
The connection between C++ template

metaprogramming and functional

programming

Doctoral dissertation
2013

Ábel Sinkovics

abel@elte.hu

Thesis advisor: Zoltán Porkoláb, PhD

Eötvös Loránd University, Faculty of Informatics,
1117 Budapest, Pázmány Péter sétány 1/C

ELTE IK Doctoral School
Doctoral program: Az informatika alapjai és módszertana
Head of the doctoral school: Dr. András Benczúr, academicer
Head of the doctoral program: Dr. János Demetrovics, academicer

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/162468099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Project is supported by the European Union and co-financed by the European

Social Fund (grant agreement no. TAMOP 4.2.1./B-09/1/KMR-2010-0003).

2

Contents

I Introduction 6

I.1 Motivation . 8

I.2 Structure of the dissertation 8

I.3 Contributions . 10

II Introduction to template metaprogramming 12

II.1 First example: factorial . 12

II.2 Template metafunctions . 13

II.3 Boxed values . 14

II.4 Selection constructs . 15

II.5 Higher order metafunctions 17

II.6 Connection to functional languages 18

III Functional language elements 19

III.1 Laziness . 19
III.1.1 Laziness and recursive metafunctions 21
III.1.2 Template metaprogramming values 24
III.1.3 Changing the evaluation strategy of expressions . . . 27

III.2 Currying . 34

III.3 Algebraic data types . 38
III.3.1 Laziness . 39
III.3.2 Currying . 40

III.4 Typeclasses . 41

III.5 Angle-bracket expressions as first class citizens 45
III.5.1 Syntaxes . 45
III.5.2 Variables . 46
III.5.3 Let expressions . 47
III.5.4 Lambda expressions 55
III.5.5 Recursive let expressions 61

2

III.6 Pattern matching . 64
III.6.1 Using syntaxes for pattern matching 65
III.6.2 Let expressions . 68
III.6.3 Case expressions . 69

III.7 Summary . 72

IV Monads 73

IV.1 Implementation of monads 75

IV.2 Monad variations . 77
IV.2.1 Maybe . 78
IV.2.2 Either . 79
IV.2.3 List . 80
IV.2.4 Reader . 81
IV.2.5 State . 82
IV.2.6 Writer . 83

IV.3 Do notation . 85
IV.3.1 Implementation of the do notation 86
IV.3.2 Using return in do blocks 86
IV.3.3 List comprehension 87

IV.4 Exception handling in metaprograms 90
IV.4.1 Implementation of exception handling 93

IV.5 Summary . 97

V Parser generator library 98

V.1 Implementation of the library 98
V.1.1 Representing the input text 98
V.1.2 Representing source locations 101
V.1.3 Building parsers . 101

V.2 Applications . 108
V.2.1 Interface wrappers of libraries 109
V.2.2 Use-case: implementing a type-safe printf as a DSL 110

V.3 Building EDSLs for template metaprogramming 117
V.3.1 Parsing and building an AST 118
V.3.2 Binding references 119
V.3.3 Constructing the symbol table 121
V.3.4 Adding functions written in the new language to the

symbol table . 122
V.3.5 Recursive functions 125
V.3.6 Exporting functions 127

3

V.3.7 Implementing factorial 129

V.4 Summary . 130

VI Summary 131

A Summary 134

B Összefoglalás 135

4

Acknowledgements

This work would not have been done without the continuous support and
invaluable advices of my thesis advisor, Zoltán Porkoláb. I’d also like to
express my gratitude towards my wife, Kati for her understanding and endless
patience.

Ez a munka nem készülhetett volna el témavezetőm, Porkoláb Zoltán folyam-
atos támogatása és értékes tanácsai nélkül. Emellett szeretném kifejezni
hálámat feleségem, Kati iránt is megértéséért és végtelen türelméért.

5

Chapter I

Introduction

This dissertation introduces advanced techniques for C++ template metapro-
gramming supporting the developers and maintainers of applications and li-
braries implemented in C++. It assumes, that the reader is already familiar
with the C++ programming language.

In 1994 Erwin Unruh demonstrated [75] that it is possible to execute al-
gorithms using a C++ compiler as a side-effect of template instantiations.
Programs based on this technique are called C++ template metaprograms
and they form a Turing-complete sub-language of C++ [79]. Most devel-
opers don’t work on template metaprograms directly, but use libraries that
are based on template metaprograms. Since template metaprograms are ex-
ecuted at compile-time, a number of extensions to the C++ language can be
implemented using them without having to change the compiler itself.

• For C++ libraries supporting a specific domain (database access, regu-
lar expressions, etc.) it is useful if domain-specific errors (database field
type mismatches when reading or writing code, invalid regular expres-
sions, etc.) can be caught at compile-time, instead of leaving them in
the code and break the program execution at runtime. C++ template
metaprograms make it possible to implement such verifications [18].

• Domain Specific Languages (DSL) [16] are more and more popular.
They are small languages targeting one specific domain. For that do-
main, they are better suited than other languages, but they are not
useful in other domains. There are widely used and well known domain
specific languages, such as SQL or the syntax of regular expressions.
DSLs are used together with one (or more) general purpose language
in a way, that the parts of the program describing the domain specific
logic are implemented in the DSL, while the rest of the code is im-
plemented in the general purpose language. When the code snippets

6

written in the DSL are embedded into a source code written in another
(in most cases general purpose) language, they are called Embedded
DSLs, or EDSLs. Template metaprograms can be used to embed such
languages into C++ [65].

• Developers have to write repetitive code from time to time, where there
are minor differences between the repetitions. In most cases, such code
snippets are implemented by copying and updating another one. Tem-
plate metaprograms provide solutions for making the C++ compiler
generate such code snippets [1].

• C++ compilers optimise the code to make it run faster or consume less
memory. However, the options for the compiler to optimise are limited
by the fact that the optimised code has to work the same way as the
original one. In many cases, further optimisations could be done based
on extra knowledge about the domain of the application. The compiler
is not aware of the domain and can not implement these optimisations,
however, they can be implemented using template metaprogramming
techniques [78, 80, 77].

• When new features are added to the C++ language or when someone
would like to try a new idea for a language feature out, the compiler
needs to be updated, which is not always easy or even possible. How-
ever, many such features can be simulated using template metapro-
gramming techniques [83].

C++ template metaprograms can be implemented following the standard,
thus all of the standard compliant compilers can understand and execute
them.

Templates in C++ were not designed to form a Turing-complete sub-
language of C++, but they are complex enough to make executing algorithms
at compile-time possible. Using the template instantiation logic of the com-
piler to execute custom algorithms has drawbacks, since this capability has
never been a design goal. When someone writes template metaprograms,
he uses compile-time functions and data-structures, however, he implements
them by template classes, typedefs and inheritance. This makes it difficult
to write, read and maintain template metaprograms.

7

I.1 Motivation

The connection between the functional programming paradigm and C++
template metaprogramming is well known [37, 10, 40, 15, 52, 68, 19, 20].
There are a number of similarities between the logic of C++ template metapro-
gramming and functional languages, like Haskell. For C++ code executed
at runtime there are libraries supporting functional programming [36] but
in template metaprogramming current approaches [1, 25, 3] try to simulate
imperative languages and libraries, such as the Standard Template Library
of C++ [32, 41] and most of them does not take advantage of the functional
paradigm.

I.2 Structure of the dissertation

This dissertation presents different approaches for providing a better syntax
and abstractions for template metaprogramming than what is available now.
All of the techniques discussed are based on the C++ standard, they can be
used with any standard compliant compiler. None of them requires external
tools. The logical structure of the dissertation is presented in figure I.1. The
cloud represents the initial idea of the dissertation. The rounded rectangles
represent the theses. The section numbers in which the topics are discussed
are added to the diagram in the small rectangles. The rectangles with thick
grey borders represent the benefits of following the topics discussed in this
dissertation.

After an introduction to template metaprogramming and presenting the
current practice in chapter II, chapter III presents how to provide a number of
language elements of Haskell in C++ template metaprogramming and how to
use them. Given how strongly it affects the way programs are implemented,
this chapter begins with a discussion of the evaluation strategies in C++
template metaprograms. After that it presents abstractions that simplify
template metaprograms, such as currying, algebraic data types, typeclasses,
let and lambda expressions and pattern matching.

Chapter IV presents how to implementMonads, an abstraction commonly
used in functional programming languages [29, 51, 55, 56, 28, 48, 56] in C++
template metaprogramming using the techniques presented in chapter III. It
presents a number of monad instances and presents how to implement them.
Haskell provides a syntactic sugar, the do syntax for writing monadic code,
which strongly improves the readability of the code. This chapter presents
a way for simulating this notation in template metaprogramming to get the
same benefits. It is also discussed, how it provides list comprehension in tem-

8

Figure I.1: Structure of the dissertation

9

plate metaprogramming. The chapter discusses, how to implement and use a
generalisation of Haskell’s Either type in C++ template metaprogramming
to simulate exception handling and how to provide try and catch blocks for
template metaprograms based on this.

These techniques support the authors of template metaprograms in fol-
lowing the functional programming paradigm and reasoning about template
metaprograms as Haskell programs, however, as the resulting code has to be
valid C++ code, there are syntactic limitations. Chapter V presents a tech-
nique for parsing the content of string literals by template metaprograms. It
presents how to build a parser for a Haskell-like language, that parses function
definitions written in that language and execute them as template metapro-
grams as part of the same compilation process. This makes it possible to
write template metaprograms using a Haskell-like syntax, which is easier to
read and maintain than the original syntax of template metaprogramming.
Based on the technique for parsing embedded code snippets written in an-
other language, it is possible to provide smooth embedding of domain specific
languages. The chapter presents further examples for this usage as well.

All techniques presented in this dissertation are concluded in chapter VI.
A reference implementation of the discussed techniques is also available as
an open-source library [59].

I.3 Contributions

This section contains the list of contributions of this dissertation. Each
contribution has a short description followed by a reference to a chapter or
a section where it is discussed in detail.

Thesis 1: I have evaluated the connection between C++ template metapro-
gramming and functional programming languages. Based on the results I
have developed methods for supporting template metaprogrammers using
the functional paradigm explicitly. (chapter III)

Thesis 1.1: I have shown the importance of laziness in template metapro-
gramming and developed an automated adaption method to use non-lazy
metafunctions in a lazy way. (section III.1)

Thesis 1.2: I developed a method for effective implementation of curry-
ing in C++ template metaprogramming. (section III.2)

Thesis 1.3: I have developed a method for representing Haskell-like
algebraic data-types in C++ template metaprogramming. (section III.3)

Thesis 1.4: I have developed a method for representing Haskell type-
classes in C++ template metaprogramming. (section III.4)

10

Thesis 1.5: I have developed a method to handle template metapro-
gramming expressions as first class citizens, ie. they can be stored, passed as
parameters or returned by functions. This method enables the implementa-
tion of let expressions and provides a more convenient way of implementing
lambda expressions than what Boost.MPL’s lambda expression implementa-
tion, a widely used solution offers. (section III.5)

Thesis 1.6: I have implemented an alternative method for pattern match-
ing in C++ template metaprogramming. This enables the implementation
of case expressions. (section III.6)

Thesis 2: I have developed a method for implementing monads and a
Haskell-like do syntax in C++ template metaprogramming and evaluated
how a number of different monad variations available in Haskell can be im-
plemented using this method. Based on this I have developed a method for
simulating exception handling in C++ template metaprograms. (chapter IV)

Thesis 2.1: I have developed a method for implementing monads in
C++ template metaprogramming. (section IV.1)

Thesis 2.2: I have evaluated how a number of monads available in
Haskell can be implemented using the approach presented in Thesis 2.1.
(section IV.2)

Thesis 2.3: I have developed a method for implementing a Haskell-like
do syntax in template metaprogramming. (section IV.3)

Thesis 2.4: I have developed a method for simulating exception handling
in C++ template metaprogramming based on monads. (section IV.4)

Thesis 3: I have developed a method for implementing a parser generator
library in C++ template metaprogramming. I have evaluated how it can
be used for embedding domain specific languages into C++ and providing a
more readable syntax for C++ template metaprogramming. None of these
methods require external preprocessors. (chapter V)

Thesis 3.1: I have developed a method for turning string literals into
character containers for C++ template metaprograms. Utilising this I have
developed a method for implementing a parser generator library in C++.
(section V.1)

Thesis 3.2: I have evaluated how parsers based on Thesis 3.1 can be
used to embed domain specific languages into C++ without external prepro-
cessors. (section V.2)

Thesis 3.3: I have developed a method based on Thesis 3.1 for provid-
ing a Haskell-like syntax for C++ template metaprograms without external
preprocessors. (section V.3)

11

Chapter II

Introduction to template

metaprogramming

This chapter introduces template metaprogramming by presenting a way
of using template classes and template instantiations to calculate factorial
numbers at compile-time. After that this chapter presents the basic con-
cepts of template metaprogramming, such as template metafunctions, boxed
values, higher order metafunctions and selections. This chapter discusses the
connection between template metaprogramming and functional languages as
well.

II.1 First example: factorial

The way template metaprogramming works can be demonstrated through a
simple example: calculating the factorial of numbers at compile-time. This
is not a real-world use case, however, it is good for demonstrating how to
write programs running at compile-time and a number of problems one can
face. The factorial of a number can be calculated at compile-time using a
template class taking one template argument, the number to calculate the
factorial of:

template <int N>

struct fact {

static const int value = fact<N - 1>::value * N;

};

This template class has a static int constant member. The value of this
constant member is the factorial of the template argument. It is calculated

12

using a recursive expression: the factorial of N is N times the factorial of N -

1. The factorial of N - 1 is the value of the valuemember of the class fact<N
- 1>. The instantiation of fact<N> triggers the instantiation of fact<N -

1> which triggers the instantiation of fact<N - 2> and it keeps recursing.
This recursive chain of instantiations has to be stopped. The factorial of 0 is
1. The chain of recursion can be stopped at 0 using template specialisation
[76]. A specialisation has to be written for fact<0> that doesn’t call fact
recursively:

template <>

struct fact<0> {

static const int value = 1;

};

Having this specialisation when the recursive instantiation chain tries to in-
stantiate fact<0>, the compiler chooses the specialised version of the tem-
plate class and doesn’t recurse further.

The above example demonstrates how to use C++ templates to do calcu-
lations at compile-time. To be able to build more complicated programs that
are executed at compile-time a convention is needed on how these programs
are structured. This dissertation follows the convention introduced in [1].

II.2 Template metafunctions

The basic building block of template metaprograms is called a template meta-
function [12, 1]. This is used as a function in template metaprogramming
and is implemented as a template class. The arguments of the metafunction
are the template arguments of the class, the result of the metafunction is a
nested type called type. For example here is a template metafunction that
takes a type and returns the constant version of that type. For example it
turns the type int into const int.

template <class T>

struct make_const {

typedef const T type;

};

To call the above metafunction, one should write make const<int>::type.
The result of this is a type, thus it can be used at all places where a type
can be used.

13

A special case of template metafunctions is a nullary template meta-
function. This is a metafunction that takes 0 arguments. Since it takes
no arguments it is not a template class, but a class with a nested type
called type. By providing the template arguments but not accessing the
nested type called type of a template metafunction one gets a nullary meta-
function. For example make const<int> is a nullary metafunction, while
make const<int>::type is not.

To improve interoperability between metafunctions the following con-
straint is introduced: the arguments and the result of metafunctions are
always types. [1]

II.3 Boxed values

Since the arguments of template metafunctions are types, to implement a
metafunction operating on numbers – such as the fact example presented
earlier – numbers need to be turned into types. A common way [1, 25, 30] of
doing this is using boxing-classes. For example the following template class
boxes integer values:

template <int N>

struct int_ {

static const int value = N;

};

Having this template class a number, such as 13 is represented by the type
int <13>. This type can be passed to template metafunctions, they can do
calculations with it and return other boxed values. The end result needs
to be unboxed to get the result as an integer value. This unboxing hap-
pens by accessing the value static member of the class. For example the
type int <13> is unboxed by int <13>::value. By convention, this static
member is always called value.

Basic arithmetic operations on boxed values need to be implemented as
template metafunctions. These metafunctions unbox the values, perform the
operations and box the result again. For example the following metafunction
implements multiplication:

template <class A, class B>

struct times {

typedef int_<A::value * B::value> type;

};

14

The above metafunction multiplies the two arguments, A and B. It unboxes
them (A::value and B::value), multiplies the unboxed values and boxes
the result again.

The metafunctions operating on boxed values are implemented based on
these simple arithmetic metafunctions. For example the following metafunc-
tion doubles a number:

template <class N>

struct double_number {

typedef typename times<int_<2>, N>::type type;

};

This metafunction calls the metafunction times to double its argument. The
typename keyword is used because times<int <2>, N>::type is a dependent
name [76, 31]. double number calls another metafunction, times and returns
what times returned. Since the result of a metafunction is its nested type
called type, it creates a typedef for times<int <2>, N>’s nested type called
type in double number. By publicly inheriting from times<int <2>, N>

double number gets this nested type without having to use typedef. Thus,
here is a simpler was of implementing double number:

template <class N>

struct double_number : times<int_<2>, N> {};

This technique is commonly used during template metaprogram develop-
ment, it is called metafunction forwarding [1].

II.4 Selection constructs

Not only integer values but other integral types, including boolean values
need to be boxed as well. For example:

template <bool B>

struct bool_ {

static const bool value = B;

};

Basic predicates, such as comparisons, logical operators, etc are implemented
as template metafunctions as well. For example the following metafunction
implements the < operator for boxed integers:

15

template <class A, class B>

struct less {

typedef bool_<(A::value < B::value)> type;

};

The above code snippet unboxes its arguments, compares the unboxed values
and boxes the result using a boxing template for booleans. Type selection is
implemented as a metafunction based on boxed booleans:

template <class C, class T, class F>

struct if_;

It takes three arguments: a condition, C as a boxed boolean and two other
types, T and F. The return value of this metafunction depends on the value
of the condition. When it is true, the result is T, otherwise the result is F.
The following code snippet implements if using specialisation:

template <bool C, class T, class F>

struct if_c {

typedef T type;

};

template <class T, class F>

struct if_c<false, T, F> {

typedef F type;

};

template <class C, class T, class F>

struct if_ :

if_c<C::value, T, F>

{};

A helper template class, if c is used. It is similar to a metafunction but
it has a non-type template argument. In Boost.MPL metafunctions with
non-type template arguments get an c suffix.

The Boost.MPL library [25] provides a number of boxing classes and
template metafunctions (including int , bool , times, less, if and if c)
that are reusable. These utilities are in the boost::mpl namespace, which are
referred to as mpl, omitting boost:: to make code examples more compact.

16

II.5 Higher order metafunctions

Higher order functions are functions taking functions as arguments or re-
turning functions as the result [48, 49, 11]. This section presents the current
practice [25] for providing them in template metaprogramming. Since all
template metafunctions take types as arguments and return types as results,
metafunctions have to be represented by types to implement higher order
metafunctions. Metafunctions are template classes, which are not types.
Boxing them turns them into types:

struct make_const {

template <class T>

struct apply {

typedef const T type;

};

};

The above example implements a boxed version of make const. make const

is a class with a nested template class called apply. apply is a template
metafunction – it takes a type as an argument and returns the const version
of it as the result. This construct is called a template metafunction class [1].
One has to write make const::apply<int>::type to call it. Metafunction
classes can be passed to metafunctions as arguments or be returned by meta-
functions as results. The current practice [25] is to wrap calling metafunction
classes with a metafunction:

template <class F, class T1>

struct apply_wrap1 :

F::template apply<T1>

{};

The above metafunction implements the evaluation of a metafunction tak-
ing one argument. Similar metafunctions can be written for metafunction
classes taking 2, 3, etc number of arguments. These metafunctions can be
automatically generated using preprocessor metaprogramming [1].

17

II.6 Connection to functional languages

Template metaprogramming has similarities to pure functional programming
languages.

• Values are immutable. Every entity is defined once and its value can
not be changed later.

• Template metaprogramming supports using functions as first-class cit-
izens, thus it supports higher-order functions.

• Template metaprogramming supports pattern matching by partial tem-
plate specialisation.

• Compile-time functions are pure. They have no side-effects and when
they are evaluated with the same arguments, they return the same
value.

• Template metaprogramming supports lazy evaluation of expressions.

It was not a design goal of C++ to support template metaprogramming
and as a result of this its syntax is complicated. Non-trivial metaprograms
are difficult to read and understand. When they contain bugs, it makes it dif-
ficult to find the problem and fix it. There are libraries available supporting
template metaprogramming [25, 4] but they don’t take advantage of the sim-
ilarities between template metaprogramming and functional programming.
This dissertation discusses how looking at template metaprogramming as a
functional language makes it possible to develop more readable and main-
tainable code.

18

Chapter III

Functional language elements

This chapter overviews how to implement the basic building blocks of classical
functional languages in C++ template metaprogramming. Metaprograms
implemented using these elements are easier to read and maintain.

III.1 Laziness

The following expression assumes, that the runtime C++ functions plus,
minus and times implementing addition, subtraction and multiplication of
two numbers are provided:

plus(times(2, 3), minus(4, 1))

This expression calls the plus function with two arguments: times(2, 3)

and minus(4, 1). When the above expression is evaluated, each of the
functions plus, times and minus are called once. It is guaranteed, that
the arguments of plus – times(2, 3) and minus(4, 1) – are evaluated
before plus, but the order in which these two expressions are evaluated is
not specified. At the same time, implementing the same expression in Haskell

plus (times 2 3) (minus 4 1)

results in a different evaluation order, as Haskell starts with evaluating plus

and evaluates its arguments only if and when they are needed.
The rules specifying in which order sub-expressions are evaluated is called

the evaluation strategy [81] of the language. Evaluation strategies are either
strict or lazy [47, 81, 49].

19

• Strict strategies completely evaluate the arguments passed to a function
before the function call itself is evaluated.

• Non-strict strategies evaluate the arguments passed to a function only
when the argument is used in the body of the function.

In template metaprogramming expressions are built from template meta-
function calls, such as f<g<int>, h<double>::type>. The result of a tem-
plate metafunction is its nested type called type, thus the body of the meta-
function is the definition of this type. Instantiating a template class, (eg.
h from the above example) with a type (eg. double) does not instantiate
the nested types (eg. h<double>::type) until they are accessed. The eval-
uation of a template metafunction happens when its body is instantiated,
thus when the ::type of the metafunction is accessed. The developer has
control over which ::types are accessed and in which order, therefore, in
template metaprogramming the developer decides the evaluation order of an
expression. As a result of this, the developer has to be aware of the difference
between the evaluation strategies and decide in each case when to trigger the
evaluation of an expression.

The evaluation strategies affect the development of template metapro-
grams when the developer starts combining metafunctions and writing more
and more complex expressions using them. As control structures like if

are implemented as metafunctions, the developer of metaprograms has to
make sure, that he doesn’t accidentally enforce the evaluation of a branch
of a selection that doesn’t get selected and should not be evaluated. When
an argument of a metafunction is not evaluated before the metafunction is
called, the metafunction itself has to make sure that it gets evaluated at the
right time if needed. Metafunctions need to be prepared for this, not all
metafunctions support it. Some metafunctions accept arguments that are
not evaluated yet, while others may break in such situations. The developer
using the metafunctions has to know which ones support this and which don’t
to be able to decide the evaluation strategy he uses in his code. This affects
simple expressions as well, such as the following:

mpl::times<

mpl::int_<1>,

mpl::if_<mpl::true_, mpl::int_<2>, mpl::int_<3>>

>::type

20

This example calculates 1 times 2 where the value 2 is the result of a sub-
expression. However, when one tries evaluating the above expression, it
breaks the compilation. mpl::times complains that multiplying the num-
ber mpl::int <1> with an mpl::if <...> value is not supported. The
sub-expression mpl::if <...> is passed in its original, unevaluated form
to mpl::times. To evaluate it before mpl::times is called, one has to write
the following:

mpl::times<

mpl::int_<1>,

mpl::if_<mpl::true_, mpl::int_<2>, mpl::int_<3>>::type

>::type

This code snippet has an extra ::type after if <...> enforcing its evalu-
ation. Such sub-expressions that are passed unevaluated to functions and
can be evaluated at a later point in time are called thunks in a number of
functional languages [48, 82]. Like in this example, the author of an expres-
sion decides the evaluation strategy by accessing or not accessing the nested
::type of a sub-expression.

III.1.1 Laziness and recursive metafunctions

The explicit evaluation of nullary metafunctions introduces extra syntactic
noise and triggers the evaluation of sub-expressions that should not be eval-
uated at all. For example here is an attempt to implement the factorial
calculation using template metafunctions and boxed integers:

template <class N>

struct fact : // attempt to implement fact

mpl::if_<

typename mpl::less<N, mpl::int_<1>>::type,

mpl::int_<1>,

mpl::times<fact<mpl::minus<N, mpl::int_<1>>>, N>

> {};

The above implementation uses less to check if the argument is less than 1.
It uses if to handle arguments less than 1 in a different way than the rest
of the values. Since if expects a boxed boolean value and does not accept
a nullary metafunction, the above implementation enforces the evaluation of
less by explicitly accessing its nested type called type. When the argument
is less than 1, fact returns the boxed 1 value. Otherwise it evaluates fact
with minus<N, int <1>> as its argument and multiplies the result by N.

