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0. PREFACE

Two major topics are discussed in this thesis. The central objects we investi-
gate in both of them are the Cayley graphs of finite groups. First, we shortly
introduce the definition of Cayley graphs and we collect basic facts about
them.

Chapter 1, 2 and 3 are devoted to the investigation of Cayley graphs
corresponding to the same group. More precisely, Chapter 1 can be con-
sidered as an introduction to the isomorphism problem of Cayley graphs,
where we recall the concepts of Cl-graphs and Cl-groups and related notions
(DCI-group, DCI®)-group, etc).

In Chapter 2 we construct non-CI Cayley graphs for elementary abelian
p-groups which are the most important candidates for Cl-groups. Improving
earlier results of Muzychuk |[Muz3| and Spiga |Spil|, for every prime p > 3
we exhibit a Cayley graph on ng” which is not a Cl-graph. This proves
that an elementary abelian p-group of rank greater than or equal to 3p0 4
is not a Cl-group.

On the positive side, in Chapter 3, for every prime p > 4 we prove that
Q £ Z, is a DCl-group, where @) denotes the quaternion group of order 9.
This gives a new infinite family of non-abelian Cl-groups, which are really
rare. Using the same method we reprove that Z3 +Z, is a Cl-group for every
prime p > 4, which was first obtained by Dobson and Spiga |D,S2|. Our new
result completes the description of Cl-groups of order 9p. We also apply our
method to prove that for every prime p > 4 the group Zq:tZg is a DCl-group
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if ¢ is also a prime with ¢ > p3. Finally, we prove that if G is p-group which
is a DCI®_group, then G £Z, is a )¢ 2+DCl-group if q is a prime with
q>\G\

In Chapter 4 we solve a problem which was a conjecture of Lubotzky
|Lub2| about the Cayley graphs of series of finite simple groups. For every
infinite sequence of simple groups of Lie type of growing rank we exhibit
connected Cayley graphs of degree at most 21 such that the isoperimetric
number of these graphs converges to 1. This proves that these graphs do not

form a family of expanders.



CAYLEY GRAPHS

Let G be a group and S a subset of G }2(. The directed Cayley graph
of G with respect to S is the graph Cay)G, S+with vertex set G such that
z is connected to y if and only if y [ zs for some s / S. The set S is
called the connection set of the Cayley graph Cay)G, S+ Clearly, a Cayley
graph Cay)G, S+is an undirected graph if and only if S| S !, where S 1|
}s 1\s / S({ and Cay)G, S+is connected if and only if S generates G. It is
also easy to see that the degree of vertices of the Cayley graph Cay)G, S+is
equal to the cardinality of S. Hence every Cayley graph is a regular graph.

Every left multiplication via elements of G induces an automorphism of
the graph Cay)G, S+ so the automorphism group of every Cayley graph
on G contains a subgroup, acting regularly on the vertices of the graph,
isomorphic to G. Hence every Cayley graph is a vertex-transitive graph.
Moreover, a graph is a Cayley graph of the group G if and only if it admits
a regular group of automorphism isomorphic to G. Using this observation
we can define Cayley objects which are relational structures with underlying
set. G such that the left translation by g: (z 8o gz) is an isomorphism of the
relational structure for every g / G. A directed Cayley graph Cay)G, S+is
called a minimal Cayley graph if S is a minimal generating set of G and an
undirected connected Cayley graph Cay)G, Ts called minimal if T }t,t (
does not generate G for any element t /T

We will mostly restrict our attention to finite groups but we do not require

S to be a generating set of the group G.



1. ISOMORPHISM PROBLEM OF CAYLEY GRAPHS

The following seven sections rely on the survey paper of Li |Lil| since it
served as a starting points of the author for the research on the isomorphism
problem of Cayley graphs. Many of the results we present here were also

collected by Li, but we structure them in a different way.

1.1 Origin of the main problem

One of the most important problems in graph theory is the isomorphism
problem for graphs. We will only investigate Cayley graphs.

The following problem was proposed by Adam |Ada|: For a sequence of
integers 1 < ky < ks < ... < ky, < n we define the graph  ,)ki, ks, ..., kpn+
to be the directed graph with vertices Py, Ps,..., P, in which there is an
edge from P; to P; if j i C k; )mod n+for some 2 > ¢t > m. Such a
graph is called a circulant graph. It is easy to verify that ,)ki, ke,..., kn+
is isomorphic to )kNESS. .. kpot-if there exists an integer 1 < r < n,
what we call a multiplier, relative prime to n such that k°C rk; )mod n+
for 2 > i > m. It was conjectured by Adam that the existence of such a
multiplier is also necessary for a pair of circulant graphs )ki, ke, ..., km+
and  ,)EKSS. .., koo+to be isomorphic.

The following example, given by Elspas and Turner see |E,T|, shows that

Adam’s conjecture does not hold for every pair of circulant graphs:
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8)2,3,6+ 8)2,6, T+
A reduced residue system mod 9 is 2,4,6,8. It is easy to check that
132,3,6({ }2,6,7( fori[ 2,4,6,8. It remains to verify that ¢ is a graph

isomorphism, where

®)PA Paiypn ifiis odd
O)PH Py if iis even.

The graphs 1 [ 16)2,3,8,:,25,264and o[ 16)3,4,6,22, 24, 25+were
also given |E,T|. These graphs can be considered as undirected graphs. An

isomorphism from ; to 5 is given by

dFP+H P, ifiiseven
dFP+H Piya ifiis odd,

where the indices are taken modulo 27. It is straightforward to verify that
there is no multiplier r such that }r, 37, 8r,:r, 25r, 26r( [ }3,4,6,22,24,25(,
where the elements are taken modulo 27.

In contrast with the previous results, Turner |Tur| proved that two undi-
rected circulant graphs on prime number of vertices are isomorphic if and
only if there exists an isomorphism between the two graphs which is induced
by a multiplier. This result was extended |E,T| to directed graphs. Their

method is based on the investigation of the eigenvalues of the adjacency ma-
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trices of the circulant graphs, which are circulant matrices. The same result
was independently proved by Djokovi¢ |Dj].
In light of the previous results it seems reasonable to introduce the fol-

lowing definition:

Definition 1. We denote by Adam)n+the set of circulant digraphs of the
form  3)S+ where S —Zy, which are isomorphic to some  5)SFif and only
if there exists an w / ZE such that S| uS®

Alspach and Parsons [A,P| showed that Adam’s conjecture is true for
circulant directed graphs on n vertices if n [ pg, where p and ¢ are distinct
primes. They also proved that if n is divisible by p?, where p > 4 is an
odd prime or n is divisible by 3%, then Adam’s conjecture is false. Moreover,
they determined which circulant graphs ,)S+belong to Adam)p®+ It was
also proved by Alspach and Parsons |[A,P| that a circulant graph ,)S+is
the element of Adam)n+if and only if for every two n-cycles o and 7 in
Aut) ,)S+there exists a / Aut) ,)S-+Hsuch that Yo|® [ )7|.

In section 1.5 we present a classification of the circulant graphs. The
solution was given using different algebraic methods that we will summarize

in the next few sections.

1.2 Cl-groups

A natural generalisation of Adam’s problem was given by Babai |[Bab1|, which

is based on the following observation. Two Cayley graphs Cay)G, S+and

Cay)G, T+are isomorphic if there exists an automorphism « of the group G
which maps S to T. Clearly, a can be considered as a map from Cay)G, S+
to Cay)G, T+and induces a graph isomorphism. Such an isomorphism is a

called Cayley isomorphism.

At this point we introduce the definition that we will use all along Chapter
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Definition 2 (CI property). 1. A Cayley graph Cay)G, S+is said to be
a Cl-graph if, for each T — G, the Cayley graphs Cay)G,S+ and

Cay)G, T+are isomorphic if and only if there is an automorphism « of
G such that S*[ T.

2. A group G is called a DCI-group if every Cayley graph of G is a CI-
graph and it is called a Cl-group if every undirected Cayley graph of G
is a Cl-graph.

Definition 3. Let [ Vi, Eitand o [ )Ey, Votbe directed graphs. We
denote by 1] 2" the lexicographic product of o by 1, where V) 1] 2™
Vi £ V5 and for vi,wy / Vi and vy, wy / Vo the verter vy, vatis connected to
Yo, wotif and only if either Yvy,wi+/ Ey or vy [ wy and )vg, we+/ Es.

Example 4, which was given |Li4| shows that in order to be able to use

the CI property we first have to fix the group G.

Example 4. We denote by C,, the directed cycle of length n. Let p be an
odd prime.

Let Z, £ Z, be generated by g and h. It is easy to see that [
Cay)Z2, Yh{ N g)h|+is isomorphic to Cp]C,". Tt was proved by Godsil |God2)
that Zg is a DCl-group so is a Cl-graph of the group Zf}.

Let a generate Zy and let S [ }a?(Na)a?| and T [ }a**( Na)a?|. It
is easy to check that Cay)Zy,S+F C,|C," & Cay)Zy,z, T+ We claim that
Cay)G, S+is not a Cl-graph. By contradiction, let us suppose that there
exists an a / Aut)Zyp+with S* [ T. Then a® [ a®t! for some i. Since a is
an automorphism we have )a?£ [ )a®® [ )a®t£[ a®*? [ aP, whichis a
not an element of T, which is a contradiction.

We conclude that there exists a graph which is a Cl-graph of a group but
not a Cl-graph of another.
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Observation 5. [t is important to notice that if p ~ 6, then Zy is a p-group
which has a directed Cayley graph of valency p0 2 which is not a Cl-graph.
One can also show using the previous construction that Zy has an undirected

Cayley graph of valency 3)p0 24which is not a CI-graph.

The following lemmas will be formulated for Cl-groups but they also hold
for DCI-groups as well.
It is easy to prove that every subgroup of a Cl-group is also a Cl-group.

The following lemma was proved in |B,F1].

Lemma 6. Let G be a Cl-group and N a characteristic subgroup of G. Then
G/N is a Cl-group.

As a strengthening of this result, Dobson |Dob2| recently proved the fol-

lowing.

Lemma 7. Let G be a Cl-group. Then the homomorphic images of G are
also Cl-groups.

We have already noted that the Cayley graph Cay)G, S+contains a reg-
ular subgroup isomorphic to G. The following lemma, which was proved by
Babai |Babl|, is a key observation in the investigation of the isomorphism
problem of Cayley graphs. It allows us to use group theoretic tools for the

investigation of Cl-groups and will be used repeatedly in this thesis.

Lemma 8. Cay)G,S+is a Cl-graph if and only if for every pair of requ-
lar subgroups G and @ of Aut)Cay)G, S+H-isomorphic to G there is a p /
Aut)Cay)G, S+-such that G+ [ @.

In order to show the efficiency of the previous lemma we reprove the
fact that Zjy is a Cl-group, which was earlier proved in |E,T| and |Tur| using
different notation. Let us assume that is a Cayley graph of the cyclic group

Zyp. 1t is easy to see that a Sylow p-subgroup of the symmetric group S, and
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the one of Aut) -Hsa cyclic group of order p. Therefore the regular subgroups
are the Sylow p-subgroups of Aut) +and hence they are conjugate. This
proves that Z, is a DCl-group. Even though this result seems very simple
this could serve as a starting point of the investigation of both the cyclic and

the elementary abelian p-groups as well.

1.3 Different types of isomorphism problems

The results collected in this section are not closely tied to the main topics of
this thesis. Still, many of them can serve as an explanation of the difficulty
of the original isomorphism problem.

It is easy to see that if for two finite groups G and H we have \G\|[ \H\
then there exists a regular (di)graph of (out-valency 2) valency 2 which is
the Cayley graph of both G and H generated by a single element dividing
)\G\ \H\+ Similar observation holds for a pair of groups having a subgroup
of the same size.

It was observed in Example 4 that more complicated Cayley graphs of
different abelian groups can be isomorphic.

We present here an interesting observation showing that even a large
collection of Cayley graphs of a fixed group does not determine the group

itself.

Proposition 9. Every undirected Cayley graph of Z3 * & Zy is isomorphic
to a Cayley graph of Z3.

Proof. Let | Cay)Zy ? & Z4, S+with S| S 1. It is enough to show that
Aut) +contains a regular subgroup isomorphic to Z3.

Let ai,...,a, 2,b be a generating set of Z7 % & Z,, where o)a;+[ 3
for 2 >4¢>mn 3 and o)b+[ 5. Let 8 =Z3 24 74 Yo Ly 2 + 74 be
defined as B)z+[ )zb+! and for g / Z5 * £ Zy we denote by ay the left-
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translation by y. We claim that G [ )aq,,...,0q, ;, s, S| is a regular
group of automorphisms of  isomorphic to Z5.

It is easy to see that the group H [ )ag,,...,qq, ,, | is isomorphic to
Z2 ' and the order of B is 3 since ZE * + Z, is abelian. We also have that
lay, B)zH ))zb+'y 'b+'y [ zy? [ zif o)yH 3 so G isan abelian group
generated by elements of order 3. One can also see that G is transitive and

hence regular, finishing the proof of Proposition 9. 1

Theorem 13 shows that if n ~ 6, then Z§ has a Cayley graph which is
not isomorphic to any Cayley graph of Z% 2 4 Zj.

There are only two non-isomorphic groups of order p? and both of them
are abelian. It was determined by Joseph |Jos| when a Cayley digraph of one

of these groups is isomorphic to a Cayley digraph of the other group.

Theorem 10 (Joseph). Let | Cay)G,T+be a Cayley digraph of a group G
of order p® with generating set T. Then  is isomorphic to a Cayley digraph
on both Zf} and Ly if and only if is a lexicographic product of two Cayley
digraphs of order p.

This result was generalized by Morris |[Morl|:
Theorem 11 (Morris). The following are equivalent for a digraph
1. s isomorphic to a Cayley graph of both Zpn and ZE.

2. There exists a sequence of Cayley graphs 1,..., n of Zy such that

is isomorphic to 1] 2]... ...

The problem of determining which groups have a Cayley graph isomor-
phic to the d dimensional cube 4 is still unsolved. It was proved by Spiga
|Spi3| that there are at least 3% §logs § non-isomorphic regular subgroup in
Aut) 4. This result is interesting since the number of p-groups of order

n [ p®is bounded above by n)%+0(1)"h2, see |Hig| and |Sim]|.
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We have seen that the automorphism group of several classes of graphs
contains many (non-isomorphic) regular subgroups. This gives that a Cayley

graph does not necessarily determine the underlying group.

Definition 12. 1. A Cayley graph Cay)G, S+is called a directed graphical
reqular representation, which we will abbreviate by DRR of the group

G if Aut)G+f G.

2. An undirected Cayley graph which is a DRR will be called a graphical
regular representation (GRR).

By Lemma 8, every Cayley graph Cay)G, S+which is a DRR is a Cl-graph
of the group G.

The investigation of GRR’s started earlier than the one of DRR’s but we
give Babai’s |Bab3| characterisation of groups having DRR first.

Theorem 13 (Babai |Bab3|). There are only five finite groups (23, Z3, 75,
72, Q) which do not admit a DRR.

The connection set of a minimal Cayley graph of an elementary abelian
p-group G is a basis, when we consider G as a vector space over Zj,. It is
easy to see that these Cayley graphs are Cl-graphs, therefore Z2, Z3, Z3, 72,
Q@ have a Cl-graph. Moreover, one can also verify that @) is a DCl-group. As

a consequence of the previous theorem we get the following.
Theorem 14. FEuvery finite group G has non-tivial CI-graph.

Babai also proved in |Bab4| assuming the Axiom of Choice that every
infinite group has a DRR. The same proof yields that all but a finite number
of finite groups have a DRR.

The description of groups having a GRR is more complicated. We say
that a finite group G is a member of Class I if and only if G has a GRR.
We also say that a finite group G is a member of Class I if and only if G
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has the property that any subset S [ S ! which generates G is fixed by a
non-trivial automorphism of G. This property holds for S if and only it holds
for G S{ }e( so we can simply drop the assumption on S to be a generating
set. It is fairly easy to see, and it was observed by Watkins |Wat1|, that
Class I and Class II are disjoint. It was also conjectured in [Watl| that every

finite group belongs to either Class I or Class II.

Definition 15. A finite group G is called a generalized dicyclic group if it is
generated by a finite abelian group A and an element x of order 5 such that

z lax | a ! foralla / A and 2% / A.

Theorem 16 (Watkins |Watl|). Let G be a finite group. The following two

assertions are equivalent:

1. There exists a non-identity automorphism ¢ of G such that @)g+|[ g
or ¢)g+ g ! forall g / G.

2. G is either abelian of exponent greater than 3 or the following conditions
hold for G:

G is generated by aq, ..., ax, b where

(a) b tab[ a;' for2>i>k,

(b) the group generated by ai,...,ar is abelian and a? { 2 for some

2>i>k
(¢) ay is of even order 3m
(d) b* [ a™.
Clearly, the groups characterised in the previous theorem are members
of Class II. It was conjectured by Watkins |Wat2| that only finitely many

members of Class [I are neither abelian nor generalized dicyclic groups. This

conjecture was proved by Babai |Bab2|.
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It was also showed in |Wat1| that the dihedral groups De, Ds and Dy are
in Class II. Ten more elements of Class II was collected by different authors,
see |Imr|, [N,W1|, [N,W2|, [Wat3|, [Wat2].

Finally, Hetzel |Het| showed that with the exception of the previously
mentioned 13 groups, the abelian groups of exponent greater than 3 and
the generalized dicyclic groups, every finite solvable group belongs to Class
[. Godsil proved the following theorem, finishing the description of finite
groups having GRR.

