PG(3, q) are contained in a unique regulus.

Lemma 2.2.9. Let S be a projected PG(m, q) subgeometry on a line l = PG(1, q3).

Let b ∼= PG(1, q) be a line of PG(m, q), which is projected to the points P1, P2, . . . ,

Pq+1 ∈ l. Then if at least three of the points Pi are not ordinary points, then nei-

ther of them are.

Proof. By Lemma 2.2.2, the only case which needs to be observed is when m = 3,

and S has q+ 1 special points, and q3− q ordinary points. Then the preimages of

the special points are q+ 1 skew lines l1, l2, . . . , lq+1 of the PG(3, q) subgeometry.

We will prove that they form a regulus. Then any line which meets at least 3 of

them, has to meet all.

By the Remark above, we can consider the following construction of S: embed

l into a projective space PG(3, q3), and select 3-dimensional subgeometry S ′ ⊂
PG(3, q3), and a line t ⊂ PG(3, q3), t skew to l, t ∩ S ′ = ∅, such that S is the

projection of S ′ from t to l. Then the extensions of the lines li are skew lines

e(l1), e(l2), . . . , of the space PG(3, q3), and all of them meet t and l.

Now let R be the regulus of S ′ determined by three of the lines, say l1, l2 and l3.

Let Re be the regulus of PG(3, q3) determined by e(l1), e(l2) and e(l3). For every
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line of R, the extension is an element of Re. Clearly t and l are elements of the

opposite of Re, so every element of Re meets both l and t. This proves that every

element of R corresponds to a special point Pi, so R = {l1, l2, . . . , lq+1}.

The following lemma collects some of the properties of GF(q)-linear point sets of

PG(2, q3).

Lemma 2.2.10. Let S be a projected PG(m, q) subgeometry in a plane π ∼=
PG(2, q3), but not contained in a line.

(1) Then 2 ≤ m ≤ 8.

(2) If S is a blocking set of π, then m ≥ 3.

(3) If m = 3, then S is one of the sets in Result 1.6.11 (1) and (2).

(3) If m = 4, and P is an ordinary point of S, then there are no tangents on P

to S. There are two cases: either there is one line on P which is contained

in S and all other lines are (q + 1)-secants to S, or there are q + 1 lines

that are (q2 + 1)- or (q2 + q + 1)-secants of S and all the other lines are

(q + 1)-secants.

(4) If m ≥ 5, then S has no (q + 1)-secants in π.

(5) If m ≥ 6, then S contains every point of π.

Proof. (3) Let P be an ordinary point of S and l1, . . . , lq3+1 the lines on P in π.

By Lemma 1.3.3, every line li contains a projected PG(t, q) with t ≥ 1. These

are all subspaces of PG(4, q) and they all meet in one point (the preimage of

P ). Counting the points of PG(4, q) in these subspaces yields that either one line

li contains a projected 3-dimensional subspace, and all others contain projected

lines, or q + 1 have projected planes and all others lines.

The other statements are direct consequences of Lemma 1.3.3.

Lemma 2.2.11. Let S be a projected PG(4, q) subgeometry in a plane π ∼=
PG(2, q3). Let P ∈ S be an ordinary point of S such that there are q+ 1 lines l1,

l2, . . . , lq+1 on P , which meet S in projected PG(2, q) subgeometries, and all other

lines on P are (q + 1)-secants to S. Let b ∼= PG(1, q) be a line of the PG(4, q)

subgeometry, which is projected to the points P1, P2, . . . , Pq+1. Then if at least 3

of these points lie on the lines li, then all of them do.
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Proof. Embed the plane π in a projective space PG(4, q3), and select a 4-dimensional

subgeometry S ′ ∼= PG(4, q), and a line t ⊂ PG(4, q3), such that S is the projec-

tion of S ′ from t to π. The points of π correspond to planes on t, and the lines

of π correspond to 3-dimensional spaces on t.

The preimages of li ∩ S are planes π1, π2, . . . , πq+1 of PG(4, q) meeting in one

point P ′, which is the preimage of P .

Select lines r1 ⊂ π1 and r2 ⊂ π2 such that P ′ /∈ ri. Then e(r1) and e(r2) are skew

lines, which meet the plane 〈t, P ′〉 in different points R1 and R2. Let Σ = 〈r1, r2〉
be the 3-dimensional subspace generated by r1 and r2. Then e(Σ) = 〈e(r1), e(r2)〉.
Σ does not contain P ′, so Σ ∩ 〈t, P ′〉 is a line, in fact, it is the line r := 〈R1, R2〉.
And Σ meets every plane πi in a line ri, such that e(ri) meets 〈t, P ′〉 in a point

of r.

We will prove that the planes πi form a cone with vertex P ′ and base a regulus of

Σ. Then the assertion follows, because any line of PG(4, q) which meets at least

3 of these planes, will meet them all.

Let R be the unique regulus of Σ which contains the lines r1, r2 and r3. Then

the regulus Re of e(Σ), which contains e(r1), e(r2) and e(r3) will contain the

extension of every element of R. Clearly, r is an element of the opposite of Re.

We will show that

{π1, . . . , πq+1} = {〈P ′, l〉|l ∈ R}.

If l ∈ R, then e(l) meets the line r, thus it meets the plane 〈t, P ′〉, which means

that the plane 〈P ′, l〉 is contained in a 3-dimensional subspace on t, and so cor-

responds to a line on P meeting S in a projected PG(2, q).

Lemma 2.2.12. Let S be a projected PG(m, q) subgeometry of PG(n, q3), and

H ∼= PG(2, q) a subplane of S such that the points of H are projected onto the

concurrent lines t1, t2, . . . , tq+1. Then either |ti ∩S| ≥ q2 + 1 for each ti or this is

true only for at most two of these lines.

Proof. The lines ti span a plane π of PG(n, q3) which meets S in a projected

PG(t, q) subgeometry. By Corollary 2.2.4 and Lemma 2.2.10, we may assume

that t = 4, and the lines ti meet in an ordinary point P . We may also assume

that there are q + 1 lines on P , say l1, l2, . . . , lq+1, which meet S in projected

PG(2, q) subgeometries, and all other lines on P are (q + 1)-secants to S. Let
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b ∼= PG(1, q) be a line of H with P ′ /∈ b. Then the number of lines belonging to

both {l1, . . . , lq+1} and {t1, . . . , tq+1} equals the number of points of b on the lines

l1, . . . , lq+1, and we can use Lemma 2.2.11.

In the following lemmas S is not only a GF(q)-linear set of PG(n, q3), but also a

minimal (n− k)-blocking set. Thus, m = 3(n− k).

Lemma 2.2.13. Let S be a projected PG(3(n− k), q) subgeometry of PG(n, q3),

and suppose that S is not a subspace.

(a) Every point that meets S in a projected PG(s, q), 0 ≤ s ≤ 2, lies on a line

meeting S in a projected PG(s+ 1, q).

(b) Every line l that meets S in a projected PG(s, q), 2 ≤ s ≤ 5, lies in a plane

that meets S in a projected PG(s+ 1, q). If k ≥ 2, this also holds for s ≤ 1.

Proof. If 〈S〉 is an n′-dimensional subspace of PG(n, q3), then S meets every

(n′+ k− n)-dimensional subspace of 〈S〉, i.e. S is an (n− k)-blocking set of 〈S〉.
Thus, we may assume that S generates PG(n, q3).

Let Σt be a t-subspace (t ≤ n − 2) that meets S in a projected PG(s, q) and

suppose that every (t + 1)-subspace on Σt which meets S not only in the points

of Σt∩S meets S in at least a projected PG(s+2, q). Consider a (t+2)-subspace

Σt+2 spanned by two of these (t+ 1)-subspaces. Then Σt+2 meets S in at least a

PG(s+ 4, q). Therefore by Lemma 1.3.3, every (t+ 1)-subspace of Σt+2 meets S

in at least a PG(s + 1, q). Applying this to the (t + 1)-subspaces of Σt+2 on Σt,

the assumption implies that all these meet S in at least a PG(s+ 2, q).

This argument shows that the union of the (t + 1)-subspaces on Σt that meet S

not only in Σt ∩ S is a subspace. As S generates PG(n, q3), it follows that each

(t + 1)-subspace on Σt meets S in at least a PG(s + 2, q). As S is a projected

PG(m, q), it follows that |PG(m, q)| is at least the number of (t + 1)-subspaces

on Σt times qs+2 + qs+1. This implies that m ≥ 3(n − 1 − t) + s + 2. Using

m = 3(n− k) and k ≥ 1, this gives s ≤ 3(t− k) + 1. In the situation of (a) and

(b), this is a contradiction.

Lemma 2.2.14. Let S be a projected PG(3(n− k), q) subgeometry of PG(n, q3),

and suppose that S is not a subspace. If P is an ordinary point of S, then there

are at least q3(n−k−1)+2 − q3(n−k−1) (q + 1)-secants on P to S.
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Proof. We will proceed by induction on k. The case k = 1 follows from Lemma

2.4.7, where it is proved that if B is a non-trivial blocking set of PG(n, q3) of

size < 3
2
(q3(n−1) + 1) and meeting every line in 1 mod q points, but not having a

(q3/2 + 1)-secant, and P is a point of B which is on a (q + 1)-secant to B, then

the number of (q + 1)-secants on P is at least q3n−4 − q3n−6. The set S has these

properties, and by Lemma 2.2.13(1) we can find a (q + 1)-secant on an ordinary

point P .

For the induction step suppose that k ≥ 2. Again by Lemma 2.2.13(1) we can find

a (q+ 1)-secant on any ordinary point. Consider a tangent on the ordinary point

P and project S form a point T 6= P of this tangent to a hyperplane H. This

results in a set S ′ that is a projected PG(m, q) meeting all (k − 1)-subspaces of

H. The image P ′ of P is an ordinary point of S ′ and clearly, every (q+ 1)-secant

of S ′ is the image of a (unique, which we do not need) (q + 1)-secant of S. As

the assertion is true for k − 1, it follows for general k.
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2.3 Proof of Theorem 2.1.1 for k = 1, n = 3

Throughout this section it will be assumed that B is a point set of PG(3, q3),

q = ph, 1 ≤ h, 7 ≤ p prime, intersecting each line in 1 mod q points, and

|B| < 3
2
(q6 + 1).

The following lemma is a direct consequence of Result 1.6.9.

Lemma 2.3.1. |B| < q6 + q5 + q4 + 3q3.

The next lemma is crucial when we characterize these point sets.

Lemma 2.3.2. A plane π either intersects B in a small minimal blocking set, or

contains more than q4 − q3 points from B.

Proof. Let x = |B ∩ π|, where π is a plane of PG(3, q3). Let bi be the number

of lines of π meeting B in exactly i points. As π has b := q6 + q3 + 1 lines and

r := q3 + 1 lines on each point, standard counting arguments give the following

three equations. ∑
i

bi = b∑
i

bii = xr∑
i

bii(i− 1) = x(x− 1)

Combining these we find∑
i

bi(i− 1)(i− q − 1) = x(x− 1)− (q + 1)xr + (q + 1)b. (2.1)

As every line meets B in 1 mod q points, the left-hand side is non-negative. As

the right-hand side is quadratic in x and negative for x = 3
2
q3 +1 and x = q4−q3,

the assertion follows.

Corollary 2.3.3. On any line l of PG(3, q3) there has to be a plane which in-

tersects B in a small minimal blocking set. Thus, l ∩ B is a linear set of size 1,

q + 1, q2 + 1, q2 + q + 1, q3 + 1, or q3/2 + 1 (then q is a square).
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Proof. Suppose on the contrary, that all the planes on l contain more than q4−q3

points from B. Then counting the points of B on these planes we get

|B| > (q3 + 1)(q4 − q3 − |l ∩B|) + |l ∩B| > q7 − q6 − |l ∩B|q3,

but |l ∩B| ≤ q3 + 1, which contradicts the bound of Lemma 2.3.1, as p ≥ 7.

Every secant of B has to be a secant of a small minimal planar blocking set. The

secants of these sets are described in Remark 1.6.12.

The following is a technical lemma which will be useful for us.

Lemma 2.3.4. (1) On a (q + 1)-secant there are less than 4 planes intersecting

B in more than q4 − q3 points.

(2) On a (q2 +1)- or a (q2 +q+1)-secant there are less than 2q planes intersecting

B in more than q4 − q3 points.

(3) On a line totally contained in B there are less than q2 + 3q planes containing

further points of B.

Proof. Let l be a line and denote by K the number of planes on l which intersect

B in more than q4 − q3 points.

(1) If l is a (q + 1)-secant, then counting the points of B on the planes through l

gives

|B| > K(q4 − q3 − q − 1) + (q3 + 1−K)(q3 + q2 − q).

For K ≥ 4 this is in contradiction with Lemma 2.3.1.

(2) Summing the number of points on the planes through a (q2+1)- or a (q2+q+1)-

secant gives

|B| > K(q4 − q3 − q2 − q − 1) + (q3 + 1−K)q3.

For K ≥ 2q this is in contradiction with Lemma 2.3.1.

(3) A plane on a line totally contained in B and containing a further point of B

intersects B in at least q4 + q + 1 points, as B intersects every line in 1 mod q

points. Having at least q2 + 3q such planes on a line totally contained in B would

lead to a contradiction with Lemma 2.3.1.

In case 2|h we will now characterize the blocking sets having a (q3/2 + 1)-secant.

31



Lemma 2.3.5. If 2|h and B has a (q3/2 + 1)-secant, then a line can intersect B

in 1, q3/2 + 1 or q3 + 1 points only. In this case B is linear.

Proof. If B has a (q3/2 + 1)-secant, then by Corollary 2.3.3 and Result 1.6.11

there has to be a plane π intersecting B in a Baer subplane. Through a point

P ∈ π ∩B, there are q3/2 + 1 (q3/2 + 1)-secants in π. Suppose now that there is a

line l through P , not in π, which intersects B in q+ 1, q2 + 1 or q2 + q+ 1 points.

The planes containing l and a (q3/2 + 1)-secant have to intersect B in more than

q4− q3 points (see Result 1.6.11 that a small minimal planar blocking set having

a (q3/2 + 1)-secant can have tangents or (q3/2 + 1)-secants only), but there are

q3/2 + 1 such planes, which is in contradiction with (1) and (2) of Lemma 2.3.4.

Thus, B meets all lines in 1 mod q3/2 points, so by Result 1.6.10 B is linear.

For the rest of this section we will assume that B has no (q3/2 + 1)-secants, and

thus no Baer plane sections. All lines intersect B in a linear set of size 1, q + 1,

q2 + 1, q2 + q + 1, or q3 + 1. A plane can intersect B in a line, a small minimal

blocking set described in (1) or (2) of Result 1.6.11 or in more than q4−q3 points.

Definition 2.3.6. We will call a point P ∈ B a special point of B, if there is a

plane π through P for which π ∩ B is the small minimal blocking set described

in (1) of Result 1.6.11, and P is the special point of this point set.

The following lemma summarizes some properties of special points of B.

Lemma 2.3.7. (1) On every (q2 + 1)-secant there is exactly one special point.

(2) The lines through a special point can be tangents, lines totally contained in

B, or (q2 + 1)-secants only.

(3) Two special points are always connected by a line contained in B.

Proof. (1) Result 2.2.6.

(2) Let P be a special point, l a (q2 + 1)-secant through P . According to Lemma

2.3.4, more than q3 + 1− 2q of the planes on l intersect B in the small minimal

blocking set (1) of Result 1.6.11, thus more than (q3 + 1 − 2q)q + 1 of the lines

through P have to be (q2 + 1)-secants.

If m is a (q2 + q + 1)-secant on P , then because of Corollary 2.3.3 there has to

be a plane on m in which there are (q + 1)-secants on P .
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Now let m be a (q+ 1)-secant on P . Assume that a plane π on m intersects B in

the small minimal blocking set (1) of Result 1.6.11. From Remark 1.6.12 it is clear

that in this blocking set, on a special point there are tangents or (q2 + 1)-secants

only. Thus, the special point of π ∩B has to be a point Q, different from P and

the line PQ is a (q2 + 1)-secant of π∩B. But this would be in contradiction with

(1), because P and Q would be two special points of the line PQ. Thus, all the

planes on m intersect B in the small minimal blocking set (2) of Result 1.6.11

or in more than q4 − q3 points. By (1) of Lemma 2.3.4, there can be at most 3

planes meeting B in more than q4 − q3 points, and thus, there can be at most

3 planes on m containing (q2 + 1)-secants on P , which means that the number

of (q2 + 1)-secants on P can be at most 3q3, a contradiction. Thus, there are no

(q + 1)- or (q2 + q + 1)-secants on P .

(3) is a direct consequence of (1) and (2).

Proposition 2.3.8. If π is a plane of PG(3, q3) such that |π ∩ B| > q4 + 3q3,

then B is of Rédei type and π is a Rédei plane.

Proof. First observe that there are no special points outside π. If S ∈ B were a

special point, S /∈ π, then according to Lemma 2.3.7(2), all lines connecting S

with a point of B ∩π would intersect B in at least q2 + 1 points. This would give

|B| > (q4 + 3q3)q2 + 1, contradicting Lemma 2.3.1.

Now we will prove that there are no (q+1)-secants in π. Suppose on the contrary

that l is a (q+1)-secant in π. If a plane through l intersects B in a small minimal

blocking set, it has to be the one given in (2) of Result 1.6.11, as there are no

special points outside π. But even if all the planes through l (other than π)

would intersect B in small minimal blocking sets, we would reach contradiction

with Lemma 2.3.1, because counting the points of B in these planes would give

|B| > q4 + 3q3 + q3(q3 + q2). Thus, π ∩B has no (q + 1)-secants.