21

The problem with the above code is that the recursive call, fact<minus<N,
int <1>>> passes a nullary metafunction, minus<N, int <1>> to fact in-
stead of a boxed integer value. fact passes its argument to less, which
expects a boxed integer value and does not accept a nullary metafunction,
thus the above implementation breaks at the first recursive call. To fix that,
one can enforce the evaluation of minus<N, int <1>>:

template <class N>

struct fact : // attempt to implement fact

mpl::if_<

typename mpl::less<N, mpl::int_<1>>::type,

mpl::int_<1>,

mpl::times<

fact<typename mpl::minus<N, mpl::int_<1>>::type>,

N

>

>

{};

In this implementation the evaluation of minus<N, int <1>> is enforced,
thus a boxed value is given to the recursive call. However, times expects a
boxed value as well but this version passes a thunk, fact<typename minus<N,

int <1>>::type> to it. To fix that, one can enforce the evaluation of this
expression as well:

template <class N>

struct fact : // attempt to implement fact

mpl::if_<

typename mpl::less<N, mpl::int_<1>>::type,

mpl::int_<1>,

mpl::times<

typename fact<

typename mpl::minus<N, mpl::int_<1>>::type

>::type,

N

>

>

{};

22

The above code snippet passes a boxed value to times by enforcing the eval-
uation of fact<typename minus<N, int <1>>::type>. Before the instan-
tiation of if the template arguments passed to it are evaluated. When an
argument is a forced evaluation of a metafunction, such as fact<typename
minus<N, int <1>>::type, the forced evaluation is done and its result is
used as the argument. Since in the above example it is an argument of if ,
this evaluation happens before the instantiation of if , which implements
the selection logic. As a result of this, the recursive call is always evaluated
before the selection could decide if it should be selected or the recursion
should stop. It leads to an infinite recursion when the fact metafunction is
evaluated. A solution for this problem is moving the recursive metafunction
call into a helper metafunction:

template <class N> struct fact;

template <class N>

struct fact_impl :

mpl::times<

typename fact<

typename mpl::minus<N, mpl::int_<1>>::type

>::type, N>

{};

template <class N>

struct fact : // attempt to implement fact

mpl::if_<

typename mpl::less<N, mpl::int_<1>>::type,

mpl::int_<1>,

fact_impl<N>

> {};

A new helper metafunction, fact impl is introduced which implements the
recursive part of the factorial evaluation. The forced call to fact is moved
into this metafunction, thus the recursive call happens when fact impl

is evaluated. But fact’s implementation does not force the evaluation of
fact impl as it does not access its nested ::type.

The problem with the above implementation is that for values not less
than 1 it returns a nullary metafunction, fact impl<N> instead of a boxed
value. Boost.MPL provides the mpl::eval if metafunction that takes a
condition and two thunks as arguments, chooses a thunk based on the con-
dition, evaluates it and returns the result. Using it fact’s implementation
becomes the following:

23

template <class N> struct fact;

template <class N>

struct fact_impl :

mpl::times<

typename fact<

typename mpl::minus<N, mpl::int_<1>>::type

>::type, N>

{};

template <class N>

struct fact :

mpl::eval_if<

typename mpl::less<N, mpl::int_<1>>::type,

mpl::int_<1>,

fact_impl<N>

>

{};

The above code snippet uses eval if instead of if to make sure that the call
to the helper metafunction fact impl gets evaluated when it is necessary.

III.1.2 Template metaprogramming values

Many recursive metafunctions – such as the fact example of the previous sec-
tion – contain an eval if that stops the recursion. When it should recurse,
it evaluates a nullary metafunction (like fact impl<N> in fact). When it
stops the recursion, it returns some value (like int <1> in fact). eval if

assumes that its second and third arguments are nullary metafunctions. The
fact example passes eval if a boxed integer, int <1> as the second argu-
ment. To make sure that it works, the boxing classes (and all types that are
meant to be used as values in template metaprograms) need to be turned
into nullary metafunctions evaluating to themselves:

template <int N>

struct int_ {

typedef int_ type;

/*

...

*/

};

24

The above implementation of int defines a nested type called type in int .
This nested type is a typedef of int itself, thus int is a nullary meta-
function as well. These classes are template metaprogramming values. A
metafunction class is a value and a function at the same time - one may look
at it as a value passed around in metaprograms or as a function that may be
called to produce some other value. These two concepts don’t interfere with
each other. For example:

struct template_metafunction_class {

// This makes it a metaprogramming value

typedef template_metafunction_class type;

// This makes it a metafunction class

template <class A, class B>

struct apply : /* ... */ {};

};

As the above example shows, a template metafunction class needs a ::type

referring to itself to be a template metaprogramming value and an ::apply

metafunction producing some result to be a higher order metafunction. Ac-
cessing ::type will not call the higher order metafunction, it treats the class
as a value. To call the function, one has to be explicit about it by using
::apply.

A helper template class simplifies the implementation of template metapro-
gramming values using inheritance and the Curiously Recurring Template
Pattern [76].

template <class T>

struct tmp_value { typedef T type; };

This is a template metafunction returning its argument, thus this is the iden-
tity metafunction with a different name (tmp value). The implementation
of int becomes:

template <int N>

struct int_ : tmp_value<int_<N>> { static const int value; };

This implementation of int inherits from tmp value instantiated with itself
to be a template metaprogramming value. While inheriting from tmp value

makes it explicit that the developer intended to create a template metapro-
gramming value, all the template arguments of int have to be listed again
to instantiate tmp value with the right class.

There are some constraints authors of template metaprograms should
keep to make writing and reading template metaprograms easier:

25

• Every class used in template metaprograms as a value is a template
metaprogramming value. It guarantees, that these values work fine with
lazy metafunctions. This constraint means, that the built-in types,
such as int, double, etc. can not be used in template metaprograms
directly, since they have no ::type pointing to themselves. However,
the following boxing class provides a wrapper for them that turns them
into template metaprogramming values:

template <class T>

struct box { typedef box type; };

template <class T> struct unbox;

template <class T> struct unbox<box<T>> {typedef T type;};

box<int> is a template metaprogramming value, it can be passed
around in template metaprograms. The unbox template class imple-
ments the unboxing of such wrapped values. For example the expres-
sion unbox<box<int>>::type unboxes box<int>.

• Every metafunction returns a template metaprogramming value. This
means that metafunctions should not return nullary metafunctions
evaluating to something else. Returning a metafunction class taking
some arguments to produce a value is fine, because in that case the
metafunction class is a value itself. This constraint guarantees that
using ::type is always a safe operation, since it can not accidentally
change an already evaluated value. To evaluate a template metafunc-
tion class and get some other value, one has to use its ::apply<...>
template.

Template metafunctions not accepting nullary metafunctions as argu-
ments make the implementation of template metaprograms complicated.
Given that types that are used as values in template metaprogramming –
such as boxing classes – are expected to work as nullary metafunctions eval-
uating to themselves, template metafunctions should be implemented in a
way that they accept nullary metafunctions as well. Here is an implementa-
tion of times that accepts nullary metafunctions as arguments and evaluates
them:

template <class A, class B>

struct times {

typedef mpl::int_<A::type::value * B::type::value> type;

};

26

The above implementation of times assumes, that its arguments are nullary
metafunctions evaluating to boxed integers. It evaluates them first (A::type
and B::type), unboxes the results (A::type::value and B::type::value),
multiplies them and boxes it again. A metafunction that works with nullary
metafunctions as well is called a lazy metafunction [1]. When metafunctions
are lazy, the implementation of fact from section III.1.1 becomes signifi-
cantly simpler:

template <class N>

struct fact :

eval_if<

less<N, mpl::int_<1>>,

mpl::int_<1>,

times<fact<minus<N, mpl::int_<1>>>, N>

> {};

The above implementation builds on the fact that all metafunctions it calls –
eval if, less, times, fact, minus – are lazy. As a result of this, the explicit
usage of typename ... ::type can be omitted and no helper metafunc-
tions are needed making the code more compact.

III.1.3 Changing the evaluation strategy of expressions

Expressions in template metaprogramming – such as times<fact<minus<N,
int <1>>>, N> – are built of template metafunction calls. They are called
angle bracket expressions. The evaluation order depends on the expression
itself.

• times<fact<minus<N, int <1>>>, N>::type evaluates the expression
lazily by passing fact<minus<N, int <1>>> and N to times as argu-
ments.

• times<fact<minus<N::type, int <1>>::type>::type, N::type>::

type evaluates the expression strictly: all arguments are evaluated be-
fore they are passed to the metafunctions called from the expression.

The evaluation strategy depends on the expression itself. This section presents
how to simulate lazy evaluation for an expression calling metafunctions that
are not prepared for lazy evaluation. The metafunctions called from the ex-
pression don’t need to be changed for this. This simulation is implemented
by a template class, lazy. Here is an implementation of fact using it:

27

template <class N>

struct fact :

mpl::eval_if<

typename mpl::less<N, mpl::int_<1>>::type,

mpl::int_<1>,

lazy<mpl::times<fact<mpl::minus<N, mpl::int_<1>>>, N>>

>

{};

In this example the template class lazy is used to evaluate the calls to the
times, fact and minus non-lazy template metafunctions in a lazy way. Such
a tool makes it possible to add laziness to an existing metaprogramming
library that does not support laziness without having to change the library.

Implementing lazy

lazy is a metafunction taking a nullary metafunction as argument. lazy

evaluates its argument when lazy itself is evaluated. When an angle bracket
expression is passed to lazy, it evaluates a transformed version of the expres-
sion: all arguments the expression passes to a metafunction get evaluated and
the results are passed to the metafunction. Thus when a nullary metafunction
is passed as an argument to another metafunction, the nullary metafunction
gets evaluated and the result is passed to the other metafunction. Here is an
implementation of lazy:

template <class Exp>

struct lazy : Exp {};

This implements how lazy should deal with expressions that can not be
transformed. By inheriting from Exp, lazy guarantees that when lazy is
evaluated, Exp is also evaluated.

Partial specialisation can be used to detect and handle angle bracket
expressions. These specialisations can be implemented by template template
arguments. A partial specialisation can match the top-level metafunction call
of the expression. For example, when the top-level metafunction call passes
three arguments to a metafunction, the following specialisation implements
the lazy evaluation of the expression:

28

template <

template <class, class, class> class T,

class A1, class A2, class A3

>

struct lazy<T<A1, A2, A3>> :

T<

typename lazy<A1>::type,

typename lazy<A2>::type,

typename lazy<A3>::type

>

{};

It defines a partial specialisation of lazy for some T template class taking
3 arguments and some A1, A2 and A3 classes passed as arguments to this
template class. lazy evaluates the arguments following this lazy evaluation
logic by evaluating lazy<A1>, lazy<A2> and lazy<A3>. The results of these
evaluations are passed to T as arguments. All these evaluations happen only
when lazy itself is evaluated.

This implements the lazy evaluation strategy for angle bracket expres-
sions, where the top-level metafunction call is a call to a metafunction with
three arguments. Similar specialisations can be implemented for top-level
metafunction calls with different arity. The Boost.Preprocessor library [34]
provides tools to generate these specialisations automatically.

Protecting metafunctions that are already lazy

lazy works for metafunctions that are not lazy, but in some cases it causes
issues for metafunctions that are lazy. Lazy metafunctions may need that
their arguments are not evaluated. For example the template metafunction
eval if takes a condition as its first argument and two nullary template
metafunctions as its second and third arguments. It chooses exactly one of
the two nullary metafunctions based on the condition and evaluates only that
one. The other nullary metafunction remains unevaluated. In several cases
evaluating the other nullary metafunction than the selected one leads to a
compilation error and should be avoided.

Tools like lazy evaluate all arguments of a template metafunction call
before making the metafunction call, thus for eval if they evaluate both
sides of the selection, not just the selected one. This should be avoided. A
marker can tell lazy to stop recursing. This dissertation implements it using
a template class, already lazy. The following implementation of the fact

function presented in section III.1.1 uses it:

29

template <class N>

struct fact : // attempt to implement fact

lazy<

eval_if<

less<N, int_<1>>,

already_lazy<int_<1>>,

already_lazy<times<fact<minus<N, int_<1>>>, N>>

>> {};

The two nullary metafunctions eval if has to choose from are wrapped
with already lazy to protect them from the forced evaluation. The lazy

template class needs to be specialised the following way:

template <class T> struct already_lazy;

template <class Expr>

struct lazy<already_lazy<Expr>> { typedef Expr type; };

This handles the parts of the expressions that are protected by already lazy.
It leaves the content wrapped by this template class untouched.

already lazy protects against evaluating the arguments of lazy meta-
functions used in an expression transformed by lazy, but it also guarantees
that the wrapped expression is left untouched, thus it will not be evaluated
following lazy’s logic. This breaks the code in many cases, even in the above
fact example, where the times<fact<minus<N, int <1>>>, N> expression
– protected by already lazy – needs to be evaluated following lazy’s eval-
uation strategy. Using lazy inside already lazy resolves this:

template <class N>

struct fact :

lazy<

eval_if<

less<N, int_<1>>,

already_lazy<int_<1>>,

already_lazy<lazy<times<fact<minus<N, int_<1>>>, N>>>

>> {};

The nested lazy inside already lazy guarantees that the times<fact<minus
<N, int <1>>>, N> expression is evaluated following lazy’s evaluation strat-
egy. Wrapping eval if’s arguments with already lazy guarantees that it
does not get evaluated too early, using lazy inside already lazy guarantees
that the recursion of lazy continues, but only when eval if triggers the
evaluation of that expression.

30

Making it convenient to pass lazy arguments to metafunctions

The following template class wraps the pattern used in the above example –
using lazy inside already lazy:

template <class Expr>

struct lazy_argument;

template <class Expr>

struct lazy<lazy_argument<Expr>> {

typedef lazy<Expr> type;

};

The above code snippet specialises lazy for lazy argument elements. When
a sub-expression is wrapped with it, lazy returns the lazy version of the
expression as a nullary metafunction, thus it can be evaluated later. Template
aliases provided by C++11 simplify the implementation of lazy argument:

template <class Expr>

using lazy_argument = already_lazy<lazy<Expr>>;

This implementation makes use of the fact that lazy argument can be ex-
pressed by the combination of already lazy and lazy. Here is an imple-
mentation of fact using lazy argument:

template <class N>

struct fact :

lazy<

eval_if<

less<N, int_<1>>,

lazy_argument<int_<1>>,

lazy_argument<times<fact<minus<N, int_<1>>>, N>>

>

>

{};

This code snippet uses lazy argument to protect the two branches of eval if

from being evaluated too early and ensures that when they are evaluated,
they are evaluated lazily.

31

Arguments of functions implemented using lazy

There is another thing users of tools like lazy need to be careful with. When
fact is called with an angle bracket expression as its argument, its template
argument, N refers to that angle bracket expression. For example when

fact<

eval_if<true_, int_<1>, divides<int_<1>, int_<0>>>

>::type

is evaluated, N refers to eval if<true ,int <1>,divides<int <1>,int <0>

>>. Using N::type evaluates that expression, but when N is referred to inside
lazy, the way N is evaluated is changed by lazy. The evaluation strategy
used inside fact should be an implementation detail, but this behaviour
affects the callers of the function. Because of wrapping eval if<...> with
lazy without using lazy argument the above example would break the com-
pilation.

To avoid this, references to metafunction arguments should be wrapped
by already lazy inside lazy blocks. The following implementation of fact
demonstrates this:

template <class N>

struct fact :

lazy<

eval_if<

less<already_lazy<typename N::type>, int_<1>>,

lazy_argument<int_<1>>,

lazy_argument<

times<

fact<minus<already_lazy<typename N::type>, int_<1>>>,

already_lazy<typename N::type>

>

>

>

>

{};

This example evaluates its arguments to make sure that the metafunction
is lazy, but wraps this evaluated argument with already lazy to avoid
lazy changing the meaning of the arguments. Using this implementation
makes it work when an unevaluated expression, such as eval if<true ,

int <1>, divides<int <1>, int <0>>> is given to fact as its argument,
since already lazy, that wraps N protects it from being evaluated in a dif-
ferent way the calling code intended to evaluate it.

32

Protecting all arguments of a metafunction call

The above example works, however, the argument N is evaluated in a strict
way by explicitly accessing its ::type. Another template class is needed that
supports situations where a sub-expression, such as N has to be evaluated but
lazy should not recurse into it. This means, that when the sub-expression is
a metafunction call, its arguments should not be transformed by lazy. The
following code snippet implements the lazy protect args template class
providing this:

template <class Expr>

struct lazy_protect_args;

template <class Expr>

struct lazy<lazy_protect_args<Expr>> : Expr {};

The above code snippet defines the template class lazy protect args. When
a sub-expression is wrapped with this, lazy evaluates the expression but
does not change it. Here is a completely lazy implementation of fact using
lazy protect args:

template <class N>

struct fact :

lazy<

eval_if<

less<lazy_protect_args<N>, int_<1>>,

lazy_argument<int_<1>>,

lazy_argument<

times<

fact<minus<lazy_protect_args<N>, int_<1>>>,

lazy_protect_args<N>

>

>

>

>

{};

This version of fact uses lazy protect args to ensure that N is evaluated
and the evaluation happens following the evaluation strategy the caller of
fact intended to use.

33

Summary

This section has introduced a number of utilities changing the evaluation
strategy of an expression:

• lazy<Exp> changes the way Exp is evaluated. It guarantees that inside
the expression Exp the arguments of every metafunction are evaluated
before the metafunction is called. It only affects the expression itself,
it does not affect metafunctions called by this expression.

• already lazy<Exp> used inside lazy’s Exp protects a sub-expression
from being transformed. The evaluation strategy of sub-expressions
wrapped by already lazy are not changed.

• lazy argument<Exp> used inside lazy’s Exp protects the arguments of
a lazy metafunction. It protects the expression it wraps from being
evaluated by lazy, so the function it is passed to as an argument can
evaluate it at a later point in time. When that evaluation happens, the
expression lazy argument wraps is evaluated following lazy’s evalua-
tion strategy.

• lazy protect args<Exp> used inside lazy’s Exp protects the evalua-
tion of the lazy metafunctions of an expression inside lazy. It guaran-
tees that the arguments of the template metafunction call it wraps are
not transformed by lazy.

This section has presented how an angle bracket expression can be eval-
uated lazily when the metafunctions being called from it don’t support it.
The approach presented in this section does not require any changes to the
implementation of these metafunctions. This section has also discussed a
number of issues that arise when someone uses this approach and ways of
avoiding them.

III.2 Currying

Currying [48] is supported by several functional languages [48, 50, 46]. The
idea behind it is by applying one argument to a function expecting n argu-
ments one gets a function expecting n - 1 arguments. By applying a second
argument to this new function one gets another function expecting n - 2

arguments. This is repeated until n arguments have been provided and these
arguments are collected. When the last, the nth argument is provided, the
original function is evaluated.

34

For example providing only one argument, int <2> to the times func-
tion one gets a function expecting one argument. This new function mul-
tiplies its argument by 2 – thus currying simplifies the implementation of
double number presented earlier. The following code snippet implements
the curried version of times:

template <class A>

struct times : tmp_value<times<A>> {

template <class B>

struct apply : int_<A::value * B::value> {};

};

The above implementation of times takes one argument and returns a meta-
function class taking another argument. The result of calling the metafunc-
tion class is the multiplication of the two arguments. The above code snippet
implements currying manually. Doing it this way is error prone and makes
the code unreadable, since it forces the developer to write a large amount of
boilerplate code.

This section presents how to implement metafunctions that can turn
non-curried metafunctions into a curried ones. The metafunctions doing
these transformations are called curry1, curry2, etc. The following exam-
ple presents how to generate the curried version of times, curried times

from the non-curried one (times):

typedef curry2<times> curried_times;

The above code snippet uses a template class, curry2 to turn the template
metafunction times into a curried one. curry2 transforms metafunctions
taking two arguments. Different versions, such as curry3, curry4, etc can
be implemented for different metafunction arities.

curryN is a template metafunction class taking its arguments one by one
and collecting them in a typelist [3]. When all of the arguments are provided,
it passes them to the wrapped template metafunction. In order to do that the
original metafunction – eg. times – has to be turned into a metafunction
that accepts a typelist as its argument list. For example a metafunction
taking one argument, a typelist of size 2 needs to be generated from the
metafunction times taking two arguments. Boost.MPL [25] provides tools
for that. The following example assumes, that a metafunction called times

taking two boxed numbers and multiplying them is available.

mpl::unpack_args<mpl::quote2<times>>

35

mpl::quote2 turns a metafunction taking 2 arguments into a metafunction
class. mpl::unpack args turns a metafunction class taking multiple argu-
ments into a metafunction class taking one argument, a typelist which is
treated as the argument list of the original function. The following code snip-
pet presents how to use the deque compile-time container implementation of
Boost.MPL to call the metafunction class the above expression produces:

mpl::apply_wrap1<

mpl::unpack_args<mpl::quote2<times>>,

mpl::deque<mpl::int_<2>, mpl::int_<3>>

>

The above code snippet evaluates times<mpl::int <2>, mpl::int <3>> by
passing a typelist with two elements, mpl::int <2> and mpl::int <3> to
the metafunction class generated above.

This section uses a helper metafunction, curry impl to implement curry1,
curry2, etc. curry impl collects the arguments one by one for currying. It
takes three arguments: the unpacked version of the original metafunction,
the number of missing arguments and the typelist of already collected argu-
ments. The implementation of curry1, curry2, etc uses curry impl. For
example:

template <template <class, class> class F>

struct curry2 :

curry_impl<

mpl::unpack_args<mpl::quote2<F>>,

mpl::int_<2>,

mpl::deque<>

>

{};

curry2 takes the metafunction to curry as a template template argument. It
builds the unpacked version of it using mpl::unpack args and mpl::quote2

and passes it to curry impl. Since initially no arguments are available, it
passes the number 2 and an empty typelist, mpl::deque<> to curry impl.
Writing the curryN functions manually is repetitive and error prone, but
the Boost.Preprocessor library [34] provides tools to automatically generate
them. The details of this are not presented here.

Here is a recursive implementation of curry impl. It’s implementation
is separated into two metafunctions, curry impl and next currying step

due to the lack of laziness in Boost.MPL:

36

template <class UnpackedF, class ArgNumLeft, class ArgsSoFar>

struct curry_impl :

mpl::eval_if<

typename mpl::equal_to<ArgNumLeft, mpl::int_<0>>::type,

mpl::apply_wrap1<UnpackedF, ArgsSoFar>,

next_currying_step<UnpackedF, ArgNumLeft, ArgsSoFar>

>

{};

The above implementation checks if there are more arguments to collect
by checking if ArgNumLeft is already 0. If there are no further arguments
required, the original metafunction is evaluated by passing the collected
arguments, ArgsSoFar to the unpacked version of the original metafunc-
tion. This is implemented by mpl::apply wrap1<UnpackedF, ArgsSoFar>.
When there are further arguments to collect, a metafunction class taking 1
argument is returned. This is implemented by next currying step:

template <class UnpackedF, class ArgNumLeft, class ArgsSoFar>

struct next_currying_step {

typedef next_currying_step type;

template <class T>

struct apply :

curry_impl<

UnpackedF,

typename mpl::minus<ArgNumLeft, mpl::int_<1>>::type,

typename mpl::push_back<ArgsSoFar, T>::type

>

{};

};

The above implementation returns a template metafunction class taking
one argument, appending this argument to the collected argument list by
mpl::push back<ArgsSoFar, T>, reducing the number of missing arguments
by mpl::minus<ArgNumLeft, mpl::int <1>> and passing these to the meta-
function curry impl.

The above technique automates the generation of curried template meta-
functions. It adds currying to any metafunction without having to change
the original one. It can be used to add currying to third party metafunctions
as well.

37

III.3 Algebraic data types

Algebraic data types are basic language elements in a number of functional
languages, such as Haskell, ML, Clean etc. This section describes a method
of representing them in C++ template metaprogramming – a functional lan-
guage not prepared for algebraic data types explicitly. Algebraic data types
in Haskell have the following form:

data <name> [<type arguments>] =

<constructor name> <constructor arguments> |

<constructor name> <constructor arguments> |

...

Here is an implementation of the Maybe type:

data Maybe a = Just a | Nothing

Values of type Maybe a are either values of type a or a special value, Nothing.
Two constructors are provided for constructing these values:

• Just a for constructing Maybe a values representing values of type a.

• Nothing for constructing the special Nothing value.

Maybe can be used for error reporting [69]: a function producing a value of
type a returning a Maybe a value makes it possible to report failures. Just

a represents success and the value of type a it wraps is the result. Nothing
represents failure. This is a simple and limited way of error handling, since
there is no way for a function to return a detailed error message helping the
user to find the root cause.

This dissertation implements each constructor by a C++ template. The
constructor arguments are the template arguments. The following example
implements the constructor Just a:

template <class A>

struct just : tmp_value<just<A>> {};

Note that the Haskell implementation of Just has an argument of type a

while the argument of the C++ template metaprogramming version is a
class. In the Haskell code a is a type variable referring to a concrete type.
Maybe is a type constructor [48], a is its type parameter. For example Maybe
Int is a type created using this type constructor and a refers to Int, there-
fore the Just constructor of this type has an argument of type Int. In

38

C++ template metaprograms the arguments of metafunctions are always
classes. This approach can not represent types, thus the type information
is lost during the approach presented here for implementing Maybe in tem-
plate metaprogramming. Algebraic data types and their arguments have no
direct representation in C++ template metaprogramming, only the construc-
tors are implemented.

As constructors are used to construct template metaprogramming values,
by using tmp value, just<...>::type gives just<...>. The following code
snippet implements the other constructor of the Maybe type, Nothing:

struct nothing : tmp_value<nothing> {};

Since Nothing has no arguments it is represented by a class instead of a
template class. The approach presented in this dissertation supports the
implementation of the constructors of algebraic data types in C++ template
metaprogramming, but it doesn’t not support representing the connection
between them.