Theorem 17 (Godsil |Godl|). Ewvery finite non-solvable group lies in Class
L

The existence of Cayley graphs of the group G with automorphism group
equaling G was completed by the previous theorem. Babai and Godsil |B,G]|
proved that almost every Cayley graph of a non-abelian nilpotent group
of odd order G has automorphism group isomorphic to G. More recently
Dobson |Dob3| proved that if G, is a sequence of abelian p-groups of growing
order, then the probability that a directed Cayley graph of G, is a DRR tends
to zero. In Chapter 2 we construct Cayley graphs of elementary abelian p-
groups having large automorphism group.

Let i = G oo G be defined as i)g+[ g '. We have already seen that
undirected Cayley graphs Cay)A, S+of abelian groups of exponent greater
than 3 contains a subgroup isomorphic to A x )i|. For an abelian group A
of exponent greater than 3 let Small)A+denote the set of undirected Cayley
graphs  such that Aut) +{ A x)i|. Dobson |Dob3| proved that if G, is a

sequence of p-groups, then
\9maII)Gp4\[ 9
e Cay)Cph |
where Cay)G,+denotes the set of all undirected Cayley graphs of G,. As a
strengthening of this result Dobson, Spiga and Verret |D,S,V| proved that if
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: : . li(An
Ay is a sequence of abelian groups of growing order, then \%TTM tends to 2.

It was also proved in |D,S, V| that if Ay is an abelian group of order n, then the
proportion of subsets S of A such that Cay)A,,, S+s a DRR goes to 2 as n oo
€ . Finally, Morris, Spiga and Verret investigated the second exceptional
infinite class of finite groups, the generalised dicyclic groups which do not

admit GRR. They proved that if R is a generalised dicyclic group of order

\Small(R)\

“Can (R tends to 2as noo €.

n, which is not isomorphic to Q & Z, then

1.4 Generalizations of the CI property

There are several types of generalizations of the CI property based on the
previous lemma of Babai. In order to formulate one of these we need one

more definition.

Definition 18 (3-closure). Let G > Sym)~ +be a permutation group.

a,b /~ 0gap / G with m)a+ gap)atand <

@ s m)—
“l } /Sum) 4 gas)bt

We say that G®) is the 3-closure of the permutation group G and G is 3-closed
if G| G®.

The following lemma is well-known and follows directly from the definition
of G,

Lemma 19. Let  be a graph. If G > Aut) + then G® > Aut) +

It is easy to see that G® is 3-closed for every permutation group G.
There are several equivalent non-constructive versions of this definition. Let
G > Sym)~ +be a permutation group. Clearly, G induces an action on ~ 2.
Then G@ is the largest subgroup of Sym)~ +leaving the orbits of G on ~ 2

invariant. The elements of ~2 can be considered as directed edges of the
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complete graph. Now we color the edges contained in the same orbit with
the same color but edges in different orbits with different color. It is easy to
verify that G®) is the automorphism group of this colored graph. Moreover,
the 3-closed permutation groups are those which can be obtained in such a
way.

Now we can introduce the following definition:

Definition 20. 1. We say that a Cayley graph Cay)G, S+is a CI® -graph
if and only if for every reqular subgroup G of Aut)Cay)G, S+H-isomor-
phic to G there is a o /)&, @@ such that &7 [ @.

2. A group G is called a DCI®-group if for every S —G the Cayley graph
Cay)G, S+is a CI®-graph.

It is clear that that every (D)CI®-group is a (D)Cl-group. However it is
also important to mention that there is no known example of a (D)CI-group
that is not (D)CI®).

Another important generalization of the CI property was introduced by

Babai |Babl].

Definition 21. Let G be a finite group. We say that G is a Cl-group with
respect to every relational structure if for every pair of isomorphic Cayley
objects &1 and & there exists a / Aut)G+which induces an isomorphism
between £ and &,.

Lemma 8 was originally proved for arbitrary relational structures. Hence

we define pronormal groups.

Definition 22. Let H be a group and G be a subgroup of H. We say that G
is a pronormal subgroup of H if for every h / H we have that G and G* are
conjugate in )G, G"|.
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Using this definition and the fact that every permutation group can be
obtained as the automorphism group of a relational structure, Lemma 8
asserts that G is a Cl-group with respect to every relational structure if and
only if G is a pronormal subgroup of Sym)G+

Palfy |Pal2| proved that if G is a finite Cl-group with respect to every
relational structure, then either G is a cyclic group with )n, ¢)n+{ 2, where
¢ denotes the Euler’s totient function, or \G\[ 5. It was also proved in [Pal2|
that a cyclic group Z, is a Cl-group with respect to every relational structure
if n | Ule pi, where p; < ps < ... < pg are prime numbers, Ui:i pi < D
for every 3 > k > l and )n,¢)n+H| 2. As an extension of this result, Palfy
|Pall| proved the following:

Theorem 23. G is Cl-group for every relational structure if and only if G is
a cyclic group of order n, where )n, )n+{ 2. If G is not a CI-group for some
relational structure, then there exrists a quaternary relational structure such
that its automorphism group contains two nonconjugate reqular subgroups

isomorphic to G.

1.5 Solution for cyclic groups

Palfy’s general results on Cl-groups gave us new families of cyclic Cl-groups.
It was also proved in |Pall| that Adam’s conjecture on undirected graphs
fails for cyclic groups Zy, if n[ 9a and n [ :b, where a > 2 and b > 3.

Now we return to the original question posed by Adam and collect the
results on cyclic groups. The following table contains the positive results on

cyclic DCI-groups Zy, where p and g are different primes.
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n Author
P Elspas, Turner |E,T|, Turner |Tur|,
Djokovié¢ |Djj
3p and 4q (q > 4) Babai |Babl|
5p (p > 3) Godsil |God2|
Pq Alspach, Parsons |A,P|, Godsil |God2| and
Klin, Poschel |K,P4]
), ¢)n+{ 2 Palfy |Pal2|
n is square-free Muzychuk |[Muzl1|
3n, where n is square-free Muzychuk |[Muz2|

The following table collects the most important steps proving that Adam’s

conjecture fails for some n.

n Author
9 for directed, 27 for undirected graphs Elspas, Turner |E,T|
9 \n directed graphs Egorov and Markov |E,M|
n| k2 where k{ 2,3,4,7 Babai, Frankl |B,F2]
undirected 27 \n, 38 \n, p? \n with p{ 3,4 | Alspach, Parsons |A,P]
directed graphs 9 \n, : \n

The classification of cyclic Cl-groups was finally obtained by Muzychuk

[Muz1, Muz2|.

Theorem 24. 1. The cyclic group Zy is a Cl-group if and only if n [
k or 3k, where k is square-free or n [ 9,:,29.

2. The cyclic group Zy is a DCI-group if and only if n [ k or 3k, where

k is square-free.

Even though Adam’s conjecture is far from to be true it was a starting

point of another type of investigation. Several authors, including Klin and
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Pschel |K,P1]|, |K,P2|, |K,P3|, |K,P4] worked out a method to determine
which pair of circulant graphs are isomorphic using the theory of Schur rings.
The final result |Muz4| was also given by Muzychuk. The description of the
isomorphism classes uses only elementary tools but we omit to describe them
here since it is complicated. The main ideas are to view generating sets as
the union of subsets of special form and using this partition to define types
of generating sets. Then one can investigate different types of generating sets
separately for the same group Z,. Finally, it is enough to extend the class
of functions, the set of multipliers, for isomorphism testing to generalized
multipliers, what they also call a solving set. This approach was first worked
out by Alspach and Parsons |A,P| when they gave a method to determine
which pair of Cayley graphs Cay)Zy2,S+and Cay)Zy, T+are isomorphic.
Similarly, the isomorphism problem of Cayley objects was investigated by
Huffman |Hufl| and |Huf2| for the cyclic group Z,, where p and g are distinct
primes with )pg, )pgH-[ 2 and Zg, respectively. It is important to note
that Muzychuk’s result |[Muz4| shows that the number of elements in each
isomorphism class of the Cayley graphs of a Z,, is at most ¢)n+and the same
result holds for the Cayley objects investigated in [Hufl| and |Huf2|.

1.6 Refinements of Adam’s conjecture and the CI property

It is easy to see that a Cayley graph generated by a single element of finite
order n is just the disjoint union of m-cycles. Therefore elements of the
same order in a Cl-group G have to be conjugate in Aut)G+ This simple
observation has serious consequences on the structure of CI- and DCI-groups.

We define the m-CI and the m-DCI property.

Definition 25. A group G is called an m-CI-group if every undirected Cayley
graph Cay)G, S+is a Cl-graph if \S\> m and G is called an m-DCI-group
if the same holds for directed graphs as well.
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[t seems there are only a few finite groups which are Cl-groups. The pre-
vious definition gives the possibility to refine statements on the isomorphism
problem of Cayley graphs. A finite group G which can be expressed as the
direct sum of cyclic p-groups of the same order is called a homocyclic group.

Fang and Xu |F,X]| proved the following theorem.
Theorem 26. Let G be a finite abelian group.
1. Gis a2-Cl-group if and only if the Sylow 3-subgroup of G is homocyclic.

2. G is a 5-Cl-group if and only if for every prime p the Sylow p-subgroup
of G is homocyclic and the Sylow 3-subgroup is cyclic or elementary

abelian.

As a consequence of the previous theorem we get that the cyclic group
Ly, is a 5-Cl-group for every n / N which was conjectured by Boesch and
Tindell, see |B,T|. Similar and more general result was proved for connected

Cayley graphs by Delorme, Favaron and Mahéo |D,F M|:

Theorem 27. Let Gy and Gy be two abelian groups which are isomorphic to
neither Ly nor Loy & L.

1. If Cay)Gy, S1+F Cay)Gs, So+ where Cay)Gy, Si+is connected and
\SI\[ \S2\[ 5, then Gy and Gy are isomorphic and Cay)Gy, S1+is a
CI-graph.

2. Any, not necessarily connected, circulant graph of degree 5 is a CI-

graph.

It was proved by Babai and Frankl |B,F2| that if G is a non-solvable CI-
group, then G is isomorphic to the direct product U+V, where )\U\ \V\H 2
and U is the direct product of some elementary abelian p-groups and V' is iso-

morphic to one of the following four groups: PSL)3,6+ SL)3,6+ PSL)3,24+
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SL)3,24+ Li and Praeger |L,P| proved that a non-abelian finite simple 3-
CI-groups can only be Az or L2)9+and they also proved that L2)9-+s not a
4-Cl-group. They conjectured that As is a 5-CI group which was proved in
|X,X,S,B| and it was also proved in |X,X] that As is a 6-DCI-group. Finally,
Li |Li3| proved that As is not a 3:-Cl-group. As a consequence of these

results we get the following:
Theorem 28 (Li). Every Cl-group is solvable

Xu |Xu| conjectured that every minimal Cayley graph is a Cl-graph. This
is a natural conjecture since it seems likely that an isomorphism between such
Cayley graphs induces a group isomorphism as well, but this conjecture also
turned out to be false, see |Li2|. The following characterisation of finite
abelian groups for which all minimal Cayley graphs are Cl-graphs was first
obtained by Meng and Xu |M,X].

Theorem 29. Euvery minimal Cayley graph of a finite abelian group G is a
Cl-graph if and only if G is a 3-group or the Sylow 3-subgroup of G does not

have a direct summand isomorphic to Zg & Zox with k ~ 3.

Another remarkable class of Cl-graphs was determined by Li |Li2| by
proving the following:

Theorem 30. Let G be a nilpotent group of odd order and A the automor-
phism group of a Cayley graph | Cay)G,S+of G. We denote by Ay the

stabilizer of the identity element.

1. If )\G\Mi\H 2, then is CI-graph.

2. If G is abelian and )\G\\NAi1\H p, where p is a prime, then either s

a Cl-graph or S contains a coset of some subgroup of G.

It is not hard and in fact it was derived from Theorem 30 in |Li2| that
if p is the smallest prime divisor of \G\, then every connected Cayley graph
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of valency less than p is a Cl-graph. This is a generalization of Babai’s
result [Babl| who proved the same for connected Cayley graphs of p-groups.
Observation 5 shows that these statements are almost tight. However, Li
|Li2| constructed minimal Cayley graphs of abelian groups which are not CI-
graphs and in the same paper he proved that if G is an abelian group of odd
order, then every minimal Cayley graph of G is a Cl-graph.

Li also asked whether there exists a non-Cl-graph of an abelian group G
for which the connection set does not contain a coset of a subgroup of G.
This problem has remained unsolved. We note that in Chapter 2 we construct
non-Cl-graphs for elementary abelian groups Zj, and the connection sets in
each case is the union of cosets, which can be considered as affine subspaces
of Zy as well.

A similar refinement of Adam’s conjecture is due to Toida. It was con-
jectured in |Toi| that if S is a subset of ZE, then Cay)Z,, S+is a Cl-graph.
Toida’s conjecture was finally proved by Klin, Muzychuk an Pdschel |K,M,P|.
This can also be obtained, and in fact was obtained, as a special case of an iso-
morphism criterion for circulant graphs given by Klin and Muzychuk, which

led to the complete classification of isomorphism classes of circulant graphs.

1.7 Candidates of Cl-groups

Since every subgroup of a Cl-group is also a Cl-group it is natural to start the
investigation with p-groups. Babai and Frankl |B,F1| proved the following

theorem, which is a serious restriction on the structure of Cl-groups.

Theorem 31. The Sylow p-subgroup of a finite Cl-group can only be ele-

mentary abelian p-group, Za, Ls, Lg, Zor or the quaternion group of order
9.

[t is clear from the description of the cyclic groups, given in Theorem 24,

that Zs7 is not a Cl-group and Zg is not a DCl-group.
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The semidirect product of G by H will be denoted by G x H and we
denote by g's)G+the exponent of the group G, which is the least common

multiple of the integers appearing as the order of an element of G.

Definition 32. Let A be and abelian group of odd order, with the additional
condition that for every prime p the Sylow p-subgroup of A is an elementary
abelian p-group. Further, let n / }3,4,5,9( with )\A\ n+H 2. We denote by
E)A, g+ the semidirect product A x )g|, where 0)g+[ n and the following
holds. If 0)g+is even, then g inverts the elements of A, if 0)g+| 4, then a9 |
a', where 1 is an integer with I3 C 2 Ymod g”s)A+and )I)l 2+g"s) A+
2.

The following list of candidates of Cl-groups was given by Li, Lu and
Palfy |L,L,P| in 2007.

Theorem 33 (Candidates of Cl-groups). Every finite Cl-group G is a mem-

ber of the following two set of groups.

1. G| U=V such that the following conditions hold: )NU\\V\H 2 and
all Sylow subgroups of G are elementary abelian or isomorphic to Zy or
Q. The direct summand U is abelian and V is isomorphic to one of the
following groups: 2, Q, As, E)A,n+4 wheren / }3,4,5( or Q+E)A, 4+
or B)A,n++ E)A%44: where n | 3 or 5 and )\A\7TH )AXT7TH 2.

2. G is one of the groups: Zs, Lo, Zas, the dihedral group Dig, Zigx 24 with
centre of order 3, Z2 x Lo with centre of order 4, E)A, 94 or Z3 £ Zs.

A more precise statement was also formulated by Li, Lu and Palfy.
Theorem 34. Let G be a finite Cl-group

1. If G does not contain elements of order 9 or -, then G | Hy+ Hy+ Hs,

where the orders of Hy, Hy, and Hs are pairwise coprime, where
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(a) Hiy is an abelian group, and each Sylow subgroup of Hi is elemen-

tary abelian or Zy,
(b) Hs is one of the groups E)A; 34 E)A, 54 Q, or 2,
(¢) Hs is one of the groups E)A, 44 Ay, or 2.

2. If G contains elements of order 9, then G | E)A,9%4or Zsg

3. If G contains elements of order : , then G is one of the groups Zio X Lo,
Lo X Ly, T2 x Ly, or Lo+ 73 with n > 6.

It is a difficult problem to determine which groups listed in the previous
two theorems are indeed Cl-groups. Finite CI-groups are rare. We provide a
short list of the known examples of Cl-groups, which were known by Li, Lu
and Palfy.

1. Zy, where either n \ 5k and k is odd square-free, or n / }9,:,29(
(Muzychuk [Muzl, Muz2|).

2. Z3 (Conder and Li |CL|), Z3 for p > 3. (Hirasaka and Muzychuk
[H,M]).

3. Dyp (Babai [Babl|) (finishing the description of groups of order 3p),
Frobenius groups Fj, of order 4p, (Babai and Frankl, The paper in-
cluding the proof has never appeared).

4. 72+ Zs, Z5 (Conder and Li |C,L]), Q, Zsz x Zg (Royle |Roy]).
5. Ay (see |Lil|), Za X Zy, Zg X Ly, g X Ly, 72 x Zg (Conder and Li |C,L|).

6. G| Ya,z \a? | 2,2" [ 2,z 'az | a !|, where r [ 5 or 9 (Li, Lu,
Pilfy [L,L.P|).

7. Frobenius groups of order 4p, where p C 2 )mod 44(Li, Lu, Palfy
|L,L,PJ), (finishing the description of groups of order 3p).
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The previous list, Theorem 33 and Theorem 34 is the starting point of
the work presented in the rest of Chapter 1.
Finally, we conclude that Theorem 31, Theorem 33 and Theorem 34 show

that the two main questions in this area are the following:

Question. (1) Which elementary abelian p-groups are Cl-groups? The in-
vestigation of the elementary abelian p-groups was initiated by Babai

and Frankl |B,F1].

(1) Determine whether the direct product of two CI-groups of coprime order
is a Cl-group. It was conjectured by Kovdcs and Muzychuk [K, M|, that
the direct product of Cl-groups of coprime order is a CI-group.

In order to give answer for the first question, in Chapter 2 we develop
a new method to prove that for every prime p ~ 4 the elementary abelian
p-group of rank 3p0 4 is not a Cl-group, improving the result of Muzychuk
|[Muz3| and Spiga |Spil|. Chapter 3 is devoted to give new examples of CI-
groups which are the direct product of Cl-groups, providing positive answer
for the second question in many particular cases.