Let l 6⊂ π be a line meeting π in the point P ∈ π \ B. Assume |l ∩ B| > 1,

that is (as there are no special points outside π) |l ∩ B| = q + 1 or q2 + q + 1.

Let α be a plane on l, and let m := α ∩ π. If l is a (q + 1)-secant of B and

m a (q2 + q + 1)-secant, then the plane α meets B in more than q4 − q3 points,

because in a small minimal planar blocking set every (q + 1)-secant has to meet

the (q2 + q + 1)-secant in a point belonging to the set (see Result 1.6.11), but

P = l ∩m /∈ B. With similar arguments |α ∩B| > q4 − q3 if l is a (q + 1)-secant
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and m a (q2 + 1)-secant, and clearly |α∩B| > q4 − q3 if l is a (q2 + q + 1)-secant

and m a (q2 + 1)-secant or a (q2 + q + 1)-secant.

By Lemma 2.3.4, as l is a (q + 1)-secant or a (q2 + q + 1)-secant, then there are

less than 2q planes on l intersecting B in more than q4 − q3 points. By these

reasonings there are less than 2q lines on P meeting B ∩ π in more than one

point. As every line of π on P contains at most q2 + q + 1 points of B, we have

|B ∩ π| < q3 + 1 + 2q(q2 + q), but this is in contradiction with the lower bound

on |B ∩ π|.

Thus, for the point P ∈ π \B, all the lines through P , but not in π are tangents

to B, and this means that |B \ π| = q6, and so B is of Rédei type with π a Rédei

plane.

Corollary 2.3.9. If there is a line contained in B and a special point of B not

on this line, then B is a Rédei type blocking set.

Proof. If a plane contains a line of B and a special point of B not on the line,

then it contains at least q2(q3 +1)+1 points of B, because by (2) of Lemma 2.3.7

any line on a special point which intersects B in at least 2 points, has to intersect

it in at least q2 + 1 points.

The following is a technical lemma, which will be useful for us.

Lemma 2.3.10. Let P ∈ B be a non-special point and t a tangent on P . Denote

by N the number of planes on t which intersect B in the small minimal blocking

set of type (1) of Result 1.6.11 and M is the number of planes on t which intersect

B in a line. Suppose that M ≤ q and N ≤ q2. Then all the planes on t intersect

B in small minimal blocking sets and

|B| = (q3 + 1)(q3 + q2 + q) + 1−M(q2 + q)−Nq.

Proof. Having a plane on t which intersects B in more than q4− q3 points would

result in

|B| > q4 − q3 + q3(q3 + q2 + q) + 1− q(q2 + q)− q2q,

which is in contradiction with the bound of Lemma 2.3.1. Thus, |B| = N(q3 +

q2) +Mq3 + (q3 + 1−N −M)(q3 + q2 + q) + 1.

Lemma 2.3.11. At least one line is totally contained in B.
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Proof. Suppose on the contrary that there are no lines contained in B. Then

by Lemma 2.3.7(3), there can be at most one special point in B. Let P be a

nonspecial point of B and t a tangent on P . By Lemma 2.3.10,

|B| = (q3 + 1)(q3 + q2 + q)−Nq + 1,

where N ≤ 1 is the number of special points in B.

Now if N = 1, then let l be a (q + 1)-secant of B in a plane which intersects B

in the small minimal blocking set (1) of Result 1.6.11, while if N = 0 then let l

be any (q + 1)-secant of B. Counting the points of B in the planes on l yields

that one plane π has to intersect B in exactly q4 + q3 + q2 + q + 1 points. By

the choice of l, there is no special point in π. From this it follows, that there

are no (q2 + 1)-secants on π. There are no tangents on π either, because having

a tangent t would lead to a contradiction with Lemma 2.3.10 (with P := t ∩ B,

N ≤ 1, M = 0, and π ∩B not being a small minimal blocking set).

Thus, through a point of π not belonging to B there can be (q + 1)-secants or

(q2 + q + 1)-secants in π only. Denote by L the number of (q2 + q + 1)-secants in

π on a point Q ∈ π \B. We have:

|B ∩ π| = L(q2 + q + 1) + (q3 + 1− L)(q + 1),

from which L = 1. Now denote by K the number of (q2 + q + 1)-secants in π.

Double-counting the number of pairs (Q,m), Q ∈ π \B, m a (q2 + q + 1)-secant

on Q, we get:

(q6 + q3 + 1− |π ∩B|) · 1 = K · (q3 − q2 − q),

which has no integer solutions for K.

Proposition 2.3.12. If there are at least two lines contained in B, then B is of

Rédei type.

Proof. Any two lines totally contained in B must intersect, as two skew lines

would contradict Lemma 2.3.4(3). Let l1 and l2 be lines contained in B and let

P = l1 ∩ l2. If there is a special point in B \ {P} or if P is special and there are

further lines in B that are not on P , then by Corollary 2.3.9, B is of Rédei type.

Case 1: Suppose now that P is the only special point of B and all the lines of

B go through P . Let Q be any point on a line of B through P . From Lemma
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2.3.10,

|B| = (q3 + 1)(q3 + q2 + q) + 1− q2 − q.

Now let R be any point of B which is on a (q2 +1)-secant through P . Then again

from Lemma 2.3.10,

|B| = (q3 + 1)(q3 + q2 + q) + 1− q,

but this is a contradiction. Thus, there are no (q2 + 1)-secants through P , and

P is not a special point.

Case 2: Suppose now that there are no special points in B at all and again P =

l1∩l2, where l1 and l2 are lines contained in B. If there is a (q+1)- or a (q2+q+1)-

secant on P then by (1) and (2) of Lemma 2.3.4 we can find a (q+ 1)-secant l on

P which is not in the plane 〈l1, l2〉. As the planes 〈l, l1〉 and 〈l, l2〉 both contain at

least q4 +q3 +1 points of B, we have |B| ≥ 2(q4 +q3−q)+(q3−1)(q3 +q2)+q+1,

which is in contradiction with Lemma 2.3.1. Thus, there are no (q + 1)- or

(q2 + q+ 1)-secants on P and B has to be a cone with vertex P . The base of this

cone is a plane section of B, but from Lemma 2.3.1 |B| ≥ q3(q4 − q3) + 1 is not

possible. Thus, the base is a small minimal blocking set, which is either a line,

or a blocking set of type (2) of Result 1.6.11. This planar blocking set is of Rédei

type, and so the cone is of Rédei type also.

Proposition 2.3.13. B is either of Rédei type, or is a blocking set with the

following properties:

• |B| = q6 + q5 + q4 + q3 + 1;

• There is exactly one line l contained in B. There are q + 1 special points

in B and all are on the line l.

• On a nonspecial point of l there are tangents and (q + 1)-secants only. On

a special point of l there are tangents and (q2 + 1)-secants only.

• There are q2 +q+1 planes on l containing further points of B. These planes

meet B in q4 + q3 + 1 points.

• On a (q + 1)-secant meeting the line l, there is one plane meeting B in

q4 + q3 + 1 points (the plane on l), and all other planes intersect B in the

small minimal blocking set (2) of Result 1.6.11.
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Proof. By Lemma 2.3.11, Proposition 2.3.12 and Corollary 2.3.9, we can assume

that there is exactly one line l totally contained in B and all the special points of B

(if there are any) are on l. If there are at least 4q special points on l, then a plane

on l which contains further points of B will contain at least 4qq2+(q3+1−4q)q+1

points of B, and thus by Proposition 2.3.8, B is of Rédei type.

Suppose now, that the number of special points is less than 4q. Let P be any

non-special point of the line l containing the special points and let t be a tangent

of P such that the plane 〈t, l〉 intersects B in the points of l only. By Lemma

2.3.10,

|B| = q3(q3 + q2 + q) + q3 + 1.

Now let P be a point of B not on the line l, and t a tangent of P . Again by

Lemma 2.3.10, we have

|B| = (q3 + 1)(q3 + q2 + q)−Nq + 1,

with N the number of special points in B. From this N = q + 1.

Let π be a plane on the line l and containing further points of B. As there are q+1

special points on l, counting the points of B ∩ π on the lines through a point of

π∩B not on l we have: |B∩π| ≥ (q+1)q2+(q3−q)q+1. Counting the points of B in

the planes on any (q+1)-secant m of π, we have |B| ≥ q3(q3+q2)+|B∩π|, because

there are no special points outside π, and so the small sections on m can be of

type (2) of Result 1.6.11 only. From the size of B we have |B ∩ π| = q4 + q3 + 1,

and equality has to hold above. From this it is clear that a point of π \ l is

connected to the special points of l by (q2 + 1)-secants, and to the non-special

points by (q+1)-secants. It is also clear, that on a (q+1)-secant which intersects

l, all the planes not containing l will intersect B in the small minimal blocking

set (2) of Result 1.6.11. Counting the points of B in the planes on l, we see that

there are exactly q2 +q+1 planes containing q4 +q3 +1 points of B, and all other

planes meet B in l.

Remark 2.3.14. The blocking set with the properties above is not a Rédei type

blocking set. The Rédei plane would have to contain |B| − q6 = q5 + q4 + q3 + 1

points and (by the proof of Proposition 2.3.8) would have to contain all the

special points of B. But the planes containing the special points of B all contain

q4 + q3 + 1 points of B.
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Notation: Let V be the GF(q3)-vector space of rank 4 defining PG(3, q3). For a

line e we will use the notation eB := e ∩ B. Suppose that P is a point of B and

e1, . . . , es are lines on P such that all sets eBi are sublines isomorphic to PG(1, q).

Let v ∈ V be any vector representing P . Then V has a unique GF(q)-subspace

Vi of rank two containing v and representing exactly the points of eBi . Consider

the GF(q)-span of the vectors in V1 ∪ · · · ∪ Vs. The set of all points of PG(3, q3)

generated by vectors in this GF(q)-span will be denoted by 〈eB1 , . . . , eBs 〉q. Notice

that this definition does not depend on the choice of the vector v representing P :

using a vector v′ = λv with λ ∈ GF(q3), λ 6= 0, will result in the set of all points

of PG(3, q3) generated by the GF(q)-span of vectors in λV1 ∪ · · · ∪ λVs, which is

the same set. If the Vi subspaces are GF(q)-independent, then 〈eB1 , . . . , eBs 〉q is an

s-dimensional GF(q)-linear subspace.

Lemma 2.3.15. Suppose that B is as described in Proposition 2.3.13. Let P be

a point not on l and consider two (q+1)-secants l1 and l2 on P such that l1 meets

l. Then 〈lB1 , lB2 〉q is contained in B.

Proof. Case 1: l2 is skew to l. Then the plane 〈l1, l2〉 meets B in a small blocking

set and the assertion follows by inspection of the small blocking sets. Alterna-

tively, the small blocking set is GF(q)-linear, which also proves the claim.

Case 2: l2 meets l, that is the plane π = 〈l1, l2〉 contains l. Then E1 := l ∩ l1 and

E2 := l ∩ l2 are non-special points of l. It suffices to show for all points R ∈ lB2
that the set E1R∩ 〈lB1 , lB2 〉q is contained in B. This holds for R = P and R = E2

(because the line E1E2 = l is contained in B). Suppose therefore that R 6= P,E2.

As stated in Proposition 2.3.13, all planes on l2 other than π intersect B in small

minimal blocking sets (2) of Result 1.6.11. Thus, we can find a point E3 outside

π such that l3 := PE3 and E3R are (q + 1)-secants. By Proposition 2.3.13, the

line E1E3 is a (q + 1)-secant also.

From Case 1 we see that 〈lB1 , lB3 〉q is contained in B. As E1E3 contains the points

E1, E3 of this set, it follows that

(E3E1)B ⊆ 〈lB1 , lB3 〉q.

Similarly

(E3R)B ⊆ 〈lB2 , lB3 〉q and (E1R)B ⊆ 〈(E3E1)B, (E3R)B〉q.
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Hence (E1R)B ⊆ 〈lB1 , lB2 , lB3 〉q. As E1R is also contained in π, it follows that

(E1R)B ⊆ 〈lB1 , lB2 〉q.

Lemma 2.3.16. Let B be a point set with the properties given in Lemma 2.3.13.

Then B is a linear blocking set.

Proof. Let P be any point of B not on the line l containing the special points, and

let π be the plane on P and l. Take any two (q+1)-secants e1, e2 through P in π,

let E1 := e1 ∩ l and E2 := e2 ∩ l. By the previous lemma, we have 〈eB1 , eB2 〉q ⊆ B.

Let e3 be a third (q+ 1)-secant of π on P meeting the set 〈eB1 , eB2 〉q only in point

P , and let E3 := e3 ∩ l.

We will now prove that 〈eB1 , eB2 , eB3 〉q is also contained in B. Because of Lemma

2.3.15, 〈eB1 , eB3 〉q and 〈eB2 , eB3 〉q are contained in B, thus, for any point R ∈ eB3 it

is true that 〈eB1 , eB2 , eB3 〉q ∩ RE1 ⊆ RE1 ∩ B and 〈eB1 , eB2 , eB3 〉q ∩ RE2 ⊆ RE2 ∩
B. Equality holds, if and only if R /∈ l, because in this case RE1 and RE2

are (q + 1)-secants of B ∩ π. Applying Lemma 2.3.15 to R and the (q + 1)-

secants RE1 and RE2, we have that 〈(RE1)B, (RE2)B〉q ⊂ B. Every point of

〈eB1 , eB2 , eB3 〉q is contained in one of the sets 〈(RE1)B, (RE2)B〉q with R ∈ eB3 , and

thus 〈eB1 , eB2 , eB3 〉q ⊂ B follows.

With this we have found a 3-dimensional GF(q)-linear subspace containing P

and contained in B. The number of (q + 1)-secants a 3-dimensional subspace

can generate on a point is at most q2 + q + 1, but in π the number of (q + 1)-

secants on P is q3 − q (see Proposition 2.3.13) and thus there have to be further

(q+ 1)-secants of π on P . Take one and denote it by e4, and let E4 := e4 ∩ l. We

will prove 〈eB1 , eB2 , eB3 , eB4 〉q ⊂ B ∩ π. By Lemma 2.3.15 we have that 〈eB1 , eB4 〉q,
〈eB2 , eB4 〉q and 〈eB3 , eB4 〉q are contained in B. Thus, for any point R ∈ eB4 \ E4

the set 〈eB1 , eB2 , eB3 , eB4 〉q meets the lines RE1, RE2 and RE3 in the sets RE1 ∩B,

RE2∩B and RE3∩B respectively (these are all (q+1)-secants). Clearly from the

reasonings of the previous paragraph 〈(RE1)B, (RE2)B, (RE3)B〉q ⊂ B if R ∈ eB4 .

(Note that (RE3)B 6⊂ 〈(RE1)B, (RE2)B〉q, but we don’t need it in the proof.)

From this 〈eB1 , eB2 , eB3 , eB4 〉q ⊂ B ∩ π clearly follows.

The number of (q2 +1)-secants on P in π is q+1 and the number of (q+1)-secants

on P in π is q3 − q, thus the lines on P in π can contain at most (q3 − q) + (q +

1)(q + 1) sublines, and this proves 〈eB1 , eB2 , eB3 , eB4 〉q = B ∩ π.

Now let α be a plane on e1 different from π. By the properties of B, α ∩ B is
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the small minimal blocking set (2) of Result 1.6.11. This is a linear blocking set,

thus there are (q+ 1)-secants e5 and e6 on P such that 〈eB1 , eB5 , eB6 〉q = α∩B. We

will now prove that 〈eB1 , eB2 , eB3 , eB4 , eB5 , eB6 〉q ⊂ B.

There is exactly one (q2 + q + 1)-secant on α, and we may suppose that P is not

contained in it (if it were, then choose another point as P ). Thus, for any point

R ∈ α ∩ B the line PR is a (q + 1)-secant. By Lemma 2.3.15, 〈(PR)B, eBi 〉 ⊂ B

for all i = 1, . . . , 4 and all R ∈ α∩B, R 6= E1. Then the lines REi all meet the set

〈eB1 , eB2 , eB3 , eB4 , eB5 , eB6 〉q in exactly the points of REi ∩B, as these are all (q + 1)-

secants of B. We can apply the reasonings of the previous paragraphs of this proof

to R in place of P , and then we obtain 〈(RE1)B, (RE2)B, (RE3)B, (RE4)B, 〉q ⊂ B.

But from this 〈eB1 , eB2 , eB3 , eB4 , eB5 , eB6 〉q ⊂ B follows.

Thus, B contains a 6-dimensional GF(q)-linear subspace, in other words a pro-

jected PG(6, q) subgeometry. Such a projected subgeometry blocks all the lines

of PG(3, q3), and so if B contained further points, it would be in contradiction

with the minimality of B.

Proof of Theorem 2.1.1 for n = 3 and k = 1. In this section, through a series

of lemmas we proved the following theorem.

Theorem 2.3.17. Let B be a point set of PG(3, q3), q = ph, p ≥ 7 prime,

intersecting each line in 1 mod q points, and with size |B| < 3
2
(q3(n−1) + 1). Then

B is a linear blocking set.

Proof. Clearly by Result 1.6.7, B is a small minimal blocking set of PG(3, q3).

If 2|h and B has a (q3/2 + 1)-secant, then B is linear by Lemma 2.3.5. If B has

no (q3/2 + 1)-secants, then by Proposition 2.3.13, B is either a blocking set of

Rédei type, and thus linear by Result 1.6.4, or B is the blocking set described in

Lemma 2.3.13, and linear by Lemma 2.3.16.