III.3.1 Laziness

One way of looking at the constructors of algebraic data types is that they
are functions returning a value. For example just is a template metafunction
taking the value to wrap with Just and it returns the wrapped value. To
wrap the result of mpl::plus<mpl::int <8>, mpl::int <5>>, one would
write:

just<mpl::plus<mpl::int_<8>, mpl::int_<5>>>::type

The above code snippet uses just as a metafunction to produce the wrapped
version of the result of an addition. It uses just as a lazy metafunction,
since it passes just the unevaluated expression mpl::plus<mpl::int <8>,

mpl::int <5>> and expects just to evaluate it.
The constructors of algebraic data types should be turned into lazy tem-

plate metafunctions. For example in the above expression, just<mpl::plus<
mpl::int <8>,mpl::int <5>>>::type refers to the following:

just<mpl::plus<mpl::int_<8>, mpl::int_<5>>::type>

The ::type of the constructor of an algebraic data type should evaluate its
arguments and instantiate the same constructor with the evaluated argu-
ments. Here is an implementation of just based on this:

39

template <class A>

struct just { typedef just<typename A::type> type; };

type is a typedef of just instantiated with the evaluated argument, A::type.
Implementing all constructors of algebraic data types this way produces a
large amount of boilerplate code and is error prone. It is easy to forget
evaluating arguments. However, the Boost.Preprocessor library [34] provides
tools for wrapping the construction of algebraic data types with macros. The
details of this wrapping are not presented here, a reference implementation
can be found at [59].

III.3.2 Currying

As one can look at the constructors of algebraic data types as functions,
they should support currying as well. Let’s introduce a new algebraic data
type that can be used as an example for currying. This algebraic data type
represents lists:

template <class Head, class Tail> struct cons;

struct empty;

The empty list is represented by empty, cons<Head, Tail> represents a list
with Head as its first element and Tail as the list of remaining elements.
The following example represents the list [1, 2, 3]:

cons<

mpl::int_<1>,

cons<

mpl::int_<2>,

cons<

mpl::int_<3>,

empty

>

>

>

This code snippet uses cons recursively to construct a list with three el-
ements. The cons constructor has two arguments. To support currying,
giving it only one should return a metafunction class expecting the remain-
ing list and producing a cons value. For example:

typedef cons<mpl::int_<1>>::type append_to_1;

40

The above code snippet defines the metafunction class append to 1 by pass-
ing only one argument to cons, the head of the list which is mpl::int <1>.
It produces a metafunction class that expects a list as argument and appends
it to the list [1]. The following example uses it to build the list [1, 2, 3]:

append_to_1::apply<

cons<

mpl::int_<2>,

cons<

mpl::int_<3>,

empty

>

>

>::type

This code snippet calls append to 1 with the [2, 3] list as argument and
produces the [1, 2, 3] list.

Currying has to be implemented for every constructor individually, how-
ever, it can be automatically generated by the same macro mentioned in the
previous section. The implementation of it is not presented here. A reference
implementation can be found at [59].

III.4 Typeclasses

The Haskell language provides typeclasses [48] for implementing function
overloading. There is a known similarity between Haskell typeclasses and
C++ concepts [8, 21, 22, 24, 23, 73, 71], however, concepts are not part
of C++ at the time of writing this. This section presents a solution for
implementing typeclasses in conformity with the C++ standard.

A typeclass defines an interface for a type. It takes the type as argument
and declares a number of functions using that type in their signature. The
following example shows the syntax of creating a typeclass:

class EqualityComparable a where

equal :: a -> a -> Bool

notEqual :: a -> a -> Bool

This example defines a typeclass called EqualityComparable. Its argument
is called a and two functions are specified: equal and notEqual. Both of
them take two values of type a as arguments and return a boolean value.

41

Types can be instances of a typeclass. Every type has to be explicitly
made an instance of a typeclass by implementing the expected functions.
The following example shows the syntax of making a type an instance of a
typeclass:

instance EqualityComparable Int where

equal x y = x == y

notEqual x y = x /= y

This example uses the comparison operators for implementing the two func-
tions. Certain functions required by a typeclass can have default implemen-
tations. Instances can override this default, but every instance not overriding
it inherits the default version. The following example shows the syntax of
providing a default implementation for a function:

class EqualityComparable a where

equal :: a -> a -> Bool

notEqual :: a -> a -> Bool

notEqual x y = not (equal x y)

This example uses equal to implement notEqual. This dissertation presents
an implementation of typeclasses in C++ template metaprogramming based
on the idea of traits [42]. A trait is a template class with member types
and static member constants. This template class is specialised for different
types as template arguments and define the nested types and static member
constants differently for every template argument. It is used to encode extra
information about types that can be consumed by template metaprograms.

A typeclass is implemented as a trait. The argument of the typeclass
is the template argument of the trait. This approach does not support the
explicit representation of the list of expected functions. The following ex-
ample shows the EqualityComparable typeclass implemented in template
metaprogramming:

template <class A>

struct equality_comparable;

This template class has no implementation. This ensures that when it is used
inappropriately, the compiler emits an error message at the place of misuse
and the user doesn’t get a confusing error message at a later point in the
compilation process.

42

Boost.MPL [25] uses tags to implement template metafunction overload-
ing [1]. A tag is a class that is used as an identifier in template metaprogram-
ming. Boost.MPL uses tags as dynamic type information. This implemen-
tation of typeclasses expects tags as template arguments. Specialising the
template class of a tag and implementing the expected functions as template
metafunction classes – classes with a nested metafunction called apply [1] –
makes a tag an instance of that typeclass. The following example shows how
to make the boxed integers of Boost.MPL instances of the example typeclass
defined above:

template <>

struct equality_comparable<integral_c_tag> {

struct equal : tmp_value<equal> {

template <class A, class B>

struct apply : mpl::equal_to<A, B> {};

};

struct not_equal : tmp_value<not_equal> {

template <class A, class B>

struct apply : mpl::not_equal_to<A, B> {};

};

};

This code snippet specialises the equality comparable template class for
the type integral c tag and implements the two expected operations, equal
and not equal, as metafunction classes. These implementations use compar-
ison functions provided by Boost.MPL.

Functions related to a typeclass can be called using the traits representing
the typeclass. Unfortunately the calling code has to specify the tag explic-
itly. The following example implements a function, self equal, using the
equality comparable typeclass in both languages:

-- Haskell

selfEqual :: EqualityComparable a => a -> Bool

selfEqual x = equal x x

// Template metaprogramming

template <class X> struct self_equal : apply<

typename equality_comparable<

typename mpl::tag<X>::type

>::equal,

X

> {};

43

The requirement, that the argument x has to be an instance of a typeclass
is encoded in a different way in the two languages. In Haskell it is encoded
in the type of the function by having an expectation on the type argument,
while in template metaprogramming it is encoded in the implementation of
the function by accessing an element of the trait.

This dissertation implements expected functions with default implemen-
tations in template metaprogramming by creating a second template class for
the typeclass containing the default implementations as metafunction classes.
Every instance of the typeclass has to instantiate this extra template class
and inherit publicly from the instance. Here is an example for the extra
template class and the updated instance:

template <class A>

struct equality_comparable_defaults {

struct not_equal : tmp_value<not_equal> {

template <class A, class B>

struct apply :

mpl::not_<

typename mpl::apply<

typename equality_comparable<A>::equal,

A,

B

>::type

>

{};

};

};

template <>

struct equality_comparable<integral_c_tag> :

equality_comparable_defaults<integral_c_tag> {

// not_equal is inherited

struct equal { /* Same as before... */ };

};

The default implementation of not equal uses the equal method of the
equality comparable typeclass. Instances can override this default imple-
mentation by overriding the nested class. Using this approach to implement
typeclasses in template metaprogramming has several advantages.

44

• It helps structuring the code by grouping the functions implementing
the same abstract concept – what the typeclass represents – in one
class.

• Given the fact that typeclasses are always used explicitly, it helps the
compiler to provide meaningful error messages, since the name of the
typeclass is likely to appear in the error messages when a tag is not an
instance of the typeclass the code is trying to use.

This approach has drawbacks as well.

• It doesn’t support specifying the list of expected functions. The author
of a typeclass can express it using comments or in the documentation,
but not in a way that the compiler understands.

• The compiler can not verify and enforce the existence and the expected
signature of the required functions. Error messages are generated the
first time a missing function is called.

In spite of the drawbacks, following this approach helps making template
metaprograms more structured.

III.5 Angle-bracket expressions as first class

citizens

This section presents how to treat angle-bracket expressions as first class
citizens in template metaprogramming and how to implement the basic op-
erations for them.

III.5.1 Syntaxes

In template metaprogramming, expressions are implemented by angle bracket
expressions. Being able to pass them around in template metaprograms
makes it possible to implement complex control structures. But angle bracket
expressions are not template metaprogramming values - when someone tries
accessing their ::type they get evaluated. They could be boxed as any other
type, but the only thing that can be done with a boxed type is unboxing it,
while there are more operations for angle bracket expressions. The following
code snippet provides a wrapper for angle bracket expressions:

template <class T>

struct syntax { typedef syntax T; };

45

This works the same way as box, however, instead of providing a meta-
function for unwrapping them, the following metafunction, eval syntax is
provided for unwrapping and evaluating a syntax:

template <class T> struct eval_syntax;

template <class T> struct eval_syntax<syntax<T>> : T {};

By inheriting from the wrapped expression, the ::type of eval syntax is
the result of evaluating the wrapped angle bracket expression.

For example syntax<mpl::plus<mpl::int <11>, mpl::int <2>>> rep-
resents the expression 11+2. Accessing syntax<mpl::plus<mpl::int <11>,

mpl::int <2>>>::type gives the syntax back, thus it can not be accidentally
evaluated. To get the value 13, one has to evaluate eval syntax<syntax<

mpl::plus<mpl::int <11>, mpl::int <2>>>>::type which unwraps and
then evaluates the syntax.

III.5.2 Variables

Syntaxes may have placeholders inside the angle bracket expression. These
placeholders can later be replaced by sub-expressions. This dissertation refers
to such placeholders as variables. To be able to differentiate them, such
variables need identifiers. The approach presented here uses types as the
identifiers of variables. Variables are represented by instances of a template
class:

template <class Id>

struct var : tmp_value<var<Id>> {};

Variables are the instances of the above var template class. The Id type ar-
gument is the identifier of the variable. Since variables are template metapro-
gramming values, they can be passed around in template metaprograms as
other values. To create a variable, one should create an identifier for it and
then instantiate var using that identifier:

struct x_;

var<x_> // this is the variable

The class x is declared to be the identifier of the variable (any class that has
been declared can be used as an identifier) and var is instantiated with it.
The expression 11+x is represented by syntax<mpl::plus<mpl::int <11>,

var<x >>>. As a syntactic sugar, one may define typedef var<x > x; to

46

simplify the code using the variable. Now x refers to the variable x and the
above expression becomes syntax<mpl::plus<mpl::int <11>, x>>. The
rest of this dissertation refers to such variables by one character long, lower
case identifiers, such as a, b, c, x, y, etc.

III.5.3 Let expressions

Syntaxes with variables become useful when variable substitution is imple-
mented. Occurrences of a variable in a syntax should be replaced with a
syntax. All occurrences should be replaced with the same syntax. For exam-
ple given the following syntax:

syntax<mpl::times<mpl::plus<x, y>, x>>

Replacing occurrences of x with syntax<mpl::int <13>> gives

syntax<mpl::times<mpl::plus<mpl::int_<13>, y>, mpl::int_<13>>>

All occurrences of x are replaced with mpl::int <13>, but y remained un-
changed. When the expression a variable is replaced with contains no vari-
ables, it is a thunk that may be evaluated at any point in time. Substituting
a variable with a thunk is similar to let expressions [48, 70] of many func-
tional languages, that can be used to bind values to names. For example a
simple let expression in Haskell looks like the following [48]:

let

x = f 11

in

x + x

This example binds the expression f 11 to x. Based on this commonality, the
metafunction implementing variable substitution is called let. The following
example shows how let can be used. It replaces occurrences of the variable
x with the syntax f<mpl::int <11>> in the syntax syntax<mpl::plus<x,

x>>.

let<

x, syntax<f<mpl::int_<11>>>,

// in

syntax<mpl::plus<x, x>>

>::type

47

In this example the comment // in is added to make it more like the Haskell
example above. This code snippet declares let:

template <class A, class E1, class E2>

struct let;

It takes three arguments:

• A, the variable to substitute.

• E1, the syntax to replace occurrences of A with.

• E2, the syntax to do the substitution in.

let does the substitution and returns the substituted syntax. The above
example gives

syntax<mpl::plus<f<mpl::int_<11>>, f<mpl::int_<11>>>>

As syntaxes are template metaprogramming values, passing them to and
returning them from let does not cause issues. let is a metafunction trans-
forming syntaxes.

let substitutes all occurrences of one variable. When an expression has
more than one variables, let needs to be used repeatedly to substitute them
all. For example:

let<

x, syntax<f<mpl::int_<11>>>,

syntax<

let<

y, syntax<g<mpl::int_<13>>>,

syntax<mpl::plus<x, y>>

>::type

>

>::type

This expression takes the syntax syntax<mpl::plus<x, y>>, substitutes y
with syntax<g<mpl::int <13>>> and x with syntax<f<mpl::int <11>>>

after that. The result of this is syntax<mpl::plus<f<mpl::int <11>>,

f<mpl::int <13>>>>.
Having to write syntax explicitly everywhere, where let is used makes

the code more difficult to read. Using syntax is important to protect the
wrapped angle-bracket expressions from being accidentally evaluated, but
it introduces a large amount of syntactic noise in the resulting code. The
following template class simplifies code using let expressions:

48

template <class A, class E1, class E2>

struct let_c : let<A, syntax<E1>, syntax<E2>> {};

This template class, let c takes the same arguments as let, but it takes
angle-bracket expressions as its second and third arguments. All it does is
wrapping E1 and E2 with syntax and passing them to let. It guarantees,
that E1 and E2 are not evaluated and calls the safe let metafunction to pro-
cess them. The name, let c follows the naming convention of Boost.MPL,
which provides c versions of metafunctions accepting unboxed scalar values
as arguments. let c accepts unboxed angle-bracket expressions. Here is a
simplified version of the above example using let c:

let_c<

x, f<mpl::int_<11>>,

let_c<

y, g<mpl::int_<13>>,

mpl::plus<x, y>

>

>::type

This example is the same as the one on page 48, but it uses let c instead of
let to make the code easier to read. This code snippet returns a syntax. To
evaluate it, one has to use eval syntax. Thus, to get the result of f(11) +

g(13) one has to use:

eval_syntax<

let_c<

x, f<mpl::int_<11>>,

let_c<

y, g<mpl::int_<13>>,

mpl::plus<x, y>

>

>

>::type

This code snippet does the substitution of x and y by using let c and eval-
uates the result by using eval syntax. The following code snippet defines
eval let to simplify code combining eval syntax and let:

template <class A, class E1, class E2>

struct eval_let : eval_syntax<let<A, E1, E2>> {};

49

This metafunction has the same arguments as let, it calls let with these
arguments and evaluates the resulting syntax immediately. eval let c can
be implemented in a similar way. Here is a simplified version of the above
example using it:

eval_let_c<

x, f<mpl::int_<11>>,

let_c<

y, g<mpl::int_<13>>,

mpl::plus<x, y>

>>::type

This code snippet uses eval let c instead of the combination of eval syntax

and let c to keep the code simple. It replaces only the outer let c with
eval let c to avoid evaluating the mpl::plus<...> expression when only y

has been substituted.

The implementation of let

One can look at let as a language element, but it is implemented as a
metafunction as all of its arguments are template metaprogramming values.
let evaluates its arguments and passes them to strict let, which is a helper
metafunction:

template <class A, class E1, class E2>

struct let :

strict_let<

typename A::type,

typename E1::type,

typename E2::type

> {};

This code snippet evaluates the arguments to ensure laziness of let and
passes them to strict let doing the substitution. strict let uses partial
specialisation to unwrap the syntaxes:

template <class A, class E1, class E2>

struct strict_let;

template <class A, class E1, class E2>

struct strict_let<A, syntax<E1>, syntax<E2>> :

syntax<typename let_in_syntax<A, E1, E2>::type> {};

50

strict let unwraps the two syntaxes using partial template specialisation
and instantiates the template class let in syntax using them. This template
takes and returns thunks (see section III.1), thus it is not a metafunction
operating on template metaprogramming values. It is a template internally
used by let. The result of this is wrapped with syntax<...> to turn the
result of strict let into a template metaprogramming value. This pattern
– unwrapping the values, doing the computation and wrapping the result –
is similar to the way operations on wrapped scalars work. let in syntax is
the template that is doing the substitution itself.

template <class A, class E1, class E2>

struct let_in_syntax : let_impl<A, E1, E2> {};

template <class A, class E1>

struct let_in_syntax<A, E1, A> { typedef E1 type; };

let in syntax passes its arguments to let impl in almost all cases, except
for that when the expression to do the substitution in is the variable to
substitute. In this case the result is the expression to replace the variable
with. This case is implemented by the specialisation of let in syntax. It
is important not to inherit from E1, but to return it as the result. This
guarantees, that evaluating let in syntax will not accidentally evaluate E1.
These are things metafunctions operating on template metaprogramming
values don’t need to worry about, but let in syntax belongs to the few
metafunctions that can not operate on template metaprogramming values.

let in syntax implements the substitution of the variables. When the
expression to do the substitution in is not a variable, it should be left un-
changed. This is implemented by let impl:

template <class A, class E1, class E2>

struct let_impl { typedef E2 type; };

This returns E2 and makes sure that it is only returned but not evaluated.
This solution deals with the cases when the expression to do the substitution
in is a simple one, such as var<x > or mpl::int <13>. When it is a com-
plex one and consists of metafunction calls, such as mpl::plus<var<x >,

mpl::int <13>>, let in syntax should recurse into it until only simple ex-
pressions remain, that are easy to deal with. This recursion is implemented
using partial template specialisation and template template arguments. A
complex expression looks like the following:

F<T1, T2, T3, ..., Tn>

51

F is a template metafunction – a template class – taking n arguments, T1
... Tn are angle bracket expressions. let impl is specialised to handle these
cases:

template <

class A,

class E1,

template <class,, class> class F,

class T1, ..., class Tn

>

struct let_impl<A, E1, F<T1, ..., Tn>> {

typedef

F<

typename let_in_syntax<A, E1, T1>::type,

// ...

typename let_in_syntax<A, E1, Tn>::type

> type;

};

This code snippet uses a template class template argument, F to represent
the metafunction being called and class template arguments to represent the
angle bracket expressions being passed to it. It does the substitution of the
arguments by calling let in syntax recursively and produces a new angle
bracket expression calling the same metafunction, F with the substituted
arguments.

n is a fixed number in the above example, which means that it implements
recursion for calls of metafunctions with arity n. For every arity a new
specialisation has to be made. The Boost.Preprocessor library [34] provides
tools to automatically generate these specialisations.

Using two template classes – let in syntax and let impl – may seem
to be unnecessary for the first time, but it is important to avoid ambiguity
when let is used. Adding all specialisations to let in syntax and not using
let impl would make the following instantiation ambiguous:

let_in_syntax<var<x_>, int_<13>, var<x_>>

This could match any of the following specialisations:

template <class A, class E1>

struct let_in_syntax<A, E1, A>;

template <class A, class E1, template<class> class F, class T1>

struct let_impl<A, E1, F<T1>>;

52

The compiler would not be able to decide if it should recurse into var<x > or
replace it with E1. Having two layers – let in syntax and let impl – helps
the compiler. When it has to choose a specialisation of let in syntax it
may do the substitution or choose the general case. When the general case is
selected, it triggers the instantiation of let impl, which has specialisations
implementing the recursion into the expression.

Boxed values

Boxed values wrap classes that are not prepared for template metaprograms,
thus metaprograms should not look into boxed values. For let expressions
it means that let should not recurse into boxed values. To ensure this,
let impl of the above implementation should be specialised:

template <class A, class E1, class V>

struct let_impl<A, E1, box<V>> : box<V> {};

This specialisation leaves boxed values unchanged. Thus for example

let<x, syntax<mpl::int_<13>>, box<x>>::type

returns box<x> instead of box<mpl::int <13>>, since box protects its con-
tent from being substituted by a let expression. syntax is a special way of
boxing, thus, let should also leave syntaxes inside syntaxes unchanged. This
is implemented by another specialisation of let impl:

template <class A, class E1, class E2>

struct let_impl<A, E1, syntax<E2>> : syntax<E2> {};

This specialisation matches cases when the expression to do the substitution
in is a nested syntax<...> – the outer syntax wrapper has already been re-
moved when let impl is instantiated. It leaves the inner syntax unchanged.
Having this specialisation, the following expression

let<

x, syntax<mpl::int_<13>>,

syntax<mpl::plus<x, syntax<x>>>

>::type

returns syntax<mpl::plus<mpl::int <13>, syntax<x>>>, since the first
occurrence of x is substituted, but the second one is inside a nested syntax

and is left unchanged. The special handling of boxed values introduces a
difference between let and let c. For example:

53

eval_let<a, syntax<mpl::int_<13>>, syntax<

let<b, syntax<mpl::int_<11>>, syntax<mpl::plus<a, b>>>

>>

The above example contains two nested let expressions. Since the body of the
inner let expression, syntax<mpl::plus<a, b>> is wrapped by syntax, it is
treated by eval let as a boxed value and is not processed, thus evaluating
the above expression would try evaluating mpl::plus<a, mpl::int <11>>.
However, by using let c, one does not need to wrap the body with syntax:

eval_let_c<a, mpl::int_<13>,

let_c<b, mpl::int_<11>, mpl::plus<a, b>>

>

The above example is the same as the previous one, but it uses eval let c

and let c instead of eval let and let. As a result of this, the body of the
inner let expression is not wrapped with syntax and the reference to a inside
it gets substituted by the outer let expression.

This section has presented an implementation of preparing let for han-
dling two types of boxed values. When further solutions for boxing values
are developed in the future, let will need to be prepared for them. However,
preparing let means adding a new specialisation to a template class, thus
these updates can be done without changing already written code.

Variable hiding

One way of looking at let expressions is that they define a variable in the
scope of a syntax. Nested usage of let may result in variable hiding. For
example:

let<

x, syntax<mpl::int_<11>>,

syntax<

mpl::plus<x, let<x, syntax<mpl::int_<13>, syntax<x>>>>

>>

This expression substitutes the variable x with mpl::int <11> inside the ex-
pression mpl::plus<x, let<x, syntax<mpl::int <13>, syntax<x>>>>. A
sub-expression of it, let<x, syntax<mpl::int <13>>, syntax<x>> is also
a let expression substituting the same variable. This inner let expression
hides the variable x – inside it, the value mpl::int <13> instead of the value
mpl::int <11> is bound to it.

54

The implementation of let presented in this dissertation would leave the
body of the inner let expressions unchanged, as it is protected by an inner
syntax, but the x argument of the inner let would be substituted producing
the following result:

syntax<

mpl::plus<

mpl::int_<11>,

let<mpl::int_<11>, syntax<mpl::int_<13>>, syntax<x>>

>

>

This is an invalid let expression, since it uses int <11> as a variable to bind
to. let is prepared for variable hiding by adding a new specialisation to
let impl:

template <class A, class E1a, class E1b, class E2>

struct let_impl<A, E1a, let<A, E1b, E2>> : {

typedef let<A, E1b, E2> type;

};

This specialisation handles the case when the variable used by the inner
and the outer let expressions are the same, in which case it leaves the let
expression unchanged. Given that a number of helper templates, such as
let c, eval let, etc have been introduced, let impl needs to be specialised
for them as well.

III.5.4 Lambda expressions

The more generic functions are used in development, the more small utility
functors implementing custom logic for the generic algorithms are needed.
For example the algorithm std::transform and its metaprogramming equiv-
alent provided by Boost.MPL, mpl::transform change each element of a
sequence. They take a sequence and a functor changing one element of the
sequence as arguments and produce a new sequence by applying the functor
on all elements of the original one. transform and various other similar func-
tions are useful in many places, but the small utility functions implementing
the custom bits need to be provided, such as the transformation of one ele-
ment of a sequence. These small functions contain bits of the business logic
of the application. By implementing them as utility functions some parts of
the business logic are moved to different locations of the source code, making
it more difficult to follow the logic of a program when one has to read it later.

55

Lambda functions provide a solution for this issue. It is a technique for
implementing utility functions in-place in the middle of an expression. These
functions have no names unless they are stored in variables. This solution
makes implementing the functions for generic algorithms in-place possible.

This section presents a solution for implementing lambda expressions that
can be created, passed around and evaluated at compile-time. They are
similar to lambda expressions introduced in C++11 [30], but they represent
compile-time computations.

As developers use generic functions in complex situations, they need to
construct complex functors as lambda expressions. Complex lambda expres-
sions may contain nested lambda expressions. Let’s consider the following
data structure:

typedef

mpl::list<

mpl::list_c<int, 1, 2>,

mpl::list_c<int, 3>

>

list_in_list;

Let’s use mpl::transform to double every element of the nested lists. The
Boost.MPL library provides a lambda implementation, mpl::lambda. The
following example uses it to construct the functor for mpl::transform:

mpl::transform<

list_in_list,

mpl::lambda<

mpl::transform<

mpl::_1,

mpl::lambda<

mpl::times<mpl::_1, mpl::int_<2>>

>::type

>

>::type

>::type

mpl:: 1 is used in the outer and in the inner lambda expression as well. Im-
plementing it is possible but it makes understanding the code more difficult,
since the occurrences of mpl:: 1 refer to different things.

Let’s consider another example: using mpl::transform, every number
should be increased by the length of the list containing the number. The
expected result is

56

typedef

mpl::list<

mpl::list_c<int, 3, 4>, // length is 2

mpl::list_c<int, 4> // length is 1

>

result_of_second_example;

In this case, the argument of the outer lambda expression has to be used
in the inner one. Using the lambda expressions provided by Boost.MPL,
workarounds are needed to implement it. The inner lambda expression has to
take two arguments: the value of the outer expression’s argument and the real
argument of the inner expression. Some currying solution, such as the one
presented in section III.2 has to be used to hide the first argument and make
it work with the generic algorithm, mpl::transform. Given the complexity
of this solution, developers are likely to create small helper functions instead.
This approach suffers from the issue of having the business logic at different
locations of the source code.