Further known results about Cl-groups, which are more closely related
to the theorems proved in this thesis, will be presented in Chapter 2 and

Chapter 3.



2. ELEMENTARY ABELIAN P-GROUPS OF RANK 3P0 4
ARE NOT CI-GROUPS

For our discussion the following two previously mentioned results are relevant.
We have already mentioned that if G is a (D)Cl-group, then every subgroup
of G is a (D)Cl-group. Theorem 31 shows that the Sylow subgroups of a
Cl-group can only be Z,, Zs, Zqg, Zo7, the quaternion group of order 9 or
an elementary abelian p-group. Also, they asked whether every elementary
abelian p-group is Cl-group.

Hirasaka and Muzychuk proved |[H,M| that Zf} is a Cl-group for every
prime p > 3 and this result was also proved by Morris |[Mor2|. This result
was recently reproved by Morris |Mor3| using elementary tools. On the other
hand, Muzychuk |[Muz3| proved that an elementary abelian p-group of rank
3p 20 2pp 1[ is not a Cl-group and more recently as a strengthening of this
result Spiga |[Spil] showed that if n ~ 5p 3, then Z} is not a Cl-group.

The problem of determining whether or not an elementary abelian group
Zy is a Cl-group is solved if p [ 3 as the CI property holds for 73, see |C,L,
and a non-Cl-graph for Z§ was constructed by Nowitz |Now].

Finally, for p [ 4 we have more precise results. Spiga |Spi4| proved that
Z3 is a DCI-group but Z3§ is not a DCI-group.

Further improving the upper bounds in [Muz3| and [Spil|, we prove the

following.

Theorem 35 (|Som|). For every prime p > 3, the group ng” has a Cayley
graph of wvalency )3p 0 44pP*Y which is not a Cl-graph. Consequently, an
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elementary abelian p-group of rank greater than or is equal to 3p0 4 is not a

DCI-group.
We can formulate a similar theorem for undirected Cayley graphs.

Theorem 36. For every prime p > 4, the group Zg”” has an undirected
Cayley graph which is not a Cl-graph.

The proof of Theorem 35 is elementary and uses only the definition of
the CI property. We will construct two isomorphic Cayley graphs in Section
2.1. The connection sets in both graphs are the union of affine subspaces in
Zf}p” and the isomorphism between the Cayley graphs is given in terms of
multivariate polynomials. Finally, the proof in Section 2.4 that our Cayley
graphs are not Cl-graphs uses only elementary tools from linear algebra.
Section 2.5 is devoted to prove Theorem 36. In addition, in Section 2.6 we
will indicate how the previous results of Muzychuk and Spiga can be easily

obtained applying our technique.

2.1 'The construction

Let U Zg“ and V Zg”, then the groups U and V' can be regarded as vec-
tor spaces over the field Z, with bases }ej, es, ..., epp1( and }fo, f1,..., for1(,

respectively. We endow V' with the natural bilinear form:

p+1 ( Pt
>U a.?fJ:U Bifil | U a;f;.

j=0



2. Elementary abelian p-groups of rank 2p + 3 are not CIl-groups 31

Let us define the following affine subspaces of G| UY V :

Ai[ eiO}U/V\)U:fOOfil[ 1<* )1[ 2?'-'1})0 2+
P+l
Bi[ |Je0 }U/V >U,fi0 U fj-([ 1<, Yi[ 2,...,p0 2+
jBi j=0
p+1 rt+1 (
Col | &0 }U/V o, £l [ 1<,
:J—_H ;—1_-1 (
Gl | eo }U/V >U,U il [ 2<.
Now
p+1 p+1
S| V)ANBANCy and T[ v)ANB+NC, (2.1)

will be the connection sets of two Cayley graphs defined on G [ U>_ V.
Note that the sets S and T are the union of affine subspaces of G. Namely, S
and T are the union of 3p0 4 affine subspaces of dimension p0 2. Therefore
\S\[ \T'\[ )3p0 44"*! as promised.

We are going to show in Section 2.3 that Cay)G, S+~ Cay)G, T4 but we
will also prove in Section 2.4 that there is no automorphism of G mapping S

to T'. Taken together, these two facts establish Theorem 35.

2.2  Preliminary facts

In this section we introduce some notation concerning polynomials and we
establish certain equations over the field Z,. These equations will be used in
the proof of the isomorphism between the two Cayley graphs Cay)G, S+and
Cay)G, T+

For a sequence of integers n £ )nq,...,ny1+we denote zi’ W;i”;l by

2 and let k)z%+ \}i\n; > 1 (\denote the number of variables occuring in
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2 Let O be the set of monomials of degree p involving at least two variables
and foreach i [ 2,...,p0 2 we cut it into two subsets O [ O 9NO . where
O9 }a2\n;[ 1{and O J[ }22\n; > 1{. For a monomial z% / O we
define the number ¢, | TIQ(,IJTQLN An obvious consequence of the Multinomial

Theorem is that % is an integer. If 2% / O | then k)z%+~ 3 so p does

ni!xm.

not divide the denominator of ¢, and hence ¢, is an integer as well. Finally,

for o / ZF and f)z+/ Zp|zs,. .., z" we denote

AoflzH flz0 at+ flz+

Lemma 37. Let s | [[2 i and s; [ s ;| [,z

»

The following two equations hold over Zlxy, ...,z .

1.
p+1
sP | U z;7 0 U pepz™.
Jj=1 zn /O
2.
sP | U z;? 0 U pepT™.
JjBi /09
Proof. These identities are obvious. U

Define the following polynomials in Zp|x1,. .., Zps1":

il U )2 k)atHes"0 | )3 Rt  (22)
an/0 7 zn/0 F

fori[ 2,...,p0 2and

ro[ |J k)2t 34ena™ (2.3)
/0O
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Lemma 38.

rt+1 p p+1 P
ps i=1 95 ‘
U ;| TJ (2.4)
j=0
poyPtlgr . ,
The polynomial M%“ is defined in Zy|x1,...,Tpr1", while (2.4) holds
over Ly.
Proof.
p+1

Url U Np02 k™12 k)a2"H0 k)a™+ 243 k)a"+ca™

j=0 zn /O

()2 pt{J B2+ 24z [ () )E)2+ 2-ena™

zn /O /O
(2.5)
and Lemma 37 gives
sP pHLgP
P25 ) ket 24epan
p 2 /O
as well. ]

2.3 Isomorphism

Proposition 39. Cay)G, S+H- Cay)G, T+

Proof. Let ¢ =Z2P*3 oo Z2P*3 be defined by

Qb)ml} R ::E;D-i-l} Yo, Y1, - -- 1yp+l+[

[ $1:---;$p+1ayoo 7‘0)331;---}37p+1‘|?---;yp+10 T;D+1)$la--'}$p+1‘|{

where r; / Zplx1, ..., zps1" are defined by equations (2.2) and (2.3) .

We claim that ¢ is an isomorphism from Cay)G, S+to Cay)G, T+ Note
that ¢ acts by translation on w0 V for every w / U so ¢ is bijective. It
remains to show that for a, b /G ifb a /S, then ¢)b+ ¢)at+/ T,
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Since G is the direct sum of U and V, an element of G can be written as

)z,y+ where z / U and y / V. For the element )z, y+we will also use the

notation )z, ..., Tp41,Y0,Y1,- -+ Ypr1+

Assume first that b a / A; for some 2 >4 > p0 2 and write a [ )z, y+
with z /U and y / V. Then we may set b[ a0 )e; 0 v+ where v /V such
that Yv, fo 0 fi] [ 1. Clearly ¢ does not affect the first p 0 2 coordinates
hence we need to show ¢)b+ ¢)a+/ A;. Now we have

o)+ d)atf b a[[ b+ b  Plat af]
[ )1:"':1:A81T‘])§—|?A81T1)£—L_'":AE:'TP+1)§"|’|-'

Thus we have to check that })Ae,r0)zHAe,r1)z4. .., Ae,rpr1)zH5 00 fi] [
1. Now

DA ero)ztAer)zd. . Aerpi)zt foO fil [ Agro)zt0 Agri)z+
[ Ae)ro)z+0 mi)z+ 1,

since 19 0 r; does not involve z;.

By the same argument if b a / Cp, then using Lemma 38 we get

Azp+1 )Glrj[[ ps0 p0 2t Hi;)sjop—P ps” ?:S?
j=1©

[ )s0 2# S"[ 2.

These equations hold over Z, since )t0 p£ C t? )o pe p*+ Hence if b a / Cy,
then ¢)b+ ¢)a+/ C}.
Finally, if b a / B; we need a little more computation. Equation (2.5)

shows that
p+1

Unl U met 24

j=0 e}

%
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Hence
p+1
0 Url U )2 ka0 |J )3 ka2t
j=0 /00 e /O ?_
0 U k)™ 24e,z™ | U ™,
/O .-".‘E/C)?'

which is, by Lemma 37, is equal to

1

P af s
p

Therefore

p+l
s0pf 2 )s;0pf s 2 &
Azj#iej)n{] U Tj[ [ ) ) [ 1?
3=0 p p

using again the fact that )t0 p# C t? )o pe p>+ Hence if b a / B;, then
@)b+ @)a+/ B; and this finishes the proof of the fact that ¢ is indeed a
graph isomorphism. U

2.4 Checking the CI property

Now in order to show that Cay)G, S-+Hs not a Cl-graph we have to show that
there is no o / Aut)G+ GL)U > V+satisfying o)S+ T.

Proposition 40. There is no linear transformation o / GL)U Y V+such
that o)S+ T.

Proof. Assume by way of contradiction that ¢ / GL)U " V4with 0)S+ T.

Let M denote the matrix of the linear transformation o with respect to the

My, M
the basis }ei,...,ept1, fo, f1,-- - fps1( and write M | b b2 lasa
My, Mo,

block matrix, where M;; / Z},pﬂ)* @+ and My / Zéﬁm* +2)
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For the purpose of the following we modify our notation as follows. Let
2p+3 2p+3

S| Dl Siand T | Dl T;, where S; [ Ti [ Ai and Sizp+1 [ Tizpnr [ Bi
for ¢ [ 2}. .. ,pO 2 and Sgp+3 [ CO s T2p_|_3 [ Cl-
Now we prove two lemmas from which the proof of Proposition 40 will

follow.

Lemma 41. V is an invariant subspace of o, i.e., Mia [ 1.

Proof. Considering only the first p0 2 coordinates it is easy to see using the
assumption p > 3 that for ¢ { jifa / Siand b / Sj, then 3a b/ S
and similarly for T'. This implies that both S and T contain exactly 3p0 4
affine subspaces of dimension p0 2. Hence for 2 > i > 3p0 4 we must have
0)S;+ Tj for some j and if a, b / S;, then o)a+ 0)b+/ V. Now

p+1

Span) i}a b\a}b/Si({[ v,

so 0)V+< V and this finishes the proof of the fact that V is an invariant

subspace of o. 1

[t is immediate from the preceding Lemma 41 that o induces a linear
transformation of )U Y V4V which we also denote by o. Set

p+1
9| }ei,U ej\22i2p02<ﬂ}u ej<—>U. (2.6)
jBi j=1

In the following Lemma 42, we shall identify the elements in 0 V —
YU S" V4V with those in 8. As 0)S+ o)T+and SO V[ T 0 V, we have
)9+ 9. Then we have 0)8+ 8.

Lemma 42. M, is a permutation matriz.
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Proof. In this proof we will use the natural bilinear form on U defined as

p+1 p+1 p+l
U aiei:U ﬁiei [ U sz'JBi-
i=1 i=1 i=1

Let e £ Hf+11 e;. Note that e is the unique element of 8 which is the

follows:

sum of two others within &, hence o)e+| e. The rest of the points can be
paired such that the sum of every pair is e and by the linearity of o the set
H | }o)e+\2 > i >p0 2( contains exactly one element of each pair.
Furthermore, [], gy h [ Mloet o[ et o)ed] e

For every s / 8 we have |s,e”[ 1 or 2, hence if H contains an element x
such that Jz,e”[ 1, then H contains p elements with the same property as
]HMH h,e{[ le,e"[ 2. By permuting the coordinates we obtain that if H
contains an element z such that |z,e"[ 1, then H[ }ei (N}[],z,6\3 2>
i>p0 2(but [T, ghl e1 e ... epuif [1%4 ei [ ein this case, a

contradiction. O

Now we continue the proof of Proposition 40.

For every permutation of }ei, ..., ep+1( if we apply the same permutation
to the indices of }fi,..., fp+1( and fix fo we obtain an automorphism of
Cay)G, S+ Hence we may assume for the rest of the proof that My, [ 1.

This assumption implies that o)e;+/ A; and o)[] 5, €;+/ B for 2> i >
p0 2. From this we get

>M2,161;f00 fz’l [ 1,

p+1 (

>M2,1U €j, fi 0 U fil [ 1
jBi j=0

for2>1>p0 2.

The sum of these 3p0 3 equations over Zj, is
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p+1 p+1 p+1 (
U )Mzeaei, fo0 fi 0 | >M2,1U ej, f; 0 U LT

i=1 i=1 jBi

so using bilinearity

p+l p+1
>M2,1U ei}U fj([ 1.
i=1  j=0

We also have that O')Hp+l e;j+/ Ci, which gives

p+l p+1
>M2,1U %U f:.-([ 2.
i=1 =0

This contradiction finishes the proof of Proposition 40. ]

Finally, Proposition 39 and Proposition 40 together prove Theorem 35.

2.5 Undirected graphs

In this section we study undirected Cayley graphs and we will prove Theorem
36.

If G is an abelian group we write S [ } s /G \s /G/{ instead of
S 1. For a subset S of G we define S [ SN S. It is also clear that if ¢ is an
isomorphism between Cay)G, S+and Cay)G, T+ then ¢ is an isomorphism
between Cay)G, S+and Ca,y)G,Tg'—i—a.s well.

In Section 2.1 we constructed two isomorphic directed Cayley graphs
Cay)Z2P+3, S+and Cay)ZzP>, T+of Z2P*3, where S and T were defined in
(2.1). Therefore we have a pair of isomorphic undirected Cayley graphs:
Cay)Z2P+?, S+and Cay)Z2P+3, T+

Proposition 43. For every prime p > 4, the graph Cay)ngH}So—l—is an
undirected Cayley graph of the group Zf}p” which is not a Cl-graph.
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Proof. 1t is enough to show that there is no linear transformation o such that
0)S+[ T. Seeking a contradiction, let us assume that o / GL)U Y V+with
0)S+ T.

The same kind of reasoning as in Lemma 41 shows that V is an invariant
subspace of o, but here we have to use the extra condition that p > 4. Hence
o induces a linear transformation of )U > V4V, which we also denote by o.
Set,

1 1
S| }ei, ei,U €, U ejk>i1>p0 2<0}U e, U e;j <,
JBi JBi j=1 j=1
We shall identify the elements in S0 V —)U > V4V with those in S. As
0)SH o)T+and SO V[ TO V, we have 0)S+ S. Note that we can write
S| 8n 8 with 8{ 9, where 9 is defined in (2.6).

Lemma 44. One of the two linear transformations o and o permules the

elements of 8.

Proof. Since o induces an automorphism of Cay)U, S+and o)1+ 1, it gives
an automorphism of the induced subgraph on the neighbourhood of 1 as well.
In this subgraph the vertices e and e have degree 3p0 3, the other vertices
have degree 2. This implies that o)e+[ e or o)e+| e. So either o or o
fixes e. The neighbourhood of e in S is 8, hence the proof of Lemma 42
yields the result. ]

As a consequence of Lemma 44 we get a linear transformation (o or o)
which maps S onto T'. This contradicts Proposition 40, finishing the proof
of Proposition 43 and Theorem 36. 1

2.6 Connection to previous results

In this section, we modify our construction a little bit to get non-Cl-graphs

2p 14)%P 14 . .
of the groups Z;p 2 and Zp )" . These results provide a uniform ex-
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planation for the recent work of P. Spiga |Spil|] and M. Muzychuk |Muz3|,
respectively. The proof of these results simplifies the heavy machinery used
in [Muz3| and |Spil|.

Rank 5p 3

Let U*E Vo Z2P 1 and W[ Uy V*®with the bases }efs... e
and }ff’?}fgs 1(, respectively. We denote by Mthe set of multilinear
monomials of degree p in 3p 2 variables. Let M [ }z% / M\n; [ 1( and
M [ M M If 2% / Mthen the exponent vector n can be treated as a

p-element subset of }2,...,3p 2.
Let

A €50 o/ VRWRAF 1,
BY | &9 }v“’/v >v°§’ff‘0 U f;‘([ 1<,

jBi
C U 0 }Uw/v >v°:>U f;‘([ 1<,
Cc U X0 }Uw/v >v°:>U f;"{[ 2<.

Similarly to the construction in Section 2.1 let S°] EII)AE?W B3N C§and
T EII)AE"TW BN Cf° We claim that Cay)W?S%f Cay)WeT%and

the isomorphism is given in the same manner:

chj)xl:“':x% layla"wyZp 1+[
[ .’El,...}ﬂ?gp 1}3;10 51).’31}...,:82;; 1—|;...}y2p 10 sz 1):171,...,.’1?2p 1+[,
where I; denotes the sum of the monomials in Mfori[ 2,...,3p 2.

In this case the computations needed to show that ¢®is an isomorphism of

the two Cayley graphs are easier.
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Lemma 45. Assume that 22 / Mand interpret m / }1,2(?* 1 as a vector
in U™

(i)
(ii)

Proof. (i) is obvious and (ii) is just a particular case of (i). O
We prove the following technical lemma.

Lemma 46.