40



2.4 Proof of Theorem 2.1.1 for k = 1, n ≥ 4

Throughout the section it will be assumed that B is a point set of PG(n, q3),

q = ph, 1 ≤ h, 7 ≤ p prime, and n ≥ 4. Furthermore, |B| < 3
2
(q3(n−1) + 1) and B

intersects every line of PG(n, q3) in 1 mod q points.

Our technique will be to prove that the plane sections of such point set are always

linear, and then prove the linearity of the whole set similarly as in Lemma 2.3.16.

For the size of B, we will again use an upper bound which follows from Result

1.6.9.

Lemma 2.4.1. |B| < q3(n−1) + q3(n−2)+2 + q3(n−2)+1 + 3q3(n−2).

Lemma 2.4.2. A 3-dimensional subspace of PG(n, q3) either intersects B in a

small minimal blocking set, or contains more than q7 − q6 points from B.

Proof. A 3-dimensional subspace has b := (q6 + 1)(q6 + q3 + 1) lines, and r :=

q6 + q3 + 1 lines on every point. With these values for b and r, equation (2.1)

in the proof of Lemma 2.3.2 remains true in our situation. As the right-hand

side of this equation is negative for x = 3
2
q6 + 1 and x = q7 − q6, the assertion

follows.

Corollary 2.4.3. On any plane of PG(n, q3) there has to be a 3-dimensional

subspace which intersects B in a small minimal blocking set.

Proof. If all 3-spaces on a plane π contained more than q7 − q6 points from B,

then counting the points of B in these 3-spaces would yield

|B| ≥ (q3(n−3) + q3(n−4) + · · ·+ 1)(q7 − q6 − |π ∩B|) + |π ∩B|,

which is in contradiction with Lemma 2.4.1, as |π ∩B| ≤ q6 + q3 + 1.

Corollary 2.4.4. Every plane π of PG(n, q3) intersects B in a linear point set.

Thus, π ∩B is either a line, a projected PG(m, q) subgeometry, with 3 ≤ m ≤ 8,

or a Baer subplane (then q is a square).

Proof. By Corollary 2.4.3, every plane π is contained in a 3-dimensional space

which intersects B in a small minimal blocking set. Theorem 2.3.17 proves that

the intersection is a linear point set, and thus π ∩B is also a linear point set.
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By Lemma 2.2.10, if π ∩ B is a GF(q)-linear blocking set of π, then it has to be

a projected PG(m, q), with 3 ≤ m ≤ 8. If π ∩ B is GF(q3/2)-linear, then it is a

Baer subplane.

Corollary 2.4.5. An arbitrary line intersects B in a linear point set of size 1,

q + 1, q2 + 1, q2 + q + 1, q3 + 1, or q3/2 + 1 (then q is a square).

In case 2|h we will now characterize the blocking sets which have a (q3/2 + 1)-

secant.

Lemma 2.4.6. If 2|h and B has a (q3/2 + 1)-secant, then B intersects every line

in 1 mod q3/2 points. In this case B is linear.

Proof. If B has a (q3/2 + 1)-secant m and a (q+ 1)-, a (q2 + 1)- or a (q2 + q+ 1)-

secant l, then these lines have to be skew by Corollary 2.4.4. Now for any points

P ∈ l \ B and Q ∈ m the line PQ has to be a tangent to B, as any other

intersection number would lead to contradiction. Thus, the plane 〈P,m〉 meets

B in q3 + 1 points which are not collinear, contradicting Corollary 2.4.4. This

proves that if B has a (q3/2 + 1)-secant, then B has no (q + 1)-, (q2 + 1)- or

(q2 + q + 1)- secants. B meets every line in 1 mod q3/2 points, and is linear by

Result 1.6.10.

Lemma 2.4.7. Suppose now that B has no (q3/2 + 1)-secants. If there is a

(q + 1)-secant on a point P ∈ B, then the number of (q + 1)-secants on P is at

least q3n−4 − q3n−6 .

Proof. Let l be a (q + 1)-secant on the point P ∈ B. By Corollary 2.4.4 and

Lemma 2.2.10, a plane on l meets B in a projected PG(3, q) or a projected

PG(4, q). In both cases P is an ordinary point by Corollary 2.2.3. In the first case

there are at least q2− 1 further (q+ 1)-secants on P (see Remark 1.6.12). In the

latter case there are at least q3−q further (q+1)-secants on P by Lemma 2.2.10(4).

Thus, in any plane on l there are at least q2− 1 further (q+ 1)-secants on P , and

the number of (q+1)-secants on P is at least (q2−1)(q3(n−2) +q3(n−3) + · · ·+1) ≥
q3n−4 − q3n−6.

We are now ready to prove the main theorem. We will again use the notation

〈eB1 , . . . , eBs 〉q given before Lemma 2.3.15.
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Theorem 2.4.8. Let B be a point set of PG(n, q3), q = ph, 1 ≤ h, 7 ≤ p prime,

n ≥ 4. Let |B| < 3
2
(q3(n−1) + 1) and assume that B intersects every line of

PG(n, q3) in 1 mod q points. Then B is a linear point set.

Proof. By Result 1.6.7, B is a minimal blocking set of PG(n, q3). If B is a

hyperplane, or B has a (q3/2 + 1)-secant, then B is a linear point set (Corollary

2.4.6).

Now we may assume that B has no (q3/2 + 1)-secants, and so by Corollary 2.4.4,

every plane meets B in a projected PG(m, q), with 3 ≤ m ≤ 8. If B has a (q2+1)-

or a (q2 + q + 1)-secant, then B has to have (q + 1)-secants also, or else all the

planes on such a secant would meet B in a projected PG(5, q), which would be

in contradiction with the size of B.

Let P ∈ B be a point on a (q + 1)-secant. By Lemma 2.4.7, there are many

(q+1)-secants on P . Let e and f be two (q+1)-secants of B meeting in the point

P . The plane 〈e, f〉 meets B in a projected PG(m, q) subgeometry, and P is an

ordinary point of 〈e, f〉∩B (Corollary 2.2.3). Thus, eB and fB are projections of

intersecting lines of PG(m, q). Then the subplane 〈eB, fB〉q generated by them is

the image of the plane of PG(m, q) generated by the pre-images, so 〈eB, fB〉q ⊂ B.

Now suppose that e1, e2, . . . , es are (q + 1)-secants through P ∈ B, such that

eBi /∈ 〈eB1 , . . . , eBi−1〉q for i = 2, . . . , s and 〈eB1 , . . . , eBs 〉q ⊂ B. If s < 3(n − 1)

then we can find further (q+ 1)-secants through P , as the subspace 〈eB1 , . . . , eBs 〉q
has at most qs−1 + qs−2 + · · · + 1 (q + 1)-secants through P , and from Lemma

2.4.7 there are more. Let es+1 be any further (q+ 1)-secant through P , such that

es+1 ∩ 〈eB1 , . . . , eBs 〉q = {P}.

Let Σ be a 3-dimensional GF(q)-linear subspace of 〈eB1 , . . . , eBs , eBs+1〉q containing

〈eB1 , eBs+1〉q. Σ meets 〈eB1 , . . . , eBs 〉q in a subplane on e1 which contains by Lemma

2.2.12 further lines fi (i = 1, . . . , q − 2) which are all (q + 1)-secants of B going

through P . From the reasonings above, the subplane 〈es+1, e1〉q and the subplanes

〈es+1, fi〉q are all contained in B. Suppose now that Q ∈ Σ is not on any of these

planes. Again by Lemma 2.2.12, among the q further GF(q)-linear subplanes on

the line PQ in Σ we can find a subplane which intersects two of the subplanes

〈es+1, fi〉q in sublines which are both (q + 1)-secants of B. Then the subplane

generated by these two (q + 1)-secants is contained in B and Q is an element of

this subplane.
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With this we have proved that any 3-dimensional GF(q)-linear subspace of the

subgeometry 〈eB1 , . . . , eBs , eBs+1〉q containing eB1 and eBs+1 is contained in B, thus

〈eB1 , . . . , eBs , eBs+1〉q is contained in B.

From this it is clear that B contains a projected PG(3(n − 1), q) subgeometry.

This projected subgeometry is a blocking set of PG(n, q3), and so it is equal to

B by the minimality of B.
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2.5 Proof of Theorem 2.1.1 for 1 < k < n, n ≥ 3

The strategy used in the previous two sections was to prove that every plane

section of the blocking set B is a linear point set, find a point P with many

(q + 1)-secants on it, and then ’build’ a linear point set in B. This last case

(k ≥ 2, n ≥ 3) can also be proved this way, but now we present a different

method. We will project the blocking set B into a hyperplane, use induction on

k to represent the projected set B′ in the hyperplane as a linear set, and finally

lift the linear structure back to B. In [29] Lavrauw, Storme and Van de Voorde

present a third method to solve the same problem.

Our methods have the advantage that one needs to study only the plane sections

of the blocking set. There is hope that these techniques may be generalized in

order to help solving similar problems. For example in the classification of small

blocking sets in PG(n, qh) for h > 3, or even in the classification of sets of points

in PG(n, qh) that meet every plane in a linear set.

Throughout this section it will be assumed that B is a point set of PG(n, q3), with

q = ph, 1 ≤ h, 7 ≤ p prime and 2 ≤ k ≤ n − 1, meeting all k-subspaces in

1 mod q points and |B| < 3
2
(q3(n−k) + 1).

We will be using the fact that every subspace of PG(n, q3) that meets B, meets

it in 1 mod q points by Result 1.6.7.

Lemma 2.5.1. If U is a point not in B, then projecting B from U into a hyper-

plane H produces a small minimal blocking set B′ of H with respect to (k − 1)-

subspaces. If B′ is a subspace, then B is a linear blocking set.

Proof. As B meets all k-subspaces, so B′ meets all (k−1)-subspaces of H. Every

subspace that meets B meets it in 1 mod q points, so the same is true for B′.

Result 1.6.7 implies that B′ is a minimal (n− k)-blocking set of H.

Assume that B′ is a subspace Σ of H. Then Σ has dimension n − k, and the

subspace 〈U,Σ〉 of dimension n−k+1 contains B. As B meets every k-subspace,

it follows that B meets every line of 〈U,Σ〉. The case k = 1 being handled in the

previous section, it follows that B is linear.

Lemma 2.5.2. Let T be a (t − 1)-dimensional subspace meeting B in at least

qr points, with 2r an integer. If r > 3(t − k) − 1, then there is a t-dimensional

subspace on T meeting B in the points T ∩B only.
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Proof. Assume that this is not true. Every line that meets B in 2 points, meets

it in at least q + 1 points. Thus, every t-dimensional subspace on T contains at

least qr(q − 1) + 1 points of B outside T ∩ B. The number of t-subspaces on T

is more than q3(n−t), and thus: 3
2
(q3(n−k) + 1) > |B| > q3(n−t)(q − 1)qr, which is a

contradiction if r + 1 > 3(t− k) and q ≥ 7.

Lemma 2.5.3. Every line meets B in a linear point set. Let S = {1, q + 1, q2 +

1, q2 + q + 1, q3 + 1}, and T = {1, q3/2 + 1, q3 + 1}. Then either for all lines l of

PG(n, q3) it is true that |l∩B| ∈ S or for all lines |l∩B| ∈ T . In the latter case

B is linear.

Proof. We will prove this by induction on k. The case k = 1 is proved in Corollary

2.4.5 and Lemma 2.4.6. By Lemma 2.5.2, on any line l such that |l ∩B| ≥ q + 1,

we can find a plane π such that π∩B = l∩B. Projecting B from a point U ∈ π\l,
the resulting point set is a blocking set with respect to (k− 1)-spaces and having

an |l ∩ B|-secant. By the induction hypothesis l ∩ B is a linear point set, and

|l ∩B| ∈ S ∪ T .

Assume that there exist intersecting lines s and t such that |t∩B| = q3/2 + 1 and

|s∩B| ∈ S \ T . By the 1 mod q property of B, we have |〈s, t〉 ∩B| ≥ (q3/2 + 1)q,

and so we can use Lemma 2.5.2 to find a 3-dimensional subspace on 〈s, t〉 which

meets B in the points B ∩ 〈s, t〉 only. Projecting B from a point of this 3-space

not on 〈s, t〉 results in a blocking set of H with respect to (k − 1)-spaces of H

and having an |s ∩B|-secant and a |t ∩B|-secant, which is in contradiction with

the induction hypothesis.

Now assume that there are lines s and t such that |t∩B| = q3/2 + 1 and |s∩B| ∈
S \T , but only skew lines s, t have these intersection numbers. Then all the lines

connecting points of s ∩ B and t ∩ B have to be contained in B. Thus, in the

3-space generated by s and t there are more than (q3/2 +1)(q+1)(q3−1) points of

B. Using Lemma 2.5.2 we find a 4-space on 〈s, t〉 which intersects B in the points

of 〈s, t〉 ∩ B only. Projecting B from a point of this 4-space not on 〈s, t〉 results

in a blocking set with respect to (k− 1)-spaces and having an |s∩B|-secant and

a |t ∩B|-secant, which is in contradiction to the induction hypothesis.

If B meets all lines in 1 mod q3/2 points, then B meets all k-spaces in 1 mod q3/2

points, and is linear by Result 1.6.10.

For the rest of this section we will assume that B has no (q3/2 + 1)-secants, so all
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lines intersect B in a linear set of 1, q+ 1, q2 + 1, q2 + q+ 1 or q3 + 1 points. Also,

for the rest of the section we fix a point U not in B and a hyperplane H not on U

and consider the projection B′ of B into H. In view of the preceding lemmas and

the induction hypothesis, we may assume that B′ is a linear minimal blocking set,

a projected PG(3(n − k), q) subgeometry and that B′ is not a subspace. Recall

that a point P of a linear point set is ordinary, it is the projection of one point

only.

Lemma 2.5.4. Every ordinary point P ′ of B′ is the projection of only one point

of B.

Proof. As every line meets B in no point or in 1 mod q points, every point of B′ is

the image of exactly one or at least q+ 1 points of B. Suppose that the ordinary

point P ′ is the projection of x ≥ q+1 points of B. By Lemma 2.2.14, the number

of (q + 1)-secants of B′ on P ′ is at least q3(n−k)−1 − q3(n−k−1). The number of

points of B that are projected onto a point Q′ ∈ B′, which is connected to P ′ by

a (q + 1)-secant is at least x. To prove this, assume that Pi ∈ B, i = 1, . . . , x

are the points projected onto P ′ and R ∈ B, R 6= Pi is a point projected onto

the (q + 1)-secant connecting P ′ with Q′. Then the lines RPi are all (q + 1)-

secants of B, which have to meet the line 〈Q′, U〉 in a point of B. This proves

|B| ≥ (q3(n−k)−1 − q3(n−k)−3)qx, which leads to a contradiction with the upper

bound on |B|. Hence x = 1.

Lemma 2.5.5. If a line l′ meets B′ in a PG(1, q), then the plane 〈l′, U〉 meets

B in a PG(1, q).

Proof. By Corollary 2.2.3, the points of l′∩B′ are ordinary and then the previous

lemma shows that the plane 〈l′, U〉 meets B in exactly q+ 1 points. The 1 mod q

property proves that they have to be collinear and thus form a PG(1, q).

Lemma 2.5.6. Let l′ be a line of H such that the points of B in the plane

τ := 〈l′, U〉 are not collinear.

(a) If l′ meets B′ in a projected PG(2, q), then τ meets B in a PG(2, q).

(b) If the line l′ meets B′ in a projected PG(3, q), then τ meets B in a projected

PG(3, q).
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Proof. (a) If |l′ ∩B′| = q2 + q + 1, then by Lemma 2.2.2, all points of l′ ∩B′ are

ordinary, so |τ∩B| = q2 +q+1 by Lemma 2.5.4. The 1 mod q result for B implies

that τ ∩B is a projective plane of order q, an embedded PG(2, q) subplane. The

other possibility is that |l′∩B′| = q2 + 1 and that q2 points of l′∩B′ are ordinary

and one point S ′ ∈ B′ is not. Then the plane 〈l′, U〉 meets B in x + q2 points,

where x is the number of points of B on the line US ′. In view of the 1 mod q

result for B, we see that B ∩ 〈l′, U〉 must have at least xq + 1 points. From

x+ q2 = |B∩〈l′, U〉| ≥ xq+ 1 it follows that x ≤ q+ 1. The 1 mod q result shows

therefore that x = q + 1 and that the plane 〈l′, U〉 meets B in a PG(2, q).

(b) In this case, every point of l′ lies in B′ and so |τ ∩ B| ≥ q3 + 1. By Lemma

2.5.2, we can find a 3-space Σ on τ which meets B only in points of τ . Choose

a point in Σ \ τ and project B from this point into a hyperplane. From Lemma

2.5.1 and the induction hypothesis we have that this gives a projected PG(m, q).

The image of the plane τ meets this projected PG(m, q) in a projected PG(t, q)

for some t, and thus τ meets B in a projected PG(t, q). We have to show that

t = 3. On the line l′ we have a projected PG(3, q) and this has ordinary points

X ′. The corresponding lines UX meet B then in only one point. This implies

that t ≤ 3, since for t > 3 a projected PG(t, q) in a plane meets every line of that

plane in more than one point (Lemma 1.3.3). As |τ ∩B| ≥ |l′| = q3 + 1, we have

t = 3.

Notation. Let W be the vector space of rank n + 1 over GF(q3) defining

PG(n, q3). As B′ is a projected PG(3(n − k), q) subgeometry, there exists a

GF(q)-subspace V ′ of W of rank 3(n− k) + 1 such that B′ consists of the points

which are represented by vectors 0 6= v′ ∈ V ′; also a point of B′ is represented

by a subspace of GF(q)-rank s + 1 of V ′ if and only if it meets B′ a projected

PG(s, q).