One may look at a lambda expression as a syntax with a list of argu-
ments, which is a list of variables. This dissertation implements this using
the lambda and lambda c template classes. They can be used to implement
the lambda expression for the above transformation:

mpl::transform<

list_in_list,

lambda_c<

i,

mpl::transform<i, lambda_c<j, mpl::plus<mpl::size<i>, j>>>

>

>::type

lambda c takes the list of variables representing the formal arguments of the
lambda function as its arguments. The last argument of lambda c is an
angle-bracket expression, which is the body of the lambda expression using
the formal variables. Since the variable names are chosen by the developer,
it is easy to refer to variables used by outer lambda expressions. lambda c

is a helper template class wrapping lambda operating on syntaxes. The
connection between them is the same as the connection between let and
let c.

The implementation of lambda

For an arity n, a template class lambdan is implemented. Having those
template classes, lambda is implemented the following way:

57

struct no_argument;

template <class T1 = no_argument, ..., class Tk = no_argument>

struct lambda;

A special class, no argument is introduced representing that no value has
been specified for a template argument. All arguments of lambda has this
as the default value, thus lambda<j, syntax<mpl::plus<i, j>>> refers to
lambda<j, syntax<mpl::plus<i, j>>, no argument,...,no argument>.
lambda is specialised for every arity:

template <class T1, ..., class Tn, class Body>

struct lambda<T1, ..., Tn, Body, no_argument,...,no_argument> :

lambdan<T1, ..., Tn, Body> {};

These specialisations assume that n variables and the body of the lambda ex-
pression are provided and the rest of the arguments are no argument classes.
They instantiate the lambdan template implementing a metafunction class
with arity n.

The maximum arity of lambda expressions is limited by the choice of
k, the number of arguments of lambda. The Boost.Preprocessor library [34]
provides tools to automatically generate lambda itself and the specialisations.
Using them also makes it possible to turn this upper limit into an argument
of the compilation process, thus it can be increased if needed. Using variadic
templates offered by C++11, the same thing could be implemented in a more
flexible way but projects not using C++11 would not be able to use lambda.

lambda for a fixed arity is implemented using the tools presented so far.
It is a template metafunction class taking n arguments, where n is the arity
of the lambda expression.

template <class T1, ..., class Tn, class Body>

lambdan : tmp_value<lambdan<T1, ..., Tn, Body>> {

template <class A1, ..., class An>

struct apply :

eval_syntax<

let<T1, A1,

let<T2, A2,

// ...

let<Tn, An, Body>

// ...

>>> {};

};

58

This solution defines a metafunction class. It uses tmp value to make the
result a template metaprogramming value. The apply template metafunc-
tion turns it into a metafunction class. It uses let n times to replace the
variables in the body of the lambda expression with the parameter values the
metafunction class was called with. Once all the variables have been substi-
tuted, eval syntax is used to evaluate the body of the lambda expression
and provide the result.

Variable hiding

When a lambda expression is used inside a let expression, the lambda ex-
pression may use the same variables as the let expression. For example:

let<a, syntax<mpl::int_<13>>, syntax<lambda<a, syntax<a>>>>

The body of the above let expression contains a lambda expression and both
of them use the variable a. let does not substitute the variable a in the body
of the lambda expression, as it is protected by an inner syntax block, but it
does the substitution for the argument of the lambda expression, which gives
the following result:

syntax<lambda<mpl::int_<13>, syntax<a>>>

The above code snippet shows what let builds from the previous exam-
ple. The argument of the lambda expression is a, thus it gets replaced with
mpl::int <13>, however, the body of the lambda expression is inside syntax,
thus it remains unchanged.

As presented in section III.5.3, let can be prepared for handling boxing
classes by specialising the template class let impl. It can also be prepared
for lambda by adding further specialisations. For example:

template <class A, class E1, class A1, class A2, class F>

struct let_impl<A, E1,

lambda<A1, A2, F, no_argument, ..., no_argument>

> :

lambda<A1, A2,

mpl::if_<

mpl::contains<mpl::vector<A1, A2>, A>,

F,

let_in_syntax<A, E1, F>

>,

no_argument, ..., no_argument

>

{};

59

The above code snippet shows how to prepare let for lambda expressions
expecting two arguments. The arguments of the lambda expression, A1 and
A2 are left unchanged. If any of them is the same as the one being substituted
by the lambda expression, the body is left unchanged. Otherwise it is sub-
stituted using let in syntax. Substituting the body using let in syntax

instead of let ensures, that when the body is a syntax and not an expression
evaluating to one, the recursion stops. The code checks if any of the formal
arguments of the lambda is A by constructing a vector from the arguments
and checking if it contains A.

The above specialisation prepares let for lambda expressions expect-
ing two arguments. A different specialisation has to be written for ev-
ery arity. Writing these specialisations manually is error prone, but the
Boost.Preprocessor [34] library provides tools supporting the automatic gen-
eration of the specialisations.

The approach presented in this section implements variable hiding when
lambda expressions are used inside let expressions. Using a let expression
inside a lambda expression also causes variable hiding in some cases, just
like using lambda expressions inside lambda expressions. However, since
the variable substitution of lambda expressions has been implemented using
let, which is already prepared for nested lets and lambdas, it works without
further changes.

Currying

As lambda expressions are higher order template metafunctions, they should
support currying as well. This section presents how to add currying support
to lambda. It makes every lambda expression implemented using lambda

support currying. For example:

typedef lambda_c<a, b, mpl::plus<a, b>> add;

typedef add::apply<mpl::int_<1>> inc;

typedef inc::apply<mpl::int_<12>>::type int13;

The above code snippet shows how lambda c with currying support works.
It defines the add metafunction class using lambda c. add adds two val-
ues by calling mpl::plus. However, add::apply<mpl::int <1>> calls this
code with one argument only which returns another metafunction class tak-
ing one argument and adding mpl::int <1> to it. This new metafunction
class increases its argument by 1. It is given a name: inc. The example
shows how to use inc by calling it with the argument mpl::int <12> to get
mpl::int <13>.

60

Currying support for lambda is implemented by keeping the list of pa-
rameters in a container – eg. mpl::list – and when the metafunction class
is called, doing the substitution of the available parameters and removing
them from the container. Once all of the parameters have been substituted,
the body is evaluated and the result is returned. The implementation is not
presented here in detail. A reference implementation can be found in [59].

III.5.5 Recursive let expressions

Let’s consider the following example which bounds a higher order function
implementing factorial to the name fact in the expression mpl::apply<fact,
mpl::int <3>>:

struct fact_;

typedef var<fact_> fact;

let_c< // attempt to implement fact

fact,

lambda_c<

n,

mpl::eval_if<

mpl::equal_to<n, mpl::int_<0>>,

mpl::int_<1>,

mpl::times<

mpl::apply<

fact,

mpl::minus<n, mpl::int_<1>>

>,

n

>

>

>,

mpl::apply<fact, mpl::int_<3>>

>

The above code snippet does not work because the factorial function is im-
plemented recursively but let expects the expression to bind not to rely on
recursion. let c does not bind the name fact in factorial’s implementation
to the name fact, thus recursive calls will not work.

61

Let expressions in Haskell support recursion. There are languages [70, 14]
which provide a different syntax for recursive (typically called letrec) and
non-recursive let expressions. This section follows this approach in C++
template metaprogramming as well and the recursive version is implemented
separately, using the non-recursive version in its implementation. The recur-
sive version of let will be called letrec. The declaration of letrec is the
following:

template <class A, class E1, class E2>

struct letrec;

E1 needs to be bound to A in the scope of E1 and the resulting expression
needs to be bound to A in the scope of E2. The following code does this:

// attempt to implement letrec

template <class A, class E1, class E2>

struct letrec :

let<A, let<A, E1, E1>, E2>

{};

The problem with this implementation is that the expression E1 bound to A

in the scope of E1 – in the inner let binding – may use A as well. Thus, E1
has to be bound to A recursively in the scope of E1.

template <class A, class E1, class E2>

struct letrec :

let<A, letrec<A, E1, E1>, E2>

{};

The above code snippet uses letrec recursively to implement recursive bind-
ing of the expression E1 to the name A in the expression E1 itself. Since
binding happens lazily, recursion happens only when E1 uses the name A.
When E1 does not use the name A, letrec is not evaluated again and the
recursion stops. The result of this recursive binding is an expression. This
expression is bound to the name A in the scope of E2. Since E2 is not bound
to any name, no recursive binding is needed at this step, thus let can be
used. The following example shows how to use letrec to implement the
factorial example:

62

letrec< // attempt to implement fact

fact,

lambda_c<n,

mpl::eval_if<

mpl::equal_to<n, mpl::int_<0>>,

mpl::int_<1>,

mpl::times<

mpl::apply<

fact,

mpl::minus<n, mpl::int_<1>>

>, n>>>,

mpl::apply<fact, mpl::int_<3>>

>

letrec binds the recursive implementation of the factorial function to the
name fact in the scope of the function as well, thus it works. However,
it relies heavily on lazy evaluation, thus it is important that all functions
used in the body of the factorial function evaluates its arguments lazily. The
functions Boost.MPL provides expect eagerly evaluated arguments [57, 58],
thus they need to be wrapped with code that lazily evaluates the arguments
and then calls the functions of the Boost library. The following example
shows how to use the lazy template presented in section III.1.3 here:

letrec<

fact,

lambda_c<n,

lazy<

mpl::eval_if<

equal_to<lazy_protect_args<n>, mpl::int_<0>>,

mpl::int_<1>,

lazy_argument<

mpl::times<

mpl::apply<

fact,

mpl::minus<lazy_protect_args<n>, mpl::int_<1>>

>,

lazy_protect_args<n>>>>>>,

apply<fact, mpl::int_<3>>

>

This is finally a working version of the factorial example, that uses only lazy
metafunctions.

63

III.6 Pattern matching

Trying to evaluate the template metaprogramming expression mpl::divides<
mpl::int <1>, mpl::int <0>>::type emits a compilation error due to the
division by zero and this error is not recoverable. Since the divider may not
be known at compile-time, programs need to be prepared for handling this.
One way of doing it is checking the divider before calling divides (this is
what Boost.MPL expects). Another approach is preparing divides to han-
dle these situations and report the problem to the caller. For this second
approach, Haskell provides Maybe, presented in section III.3. That section
has presented the following approach for implementing Maybe in C++ tem-
plate metaprogramming:

template <class A> struct just

{ typedef just<typename A::type> type; };

struct nothing { typedef nothing type; };

It represents a value that may contain a result or represent failure. Here is a
safe version of divides using Maybe:

template <class A, class B>

struct safe_divides :

mpl::eval_if<

typename mpl::equal_to<B, mpl::int_<0>>::type,

nothing,

just<divides<A, B>>

> {};

This code snippet checks if B is zero. When it is, it returns nothing, oth-
erwise it does the division, wraps the result with just and returns that.
It makes use of the fact, that constructors of algebraic data types behave
as lazy template metafunctions: instantiating just<divides<A, B>>::type

instantiates just<divides<A, B>::type> based on the above definition of
just.

Users of safe divides need a way of checking if the result is nothing and
if not, getting the value wrapped by just. This can be demonstrated using an
example function, divide if possible. This function takes two arguments,
A and B and returns A / B when the division is valid. This function always
returns numbers, even when the division is invalid. This example returns A
in that case. When it is implemented using safe divides, it has to check
the result and unwrap it.

64

A commonly used [25, 37] approach for implementing the verification and
unwrapping in template metaprogramming is partial template specialisation.

template <class A, class ResultOfSafeDivides>

struct divide_if_possible_impl;

template <class A>

struct divide_if_possible_impl<A, nothing> : A {};

template <class A, class R>

struct divide_if_possible_impl<A, just<R>> : R {};

template <class A, class B>

struct divide_if_possible :

divide_if_possible_impl<A, typename safe_divides<A, B>::type>

{};

The above code snippet defines divide if possible impl, a helper tem-
plate metafunction taking the result of safe divides as one of its argu-
ments. This helper metafunction is specialised for nothing and just<R>

and the specialisations handle the different cases. The helper metafunction
implements something similar to the case structure of Haskell.

The drawback of this approach is that the developer has to write a helper
metafunction for every pattern matching. It introduces a large amount of
helper metafunctions, which pollute the namespace(s) and make the code
more difficult to read and maintain.

III.6.1 Using syntaxes for pattern matching

This section presents how to use syntaxes with variables to implement pattern
matching. The angle bracket expressions wrapped by syntax represent the
patterns, the variables represent the parts that need to be unwrapped. For
example the syntax just<x> represents a pattern for a value wrapped by
just. The variable x represents the value to be unwrapped. The syntax
syntax<nothing> represents the nothing pattern.

A template metaprogramming value, such as just<int <13>> can be
matched against a pattern (which is a syntax). This matching is imple-
mented as a template metafunction, such as match taking the pattern and
the template metaprogramming value as arguments. When the matching
succeeds, it returns an mpl::map mapping variables to values. When the
matching fails, it returns a special value, nothing indicating this.

65

A helper metafunction is needed for the implementation, that can decide
if the result of match is a map or a failure. This is implemented using
template specialisation.

template <class MatchResult>

struct matched : mpl::true_ {};

template <>

struct matched<nothing> : mpl::false_ {};

This metafunction returns mpl::false for the value indicating failure and
mpl::true for other values. match is implemented the following way:

template <class Pattern, class Expression>

struct strict_match;

template <class Pattern, class Expression>

struct match :

strict_match<

typename Pattern::type,

typename Expression::type

> {};

This implementation starts with evaluating both the pattern and the expres-
sion to make match a lazy metafunction. The evaluated results are passed
to strict match, which does the pattern matching.

template <class Pattern, class Expression>

struct strict_match<syntax<Pattern>, Expression> :

match_impl<Pattern, Expression> {};

strict match unwraps the pattern and passes it together with the expression
to match impl.

template <class Pattern, class Expression>

struct match_impl : nothing {};

template <class Expression>

struct match_impl<Expression, Expression> : mpl::map<> {};

match impl returns nothing when the pattern and the expression are differ-
ent types and an empty map when they are the same. For example the value
mpl::int <13> matches the unwrapped pattern mpl::int <13>, but not the
unwrapped pattern mpl::int <11>, or nothing. To support variables, a
further specialisation needs to be added:

66

template <class Var, class Expression>

struct match_impl<var<Var>, Expression> :

mpl::map<mpl::pair<var<Var>, Expression>> {};

When the pattern is a variable, the result of the pattern matching is a one
element map, mapping the variable to the expression itself. For example
matching the value mpl::int <13> against the unwrapped pattern var<x >

gives a map mapping var<x > to mpl::int <13>.
In most cases, like matching against the pattern just<var<x< >>>, the

variables are arguments of a constructor used in the pattern. To handle these
cases as well, match impl has to recurse into the expression and the value
at the same time. This is implemented using partial template specialisation
and template class template arguments.

template <

template <class, class> class T,

class P1, class P2,

class E1, class E2

>

struct match_impl<T<P1, P2>, T<E1, E2>> :

merge_maps<match_impl<P1, E1>, match_impl<P2, E2>> {};

The above code snippet shows how recursion is implemented for constructors
taking two arguments. match impl is specialised for template classes taking
two arguments. The same template class – the same constructor – has to be
used in the pattern and by the value, but their arguments may differ. The
arguments of the constructor are called P1 and P2 in the pattern and E1, E2
in the value. The arguments used in the pattern and the value are matched
against each other. The results of these matchings need to be merged. This
merging is implemented by merge maps. What it has to be careful with is:

• When any of the sub-matchings fail, the entire pattern matching fails.
For example the value cons<mpl::int <13>, nil> can not be matched
against the pattern cons<mpl::int <11>, nil>.

• When two sub-matchings try to map different values to the same vari-
able, the entire matching fails, as all occurrences of a variable need to
match the same value in the entire expression. For example the value
cons<mpl::int <13>, nil> can not be matched against the pattern
cons<var<x >, var<x >>.

The implementation of merge maps is not presented here. A reference im-
plementation of match can be found in [59].

67

III.6.2 Let expressions

A pattern can contain multiple variables and when a pattern matching suc-
ceeds, these variables are all bound to a value. For example matching
the value mpl::pair<mpl::int <11>, mpl::int <13>> against the pattern
syntax<mpl::pair<var<x >, var<y >>> binds mpl::int <11> to var<x >

and mpl::int <13> to var<y >. Some languages, such as Haskell allow pat-
tern matching in let expressions, thus in Haskell one may write

-- defining some helper type

data PairT a b = Pair a b

-- doing the pattern matching in a let expression

let

Pair x y = Pair 11 13

in

x + y

This code snippet binds the value 11 to x and 13 to y in the scope of the
expression x + y. This section presents how to provide the same functional-
ity for template metaprogramming by combining let expressions and pattern
matching. A metafunction match let is provided:

template <class Pattern, class Value, class Body>

struct match_let;

It takes three arguments: the pattern to use, the value to match against the
pattern and the syntax to bind the variables in the scope of. It does the
following:

• Matches the value against the pattern. This results in a number of
variable bindings.

• Substitutes all occurrences of the variables with the values they are
bound to in the body.

The result of it is the substituted body. It is implemented by combining let

and match, the implementation details are not presented here. A reference
implementation can be found at [59]. By using match and match let, it
is possible to implement metafunctions like divide if possible without
writing helper metafunctions:

68

template <class A, class B>

struct divide_if_possible :

mpl::eval_if<

typename matched<

match<

syntax<nothing>,

safe_divides<A, B>

>

>::type,

A,

match_let<

syntax<just<r>>, safe_divides<A, B>,

syntax<r>

>

>

{};

To check if it is possible to do the division, this approach matches the result
of safe divides against the pattern syntax<nothing>. When it is not
possible, divide if possible returns the first argument, A. Otherwise it
uses match let to unwrap the value wrapped with just and returns it.

III.6.3 Case expressions

Even though the above implementation of divide if possible does not
require helper metafunctions, it is still difficult to understand the logic of the
code by looking at it. Many functional languages, to simplify code written
in them provide case expressions. These expressions have a value, such as
the result of safe divides and a number of cases, each of them consisting
of a pattern and a body. The value is matched against the patterns in order
and the body of the first one that matches is evaluated and returned. For
example

divide_if_possible a b =

case safe_divides a b of

Nothing -> a

Just r -> r

This implementation of divide if possible in Haskell uses a case expres-
sion to process the result of safe divides:

69

• When the division is not possible and the result is Nothing, it returns
the first argument, a.

• When the division is possible, the result is wrapped with Just. How-
ever, in the pattern of the case expression it is allowed to use variables
which can be used in the body of that case. Using this, the code un-
wraps the value returned by safe divides and returns the result of
the division.

This section presents how to implement a similar construct in template
metaprogramming using syntaxes, pattern matching and match let.

struct no_case;

template <class Value,

class Case1=no_case, ..., class CaseN=no_case>

struct case_;

This is a metafunction taking a value and a number of cases. Instances of
the following template class describe these cases:

template <class Pattern, class Body> struct matches;

This template class has two arguments: the pattern to match against the
Value argument of case and the body to evaluate when the pattern matches.
Using the above implementation a case expression can have N cases, however
the case arguments have a default value, no case which means that that
case is not provided. This makes it possible to have less cases than N. The
Boost.Preprocessor library [34] provides tools to automatically generate the
code of case and to turn N into a compilation argument, thus one can in-
crease it when it is needed. The above approach is not using features like
variadic templates [30, 72] provided by C++11. Using them could make the
code more flexible, but it would not work with earlier compilers not support-
ing these features. The implementation of case has to do the following:

• Try matching the value against the patterns of the cases provided.

• When one matches, in the corresponding body all occurrences of the
pattern’s variables need to be substituted with the values the pattern
matching assigned to them.

The details of the implementation are not presented here. A reference im-
plementation can be found in [59]. Using case the implementation of the
above divide if possible example becomes easier to read:

70

template <class A, class B>

struct divide_if_possible :

eval_syntax<

case_< safe_divides<A, B>,

matches<syntax<nothing>, syntax<A>>,

matches<syntax<just<r>>, syntax<r>>

>

>

{};

This code snippet checks the result of safe divides using case . When it
is nothing, it returns the first argument, A. When it is a value wrapped with
just, it returns the value. As case returns a syntax – the selected body in
which the variables of the corresponding pattern have been substituted – it
has to be evaluated using eval syntax. A helper metafunction, eval case

is also provided to make the above code simpler. It is the combination of
eval syntax and case and can be used the following way:

template <class A, class B>

struct divide_if_possible :

eval_case< safe_divides<A, B>,

matches<syntax<nothing>, syntax<A>>,

matches<syntax<just<r>>, syntax<r>>

>

{};

This code snippet does the same as the previous one, but uses eval case

instead of case inside eval syntax. Similarly to let and let c, matches c

can also be provided to offer an easier way of implementing cases. The details
of it are not presented here.

This section has presented how to provide pattern matching, the approach
used by many functional programming languages for finding out which con-
structor a value was created with and accessing the constructor arguments
in template metaprogramming, an environment not explicitly prepared for
handling this. Using it makes the implementation of metaprograms simpler.

71

III.7 Summary

This chapter has presented how to provide a number of commonly used
approaches of functional languages in C++ template metaprogramming and
how they help the development and maintenance of template metaprograms.
Thesis 1: I have evaluated the connection between C++ template metapro-
gramming and functional programming languages. Based on the results I
have developed methods for supporting template metaprogrammers using
the functional paradigm explicitly. (chapter III)

Thesis 1.1: I have shown the importance of laziness in template metapro-
gramming and developed an automated adaption method to use non-lazy
metafunctions in a lazy way. (section III.1)

Thesis 1.2: I developed a method for effective implementation of curry-
ing in C++ template metaprogramming. (section III.2)

Thesis 1.3: I have developed a method for representing Haskell-like
algebraic data-types in C++ template metaprogramming. (section III.3)

Thesis 1.4: I have developed a method for representing Haskell type-
classes in C++ template metaprogramming. (section III.4)

Thesis 1.5: I have developed a method to handle template metapro-
gramming expressions as first class citizens, ie. they can be stored, passed as
parameters or returned by functions. This method enables the implementa-
tion of let expressions and provides a more convenient way of implementing
lambda expressions than what Boost.MPL’s lambda expression implementa-
tion, a widely used solution offers. (section III.5)

Thesis 1.6: I have implemented an alternative method for pattern match-
ing in C++ template metaprogramming. This enables the implementation
of case expressions. (section III.6)

Table III.1: Related publications
[53] [57] [58] [60] [61] [63] [64] [67]

1.1 × × × ×
1.2 × × ×
1.3 × × × ×
1.4 × ×
1.5 × ×
1.6 ×

72

Chapter IV

Monads

In functional programming monads [48, 39, 38] are a tool for abstracting
computation. Users of a monad combine different functions together using
the operations provided by the monad. The code combining these functions
together is generic, it is implemented without knowing what these functions
will be.

A monad decorates functions that are evaluated in sequence to implement
some general logic that is orthogonal to the functions themselves. An example
of such orthogonal logic is error propagation in a sequence of functions – when
one of them fails and returns an error, the error should be returned to the
caller without evaluating the rest of the functions. Among error propagation,
monads have various use cases. A few examples:

• Input and output is implemented using a special monad, called the IO
monad [48] in Haskell.

• Monads help the implementation of parser combinators. Parsers can
be combined in a monadic way and the monadic framework takes care
of a large amount of boilerplate code during this process.

• Monads simplify the implementation of pure code doing logging or pro-
ducing other type of output. A monad takes care of collecting that
output.

• Monads simplify error propagation in complex code. By using them,
the error propagation logic can be separated from the business logic.
They can be used to simulate exceptions in pure code.

• Monads simplify the implementation of pure code operating on a state.
Different types of monads handle mutable and immutable states.

73

Following the object oriented programming paradigm [9] one can abstract
either the data a computation is working on or the computation that works
on a piece of data.

• To abstract the data a code snippet is working on one can use the
Composite design pattern [17]. When it is used, a computation doesn’t
need to know the real type of the object it is working on.

• To abstract the computation, one can use the Command design pattern
[17]. It abstracts parts of a larger computation away. The rest of the
code is implemented in a way that is not aware of what these parts are
doing.

A monad operates on functions that are passed around as values tak-
ing advantage of the fact that functions are first class citizens in functional
programming. The Command design pattern uses inheritance and runtime
polymorphism to be able to pass small code snippets around as values [48].

In Haskell a monad is implemented by a typeclass, called Monad. It takes
a type constructor as argument. The type constructor has to take one argu-
ment to produce a type. Instances of Monad are called monadic types, values
of those types are called monadic values. The typeclass requires the following
operations to be implemented:

class Monad m where

return :: a -> m a

fail :: String -> m a

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

a >> b = a >>= _ -> b

fail = error

Two operators are required, both of them taking two arguments:

• >>=, taking a monadic value and a function mapping a value of some
type to a monadic value. The operator builds a new monadic value.
This operator may decorate the function or decide not to evaluate it
at all. Since the first argument of this operator can be the result of
another call of this operator, it can be used to call a number of func-
tions mapping values to monadic values in a sequence. This operator
implements some general logic that is orthogonal to what the functions
that are evaluated in a sequence do.

74

• >>, taking two monadic values and building a new one. The typeclass
provides a default implementation for this function that calls the >>=

operator with a function that always returns the second argument of
>>.

As an addition, two functions are required:

• return, taking a value of some type and returning a monadic value.
The purpose of this function is to lift a value into the monad.