(i)
Agli[ L.

i

(i)

2p 1

AZ?ZIE})U Jj-l—[ 2.
j=1

(iii)

2p 1

Ay, )0 | L4 1

Jj=0

Proof.
(i) Obvious, since [; does not involve z;.
(ii) We have

2p 1 2p 1

st U U =l U 2=~ | =" (2.7)

j=1 J=1 gn /N zn /M /M
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and hence
2p 1

Asas ) b Agzg J 21 | Agzerga®
=1 22 /M o /M

applying Lemma 45 (ii)

U ULt U-Ue

n/}0,1| %1 kGn ¥\<p  k-n
\n\=p ‘n\=p
3p 2
U

\e\<p p
The binomial coefficient Qpp 1\&35\[ is divisible by pif 2 > \k\ < p and this im-
plies that the remaining polynomial is just the constant polynomial 2pp 1[
over Zp. Taking into account that 2pp 1[ C 2 )o pe p+ we obtain (ii) and

(iii). Making use of equality (2.7) we get

2p 1
ol Y el | o
j=1 an /M e /M an /N

Now

(
Aseg | U i [ U Asaege®
mﬂ/ﬂi mﬂ/ﬂ?

and by Lemma 45 (i)

[ Uinxﬁ[ miU:B&UQ

en/M kGn il i/k Yi| NkSn
¥\<p 1 ‘p=p
[ = U )3;0 2%\ 2{:1:&.
> p o\ 2
E\<p 1

Now if \k\<p 2, then Qpp 1\,;9\1 '[ €1 )o pe p+and this proves the result.
l
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The proof that ¢™4s an isomorphism is similar to the proof of Proposition
39. It is straightforward to verify using Lemma 46 (i), that if b a / A
then ¢Fb+ ¢Fa+/ A verify using Lemma 46 (iii), that if b a / BPthen
b+ 9¢Fa+/ Bifand finally, prove using Lemma 46 (ii), that if b a / Cg®
then ¢Fb+ o¢Fa+/ C°

The proof of the fact that there is no linear transformation which maps
S°%to T™4s nearly the same as in Proposition 40 provided p > 4. If p [ 4,
then the statement analogous to Lemma 42 does not hold.

Assume again by way of contradiction that there exist 0/ GL)U* " V-

such that 0)S°[ T°° We modify our notation again as follows. Let N |
Nii Ny

1 ) ) )
" | denote the matrix of the linear transformation ¢ We denote

Ny1 Ny,

by S TP Affand Yy, [ Ty, o [ Bffordi[ 2,,...,3p 2 and let

Sgy 1| Cgland T | [ CF° Similarly to Lemma 41 we prove the following.
Lemma 47. V=is an invariant subspace of o

Using the same argument as in Lemma 41 one can see that S®and T
contains exactly bp 2 affine subspaces of dimension 3p 3 so for 2 > i >

5p 2 there exists 2> j > 5p 2 such that 0)SP4H T7° Since

Span) 2:;\/11}.:.5 b\a,b / ng{ [ Ve

we have oV V<

Proof. Using similar identification as in Section 2.4 we may assume that there

exists a linear transformation o°of Uwith oS+ S, where

2p 1
S| }eg’f e\ 2>1>3p 2<\/}U e;‘<.
jBi j=1
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Lemma 48. Ny, is a permutation matriz if p > 4.

Proof. Since e[ Hfilleg’ois the unique element of S which is the sum of
two elements of S we have 0%e®} €% Similarly to Lemma 42 we have that
o1 g b+ eFwhere HX }o)eg$\2>i>3p 2(. Using the linearity
of 0°and the fact that 0% e™ve get that H°tontains exactly one of each
pair od the form )efe e

Applying the natural bilinear form defined on ng Lwe get that |eef®[ 2
and |e¥e™® e[ 3for2>i>3p 2 Sincep({ 4and 2] |eTe™]
]ecf'nh/H, h", we have that H%tontains either 1 or p elements of the form ™
es® Since H%tontains exactly one element of each pair of the form )efYe e
using a suitable permutation on the coordinates, we may assume that H°q{
1e\2>i>3p 2(orH }e\2>i>p 2(N}e™® eA\p>i>3p 2(.
Since the sum of elements of H*®is e®we have H®[ }ef\2>1i>3p 2(,

finishing the proof of Lemma 48 ]

Now we show that the condition that the prime p [ 4 was essential in

the proof of the previous lemma.

Observation 49. If p[ 4, then the function ¢ defined by ¢)edH > eXcan
be extended to an invertible linear transformation ¢ with ¢)S+ S.
Proof. 1t is straightforward to verify that the }e°° efs. .., e €5 1( is a
basis of U®and one can prove using the linearity ¢ that @)e™ e[ eXfor
2>i>3p 2. ]
Using the same argument as in Section 2.4 we may assume that Np; is
the identity matrix giving o%e-/ Aand o%e> e/ Bjfor 2>1i>3p 2.
We get,

|Naae £ 1,

N2,1U eﬁfg% U ff{[ 1

jBi j=0
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for 2>14>3p 2. The sum of these 5p 3 equalities is
2p 1 2p 1
]NMU exlJ f?{[ 1,
i=1 i=1
while o¥[[2,' €24 0%Fe™-/ C®means

2p 1 2p 1
]Nzl U U f?{[ 2,
i=1 i=1
which gives a contradiction.

2p 1
Rank 3p 20 % [

Here we only give the connection sets and the isomorphism of the Cayley

graphs. The proof goes along the same lines as in the previous cases.

Let U[ }E—}2,...,3p 2( (\\[ p(andlet U= ZP ' and V=

)2p—1

Zp ® T vith the bases pefvesy...,esy 1 (and } ff\k / U (, respectively.

Since \U\ is equal to the dimension of V= for every y®™we can write y™][

). ype. . A where k /U, For 2%y / U™ V™=ve define
OFzTy=H  z%...,yz0 2 .. [

Foreach 2>i>3p 2 we define the set

(
AR €20 pu=/V >UG?U e

i/k {
Lk

For every £ / U there are exactly p elements ki, ..
e { k;\[ 2 and hence we can define

p of U such that

BX | e }U@/v vfE0 ...0 2 1<.

=p
Ji/k
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46

The third type of affine subspaces are defined by

2p 1 l
3 U e;“T] v™/ V1>UG}DU fg [ 1 \
j=1 k/u {
2p 1 t
C U e;0 s v™/ Vmg>’”°?U fg&([ 2 \

and

k/u

Finally, the connection sets are given similarly to the previius cases:

5 )\/Aﬁn \/B,ﬁncgm

/U

T ){Agﬂ{m)ﬁ%@{n@‘;@

and ¢™gives the isomorphism between the two Cayley graphs.

and



3. NEW FAMILIES OF FINITE CI-GROUPS

3.1 Groups of order 9p

In this section, for every prime p > 4 we prove that Q) = Z, is a DCl-group.
Using the same method we reprove the fact that Z3 + Z, is a Cl-group for
every prime p > 4, which was obtained in |D,S2|. This result completes the
description of Cl-groups of order 9p.

We refine the definition of Cl-groups with respect to every relational
structure. The relational structure )V, Ey, Es, ... Ei+is a colour ternary
relational structure if E; —V3 for i [ 2,...,1. We say that a colour ternary
relational structure )V, Ey, ... Ej-Hs a Cayley ternary relational structure of
the group G if the automorphism group of )V, Ey, ..., Ej4contains a regular
subgroup isomorphic to G. A group G is called a Cl-group with respect
to colour ternary relational structures, if for any pair of isomorphic colour
ternary relational structures of G there exists an isomorphism induced by an
automorphism of G.

Let G be a Cl-group of order 9p, where p is an odd prime. It is easy
to verify that Zs + Z4 and the dihedral group of order 9 are not Cl-groups
since they contain nonisomorphic subgroups of order 5. It can easily be seen
that every subgroup of a Cl-group is also a Cl-group. Therefore the Sylow
2-subgroup of G can only be Zg, Z3 or the quaternion group Q of order 9.

It was proved by Li, Lu and Palfy |L,L,P, Theorem 1.2.(b)| that a finite
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Cl-group of order 9p containing an element of order 9 can only be
H[ Ya,z\a’[ 2,2°[ 2,2 'az[ a 'I.

It was also showed in |L,L,P, Theorem 1.3.| that H is a Cl-group, though
not a DCl-group. In view of these results, for the rest of the discussion, we
assume that the 3-Sylow subgroup of G is isomorphic to @ or Z3.

It was proved by Dobson |Dob3| that Z3+Z, is a CI-group with respect to
ternary relational structures if p ~ 22. Moreover, Dobson and Spiga |D,S2|
proved that Z3 + Z, is a DCI-group with respect to colour ternary relational
structures if and only if p{ 4 and 8. As a consequence of this result it was
proved in |D,S2| that Z3 +Z, is a DCI-group for all primes p.

If p>9orp| 6, then by Sylow’s Theorem the Sylow p-subgroup of G is
a normal subgroup, therefore G is isomorphic to one of the following groups:
Ls+Zyp, Q+Zp, 73 x Ly or QX Zp. 1t can also be seen from |L,L,P, Theorem
1.2| that neither @ x Z, nor Z3 x Z, is a Cl-group.

If p|[ 8, then either the Sylow 8-subgroup is normal, in which case G is
as before, or G has 9 Sylow 8-subgroups and the Sylow 3-subgroup of G is
normal. Then the Sylow 8-subgroup of G acts transitively by conjugation on
the the non-identity elements of the 3-Sylow subgroup. Hence G & Z3 x Zs,
which is not a Cl-group by |L,L,P, Theorem 1.2.(b)|.

If p[ 4, then the order of G is 35. A complete list of Cl-groups of order
at most 42 was given in the Ph.D. thesis of Royle, see |Roy|. The Cl-groups
of order 35 are the following: Q 4 Zs, Zg X Z3 and Zj + Zs.

Spiga |Spi2| proved that @ & Zs is not a Cl-group with respect to colour
ternary relational structures.

Using different methods if p > 9 and if p [ 6,8 we show that the other
groups are DCl-groups.

Theorem 50. For every prime p ~ 4 the group Q £ Z, is a DCI-group.
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By extending our result with the fact that @ 4+ Zs is a Cl-group we get
that Q £Zp is a Cl-group for every odd prime p. We also prove the following
result which was first obtained in |D,S2].

Theorem 51 (Dobson, Spiga). For every prime p ~ 4 the group Z3 + 7y is
a DCI-group.

In Section 3.1.1 we introduce some notation. In Section 3.1.2 we collect
important ideas which are useful in the proof of Theorem 50 and Theorem 51.
Section 3.1.3 contains the proof of Theorem 50 and Theorem, 51 for primes
p > 9 and Section 3.1.4 contains the proof of Theorem 50 and Theorem 51
for p[ 6 and 8.

3.1.1 Technical details

Let us assume that the group H acts on the set = and let G be an arbitrary
group. Then by G g H we denote the wreath product of G and H. Every
element g / G o H can be uniquely written as hk, where k / K [ U, o Gw
and h / H. The group K | me G, is called the base group of G g H and
the elements of K can be treated as functions from ~ to G. If ¢ / G o H
and g [ hk we denote k by )g4. In order to simplify the notation = will be
omitted if it is clear from the definition of H and we will write G H.

The symmetric group on the set =~ will be denoted by Sym)~ + Let G be
a permutation group on the set ~. For a G-invariant partition C of the set
= we use G* to denote the permutation group on C induced by the action
of G and similarly, for every g / G we denote by g* the action of g on the
partition C.

For a group G, let @ denote the subgroup of the symmetric group Sym)G+
formed by the elements of G acting by right multiplication on G.
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3.1.2 Basic ideas

In this section we collect some results and some important ideas that we will
use in the proof of Theorem 50 and Theorem 51.

Let R be either Q or Z3. Let us assume that A [ Aut)Cay)G, S+H>
Sym)9p+contains two copies of regular subgroups, R+ Ep and R+ 2%, By
Svlow’s theorem we may assume that f’Zp and Z, are in the same Sylow p-
subgroup P of Sym)9p+ If p > 9, then P is isomorphic to Zg. Moreover, P
is generated by 9 disjoint p-cycles. It follows that both R and R normalize P
S0 we may assume that R and B lic in the same Sylow 3-subgroup of Na)P+
Let P, denote a Sylow 3-subgroup of Sym)9+ It is also well known that P,

is isomorphic to the automorphism group of the following graph A:

Every automorphism of A permutes the leaves of the graph and the per-
mutation of the leaves determines the automorphism, therefore Aut)A +can

naturally be embedded into Sym)9+

Lemma 52. 1. There are exactly two regular subgroups of Py which are

isomorphic to Q.

2. There are exactly two regular subgroups of Py which are isomorphic to

73,

Proof. 1. Let @ be a regular subgroup of Aut)A -Hsomorphic to the quater-
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nion group with generators i and j. Since @ is regular, for every
2 > m > 5 there is a gmn / @ (not necessarily distinct) such that
gm)3m 24 3m. These are automorphisms of A so g,,)3m+ 3m 2
and hence since @ is regular the order of g, is 3. There is only one
involution in @ so g, [ 2 for every 2 > m > 5 and this fact determines
completely the action of i on A. Note that the automorphism g, are

all equal.

We can assume that i)2+{ 4. Such an isomorphism of A fixes setwise
}2,3,4,5( so we have that )4+ 3, 7)3+{ 5 and )5+ 2 since 7 is of
order 5. Using again the fact that @ is regular on A and )6+ 7, we

get that there are two choices for the action of :

i [ )243546879+or i [ )2435)6978+

We can also assume that j)2+| 6. This implies that 7)6+[ j%)24]

i2)2+[ 3, and j)3+[ 7 since j / Aut)A+and j)7+[ 2. The action
of i determines the action of j on A since iji [ j. Applying this to
the leaf 4 we get that j)4+[ 9if i [ )243546879+and j)4+[ 8 if
i [ )243546978+s0 there is no more choice for the action of j. Finally,
i and j generate @) and this gives the result.

2. Let us assume that x / Z3 such that x)2+[ 3 A fixed point free
automorphism of  of order 3 which maps 2 to 3 will map 4 to 5.
There is a y / Z3 such that y)2+[ 6. Such an automorphism of

maps 3 to 7 so we have that z)6+[ 7 since z and y commute. This

We have exactly two possibilities for y)4+ If y)4+[ 8, then y |
)26H37-H484h59+and if y)4+ 9, then y [ )264374H49458+ The third
generator of the group Z3 which maps 2 to 4 is determined by z and y

since Z3 is abelian.
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The previous proof also gives the following.

Lemma 53. (a) The following two pairs of permutations generate the two
regular subgroups of Aut)A+> Sym)9+isomorphic to Q:
i1 [ )243546879+ 51 [ )263744859+and
io [ )2435469784 jo [ )2637+44958+

(b) The elements of these regular subgroups of Aut)A+are the following:

Qi Q,:

id (12)(34)(56)(78) id (12)(34)(56)(78)
(1824)(5768)  (1423)(5867) | (1324)(5867)  (1423)(5768)
(1526)(3847)  (1625)(37148) | (1526)(3748)  (1625)(3847)
(1728)(3546)  (1827)(3645) | (1728)(3645)  (1827)(3546)

Using the identification given in the following table, Qi and Qy act on

Q by left-and right-multiplication with the elements of Q, respectively:

12,...,9(
Q

2
2

3
2

4

1

5

1

6
J

7
J

8
k

9
.

(¢) Ay | )xy, 9,23 and Ay [ )y1,y2,ys| are subgroups of Aut)A+ >
Sym)9+isomorphic to Z3, where

a1 [ 239456789+ o [ )244)35H68479+ x5 [ )264)37-H48459+

and

i [ )23945-D67H89+ yo | )24-)354H69-)784 ys [ )26437-H49-H58+

Lemma 54. Let us assume that Gy > Ps is generated by two different reqular
subgroups Qa and Qp of Aut)A+which are isomorphic to Q and Gy > Py is
generated by two different reqular subgroups Ay and Ay of Aut)A+which are
isomorphic to Zs. Then Gy [ Gb.
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Proof. Tt is clear that \P2\[ \Aut)A4\[ 3". One can see using Lemma 53
(a) and (c) that G; and G are generated by even permutations. Both Gi
and Gj induce an action on the set V [ }A, B, C, D( which is a set of
vertices of A and it is easy to verify that every permutation of V induced by
G and Gy is even. This shows that G; and G are contained in a subgroup
of P, of cardinality 3°.

Lemma 53 (b) shows that \Q, { @\[ 3 and one can also check using
Lemma 53 (c¢) that \A; { A5\ [ 3. This gives \G;\ ~ 3% and \G5\ ~ 3°,
finishing the proof of Lemma 54.

O

Proposition 55. 1. The quaternion group Q is a DCI®)-group.
2. The elementary abelian group Z3 is a DCI®-group.

Proof. 1. Let @, and Q) be two regular subgroups of Sym)9+isomorphic
to the quaternion group ). By Sylow’s theorem we may assume that
Q. and Qp lie in the same Sylow 3-subgroup of H [ )Q,, Qs|, which
is contained in a Sylow 3-subgroup of Sym)9+ Since every Sylow 3-
subgroup of H is contained in a Sylow 3-subgroup of Sym)94 we may
assume that @, and @ are subgroups of Aut)A+

Our aim is to find an element 7 / )Qq, Qp| @ such that QT [ Q. Let us
assume that Q, [ Qp. Using Lemma 53 (a) we may also assume that Q,
and Qp are generated by the permutations )243546879+;)26374)4859+
and )243546978+;)263744958+ respectively. Lemma 53 (b) shows that

H contains the following three permutations:

)23)45+] )24354)6879-)24354)6978+
)23)67+] )2637-4)4859-)263744958+
)23H89+] )2839-)4657-)283944756+
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2.

Now one can easily see that the permutation )23-+s in H®). Finally, it
is also easy to check using Lemma 53 (b) that Q((],m [ Q.