For the remaining of this section we will use the following notation: for any vector

0 6= v ∈ W , the point of PG(n, q3) represented by this vector will be denoted by

〈v〉.

Let u ∈ W with U = 〈u〉, and define V to be the set of all vectors v ∈ W with

the following properties

• v = v′ + λu with λ ∈ GF(q3) and 0 6= v′ ∈ V ′,
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• 〈v〉 is a point of B, and

• 〈v〉 projects from U to an ordinary point of B′ (which is 〈v′〉).

We also put

V̄ := {v + w | v, w ∈ V ∪ {0}}

As V ′ is GF(q)-homogeneous, the same is true for V and V̄ . We shall show that

V̄ is a GF(q)-subspace of W representing exactly the points of B. We start by

showing that the vectors 6= 0 in V̄ represent points of B. For this, the following

notation is convenient.

Notation. A line h′ of H will be called suitable, if it has the property that the

point 〈v+w〉 lies in B for any two vectors v, w ∈ V that represent distinct points

〈v〉, 〈w〉 in the plane 〈h′, U〉.

It will be showed in the next two lemmas that all lines of H are suitable.

Remark. Notice that 〈v + w〉 ∈ B is trivial, if v and w represent the same

point, since v = v′ + λu and w = w′ + µu with v′, w′ ∈ V ′ and λ, µ ∈ GF(q3)

implies v + w = (v′ + w′) + (λ + µ)u (notice that v′ + w′ represents a point of

B′ by the definition of V ′). Therefore we will consider only the case when v and

w represent different points, which implies that their projections to B′ are also

different (because v, w ∈ V implies by definition that 〈v′〉 and 〈w′〉 are ordinary

points and thus the projection of a unique point of B).

Lemma 2.5.7. Let l′ be a line of H and suppose that the points of B in the plane

〈l′, U〉 are collinear. Then l′ is suitable.

Proof. Consider two different points 〈v〉 and 〈w〉 with v, w ∈ V of the plane 〈l′, U〉
and write v = v′+λu and w = w′+µu with v′, w′ ∈ V ′ and λ, µ ∈ GF(q3). Then

the line on 〈v + w〉 and U meets l′ in the point 〈v′ + w′〉. As v′, w′ ∈ V ′, then

v′ + w′ ∈ V ′ and hence X ′ := 〈v′ + w′〉 ∈ B′. Thus, the line on this point and U

meets B in a point X. But as the points of B in the plane 〈l′, U〉 are collinear,

X is the intersection of the line on 〈v〉 and 〈w〉 with X ′U , so X = 〈v + w〉. This

shows that 〈v + w〉 ∈ B.

Lemma 2.5.8. All lines of H are suitable.
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Proof. This is trivial for lines of H meeting B′ in at most one point. Thus, it

suffices to consider lines l′ of H that meet B′ in at least two points, so they meet

B′ in a projected PG(s, q) with s ≥ 1. If s ≥ 4, then l′ does not contain ordinary

points and then there is nothing to show. Notice that |l′∩B| can be q+ 1, q2 + 1,

q2 +q+1 or q3 +1. We handle these cases separately. We always use the following

technique.

Technique. Assume that v′, w′ ∈ V ′ represent ordinary points of l′ and let the

vectors v = v′ + λu and w = w′ + µu of V represent the points of B that are

projected to these. We use a point T ′ = 〈t′〉 ∈ B′, with T ′ /∈ l′ and t′ ∈ V ′, and

the points R′ = 〈v′+ t′〉 and S ′ = 〈w′− t′〉 of B′. We shall choose t′ in such a way

that R′, S ′, T ′ will be ordinary points, and that the three lines R′S ′, R′T ′, S ′T ′

are already known to be suitable. Then we consider the pre-images T,R, S under

the projection from U , and write T = 〈t〉 with t = t′ + νu. As RT and ST are

suitable, then r := v + t and s := v− t are vectors of V . Thus, r and s represent

the points of B projecting to R′ and S ′. As the line RS is suitable, it follows that

r + s = v + w lies in V and we are done.

(1) |l′∩B| = q+1. It follows from Lemmas 2.5.5 and 2.5.7 that all (q+1)-secants

of B′ are suitable.

(2) |l′ ∩ B| = q2 + q + 1. By Lemma 2.2.13, there exists a plane π′ in H on l′

such that π′ ∩ B′ is a projected PG(3, q). Then all lines other than l′ of π′

meet B′ in one or q+ 1 points, so all lines other than l′ of π′ are suitable by

(1). All points of π′ ∩B′ are ordinary by Lemma 2.2.3 and Corollary 2.2.2.

Thus, the above technique applies and shows that 〈v + w〉 ∈ B. Hence, all

lines meeting B′ in q2 + q + 1 points are suitable.

(3) |l′∩B′| = q2 +1. In view of Lemma 2.5.7, we may assume that the points of

B in the plane 〈U, l′〉 are not collinear, so that these points form a PG(2, q)

by Lemma 2.5.6.

As in (2), there exists a plane π′ on l′ meeting B′ in a projected PG(3, q)

subgeometry. See Remark 1.6.12 that π′ ∩ B′ has a unique non-ordinary

(special) point N ′, and every line of π′ on N ′ is either a tangent, or a (q2+1)-

secant of B′, while all lines of π′ that do not pass through N ′ are either

tangents, or meet B′ in a PG(1, q). Clearly, N ′ ∈ l′. As the (q + 1)-secants

are suitable by (1), the general technique therefore shows the following.
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If v, w ∈ V such that the points 〈v〉 and 〈w〉 project to distinct ordinary

points of l′∩B′ and such that 〈v+w〉 does not project to N ′, then 〈v+w〉 ∈
B. As λw also represents 〈w〉, we see that 〈v+λw〉 ∈ B for all except exactly

one value λ of GF(q) \ {0}. If we now take three non-collinear points 〈v〉,
〈w〉 and 〈t〉 of 〈l′, U〉 that project to ordinary points of l′∩B′, then it follows

that the subplane PG(2, q) obtained from the GF(q)-linear combinations of

v, w, t shares at least q2 points with the subplane 〈l′, U〉 ∩ B. Then clearly

both subplanes are equal (q ≥ 3), and thus, 〈v+λw〉 ∈ B for all λ ∈ GF(q).

Hence, 〈v + w〉 ∈ B.

We have shown that all (q2 + 1)-secants are suitable.

(4) |l′ ∩B′| = q3 + 1 and l′ meets B in a projected PG(3, q). In view of Lemma

2.5.7, we may assume that the points of B in the plane 〈U, l′〉 are not

collinear, so that these points form a projected PG(3, q) by Lemma 2.5.6.

As l′ ∩ B′ is a projected PG(3, q), then by Lemma 2.2.13 l′ lies in a plane

π′ meeting B′ in a projected PG(4, q). Then all points of B′ in π′ \ l′ are

ordinary. There are two possibilities.

The first is that π′ has q+1 non-ordinary (special) points. In this case, l′ is

the only line of π′ contained in B. Hence, all other lines of π′ are suitable

and the general technique can be used to show that l′ is suitable.

The second possibility is that π′ has a unique non-ordinary point N ′ (a

superspecial point). In this case, N ′ lies on q+1 lines of π′ that are contained

in B′, and all lines of π′ that do not pass through N ′ are (q + 1)-secants

and hence suitable. The general technique therefore shows the following.

If v, w ∈ V such that the points 〈v〉 and 〈w〉 project to distinct ordinary

points of l′∩B′ and such that 〈v+w〉 does not project to N ′, then 〈v+w〉 ∈
B. As λw also represents 〈w〉, we see that 〈v+λw〉 ∈ B for all except exactly

one value λ of GF(q) \ {0}.

As the points of B in the plane 〈l′, U〉 form a projected PG(3, q), we find

four points 〈vi〉, 1 ≤ i ≤ 4 of 〈l′, U〉 ∩ B that project to ordinary points of

l′ ∩ B′, where v1, v2, v3, v4 ∈ V are GF(q)-independent. Then the GF(q)-

linear combinations of the vi define a projected PG(3, q) in the plane 〈l′, U〉.
Our arguments show that this shares at least q3 points with the projected

PG(3, q) that is formed by the points of B in 〈l′, U〉. Hence, both projected
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PG(3, q) subgeometries are equal and thus, 〈v+λw〉 ∈ B for all λ ∈ GF(q).

Hence, 〈v + w〉 ∈ B.

Proposition 2.5.9. Every vector 6= 0 of V̄ represents a point of B.

Proof. This means for any v, w ∈ V with v +w 6= 0 that 〈v +w〉 is a point of B.

This is clear, if v and w represent the same point. For different points, it follows

from the fact that all lines are suitable.

Lemma 2.5.10. V̄ is closed under addition.

Proof. It suffices to consider v, w, t ∈ V and show that v + w + t ∈ V̄ .

Case 1: If two of the vectors, say v and w represent the same point of B, then we

have v = v′+ λvu and w = w′+ λwu with w′ being a GF(q) multiple of v′. Thus,

either v + w = 0 or v + w = v′ + w′ + (λv + λw)u = (1 + λ)v′ + (λv + λw)u ∈ V
by the definition of V . In both cases v + w + t ∈ V̄ , also by definition.

Case 2: We may suppose now that the points v, w, t ∈ V represent different points

of B. We have v = v′+λvu and w = w′+λwu and t = t′+λtu with v′, w′, t′ ∈ V ′

and λv, λw, λt ∈ GF(q3). Then v′, w′ and t′ represent ordinary points of B′. The

two points v and t define a subline with points t and v + λt, λ ∈ GF(q). So the

point v′ + λt′ is not ordinary for at most two values λ 6= 0, 1, see Lemma 2.2.9.

Similarly, the point w′+ (1− λ)t′ is not ordinary for at most two values λ 6= 0, 1.

As q ≥ 7, we find 0, 1 6= λ ∈ GF(q) such that v′+λt′ and w′+(1−λ)t′ correspond

to ordinary points of B′. They are projected from the points of B belonging to

the vectors v + λt and w + (1 − λ)t; notice that these vectors represent in fact

points of B, as v, w, λt, (1− λ)t ∈ V (Proposition 2.5.9). Hence, v + λt ∈ V and

w + (1− λ)t ∈ V , so their sum v + w + t is in V̄ .

Lemma 2.5.11. The GF(q)-vector space V̄ represents exactly the points of B.

Proof. We already know that V̄ is a GF(q)-vector space and that all its vectors

represent points in B. Let P = 〈v〉 be any point of B with v ∈ V , and let P ′

be its projection to B′. Then the number of (q + 1)-secants to B′ on the point

P ′ is at least q3(n−k)−1 − q3(n−k)−3 by Lemma 2.2.14. The points on these lines

are ordinary points of B′ (Corollary 2.2.3) and thus project from exactly one

point of B (Lemma 2.5.4); by definition, these are represented by vectors of V .

It follows that V represents at least q3(n−k)− q3(n−k)−2 points of B, and so V̄ has
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rank at least 3(n− k) + 1. But such a vector space represents a blocking set with

respect to k-spaces, and so has to represent exactly the points of B, because of

the minimality of B.

Thus, we have proved that B is a linear point set, which proves Theorem 2.1.1

for 2 ≤ k ≤ n− 1 and n ≥ 3.

2.6 Blocking sets PG(6, q) in PG(n, q3)

In the previous sections we proved that all small minimal (n−k)-blocking sets of

PG(n, q3), q = ph, 1 ≤ h, 7 ≤ p prime, with size in the interval [θn−k, uq3(n, k, h)]

are linear.

For n − k = 1 this means that such a blocking set is either a line, a projected

PG(3, q) subgeometry, or an embedded PG(2, q3/2) subgeometry, if q is a square.

These are all well-known sets: an embedded PG(2, q3/2) subgeometry is a Baer

subplane, while a projected PG(3, q) subgeometry can either be a PG(3, q) sub-

geometry embedded in a 3-space of PG(n, q3) or one of the planar blocking sets

described in Result 1.6.11, contained in a plane of PG(n, q3).

If n − k = 2, then our result shows that a small minimal 2-blocking set of

PG(n, q3), n ≥ 3, with size in the given interval is either a plane, a projected

PG(6, q) subgeometry, or a projected PG(4, q3/2) subgeometry, if q is a square.

Simple calculations reveal that a projected PG(4, q3/2) subgeometry is either an

embedded PG(4, q3/2) subgeometry (n ≥ 4), or a cone with base a Baer-subplane,

vertex a point. The situation is much more interesting in the case of projected

PG(6, q) subgeometries. In this section we will give a complete classification of

the projections of PG(6, q) into PG(3, q3). This classification is of special interest,

because one case will lead to a linear blocking set which is not of Rédei type, and

the existence of such a set was not known for some time.

As for n−k ≥ 3: the projected PG(2(n−k), q3/2) subgeometries are again either

embedded subgeometries or cones (see [47]), and the projected PG(3(n − k), q)

subgeometries can be examined with the techniques of this section, but with the

growth of n− k the number of cases to be examined increases.
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Notation. Consider a PG(m, q) subgeometry embedded in PG(m, q3). Recall

that for every subspace S of PG(m, q), we call the subspace of PG(m, q3) gener-

ated by the points of S the extension of S. For every subspace U of PG(m, q3)

consider the smallest subspace of PG(m, q) whose extension contains U ; this is the

meet of all subspaces whose extension contains U . We will denote this subspace

by S(U).

For a point P , the dimension of S(P ) can be 0, 1 or 2, and clearly dimS(P ) = 0

if and only if P is a point of PG(m, q). A point of PG(m, q3) will be called a

stabbing point, if dimS(P ) = 1. These are the points on the extensions of the

lines of PG(m, q) which are not in PG(m, q).

Note that if P1, P2, . . . , Pk are points generating the subspace U , then S(U) =

〈S(P1), . . . , S(Pk)〉. The next lemma follows from this fact, but it can also be

easily seen algebraically.

Lemma 2.6.1. For any subspace U of PG(m, q3)

dimS(U) ≤ 3 dim(U) + 2.

Lemma 2.6.2. Consider PG(m, q) embedded in PG(m, q3), m ≥ 4. If the line l

of PG(m, q3) is disjoint from PG(m, q), then the number of stabbing points on l

is 0, 1, q + 1, or q2 + q + 1, with dimS(l) being 5, 4, 3 or 2 respectively.

Proof. By Lemma 2.6.1, 2 ≤ dimS(l) ≤ 5.

If dimS(l) = 5, then for any two points P,Q of l we have S(l) = 〈S(P ), S(Q)〉
and thus, dimS(P ) = dimS(Q) = 2. This is true for any point of l. Hence, in

this case l has no stabbing point.

If S(l) is a plane, then the q2 + q+ 1 lines of this plane all meet l and therefore l

has q2 + q + 1 stabbing points.

When dimS(l) = 3, then the extension of S(l) is a solid on l. The q3 + 1 planes

on l of this solid all meet S(l) (see Lemma 1.3.3) and thus provide a partition of

S(l) in q3 +1 parts. Clearly every part is a line or a point, so a counting argument

shows that exactly q+ 1 planes meet S(l) in lines, and and q3− q meet S(l) only

in points. The extensions of these q+ 1 lines will be meeting l in different points,

and thus the number of stabbing points is q + 1.
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The last case to consider is dimS(l) = 4. First select a plane π on the line l, such

that π is contained in e(S(l)), the extension of S(l), but disjoint from S(l). We

can select such a plane, since e(S(l)) is a 4-dimensional subspace of PG(m, q3),

so l lies in q6 + q3 + 1 planes contained in this subspace, which is more than the

number of points of S(l), which is a 4-dimensional subspace of PG(m, q). By

Lemma 1.3.3 dimS(π) ≥ 4, so dimS(π) = 4.

Again by Lemma 1.3.3, each 3-space on π contained by e(S(l)) meets S(l) in at

least a line. Then counting the intersection of these q3 + 1 solids with S(l) shows

that exactly one of these intersections is a plane while all other intersections are

lines. This implies that π has a line h containing q2 + q + 1 stabbing points

(dim(S(h)) = 2) and q3 further stabbing points not on h.

Now we prove that these q3 + q2 + q+ 1 stabbing points form a minimal blocking

set in π. Suppose that g is a line of π which contains no stabbing points. Then

P = h∩ g is not a stabbing point. Consider the q3− 1 lines of π on P other than

h and g. One of them, say f has to contain at least 2 stabbing points by the

pigeonhole principle. Then dimS(f) = 3, because if Q1 and Q2 are the stabbing

points, then S(Q1) and S(Q2) are skew lines, and S(f) = 〈S(Q1), S(Q2)〉. But

then dim〈S(f), S(h)〉 = 4 implies that dimS(P ) = dimS(h ∩ f) = dim(S(h) ∩
S(f)) = 1. This is a contradiction.

Lemma 2.6.3. Consider PG(m, q) embedded in PG(m, q3), m ≥ 6. There are

six types of planes in PG(m, q3), skew to the embedded PG(m, q), and they have

the following properties:

(1) dimS(π) = 4, and there are q3 +q2 +q+1 stabbing points on π, which form

a blocking set of type (2) of Result 1.6.11.

(2) dimS(π) = 5, and there are q2 + q + 1 collinear stabbing points on π.

(3) dimS(π) = 5, and there are q2 + q + 1 stabbing points on π, which form a

PG(2, q).

(4) dimS(π) = 6, and there are q + 1 collinear stabbing points on π.

(5) dimS(π) = 7, and there is 1 stabbing point on π.