• fail, taking a string and returning a monadic value. The returned
value has to break a sequence of functions built with the >>= operator.
This function has a default implementation that calls error, which
generates an exception [48]

Monads add value to template metaprogramming when a syntactic sugar,
the do notation is ported from Haskell to C++ template metaprogramming.
This chapter presents an approach for simplifying template metaprograms
based on monads.

IV.1 Implementation of monads

In C++ template metaprogramming monadic values are represented as a set
of template metaprogramming values. Since template metaprogramming is
weakly typed, this set in defined in an informal way – in a comment or in the
documentation. In Haskell the compiler verifies if a value is monadic or not,
while the C++ compiler can not do it in template metaprogramming. On the
other hand, this makes the definition of monadic values more flexible – there
are sets of monadic values that can be defined in template metaprogramming
but not in Haskell. Monads are implemented using typeclasses requiring the
following metafunctions:

• return , taking some metaprogramming value as argument and return-
ing a monadic value. This is the equivalent of return.

• bind, taking a monadic value and a metafunction class as arguments
and returning a monadic value. The metafunction class takes some
value and returns a monadic value. This is the equivalent of the >>=

operator.

75

• bind , taking two monadic values as arguments and returning a new
monadic value. This metafunction evaluates its arguments lazily [57],
thus it accepts nullary metafunctions returning monadic values as ar-
guments. It can replace bind in cases where the metafunction class
ignores its argument. This is the C++ template metaprogramming
equivalent of the >> operator of Haskell.

• fail, taking some value as argument and returning a monadic value.
Its purpose is reporting errors in monads. When it is used in a sequence
of bind calls, the returned value should break the evaluation of the
sequence. This function is called fail in Haskell as well.

Since C++ operator syntax can not be used in template metaprogramming,
the operations are given names. A typeclass called monad is created as the
equivalent of the Monad typeclass in Haskell:

template <class Tag>

struct monad;

// Requires: return_::apply <T>, fail::apply <T>

// bind::apply <T, F>, bind_::apply <T, V>

As >> and fail have default implementations in Haskell, the template metapro-
gramming version provides a default implementation for bind and fail:

template <class T> struct monadic_error {};

template <class Tag>

struct monad_defaults {

struct bind_ : tmp_value<bind_> {

template <class A, class B>

struct apply :

mpl::apply_wrap2<

typename monad<Tag>::bind, A, mpl::always

> {};

};

struct fail : tmp_value<fail> {

template <class T>

struct apply : monadic_error<T>::failed {};

};

};

76

bind ’s default implementation calls bind with a metafunction class that
always returns bind ’s second argument. In Haskell fail’s default imple-
mentation uses error, which is something not available in C++ template
metaprogramming. However, code that breaks the compilation process by
accessing a non-existing nested type in a template class is used instead. The
name of the nested class is likely to appear in the error message generated by
the compiler, thus giving this class a meaningful name improves the quality
of the error message. The example above uses a non-existing nested class
called failed. Since it is trying to access a nested class in a template class
instance, it doesn’t generate any error message until it is instantiated. Every
instance of monad has to publicly inherit from monad defaults to get the
default implementations.

Wrapper template metafunctions for the functions expected by the monad
simplify the usage of this monad implementation. The tag of the monad has
to be the first argument of these metafunctions.

template <class Tag, class T>

struct return_ :

mpl::apply<typename monad<Tag>::return_, T>

{};

The above example shows how to implement a helper function for return .
The rest of the functions (bind, bind and fail) can be implemented in a
similar way.

Haskell has semantic expectations for monads [48] that are documented
but cannot be verified by the compiler. The C++ template metaprogram-
ming equivalents of these expectations are the following:

• left identity : bind<Tag, return <Tag, X>, F> is equivalent to
mpl::apply<F, X>.

• right identity : bind<Tag,M,monad<Tag>::return > is equivalent to M.

• associativity : The expression bind<Tag, M, lambda c<x, bind<Tag,

mpl::apply<F,x>,G>>> is equivalent to bind<Tag,bind<Tag,M,F>,G>.

Similarly to Haskell, these expectations can not be verified automatically. It
is the responsibility of the monad’s author to satisfy these expectations.

IV.2 Monad variations

This section presents how to implement different types of monads available
in Haskell in C++ template metaprogramming. The full implementation of
these monads is part of Mpllibs [59].

77

IV.2.1 Maybe

Section III.3 presents how the Maybe type is implemented in Haskell:

data Maybe a = Just a | Nothing

It is implemented in C++ template metaprogramming the following way:

template <class A>

struct just : tmp_value<just<A>> {};

struct nothing : tmp_value<nothing> {};

The following implementation makes it an instance of the monad typeclass:

template <>

struct monad<maybe> : monad_defaults<maybe> {

typedef lambda_c<t, just<t>> return_;

typedef lambda_c<_, nothing> fail;

typedef

lambda_c<a, f,

eval_case<a,

matches_c<just<v>, mpl::apply<F, v>>,

matches_c<nothing, a>

>

>

bind;

};

return wraps its argument with just, bind checks if its first argument, the
result of the previous step in the sequence is nothing. When it is, it returns
this value without calling the next step. Otherwise it unwraps the value from
just and passes it to the next step in the chain. fail returns nothing to
break the chain of binds.

This monad implements some error propagation logic. It helps combining
metafunctions using Maybe to report errors. The problem with this solution
is that the monadic functions can not return any detail about the error.

78

IV.2.2 Either

The Either monad is a tool for error handling as well. In Haskell the fol-
lowing type is defined:

data Either a b = Left a | Right b

When it is used for error handling, Left a represents an error, Right b

represents a result. Since Left has an argument as well, functions using
Either for error reporting can report details describing what went wrong.
Either is a monad instance as well, bind implements error propagation logic.
The type constructors are implemented as template classes in C++ template
metaprogramming:

template <class A> struct left;

template <class B> struct right;

These two constructors form an algebraic data-type, thus they are imple-
mented based on section III.3. A new tag, either is needed for the Either

monad. either is an instance of monad:

template <>

struct monad<either> : monad_defaults<either> {

typedef lambda_c<t, right<t>> return_;

typedef lambda_c<s, left<s>> fail;

typedef

lambda_c<a, f,

eval_case<a,

matches_c<right<v>, mpl::apply<f, v>>,

matches_c<left<_>, a>

>

>

bind;

};

return wraps its argument with right to make it a result, fail wraps its
argument with left to break the evaluation of the monad. bind propagates
the error, when its first argument is left. When its first argument is right,
it unwraps the value and calls the monadic function.

Using this monad for implementing error-handling makes it possible for a
function to return information about what the problem was in case of errors.

79

IV.2.3 List

The list monad turns operations mapping elements to lists into operations
transforming lists. Monadic values are lists of some type. return creates
a list with one element. bind’s first argument is a list. It calls the monadic
function on all elements of this list and concatenates the resulting lists. Since
the List monad doesn’t deal with error handling, there is no reasonable way
of overriding fail. It is implemented the following way:

typedef

lambda_c<s, l,

lazy<

mpl::insert_range<

already_lazy<s>,

lazy_protect_args<mpl::end<s>>,

already_lazy<l>

>>>

join_lists;

template <>

struct monad<list_tag> : monad_defaults<list_tag> {

typedef lambda_c<t, boost::mpl::list<t>> return_;

typedef

lambda_c<a, f,

mpl::fold<

mpl::transform_view<a, f>,

mpl::list<>,

join_lists

>>

bind;

};

The return operation builds a one element list from its argument. The
bind operation applies its second argument, the function on all elements of
the list, which is its first argument. This application is implemented using
the mpl::transform metafunction provided by Boost.MPL. The result of
this is a list of lists, which needs to be concatenated. This happens by
folding over this list using a helper metafunction class, join lists, which
joins its two arguments using mpl::insert range. The list monad can be
used to represent ambiguity in pure code [28, 29].

80

IV.2.4 Reader

The reader monad combines functions operating on an immutable state.
Monadic values are higher order functions taking the state as argument and
returning some value. The monad itself doesn’t deal with the state – it con-
structs functions operating on it. The result of a sequence of binds is a
function that takes the state as its argument.

In C++ template metaprogramming higher order functions are imple-
mented using metafunction classes, thus in template metaprogramming the
monadic values of the Reader monad are metafunction classes. A tag, reader
needs to be created to make Reader an instance of monad:

template <> struct monad<reader> : monad_defaults<reader> {

typedef lambda_c<t, _, t> return_;

typedef

lambda_c<a, f, r,

lazy<

mpl::apply<

mpl::apply<

already_lazy<f>,

lazy_protect_args<mpl::apply<a, r>>

>,

already_lazy<r>>>>

bind;

};

return creates a constant function – regardless of the state it always returns
return ’s argument. It is implemented using currying: return is a meta-
function class taking two arguments. When only one is provided, it returns
a metafunction class taking the other argument.

The function created by bind takes a state as argument and calls bind’s
first argument with it. The resulting value is used to construct a new state

-> value function. The state is passed to this function to get the final result.
bind’s implementation makes use of the currying provided by the lambda
expressions (see section III.5.4). It is implemented as a lambda expression
taking three arguments and can be used as a metafunction class taking only
two arguments and returning a metafunction class taking one argument.

In the reader monad, monadic functions construct functions operating on
the state based on the result of the previous function operating on the state.
Thus, the execution of higher order code – code building functions operating
on the state – is mixed with normal functions operating on the state.

81

IV.2.5 State

The State monad maintains a state like the Reader monad, but the monadic
values are functions that can change the state: they are functions taking a
state as an argument and returning a pair: a new state and a result.

The C++ template metaprogramming implementation of this monad is
similar to the implementation of the Reader monad: higher order functions
are represented by metafunction classes, pairs are implemented using pairs
provided by Boost.MPL.

template <>

struct monad<state> : monad_defaults<state> {

typedef lambda_c<t, s, mpl::pair<t, s>> return_;

typedef

lambda_c<a, f, s,

eval_match_let_c<

mpl::pair<t, u>, mpl::apply<a, s>,

lazy<

mpl::apply<

lazy_protect_args<mpl::apply<f, t>>,

already_lazy<u>

>

>

>

>

bind;

};

return creates a function returning return ’s argument and not changing
the state. The function created by bind takes a state as argument and passes
it to bind’s first argument. The resulting value is used to construct a new
state -> (value, state) function. The new state is passed to this func-
tion to get the final result. The implementation of bind takes advantage
of the currying support provided by the lambda expressions. It is imple-
mented as a lambda expression taking three arguments and can be used as a
metafunction class taking two arguments and returning a metafunction class
taking one argument.

Given that C++ template metaprogramming is a pure functional lan-
guage, there is no mutable global state. The State monad is a tool for
simulating a mutating state for functions that need it.

82

IV.2.6 Writer

The Writer monad demonstrates the expressiveness of the typeclass imple-
mentation and an extension to tags used by Boost.MPL. The idea of the
Writer monad is based on monoids. In abstract algebra an object is called a
monoid [48] if it meets the following requirements:

• It has an associative binary operator. That is, an operator, *, that
satisfies the following equation: a * (b * c) == (a * b) * c.

• It has an identity value, e, that satisfies a * e == a and e * a == a

In Haskell, this concept is captured by the Monoid typeclass:

class Monoid a where

mempty :: a

mappend :: a -> a -> a

mconcat :: [a] -> a

mconcat = foldr mappend mempty

mappend implements the binary operation, mempty is the identity element.
mconcat is a function concatenating the elements of a list using the binary
operation. It has a default implementation that can be overridden by a
more efficient algorithm for types where it is possible. This typeclass is
implemented in template metaprogramming using the approach presented
for implementing typeclasses (see section III.4). The full implementation
can be found in Mpllibs [59].

The monadic values of the Writer monad are pairs: a value and a state.
The states are expected to form a monoid, thus they have an associative op-
eration that can merge a number of state values. The Writer monad collects
the list of states while executing a sequence of bind calls and reduces them
into one value using the binary operation of the monoid.

Creating a tag for the Writer monad is not as straight forward as it was
for other monads, since the Writer monad expects a monoid instance as
argument. The Haskell implementation expects the type of the state to be
an instance of the Monoid typeclass. An extra argument is needed for the
Writer monad: the tag of the monoid. It is provided by making the tag of
the Writer monad a template class taking the tag of the monoid as argument.

template <class Monoid> struct writer {};

writer is an instance of the monad typeclass using partial specialisation [76]:

83

template <class Monoid>

struct monad<writer<Monoid>> : monad_defaults<writer<Monoid>> {

// ...

};

It makes writer an instance of the monad typeclass independent of the
monoid the Writer monad uses. Because of using typeclasses, the functions
expected by monad is implemented in a generic way, without knowing which
monoid is used:

template <class Monoid>

struct monad<writer<Monoid>> : monad_defaults<writer<Monoid>> {

typedef lambda_c<t, mpl::pair<t, mempty<Monoid>>> return_;

typedef

lambda_c<a, f,

lazy<

mpl::pair<

mpl::first<

lazy_protect_args<mpl::apply<f, mpl::first<a>>>

>,

mappend<

already_lazy<Monoid>,

already_lazy<mpl::second<a>>,

lazy_argument<

mpl::second<

lazy_protect_args<mpl::apply<f, mpl::first<a>>>

>

>

>

>

>

>

bind;

};

This code snippet uses the monoid typeclass to refer to the monoid’s op-
erations. The functions mempty and mappend are wrappers of calling the
corresponding functions of the monoid<Monoid> trait instance.

Using typeclasses made it possible to implement the Writer monad in-
dependently of the monoid used by the monad. The tag of the monoid is
encoded in the tag of the Writer monad.

84

IV.3 Do notation

Haskell provides syntactic sugar for monads, called do notation [48]. In
Haskell, a do block is associated with a monad and contains a number of
monadic function calls and value bindings. Here is an example do block:

do

r <- may_fail1 13

may_fail2 r

This evaluates may fail1 13, binds r to its result and evaluates may fail2

r. Using this notation instead of calling bind directly makes the code easier
to read and maintain. This section presents how to provide the do notation
in template metaprogramming. A do block looks like the following:

do_<monad_tag,

step1,

// ...

stepn>

do is a template class, monad tag is the tag identifying the monad. This has
to be passed to the return and bind functions. The rest of the arguments
are the steps of the do block. Each step is either a nullary metafunction
returning a monadic value or a binding of an expression to a name. Steps
are always syntaxes. A binding is expressed by the following structure:

syntax<set<name, step>>

step is a nullary metafunction returning a monadic value, name is a variable.
The binding binds the result of step to this name. The bound name can be
used in the steps of the do block following the binding. Here is the example
using the may fail functions implemented using do :

do_<exception_tag,

syntax<set<r, may_fail1<mpl::int_<13>>>,

syntax<may_fail2<r>>

>

This implementation uses set to bind the result of calling the may fail1

metafunction to a variable, r. This result is passed to may fail2 using the
variable r.

Similarly to let and let c, a do c template can be provided to offer an
easier way of writing do blocks. The implementation details are not presented
here.

85

IV.3.1 Implementation of the do notation

Do blocks can be transformed into a sequence of bind and bind calls without
changing their meaning. This process is called the desugaring of the do block
and is presented in detail in [48]. The solution presented here follows this
process. do is implemented the following way:

• do <monad tag, syntax<step>> evaluates step.

• do <monad tag,syntax<step1>,step2,...,stepn> evaluates bind <

monad tag, step1, do <monad tag, step2, ..., stepn>>.

• do <monad tag,syntax<set<name,exp>>,step2,...,stepn> evaluates
bind<monad tag, exp, lambda<name, syntax<do <step2, ...,

stepn>>>>.

Following these rules, the example:

do_<exception_tag,

syntax<set<r, may_fail1<mpl::int_<13>>>,

syntax<may_fail2<r>>

>

is transformed into

bind<

exception_tag,

may_fail1<mpl::int_<13>>,

lambda_c<r, may_fail2<r>>

>

When a do block is evaluated, it is transformed to a nullary metafunction like
the example above and gets evaluated. The transformation happens when
the do block is evaluated, thus do blocks that are not evaluated are never
transformed.

IV.3.2 Using return in do blocks

The standard tool for creating monadic values from non-monadic ones is
return . It takes the tag of the monad and the non-monadic value and
returns a monadic value. The following example demonstrates how to use it
in do blocks:

86

do_<monad_tag,

syntax<return_<monad_tag, mpl::int_<13>>>

>

The problem with this solution is that every time return is used inside the
do block, the tag of the monad has to be passed to it, as well. It requires
specifying the tag of the monad at multiple places, which is more work to
be done for the developer and more possibilities to make mistakes, leading
to bugs that are difficult to find. There is a better solution that makes
the do block deduce the first argument of return . A new template class,
do return is provided to simplify this. Here is the previous example using
this new tool:

do_<monad_tag,

syntax<do_return<mpl::int_<13>>>

>

This example specifies the tag of the monad only once for the do block, and
it is not repeated when the return operation is used. It can be easily imple-
mented by do <monad tag, syntax<do return<exp>, step2,...,stepn>

evaluating do <monad tag,syntax<return <monad tag,exp>>,step2,...,

stepn>. A reference implementation can be found in [59].
With this, the implementation of do blocks is complete. As in Haskell,

using do blocks make the source code easier to read and understand in C++
template metaprograms as well.

IV.3.3 List comprehension

List comprehension [48] is a syntactic sugar for creating lists from other lists.
A number of languages, such as Haskell [48], Python [35], Erlang [6, 7] etc.
support it. For example, assuming that an is relative prime function is
available, here is how to get the list of relative primes in the range of [1..100]
in Haskell:

[(i, j) | i <- [1..100], j <- [1..100], is_relative_prime i j]

The above code snippet evaluates is relative prime for every i and j pairs
in the range [1..100] and collects the (i, j) pairs that are relative primes
into a list. Here is how to do it using the list monad and the do notation
[26]:

87

do

i <- [1..100]

j <- [1..100]

guard $ is_relative_prime i j

(i, j)

This code snippet does the same as the previous one, but it is based on the
do notation and the List monad. The do notation is available in template
metaprogramming. Here is how to use it to express the above list compre-
hension in template metaprogramming:

do_c<list_tag,

set<i, mpl::range_c<int, 1, 101>>,

set<j, mpl::range_c<int, 1, 101>>,

guard<is_relative_prime<i, j>>,

mpl::pair<i, j>

>

The above code snippet implements the same functionality as the previous
Haskell version, but it is implemented using the do blocks presented earlier.
Based on the approach for turning do blocks into bind calls presented in
section IV.3.1, the above code block is turned into the following expression:

bind<list_tag,

mpl::range_c<int, 1, 101>,

lambda_c<i, do_c<list_tag,

set<j, mpl::range_c<int, 1, 101>>,

guard<is_relative_prime<i, j>>,

mpl::pair<i, j>

>>

>

The above code snippet does the desugaring of the first line. The bind

operation of the list monad applies the monadic action – in this case the rest
of the original do block – on every element of the list and concatenates the
results. Thus, the rest of the do block is evaluated for every i in the range
[1..100] and the results are concatenated. The same applies for j, thus the
last two lines of the do block are evaluated for every i and j pairs. Based
on the desugaring rules, the following expression is evaluated:

88

bind<list_tag,

mpl::range_c<int, 1, 101>,

lambda_c<i, bind<list_tag,

mpl::range_c<int, 1, 101>,

lambda_c<j, bind_<list_tag,

guard<is_relative_prime<i, j>>,

mpl::pair<i, j>

>>

>>

>

The above code snippet shows the original do block after desugaring. It
evaluates the bind <...> sub-expression for every i and j pair. The second
and third arguments of bind evaluate to lists. The result of this operation
is the third argument of bind repeated as many times as many arguments
the other list, the second argument of bind has.

In order to keep only the relative primes, guard<is relative prime<i,

j>> has to return a list with one element when i and j are relative primes
and an empty list otherwise. This is easy to implement:

template <bool C>

struct guard_c : mpl::list<void> {};

template <>

struct guard_c<false> : mpl::list<> {};

template <class C>

struct guard : guard_c<C::type::value> {};

The guard c function returns either a one element or an empty list depending
on its boolean literal argument. The guard function takes a thunk evaluat-
ing to a wrapped boolean, evaluates it, unwraps the result and instantiates
guard c using it.

By introducing the MonadPlus typeclass, the guard function can be gen-
eralised and implemented for other monads as well. This is out of the scope
for this dissertation. This section has presented how using do blocks and
the list monad make it possible to provide list comprehension in template
metaprogramming.

89

IV.4 Exception handling in metaprograms

Two monads, Maybe and Either, have been presented targeting error han-
dling in pure code. This section presents a third monad called the Exception
monad, that supports error handling and extends this to simulate exception
handling in C++ template metaprograms.

The Exception monad in C++ template metaprogramming treats every
value as a monadic value. This wouldn’t be possible in Haskell, since that
language uses the type system to define the monadic values. The following
code snippet defines a special data-constructor for representing errors:

template <class Detail>

struct exception;

exception values contain details about the error, this is what the Detail ar-
gument represents. The exception monad follows the same logic as the Either
monad, treating exception values as left and other values as right values.
Thus, return is the identity function, bind implements error propagation.

The Exception monad stops the further execution of the sequence of binds
when an exception is thrown and propagates the error to the caller, who can
either process this error information or propagate it further. This is how
exceptions behave in runtime C++ [72].

Compile-time exception handling is presented using the min template
metafunction as an example: it takes two arguments and returns the smaller
one. It uses another metafunction, less, to decide which is the smaller
argument. min is implemented in Boost.MPL [25] the following way:

template <class A, class B>

struct min :

if_<less<A, B>, A, B>

{};

Let’s assume that less is implemented in a way that is returns an instance
of exception when its arguments can not be compared. When this happens,
the first argument of if is an exception instead of a logical value. The body
of min is a template metaprogramming expression. A sub-expression of it,
less<A, B>, calls another metafunction, less. When a sub-expression of an
expression returns an exception, the exception propagation logic should stop
the evaluation of the entire expression and make the exception the result
of the expression (propagate the exception). In order to do this, the above
example needs to be turned into monadic code:

90

template <class A, class B>

struct min :

bind<exception, less<A, B>, lambda_c<t, if_<t, A, B>>>

{};

This code snippet evaluates the original expression in two steps: first it
evaluates the sub-expression that may return an exception, then it evaluates
the rest of the expression. The two steps are connected by bind.

Turning every template-metaprogramming expression into monadic code
is a tedious and error prone process. It makes the code extremely difficult to
read and maintain. This section presents how to implement a small embed-
ded language, that resembles runtime exception handling in C++ template
metaprogramming. This language allows the developer to use try and catch
blocks in template metaprograms. These blocks are automatically translated
into monadic code presented above. The embedded language is implemented
using the C++ standard, it doesn’t require any additional tools.

Compile-time try blocks are provided in template metaprogramming,
which are template classes taking at least one argument: a syntax, which is
the expression to evaluate a number of catch blocks. The try blocks turn
the syntax into a monadic expression before evaluating it. The following
implementation of min uses these compile-time try blocks:

template <class A, class B>

struct min :

try_<

syntax<if_<less<A, B>, A, B>>

>

{};

This solution wraps the body of the original min implementation. try is a
template class taking a nullary metafunction as argument. It transforms this
nullary metafunction wrapped by syntax into a series of bind calls:

• When the nullary metafunction is a class that is not a template in-
stance, it remains as it is.

• When the nullary metafunction is an instance of a template class, it is
transformed into a series of bind calls. An instance of the f template
class with T1 ... Tn arguments, f<T1, ..., Tn>, is transformed into
the following:

91

struct t1_; typedef var<t1_> t1;

// ...

struct tn_; typedef var<tn_> tn;

bind<exception_tag, T1, lambda_c<t1,

bind<exception_tag, T2, lambda_c<t2, /* ... */

bind<exception_tag, Tn, lambda_c<tn,

f<t1, /*...*/, tn>

>>

/* ... */ >>

>>

This transformation ensures that when a sub-expression of the syntax throws
an exception, the exception is not passed to the function taking that value
as an argument but is propagated out of the entire expression. Using these
try blocks the exceptions can be propagated in the sequence of function calls,
similarly to stack unwinding in runtime code. This transformation is similar
to the logic of desugaring do blocks in Haskell [48]

Instances of the try template class provide a nested type called type,
that is a typedef of the result of the monadic calculation. Thus, try can be
used as a metafunction. Similarly to runtime execution, exceptions are either
handled at some point or they are propagated out of the entire metaprogram
and break the evaluation of it. Exceptions thrown at runtime are handled
by catch blocks. Catch blocks filter the exceptions by predicates taking the
exception as argument. A try block in addition to the original syntax can
have any number of – including zero – catch blocks as arguments. When
any of the catch blocks handles the exception, the result of evaluating the
try block is the value returned by the handler code. When none of the catch
blocks catches the exception, the result of the try block is the exception itself.
An additional template class is introduced to represent a catch block:

template <class Name, class Pred, class Body>

struct catch_;

Instances of the above template class represent catch blocks. The Name ar-
gument is the variable used to refer to the exception, Pred is a syntax that
evaluates to a boolean value. This expression is evaluated to determine if
this catch block handles the exception or not. When it evaluates to true,
then Body is evaluated, which is also a syntax. The result of Body is the
result of the try block. For example:

92

template <class A, class B>

struct min :

try_<

syntax<if_<less<A, B>, A, B>>,

catch_<e, syntax<boost::is_same<e, division_by_zero>>,

syntax<A>>,

catch_<e, syntax<mpl::true_>, syntax>,

catch_<e, syntax<mpl::true_>, syntax<mpl::int_<13>>>

>

{};

This code snippet uses three catch blocks. All of them refers to the ex-
ception as e. When the body of try does not return an exception, the
catch blocks are ignored. Otherwise the predicates of the catch blocks are
evaluated in order and the first one that evaluates to true is selected. This
means, that the last one is never selected, as the predicate of the second
catch block always evaluates to true. When a division by zero exception
is thrown, the try block evaluates to A, when another exception is thrown,
it evaluates to B.