Let A; and Ay be two copies of regular subgroups of Sym)9-+somorphic
to Z3. We denote by H%he group generated by A; and A,. Similarly
to the previous case we may assume that A; and A, are different reg-
ular subgroups of Aut)A +contained in the same Sylow 3-subgroup of
Sym)9+ By Lemma 53 (c), the groups A; and As are generated by
the permutations z1 [ )23H45H67H89+ =2 [ )24-H35-H68H79+ =3 |
)26H37-H484H59+and y1 [ )23H45H67H89+ yo [ )24-H35H69H78+
ys [ )26437449458+ respectively.

Lemma 54 gives that the group H°tontains the permutations )23-445+
)234)67+and )23489+ Therefore H*) contains the permutation )23+
which centralizes z; [ ;. Further we have )2345)23+| wyy; and
)23423)23+] y1y3, so )23+conjugates A; to Ay, finishing the proof of
Proposition 55.

]

Definition 56. Let  be an arbitrary graph and A,B — V) +such that
A{ B[ B We write A C B if one of the following four possibilities holds:

1.

J.

For every a / A and b / B there is an edge from a to b but there is no
edge from b to a.

For every a / A and b / B there is an edge from b to a but there is no
edge from a to b.

For every a / A and b / B the vertices a and b are connected with an

undirected edge.

There is no edge between A and B.

We also write A = B if none of the previous four possibilities holds.
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iz
iz

The next lemma follows easily:

Lemma 57. Let A and B be two disjoint subsets of cardinality p of a graph.
We write ANB [ Z,NZ,. Let us assume that a generator g of &, acts by
ga)ay,astH )a10 2,a50 240n AN B and for a generator @ of the cyclic group
@p the action of @ is defined by @)ay, az+ )a1 0 b,az0 c+for some b,c / Zy.

(i) If b e, then the action of #p and Qp on AN B are the same.
(ii) If A B, then b| ec.

(iii) If A C B, then m / Sym)A N B+which fires A and B setwise is an
automorphism of the graph defined on AN B as long as m\a / Aut) A+
and m\g / Aut)B+

3.1.3 Main result for p > 9

In this section, we will prove that R £ Zjy is a DCl-group if p > 9, where R
is either @ or Z3

Proposition 58. For every prime p > 9, the group R+ Z, is a DCI-group.

Our technique is based on Lemma 8 so we have to fix a Cayley graph

| Cay)R+Zy, S+ Let A| Aut) +and G R:t@p be a regular subgroup

of A isomorphic to R+ Zyp. In order to prove Proposition 58 we have to find
an « / A such that Ge [ @] B+tZ, We will achieve this in three steps.

Step 1

Since p > 9, the Sylow p-subgroup of Sym)9p+is generated by 9 disjoint
p-cycles. We may assume %, and @p lie in the same Sylow p-subgroup P of
Sym)9p+ Then both R and R are subgroups of Ngym(sp)) PH A so we may
assume that R and B lie in the same Sylow 3-subgroup of Ngymsp))PH A

which is contained in a Sylow 3-subgroup of A.
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Clearly, the Sylow p-subgroup P gives a partition C [ }Bi, Ba, ..., Bs(
of the vertices of |, where \B;\[ pforeveryi[ 2,...,9and C is P-invariant.
It is easy to see that C is invariant under the action of A and £ and hence
V@, G| > Sym)p+ Sym)9+ Moreover, both €& and @ are regular. so R and
R induce regular action on C which we denote by R; and Rs, respectively.
The assumption that R and B lie in the same Sylow 3-subgroup of A implies
that Ry and Ry are in the same Sylow 3-subgroup of Sym)9+

Step 2

Let us assume that R; { Ry. We intend to find an element o / A{ N)P+
such that )Ra - [ Rs.

We define a‘graph ¢ on C such that By, is adjacent to B, if and only if
B,, = B,. This is an undirected graph with vertex set C and both R; and

R; are regular subgroups of Aut) o+ It follows that ¢ is a Cayley graph of
R.

Observation 59. Since Ry > Aut) o+acts transitively on C we have that

the order of each connected component of o divides 9.

We can also define a coloured graph 1 on C by colouring the edges of
the complete directed graph on 9 vertices. The vertex By, is adjacent to the
vertex B, with the same coloured edge as B, is adjacent to B, in 1 if and
only if there exists a graph isomorphism ¢ from the induced subgraph of on
B,, N B, to the induced subgraph of on By, N B,y such that ¢)By,+ By
and ¢)B,+ B,. The graph is a coloured Cayley graph of R. Moreover,
both R; and Ry act regularly on ;. Using the fact that R has property
DCI®@ it is clear that there exists an a®/ YRy, Ry|® > Aut) +such that
RY [ R;. We would like to lift a®to an automorphism « of  such that

ot [ a®

1. Let us assume first that g is a connected graph.
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2.

Lemma 60. (a) R+ Qp > #Z, Sym)9+
() If R+ @p > &, Sym)9+ then for every ¢ / R we have 6 [ id.

Proof. (a) We first prove that %, | Qﬂp. Let z and y generate 2, and

(b)

ZD, respectively. Since z and y lie in the same Sylow p-subgroup
and \Bi\[ p. we can assume that z\g, [ 7\g,. Using Lemma 57
(ii) we get that z\g,, [ v\g, if there exists a path in ¢ from B
to Bp. This shows that z [ y since ¢ is connected. Moreover,
R+ Zp > &, Sym)9+since the elements of Qﬂp and the elements

of R commute.

Let A A{ )Ep Sym)g%-( We have already assumed that R and
R lie in the same Sylow 3-Subgroup of A% Let ¢ be an arbitrary
element of R. For every )a,u+/ R+Z, we have ¢)a,u+| )b,u0 t+
for some b / Rand t / Zp, where t only depends on ¢ and a since
t > %, Sym)9+ The permutation group @ is transitive, hence
there exist a;, 8 / B such that a)2,u+{ )a,u+and )b, u0 t+
)2,u0 t+ The order of mfm is a power of 3 since s, -, ® lie in a
Sylow 3-subgroup. Therefore ¢ [ 1 and hence )¢ [ id.

]

Lemma 60 says that if ¢ is connected, then )R,H| > #, Sym)9+and
)r4 [ id for every r / YR, B|. Therefore we can define a [ a%d. to
be an element of the wreath product Z, Sym)9+and clearly a%d, is

an element of A with a* [ a®

(s o]

Let us assume that g is the empty graph.

Then Lemma 57(iii) shows that every permutation in )Ry, Ra|® lifts

to an automorphism of

3. Let us assume that g is neither connected nor the empty graph.
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Observation 61. If Ry { Rs, then )R,Iﬂ > A contains 1, B2, Ba
such that

BY | )BiBaHBsBy+ By | )BiBaBsBsk B5 [ )BiBa#)BrBs+

Proof. Recall from Lemma 54 that )R}R| is the same group whether
Ris Q or Z3. By Lemma 53 the elements 31, 85, 83 can be generated
as products of an element of R and of R, as in the proof of Proposition

55, for the case R|[ Q.
U

Lemma 62. We claim that Bsg 1 and By are in the same connected
component of o for k[ 2,3,4,5.

Proof. Since ¢ is a Cayley graph and R; is transitive on the pairs of
the form )Bg 1, Bog+it is enough to prove that B; and B, are in the
same connected component of . If By = By, then B; is adjacent to
By in g, so we can assume that B; C B,. Since g is not the empty
graph By is adjacent to By for some [ > 3, so By = B;. By Observation
61 there exists 8 / A such that B)By+[ B, and B)Bi+[ B;. This
shows that By ~ By and hence there is a path from B; to By in o. [

o is not connected, so the order of the connected components of
cannot be bigger than 5. Since B; and B, are in the same connected
component of o there exists a partition Hy N Hy [ C such that \H;\|
\H2\[ 5, By, By / Hy and no vertex in H; is adjacent to any vertex of
Hy in .

Lemma 63. There exists a / A such that o [ o
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Proof. Let us assume first that Hy [ }Bi, Ba, Bs, Ba(. Then we define
a1 to be equal to B2 on Hy and the identity on Hs, where 3 is defined
in Observation 61. Using Lemma 57 (ii) we get that a; is in )R,H|(2).

If Hl [ }B],BQ} B5’Bﬁ< or Hl [ }B],BQ} BT;BS(; then we define o
by ao\g, [ Bi and ag\y, [ id, where 3y is defined in Observation 61,
Lemma 57(ii) shows again that ay / A.

It is easy to see that of [ a5 [ )ByBy+ Therefore A contains an

element a such that R®" [ R,.

We conclude that we can assume that Ry [ Rs.

Step 3

Let us now assume that Ry [ Rs. We intend to find 7 / A such that R [ R.
Let & and @ denote the generators of Z, and @p, respectively. We may

assume that &\, [ &\g, .

Lemma 64. There exists v / A such that @7 [ =.

Proof. Let us assume first that g is connected. It is clear by Lemma 57 (ii)
that &£ [ & So, we may take v [ 2.

Let us assume that g is not connected. In this case there are at least
two connected components which we denote by 41, ...,%,. We may assume
that By / %1. The permutations & and { are elements of the base group of
Z, Sym)9+and hence they can be considered as functions on C. We may
assume that a)r,u+ )r,u0 2+for every )r,u+/ R+ Z, By Lemma 57 (ii),
the function { is constant on each equivalence class.

For every 2 > m > n there exists {m / R such that )&+ €n and for
every (m / R there exists / R such that {5 [ &5. Let 7 be defined as
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follows:

T\ [ id
Y\obm | Cmn, for 3>m>n.

Let )b, v+/ €m)Bet+with B, / €, and we denote (,,')b, v+by )a, u+ Since
f is constant on €, we have @*)b,v+[ )b,v0 cps+for some ¢, which only
depends on %,,. Thus ¢m)a,u0 s+ )b,v 0 ¢ps+tsince ¢ and ¢, commute
and @\g, [ a\g.. Therefore we have

b, wH Cm)a, wH m)a,u0 )w  ut{ )bv0 cp)w  uH

for every )b, w+/ ¢m)Be+ It is easy to verify that v Y)b,w+[ )b, L item 4

Cm
for every w / Z, which gives

v 'en)bwH v )b wen0v ucmt v b wen0v uen0 et )b, w0 2+

It follows that v vy [ a.

It remains to show that v / A. Let y and z be two vertices of R %+ Z,,.

We denote by By and B, the elements of C containing y and z, respec-
tively. If B, and B, are in the same connected component of g, then ei-
ther 7 is defined on By and B, by ¢ma,' which is the element of the group
V&, @ > Aory)y+H yand 7)zH =

If By and B, are not in the same connected component, then B, C B,.
The definition of 4 shows that v£ [ id. Using Lemma 57 (iii) we get that
7\B,nB, is an automorphism of the induced subgraph of on the set ByNB;,
which proves that « / A, finishing the proof of Lemma 64.

OJ

Using Lemma 64 we may assume that ¢ [ & Since ¢ and ¢ commute
we have R + Qp > %, Sym)9+ Now we can apply Lemma 60 which gives
)45 [ id for every ¢ / R This proves that R Rsince R, [ Rs. Therefore
G [ @, finishing the proof of Proposition 58. U
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It is straightforward to check that the proof of Proposition 58 uses p >
9 only in the first step of the argument. We can formulate this fact in

Proposition 65.

Proposition 65. Let  be a Cayley graph of G| Q +7Z, or G| Z3 + Zy,
where p is an odd prime and let G [ Q + Qﬂp and & [ Q% + Qp be regular
subgroups of Aut) +isomorphic to G. Let us assume thatl there exists a
V@, G| -invariant partition C [ }By, Ba,...,Bs( of V) + where \B;\[ p for
every i [ }2,...,9(. In addition, we assume that Qﬂp 15 a subgroup of the

base group of &, Sym)C+ Then there is an automorphism a of the graph
such that @ [ G.

3.1.4 Main result for p | 6 and 8

In this section we will prove that Q 4 Zs, Q + Zz, Z3 & Zs and Z3 & Z7 are
Cl-groups.

The whole section is based on the paper |L,L,P|, so we will only modify
the proof of Lemma 5.4 of |L,L,P|.

Proposition 66. Every Cayley graph of Q+Zs, Q+Zr, Z3+7Zs and Z3+7Zq
is a Cl-graph.

We let R denote either Q or Z3, and let p[ 6 or 8. Let  be a Cayley
graph of R+ Z, and let A [ Aut) + We denote by P a Sylow p-subgroup
of A. Let us assume that A contains two copies of regular subgroups which
we denote by @ [ R+Z, and G [ R:tzp. We can assume that is neither
the empty nor the complete graph and both Z, and @p are contained in P.

If the order of every orbit of P on V') -Hs p, then it is clear from Propo-
sition 65 that is a Cl-graph. Therefore P has an orbit II — G such that
\II\ [ p? since p* > \G\\ The remaining orbits of P have order p since
3p? > 9p.
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It was proved in |L,L,P, Lemma 5.4| that the action of A on the vertices of
the graph  cannot be primitive so there is a nontrivial A-invariant partition
C| }By,Bi,...,B; 1( of V) 4] G. The elements of the partition C have
the same cardinality since the action of A is transitive on C so \B;\> 5p < p?
for every i [ 1,2,...,t 2. The partition C is P-invariant so P acts on C.
Since P is a p-group, the order of every orbit of P is a power of p.

Let €| }Co,Ch,...,Cs 1{ be an orbit of P on C such that II < N$_;C;.
We may assume that B; [ C; for i [ 1,2,...,;s8 2. It is clear that s is a
power of p. If s ~ p?, then fingi£N 3p? > 9p which is a contradiction.

Since \Co\[ \Bo\ < p?, we ¢

which implies s [ p.

nnot have s [ 2. It follows that 2 < s < p?
For every i < s and every = / P the following equalities hold for some
J<s
)Bi{ TIF [ B {II"[ B; {IL

This implies that
\Bo { IN[ \B; { TI\

for every 1 > i < s. Therefore

P LI C::S)Bi{ H%([ s\Bo { IN[ p\Bo { T\,

This gives \By { II\[ p so \Bp\can only be p or 9 since \Bp\t [ 9p and both
\Bo\and t ~ s are at least p.

If \Bo\[ p, then ITis the union of p elements of the A-invariant partition
C and every orbit II*%f P is an element of the partition C if TI°[ I For
every orbit II°{ II of P and for every y / %, N, we have y)II%-[ II®
In particular, y)Bz+[ B;. By Proposition 65 we may assume that there
exists an element z%in &, N &, such that 2¥Bo+[ B; for some j { 1,8 and
clearly ¥B7+ Br. Since both @ and € are regular there exists a / Ca)z¥
such that a)Bo+ Br. Since a and z°tommute we have a)B;+{ Bz, which
contradicts the fact that a)By+ By.
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We must therefore have \Bo\ [ 9. Let & and @ generate &, and Z,,
respectively. Since @ and & are regular we have that neither a‘ nor *
is the identity, so both & and @ are regular on C. Since both a* and ¢~
generate a transitive subgroup in Sym)C+of prime order p > 3, and for every
r /RN R the permutation % commutes with one of these two elements, we
have r“ [ id. Since & and { are in the same Sylow p-subgroup of P we may
assume that &)B;+| @)Bi+| Biyifori[ 1,2,...,p 2, where the indices
are taken modulo p. By Proposition 65 we may also assume that & { .

For every m there exists an [ such that the action of alf ! is nontrivial
on Bp, since & { (. Therefore Ap,,\g, contains a regular subgroup and
a cycle of length p such that p > %D\. A theorem of Jordan on primitive
permutation groups, which can be found in |Wie, Theorem 13.1|, says that
such a permutation group is 3-transitive and hence the induced subgraph of

on By, is either the complete or the empty graph for every m.
Lemma 67. B,,C B, for1>m<n>p 2.

Proof. There exists a unique element g / %, > P such that g)Bn,+[ Bn.
We also have a unique element g / Qﬂp > P with g [ @*. Since Z, is a
cyclic group of prime order and & { & we have g { g Moreover, we may
also assume that g\g_ { @\g, since g [ @ and the induced subgraphs of
on By N By are all isomorphic, where both m 0 ¢ and n 0 ¢ are taken
modulo p.

Clearly, g [ @g 'is a cycle of length pon B,. The vertices of V) & ITare
contained in P-orbits of order p that contain the orbit of the vertex under z,
so meet each B;in a single vertex, so g fixes every vertex of the set B, N B, I1
since g~ | id.

Let u / B IL It is enough to show that if w is adjacent to some v / By,
then u is adjacent to every vertex of B,. We will prove that A is transitive

on the following pairs: })u, wH\w / By(.
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A is transitive on Pu,wH\w / Bp { supp)g | }u,wH\w / B { II
since g fixes w. Therefore we may assume that v / B, ! Il and we only have
to find an element a / A such that a)u+{ u and a)v+/ B, { IL

The restriction of g to By, is a cycle of length p so g does not commute
with {\g_, where { is an involution of R Since ¢ and g commute we have
that there is a u®/ B, such that {g)u®H af)u} Since the action of B is
transitive on By, there exists a / B such that a)u+{ u°® Then

Jeatg)ut Cem)ut] Ce)uH af)uH g)fabut

so there exists a®/ A such that

aBuH gafut (3.1)

Let us suppose that v [ g)u+ Notice that g)u+is in a P-orbit of order
p, so g)u+/ IL Then the inequality (3.1) gives aFv+{ gafu+ Since R\g,,
is regular on B,, there exists a / B such that a)u+[ a%utand since a and
g commute we have a)v+| ag)u+| ga)ut| gau+ Therefore a)vH a¥Fv+
and hence a 'a®fixes u and a 'a¥vH v so we may assume that v{ g)u+

Ifp[ 8, then v / By { IL

Let us assume that p [ 6. We claim that there exists & / B such that
Bu+/ B! TI[ Bpl supp)g+while 8v+/ B, { 1| B,{ supp)g+ It is clear
that g)Bp, { supp)g+{ B, { supp)g+and g commutes with each element of
R. Therefore it is enough to show that if u,v / By supp)g+with u { v, then
there exists & / B such that ®u+/ By, 1 supp)g+and 8 v+/ By, { supp)g+
This can easily be seen from the fact that ide)\RB\ 6+ 2.