(6) dimS(π) = 8, and there are no stabbing points on π.
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Proof. As π is disjoint from PG(m, q), then Lemma 1.3.3 shows that dimS(π) ≥
4. The case dimS(π) = 4 follows from Result 1.6.11 and the last case of the proof

of Lemma 2.6.2.

We may thus assume that dimS(π) ≥ 5.

We will first show that π has a line l with dimS(l) = 5. Assume that this is not

true. Then, by Lemma 2.6.2, the stabbing points in π form a blocking set. If

there is a line m containing q2 + q + 1 stabbing points, then dimS(m) = 2 and

with P /∈ m a stabbing point of π we have dimS(π) = dim〈S(m), S(P )〉 ≤ 4,

a contradiction. Thus, every line of π has 1 or q + 1 stabbing points. But it is

easy to see that PG(2, q3) has no point-set meeting every line in 1 or q+1 points.

This is a contradiction.

Hence, π has a line l with dimS(l) = 5, which means that there are no stabbing

points on l. The planes S(P ) with P ∈ l are mutually skew planes, which form

a plane-spread of S(l). Let Q ∈ π \ l be a point with dimS(Q) = 2. For any

point P ∈ l the line PQ contains 0, 1, q + 1 or q2 + q + 1 stabbing points, which

is equivalent to dimS(PQ) being 5, 4, 3 or 2 respectively, which is equivalent to

dim(S(P ) ∩ S(Q)) being -1, 0, 1 or 2 respectively (see Lemma 2.6.2). Thus, the

number of stabbing points on the line PQ is equal to the number of points in

S(P ) ∩ S(Q). As the S(P ) with P ∈ l partition S(l), it follows that the number

of stabbing points in π is equal to |S(l)∩S(Q)|. This is q2 +q+1 if dimS(π) = 5,

q + 1 if dimS(π) = 6, 1 if dimS(π) = 7, and 0 if dimS(π) = 8.

The proposition follows from this, as q2 + q+ 1 or q+ 1 points meeting every line

in 0, 1, q + 1 or q2 + q + 1 points have to form one of the sets given in (2), (3) or

(4).

Now let us examine the projected PG(6, q) subgeometries of PG(3, q3). Consider

PG(6, q) embedded in PG(6, q3) as a subgeometry, and let the plane π be the

vertex of the projection. A point, a line, or a plane of PG(3, q3) corresponds to

a 3-space, a 4-space or a 5-space on π respectively. Clearly the structure of the

resulting point set depends only on the relation of the PG(6, q) subgeometry and

the vertex of the projection.

Lemma 2.6.4. There are four types of projected PG(6, q) subgeometries in PG(3, q3),

which have the following properties:
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number of points Rédei cone

(1) q6 + q5 + q3 + 1 yes yes

(2) q6 + q5 + q4 + q3 + 1 yes yes

(3) q6 + q5 + q4 + 1 yes no

(4) q6 + q5 + q4 + q3 + 1 no no

Proof. First observe that dimS(π) ≤ 6. Clearly the projection is of Rédei type,

if and only if dimS(π) ≤ 5, because then we can find a 5-space on π meeting the

PG(6, q) in a 5-dimensional subspace. Then every point of PG(6, q) \ PG(5, q) is

projected once, which is equivalent to PG(3, q3) having a plane which contains

all but q6 points of the projection.

The projection is a cone if and only if it has a point having a PG(2, q) projected

onto it. (see Corollaries 2.2.4 and 2.2.5 and Lemma 2.2.13(a)). This is equivalent

to PG(6, q) having a plane whose extension meets π in a line, which is equivalent

to π having a line containing (q2 + q + 1) stabbing points.

(1) Suppose that π has properties as in (1) of Lemma 2.6.3. As dimS(π) = 4,

then all the points of S(π) are projected onto a line, that is onto q3+1 points,

which gives the number of points stated in (1). Clearly the projection will

be of Rédei type and a cone.

(2) Suppose now that π has properties as in (2) of Lemma 2.6.3. Clearly the

projection is of Rédei type and a cone. It has one point having a PG(2, q)

projected onto it, and all other points are ordinary. From this the number

of points of the projection is clear.

(3) Assume that π has properties as in (3) of Lemma 2.6.3. The projection will

be of Rédei type, but not a cone. For the stabbing points P ∈ π, the lines

S(P ) are all skew, and every 3-space on π can contain at most one (or else

a 3-space on π would meet the PG(6, q) subgeometry in a PG(3, q), which

is impossible by Lemma 1.3.3). From this the number of the points of the

projection is clearly q6 + q5 + · · ·+ 1− (q2 + q + 1)q.

(4) Assume that π has properties as in (4) of Lemma 2.6.3. For m the only line

of π containing stabbing points, S(m) is projected onto a line, and thus the

given number of points in the projection follows. The projection will not

be of Rédei type and it will not be a cone.
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Some more properties of these sets:

The sets given in (1) and (2) are the cones with base the plane blocking sets

described in (1) and (2) of Result 1.6.11.

The set given in (3) has a Rédei plane in which the special points form a PG(2, q)

subgeometry, and the lines of this PG(2, q) subgeometry are all lines contained

in B. A line of the Rédei plane either meets the set in q2 + q+ 1 points (if it does

not contain a special point), in q2 + 1 point (if it contains one special point) or

in q3 + 1 points (if it contains q + 1 special points). Every line not in the Rédei

plane can meet the set in 1, q + 1 or q2 + 1 points.

The properties of the set given in (4) can be found in Lemma 2.3.13. It contains

a unique line l. There are q + 1 non-ordinary points on l, all other points of the

set are ordinary. Every point not on l is connected to the ordinary points of l

by (q + 1)-secants, and to the non-ordinary points of l by (q2 + 1)-secants. This

example is of special interest, because the existence of linear blocking sets that

are not of Rédei type were unknown for some time.

In [4] a different construction was given for finding the vertex of projection for this

last linear blocking set. For the sake of completeness, we include this construction

also.

Construction 2.6.5. Let PG(6, q) be embedded in PG(6, q3) as a subgeometry.

Suppose that Σ = PG(3, q) is a 3-dimensional subspace of the embedded sub-

geometry, denote by e(Σ) the extension of Σ. Let R be a regulus of Σ. The

extensions of the lines of R are elements of a regulus R∗ of e(Σ). Let v be a line

of the opposite regulus of R∗ such that v is skew to Σ (that is v is not the ex-

tension of an element of ROPP ). Let Q be a further point of PG(6, q3) \PG(6, q)

such that Q is not contained in the extension of any of the 5-dimensional sub-

spaces of PG(6, q) containing Σ. We can find such a point, because the number

of 5-dimensional subspaces of PG(6, q) containing Σ is q2 + q + 1, the extension

of such a 5-dimensional subspace contains q15 + q12 points from PG(6, q3) \ e(Σ)

and thus even if these were all different points, the extensions would be cover-

ing at most (q2 + q + 1)(q15 + q12) + |e(Σ)| points, but the number of points in

PG(6, q3) \PG(6, q) is larger than q18. Let π := 〈v,Q〉. Then dimS(π) = 6. The

lines of R are the only lines of PG(6, q) with the property that their extension

meets π. All other properties can be derived from these.
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Remark. Starting with the same line v, but choosing the point Q to be a point

contained in the extension of a 5-space on Σ, but not contained in the extension

of a 4-space on Σ will result in the blocking set (3) of Lemma 2.6.4.
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Chapter 3

Unique reducibility of multiple

blocking sets

3.1 The main theorem

Consider a weight function which corresponds to a t-fold (n − k)-blocking set

that is not minimal. If we start reducing the weight of the non-essential points

one by one, always checking carefully that the resulting weight function is still a

t-fold (n−k)-blocking set, then after some steps we will arrive at a minimal t-fold

(n− k)-blocking set. Thus, every t-fold (n− k)-blocking set contains a minimal

t-fold (n− k)-blocking set. It is a natural question to ask if there are conditions

which guarantee the uniqueness of this minimal t-fold (n− k)-blocking set. This

chapter is based on [1].

In [43] such a condition is given for non-weighted 1-fold 1-blocking sets of PG(2, q).

Result 3.1.1 (Szőnyi, [43]). A non-weighted 1-fold 1-blocking set of PG(2, q) with

size smaller than 2q + 1 contains a unique minimal 1-fold 1-blocking set.

This result was recently generalized to non-weighted 1-fold (n− k)-blocking sets

of PG(n, q) in [29].

Result 3.1.2 (Lavrauw, Storme and Van de Voorde, [29]). A non-weighted 1-fold

(n − k)-blocking set of PG(n, q) with size smaller than 2qn−k contains a unique

minimal 1-fold (n− k)-blocking set.
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In this chapter we will prove the following theorem.

Theorem 3.1.3. A weighted t-fold (n − k)-blocking set of PG(n, q), with total

weight smaller than

(t+ 1)qn−k + θn−k−1

contains a unique minimal weighted t-fold (n− k)-blocking set.

Note that Theorem 3.1.3 is stronger than Result 3.1.2. Examples in section 3.5

show that the bound is sharp if t = 1, or if k = n− 1.

In this chapter a t-fold (n − k)-blocking set will sometimes be denoted by B,

and then be viewed as a multiset of points, while at other times we will use the

notation w and view the blocking set as a weight function. These two notions are

equivalent, and we will switch between them according to our needs.

3.2 t-fold (n−k)-blocking sets which contain two

minimal t-fold (n− k)-blocking sets

Let w be a t-fold (n− k)-blocking set. We will now define a new weight function

sw on the points of PG(n, q). For a point P let sw(P ) be the largest integer for

which the weight function w′ defined by

w′(Q) =

w(Q) if Q 6= P ,

w(P )− sw(P ) if Q = P

is also a t-fold (n − k)-blocking set. Then w(P ) ≥ sw(P ) ≥ 0, so if w(P ) = 0,

then sw(P ) = 0. It is also clear that w is minimal if and only if sw ≡ 0.

Lemma 3.2.1. For a t-fold (n−k)-blocking set w and P ∈ PG(n, q) the following

are true.

(1) sw(P ) = min{w(P ),minP∈Πk
(w(Πk) − t)}, where Πk runs along the k-

dimensional subspaces containing P ;

(2) sw(P ) = maxw′≤w{w(P )− w′(P )}, where w′ runs along the t-fold (n− k)-

blocking sets contained in w.
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Lemma 3.2.2. If w is a t-fold (n− k)-blocking set which contains two different

minimal t-fold (n− k)-blocking sets, then there is a weight function v ≤ w and a

line l∗ with the following properties:

(1) v(Πk) ≥ t for any k-subspace Πk not containing l∗;

(2) v(Πk) ≥ t− 1 for any k-subspace Πk containing l∗;

(3) there is a k-subspace Π∗k containing l∗ for which v(Π∗k) = t− 1;

(4) and w(PG(n, q)) ≥ v(PG(n, q)) + 2.

Proof. Let w′ and w′′ be two different minimal t-fold (n − k)-blocking sets con-

tained in w. Then there is a point P ∗ ∈ PG(n, q), such that w′(P ∗) > w′′(P ∗).

Define w̃ as follows:

w̃(Q) =

w(Q) if Q 6= P ∗,

w′(P ∗) if Q = P ∗.

Then w̃ is a t-fold (n − k)-blocking set and w′, w′′ ≤ w̃. Lemma 3.2.1(b) yields

that sw̃(P ∗) ≥ w̃(P ∗)− w′′(P ∗) = w′(P ∗)− w′′(P ∗) > 0. (*)

As w̃ contains the minimal t-fold (n − k)-blocking set w′, we can start reducing

the weight of the points with w̃(P ) > w′(P ), one at a time, until we arrive at

w′. Formally, let w̃ = w1 ≥ w2 ≥ · · · ≥ wm = w′ be a sequence of t-fold (n− k)-

blocking sets, such that for i ∈ {1, 2, . . . ,m−1} the t-fold (n−k)-blocking sets wi

and wi+1 only differ in one point Pi, and wi+1(Pi) = wi(Pi)− 1. Clearly Pi 6= P ∗,

and the points Pi are not necessarily all different. It is also clear that w̃ 6= w′,

because w̃ = w′ would mean that w′′ is contained in w′, which is a contradiction,

so m ≥ 2 follows.

By Lemma 3.2.1(a), swi+1
≤ swi

, in fact, for any point Q, either swi+1
(Q) = swi

(Q)

or swi+1
(Q) = swi

(Q) − 1. For the point P ∗, we have sw̃(P ∗) > 0 by (*), and

sw′(P
∗) = 0 by the minimality of w′. So there will be an i ∈ {1, 2, . . . ,m − 1}

such that swi
(P ∗) = 1 and swi+1

(P ∗) = 0. The weight functions wi and wi+1

only differ in the point Pi. Then by Lemma 3.2.1(a), there is a k-space Π∗k which

contains Pi and P ∗, and has weight wi(Π
∗
k) = t+ 1. Also by Lemma 3.2.1(a), this

yields swi
(Pi) ≤ 1, and as wi+1(Pi) = wi(Pi) − 1, so Pi is a non-essential point

of wi, then swi
(Pi) = 1 follows. Thus, for any k-dimensional subspace Πk, which

contains P ∗ and/or Pi we have wi(Πk) ≥ t+ 1.
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Let l∗ be the line connecting Pi and P ∗, and define v to be the following weight

function:

v(Q) =

wi(Q) if Q /∈ {P ∗, Pi};

wi(Q)− 1 if Q ∈ {P ∗, Pi}.

Clearly w(PG(n, q)) ≥ wi(PG(n, q)) = v(PG(n, q))+2, and v is a weight function

contained in w.

For any k-subspace Πk,

v(Πk) =


wi−1(Πk)− 2 if Πk contains both of P ∗ and Pi;

wi−1(Πk)− 1 if Πk contains one of P ∗ and Pi;

wi−1(Πk) if Πk contains neither of P ∗ and Pi.

Thus, v, l∗ and Π∗k satisfy the properties given in the lemma.

3.3 t-fold nuclei

If t = 1, n = 2, k = 1, then Lemma 3.2.2 yields that if w is a 1-fold 1-blocking

set of PG(2, q) containing two different minimal 1-fold 1-blocking sets, then w

contains a weight function v, which defines a blocking set of the affine plane

AG(2, q) := PG(2, q) \ l∗. Thus, w(PG(2, q)) ≥ s(q) + 2, where s(q) denotes the

size of the smallest 1-blocking set of AG(2, q). There are several independent

proofs for s(q) = 2q − 1, from which Result 3.1.1 follows (see Jamison [28],

Brouwer and Schrijver [14], Blokhuis [8], Szőnyi [43]).

In [8] Blokhuis proves s(q) = 2q−1 as a corollary of a theorem on nuclei of point

sets. Now we generalize the notion of nucleus to multisets/weight functions.

Definition 3.3.1. (1) Let S be a multiset of PG(n, q). A point P /∈ S will be

called a t-fold nucleus of S if every line through P meets S in at least t

points, counted with multiplicities.

(2) Let w be a weight function of PG(n, q). A point P ∈ PG(n, q) with w(P ) =

0 will be called a t-fold nucleus of w if every line through P has weight at

least t.
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For S to have nuclei, clearly |S| ≥ tθn−1 is needed. Let |S| = tθn−1 + r, r ≥ 0.

Note that for |S| = tθn−1 − r, r ≥ 0, a ’symmetric’ version of the definition can

be: a point P /∈ S is a t-fold nucleus of S, if every line through P meets S in at

most t points, counted with multiplicities.

The notion of nucleus was first introduced by Mazzocca for affine sets for n = 2,

t = 1 and r = 0. Blokhuis extended the notion to r ≥ 0 in [8] and t ≥ 1 in [7],

and Sziklai generalized the definition for sets of the projective space PG(n, q) in

[38]. (The ’symmetric’ version was introduced in [23] and [38].)

Denote by N t(S) the set of t-fold nuclei of S, and let p be the characteristic of

the field GF(q).

Result 3.3.2. (Sziklai, [38]) Let S be a set of points in PG(n, q) with |S| =

tθn−1 + r, r ≥ 0. Let H∞ be a given hyperplane, |S ∩H∞| = m∞. Then

|N t(S) \H∞| ≤ (r + 1)(q − 1),

provided that
(
tθn−1+r−m∞

r+1

)
6= 0 (mod p).

Result 3.3.2 was proved in the case when m∞ = 0, n = 2 by Blokhuis and

Wilbrink (r = 0, t = 1, see [12]) and by Blokhuis (for r ≥ 0, t = 1, see [8], and

for r ≥ 0, t ≥ 1 see [7]). The ‘symmetric’ version was also settled by Sziklai in

[38].

As Result 3.3.2 is not applicable when
(
tθn−1+r−m∞

r+1

)
= 0 (mod p), to obtain an

upper bound in this case, Ball presented the following theorem.

Result 3.3.3. (Ball, [6]) Let S be a set of points in PG(n, q) with |S| = tθn−1 +r,

r ≥ 0, and let H∞ be a given hyperplane, |S ∩H∞| = m∞. Then

|N t(S) \H∞| ≤ (r + 1 + j)(q − 1),

provided that the binomial coefficient(
tθn−1 + r −m∞

r + 1 + j

)
6= 0 (mod p)

for some j ≥ 0.

The proof of Results 3.3.2 and 3.3.3 can be easily copied for multisets/weight

functions and we obtain the following lemma.
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Lemma 3.3.4. Let w be a weight function on PG(n, q) and H∞ a given hyper-

plane with w(H∞) = m∞. Suppose that w(PG(n, q)) = tθn−1 + r, with r ≥ 0.