In runtime C++, functions that are not prepared to handle exceptions
can be called from try blocks without any further syntactic elements. When
using monads, non-monadic operations need to be lifted [48] into the monad.
But for the exception monad every class is a monadic value: instances of the
exception template class are exceptions, other classes are values representing
a successful computation. Because of this, there is no lifting when using
compile-time exceptions, which makes it more like exceptions in runtime
C++ code.

IV.4.1 Implementation of exception handling

The try template does two things: turns a syntax into monadic code and
supports catch blocks. This section presents how to implement these things.

Turning a syntax into a monadic expression

Given a syntax wrapping an angle-bracket expression, it needs to be turned
into a monadic expression using the exception monad to ensure that excep-
tions are propagated properly from every sub-expression. For example the
following syntax

syntax<mpl::if_<less<A, B>, A, B>>

93

should be turned into the following:

bind<exception_tag,

bind<exception_tag, A,

lambda_c<v1, bind<exception_tag, B,

lambda_c<v2, less<v1, v2>>

>>

>,

lambda_c<v1, bind<exception_tag, A,

lambda_c<v2, bind<exception_tag, B,

lambda_c<v3, mpl::if_<v1, v2, v3>>

>>

>>

>

This code snippet evaluates every sub-expression of the original one indi-
vidually and connects the results with bind and lambda expressions. This
guarantees that when a sub-expression returns an exception, the evaluation
of the entire expression stops and the exception is propagated out.

This is implemented as a template metafunction taking the syntax as
input and evaluating it as a monadic expression. Given that monads enforce
the serial evaluation of the actions [49], this transformation enforces a fixed
evaluation order for the wrapped expression. Here is the implementation of
this metafunction, it is called make monadic:

template <class S>

struct make_monadic;

template <class Exp>

struct make_monadic<syntax<Exp>> :

Exp

{};

The above code snippet declares the metafunction make monadic and im-
plements the case when the angle-bracket expression to transform has no
further sub-expressions and does not need to be transformed further. It can
be evaluated.

Expressions with sub-expressions are instances of template classes. They
are processed using template template class arguments and partial speciali-
sation. For example expressions calling a metafunction taking two arguments
are transformed by the following specialisation:

94

struct v1_; typedef var<v1_> v1;

struct v2_; typedef var<v2_> v2;

template <template <class, class> class T, class T1, class T2>

struct make_monadic<syntax<T<T1, T2>>> :

bind<exception_tag, make_monadic<syntax<T1>>,

lambda_c<v1,

bind<exception_tag, make_monadic<syntax<T2>>,

lambda_c<v2, T<v1, v2>>

>>>

{};

This code snippet specialises make monadic for expressions calling a meta-
function T taking two arguments, T1 and T2. The arguments are evaluated
from left to right and the function call is evaluated after that. The different
steps are connected using bind. Preparing make monadic for metafunction
calls with different arities can be implemented in a similar way, the details
are not presented here. A reference implementation can be found in [59].

This metafunction needs to be prepared for treating boxed values as spe-
cial ones and not to evaluate them, similarly to lazy. The details of this are
not presented here.

Implementing catch blocks

try uses make monadic to evaluate the syntax representing the body of the
try block and to propagate exceptions out of it. Then it checks if there were
any exceptions:

template <class Body, class C1, ..., class Cn>

struct try_ :

eval_case_<make_monadic<Body>,

matches_c<exception<e>,

handle_exception<e, mpl::vector<C1, ..., Cn>>

>,

matches_c<e, e>

>

{};

This code snippet uses make monadic to evaluate Body and checks the re-
sult using eval case. When it is an exception, it calls handle exception

with the exception that was thrown and a vector containing the catch cases.
Otherwise it returns the result of the evaluation. The template metafunction
handle exception is implemented the following way:

95

template <class E, class Cs>

struct handle_exception :

mpl::fold<

Cs,

mpl::pair<mpl::true_, exception<E>>,

lambda_c<s, a,

eval_case<s,

matches_c<mpl::pair<mpl::true_, _>,

handle_catch<e, a>

>,

matches_c<_, s>

>>> {};

This code snippet iterates over the catch blocks using mpl::fold. The state
used in the fold is a pair: the first element is a boolean indicating if the
exception has been processed by a catch block, the second element is the
exception when it has not been processed and the result of the catch block
in case it has been processed. The lambda expression called for every catch
block calls the handle catch metafunction in case the exception has not
been handled yet, otherwise returns the state unchanged. The handle catch

metafunction is implemented the following way:

template <class E, class C>

struct handle_catch;

template <class E, class Name, class Pred, class Body>

struct handle_catch<E, catch_<Name, Pred, Body>> :

mpl::eval_if_<

typename eval_let<Name, syntax<E>, Pred>::type,

lazy<mpl::pair<

mpl::true_,

lazy_protect_args<eval_let<Name, syntax<E>, Body>>

>>,

mpl::pair<mpl::false_, exception<E>>

> {};

This code snippet substitutes the variable Name in the predicate Pred and
evaluates it using eval let. When it evaluates to true, Body, the body of
the catch block is evaluated the same way to get the result of the try block
and a pair of mpl::true and this result is returned. Otherwise a pair of
mpl::false and the exception is returned. With this, the implementation
of try is complete.

96

IV.5 Summary

This chapter presented how to implement monads in C++ template metapro-
gramming. The implementation of a number of monad variations, such as the
Maybe, Either, List, Reader, State and Writes monads were also presented.
An approach has been presented for simulating the do notation of Haskell and
it has been discussed, how to provide List comprehension in C++ template
metaprogramming. This chapter has also presented how to simulate excep-
tion handling in template metaprogramming based on a monad instance, the
Exception monad.
Thesis 2: I have developed a method for implementing monads and a
Haskell-like do syntax in C++ template metaprogramming and evaluated
how a number of different monad variations available in Haskell can be im-
plemented using this method. Based on this I have developed a method for
simulating exception handling in C++ template metaprograms. (chapter IV)

Thesis 2.1: I have developed a method for implementing monads in
C++ template metaprogramming. (section IV.1)

Thesis 2.2: I have evaluated how a number of monads available in
Haskell can be implemented using the approach presented in Thesis 2.1.
(section IV.2)

Thesis 2.3: I have developed a method for implementing a Haskell-like
do syntax in template metaprogramming. (section IV.3)

Thesis 2.4: I have developed a method for simulating exception handling
in C++ template metaprogramming based on monads. (section IV.4)

Table IV.1: Related publications
[61] [64] [66] [67]

2.1 × ×
2.2 × × ×
2.3 × × × ×
2.4 × × ×

97

Chapter V

Parser generator library

The techniques discussed in chapters III and IV support building template
metaprograms following the logic of Haskell. This chapter introduces a differ-
ent approach for taking advantage of the similarities of the two languages. It
presents how to implement parsers taking string literals and parsing them at
compile-time. This makes it possible to provide a Haskell-like language for
writing template metafunctions, parse them using template metaprograms
and execute them as part of the same compilation process. This approach
provides a readable syntax for C++ template metaprograms.

Implementing parsers as template metaprograms is useful for embedding
domain specific languages in general, they are not limited to providing a
better syntax for template metaprograms. Section V.2 presents use cases,
such as a type safe printf.

V.1 Implementation of the library

This section presents how to implement compile-time parsers in C++ tem-
plate metaprogramming, how to construct parsers and how to prepare them
for error-handling. This approach is based on parser combinators [5] and the
implementation is built on top of Boost.MPL.

V.1.1 Representing the input text

The approach presented in this chapter uses template metaprogramming to
implement parsers. The input of the parsers are strings, thus they need
to be represented as template metaprogramming values to be able to do the
parsing. Boost.MPL provides a string implementation that can be used. The
syntax of embedding strings in the source code is the following:

98

mpl::string<’Hell’,’o Wo’,’rld!’>

It is based on multi-character constants, which allow grouping four characters
together. However, the embedded string has to be split into four character
chunks which is not convenient and is difficult to work with. A macro taking
a string literal as argument and expanding to the template metaprogramming
representation of that string would be easier to use:

_S("Hello World!")

This section presents how to provide this macro by combining generalised
constant expressions and preprocessor metaprograms. "Hello World!" is a
string literal, which becomes a character array. Accessing a character of it,
such as "Hello World!"[2] is a constant expression. A constant expression
can be an argument of a template:

mpl::push_back<

mpl::push_back<

// ...

mpl::push_back<

mpl::string<>,

mpl::char_<"Hello World!"[0]>

>::type,

// ...

mpl::char_<"Hello World!"[10]>

>::type,

mpl::char_<"Hello World!"[11]>

>::type

The above code snippet appends each character of the string literal "Hello
World!" to an empty template metaprogramming string one by one. It
can be hidden by a macro. Using preprocessor metaprograms, such as
BOOST PP REPEAT from Boost.Preprocessor [34] the above code can be gen-
erated from S("Hello World!"). The problem is that the length of the
string has to be known in advance, thus the S macro works with a prede-
fined string length only. Generating different code based on the length of
the string literal in a preprocessor metaprogram is an open question, a fixed
number of steps are generated and used in all cases. During the generated
iterations the end of the string needs to be detected. A special metafunction
that optionally appends a character to a string is defined:

99

template <class S, char C, bool EndOfString>

struct append_string : mpl::push_back<S, mpl::char_<C>> {};

template <class S, char C>

struct append_string<S, C, true> : S {};

This metafunction takes an extra argument, which is a boolean value indi-
cating if the character really needs to be appended. To avoid over indexing
the string literal, a constexpr function accessing a character of the string is
needed:

template <int Len>

constexpr char str_at(const char (&s)[Len], int n)

{ return n >= Len ? 0 : s[n]; }

The above function takes a char array and an index as arguments. It receives
the length of the array as a template argument and checks if the array has
been over indexed. When it is over indexed, it returns the ’\0’ character.
Since it is a constexpr function, its result can be used as a template argu-
ment. The following code snippet uses all the above to construct a template
metaprogramming string from a string literal:

#define s "Hello World!"

append_string<

append_string<

// ...

append_string<

mpl::string<>,

str_at(s, 0), (0 >= sizeof(s) - 1)

>::type,

// ...

s[10], (10 >= sizeof(s) - 1)

>::type,

s[11], (11 >= sizeof(s) - 1)

>::type

The above code snippet uses str at to access the characters, thus it is
protected against over indexing the array. It uses sizeof to check the
length of the string and append string to append the characters. To each
append string call it passes a boolean value indicating if that character is
a character of the string or just a 0 character coming from str at.

100

The above code snippet can be automatically generated by a macro, where
s is a macro argument. The number of appends generated by the macro sets
an upper limit on the length of the string. The maximum value comes from
a macro, such as LIMIT STRING SIZE which can be defined by the user. The
implementation of this macro is not presented here. A reference implemen-
tation can be found in [59] and the implementation details are discussed in
[62]. Using this, an S macro can be implemented taking a string literal
as argument and expanding to an expression that evaluates to the template
metaprogramming representation of the string.

V.1.2 Representing source locations

A compiler has to be able to give good error messages to the developer when
the text he compiles is invalid. To help the developer finding and fixing
the bug, the error message should contain the location of the error in the
invalid source code. The locations of the input text have to be represented
in template metaprogramming. A location is a pair of integers representing
line and column number. An algebraic data-type is created for it:

template <class Line, class Col>

struct source_position;

Metafunctions for querying and updating these values are easy to implement:

• get col queries the column information.

• get line queries the line information.

• next char returns a new source position pointing to the next character
of the same line.

• next line returns a new source position pointing to the first character
of the next line.

V.1.3 Building parsers

A parser is a template metafunction class taking the following arguments:

• The text to parse.

• Location information (line and column number) of the beginning of the
input text in the entire input to parse. This argument is important,
because the parser is given either the entire input text, or only a suffix
of it. For proper error reporting, the parser has to be aware of the
exact location of the parsed characters in the input text.

101

The return value of the function is one of the following:

• A tuple of some resulting value, the remaining text and the location
information of the beginning of the remaining text. This tuple is re-
turned when the parser was successful. The first element of the tuple,
the resulting value can be any template metaprogramming value. It
can be either a syntax tree, the result of the evaluation of the input
text or anything else.

• A pair of some error description and a source location. This is returned
when the parser failed to parse the input. The error description can be
any template metaprogramming value.

The result of a successful parsing needs to be differentiated from a rejec-
tion. This is represented by an algebraic data-type with two constructors:

template <class Result, class Remaining, class Pos>

struct accepted;

template <class Msg, class Pos>

struct rejected;

The constructor accepted represents that a parser has accepted the input.
Result is a template metaprogramming value representing the result of pars-
ing. It depends on the parser and the accepted input. Remaining is the
unprocessed suffix of the input, Pos is the position representing the position
of the first character of Remaining in the original input.

To parse some text, the text itself and a source location pointing to the
first character of the first line has to be passed to the parser. Since it is often
used, this source position gets a custom name, start.

Basic parsers

Here are three simple parsers:

• return , a parser that always accepts its input and consumes nothing
from the input text.

• fail, a parser that always rejects its input.

• one char, a parser that consumes the first character of its input. It
rejects empty input.

The following code snippet implements return :

102

template <class Result>

struct return_ : lambda_c<s, p, accepted<Result, s, p>> {};

return <R> is a metafunction class, where R is the result the parser returns
for any input. It is implemented using a lambda expression taking two argu-
ments:

• s, the input text.

• p, the source position of the beginning of the input text.

The rest of the simple parsers, fail and one char can be implemented in a
similar way. A reference implementation can be found in [59].

Combining parsers

Based on the simple parsers, more complex ones are implemented by combin-
ing the simple ones together in many different ways. Parsers are combined by
functions taking parsers as arguments and building new parsers from them.
These functions are called parser combinators [5]. As an example a parser
combinator taking a parser and a predicate to build a new parser is imple-
mented. The new parser accepts an input if and only if the original parser
accepts it and the predicate returns true for the result of the parser.

template <class Parser, class Pred, class ErrorMsg>

struct accept_when :

lambda_c<s, p,

eval_case< mpl::apply<Parser, s, p>,

matches_c<rejected<m, q>, rejected<m, q>>,

matches_c<accepted<r, m, q>,

lazy<

mpl::eval_if<

lazy_protect_args<mpl::apply<Pred, r>>,

already_lazy<accepted<r, m, q>>,

already_lazy<rejected<ErrorMsg, p>>

>

>

>

>

>

{};

103

Parser is the parser to extend, Pred is the predicate to check the result
with and ErrorMsg is a class representing a meaningful error message the
new parser returns when the predicate returns false. accept when<Parser,

Pred, ErrorMsg> is the new parser, implemented using lambda c. It applies
Parser on the input first and the result of this is checked using eval case.
When Parser rejects the input, the error message is returned. Otherwise
the predicate is evaluated with the result of Parser as its argument. When
it returns true, the result of Parser is returned. Otherwise an instance of
rejected is returned, using ErrorMsg as the error message.

Accepting characters

The next parser combinator supports implementing a parser that expects
one specific character. When the first character of the input is the expected
one, the parser accepts the input and consumes that character, otherwise the
parser rejects the input.

template <class C> struct literal_expected;

template <class C>

struct lit : accept_when<

one_char,

lambda_c<c, mpl::equal_to<C, c>>, literal_expected<C>

> {};

C is a boxed character, lit<C> is a parser accepting the input when its
first character is C. literal expected is a template class representing the
error messages this parser fails with when it rejects the input. The parser is
implemented using the accept when parser combinator. It uses one char as
the base parser and a lambda expression comparing the parsed character to
C as the predicate.

Choices

Ordered choice is implemented as a parser combinator as well. An ordered
choice applies a number of parsers in order. The result is the result of the
first parser that accepts the input. When all of the parsers reject the input,
the combined parser rejects it as well. The implementation of this parser
combinator is not presented here, a reference implementation (one of) can
be found in [59]. Using this combinator a parser expecting a digit character
is implemented by combining a number of lit parsers. This new parser is
called digit.

104

template <char C> struct lit_c : lit<mpl::char_<C>> {};

typedef

one_of<

lit_c<’0’>, lit_c<’1’>, lit_c<’2’>, lit_c<’3’>, lit_c<’4’>,

lit_c<’5’>, lit_c<’6’>, lit_c<’7’>, lit_c<’8’>, lit_c<’9’>

> digit;

lit c simplifies the creation of lit parsers. By combining lit c<’0’> ...

lit c<’9’> with one of, digit accepts any character in the range ’0’ -

’9’ but nothing else.

Semantic actions

Parsers produce some result when they accept a prefix of the input. For exam-
ple lit returns the accepted character as its result. In most cases this is not
what the result of parsing an input should be. These results are transformed
by functions taking the original result as their argument and producing the
result users of the parser need. These functions are called semantic actions
[43]. Semantic actions are implemented by parser combinators combining a
parser and a transformation function transforming the result of the parser
into some other value. A reference implementation (transform) can be found
in [59]. The following code snippet presents how to turn digit into a parser
that returns the value of the digit as the result of parsing:

struct char_to_int : tmp_value<char_to_int> {

template <class C>

struct apply : mpl::int_<C::type::value - ’0’> {};

};

typedef transform<digit, char_to_int> digit_val;

This example defines a metafunction class, char to int, that converts a digit
character into an integer value. The example builds a new parser, digit val

from digit using the parser combinator described above.

Repetition

The kleene star [2] is implemented as a parser combinator. It takes a parser as
argument and applies it repeatedly as long as it accepts the input text. The
list of successful parser applications is the result of applying the combined
parser. Its implementation can be found in [59], it is called any.

105

When the underlying parser rejects the input for the first time, any still
accepts it as zero matches. Another parser combinator, any1, can be pro-
vided, that treats zero matches as a failure. The following example demon-
strates how to build a parser accepting natural numbers using it:

typedef

lambda_c<l,

mpl::fold<

l, mpl::int_<0>,

lambda_c<s,c, mpl::plus<mpl::times<mpl::int_<10>,s>,c>>

>> calculate_int_value;

typedef transform<any1<digit_val>, calculate_int_value> int_;

This combinator builds a list of integers by parsing the digits one by one.
It calculates the value of the parsed integer number from the digits using
calculate int value.

The above example builds a parser that parses digits, collects them in a
sequence and once the parsing has completed it iterates over this sequence
using mpl::fold to calculate some final result. The sequence is constructed
just to iterate over it once later. A more efficient way of implementing it
is an approach, which does the recognition of the digits (implemented by
any1 in the above example) and the folding (implemented by mpl::fold in
the above example) together. Once an element is available, it is processed
immediately by the callback function of the folding part.

A parser combinator called fold provides this. It simulates an mpl::fold

over the results of the repeated application of the wrapped parser instead of
collecting those results in a sequence. A reference implementation of it can
be found in [59]. It has a foldl1 version, which requires that the wrapped
parser can be applied at least once. There are parsers doing the folding in the
reverse order – they are called foldr and foldr1. This is how to implement
the above example using these new combinators:

typedef foldl1<

digit_val, mpl::int_<0>,

lambda_c<s, c, mpl::plus<mpl::times<mpl::int_<10>, s>, c>>

> int_;

This is a more compact and more efficient implementation of parsing integer
values. It uses foldl1 instead of any1. Instead of collecting the digits into a
sequence and calculating the result later, it processes every digit immediately
once it has been parsed.

106

The above example used mpl::int <0> as the initial state but required
at least one digit to be there. The above parser would more effective by using
the value of that mandatory digit instead of the value 0 as the initial state
for folding. Special versions of the folding parser combinators are provided
for this purpose. The reference implementation provides the foldlp and
foldrp parser combinators for this. They have the same signature as foldl
and foldr, but they take a parser to get the initial value with as their first
argument. This is how to implement the above example using them:

typedef foldlp<digit_val, digit_val,

lambda_c<s, c, mpl::plus<mpl::times<mpl::int_<10>, s>, c>>

> int_;

This parser uses digit val to parse the first digit, its parsing result as the
initial state for folding and the parser digit val repeatedly to get the rest
of the digits.

Sequence

A parser combinator applying a list of parsers in order is implemented as
well. When any of them fails, the combined parser fails as well and skips the
remaining parsers. When all of them succeed, the result of parsing is the list
of results. This combinator is available in [59] as sequence.

As an example for this, it can be used to parse a digit in brackets, for
example (1). Three parsers need to be combined using sequence to parse
this: one parsing the open bracket, one parsing the digit and one parsing the
closing bracket:

typedef

sequence<lit_c<’(’>, digit_val, lit_c<’)’>> digit_in_bracket;

This parser accepts a digit in brackets. It returns a sequence of the open
bracket character (the result of lit c<’(’>), the value of the digit (the result
of digit val) and the close bracket character (the result of lit c<’)’>).
The result of parsing the middle element, digit val should be the result of
parsing of the entire bracket expression.

Given how often it is needed, the reference implementation provides a
parser combinator called middle of. It is a special version of sequence ex-
pecting exactly three elements. It accepts the input when the entire sequence
is accepted, but it returns the result of the middle parser only. The following
code snippet demonstrates how to implement the above example using it:

107

typedef

middle_of<lit_c<’(’>, digit_val, lit_c<’)’>> digit_in_bracket;

This parser accepts a digit in brackets. Instead of returning the sequence
of results as the result of parsing, it returns only the value of the digit.
The reference implementation provides the first of (and last of) parser
combinators as well, that are also special sequence parsers. They work with
any (non-zero) number of elements and return the result of the first (last)
parser.

Summary

This section presented parser combinators implementing sequences, choices
and repetition. Using these tools, parsers for complex grammars can be
constructed.

V.2 Applications

Being able to parse the content of string literals at compile time makes it
possible to embed code snippets implemented in domain-specific languages.
Here is a list of use cases for this:

• Generate types. Construct new types as the result of parsing a DSL
script and pass them to metaprograms or instantiate them at runtime.

• Generate optimised executable code. C++ template metaprograms and
parsers implemented using them generate executable code by combin-
ing small inline functions. This gives the compiler the opportunity to
optimise the code.

• Generate runtime objects. Metaprograms generate code that initialises
these objects during static initialisation.

• Generate constant values. The result of metaprograms and parsers
implemented as metaprograms is a constant expression producing con-
stant values.

• Do compile-time assertions. Metaprograms optionally break the com-
pilation process based on some conditions. These conditions are imple-
mented in a DSL and parsed at compile-time.

108

• Generate template metaprograms. Template metaprograms are gener-
ated as the result of parsing a DSL script. This makes it possible to
implement easy to read languages for template metaprogramming, that
work like scripts interpreted by the C++ compiler.

The following sections highlight areas where using compile-time parsers
makes a significant difference.

V.2.1 Interface wrappers of libraries

Libraries have their own specific domains with their own common notations.
The more the interface of the library follows that notation, the easier the
experts of that domain can use it. Many C++ libraries [18, 43, 44, 13]
try to follow the syntax of special problem domains by overloading C++
operators. Boost [33] provides the Proto [43] library making the development
of such approaches easier. However, this approach has its constraints: all
DSL expressions have to be valid C++ expressions as well.

Being able to parse DSL code snippets at compile-time makes it possible
to provide an interface that follows the notation of the domain without being
constrained by the syntax of C++ expressions.

As an example, one can look at Boost.Xpressive [44]. It provides an inter-
face for building regular expressions. Assuming that the regular expression
is available at compile-time, the user of the library can choose one of the
following options:

• Embed the regular expression in the C++ code as a string literal. This
is parsed at runtime – parsing has its own runtime cost and when
the regular expression is invalid, it causes a runtime error, thus, the
problem is not detected until runtime.

• Embed the regular expression in the C++ code as a C++ expression.
Xpressive provides an interface for that and it follows the logic of regu-
lar expressions. However, the commonly used syntax had to be altered
to make it a valid C++ expression, which makes it difficult for people
not familiar with the syntax of Xpressive to read and understand it.

A third option, offered by compile-time parsers is embedding the regular
expression as a string literal and parsing it at compile time to build the same
structure one could build with the C++ expression-based interface. As an
example here is how the regular expression ab*c can be implemented as a
static (and therefore optimised) regular expression in Boost.Xpressive and
how it can be implemented using a library wrapper which can be provided
using the approach discussed in this chapter:

109

// Using Boost.Xpressive directly

boost::xpressive::as_xpr(’a’) >> *boost::xpressive::as_xpr(’b’)

>> boost::xpressive::as_xpr(’c’);

// Using a library wrapper built using the

// discussed techniques

REGEX("ab*c")

As the above example shows, parsing strings at compile-time makes it possi-
ble to provide simpler interface to existing libraries. People who are already
familiar with regular expressions can understand the new interface without
additional help given that it uses the common syntax while it takes time to
learn the way regular expressions can be constructed using Boost.Xpressive.
This interface wrapper for Boost.Xpressive is discussed in detail in [54].

V.2.2 Use-case: implementing a type-safe printf as a

DSL

The C standard library has a function, printf for outputting formatted text.
Its first parameter is a format string specifying how to format the rest of its
arguments. When the number or the types of the arguments are invalid
according to the format string, the runtime behaviour is undefined. This
section presents how to use compile-time parsers to verify it at compile-time.

The syntax of the format string is an internal language inside C or C++.
It is an embedded DSL and this section presents how to parse it using tools
built for processing embedded DSLs. Using the original, non-type-safe ver-
sion of printf looks like the following:

printf("%d + %d = %d\n", 11, 2, 13);

Using the type-safe printf presented in this section is similar to that:

safe::printf<_S("%d + %d = %d\n")>(11, 2, 13);

The type-safe printf is a template function taking the format string as a
template argument and the rest of printf’s arguments as runtime arguments.
When the number or types of the arguments are invalid according to the
format string, it generates a compilation error. It calls the original, unsafe
version of printf otherwise.