The permutations & 'g'afix the vertex u for 1 > 1 > 5 and & gh#)v+
& lg)y+if I} C Iy )mod p+ At least one of the the four elements & 'g&
8 lg’a 8 1g%a & 1g%aof A fixes u and maps v to an element of By, { supp)g+
B, { I since \B, ! supp)gHf\[ 4, finishing the proof of the fact that B, C B,
for1>m{ n>8. O
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Every permutation of V') +which fixes By, setwise for every m is an auto-
morphism of  so there is an a / A such that €% [ & Applying Proposition
65 we get that there exists a / A such that )R + Ep(‘ [ R+ @p, finishing

the proof of Proposition 66.

3.2 Zf, + 7, is a DCI-group if ¢ > p3

In this section, for every prime p > 4 and for every prime ¢ > p* we prove
that Z, £ Zg is a DCl-group.

Most of the results we enumerate here have already been collected in
Chapter 2 since we prove here that the direct product of an elementary
abelian group [Zg) with a cyclic group (Z,) is a DCI-group. The cyclic group
of order p, which is a DCI-group, can also be considered as an elementary
abelian p-group of rank 2. The best general result was given by Hirasaka
and Muzychuk |H,M| who proved that Zf} is a DCl-group for every prime
p. For our investigation the following weaker results are also important.
Dobson [Dob1| proved that Zg is a Cl-group for every prime p and Alspach
and Nowitz showed |A,N]| that Zg is a Cl-group with respect to Cayley color
digraphs.

A new family of Cl-groups was found by Kovacs and Muzychuk |K,M]|,
namely Zf} + Z4 is a Cl-group for every prime p and q. Here we advance

further.

Theorem 68. For every prime p and every prime q > p° the group Zg +7Z,
is a DCI-group.

Proof. We mimic the proof of Theorem 50. We use the same three steps but
in different order.

Our technique is based on Lemma 8 again, so we fix a Cayley graph

| Cay)Z, £ Zq, S+ Let A[ Aut) +and € Zg + Qﬂq be another regular
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subgroup of A isomorphic to Zg + Zg. We have to find an « / A such that
G| @] B+2,

Step 1

We may assume Z; and Eq lie in the same Sylow g-subgroup @ of Sym)p*q+
Then both Eg and Eg are subgroups of Nsympsq)@H A so we may assume
that ﬁg and Eg lie in the same Sylow p-subgroup of Ngympsq))Q-H A which
is contained in a Sylow p-subgroup P of A.

The Sylow g-subgroup @ gives a partition C [ }By, Bs,. .., Bp( of the
vertices of |, where \B;\[ q fori [ 2,...,p* It is easy to see that C is
invariant under the action of Eg and Zg and hence )@, @| > Sym)q+Sym)p*+
Moreover, both G and @ are regular so Eg and ?; induce regular action on
C which we denote by H; and Hs, respectively. The assumption that Zg and
Eg lie in the same Sylow p-subgroup of A implies that H, and H, are in the
same Sylow p-subgroup of Sym)p*+ what we denote by P;.

Now, we reverse the order of the two remaining steps.

Step 2

Let us assume that Z; { Qﬂq which is generated by p* disjoint g-cycles. We
intend to find an element « / A such that @g [ &,

We define a graph o on C in the same way as in Section 3.1.3, which is
an undirected Cayley graph of Zg.

We can define a colored graph 1 on C in the same way as in the previous
case, which is again a Cayley color graph of Zg and both H; and H, act
regularly on 1.

We first prove a technical lemma.

Lemma 69. Let us assume that H is a reqular abelian subgroup of Sym)p™+

and let P ~ H be a Sylow p-subgroup of Sym)p™+ Then H contains Z)P+
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Proof. 1t is well known that the center of P is a cyclic p-group. Let z be a
generator of Z)P+ Then )H, z| is a transitive abelian group. Hence )H, z|

is regular. Since H is also regular, we have that z is an element of H.

O

We also prove the following two lemmas what we will use several times

in this step.

Lemma 70. Let us assume that CXCSY. .. Clare the set of the connected
components of V) o+and let C; | NCP— V) +for every i [ 2,...,k .
Let a be a permutation on the vertex set V') +such that for 2 > i > k the
restriction a\c, [ m;\g, for some n; / Aut) +and oV is an automorphism

of o. Then a is an automorphism of

Proof. Let x and y be points in V') 4+ We have to prove that z is adjacent

to y if and only if a)z-+Hs adjacent to a)y+ This holds if z and y are in the

same C; for some 2 > 1 > k since o:\(,:j is defined by an automorphism of on

Ci. Ifz / Byand y / By, where By, C By, and z is adjacent to y, then every

element of By, is adjacent to every element of B,. Since oV () / Aut) o+
the same holds for a)Bp+and «)Bp+and hence a)z+is adjacent to a)y+
Similar argument shows that if z / By, and y / By, where B, C B, and z

is not adjacent to y, then a)z+is not adjacent to a)y+

]

Lemma 71. (i) Let A and B be two disjoint subsets of cardinality q of
V) + We write A }a,z+\z / Zg¥ and B [ })bz+\z / Z.
Let us assume that g and § are automorphisms of the graph — with
a)a,zH @)a,z+ )a,z0 24 g)b,z+H )b, z0 2+and g)b,z+ )b, z0 d+
for some 1{ d / Zq for all x / Zq. Furthermore, let us assume that @
and @ are automorphisms of the graph — with @)A+| ©)A+] B and
w and © commute with g and g, respectively. Then for a [ a ' we

have g*\g [ @\
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(ii) Let us assume that C [ Pe,z+\x [/ Zg( is a subset of V) +with
A{ B[ A{C | B We also assume that g)c,z+[ )c,z0 2+4and
g)e,z+| e,z 0 d+for every x / Zy. Let us assume that ¢ / Aut) +
with ©)A+[ C and we also assume that § and @ commute. Then for

B[ ta ! we have P\ [ 8\s.

Proof. (i) Let us assume that @)a,1+[ )b, bp+and @©)a,14+[ )b, b33for
some bg, b§° / Z,. Using that @ and g commute we get that a)a, z+]
)b,bo 0 z+or every z / Z, and similarly we have @)a,z+ )b, b50 dz+
Thus

a)b,z+H a)bb0 )z bo+H{ w)a,z bo+H )b,bg0 )z boH+
[ )b)byY dbyt0 dz+

x (by dbg)

It is easy to derive that a )b, z+ )b, y

(. Using the previous

fwo equations we get

a 'ga\g)b,z+ a 'g)b,)bY dby+0 dz+
b dbp+0 dx0 d )bF° dbo—l—{

[ 1)b,)b° dbot0 dz 0 d+]| )b,) -

[ )b,z 0 2+

(ii) Let us assume that @)a, 14| )e, co+for some ¢o / Zg. Then @)a, z+|
)e,co 0 dz+for all z / Z,; Thus
B)b,z+ ©wm ')b,by0 )z byt (32)
[ 0)a,z bot] )e,co0 d)z bott |

and hence B )e,z+{ )b, £t 4 {Jging equation 3.2 we have

B 'gB)b,z+] B 'g)e,co0 d)z botH B ')e,c00 d)z bot0 dt

’ d

[ )b,z0 2+
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The vertices of the graph ¢ and 1 can be identified with the elements
of Zg and we may assume that the action of an element r of the Sylow

p-subgroup P; is the following:
r)a,bycH )a0 2,60 s4,¢0 top+

where s, / Z, only depends on a and ¢, / Z, depends on a and b.
Let g and g denote the generator of %, and @q, respectively. We may

assume that g\g, [ @\,

1. Let us assume first that g is a connected graph.

Using Lemma 57 (ii) we get that g\, [ @\, if there exists a path in
o from B; to B;. This shows that g [ @ since ¢ is connected in this

case.

2. Let us assume that ¢ is the empty graph.

For every By, / C there exist a, /% and ¢ / @g such that a,,)B;+
tm)B1+ Bm.

Let a be defined as follows
a\g, [ id
a\g,, [ tmn, for 3>m>p’

It is easy to see that a“ [ id so using Lemma 70 we get that a is an

automorphism of . Using Lemma 71 (i) we get that g® [ a.

3. Let us assume that the size of the connected components of ¢ is p.

Let C7C37. .., Cp5 denote the connected components of o and for
2>m>p?let Cp [ NCX. For Cy,...,Cp we choose an element @y,
of Eg such that a,)C1+[ Cp. We may assume that B; — C}. Since
Hs is regular on o, for every 3 > m > p2 there exists @, such that
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tm)B1+| am)Bi+ For 3 > m > p? let um [ Uma,,". Now we define

the following permutation:

a\g | id

a\o,. [ Uy for 3>m > p?.

Clearly, for 3 > m > p? we have u,,) B+ B for at least one B; —C,,.
Since H; and Hy are in the same Sylow p-subgroup of Sym)p*+ the
order of u% is a power of p. We also have that C,, is the union of p
elements of C for 2 > m > p? hence of [ id. We also have that a;\s,,
is the restriction of an automorphism of the graph  for m [ 2,...p.

Therefore by Lemma 70 a; is an automorphism of the graph

Finally, Lemma 71 (ii) gives g* [ g.

. Let us assume that the size of the connected components of ¢ is p?
and we denote them by D§IDT..., D;°;. Let Dp denote the set of

vertices of  which belongs to the elements of D for 1>m >p 2
Using Lemma 69 we get that Hy { Ho { }2(. Let z be an element
of order p of Hy { Hy and we denote by 2; and 25 the element of Eg
and @g such that z£ [ 2£ [ =z, respectively. Then )z, '2i4 [ id for
i[ 2,...,p 2
Let us assume first that 2;)DoH Dp. We may assume that 23) Do+
D;fori[ 1,2,...,p 2. We define ay in the following way:

O:'2\D0[ ’Ed

a\p, | 2iz*for2>i>p 2.
Since zF [ 25 [ 2 we have af [ id. Using Lemma 70 again we get

that ay / Aut) +and Lemma 71 gives g*? [ g.

Therefore we may assume that 2,)Do+[ Dp. In this case the orbits

of z give a )Hy, Hy|-invariant partition £ [ }Egp \a,b / Zy( of C.
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Using that the elements of C [ V) ¢+can be identified with elements

of Zg we may assume that FEgp has the following form for every pair
Ja,b+/ 7.2

Ea,b [ })a': b: C—I—/ Zg \C / Zp(
We may also assume that D[ Mp/z,Eqp for all a / Zy.
Since H; acts regularly on o, there exists hy / Hy such that hq)Eg o+
Ey 1. Since H is also regular, there exists hy / Hy such that hg)Eg o+

h1)Ep o+ Since the order of hy and hg are p and hy)D§ ho)D§H Dg°
we have that hy)DXH hy)Dd{ Dfori[ 1,...,p 2.

Since H; and H, are contained in the same Sylow p-subgroup we may
assume that z, hy and hy act in the following way on Zg which was
identified with C.

2)a,b,cH )a,b,c0 2+
hy)a,b,cH )a,b0 2 c+
ha)a,b,eH )a,b0 s4,¢0 top+

where s, and tap are in Z,. The assumption that hy)Eoo+ h2)FEoo+H
Eo1 gives that s [ 2.

We claim that s, [ 2for 2 > a > p 2. Since Hj is regular on
there exists ky / Hy such that ky)1,1,14[ )a, 1,14 Since hy and ko
commute we have that ky)l,4,14[ )a, sui, wi+for some w; / Z,. 1If

34 { 2, then such an element cannot be in the Sylow p-subgroup P;.

Therefore hy)a,b,c+[ )a,b0 2,¢0 typ+for all )a,b,c+/ Z3, where
tap / Zyp only depends on a and b.

Note that Egp is a p-element subset of V') o+for all a,b / Zp so we

may define the relation C on subsets of vertices of ¢ of the form Egp.
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Lemma 72. Let a [ a®be elements of Zy and we fiz two more elements
b and b®of Zyp. Then either Eqap C Eapy or tapin | tap+n for all
n / Ly.

Proof. Since s, [ 2 for a / Z, we have that for all m / Z, the

permutation hy*h, ™ fixes Eqp and Eq . Moreover,

m
h*h,™)a,b,cH )a,b,c0 U tap i+and
= (3.3)
B3 hy ™)ab e )ahFe0 | tuy o+
i=1
One can see using Lemma 57 (ii) that if [[i; tap i { []ie; tarw ¢ for
some m / Zy, then Egp C Egy. Using that p is a prime we obtain
that if [[/,tap i [ [lieitaw i for all m / Z,, then topin [ tapin
for n / Zy,.

O

For each a / Z, we define the following function from Z, to Zy:

ta) b—i—:% Lap-

Lemma 73. Let us assume that for some a,a%b,b>/ Zy, we have t,)b0
nH ty)b0 ntfor alln / Z,. We denote by ky the unique element of
Hy which maps )a, b, 14+to )a b1+ Then ko)a,b0 d e+ )ab™® d, e+
for all d,e / Zp.

Proof. Since ky and z commute we have ky)a,b,m+ )abm+for all
m / Zp. We also have that ks and hy commute. Using the condition
that t4)b0 nt| ty)b0 ntfor all n / Z, we obtain ks)a,b0 d,e+]
)asb™0 d, e+for all d,e / Z,.

O
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Corollary 74. If the conditions of Lemma 73 hold and ky is the unique
element of Hy such that ky)a,b, 1+ )ab¥14 then ki\g,, [ k2\g,,-

We define an equivalence relation on the set }DgeD..., DX (. We
write D3°C D2 if and only if there exist b and b™in Z, such that
tapin | tapsn for all n / Z, We also write DC D if DXC D
does not hold.

Now we can choose a vertex )a, bg, 1-+Hn every D%uch that if D°C Dg?,
then tap, 4n [ tar b, +n for all n / Z, Forevery 2 >a >p 2 there
exist a, / % and @, / Qg such that &)1, by, 14+ ©5)1,bo, 14+ )a, ba, 1+

since both H; and Hy are regular on C.

Now we can define the following permutation:

as\p, [ id

as\p, [ tem,' for2>a>p 2

Lemma 75. as is an automorphism of

Proof. We first prove that a% is an automorphism of the graph . If
B; N B; is contained in Dg°for some a / Z, then as is defined by
the restriction of an automorphism of . Therefore we only have to

investigate those pairs )B;, B;+which are not in the same set Dg°for

any a / Zy.

Let us assume that B; / E,p and Bj / Eg . By the definition of as,

L

for every d / 7Z, at least one Eg. is fixed by a%. Therefore of fixes

every set Eqe since the order of Ct’é:\pé is a power of p for every d / Zp.

Let us assume first that D°C D Lemma 72 gives Eyp C Eo .
Using also the fact that or‘g fixes Fqp and By p setwise we get that B;
is adjacent to Bj if and only if af)B;+is adjacent to af)B;+ proving

the required property for an automorphism of .
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Let us now assume that D°C DS, We denote by the pair )p.a, ', Uas, '+
the restriction of the action of as to DSN DS Since @, and &, are
automorphisms of  the pair ))g,a, '+, )0oa, ' ¥-+s an automorphism
of the induced subgraph on DN D if and only )id~, )0, '0un, 8, £+

is. Since both Zg and Eg are abelian we have
idﬁ: )@a l@ﬂ’a‘a’laﬂ"g[ [ idﬁ& )@d'@a l—ré:)aﬂa'a’l"g [ )

It is clear that )a.a,'+)a%by, 14+ )a, be, 14+and )oa 0, *¥)a, by, 1+]
)a*?ba, 14 Using Corollary 74 we get that

id“, owl, 'F)ran, F[ [ id°,id“[
which is an automorphism on DSN DS This proves that of / Aut) 1+
If B; C By, then as)Bi+C az)Bj+since af / Aut) i+thus p; / Bi —
V) s adjacent to p; / B; —=V) -Hf and only if a3)p;+Hs adjacent to
a3)p;+
If B; = Bj, then there exists a / Zy such that B; and B; — D,. Since

ag is defined on D, by an automorphism of  we have that p; / B; is
adjacent to p; / B; if and only if a3)p;Hs adjacent to ag)p;+ finishing

the proof of Lemma 75.

O

Finally, one can see using Lemma 71 (ii) that g* [ g.

Step 3

Let us assume that for the generators of the cyclic groups g / #, and
g /%, wehaveg| g
Since g [ g we have that %5 and Zg are contained in Cy4)g+ Using

Svlow’s theorem again we may assume that Eg and Qg are in the same
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Sylow p-subgroup of C4)g+ Using all these assumptions we prove the

following Lemma.

Lemma 76. (i) @g + @q > %, Sym)p*+
(ii) If Qﬂgi@q > &, Sym)p*+ then for every @ / @g we have )+ [ id.

Proof. (a) 72+ @, > #&, Sym)p>+since the elements of 73 and a
P q q D

commute.

(b) Let A°] A{ )Eq Sym)pﬂ-@;\-\’e have already assumed that @g

and Eg lie in the same Sylow p-subgroup of A®°which is generated

by p? disjoint g-cycles. Let @& be an arbitrary element of @g For
every )b, s+/ Z3 + Zg we have @)b, s+ )c,s 0 t+for some ¢ / Z3
and t / Z,, where t only depends on ¢ and bsince ¢ / &, Sym)p*+
The permutation group @ is transitive, hence there exist a;, a2 /
%> such that @)1, s+[ )b, s+and @z)c,s 0 t+[ )1,50 t+ The
order of asfia; is a power of p since @y, @t and &, lie in a Sylow

p-subgroup. Therefore ¢t [ 1 and hence )4 [ id.
O

Lemma 76 says that for every ¢ / Eg we have Ju4 [ id. We use again
the graph | defined on C. It is clear that H; and H, are regular
subgroups in Aut) ;4and they are isomorphic to Zg. Since Zg is a
DCI®-group |A,N| we have that there exists p / )Hy, Hy|? such that
HY[ H;.