If (
tθn−1 + r −m∞

r + 1 + j

)
6= 0 (mod p)

for some j ≥ 0, then the number of t-fold nuclei of w in PG(n, q)\H∞ is at most

(r + 1 + j)(q − 1).

Proof. If the binomial coefficient is nonzero, then w(PG(n, q) \H∞) > 0, so the

number of t-fold nuclei in PG(n, q) \H∞ is at most qn − 1. Thus, the statement

is trivially true for r + 1 ≥ θn−1, so from now on we will suppose r < θn−1 − 1.

Identify the points of AG(n, q) := PG(n, q) \ H∞ with the elements of GF(qn),

and the points of H∞ with the θn−1-st roots of unity of GF(qn) in the usual way.

The points of PG(n, q) will be denoted by capital letters, and the corresponding

elements of GF(qn) by the same lowercase letters. Then for points A 6= B ∈
AG(n, q), the line AB contains the ideal point C ∈ H∞ if and only if (a−b)q−1 = c

holds.

Let S = {a1, a2, . . . , atθn−1+r−m∞} ∪ {c1, . . . , cm∞} be the multiset of elements of

GF(qn) corresponding to the points of nonzero weight of PG(n, q) \H∞ and H∞

respectively, such that a ∈ S has multiplicity w(A) in S for the corresponding

point A ∈ PG(n, q).

Let X and Y be variables, and define

B(X) = {(X − ai)q−1|i = 1, . . . , tθn−1 + r −m∞} ∪ {c1, . . . , cm∞},

and

F (Y,X) =
∏

b∈B(X)

(Y − b).

Then

F (Y,X) =

tθn−1+r∑
j=0

(−1)jσj(B(X))Y tθn−1+r−j,

where σj(B(X)) denotes the jth elementary symmetric polynomial of the set

B(X).

Suppose that x ∈ GF(qn) is an element corresponding to a t-fold nucleus of w.

Then B(x) contains every θn−1-st root of unity with multiplicity at least t, so

F (Y, x) = (Y θn−1 − 1)t(Y r + terms of lower degree).
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As r < θn−1 − 1, the coefficients of the terms

Y tθn−1−1, Y tθn−1−2, . . . , Y (t−1)θn−1+r+1

are 0 in F (Y, x). Thus, σr+1+j(B(x)) = 0 for 0 ≤ j ≤ θn−1 − r − 2.

The degree of σr+1+j(B(X)) as a polynomial of X is at most (r + 1 + j)(q − 1),

with equality precisely if the binomial coefficient(
tθn−1 + r −m∞

r + 1 + j

)
does not vanish. In this case σr+1+j(B(X)) is not the zero polynomial, and

every nucleus is a root of it, hence the number of nuclei is at most its degree:

(r + 1 + j)(q − 1).

We will now use Lemma 3.3.4 for n = 2, j = 0 and m∞ = t− 1.

Lemma 3.3.5. Suppose that v is a weight function of PG(2, q) such that there

is a line l∗, with v(l∗) = t − 1, while all other lines have weight at least t. Then

|v| ≥ (t+ 1)q − 1.

Proof. Assume first that t ≤ q − 2. Suppose on the contrary that v is such a

weight function, yet the total weight of v is less than (t + 1)q − 1. We may

suppose |v| = (t + 1)q − 2 (or else increase the weight of some of the points of

PG(2, q) \ l∗). All lines other than l∗ have weight at least t, which means that all

the points of PG(2, q)\l∗ with weight 0 are t-fold nuclei of v. As v(PG(2, q)\l∗) =

(t+ 1)q−2− (t−1) = tq+ q− t−1, PG(2, q)\ l∗ has at most tq+ q− t−1 points

with positive v weight (and exactly this many if every point of PG(2, q) \ l∗ has

weight ≤ 1). So v has at least q2 − (tq + q − t − 1) = q2 − tq − q + t + 1 t-fold

nuclei.

We will use Lemma 3.3.4 to prove that this is not possible. As

|v| = (t+ 1)q − 2 = t(q + 1) + q − t− 2

and (
t(q + 1) + q − t− 2− (t− 1)

q − t− 2 + 1

)
=

(
tq + q − t− 1

q − t− 1

)
6= 0 (mod p)

by Lucas’ theorem, so Lemma 3.3.4 yields that the number of t-fold nuclei of

v is at most (q − t − 1)(q − 1) = q2 − tq − 2q + t + 1, a contradiction. The
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same arguments prove that, if |v| = (t + 1)q − 1, then v(P ) ≤ 1 for all points

P ∈ PG(2, q) \ l∗.

For t ≥ q − 1, the assertion can be proved by summing the weights of all lines

through a carefully selected point P . If we can find a point P ∈ PG(2, q)\ l∗ with

v(P ) = 0, then |v| ≥ t(q+ 1) = tq+ t ≥ tq+ q− 1, and we are done. If we choose

a point P ∈ l∗ with v(P ) = 0, then we have |v| ≥ tq + t − 1. If t ≥ q, then we

are done again. If t = q − 1 and all points of PG(2, q) \ l∗ have positive weight,

then v(PG(2, q) \ l∗) ≥ q2, so |v| ≥ q2 + t− 1 > (t+ 1)q − 1. This proves that if

we can select a point P ∈ PG(2, q) with v(P ) = 0, then the assertion is true.

Assume now that v(P ) > 0 for every point. Let m = minP v(P ) and define a

new weight function ṽ, by ṽ(P ) := v(P )−m. Then ṽ(l∗) = t−m(q + 1)− 1 and

ṽ(l) ≥ t−m(q+ 1) for any line l 6= l∗. If t−m(q+ 1) ≤ q−2 then we can use the

first part of the proof to prove |ṽ| ≥ (t−m(q+1)+1)q−1. If t−m(q+1) ≥ q−1

then we can use the second part, as there will be a point with zero ṽ weight.

Then

|v| = |ṽ|+m(q2 +q+1) ≥ (t−m(q+1)+1)q−1+m(q2 +q+1) = (t+1)q−1+m.

Hence the result is established.

3.4 Proof of Theorem 3.1.3

Proof. Assume that w is a weighted t-fold (n− k)-blocking set of PG(n, q) which

contains two different minimal t-fold (n − k)-blocking sets. We will prove |w| ≥
(t+ 1)qn−k + θn−k−1. By Lemma 3.2.2, there is a weight function v ≤ w, a line l∗

and a k-subspace Π∗k containing l∗, such that

(1) v(Πk) ≥ t, for every k-subspace Πk not containing l∗;

(2) v(Πk) ≥ t− 1 for every k-subspace Πk containing l∗;

(3) v(Π∗k) = t− 1;

(4) |w| ≥ |v|+ 2.

Case 1 Assume first that k = 1. Then Π∗k = l∗ is a line, and v(l∗) = t−1, while the

v weight of any other line is at least t. If n = 2, then |v| ≥ (t+ 1)q−1 by Lemma
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3.3.5, which proves the theorem in this case. Now assume n ≥ 3 and let Π be a

plane containing the line l∗. Then the weight function v restricted to the plane Π

fulfills the requirements of Lemma 3.3.5, so v(Π) ≥ (t+1)q−1. This is true for all

the planes containing the line l∗, so clearly |v| ≥ θn−2 · ((t+ 1)q − 1− (t− 1)) +

t− 1 = (t+ 1)qn−1 + θn−2 − 2.

Case 2 For n ≥ 3 and k ≥ 2 we will use induction on n to prove that

|v| ≥ (t+ 1)qn−k + θn−k−1 − 2.

Case 2a Let V ∈ Π∗k \ l∗ be a point with v(V ) = 0. Consider the quotient

space PG(n, q)/V ∼= PG(n − 1, q), and the weight function ṽ induced by v on

PG(n−1, q). Clearly ṽ(PG(n−1, q)) = v(PG(n, q)). The plane 〈V, l∗〉 corresponds

to a line, and a k-space containing V corresponds to a (k − 1)-space. It is not

hard to check that ṽ fulfills requirements (a)-(c) with 〈V, l∗〉/V as l∗ and Π∗k/V

as Π∗k−1, and so by induction

ṽ(PG(n− 1, q)) ≥ (t+ 1)qn−k + θn−k−1 − 2.

Case 2b Suppose now that for all P ∈ Π∗k \ l∗: v(P ) > 0, but there is a point

v(V ) = 0. Then t− 1 ≥ θk− (q+ 1). Increase the weight of one point ( 6= V ) of l∗

by one to obtain the new weight function v′, which is now a t-fold (n−k)-blocking

set of PG(n, q). We will prove that |v′| ≥ tqn−k + θn−k − 1. This is generally not

true for t-fold (n− k)-blocking sets of PG(n, q), only if t is large enough.

Assume on the contrary, that |v′| ≤ tqn−k + θn−k − 2. Then we can find a line Σ1

containing V , such that

v′(Σ1) ≤ t− (qk−1 + qk−2 + · · ·+ q)

qk−1
,

because if all lines through V had v′ weight more than

t− (qk−1 + qk−2 + · · ·+ q)

qk−1
,
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then all these weights would be at least ≥ t− (qk−1 + qk−2 + · · ·+ q)

qk−1
+

1

qk−1
, and

then the total weight of v′ would be

|v′| ≥
(
t− qk−1 − qk−2 − · · · − q

qk−1
+

1

qk−1

)
· θn−1

= tqn−k +

(
t

qk−1
− qk + qk−1 + · · ·+ q2

qk−1

)
θn−2 −

qk−1 + qk−2 + · · ·+ q

qk−1
+
θn−1

qk−1

> tqn−k +
qn−1 + qn−2 + · · ·+ qk

qk−1
= tqn−k + θn−k − 1.

We will now prove that if 1 ≤ j ≤ k − 2 and Σj is a j-space with

v′(Σj) ≤
t− (qk−j + qk−j−1 + · · ·+ q)

qk−j
,

then we can find a (j + 1)-space Σj+1 ⊃ Σj, with

v′(Σj+1) ≤ t− (qk−j−1 + · · ·+ q)

qk−j−1
.

If this were not true, then we would have

|v′| >
(
t− (qk−j−1 + · · ·+ q)

qk−j−1
− v′(Σj)

)
· θn−j−1 + v′(Σj)

≥
(
t− (qk−j−1 + · · ·+ q)

qk−j−1
− t− (qk−j + qk−j−1 + · · ·+ q)

qk−j

)
· θn−j−1

+
t− (qk−j + qk−j−1 + · · ·+ q)

qk−j
= tqn−k + θn−k + 1.

Thus, we can find a (k − 1)-space Σk−1, with v′(Σk−1) ≤ t−q
q

. But all k-spaces

containing Σk−1 have v′ weight at least t, so

|v′| ≥ (t− t

q
+ 1) · θn−k +

t− q
q

= tqn−k + θn−k − 1,

a contradiction.

Case 2c There is one more case remaining to be proved: if v(P ) > 0 for all

points P ∈ PG(n, q). Then let m := minP v(P ) and let ṽ := v − m. Then ṽ

fulfills requirements (a)-(c) with t̃ := t − m · θk. Cases 2a and 2b prove |ṽ| ≥
t̃qn−k + θn−k − 2 and then

|v| = |ṽ|+m · θn ≥ (t−m · θk)qn−k + θn−k − 2 +m · θn
= tqn−k + θn−k − 2 +mθn−k−1.

70



3.5 Examples

In this section we investigate the sharpness of Theorem 3.1.3. We are looking for

weighted t-fold (n − k)-blocking sets of size (t + 1)qn−k + θn−k−1, which contain

two different minimal t-fold (n− k)-blocking sets.

3.5.1 The case t = 1

Example 3.5.1. Let Σ1 and Σ2 be two (n−k)-dimensional subspaces of PG(n, q)

meeting in an (n−k−1)-dimensional subspace. Then B := Σ1∪Σ2 contains two

different minimal 1-fold (n−k)-blocking sets, Σ1 and Σ2, and |B| = 2qn−k+θn−k−1.

Corollary 3.5.2. Theorem 3.1.3 is sharp, if t = 1.

The following proposition is a corollary of Theorem 3.1.3, but in fact equivalent

to it if t = 1 and k = 1. Corollary 3.5.4 can also be found in [44].

Proposition 3.5.3. Let B be a minimal 1-fold (n− 1)-blocking set of PG(n, q),

and P ∈ B. Then there are at least ≥ 2qn−1 + θn−2 − |B| tangents through P .

Proof. Suppose that there are k tangents through P . Take points P1, P2, . . . ,

Pk, one from each of the tangents, Pi 6= P . Clearly (B \ {P}) ∪ {P1, . . . , Pk} is

a 1-fold (n − 1)-blocking set. It contains a minimal 1-fold (n − 1)-blocking set

B′, and B 6= B′. Thus, B ∪ {P1, . . . , Pk} contains two different minimal 1-fold

(n− 1)-blocking sets, so |B|+ k ≥ 2qn−1 + θn−2.

Corollary 3.5.4. Let B be any 1-fold (n−1)-blocking set of PG(n, q), and P ∈ B
an essential point of B. Then there are at least ≥ 2qn−1 + θn−2 − |B| tangents

through P .

Construction 3.5.5. (1) Let B be a 1-fold (n−1)-blocking set which has a point

P ∈ B, through which there are exactly 2qn−1 + θn−2 − |B| tangents to B. Then

adding a point to every tangent will result in a 1-fold (n− 1)-blocking set of size

2qn−1 + θn−2, which contains two different minimal 1-fold (n− 1)-blocking sets.

(2) Embed S in an (n− k+ 1)-dimensional subspace of PG(n, q) to obtain 1-fold

(n− k)-blocking sets of size 2qn−k + θn−k−1, which contain two different minimal

1-fold (n− k)-blocking sets.
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Note that blocking sets used in the construction above exist: let B be a blocking

set of Rédei type with Rédei hyperplane H, and P ∈ B \ H. Then for a point

Q ∈ H the line 〈P,Q〉 is a tangent to B if and only if Q /∈ B. Thus, P is on

exactly θn−1 − (|B| − qn−1) = 2qn−1 + θn−2 − |B| tangents (see [41]).

3.5.2 The case t ≥ 2

Note that the proof of Lemma 3.3.5 yields that for n = 2, k = 1 it is not possible

to have v(PG(2, q)) = (t+ 1)q− 1, if t ≥ q+ 1, and so the proof of Theorem 3.1.3

yields that the bound cannot be sharp if t ≥ q+1. Also from the proofs of Lemma

3.3.5 and Theorem 3.1.3 it follows that if t ≤ q − 2 and B is a weighted t-fold

(n− k)-blocking set which contains two different minimal t-fold (n− k)-blocking

sets and |B| = (t+ 1)qn−k + θn−k−1, then only points on one line (the line l∗) can

be multiple points.

Example 3.5.6. Let π be a plane of PG(n, q), let l1, l2, . . . , lt be different lines

in π through a common point P , and lt+1 a further line of π, with P /∈ lt+1.

Then the multiset B := (l1 + l2 + · · · + lt) ∪ lt+1 is a t-fold (n − 1)-blocking set

in PG(n, q), |B| = t(q + 1) + (q + 1− t) = (t+ 1)q + 1, and l1 + l2 + · · ·+ lt and

l1 ∪ (l2 + · · ·+ lt) ∪ lt+1 are two minimal t-fold (n− 1)-blocking sets contained in

B; the latter one differs from B only in the point P .

Corollary 3.5.7. Theorem 3.1.3 is sharp if k = n− 1, 2 ≤ t ≤ q.

The following proposition is again a corollary of Theorem 3.1.3, which is in fact

equivalent to it if k = 1.

Proposition 3.5.8. Let B be a minimal t-fold (n− 1)-blocking set of PG(n, q),

and P ∈ B. Then there are at least ≥ (t+ 1)qn−1 + θn−2 − |B| t-secants through

P .

Proof. Suppose that there are k t-secants through P . Take points P1, P2, . . . , Pk,

one from each of the t-secants, Pi 6= P . Clearly the t-fold (n − 1)-blocking set

B \ {P} + {P1, . . . , Pk} contains a minimal t-fold (n − 1)-blocking set B′, and

B 6= B′. Thus, B + {P1, . . . , Pk} contains two different minimal t-fold (n − 1)-

blocking sets, so |B|+ k ≥ (t+ 1)qn−1 + θn−2.
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Corollary 3.5.9. Let B be a any t-fold (n − 1)-blocking set of PG(n, q), and

P ∈ B. Then there are at least ≥ (t+ 1)qn−1 + θn−2 − |B| t-secants through P .

Proof. Let B′ be a minimal t-fold (n − 1)-blocking set contained in B. Then

P ∈ B′. There are at least ≥ (t+ 1)qn−1 + θn−2− |B′| t-secants through P to the

set B′. At most |B \B′| of these are not t-secants to B.

For n = 2 this proposition can also be found in papers by Ferret, Storme, Sziklai

and Weiner [21], and Bacsó, Héger and Szőnyi [5]. A somewhat better result for

non-weighted sets has been presented by Blokhuis, Lovász, Storme and Szőnyi in

[11], where it is proved that every essential point of a non-weighted t-fold blocking

set B of PG(2, q) lies on at least (t+ 1)q + t− |B| t-secants.

Construction 3.5.10. (1) Let B be a minimal t-fold (n− 1)-blocking set which

has a point P ∈ B, through which there are exactly (t + 1)qn−1 + θn−2 − |B|
t-secants to B. Adding a point to every t-secant will result in a t-fold (n − 1)-

blocking set S of size (t + 1)qn−1 + θn−2 and containing two different minimal

t-fold (n− 1)-blocking sets.