110

The application developer uses safe::printf in his code after including
the DSL definition as a C++ header file. This definition contains the syntax
of safe::printf in a DSL format. The header also includes an implemen-
tation of the parsing library presented earlier placed in separate header(s).
When the user compiles his code, the C++ compiler executes the parser
generator, which constructs the parser for safe::printf. This parser is im-
mediately used (in the same compilation phase) to type check the arguments
of safe::printf. The result is either executable code utilizing the standard
printf or a compilation error reporting type mismatch.

The implementation of this template function for a format string with two
placeholders is presented here. The rest of the overloads can be implemented
in a similar way and the Boost.Preprocessor library [34] provides tools to
automatically generate them.

template <class FormatString, class T1, class T2>

int safe_printf(T1 t1_, T2 t2_) {

BOOST_STATIC_ASSERT((

valid_printf<FormatString, mpl::list<T1, T2>>::type::value

));

return

printf(

mpl::c_str<FormatString>::type::value,

t1_,

t2_

);

}

It uses mpl::c str to convert the compile-time string into a runtime one that
is passed to the unsafe version printf. BOOST STATIC ASSERT is a macro
taking a compile-time predicate as input and generating a compilation error
when that predicate returns false. The predicate calls a template metafunc-
tion, valid printf, and passes the format string and the list of argument
types as arguments. valid printf generates the list of expected argument
types from the format string and compares it with the list of actual ones.
When the two lists don’t match, valid printf returns false, thus the static
assertion emits a compilation error. An expected argument is represented by
an algebraic data-type with one constructor:

template <class LengthAvail, class PrecAvail, class T>

struct expected_arg;

111

This constructor has the following arguments:

• LengthAvail, a boolean value telling if a preceding integer argument
describing the display length is expected.

• PrecAvail, a boolean value telling if a preceding integer argument
describing the precision is expected.

• T, the expected type of the argument. This is described by another
algebraic data-type, where each constructor represents a different type.
It has the following constructors:

struct expect_character;

struct expect_double;

// ...

As an example here is a format string and the list of expected arguments
needed:

// format string

"%d + %.*d = %*u"

// list of expected arguments

using mpl::true_;

using mpl::false_;

mpl::list<

expected_arg<false_, false_, expect_character>, // %d

expected_arg<false_, true_, expect_signed_integer>, // %.*d

expected_arg<true_, false_, expect_unsigned_integer> // %*u

>

Only the placeholders are important. The rest of the format string is ignored
during type-checking.

valid printf generates the list of expected argument types by parsing
the format string. The parser is built using the parser combinator library. It
takes the format string as input and produces the list of expected types as
the result of parsing. Here is the grammar of printf format strings based
on [65].

112

S ::= CHARS (PARAM CHARS)*

PARAM ::= ’%’ FLAG* WIDTH PRECISION FORMAT

FORMAT ::= ’h’ FORMAT_HFLAG | ’l’ FORMAT_LFLAG |

’L’ FORMAT_LLFLAG | FORMAT_NO_FLAG

FORMAT_LLFLAG ::= ’e’|’E’|’f’|’g’|’G’

FORMAT_LFLAG ::= ’c’|’d’|’i’|’o’|’s’|’u’|’x’|’X’

FORMAT_HFLAG ::= ’d’|’i’|’o’|’u’|’x’|’X’

FORMAT_NO_FLAG ::= ’c’|’d’|’i’|’e’|’E’|’f’|’g’|’G’|

’o’|’s’|’u’|’x’|’X’|’p’|’n’|’%’

PRECISION ::= ’.’ WIDTH | NONE

WIDTH ::= INTEGER | ’*’ | NONE

INTEGER ::= DIGIT+

DIGIT ::= ’0’|’1’|’2’|’3’|’4’|

’5’|’6’|’7’|’8’|’9’

FLAG ::= ’-’|’+’|’ ’|’#’|’0’

CHARS ::= (’\’ one_char | not (’%’ | ’\’))*

NONE ::= epsilon

CHARS represents non-interpreted characters, PARAM represents one parameter
to be substituted. The parser has to skip all non-interpreted characters,
determine the type required by the PARAM parts and build the list of these
types.

The parser is constructed based on the above grammar. sequence is
used to implement |, any to implement *, any1 to implement +, except to
implement not and return to implement epsilon. Using them, a parser can
easily be constructed from the grammar: starting with basic parsers more and
more complex parsers can be built using the combinators until it gets complex
enough to parse the entire grammar. Parsing the FORMAT ... elements is
simple. As an example, here is an implementation of FORMAT HFLAG:

typedef

one_of<

always<lit_c<’d’>, expect_short_signed_integer>,

always<lit_c<’i’>, expect_short_signed_integer>,

always<lit_c<’o’>, expect_short_signed_integer>,

always<lit_c<’u’>, expect_short_unsigned_integer>,

always<lit_c<’x’>, expect_short_unsigned_integer>,

always<lit_c<’X’>, expect_short_unsigned_integer>

>

format_h_flag;

113

The result of parsing such a formatting character is a place holder for an
expected type. FORMAT LFLAG, FORMAT LLFLAG and FORMAT NO FLAG can be
implemented in a similar way. Using these parsers, a parser for FORMAT

parsing a format character with a flag is created:

typedef

one_of<

last_of<lit_c<’h’>, format_h_flag>,

last_of<lit_c<’l’>, format_l_flag>,

last_of<lit_c<’L’>, format_capital_l_flag>,

format_no_flag

>

format;

It uses the appropriate format character parser based on the flag controlling
the type of the printf argument. Every argument of one of is a parser,
which either succeeds completely or fails. last of applies all of its argu-
ments in sequence, expects all of them to succeed. The result of last of is
the result of the last sub-parser, thus the above implementation parses the
format controlling flag (’h’, ’l’ or ’L’), throws the result away and calls
the appropriate format ... parser. The lit c parsers act like guards. The
parser for WIDTH is implemented the following way:

typedef

one_of<

always<integer, mpl::false_>,

always<lit_c<’*’>, mpl::true_>,

return_<mpl::false_>

> width;

The result of this parser is a boolean indicating if there should be an in-
teger argument specifying the precision or not. Since this approach only
cares about type checking the runtime arguments of printf, the value of the
precision is ignored. PRECISION is implemented using WIDTH:

typedef

one_of<

last_of<it_c<’.’>, width>,

return_<mpl::false_>

> precision;

The result of this parser is a boolean similarly to WIDTH. FLAG parses a one
character flag, its implementation is straightforward:

114

typedef

one_of<

lit_c<’-’>, lit_c<’+’>, lit_c<’ ’>, lit_c<’#’>, lit_c<’0’>

> flag;

This parser returns the flag it has parsed. Since the goal is type-checking the
arguments of printf, these flags can be safely skipped. PARAM is implemented
based on these:

typedef

last_of<

lit_c<’%’>,

any<flag>,

transform<

sequence<width, precision, format>,

lambda_c<s,

expected_arg<

mpl::front<s>,

mpl::at<s, mpl::int_<1>>,

mpl::back<s>

>

>

>

>

param;

param parses the entire description of a place holder. It expects a % character,
then it parses the flags if there are any, the display length, the precision and
the format character itself. It uses sequence to build a compile-time list of
the results of the last three elements. This compile-time list is transformed
into an expected arg by a transform parser, thus this parser produces the
elements needed at the end of parsing: the expected arg values describing
the expected arguments of printf.

In a format string the placeholders are separated by characters printf

prints out as they are. Those characters are ignored. Sequences of those
characters are parsed by CHARS:

typedef

any_one_of<

second_of<lit_c<’\\’>, one_char>,

second_of<except<lit_c<’%’>, int>, one_char>

> chars;

115

except is a parser combinator building a new parser that accepts everything
the original one rejects. It is a look-ahead parser, since it doesn’t consume
any input. any one of is a combination of any and one of to make parser
definitions more compact. Having all these parsers the top-level parser of the
printf grammar is defined:

typedef last_of<chars, any<first_of<param, chars>>> S;

This top-level parser ignores normal characters and collects the parsed place-
holders – the expected arg values – into a list. This list is the result of
parsing and is used to validate the type of the runtime arguments.

To simplify the usage of the parsers, a convenience metafunction is pro-
vided taking care of applying a parser on an input and getting the final result.
This is implemented the following way:

template <class P>

struct build_parser :

lambda_c<s,

eval_case<mpl::apply<P, s, start>,

matches_c<accepted<r, _, _>, r>,

matches_c<e, e>

>> {};

build parser takes the top-level parser as argument and builds a lambda
function taking the input string as argument and producing the result of
parsing, when it was successful and the error otherwise. Using it the top-
level parser for the printf grammar is constructed the following way:

typedef build_parser<S> printf_parser;

The above definition builds a parser for the printf grammar. The following
example demonstrates how to use it:

printf_parser::apply<_S("%d + %d = %d\n")>::type

A solution validating the arguments of printf at compile-time and emitting
a compilation error when they are invalid has been presented. For this solu-
tion to work, the format string has to be available at compile-time, however,
format strings are rarely constructed dynamically. Due to the extra valida-
tion at compile-time, this approach affects the speed of compilation but it
has no extra runtime cost.

116

V.3 Building EDSLs for template metapro-

gramming

It is possible to construct template metaprograms as the result of parsing an
embedded DSL code snippet. This section presents how to do it and how to
build an easy to read language for C++ template metaprograms. Given the
similarities between Haskell and C++ template metaprogramming [48, 37, 8]
the language presented here is similar to Haskell.

As an example demonstrating what value this DSL adds to template
metaprogramming let’s take a look at the final, working version of the fac-
torial function at the end of section III.1.1. This is fact implemented based
on a widely used library, Boost.MPL:

template <class N> struct fact;

template <class N>

struct fact_impl :

mpl::times<

typename fact<

typename mpl::minus<N, mpl::int_<1>>::type

>::type, N>

{};

template <class N>

struct fact :

mpl::eval_if<

typename mpl::less<N, mpl::int_<1>>::type,

mpl::int_<1>,

fact_impl<N>

>

{};

Basic arithmetic operations are available as template metafunctions and due
to the lack of laziness a helper metafunction, fact impl had to be introduced.
The algorithm used to calculate factorial numbers is difficult to understand.
The same function can be implemented using the DSL this chapter presents
the following way:

"fact n ="

" if n == 0"

" then 1"

" else n * fact (n-1)"

117

This implementation uses the Haskell-like syntax to implement fact and
makes use of the compactness of Haskell to make it easy to understand what
it is doing.

V.3.1 Parsing and building an AST

The following simple language is used as the starting point and it is extended
later.

single_exp ::= int_token | name_token

This language can express simple expressions. An expression is either an
integer value or the name of a variable or function. It is parsed into an
abstract syntax tree [2] (AST), in which the following templates represent
integer values and variable or function references:

template <class Val> struct ast_value;

template <class Name> struct ast_ref;

ast value represents a value, ast ref represents a reference to something.
A parser for the above grammar is constructed:

typedef

transform<int_token, lambda_c<x, ast_value<x>>::type>

int_exp;

typedef

transform<name_token, lambda_c<x, ast_ref<x>>::type>

name_exp;

typedef one_of<int_exp, name_exp> single_exp;

The above code snippet defines a parser parsing integers (int exp) and one
parsing names (name exp). The int token and name token parsers accepting
an integer and an identifier can be easily implemented, the details are not
presented here. The token parsers return the parsed values which are turned
into ASTs by using the transform combinator. Finally, the two parsers are
combined by using the one of combinator to accept either an integer or a
name.

Let’s extend the above language with function application with the fol-
lowing syntax: <function> <arg1> <arg2> ... where <function> is an
expression - it can be the name of a function or an expression evaluating to
a function (such expressions are presented later). The following grammar is
used for function application:

118

application ::= single_exp+

The function and its arguments are represented as expressions. The first
expression is expected to evaluate to a function accepting at least as many
arguments as the expression applies on it. Accepting more is not a problem,
because this language will support currying. Not meeting this requirement
causes an error during the execution of the compiled metaprogram. This
language has no type system that could detect these errors ahead of execu-
tion. Applications are represented in the AST by instances of the following
template class:

template <class F, class Arg>

struct ast_application;

This AST element represents applying one argument on a function. Following
the logic of currying, arguments are applied one by one. Thus, parsing the
expression f 1 2 3 gives the following AST:

ast_application<

ast_application<

ast_application<

ast_ref<mpl::string<’f’>>,

ast_value<int_<1>>

>,

ast_value<int_<2>>

>,

ast_value<int_<3>>

>

The above AST applies the arguments on the function f one by one. The
parser for application can be constructed from single exp by using the
any1 and transform parser combinators. The fold parser combinator can
be used to implement it in an efficient way.

V.3.2 Binding references

After building the AST, references need to be bound in it to metafunctions
and values (which are classes in template metaprogramming). The symbol
table is represented by an mpl::map. The keys are the names, the values are
the values (or metafunctions classes) to bind to. A metafunction, bind is
implemented, that takes an AST and a symbol table as arguments and does
the binding.

119

The result of binding is an expression, where all references are resolved.
bind could evaluate it immediately, but doing it would lead to an eager
evaluation strategy for the Haskell-like language. To make the language more
like Haskell, bind returns the expression as a thunk, that can be evaluated
at a later point in time. These thunks are constructed by combining the
following templates:

template <class V>

struct lazy_value { typedef V type; };

template <class F, class Arg>

struct lazy_application :

F::type::template apply<Arg>::type {};

Two template classes are used: one representing values and one representing
function applications. There is no template representing references, since the
thunks are constructed after doing the binding, during which all references
are expected to be resolved. Invalid references are interpreted as errors.

Both of the above template classes calculate the result of the expres-
sion when they are evaluated by accessing their ::type. Since values are
assumed to be evaluated lazily, when an argument is applied on a function
by lazy application, the function may be the result of an unevaluated ex-
pression, that needs to be evaluated. This is why lazy application uses
the ::apply<...> of F::type. The following code snippet presents how to
implement bind using these template classes:

template <class AST, class Sym>

struct bind;

template <class V, class Sym>

struct bind<ast_value<V>, Sym> {

typedef lazy_value<V> type;

};

template <class F, class A, class Sym>

struct bind<ast_application<F, A>, Sym> {

typedef

lazy_application<

typename bind<F, Sym>::type,

typename bind<A, Sym>::type

> type;

};

120

The above code snippet defines bind for constant values and function appli-
cations. Constant values are wrapped with lazy value to make sure that
they can be used by lazy metafunctions. In case of function applications, the
binding is done recursively on the expression constructing the function (F)
and the expression used as argument (A). The result of these two bindings are
used to construct a lazy application value. The following specialisation of
bind implements the binding of references:

template <class Name, class Sym>

struct bind<ast_ref<Name>, Sym> : mpl::at<Sym, Name> {};

This code snippet gets the value referenced by the reference from the symbol
table, Sym using mpl::at.

V.3.3 Constructing the symbol table

The symbol table can be constructed using the constructors of mpl::map,
however, it makes it difficult to read the code later. This section presents
a small DSL for constructing the symbol table. Here is an example demon-
strating how the DSL can be used:

template <class T> struct f;

typedef meta_hs

::import<_S("some_value"), mpl::int_<13>>::type

::import1<_S("f"), f>::type

::import2<_S("plus"), mpl::plus>::type

sample_map;

meta hs is a class with nested template classes called import, import1,
import2, etc. They take a name as a template metaprogramming string
and the referenced entity as arguments. import adds values, while import1,
import2, etc add metafunctions to the symbol table. The following code
snippet presents how to implement this class:

template <class Sym>

struct meta_hs_builder : tmp_value<meta_hs_builder> {

template <class Name, class V>

struct import :

meta_hs_builder<

typename mpl::insert<Sym, mpl::pair<Name, V>>::type

> {};

121

tempkate <class Name, template <class> class F>

struct import1<Name, F> :

meta_hs_builder<

typename mpl::insert<

Sym,

mpl::pair<Name, curry1<F>>

>::type

> {};

// ...

};

typedef meta_hs_builder<mpl::map<>> meta_hs;

This code snippet uses the meta hs builder template class to construct the
symbol table. The partially constructed symbol table is the template argu-
ment of the class. meta hs is this template class instantiated with the empty
map. The import templates are nested templates of meta hs builder, they
instantiate meta hs builder with a map containing the new element. The
import macros importing functions use the curry templates presented in
section III.2. The Boost.Preprocessor library [34] provides tools for auto-
matically generating the import templates. The details are not presented
here. A reference implementation can be found in [59].

V.3.4 Adding functions written in the new language

to the symbol table

Using meta hs regular metafunctions can be added to the symbol table. This
section extends it to make it possible to implement functions in the new
language and bind them to names in the mpl::map. The resulting syntax
will be the following:

typedef meta_hs

::define<_S("f x y = ...")>::type

sample_map;

This definition defines a function using the new language and binds it to the
name f. First the grammar of the new language needs to be extended to
handle these definitions:

definition ::= name_token+ define_token application

122

The definition of a function begins with the name of the function followed by
the names of the arguments. This is the name token+ part of the above rule.
It is followed by define token, which expects an = character. An expression
(application) describes the body of the function. Lambda abstractions are
introduced in the AST to describe function definitions:

template <class F, class ArgName> struct ast_lambda;

It describes one lambda argument. A function expecting multiple arguments
is represented by nested lambda abstractions. The bind function needs to
be prepared for handling these lambda abstractions. The body of a lambda
abstraction may refer to the argument of the lambda abstraction and those
references need to be bound to the value the lambda abstraction is called
with. But this value is not available when the binding of the lambda ab-
straction itself happens. bind delays the binding of the body until the value
of the argument is available:

template <class F, class ArgName, class Sym>

struct bind<ast_lambda<F, ArgName>, Sym> {

typedef bind type;

template <class ArgValue>

struct apply :

bind<F,

typename mpl::insert<

Sym, mpl::pair<ArgName, ArgValue>

>::type

>::type {};

};

This overload of bind implements the binding of a lambda abstraction. The
result of this binding is a metafunction class accepting one argument. When
this metafunction class is called, it binds the value it was called with to
the name of the argument in the symbol table, that was used when the
binding of the lambda abstraction happened – mpl::insert is used for this.
The binding of the body of the lambda expression happens using this new
symbol table and the resulting thunk is evaluated immediately. The result
of the metafunction class call is the result of this evaluation.

Function definitions represented by the definition element of the gram-
mar are represented as ast lambda elements in the AST. They are parsed
by the following parser:

123

typedef

sequence<

name_token,

foldrp<

name_token, last_of<define_token, application>,

lambda_c<a, f, ast_lambda<f, a>>

>> accept_definition;

This implementation uses the sequence combinator to parse the name of
the function using the name token parser and the remaining part of the
definition: the list of arguments and the body of the function. This remaining
part is parsed using the foldrp combinator. It folds over the arguments
of the function, each of them is parsed using the name token parser. The
initial state of folding is the body of the function. It is parsed using the
application parser. This parser returns the AST of the body as the result
of parsing. The state during folding is the AST of the already processed part.
Each iteration adds a new argument to the function as the folding iterates
over the formal argument list. It means, that the callback function used
during folding needs to combine the old state with the current variable in a
lambda abstraction – that is what the lambda expression used there does.

The result of the accept definition parser is a two element sequence.
The first element is the name of the function, the second one is the function
definition represented as a lambda abstraction. Let’s extend meta hs to sup-
port the ::define elements for implementing functions using these lambda
abstractions:

typedef meta_hs

::import1<_S("add"), mpl::plus>::type

::define<_S("f x y = add x y")>::type

sample_map;

The above example imports mpl::plus with the name add and then defines
the function f with two arguments, x and y. The body of it evaluates add x

y. define uses the parser presented above to parse the definition of f. The
result of parsing is the name f and an AST describing the arguments and the
body of the function as a lambda abstraction. This AST needs to be bound
and the result of that binding is associated with the name f in the symbol
table. This binding needs a symbol table – which has to be the symbol table
constructed before the definition of f. In this case it means, that this symbol
table contains only the add function. As after this binding step f is added
to the symbol table, further definitions can use it.

124

V.3.5 Recursive functions

The above approach does not allow defining recursive functions, since a func-
tion is added to the symbol table after its definition is fully parsed and bound.
To support recursive functions and make it possible to refer to functions de-
fined later, the symbol table should store the abstract syntax trees instead
of the result of the bindings. The binding is done when an element of the
symbol table is used in a calculation. By then all functions are already in
the symbol table, thus functions can refer to themselves or other functions
defined later.

When ASTs are stored in the symbol table, import should turn the im-
ported entities into ASTs to be able to add them to the mpl::map represent-
ing the symbol table. As imported things should be ignored during binding,
they are represented as ast value items in the AST.

When the symbol table stores ASTs, then the result of a symbol table
lookup is an AST that needs to be bound. For example:

meta_hs

::define<_S("a = b")>::type

::define<_S("b = 2")>::type

The above code snippet defines a symbol table with two elements: a referring
to b and b referring to the value 2. When the binding of the expression a

happens, bind gets the AST a refers to, which is b. As this is an AST, it
also needs binding. What bind does in this situation is recursive binding of
these expressions: after doing the lookup of an AST it needs to be bound
with the same symbol table. Thus, after getting the AST b – this is what a
refers to – it also needs to be bound in the same symbol table. As in this
symbol table b refers to 2, the result of this is the AST 2. As this is an AST,
this needs binding as well, which results in the value mpl::int <2>. The
following specialisation of bind implements this:

template <class Name, class Sym>

struct bind<ast_ref<Name>, Sym> :

bind<typename mpl::at<Sym, Name>::type, Sym> {};

This specialisation does the lookup of the reference using mpl::at which
returns the AST the reference refers to in the symbol table. The binding of
this AST happens by calling bind recursively using the same symbol table,
Sym.

Recursive binding may lead to problems when it is used together with
lambda abstractions. To demonstrate this, let’s extend the above example
symbol table with a lambda abstraction definition:

125

meta_hs ::define<_S("a = b")>::type

::define<_S("b = 2")>::type

::define<_S("f b = a")>::type

The above code snippet defines a symbol table with three elements: a refer-
ring to b, b referring to 2 and f, a lambda abstraction taking one argument,
ignoring it and returning a. When the expression f 1 is evaluated using the
above symbol table, the argument 1 is applied on the lambda abstraction f.
Based on the way lambda abstractions are evaluated, it builds a new symbol
table in which b, the argument of the lambda abstraction refers to the argu-
ment value, 1. The binding of the body of the lambda – a – happens using
this symbol table. a refers to the syntax tree b and since bind should be do-
ing recursive binding using the same symbol table, it should do the binding
of b. But the lambda abstraction has changed what the name b refers to –
in this case it refers to 1, the argument the lambda abstraction was called
with.

The above problem can be avoided by doing the recursive binding of the
referred ASTs using the original symbol table without the overrides done
by the lambda abstractions. One way of implementing it is giving bind two
symbol tables: one that may be overridden by the lambdas and the original
one that is never overridden:

template <class AST, class Sym, class OriginalSym>

struct bind;

This version of bind takes two symbol tables: one of them is Sym which is the
same as Sym was in the previous version of bind, the symbol table which may
be overridden by lambda abstractions. The other one is OriginalSym, which
is the top-level symbol table without any overrides done by the lambda ab-
stractions. The specialisations of bind presented so far are extended to this
new signature by using Sym for the lookup, overriding it in the lambda ab-
stractions and passing OriginalSym unchanged further when doing recursive
bind calls.

Let’s introduce a new AST element representing the root of an AST in
the symbol table:

template <class E> struct ast_root;

As this is the root of an element in the symbol table, the overrides done by
the lambda abstractions to the symbol table to do the binding in need to be
ignored and the original symbol table needs to be used as the symbol table:

126

template <class E, class Sym, class OriginalSym>

struct bind<ast_root<E>, Sym, OriginalSym> :

bind<E, OriginalSym, OriginalSym> {};

This implementation of bind calls bind recursively to do the binding of the
wrapped AST, but replaces the potentially overridden symbol table Sym with
the original symbol table, OriginalSym.

V.3.6 Exporting functions

It is possible to build simple functions using the new language and construct
more complicated ones from them and regular metafunctions defined outside
of the meta hs block using these techniques. To be able to construct meta-
functions that can be used outside of the meta hs block, functions defined in
a meta hs block need to be exported. Let’s introduce the following syntax
for this:

typedef meta_hs ::define<_S("id x = x")>::type

::get<_S("id")>::type id;

get< S("...")> exports a metafunction. Its result is a metafunction class
that behaves the same way as any other metafunction class:

typedef id::apply<int>::type also_int;

define elements bind abstract syntax trees to names. Metafunctions are
constructed when the binding happens. Thus, get has to do the binding of
the AST the name is mapped to. The mapping get uses is the entire mapping
meta hs has constructed, thus functions can be referenced before they are
defined – names are resolved when the exporting happens. For example, the
following works:

typedef meta_hs ::define<_S("f x = g x")>::type

::define<_S("g x = x")>::type

::get<_S("f")>::type f;

In the above code snippet f uses g, which is defined later, but it works, since
f is exported after g has been defined. Let’s extend the above language to use
operators and brackets. Let’s construct ASTs calling functions with special
names from operator usage. For example 11 + 2 is parsed into:

127

ast_application<

ast_name<_S(".+.")>,

ast_value<mpl::int_<11>>, ast_value<mpl::int_<2>>

>

The above code snippet turns operator + usage into .+. function calls. Half-
constructed meta hs blocks are types, thus one can create type aliases for
them.

typedef meta_hs ::define<_S("f x = g x")>::type

::define<_S("g x = x")>::type my_lib;

The above code snippet defines two functions, f and g and creates a type
alias for the resulting symbol table. As its name – my lib – suggests, one can
create template metaprogramming libraries this way. my lib can be used the
same way as meta hs for defining further metafunctions:

typedef my_lib ::define<_S("h x = f x")>::type

::get<_S("h")>::type h;

The above code snippet defines a metafunction called h that uses my lib

and the f function provided by it. When operator calls, such as operator +
are represented by special function calls, such as .+., those function names
need to be mapped to imported metafunctions implementing the operator
evaluations. For example:

template <class A, class B>

struct lazy_plus :

mpl::plus<typename A::type, typename B::type> {};

typedef meta_hs_base // some base class

::import2<_S(".+."), lazy_plus>::type

meta_hs;

The above code defines a function for .+. in meta hs. It has to inherit from
an empty symbol table, which is referred to as meta hs base. Due to the lack
of lazy evaluation in Boost.MPL [25] a lazy version of the mpl::plus meta-
function is needed. Using import can’t make metafunctions automatically
lazy, because it wouldn’t work with metafunctions that are already lazy.