Let n [ pidz be an element of the wreath product Z, Sym)p+ Clearly,
n /)@, G|(2) and hence 7 is an automorphism of o, which conjugates
@g to Eg. Moreover, the base group part of 7 is the identity so n /
C4)g+ This proves that Gn [ @, finishing the proof of Theorem 68.
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Our method also gives the following general theorem.

Theorem 77. Let H be a finite p-group which is a DCT® -group and q be a
prime with ¢ > \H\ Then G| HxZy is a )g 2+DCI-group.

Proof. Let bea Cayley graph of G. Let us assume first that is connected.
Let @] B +Z,and G [ f j:@q be two regular subgroups of A isomorphic
to G, where A[ Aut) + We would like to find a / A with @ [ &,

Using the same argument as in Step 1 in the previous two cases we may
assume that 2, and Qq lie in the same Sylow g-subgroup of Sym)G+ which
gives a partition C [ } By, Bs,..., By\(. Clearly, we have )@, C| > Sym)q+
Sym)H+and we may also assume that B and H are contained in the same
Sylow p-subgroup. The regular action induced by B and H on C will be
denoted by H; and Hs, respectively.

Since the degree of the vertices of is less than g we have B; = B; if
there exists an edge between B; and B;. This shows that ¢ (the same graph
as in the previous cases) is connected since is connected. Lemma 57 (ii)
shows that Z, | Qq

It is easy to see that H?H > %, Sym)H+and similar argument as
in Lemma 76 (ii) shows that for every element of g / YH, H|® we have
Y9+ [ id. Since H is a DCI®)-group and 1 is a Cayley graph of H containing
the regular subgroups H; and Hs, there exists an element of n / )Hy, Hy|?
such that Hy [ Hy. It is easy to verify that 7 lifts to an automorphism of
by a [ nidg, where nid, is an element of the wreath product &, Sym)H+
with Ypids4 | idz. It is easy to verify that @ [ &, finishing the proof of
the theorem for connected graphs.

Now, let us assume that [ Cay)G, S+is not connected. Every con-

nected component of a Cayley graph of G is isomorphic to a connected
Cayley graph of G; > G. Either Gy > H or G, is of the form H; + Z,,
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where Hy > H. The connected Cayley graphs in both cases are Cl-graph so
if Cay)G,S+f Cay)G,T+ then there exists a / Aut)Gi+with a)S+[ T.
Finally, it is easy to verify that for every p-group listed in Theorem 31 each
automorphism of G, extends to an automorphism of G, finishing the proof
of Theorem 77. []



4. EXPANDER GRAPHS

4.1 Definition of expander graph series

Let  be an arbitrary undirected graph with vertex set V) + Let S <V) +
We define the boundary of S, which we denote by 9)S+ to be the set of
vertices in V) R S with at least one neighbour in S. For a graph  the

vertez isoperimetric number or the verter expansion ratio h) -Hs defined by

h) H mm}\@\)gis\—'\ S—=V) £1<\S\> \Véﬁ\ :

Similarly, the edge isoperimetric vumber or the edge expension ratio is

he) H mm}\a%s\ﬁ S —=V) —L—1<\5'\2\V)T4\ ;

where 0,)S+ what we call the edge boundary, denotes the set of edges leaving
S. A graph is called an e-expander if h) +~ €, and a series of graphs
is called an expander family if there is a constant € > 1 such that for every
n the graph ,, is an e-expander. Denoting the maximum degree by d it is

easy to see that
he) +
d
so we could have used h,) +to define expander family for graphs of bounded

>h) +=he) +

degree. Sometimes we drop the subscripts n and we omit to mention the
fact that we are talking about an infinite sequence of graphs. We will only
restrict our attention to undirected d-regular graphs. We shall say that d-
regular expander graphs are finite graphs which are highly connected and

sparse in some sense.
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The theory of expander graphs is a fast developing area of mathematics
and expander graphs have many different applications in pure and applied
mathematics as well. The original definition of expander graphs was intro-
duced by Pinsker |Pin|. Pinsker proved the existence of d-regular bipartite
expander graph series using a simple probabilistic proof. Recently, it was

discovered that an equivalent definition was formulated earlier by Barzdin
and Kolmogorov |B,K]|.

4.2 Spectral expansion, Mixing lemma

We will exhibit a series of non-expander Cayley graphs of special type in
Section 4.4. Therefore we only briefly collect some important properties of
expander graphs.

The adjacency matriz M of a graph  on vertices labeled by 2,...,n

is defined by M;; [ \te / E) +Hrom ito j(\ The normalized adjacency
matrix of a d-regular graph is simply N | 7> Which can also be considered
as the transition matrix of the random walk on . Since M is symmetric it
has n real eigenvalues. It is clear that )2,...,24/ R" is an eigenvector of the
adjacency matrix with eigenvalue d and all the eigenvalues lie in the interval

| d,d" The eigenvalues of the graph are denoted in the following way:
dl A1) +~X) +~...~ X)) +~ d

Many properties of the graph can be derived from its spectrum, which is the
set. of eigenvalues of the corresponding adjacency matrix. For example, a
d-regular graph is connected if and only if A3) +< d and G is bipartite
if and only if A,) +[ d. Moreover the multiplicity of d is equal to the
number of connected components. However it is not too hard to construct
cospectral graphs, which are non-isomorphic graphs with the same spectrum,
but we have already seen that the isomorphism classes of Cayley graphs of

Ly are determined by the spectrum, see |Tur].
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The difference between the two biggest eigenvalues d = Ag)G+is called
the spectral gap and ) +denotes o c¢” }\\2) & \\n) # . The following
inequalities, proved independently by Dodziuk |Dod| and by Alon |Alo|, relate
the spectral gap and the isoperimetric numbers:

d X)) +

3 — 2he) > 3d)d ) +

This theorem shows that 5 is an expander family if and only if the spectral
gaps d  Ag) pHof these graphs are bounded from below by some positive
constant.

A combinatorial way to describe expander graphs is the Expander Mixing

Lemma, which was first proved by Alon and Chung. |A,C|.

Lemma 78 (Alon, Capalbo). Let  be a d-regular graph. Then

d\S\T'\ WA
RS > ) + W\ (4.1)

for all S;T —V) 4 where E)S,T+denotes the number of edges connecting

)S, T4\

a verter in S with a verter in T.

Note that the ratio C{‘ﬁg\\ is the expected value of the edges between sets
of cardinality \S\ and \I'\in a random d-regular graph on n vertices. The
eigenvalues of the adjacency maftrix can also be estimated with the difference
which appears on the left side of equation (4.1). This statement, proved by
Bilu and Linial |B,L]|, is usually called the converse of the Expander Mixing

Lemma.

Lemma 79. Let  be a d-reqgular graph. Suppose that there exists some

positive constant ¢ such that \E)S, T ‘i‘\}i\g\\ >c \S\U'\ for every S {
T[ B Then A) +> Kc)20 1 gg)ﬁ—l—l.—

The distance d)z, y+of two vertices z and y in a graph s the length of

the shortest path connecting these vertices and the diameter of a graphs is
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0 ¢ zyv(r) d)z, y+ Clearly, one of the most important properties of expander
graphs is that they have small diameter. More precisely, for a fixes € > 1, an
e-expander graph on n vertices has diameter O)mpi n+

Finally, we mention again that the normalized adjacency matrix of a
graph  can be considered as the transition matrix of a Markov chain, which
is called the random walk on . A random walk is a sequence of random
vertices vy, vq,... of the graph, where v;4, is chosen uniformly at random
from the neighbours of v;. The choices in different steps are independent.

It is well known that if is connected and non-bipartite with \V) [ n,
then the random walk converges to the to the uniform distribution on V') +
what we denote by w,. The rate of convergence can be estimated by A) +
We choose an arbitrary initial distribution vector p [ pi,pa,- - ., Pn such that

[T, pi[ 2, then we get the following.

Lemma 80. Let  be a graph on n vertices and let p be the initial distribution

vector as above. We denote by N the normalized adjacency matriz of . Then

W m@)@(

4.3 Existence of expanders

As we have already mentioned before, the existence of expander graph series
can be proved using the probabilistic method. What is more, using a suitable
random graph model, there exists an € > 1 such that the probability that a
randomly chosen d-regular graph on n vertices is an e-expander tends to 2
as n tends to infinity if d ~ 4.

The first explicit series of expander graphs was constructed by Margulis
[Mar|. Let G be a locally compact group and let H be a Hilbert space. We
say that a unitary representation m =G %o U )H +has almost invariant vectors
if there exist v, / H with \wp\\[ 2 such that for every compact subset K of
G we have that s , 5 \{)gHvnt vn\\tends to zero as n tends to infinity.
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The group G is said to have property (T) if every unitary representation of
G having almost invariant vectors has a non-zero G-invariant vector. It was
proved by Kazhdan |Kaz| that SL)n, K+has property (T) if K is a locally
compact non-discrete field. Note that SL)n, R+does not have property (T).
It was also proved that lattices in real simple groups of rank at least 3 (e.g.
SL)d, Z+ where d ~ 4) also have property (T). It was proved by Margulis
|[Mar| that if G is a group generated by a finite set S and G has Kazhdan
property )T4+and Mis a set of finite index subgroups of G, then the Cayley
graphs }Cay)G/N,S+H\N / M form a family of eXexpanders for some € 1.
This result gave the first explicit example for a family of expander graphs.

One explicit example avoiding the use heavy machinery of infinite group
theory was found by Reingold, Vadhan and Wigderson |R,V,W/|. Their con-
struction is based on the Zig-Zag graph product. Given an m-regular graph

1 and a d-regular graph 5 on n and m vertices, respectively. The Zig-Zag

product 1= 50f ;and 5 isa d*regular graph on nm vertices. The ad-
vantage of the Zig-Zag product is that the spectral gap of the product can be
estimated from below by a function of the spectral gaps of 1 and 5. Using
such a method, d-regular graphs on d*" vertices were constructed for every n
and d ~ 4 with isoperimetric number bounded from below by some positive
constant which does not depend on n.

For more information and more applications of expander graphs we refer
the reader to the survey of Lubotzky [Lub2| and the paper of Hoory, Linial
and Wigderson |H,L,W]|.

4.4 Non-expander Cayley graphs of finite simple groups

In this section, for every infinite sequence of simple groups of Lie type of
growing rank we exhibit connected Cayley graphs of degree at most 21 such

that the isoperimetric number of these graphs converges to 1. This proves
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that these graphs do not form a family of expanders.

The study of series of Cayley graphs of finite simple groups has received
great attention. It was announced by Kassabov, Lubotzky and Nikolov in
|K,L,N| that there exist £ / N and 1 < € / R such that every non-abelian
finite simple group which is not a Suzuki group has a set of generators S of
size at most k for which Cay)G, S+Hs an e-expander. The details of the proof
of this result are given in a series of papers (|Kasl|,|K,N|,|Kas2|,|Lub3|,|Nik|),
and the theorem has been extended by Breuillard, Green and Tao in |B,G,T1|
to the Suzuki groups. These results motivate a question which was asked by
Lubotzky in |L,Z] - is every family of Chevalley groups of bounded rank a
family of uniformly expanding groups? Recently, Breuillard, Green, Gural-
nick and Tao |B,G,G,T| proved the folllowing theorem:

Theorem 81 (Breuillard, Green, Guralnick, Tao). Let G be a finite simple
group of Lie type of rank n. Suppose that a and b are elements of G selected
uniformly at random. Then the probability that Cay)G, }a,b,a ',b (+is an
e-expander is at least 2  C\G\ °, where C and & only depend on € and n.

In [Lub2|, Lubotzky also suggested that one should investigate families
of simple groups of unbounded rank, and wrote that it seems likely that if
Gy is a sequence of non-abelian simple groups of Lie type such that the rank
of Gy, is unbounded, then for every n there exists a generating set T, =Gy,
such that the graphs Cay)Gy, T,+do not form a family of expanders. An
explicit example (see |Lubl, p.31]) of a non-expander family of Cayley graphs
of special linear groups was given by Luz. The diameter of the graphs given
by Luz was investigated by Kassabov and Riley, and it was proved in |K,R]
that there exists ¢ / R such that the diameter of the graphs is smaller than
¢ log)\SL)n, p#+

Similarly, the symmetric group Sy is generated by v [ )2,34and oy, [

)2,3,...,nHor every n / N and the corresponding sequence of isoperimetric
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numbers h)Cay)Sn, }7v,0n(+tends to 1. Moreover, one can find a set of
generators of Sy, such that the diameter of the corresponding Cayley graphs
is ~ )n’+which shows that these Cayley graphs do not form a family of
expanders, see |Lubl, Proposition 6.1.8|.

One of the breakthroughs in solving questions on growth in groups is due
to Helfgott (see |Hel|), who proved that for a generating set A — SL)3, p+
we have either \A*\ ~ A\ or JAN A 'nNed [ SL)3,p+ where § > 1
and k ~ 2 are absolute constants. Complete generalizations of this result
to all finite simple groups of Lie type of bounded rank were given by Pyber
and Szabo (see |P,Sz|) and by Breuillard, Green and Tao (see |B,G,T2|). For
every n ~ 4, an explicit example of a generating set A of SL)n,4+was also
given by Pyber and Szabo (see |P,Sz|) such that \A*\ > 211\A\ and it is
mentioned that large families of generating sets of constant growth, which
are union of a few cosets of some subgroup, can also be given for SL)n, g+
where g > 3. Similar counterexamples for growth in symmetric groups were
given in |P,P,S,Sz| and in |Spi5].

For every prime power ¢ we will investigate 8 series A;)q+ B)q+C)q+
D)) g+2 Ao 1)¢%* 42 A2,)q*£2Dy) g +of finite simple groups of Lie type. These
are the series of groups of Lie type of fixed type for which the rank of the
groups tends to infinity. In order to define generators and subgroups of these
groups we will use the generators given by Steinberg in |Ste| and we will use
the notation and several results from the book of Carter |Car]|.

For these 8 series of finite simple groups of Lie type we construct Cayley
graphs and subsets such that the number of neighbours of these subsets de-
pends on the rank of the group. Moreover, the isoperimetric number of these
graphs tends to 1. This proves the conjecture of Lubotzky concerning the
series of Cayley graphs of simple groups of unbounded rank. More precisely,

we prove the following:

Theorem 82 (|Som2|). (a) Let G be a Chevalley group of rank 1 of type
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A, B, Ciror Dy. For every L ~ 6 and for every finite field GF)q+there
exists a generating set T of cardinality at most 21 and a subset of the

vertices S —V)Cay)G, T-Hwith \S\ > \GT\ such that \9\55.5\)\ > 5

(b) Let G be a twisted group of type Ay 1, 2Agn or 2Dy. For every n ~
6 and for every finite field GF)q+there exists a generating set T*of
cardinality at most 9 and S*=V)Cay)G, T Hwith \SX> %\ such that
VEN 5 6

WA = n o2
In Section 4.4.1 we give all necessary definitions and we collect some
important facts concerning the construction of simple groups of Lie type.
The proof of Theorem 82 (a) is contained in Section 4.4.2, and Theorem 82
(b), which is the case of twisted groups, will be handled in Section 4.4.7.
Finally, in Section 4.4.11 we present the construction for PSL)n, g+Hn terms

of matrices.

4.4.1 Preliminaries

In this section we collect important facts about finite simple groups of Lie
type and we build up the notation we will use throughout this chapter.

Let K [ GF)g+be a finite field. We denote by € the system of roots and
Q[ QTNQ is the union of the positive and negative roots. We also choose
O [ }ry,ro,...,m{ =QF which is the set of fundamental roots.

The Weyl group W is generated by the reflections w,, where r / €. It
is well known that W is generated by the fundamental reflections w,, where
r / ®. In order to simplify notation we denote by w; the fundamental
reflection w,,, where r; / ®. We denote by z,)t+the standard generators
of the Chevalley group G, where r / Q and t / K. If r [ 7; for some
ri / ®, then we denote by z;)t+he standard generator z,)t+ The subgroups
Xo [ Yo )t+\t / K{ for r / Q are called root subgroups of G.
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Let ny)t+ zr)t4 ») t '4.)t+and set ny [ n.)2+ Clearly, n,)t+is an
element of the subgroup generated by the root subgroups X, and X , for
every t / K and v / Q. It is well known that n,ze)t4r, ' [ Zw, () st+
for some 7., / K depending only on 7 and s, see |Car, p.101|. Let h,)t+|
ne)t4r,) 24 It is easy to see that h,)t+/ )X, X ..

We denote by H the subgroup generated by the elements h,)t+for all
r /Qand t / K and let N be the subgroup of G generated by H and the
elements n, for all » / Q. The elements of H can be written in the form
h)x+ where x is a K-character of Z(), see |Car, p.97|. The K-character
corresponding to hy)t+Hs denoted by xr: and yrt)a+ t% H is a normal
subgroup of N and nyh)x+r,' [ h)x% where x%¥r+[ x)w ')r+ see |Car,
p.102|.

The Weyl group W is isomorphic to N/H and every element of the Weyl
group W acts on the root system £2. Using this isomorphism, the cosets of

H in N can be written as n,H with ny,_ [ n, forall r / Q.

4.4.2 Chevalley groups

In this section we construct series of Cayley graphs for 5 different series of
Chevalley groups. For these Chevalley groups we need 7 series of Cayley
graphs. The six different constructions are similar but we will treat them
separately.

We first prove the following technical lemma.