(2) Embed the set S in an (n−k+1)-dimensional subspace of PG(n, q) to obtain

t-fold (n−k)-blocking sets of size (t+1)qn−k+θn−k−1, which contain two different

minimal t-fold (n− k)-blocking sets.

For n = 2, k = 1 and 2 ≤ t ≤ q one can find t-fold 1-blocking sets in PG(2, q)

which have points that are on exactly (t + 1)q + 1 − |B| t-secants to B. The

sum of t Rédei type blocking sets which have a common Rédei line, and share

exactly one point, which is not on the Rédei line will have this property. Using

such a planar t-fold 1-blocking set and Construction 3.5.10(2), we get examples

for n ≥ 3, k = n − 1 and 1 ≤ t ≤ q. Example 3.5.6 is a special case of this: the

sum of t lines sharing a common point.

Unfortunately, for t ≥ 2, n ≥ 3 and k = 1, in the minimal t-fold (n− 1)-blocking

sets we examined, all points have at least tθn−1− (q+1− t)qn−2−|B| t-secants to

B. Thus, it may be conjectured that the correct bound in Theorem 3.1.3 should

be

tθn−k + (q + 1− t)qn−k−1.
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Chapter 4

Generalizing the Megyesi

construction

In Rédei’s blocking set construction (see Construction 1.5.2) a set U of q points

is selected in AG(2, q), and U together with the ideal points determined by U

form a minimal blocking set of PG(2, q) := AG(2, q) ∪ l∞. The Megyesi con-

struction (Result 1.5.6) is a special case of this, where a multiplicative subgroup

of GF(q)∗ := GF(q) \ {0} is selected, and the points of U are chosen from two

lines of AG(2, q) according to certain cosets of this subgroup. We say that the

cosets were placed on the lines. The resulting minimal blocking sets have size

2q+ 1− |G|. Gács generalized this method to three lines giving an infinite series

of minimal blocking sets of size approximately 2q − 2
9
q (see Result 1.5.7). In a

joint work with Csaba Mengyán we generalized this method, and presented it in

[2]. Sections 4.1 and 4.3 can also be found in Mengyán’s PhD dissertation [32],

but for the sake of completeness, it is included here also.

4.1 Placing the cosets on three lines

First we investigate the case when the points are selected from three concurrent

lines in AG(2, q). Without loss of generality, we may assume that the lines are

x = 0, y = 0 and x = y.

Construction 4.1.1. Let s ≥ 3 be a divisor of q−1 and consider a multiplicative

subgroup G of GF(q)∗ with index s. Let α ∈ GF(q)∗ be an element for which
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G, αG, α2G, . . . , αs−1G are the cosets of G. Form three non-empty subsets

I, J,K ⊂ Zs such that |I|+ |J |+ |K| = s. Let

U = {(0, x) : x ∈ αiG, i ∈ I} ∪ {(x, 0) : x ∈ αjG, j ∈ J}∪

∪ {(x, x) : x ∈ αkG, k ∈ K} ∪ {(0, 0)}.

If D denotes the set of ideal points determined by U , and |D| < q + 1, then

B = U ∪D is a minimal blocking set, by Result 1.5.2.

The size of the minimal blocking set B of Construction 4.1.1 can be determined

by determining |D|. First we will consider the question of determined ideal points

in general, and calculate the set of directions determined by two cosets placed on

two lines with slope m1 and m2.

Remark. A direction determined by two points is by definition a point (m) on

the ideal line. With misuse of notation we will say that m is the direction (or

ideal point) determined and omit the brackets. Thus, the set of directions (ideal

points) determined by a point set will be a subset of GF(q) ∪ {∞}.

Notation. For K a subset of GF(q) and a, b ∈ GF(q), we will use aK + b =

{ax + b : x ∈ K} and 1/K = {1/x : x ∈ K}. For any element x ∈ GF(q)∗, note

that x/0 =∞ and x+∞ =∞.

Lemma 4.1.2. Let m1,m2 ∈ GF(q), m1 6= m2, i1, i2 ∈ Zs.

• The set of directions determined by the sets

{(x,m1x) : x ∈ αi1G} and {(x,m2x) : x ∈ αi2G}

(apart from m1,m2) is{
m1 −m2x

1− x
: x ∈ αi2−i1G

}
= m1 +

m2 −m1

1− αi1−i2G
= m2 +

m1 −m2

1− αi2−i1G
.

• The set of directions determined by the sets

{(x,m1x) : x ∈ αi1G} and {(0, x) : x ∈ αi2G}

(apart from m1,∞) is

{m1 − x : x ∈ αi2−i1G} = m1 − αi2−i1G.
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Proof. Basic calculations.

Corollary 4.1.3. The set of directions determined in Construction 4.1.1 is

D = {0, 1,∞} ∪ (
⋃

i∈I,j∈J

−αi−jG) ∪ (
⋃

i∈I,k∈K

1− αi−kG) ∪ (
⋃

j∈J,k∈K

1

1− αj−kG
).

Notation. For m1,m2 ∈ GF(q) ∪ {∞}, m1 6= m2, u ∈ Zs the notation

f(m1,m2, u) :=


m2 +

m1 −m2

1− αuG
if m1,m2 6=∞

m1 − αuG if m2 =∞
m2 − α−uG if m1 =∞

will be used. Thus, f(m1,m2, u) is a subset of GF(q) ∪ {∞}.

Lemma 4.1.4. For m1,m2,m3 ∈ GF(q) ∪ {∞} all different, and u, v, w ∈ Zs:

(1) f(m1,m2, u) = f(m2,m1,−u);

(2) f(m1,m2, u) ∩ f(m1,m2, v) = ∅, if u 6= v;

(3)
s−1⋃
u=0

f(m1,m2, u) = (GF(q) ∪ {∞}) \ {m1,m2};

(4) f(m1,m2, u) ∩ f(m2,m3, v) ⊂ f(m1,m3, u+ v);

(5) f(m1,m2, u) ∩ f(m2,m3, v) ∩ f(m1,m3, w) =

=

{
∅ if u+ v 6= w,

f(m2,m3, v) ∩ f(m1,m3, w) if u+ v = w.

Proof. (1) follows from the definition of f , as 1/G = G. (2) and (3) are direct

consequences of the facts αuG ∩ αvG = ∅ if u 6= v and
⋃s−1
u=0 α

uG = GF(q) \ {0}.

(4) If m1,m2 6= ∞, then for any element in the left set there are x, y ∈ G such

that
m1 −m2α

ux

1− αux
=
m2 −m3α

vy

1− αvy
.

Thus,

m1 −m2α
ux−m1α

vy +m2α
u+vxy = m2 −m3α

vy −m2α
ux+m3α

u+vxy.
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Simplifying with −m2α
ux, switching the place of m2α

u+vxy and m3α
u+vxy and

adding m3α
u+2vxy2 to both sides yields

(m1 −m3α
u+vxy)(1− αvy) = (m2 −m3α

vy)(1− αu+vxy),

from which

m1 −m3α
u+vxy

1− αu+vxy
=
m2 −m3α

vy

1− αvy
∈ f(m1,m3, u+ v).

If m3 =∞, then there are x, y ∈ G such that

m1 −m2α
ux

1− αux
= m2 − αvy,

from which

m1 −m2α
ux = m2 − αvy −m2α

ux+ αu+vxy.

Simplify with −m2α
ux and take αu+vxy to the other side to get

m1 − αu+vxy = m2 − αvy ∈ f(m1,∞, u+ v).

In the case of m1 = ∞, similar calculations give the result (or the use of (1)

several times). As for m2 =∞: there are x, y ∈ G such that

m1 − αux = m3 − α−vy.

Taking −αux to the other side, and adding −m3α
u+vx/y to both sides yields

m1−m3α
u+vx/y = m3−α−vy−m3α

u+vx/y+αux = (m3−α−vy)(1−αu+vx/y).

(5) As a consequence of (4) and (2) the intersection is empty when u + v 6=
w. In the case of u + v = w, (1) and (4) yield that any of the three terms

can be omitted: f(m1,m2, u) ∩ f(m2,m3, v) ∩ f(m1,m3, w) = f(m2,m3, v) ∩
f(m3,m1,−w) ∩ f(m2,m1,−u) = f(m2,m3, v) ∩ f(m1,m3, w).

Notation. Let I, J,K be non-empty subsets of Zs, such that |I|+ |J |+ |K| = s.

Denote by T (I, J,K) the set of ordered pairs (u, v) ∈ Zs×Zs, for which I, J + u

and K + v are pairwise disjoint (that is Zs is a disjoint union of I, J + u and

K + v).

It will be more convenient to calculate |Dc|, the number of non-determined points,

and clearly |D| = q + 1− |Dc|.
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Theorem 4.1.5. If Dc is the set of directions not determined in Construction

4.1.1, then

Dc =
⋃

(u,v)∈T (I,J,K)

(−αuG ∩ 1− αvG),

with the sets (−αuG ∩ 1− αvG) being pairwise disjoint.

Proof. From Corollary 4.1.3,

Dc =

(
{0, 1,∞} ∪ (

⋃
u∈I−J

−αuG) ∪ (
⋃

v∈I−K

1− αvG) ∪ (
⋃

w∈J−K

1

1− αwG
)

)c

.

Because of (2) and (3) of Lemma 4.1.4, we have

Dc = (
⋃

u/∈I−J

−αuG) ∩ (
⋃

v/∈I−K

1− αvG) ∩ (
⋃

w/∈J−K

1

1− αwG
).

Thus, Dc is the union of intersections of the form

−αuG ∩ (1− αvG) ∩ 1

1− αwG
= f(0,∞, u) ∩ f(1,∞, v) ∩ f(1, 0, w),

with u 6∈ I−J , v 6∈ I−K, w /∈ J−K. By Lemma 4.1.4(5), only those intersections

are non-empty where w + u = v, and for such an intersection

−αuG ∩ (1− αvG) ∩ 1

1− αwG
= −αuG ∩ (1− αvG).

Thus,

Dc =
⋃
{−αuG ∩ (1− αvG)|u /∈ I − J, v /∈ I −K, v − u /∈ J −K}.

Because of Lemma 4.1.4(2) these sets are pairwise disjoint, and the following

lemma finishes the proof.

Lemma 4.1.6. Let A,B be non-empty subsets of Zs, x ∈ Zs. Then

x 6∈ A−B ⇐⇒ B + x ∩ A = ∅.

Proof. x 6∈ A − B means x 6= a − b for any a ∈ A, b ∈ B, that is b + x 6= a for

any a ∈ A, b ∈ B.

The determination of |Dc| now comes down to determining |T (I, J,K)| and the

size of a set −αuG ∩ (1− αvG).

79



Proposition 4.1.7. Let I, J,K be non-empty subsets of Zs, such that |I|+ |J |+
|K| = s. Denote by T (I, J,K) the set of ordered pairs (u, v) ∈ Zs×Zs, for which

I, J + u and K + v are disjoint. Then

|T (I, J,K)| ≤ 2s2/9.

Equality holds if and only if s is divisible by 3 and I, J,K ∈ {H,H + 1, H + 2}
where H = {0, 3, 6, ..., s− 3} = 3 · Zs.

Proof. As |T (I, J,K)| is invariant under translations of I, J , K and permutations

of (I, J,K), we may assume I, J,K to be disjoint, and |I| ≥ |J | ≥ |K|, which

yields |K| ≤ s/3 and |J ∪ K| ≤ 2s/3. Here equality holds if and only if |I| =

|J | = |K| = s/3.

The number of u’s satisfying J+u∩I = ∅ is clearly at most |J∪K| (as an element

of J can only be translated to elements of J ∪K) and for such a u the number of

v’s satisfying K + v ∩ (I ∪ J + u) = ∅ is at most |K|. Thus |T (I, J,K)| ≤ 2s2/9.

In the case of equality 3|s and |I| = |J | = |K| = s/3 clearly holds. But

|T (I, J,K)| = 2s2/9 means that for any u for which J + u ∩ I = ∅, there are

s/3 translations mapping K onto itself, which proves that K has to be a coset of

a subgroup of Zs. The same is true for I and J .

For the estimation of the size of the set −αuG ∩ (1− αvG), a result from Sziklai

[39] will be used, which is a variant of the Weil estimate. First we define the

d-power independence of polynomials.

Definition 4.1.8. Let f1, ..., fm ∈ GF(q)[X] be given polynomials. We say that

their system is d-power independent, if no partial product f s1i1 f
s2
i2
...f

sj
ij

(1 ≤ j ≤
m; 1 ≤ i1 < i2 < ... < ij ≤ m; 1 ≤ s1, s2, ..., sj ≤ d − 1) can be written as a

constant multiple of a d-th power of a polynomial (that is f s1i1 f
s2
i2
. . . f

sj
ij
6= cgd).

Lemma 4.1.9 (Sziklai, [39]). Let f1, ..., fm ∈ GF(q)[X] be a set of d-power in-

dependent polynomials, where d|(q − 1); d,m ≥ 2. Denote by N the number of

solutions {x ∈ GF(q) : fi(x) is a d-th power in GF(q) for all i = 1, ...,m}. Then

|N − q

dm
| ≤ √q

m∑
i=1

deg fi.

Corollary 4.1.10. The number of elements in −αuG∩(1−αvG) is approximately

q/s2.
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Proof. x ∈ G is equivalent to x = ys for some y ∈ GF(q)∗. Thus, x ∈ m − αuG
is equivalent to x = m − αuys, which is equivalent to α−u(m − x) being an s-th

power. But then | − αuG ∩ (1− αvG)| equals the number of solutions

{x ∈ GF(q) : −α−uX and α−v(1−X) are both s-th powers in GF(q)}.

The number of such solutions is q/s2 + C
√
q, with |C| ≤ 2.

Thus, Theorem 4.1.5, Proposition 4.1.7 and Corollary 4.1.10 prove the following

theorem.

Theorem 4.1.11. Let Dc be the set of non-determined directions by the set U

in Construction 4.1.1. Then

|Dc| = |T (I, J,K)|
s2

q + C
√
q ≤ 2

9
q + C

√
q,

with |C| ≤ 4s2/9. If s = o( 4
√
q), then

|B| ≥
(

2− 2

9

)
q +O(

√
qs2).

This is a result is in harmony with the result of Gács [22]. And now we present

some constructions:

Theorem 4.1.12. Let s be a divisor of q−1, s ≥ 3. In PG(2, q) minimal blocking

sets of sizes (2 − t
s2

)q + C
√
q exist, where t ∈ {1, 2, k, kl} with k|s, and l|s such

that kl < s, and |C| ≤ 2t.

Proof. Here are some examples for the given t’s:

t = 1: For I = Zs \ {0, 1, 2} , J = {1}, K = {0, 2},
T (I, J,K) = {(0, 0)}, Dc = −G ∩ (1−G), |Dc| ≤ q/s2 + 2

√
q.

t = 2: For I = Zs \ {u, v}, J = {u}, K = {v},
T (I, J,K) = {(0, 0), (v − u, u− v)},
Dc = (−G ∩ 1−G) ∪ (−αv−uG ∩ 1− αu−vG),

|Dc| ≤ 2q/s2 + 4
√
q.

t = k: Let H be a proper subgroup of Zs, |H| = k (note that 1 /∈ H).

For I = Zs \ (H ∪ {1}), J = H, K = {1},
T (I, J,K) = {(0, 0), (h, 0), (2h, 0), . . . }, with h a generator

element of H. Dc =
⋃
h∈H

(
−αhG ∩ (1−G)

)
,

|Dc| ≤ k(q/s2 + 2
√
q).
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t = k: Let H be a proper subgroup of Zs, |H| = k, a ∈ H.

For I = Zs \H, J = H \ {a}, K = {a},
T (I, J,K) = {(0, 0), (h, h), (2h, 2h), . . . }, with h a generator

element of H. Dc =
⋃
h∈H

(
−αhG ∩ (1− αhG)

)
,

|Dc| ≤ k(q/s2 + 2
√
q).

Note that instead of H the union of some cosets of H could

be used, and for K an arbitrary subset of the union,

while J = ∪H \K and I = Zs \ (J ∪K). This and

the previous case are the same in this sense (switch I and J).

t = kl: Let H1 and H2 be proper subgroups of Zs, H1 6= H2, |H1| = k,

|H2| = l, such that kl < s. Then there is an element x ∈ Zs
such that H1 ∩ (H2 + x) = ∅ (because if none of the sets

H1 ∩ (H2 + x), x = 0, . . . , s/l − 1 were empty, it would lead to

k ≥ s/l). For I = Zs \ (J ∪K), J = H1, K = H2 + x,

T (I, J,K) = H1 ×H2, D
c = ∪h1∈H1,h2∈H2(−αh1G ∩ 1− αh2G)

and |Dc| ≤ lk(q/s2 + 2
√
q).

In our examples when T (I, J,K) > 2, at least one of I, J or K is a union of some

cosets of a subgroup of Zs. If I, J , K are the unions of some cosets of the same

subgroup H ⊂ Zs, then in Construction 4.1.4 G can be replaced by the subgroup⋃
h∈H α

hG of index s/|H|.

4.2 Placing the cosets on n ≥ 4 lines

Now we investigate the case when the points of U are selected from n concurrent

lines of AG(2, q). Without loss of generality, we may assume that the lines are

x = 0 and y = mix, i = 2, . . . , n. The theorems and proofs will be very much the

same as when n = 3.