This section has presented an embedded DSL that is similar to Haskell
and makes it possible to define template metafunctions using a more readable
syntax.

128

V.3.7 Implementing factorial

The factorial example at the beginning of section V.3 can be implemented
using the tools presented in this section. The steps of the implementation
are the following:

• Start a new meta hs block.

• Define the fact function.

• Export the fact function.

The following example implements it:

typedef meta_hs ::define<_S(

"fact n ="

" if n == 0"

" then 1"

" else n * fact (n-1)"

)>::type

::get<_S("fact")>::type fact;

This code snippet defines the function fact in an empty meta hs block and
exports it to construct the fact metafunction class, which can be used as
any other manually constructed metafunction class. For example:

typedef

fact::apply<mpl::int_<3>>::type

factorial3;

This example uses fact to calculate the factorial of 3. The apply metafunc-
tion provided by Boost.MPL can also be used:

typedef

mpl::apply<fact, mpl::int_<3>>::type

factorial3;

This example calls fact using mpl::apply to calculate the factorial of 3.

129

V.4 Summary

This chapter has presented how to parse the content of string literals at
compile-time using template metaprograms, how to use it for embedding do-
main specific languages into C++ without using external tools and how to
provide a Haskell-like domain specific language for C++ template metapro-
gramming by compiling and executing them in the same compilation step.
Thesis 3: I have developed a method for implementing a parser generator
library in C++ template metaprogramming. I have evaluated how it can
be used for embedding domain specific languages into C++ and providing a
more readable syntax for C++ template metaprogramming. None of these
methods require external preprocessors. (chapter V)

Thesis 3.1: I have developed a method for turning string literals into
character containers for C++ template metaprograms. Utilising this I have
developed a method for implementing a parser generator library in C++.
(section V.1)

Thesis 3.2: I have evaluated how parsers based on Thesis 3.1 can be
used to embed domain specific languages into C++ without external prepro-
cessors. (section V.2)

Thesis 3.3: I have developed a method based on Thesis 3.1 for provid-
ing a Haskell-like syntax for C++ template metaprograms without external
preprocessors. (section V.3)

Table V.1: Related publications
[53] [54] [62] [65] [66] [74]

3.1 × × × ×
3.2 × × × × ×
3.3 ×

130

Chapter VI

Summary

In spite of the known similarities of template metaprogramming and the
functional paradigm the current practice of template metaprogramming is
still not based on this. This dissertation presented two approaches to de-
velop template metaprograms following the functional paradigm. All of the
techniques discussed are based on the C++ standard, they can be used with
any standard compliant compiler. None of them requires external tools.

The first approach simulates basic functional language elements in tem-
plate metaprogramming and builds higher-level abstractions on top of them.
The new elements and techniques are built on top of the widely used elements
of the Boost.MPL library, thus they can be easily adopted in programs al-
ready using that library.
Thesis 1: I have evaluated the connection between C++ template metapro-
gramming and functional programming languages. Based on the results I
have developed methods for supporting template metaprogrammers using
the functional paradigm explicitly. (chapter III)

Thesis 1.1: I have shown the importance of laziness in template metapro-
gramming and developed an automated adaption method to use non-lazy
metafunctions in a lazy way. (section III.1)

Thesis 1.2: I developed a method for effective implementation of curry-
ing in C++ template metaprogramming. (section III.2)

Thesis 1.3: I have developed a method for representing Haskell-like
algebraic data-types in C++ template metaprogramming. (section III.3)

Thesis 1.4: I have developed a method for representing Haskell type-
classes in C++ template metaprogramming. (section III.4)

Thesis 1.5: I have developed a method to handle template metapro-
gramming expressions as first class citizens, ie. they can be stored, passed as
parameters or returned by functions. This method enables the implementa-
tion of let expressions and provides a more convenient way of implementing

131

lambda expressions than what Boost.MPL’s lambda expression implementa-
tion, a widely used solution offers. (section III.5)

Thesis 1.6: I have implemented an alternative method for pattern match-
ing in C++ template metaprogramming. This enables the implementation
of case expressions. (section III.6)

Following the first approach, a common abstraction in functional lan-
guages, monads and a useful syntactic sugar, the do notation Haskell provides
for monads are implemented in C++ template metaprogramming. A number
of useful techniques can be built based on this. List comprehension can be
provided for template metaprogramming based on the List monad. It makes
list transformations easier to write, read, understand and maintain. Monads
simplify error propagation in template metaprograms and this dissertation
has shown how to simulate exception handling in template metaprogramming
based on them.
Thesis 2: I have developed a method for implementing monads and a
Haskell-like do syntax in C++ template metaprogramming and evaluated
how a number of different monad variations available in Haskell can be im-
plemented using this method. Based on this I have developed a method for
simulating exception handling in C++ template metaprograms. (chapter IV)

Thesis 2.1: I have developed a method for implementing monads in
C++ template metaprogramming. (section IV.1)

Thesis 2.2: I have evaluated how a number of monads available in
Haskell can be implemented using the approach presented in Thesis 2.1.
(section IV.2)

Thesis 2.3: I have developed a method for implementing a Haskell-like
do syntax in template metaprogramming. (section IV.3)

Thesis 2.4: I have developed a method for simulating exception handling
in C++ template metaprogramming based on monads. (section IV.4)

The other approach parses code snippets in string literals at compile-time
and builds an interpreter for template metaprograms. Parsing a DSL snippet
written in a string literal and its evaluation happens in the same compilation
step, which makes it possible to provide a Haskell-like syntax for template
metaprograms.
Thesis 3: I have developed a method for implementing a parser generator
library in C++ template metaprogramming. I have evaluated how it can
be used for embedding domain specific languages into C++ and providing a
more readable syntax for C++ template metaprogramming. None of these
methods require external preprocessors. (chapter V)

132

Thesis 3.1: I have developed a method for turning string literals into
character containers for C++ template metaprograms. Utilising this I have
developed a method for implementing a parser generator library in C++.
(section V.1)

Thesis 3.2: I have evaluated how parsers based on Thesis 3.1 can be
used to embed domain specific languages into C++ without external prepro-
cessors. (section V.2)

Thesis 3.3: I have developed a method based on Thesis 3.1 for provid-
ing a Haskell-like syntax for C++ template metaprograms without external
preprocessors. (section V.3)

All the techniques presented in this dissertation have been implemented
in an open-source library collection [59]. People can download it and take
advantage of the results presented in this dissertation. Table VI.1 generated
using the Cloc [45] utility shows the number of lines of code of the libraries,
their tests, the examples and the documentation.

Table VI.1: Lines of code in Mpllibs
Language files blank comment code
HTML 186 408 0 12383
C/C++ Header 232 2316 1159 10323
C++ 182 2734 1446 8448
CMake 32 110 132 160
CSS 1 19 7 64
YAML 1 0 0 19

133

Appendix A

Summary

This dissertation introduces advanced techniques for C++ template metapro-
gramming supporting the developers and maintainers of applications and
libraries implemented in C++. The connection between the functional pro-
gramming paradigm and C++ template metaprogramming is well known.
For C++ code executed at runtime there are libraries supporting functional
programming but in template metaprogramming current approaches try to
simulate imperative languages and libraries and most of them does not take
advantage of the functional paradigm. This dissertation evaluates how the
readability of template metaprograms can be improved by taking advantages
of the functional nature of it. Two different approaches are discussed.

One of them extends the tools and techniques currently used in template
metaprogramming with elements commonly used in functional programming
languages. Among others it introduces algebraic data types, let expressions,
pattern matching, currying and typeclasses in template metaprogramming.
It also presents an implementation of monads which can be used to provide
list comprehension and to simulate exception handling.

The other one is based on providing a Haskell-like DSL for template
metaprogramming. Metaprograms written in that DSL are embedded into
C++ in string literals and during the compilation of the host code they are
transformed into template metaprograms, which are executed immediately.
In order to achieve this, this dissertation discusses how to parse string literals
with template metaprograms. It enables the smooth integration of DSLs into
C++. This dissertation presents example applications of this technique.

All the techniques presented in this dissertation have been implemented in
an open-source library collection. People can download it and take advantage
of the results presented in this dissertation. The results and the library have
been presented to the C++/Boost community. The lecture won the Best
Presentation award on the C++Now conference, 2012, Aspen.

134

Appendix B

Összefoglalás

A dolgozat C++ template metaprogramozást seǵıtő módszereket mutat be,
melyek a C++ könyvtárak és alkalmazások fejlesztőit támogatják. A C++
template metaprogramozás kapcsolata a funkcionális paradigmával jól is-
mert. Futási időben végrehajtott C++ kód késźıtéséhez vannak könyvtárak,
melyek a funkcionális programozást támogatják, viszont template metapro-
gramozásban a jelenleg használt módszerek az imperat́ıv nyelveket és könyv-
tárakat szimulálják. Többségük nem használja ki a funkcionális paradigma
által nyújtott lehetőségeket. A dolgozat megvizsgálja, hogy a template me-
taprogramok olvashatóságát milyen módon lehet a funkcionális paradigma
mentén jav́ıtani. A dolgozat két módszert tárgyal.

Az egyik módszer a jelenleg használt eszközöket és módszereket bőv́ıti
funkcionális nyelvekben gyakori elemekkel. Többek között bevezeti az al-
gebrai adatt́ıpusokat, let kifejezéseket, mintaillesztést, curry-zést és a type-
class fogalmát. Bemutatja továbbá, hogy hogyan lehet implementálni a
monádokat, melyek seǵıtségével megvalóśıtható a list comprehension, illetve
szimulálható a kivételkezelés.

A másik módszer egy Haskell-szerű DSL-t valóśıt meg a template meta-
programozás számára. Az ezen a nyelven ı́rt metaprogramokat karakterlánc
literálokban lehet C++ kódba ágyazni. A C++ kód ford́ıtásakor ezek me-
taprogramokká lesznek alaḱıtva és rögtön végrehajtásra kerülnek. Ennek
megvalóśıtásához a dolgozat bemutatja, miként lehet karakterlánc literálokat
template metaprogramokkal feldolgozni. Ez lehetővé teszi a DSL-ek hatékony
beágyazását C++-ba, melyre a dolgozat alkalmazási példákat mutat be.

A bemutatott módszerek egy nýılt forrású könyvtár gyűjteményben im-
plementálásra kerültek, mely letölthető és a módszerek nyújtotta előnyök
kihasználhatók. A dolgozat eredményei és a könyvtárak be lettek mutatva
a C++/Boost közösségnek. Az előadás Best Presentation d́ıjat nyert a
C++Now konferencián 2012-ben Aspenben.

135

Bibliography

[1] Abrahams, D., and Gurtovoy, A. C++ Template Metaprogram-
ming: Concepts, Tools, and Techniques from Boost and Beyond (C++ in
Depth Series). Addison-Wesley Professional, 2004. ISBN: 0321227255.

[2] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2006. ISBN: 0321486811.

[3] Alexandrescu, A. Modern C++ design: generic programming and
design patterns applied. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001. ISBN: 0-201-70431-5.

[4] Alexandrescu, A. The loki library, 2006.
http://loki-lib.sourceforge.net/.

[5] Andersson, L. Parsing with haskell, 2001.
http://www.cs.lth.se/eda120/assignment4/parser.pdf.

[6] Armstrong, J. Programming Erlang, 1st ed. Pragmatic Bookshelf,
2007. ISBN: 9781934356005.

[7] Baron, P. Erlang/OTP. Plattform für massiv-parallele und fehlertol-
erante Systeme, 1st ed. Open Source Press, 2012. ISBN: 9783941841451.

[8] Bernardy, J.-P., Jansson, P., Zalewski, M., and Schupp, S.

Generic programming with c++ concepts and haskell type classes: A
comparison. J. Funct. Program. 20 , 271–302.

[9] Booch, G. Object-Oriented Analysis and Design with Applications
(2nd Edition). Addison-Wesley Professional, September 1993. ISBN:
0805353402.

[10] Caro, M. Haskell to c++ template metaprogramming translator, 2010.
http://code.google.com/p/phaskell/w/list.

136

[11] Csörnyei, Z. Lambda-kalkulus. Typotex Elektronikus Kiadó Kft.,
2007. ISBN: 978-963-9664-46-3, 1787-3054.

[12] Czarnecki, K., and Eisenecker, U. W. Generative programming:
methods, tools, and applications. ACM Press/Addison-Wesley Publish-
ing Co., New York, NY, USA, 2000. ISBN: 0-201-30977-7.

[13] de Guzman, J., Kaiser, H., and Nuffer, D. Boost.spirit, 2003.
http://www.boost.org/libs/spirit.

[14] Dybvig, R. K. The Scheme Programming Language. The MIT Press,
2009. ISBN: 978-0262512985.

[15] Érdi, G. Haskell to c++ template metaprogramming translator, 2010.
http://gergo.erdi.hu/projects/metafun/.

[16] Fowler, M. Domain-specific Languages. Addison-Wesley, 2010. ISBN:
0321712943.

[17] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
patterns: elements of reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995. ISBN: 0-201-
63361-2.

[18] Gil, J. Y., and Lenz, K. Simple and safe sql queries with c++
templates. Sci. Comput. Program. 75 (July 2010), 573–595.

[19] Golodetz, S. Functional programming using c++ templates (part 1).
Overload, 81 (October 2007).
http://www.accu.org/var/uploads/journals/overload81.pdf.

[20] Golodetz, S. Functional programming using c++ templates (part 2).
Overload, 82 (December 2007).
http://www.accu.org/var/uploads/journals/Overload82.pdf.

[21] Gregor, D., Järvi, J., Siek, J. G., Stroustrup, B., Reis, G. D.,

and Lumsdaine, A. Concepts: linguistic support for generic program-
ming in c++. In OOPSLA (2006), P. L. Tarr and W. R. Cook, Eds.,
ACM, pp. 291–310.

[22] Gregor, D., Jeremy Siek, J. W., J arvi, J., Garcia, R., and

Lumsdaine, A. Concepts for c++0x (revision 1). Technical Report
N1849=05-0109, ISO/IEC JTC 1, Information Technology, Subcommit-
tee 22, Programming Language C++, Aug. 2005.

137

[23] Gregor, D., and Siek, J. Implementing concepts. Technical Report
N2617=08-0127, ISO/IEC JTC 1, Information Technology, Subcommit-
tee 22, Programming Language C++, May 2008.

[24] Gregor, D., and Stroustrup, B. Wording for concepts (revision
1). Technical Report N2193=07-0053, ISO/IEC JTC 1, Information
Technology, Subcommittee 22, Programming Language C++, 2007.

[25] Gurtovoy, A., and Abrahams, D. Boost.mpl, 2004.
http://www.boost.org/libs/mpl.

[26] Haskellwiki. List comprehension.
http://www.haskell.org/haskellwiki/List comprehension.

[27] Horváth, Z., Plasmeijer, R., and Zsók, V., Eds. Central Eu-
ropean Functional Programming School - Third Summer School, CEFP
2009, Budapest, Hungary, May 21-23, 2009 and Komárno, Slovakia,
May 25-30, 2009, Revised Selected Lectures (2010), vol. 6299 of Lecture
Notes in Computer Science, Springer.

[28] Hutton, G., and Meijer, E. Monadic Parser Combinators. Techni-
cal Report NOTTCS-TR-96-4, Department of Computer Science, Uni-
versity of Nottingham, 1996.

[29] Hutton, G., and Meijer, E. Monadic Parsing in Haskell. Journal
of Functional Programming 8, 4 (July 1998), 437–444.

[30] ISO. ISO/IEC 14882:2011 Information technology — Programming
languages — C++. International Organization for Standardization,
Geneva, Switzerland, Feb. 2012.

[31] Iso14882. ISO/IEC 14882:1998: Programming languages – c++. Tech.
rep., International Organization for Standardization, 1998.

[32] Josuttis, N. M. The C++ standard library: a tutorial and reference.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[33] Karlsson, B. Beyond the C++ Standard Library: An Introduction to
Boost. Addison Wesley Professional, Aug. 2005. ISBN: 0321133544.

[34] Karvonen, V., and Mensonides, P. Boost.preprocessor, 2001.
http://www.boost.org/libs/preprocessor.

[35] Lutz, M. Learning Python, 3rd ed. O’Reilly Media, Inc., 2008. ISBN:
9780596513986.

138

[36] McNamara, B., and Smaragdakis, Y. Functional programming in
c++ using the fc++ library. SIGPLAN Notices 36, 4 (2001), 25–30.

[37] Milewski, B. What does haskell have to do with c++?, 2009.
http://bartoszmilewski.wordpress.com/2009/10/21/what-does-haskell-
have-to-do-with-c/.

[38] Milewski, B. Monads for the curious progrmamer, 2011.
http://bartoszmilewski.wordpress.com/2011/01/09/monads-for-the-
curious-programmer-part-1/.

[39] Milewski, B. Monads in c++, 2011.
http://bartoszmilewski.wordpress.com/2011/07/11/monads-in-c/.

[40] Muñoz, J. M. L. Monads in c++ template metaprogramming, 2008.
http://bannalia.blogspot.com/2008/06/monads-in-c-template-
metaprogramming.html.

[41] Musser, D. R., and Stepanov, A. A. Algorithm-oriented generic
libraries. Softw. Pract. Exper. 24 (July 1994), 623–642.

[42] Myers, N. A new and useful template technique: ”traits”. SIGS Pub-
lications, Inc., New York, NY, USA, 1996, pp. 451–457.

[43] Niebler, E. Boost.proto, 2007.
http://www.boost.org/libs/proto.

[44] Niebler, E. Boost.xpressive, 2007.
http://www.boost.org/libs/xpressive.

[45] Northrop Grumman Corporation. Cloc - count lines of code, 2013.
http://cloc.sourceforge.net/.

[46] Odersky, M., Spoon, L., and Venners, B. Programming in Scala.
Artima Inc, Walnut Creek, CA, USA, 2010. ISBN: 978-0981531649.

[47] Okasaki, C. Purely Functional Data Structures. Cambridge University
Press, Cambridge, UK, 1999. ISBN: 0-521-66350-4.

[48] O’Sullivan, B., Goerzen, J., and Stewart, D. Real World
Haskell, 1st ed. O’Reilly Media, Inc., 2008. ISBN: 0596514980,
9780596514983.

[49] Pepper, P., and Hofstedt, P. Funktionale Programmierung.
Springer-Verlag, 2006. ISBN: 978-3-540-20959-1.

139

[50] Pickering, R. Beginning F#. Apress, 2009. ISBN: 978-1-4302-2389-4.

[51] Popa, D. How to build a monadic interpreter in one day. Stud. Cercet.
Stiint., Ser.Mat., Supplement Proceedings of CNMI 2007 17 (2007),
173–192.

[52] Porkoláb, Z. Functional programming with c++ template metapro-
grams. In Horváth et al. [27], pp. 306–353.

[53] Porkoláb, Z., and Sinkovics, Á. Domain-specific language inte-
gration with compile-time parser generator library. In Generative Pro-
gramming And Component Engineering, Proceedings of the Ninth Inter-
national Conference on Generative Programming and Component Engi-
neering, GPCE 2010, Eindhoven, The Netherlands, October 10-13, 2010
(2010), E. Visser and J. Järvi, Eds., ACM, pp. 137–146.

[54] Porkoláb, Z., Sinkovics, Á., and Siroki, I. Dsl in c++ template
metaprogram, tutorial, 2013.
http://dsl2013.math.ubbcluj.ro/files/Lecture/PorkolabEtAl
TemplateMetaprogramming.pdf.

[55] Ramsey, N. Eliminating spurious error messages using exceptions,
polymorphism, and higher-order functions. Computer Journal 42
(1999).

[56] Sheard, T., Benaissa, Z.-e.-a., and Pasalic, E. Dsl implemen-
tation using staging and monads. SIGPLAN Not. 35 (December 1999),
81–94.

[57] Sinkovics, Á. Functional extensions to the boost metaprogram library.
Electr. Notes Theor. Comput. Sci. 264, 5 (2010), 85–101.

[58] Sinkovics, Á. Functional extensions to the boost metaprogram library.
In WGT’10 (2010), Z. Porkoláb and N. Pataki, Eds., vol. II of WGT
Proceedings, Zolix, pp. 56–66.

[59] Sinkovics, Á. The source code of mpllibs, 2010.
http://github.com/sabel83/mpllibs.

[60] Sinkovics, Á. Nested lamda expressions with let expressions in c++
template metaprorgams. In WGT’11 (2011), Z. Porkoláb and N. Pataki,
Eds., vol. III of WGT Proceedings, Zolix, pp. 63–76.

[61] Sinkovics, Á. Boosting mpl with haskell elements, 2013.
http://www.youtube.com/watch?v=aIj034VCUD8.

140

[62] Sinkovics, Á., and Abrahams, D. Using strings in c++ template
metaprograms, 2012.
http://cpp-next.com/archive/2012/10/using-strings-in-c-template-
metaprograms/.

[63] Sinkovics, Á., and Porkoláb, Z. Expressing c++ template
metaprograms as lamda expressions. In Horváth et al. [27], pp. 97–111.

[64] Sinkovics, Á., and Porkoláb, Z. Implementing monads for c++
template metaprograms. Technical Report TR-01/2011, Eötvös Loránd
University, Faculty of Informatics, Dept. of Programming Languages
and Compilers, Sept. 2011.

[65] Sinkovics, Á., and Porkoláb, Z. Domain-specific language inte-
gration with c++ template metaprogramming. Formal and Practical
Aspects of Domain-Specific Languages: Recent Developments (2012),
32. ISBN: 1466620927.

[66] Sinkovics, Á., and Porkoláb, Z. Metaparse - compile-time parsing
with c++ template metaprogramming, 2012.
http://cppnow.org/files/2012/04/Sinkovics.Porkol%C3%A1b.pdf.

[67] Sinkovics, Á., and Porkoláb, Z. Implementing monads for c++
template metaprograms. Science of Computer Programming 78, 0
(2013), 1600 – 1621.

[68] Sipos, Á., Porkoláb, Z., and Zsók, V. Meta¡fun¿ - towards a
functional-style interface for c++ template metaprograms. Studia Uni-
versitatis Babes-Bolyai Informatica LIII, 2008/2 (2008), 55–66.

[69] Spivey, M. A functional theory of exceptions. Sci. Comput. Program.
14 (May 1990), 25–42.

[70] Steele, Jr., G. L. Common LISP: the language (2nd ed.). Digital
Press, Newton, MA, USA, 1990. ISBN: 1-55558-041-6.

[71] Stroustrup, B. Simplifying the use of concepts. Technical Report
N2906=09-0096, ISO/IEC JTC 1, Information Technology, Subcommit-
tee 22, Programming Language C++, 2009.

[72] Stroustrup, B. The C++ Programming Language, 4th ed. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2013. ISBN:
0321563840.

141

[73] Stroustrup, B., and Reis, G. D. Concepts - design choices for tem-
plate argument checking. Technical Report N1522=03-0105, ISO/IEC
JTC 1, Information Technology, Subcommittee 22, Programming Lan-
guage C++, Oct. 2003.

[74] Szűgyi, Z., Sinkovics, Á., Pataki, N., and Porkoláb, Z. C++
metastring library and its applications. In GTTSE (2009), J. M. Fer-
nandes, R. Lämmel, J. Visser, and J. Saraiva, Eds., vol. 6491 of Lecture
Notes in Computer Science, Springer, pp. 461–480.

[75] Unruh, E. Prime number computation, 1994.
ANSI X3J16-94-0075/ISO WG21-462.

[76] Vandevoorde, D., and Josuttis, N. M. C++ Templates: The
Complete Guide, 1 ed. Addison-Wesley Professional, Nov. 2002. ISBN:
9780201734843.

[77] Veldhuizen, T. Expression templates. C++ Report 7 (1995), 26–31.

[78] Veldhuizen, T. Using C++ template metaprograms. SIGS Publica-
tions, Inc., New York, NY, USA, 1996, pp. 459–473.

[79] Veldhuizen, T. L. C++ templates are turing complete. Tech. rep.,
2003.

[80] Veldhuizen, T. L., and Gannon, D. Active libraries: Rethinking
the roles of compilers and libraries. In In Proceedings of the SIAM
Workshop on Object Oriented Methods for Inter-operable Scientific and
Engineering Computing OO’98 (1998), SIAM Press.

[81] Wikipedia. Evaluation strategy, 2013.
http://en.wikipedia.org/wiki/Evaluation strategy.

[82] Wikipedia. Thunk (functional programming), 2013.
http://en.wikipedia.org/wiki/Thunk %28functional programming%29.

[83] Zólyomi, I., Porkoláb, Z., and Kozsik, T. An extension to the
subtype relationship in c++ implemented with template metaprogram-
ming. In Generative Programming and Component Engineering, F. Pfen-
ning and Y. Smaragdakis, Eds., vol. 2830 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2003, pp. 209–227.

142