Construction 4.2.1. Consider a multiplicative subgroup G of GF(q)∗ with index

s (s ≥ n) and an α ∈ GF(q)∗ such that αiG, i = 0, ..., s − 1 are the cosets of

G. Let m1 = ∞ and {m2,m3, . . . ,mn} ⊂ GF(q) be the set of slopes. Form n

non-empty subsets A1, A2, ..., An in Zs such that |A1|+ |A2|+ ...+ |An| = s. Let

U = {(0, 0)} ∪ {(0, x) : x ∈ αaG, a ∈ A1} ∪
n⋃
i=2

{(x,mix) : x ∈ αaG, a ∈ Ai}.
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If D is the set of directions determined by U and |D| < q + 1, then the set

B = U ∪D is a minimal blocking set.

Notation. For A1, A2, . . . , An non-empty subsets of Zs, such that
∑n

i=1 |Ai| = s,

denote by T (A1, . . . An) the set of ordered (n − 1)-tuples (u2, u3, . . . , un) ∈ Zs ×
· · · × Zs, for which A1, A2 + u2, . . . , An + un are pairwise disjoint.

Theorem 4.2.2. With the previous notation, Dc is the union of pairwise disjoint

sets

Dc =
⋃
{(m2 − αu2G) ∩ · · · ∩ (mn − αunG)|(u2, . . . , un) ∈ T (A1, A2, ..., An)} .

Proof. From Lemma 4.1.2,

D = {∞} ∪ {mi : i = 2, . . . , n} ∪
⋃

1≤i<j≤n

 ⋃
u∈Ai−Aj

f(mj,mi, u)

 .

By Lemma 4.1.4 (2) and (3),

Dc =
⋂

1≤i<j≤n

⋃
u6∈Ai−Aj

f(mj,mi, u) =
⋃ ⋂

1≤i<j≤n

f(mj,mi, uj,i).

By Lemma 4.1.4 (5), only those intersections

f(m2,m1, u2,1) ∩ f(m3,m1, u3,1) ∩ f(m4,m1, u4,1) ∩ · · · ∩ f(mn,mn−1, un,n−1)

are non-empty for which for any 3 indices i > j > k: ui,j + uj,k = ui,k holds,

and if this is the case, then for any three terms f(mi,mj, ui,j), f(mj,mk, uj,k),

f(mi,mk, ui,k) one can be omitted. Thus, for any two indices i > j the intersec-

tion:

f(mi,m1, ui,1) ∩ f(mj,m1, uj,1) ∩ f(mi,mj, ui,j)

can be replaced by

f(mi,m1, ui,1) ∩ f(mj,m1, uj,1)

with ui,1 /∈ A1 − Ai, uj,1 /∈ A1 − Aj and ui,j = ui,1 − uj,1 /∈ Aj − Ai, which is

equivalent to the sets A1, Ai + ui,1 and Aj + uj,1 being pairwise disjoint.

Proposition 4.2.3. Let A1, A2, ..., An be non-empty subsets of Zs such that |A1|+
|A2| + ... + |An| = s. Denote by T (A1, A2, ..., An) the ordered (n − 1)-tuples
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(u2, ..., un), with u2, ..., un ∈ Zs, for which A1, A2 + u2, . . . , An + un are pairwise

disjoint. Then

|T (A1, A2, ..., An)| ≤ (n− 1)!sn−1

nn−1
.

Equality holds if and only if s is divisible by n and Ai ∈ {H,H + 1, H+ 2, ..., H +

(n−1)} where H = {0, n, 2n, ..., s−n} (that is the Ai’s are cosets of the subgroup

n · Zs).

Proof. The proof is exactly as in Proposition 4.1.7:

|T (A1, A2, ..., An)| ≤

(
n∑
i=2

|Ai|

)
·

(
n∑
i=3

|Ai|

)
. . .

(
n∑
i=n

|Ai|

)
.

If |A1| ≥ |A2| ≥ ... ≥ |An| holds, then
∑n

i=k+1 |Ai| ≤ (n− k)s/n.

Proposition 4.2.4.

|(m2 − αu2G) ∩ · · · ∩ (mn − αunG)| ≤ q

sn−1
+ (n− 1)

√
q.

Proof. Identical to that of Proposition 4.1.10. Use Lemma 4.1.9 for the polyno-

mials fi(X) = α−ui(mi −X).

Theorem 4.2.2, Proposition 4.2.3 and Proposition 4.2.4 together prove the follow-

ing theorem.

Theorem 4.2.5. If Dc is the set of directions not determined by the set U in

Construction 4.2.1, then

|Dc| = |T (A1, . . . , An)|
sn−1

q + C
√
q ≤ (n− 1)!

nn−1
q + C

√
q,

with |C| ≤ (n−1)!
nn−2 s

n−1.

If s and n are fixed, such that Cs,n := (n−1)!
nn−2 s

n−1 <<
√
q, then

|B| ≥
(

2− (n− 1)!

nn−1

)
q +O(

√
qCs,n).

For s, n relatively small compared to q minimal blocking sets of sizes 2q− t
sn−1 q+

O(
√
qCs,n) exist, where t is a number depending on some elementary equations.
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4.3 Constructions in PG(2, qh)

From the existing minimal blocking sets some new ones can be constructed using

embeddings of PG(2, q) into PG(2, qh) for some h > 1. In this section we investi-

gate two possible methods and use them on the minimal blocking sets constructed

in this chapter and in a paper by Danielsson [18].

Construction 4.3.1. Consider a minimal blocking set B of PG(2, q). Embed

PG(2, q) into PG(2, qh) for some h > 1. Denote by l and m two lines of PG(2, qh)

which are extensions of lines of PG(2, q). If Q := l ∩m is not a point of B, then

suppose also that |B ∩ l| < q and |B ∩m| < q, and in this case denote by C the

set of critical points of B which have their critical tangents through Q. Consider

the point set

B′ = B ∪ {l \ PG(2, q)} ∪ {m \ PG(2, q)} ∪ {Q} \ C.

Remark. If B is a nontrivial blocking set of size less than 2q, then by Proposition

1.5.3 all lines intersect B in at most q − 1 points.

Proposition 4.3.2. In Construction 4.3.1, if |C| ≤ 1, then B′ is a minimal

blocking set of PG(2, qh) of size

(1) 2qh − 2q + |B|, if Q ∈ B;

(2) 2qh − 2q + |B|+ 1− |C|, if Q 6∈ B.

Proof. Observe that any line of PG(2, qh) through a point of l∩PG(2, q) is blocked

by the points of B, m\PG(2, q) or the point Q, and the points of B′ on l\PG(2, q)

block the remaining lines. Thus, B′ is a blocking set.

To prove minimality, we will show that there is a tangent at every point of B′. At

a point of B the extension of the line which is tangent to B in PG(2, q) will be a

tangent to B′, as such a line intersects l and m in l ∩PG(2, q) and m∩PG(2, q),

respectively. If through a point of B there is only one tangent, which is on Q /∈ B,

then by definition this point is not in B′. At the points of B′ on l \ PG(2, q) the

lines through the points of {m∩PG(2, q) \B} are tangents, and at the points of

B′ on m\PG(2, q) the lines through the points of {l∩PG(2, q)\B} are tangents.

At Q all the lines of PG(2, qh) intersecting PG(2, q) in exactly Q are tangents to

B′.
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The size of B′ is simply |l \ PG(2, q)| + |m \ PG(2, q)| + |B| if Q ∈ B and

|l \ PG(2, q)|+ |m \ PG(2, q)|+ |B|+ 1− |C| if Q 6∈ B.

When Q 6∈ B and |C| > 1, then the set B′ in Construction 4.3.1 may not be a

blocking set at all, because in B a line through two points of C may have been

blocked by only these points. In this case some of the points of C have to be

added to B′, and thus the size of the resulting blocking set can be only determined

given the concrete case. But as the next proposition shows, this problem does

not arise when |B| < 2q.

Proposition 4.3.3. Let x ≥ 1 be an integer. If the size of the minimal blocking

set B is 2q − x, then the number of tangents at any point of B is at least x+ 1.

Hence there are no critical points of B.

Proof. Direct consequence of Proposition 3.5.3.

Theorem 4.3.4. Let x ≥ 1 be an integer. If there is a minimal blocking set of

size 2q − x in PG(2, q), then there are minimal blocking sets of size 2qh − x and

2qh−x+1 in PG(2, qh). If we start from a Rédei type minimal blocking set, then

the resulting blocking sets can be chosen to be of Rédei type, and also not to be of

Rédei type.

Proof. Use Construction 4.3.1. Note that m ∩ PG(2, q) (or equivalently l ∩
PG(2, q)) is a Rédei line of B if and only if m is a Rédei line of B′, as |B′ \m| =
|B \m|+ qh − q. All other lines intersect B′ in less than q points.

In [18] Danielsson proves the existence of Rédei type minimal blocking sets of size

2p− 3 and 2p− 2.

Theorem 4.3.5 (Danielsson, [18]). Let p > 5 be a prime. If p ≡ 1 (mod 4),

then there are Rédei type minimal blocking sets of size 2p− 3. If p ≡ 3 (mod 4),

then there are Rédei type minimal blocking sets of size 2p− 2.

Using the previous constructions the following can be proved:

Corollary 4.3.6. Let q = ph with h > 1 and p > 5 a prime. In PG(2, q) there

are minimal blocking sets of size 2q−2 (both of Rédei type and not of Rédei type).

If p ≡ 1 (mod 4), then in PG(2, q) there are minimal blocking sets of size 2q − 3

(both of Rédei type and not of Rédei type).
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We now turn attention to another embedding method, which is described in [36]

and [44]. Here we only repeat the construction and a theorem from these papers,

and investigate what this method means for the minimal blocking sets obtained

in this chapter. For further details of this construction we refer to the papers

[36, 44].

Construction 4.3.7. Let B be a minimal blocking set in PG(2, q). Embed

PG(2, q) into PG(h + 1, q). Choose an (h − 2)-dimensional subspace Σ, so that

PG(2, q) ∩ Σ = ∅. Let B′ be the cone with base B and vertex Σ. Embed

PG(h + 1, q) as a subgeometry in PG(h + 1, qh). Assume that R is an (h − 1)-

dimensional subspace of PG(h+ 1, q), and let R∗ be the extension of R. Choose

an (h − 2)-dimensional subspace P in R∗, such that P does not intersect the

subgeometry PG(h + 1, q), and project B′ from this subspace onto a plane π of

PG(h + 1, qh), where π ∩ P = ∅. The cardinality of the projection, B′′ satisfies

|B′′| = |B′|+ 1− |R ∩B′|.

Note that B′ is a minimal blocking set of PG(h + 1, q) with respect to lines and

|B′| = qh−1|B|+ qh−1−1
q−1

, thus if |B| < 2q then |B′| < 2qh.

Theorem 4.3.8. Let B′ be a minimal blocking set of PG(h+ 1, q) with respect to

lines and suppose that |B′| ≤ 2qh− 1. Then the projection B′′ of B′ is a minimal

blocking set of PG(2, qh).

By Theorem 4.3.8, starting from any of the minimal blocking sets constructed

in this chapter and using Construction 4.3.7 will result in minimal blocking sets

for q sufficiently large. The size of the resulting blocking set B′′ depends on the

choice of R. Following the reasonings of [44] (page 262) it can be proved that,

depending on the dimension of R∩Σ (which can vary between h− 2 and h− 4),

the size of |R∩B′| can be: qh−1−1
q−1

, qh−1 + qh−1−1
q−1

, rqh−2 + qh−2−1
q−1

(where B has an

r-secant in PG(2, q)) and |B|qh−3 + qh−3−1
q−1

.

Theorem 4.3.9. Let B be a minimal blocking set of PG(2, q) with |B| = 2q− x,

where x ≥ 1. Using Construction 4.3.7 one can obtain blocking sets of PG(2, qh),

h > 1 with sizes

2qh − xqh−1 + 1,

2qh − (x+ 1)qh−1 + 1,
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2qh − xqh−1 − qh−2 + (x+ 1)qh−3 + 1

2qh − xqh−1 − (r − 1)qh−2 + 1, where B has an r-secant in PG(2, q).

It is not difficult to see that starting from a Rédei type minimal blocking set, we

can choose R in such a way that the projection will be of Rédei type, or not. For

simplicity let h = 2, so R is a line of PG(h + 1, q) and Σ is a point (with either

Σ ∈ R or Σ /∈ R). Let B be a minimal blocking set of size 2q − x with x ≥ 1.

There will be three types of lines in the projection:

(i) lines that were projected from lines of PG(h + 1, q): these intersect B′′ in

at most q + 1 points;

(ii) lines that were projected from a plane β through R, with Σ /∈ β (only if

Σ /∈ R): these intersect B′′ in |B|+ 1− |R ∩B′| points;

(iii) lines that were projected from a plane β through R, with Σ ∈ β: these

intersect B′′ in rq + 2− |R ∩B′| points, where r = |β ∩B|.

(For a precise discussion on intersection numbers of B′′ with respect to lines see

[36], p.742.) For B′′ to be a minimal blocking set of Rédei type we must have

some lines intersect B′′ in |B|q+ 2−|R∩B′|− q2 = q2− qx+ 2−|R∩B′| points.

For the lines of type (i) this is impossible. For a line of type (ii) to be a Rédei

line, the equation |B|q+ 2− |R∩B′| − q2 = |B|+ 1− |R∩B′| has to hold, which

leads to |B| = q + 1, a contradiction. For a line of type (iii) to be a Rédei line,

the equation |B|q+ 2− |R∩B′| − q2 = rq+ 2− |R∩B′| has to hold, from which

|B| − q = r, which is equivalent to β ∩ PG(2, q) being a Rédei line of B. Thus,

B′′ will be of Rédei type if and only if there is a plane on R and Σ intersecting

PG(2, q) in a Rédei line of B.
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Summary

In this thesis we present results about blocking sets in the finite projective space

PG(n, q). The results presented here are based on articles [1], [2], [3] and [4].

In Chapter 1 the notation, definitions, and most important preliminary results

are presented. We aim at using standard notation.

Small minimal (n − k)-blocking sets of PG(n, q) are of special interest, as there

is hope to characterize them. Sziklai’s Linearity Conjecture claims that all small

minimal (n − k)-blocking sets are linear. Szőnyi and Weiner prove in [45] that

small minimal (n− k)-blocking sets meet every k-space in 1 mod p points, where

q = ph is the order of the projective space. It is also proved that the sizes of small

minimal blocking sets are contained in disjoint intervals. In Chapter 2 we prove

the Linearity Conjecture in one of these intervals.

In Chapter 3 we turn our attention to multiple blocking sets. In a multiple

blocking set one can always find a minimal multiple blocking set. In this chapter

we prove that if B is a weighted t-fold (n− k)-blocking set of PG(n, q) with size

at most (t+1)qn−k+qn−k−1 + · · ·+q+1, then the minimal t-fold (n−k)-blocking

set contained in B is unique. Examples of the last section show that our result

is sharp in certain cases.

In Chapter 4 planar blocking set constructions are presented. The main construc-

tion of this chapter is a generalization of the Megyesi construction and also of a

construction given by Gács in [22]. A set of q points is selected with the aid of

a subgroup of the multiplicative group GF(q)∗. This set, together with the ideal

points determined by it forms a minimal blocking set, which is contained in the

union of n+ 1 lines, precisely n of which are concurrent. The last section of this

chapter presents constructions which produce blocking sets of PG(2, qh) starting

from a blocking set of PG(2, q).
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Magyar nyelvű összefoglaló

Doktori értekezésemben véges projekt́ıv terek lefogó ponthalazaival kapcsolatos

álĺıtások és konstrukciós eljárások szerepelnek. Eredményeim az [1], [2], [3] és [4]

cikkekben jelentek meg.

Az 1. fejezetben a szükséges defińıciókat, jelöléseket, valamint a korábbi eredmé-

nyeket mutatom be.

Az utóbbi években megkülönböztetett figyelem övezi a PG(n, q) projekt́ıv tér kicsi

minimális lefogó ponthalmazait, mivel ezek karakterizációja reményteljes vállalko-

zásnak tűnik. Sziklai fogalmazta meg az ún. Linearitási Sejtést, mely szerint min-

den kicsi minimális lefogó ponthalmaz lineáris. Szőnyi és Weiner a [45] cikkben

bizonýıtotta, hogy egy kicsi minimális lefogó ponthalmaz minden k-dimenziós

alteret 1 mod p pontban metsz. Azt is belátták, hogy a kicsi minimális lefogó

ponthalmazok méretei diszjunkt intervallumokba tartoznak. A 2. fejezetben az

egyik interallumban bizonýıtjuk a Linearitási Sejtést.

A 3. fejezetben többszörösen lefogó ponthalmazokat vizsgálunk. Egy súlyozott

t-szeres (n− k)-lefogó ponthalmazban mindig találhatunk minimális súlyozott t-

szeres (n− k)-lefogó ponthalmazt. A 3. fejezetben belátjuk, hogy ha a súlyozott

t-szeres (n−k)-lefogó ponthalmaz mérete legfeljebb (t+1)qn−k+qn−k−1+· · ·+q+1,

akkor egyértelmű a bennefoglalt minimális rész.

A 4. fejezet lefogó ponthalmaz konstrukciókat mutat be. A legfontosabb kon-

strukciónk a Megyesi féle konstrukció, illetve Gács [22] cikkben bemutatott kon-

strukciójának általánośıtása. A GF(q)∗ multiplikat́ıv csoport egy részcsoportja

seǵıtségével választunk ki egy q elemű ponthalmazt a PG(2, q) projekt́ıv tér

AG(2, q) affin részében, majd ehhez hozzávéve a meghatározott ideális pontokat,

minimális lefogó ponthalmazt nyerünk. Az ı́gy kapott minimális lefogó ponthal-

mazok n+ 1 egyenesen helyezkednek el, melyből n konkurrens.
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