Lemma 83. Let w [ wywy...w; be a Cozeter element of the Weyl group
W. Fiz an 2> 1> 1 2 and let us assume that the fundamental root r; is
orthogonal to rj if i0 2 < j > 1 and 1341 is orthogonal to vy if 2>k >1i 2.
We also assume that vy and ri41 have the same length and w;)rig1+ 730 ripq.

Then w)ri+H i1

Proof. Since r; is orthogonal to r; for every j > i0 2 we have that w)r;+]
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wW1Ws . .. wiwit1 )i+ The elements wy are reflections through the hyperplane
perpendicular to rg. Thus wg)re+| 7k for every 2 > k > 1 and wiy1)ri+|
r; 0 ripq [ w;i)ripi+since r; and riy; have the same length. Tt follows that
wiwi )i+ wi)ri 0 rpa [ w0 wy)rig+H[ 10 ) 0 r [ T
Hence w)ri+| wyws...w; 1)rip+] ripq since 7y is orthogonal to 7 for
2>k>i 2.

1

443 A

Let G be a Chevalley group of type A;. The Dynkin diagram of the corre-

sponding root system is the following:

T1 T2 r3 T 1 Tl
@ @ @ s & ]

One can see from the Dynkin diagram that w;)rig+H 70 riq [ wi)rit
fori[ 2,...,1 2.
Let w | wywsy...w; be a Coxeter element of the Weyl group. We choose

A to be a generator of the multiplicative group of GF)g+

Lemma 84. x,)24 ny and h,, ) A\ +generate the Chevalley group G.

Proof. 1t was proved in [Ste, Theorem 3.11| that z1)24r, and hy, ) Atgenerate
G if ¢ > 4, and z1)2+and ny generate G if ¢ > 4.
O

For every [ ~ 6 we define the following undirected Cayley graph:
a [ Cay)(;} }:Eﬂ?—l,—nm h?‘l)/\—kml)Q—l— lanwla h’f‘l))\—i_ 1(""

Let K, be the subgroup of the Chevalley group G generated by the root
subgroups Xp,, X v, Xoyy X 5y, X, X r,. Clearly, K, F Al 1)g+
Let

I 1
S, |V Kuni,
i=0
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Lemma 85. The orbit of w which contains 1 is the following:

o Wy g W e W W W W W

This can be formulated as follows:
w)riH rigg for2>i>10 2
wnH ... o7
w) 1 Ty ... mH n

Proof. Lemma 83 gives that w)r;+ riyq for 2>i¢>101 2 and
w)rH wws...ow)rH wiwe..owp 1) mH wawse...wp 1)n+

since w is a linear transformation of the vector space spanned by the roots.
We also have w;)rjy1 0 00 r+[ 7,0 1310 00 rpfor 2 > 5 >1 2
Therefore
wiwsy ... wp 1)rH wiws...wp 2)r 10 T+
[ wywy...wp 3)rp 20 7 10 r4 3 7,0 7,0 ...0 7.
This shows that
w)ri+  )r10 720 ... 0 r+ (4.2)

Using again the linearity of w and equation (4.2) we get
w)r10 rp0 ...0 4 0 30 ...0 7 )ri0 7m0 ...0 rH 7.

This gives w) )ry0 750 ... 0 r+H{ 7y, finishing the proof Lemma 85.
IZI

It follows from the proof of Lemma 85 that if 2 >4 > 1 2, then n;Kanwi
contains n’, X,_.n,' [ X,. Therefore n’, Ksn," [ K, which shows that
ni /) K, for every 2> i >1 2. This implies that K,, Kgnuy, . .. ,Kaniu Lare
different right cosets of K, so S, is the union of [ pairwise disjoint subsets of

the vertices of , and these subsets have the same cardinality.
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V(Sa)\ < 6
Lemma 86. o\ 1

Proof. S, is the union of [ right cosets of K, so \S,\[ [\K,\ It is clear from
the definition of S, that ) K, n 4r,, —S, for every 1 > i >1 3 and similarly
VKant,4n,' —Saif 2 >4 >1 2. Therefore those neighbours of S, which
are not in S, can only be obtained as an element of the following subset of

the vertices of :

1 I 1 I 1
Kanl v/ Kany,' V' Kand [ 21)24/ Kand [21)241 Kanl, [ he)) A+

i=1 i=1 i=1
I 1
vV K[ by )AL
i=1

K, is a subgroup of G so )Kgnl +x [ Kyn!, if and only if n',zn,’ / K,.
We first apply this observation to z;)2+and z1)2+' [ z;) 2+ [t is easy to
see from Lemma 85 that nl,z;)o 24r," is of the form @yi(r))at T4 )a+or
some o / GF)gFif 1 >i>1 2. It follows that nf,z)o 2-r," / X,.,, > K,
ifi{ 1 2

Using the fact that h,)Aand h.)A+! are in the subgroup )X,, X ,|
we get that nl b )A"n," /) Xy, X wigny| [ ) Xrips X rp| = Ko if
i{ 1 2

Now, 0)Se+< Konl,NKon, ' NKanl, 121)240Knl 121) 240 Kanl, Yhy ) A+
N K,n!, th, )X '+ All of these subsets are right cosets of K, so they have
the same cardinality which proves that \0)S,> 7\K,\ while \S;\[ [\K,\

|

Remark 87. In order to prove Theorem 82 (a) we repeat the previous con-
struction several times. In every single case the chosen generating set of the
Cayley graph will consist of a few standard generators of the Chevalley group,
an element of the form n,, where w [ wyws ... w; is a Coxeter element of the

corresponding Weyl group, and an element of the group H. If G is of rank
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[ we will choose a subgroup of G which is isomorphic to a Chevalley group
of rank [ 2 and which is of the same type. The subset of the vertices for
which the isoperimetric number is sufficiently small will be a union of cosets

of the subgroup of rank [ 2.

444 B

Let G be a Chevalley group of type B;. The Dynkin diagram of a Chevalley
group of type By is the following:

1 T2 T3 7"3 1 5;1

——e

It is easy to see from the Dynkin diagram that wy)re+ 720 3r; and wq)ri+
r10 9. Set w | wy...wy.

One can see using Lemma 83 that
w)riH wws...ow)riH Ty for3>i>10 2. (4.3)

The fundamental roots rs,...,r; are orthogonal to 7. Therefore w)ri+|
wywy)riH wy)r 0 roH 710 )ry0 3ry+H 710 . We also have that w is
linear so using equation (4.3) we have that if 3> 37 >1 2, then

w)r10r30 ...0 74+ w)r40 w)reP .. .0 w)r;+H 70 720 730 .. .0 74q. (4.4)

Using these observations we conclude that the following picture represents a
part of the )w|-orbit of ry:

r-Yer 0 reUer; 07,0 73% v 0 70 ... 0 Y%
This can be formulated as follows:

wi)r1+[ r10 r20 ...0 rigq fori| 2,...,01 2 (4.5)
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The orbit of )w| containing these elements contains w)r; 0 r20 ... 0 r+
as well. Tt is easy to see that w;)riz1 0 73420 ... 0 r+ 70 7410 ... 0 7
if 3>i>1 2. We also have wy)ra+ 3r; 0 ry hence

w)rH wy...wp qw)rH wy.owyp )T+
[ wi...wp 2)r 10 4 x| wi)r20 ...0 r+
[ )0 ...0 70 3r+

This implies using equation (4.4) that
w)r10 ...0 r+ w)r 0 ...0 rp 140 w)r+H ro. (4.6)

One can easily describe the remaining elements of the orbit since w is linear.
We also investigate the action of )w| on 3r;0 50 ...0 rand 5,0 ...0 7.
Using equation (4.6) and the linearity of w we get that w)3r;0 50 ...0 r;+
w)ri40 w)ry 0 1,0 ... 0 4+ 7,0 rp, 7y [ rp. Tt follows using equation

(4.3) that
w)3r; 0 750 ...0 mH rig for2>i>101 2 (4.7)

One can also prove using equation (4.5) and equation (4.7) that

wry 0 .0 mH  3)r 0 750 .. 0 140 ryy for2>i>1 2. (4.8)

Char)K+> 3
Let us assume that char)K+> 3.

Lemma 88. )24 ny and hy) A where t [ 3r;10 7,0 %00 7, generate the
Chevalley group G of type By if the characteristic of the underlying field is
not 3.

Proof. 1t was proved in |Ste, Theorem 3.11| that z1)24r., and h:) \+generate
the Chevalley group G if char)K+{ 3 and \K\{ 4, and z1)2+4and ny
generate G is \K\[ 4.

U
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We define again a sequence of connected Cayley graphs. Let
b [ Cay G, }z1)241) 240w, n," he) Mrhe) M+ [,
where G| Byand w| wiws...w;. Similarly to the previous case let
Ko [ Y Xo)y, X v, Xy X gy oo, X, X |

and let
12
S| V Kyl (4.9)
i=0

VS < 4
Lemma 89. AN >

Proof. We claim that Sp is the union of pairwise disjoint right cosets of
Ky. We only have to show that n, / Ky if 2 >4 >1 3. Straightforward
calculation shows using equation (4.3) that n, X,,_n,' [ X, if2>i>1 3.
Therefore X,, —n!, Kyn,'{ Kpif 2>4>1 3 which gives that n}, / K.
Thus Sp is the union of [ 2 pairwise disjoint right cosets of Kj.

Using the definition of the Cayley graph ; we have that 9)Sy-Hs a subset
of the following set:

12 I 2 I 2 12

V) Koyt V) Kol ny' V) Korly 41244/ ) Konly 1) 2+

i=0 i=0 i=0 i=0

12 I 2

V) Kyl the) A ) Kol the) M-

i=0 i=0
By the definition of Sy the subsets Kynl n, are contained in Syif 1 >i>1 4
and Kynin,' Sy if2>i>1 3.

Using equation (4.5) we have nl,z1)o 24r," [ Zpitrot. 4rp, Ju-+for some

u/KEW1>i>1 3, then Ty ot 4riyy)ut/ Kpsince 110 r50 .. 0 riy

is in the root system generated by the fundamental roots ry,79,...,7 1 and
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Ky is the Chevalley group of type B; 1 generated by the corresponding root
subgroups. Therefore Kpn x1)o 2+ Kpnl, —Spif 1 >i>1 3.
The elements hy)A+and b )A+1 [ hy)A '+are in the subgroup generated
by X; and X . Equation (4.7) shows that nf, Xin,' [ Xuie) [ X,
rpa for i [ 2,3,...,01 3. Thus
nb h)Ar,t and nlh)A et are in )X, X . | 2 K if2>i>1 3.
It follows that 8)Sb—|—>KbniU 'N Kyn,' N Kyhy) A0 Kyhy )X 1 +which gives

VS  _ 4WKs\ [
oo\ — U K\

and by

the linearity of w we have n{, X ,n,'[ X

O

Char)K+ 3

Lemma 90. z5)2+4 z », )2+ nyw and he) A where s [ r20 x00 7 and t |
3r 0 r50 00 1, generate the Chevalley group G of type By if char) K+ 3.

Proof. Tt was proved in [Ste, Theorem 3.14] that xs)24 ,,)24rw and he) A+
generate G if \K\> 3 and z5)24 ,,)2+and ny, generate G if \K'\[ 3.
O

Let
5l Cay G, }ae)24x r)24ng5", he) (.

The set Sp, which is defined as in equation (4.9), can be considered as a

subset of V') $4so we claim the following.

Lemma 91. W\ESS"\)\ > 1

Proof. Tt was proved in Lemma 89 that \Sp\[ )l 2§\

Similarly, the proof of Lemma 89 shows that Kynl h )M — S, if 2 >
i >1 3. By the definition of S we have Kyn’n, —Syif 1 >4i>1 4 and
Kynin,2 —Syif2>i>1 3.
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Using w) m+4{ w)ri+and equation (4.5) we get that nl,z ,)24r," /
Kyif1>i>1 3since w)ri+ 710 r20 ...0 ri41 by equation (4.5). Hence
Kynix )24 Kynl, — S

Equation (4.8) shows that nlzs)24n,," is in K, if 2 >i>1 3. Therefore

N3 Kynl, [ 75)2+—Sp. Finally, we conclude that 0)Sy+— Kyn,' N Kpnl, 1N
Kyh) AN Kyhy)A\+1 N Kyz,)2+
|

445 C

The Dynkin diagram is the following in this case:
T1 T2 T3 1 T

° ® ® i ——e——e

It can easily be verified using the Dynkin diagram that w; 1)r+H 7,0 3r; |
and wy))r; 1+ r 10 7.
Using Lemma 83 one can see that w)r;+ ripq fori|[ 2,3,...,1 3. We

also have

w)ry 1H wiwy .. wy)r 1 H wwy.owyp )0 o+

[ wywy...w; 9)r 0 1 1+
Since 7 is orthogonal to the remaining roots r1,73,...,71 2 we have
w)ry 14H 10 wawy .. wyp )T 1+

Since w;)riz1 0 ...0 rp 1+ 70 700 ...0 g fore]| 2...1 3 wealso

have
Wiy ... WY 2)?”; 1+[ U Wy ... U 3)?"}} 20 T 1+[ :r'10 0 T 20 T 1.

This gives w)r; 1+ 10 720 ... 0 7.
Using all these observations we can determine a part of the orbit of )w|

containing 7y, which is the following:
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L W, W W W o0 107 20 0..0 7y,

Lemma 92. z,)24 ny, and h,, ) A\ +generate the Chevalley group G.
Proof. The proof can be found in |Ste, Theorem 3.11]|. 1

The construction is almost the same as in the case A;. Let
c [ Cay G, }:El)Q—I,—:El) Q#Rw:nwla hm))"‘"’?hm))\—i_ 1( [

Let
KC[ )X‘-"Q:‘X Pz}Xf‘a:X f‘3:--wa‘nX ?‘xl
and let

I 2
S.[ v K.,
i=0

Lemma 93. \a\g“\)\ > %

Proof. As in the previous cases, n,'K.n!, contains n,'X,  ni [ X, for
2 >4 >1 3 which gives that n!, is not in K, if 2 >4 >1 3. This proves
that \SA[ ) 24K\

Again, K.nln, —S.if2>i>1 4and Kmnin,' —»S.ifi{ 1.

It is also easy to verify that niz;)245n, " [ )z )u+HE" for some u /
GF)q+. Therefore nl,z1)24," / X,,., and nl h, )A'n, " are in the sub-
i and X for i [ 2,...,1 3. Thus the elements
of the right cosets K.n% z1)2+" and K.n® hy )A\! are in S.if2>i>1 3.
This proves that 9)S.+< K.n!, 'NKmn,'NK.x,)240 K, z,)2+ N K h, ) A0
K h,, )M+, which is the union of 7 right cosets of K. Thus \9)S.#> 7\K.\

O

group generated by X,

Tit1
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4.46 D

The Dynkin diagram in this case is the following:
r

T3 T4 T 1 T

)
Lemma 94. 1. z,,)24 ny and hy )A\+generate the Chevalley group G if
the rank of G is odd.

2. % )24 xp,)24 x3)24 ny and hy )A+generate the Chevalley group G
if the rank of G is even.

Proof. The proof can be found in |Ste, Theorem 3.11 and Theorem 3.13|.
]

First, we describe a part of the orbit of )w| which contains 1. The root

rq is orthogonal to 74, ..., hence w)ri+ wywows)r+so we have
wywows)ri+H wiwy)ry 0 raH wi)ri0 790 r3H 10 750 r30 vy [ 120 73
and similarly

w)ryH wiwows)reH wiwy)re 0 raH wy) 120 r30 roH 30 7.

Using Lemma 83 we get w)r;+ riyq for i [ 4,...,01 2. This gives that

both w')r;+and w)ry+are of the form
Tiy2 0 Tit+1 0...0 T3 0 Y. (410)

where y [ ryory [ o
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Odd case

Let us assume that [ is odd.

Let
a| Cay G, }$r1)2‘i?37r1)2+ o nwl} Py ) A g ) A+ 1( [ :
Let
Kd [ )Xﬁ: X f'pr‘z}X oy 1Xr;_11X ?‘;_1|
and let

I 3
Sd [ \/ Kdnfn.
i=0

Proof. Ttis clear thatif 1 >4 >1 4, then nlz, )24, [ 2yigr))uf=" / Ky
for some u / GF)gfsince by (4.10) the root w')r;+is a linear combination
with integer coefficients of the fundamental roots ry,7s, ..., 1 and similarly
ni hy )AE1n,t / Ky It follows that 8)Sg+< Kgnl 2N Kyn,'.

It remains to show that Sz is the union of [ 4 pairwise disjoint cosets of
K4 Again, n! K4n,* contains the subgroup n!, X,, n [ X, if2>i>1 4
which shows that n! / Kg.

O]

Even case

Let us assume that [ is even.
Let

Zl Cay G}z )0 24T )0 24 Tpy)0 241y, iy, ", iy ) AR )AH1( [

Let
Kc?o[ )XT‘laX f‘an‘mX f‘z:--wa‘z—mX 7‘;—1'
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and let

I 4
SV K,
i=0

SO\« 2
Lemma 96. V(S > 2
(CANRRAE

Proof. Tt is clear that w*) m+[ w")r;+and hence w') ry+is in the root
system generated by the roots ri,79,...,77 1 if 2 >4 > 1 5. This shows
that nl,zc, )0 24n," [ Tyicry))ut/ K§for some u / GF)q+F:

It was proved in Lemma 95 that nlh, )A\='n,' / KFif 1 >i>1 5.
Finally, by Lemma 83 nlz.,)o 240" [ z,,,)t+or some ¢t / K*which is in
KFif 1 >i>1 5. It follows that 8)S54< K$nl >N K5,

[t remains to show that S3%s the union of [ 4 pairwise disjoint cosets of
K3 This is clear since if 2 >4 >1 5, then n’, KJh,' contains the subgroup
X,, which shows that nl, / K$°

[

4.4.7 Twisted groups

The twisted groups can be obtained as subgroups of Chevalley groups. In
order to define twisted groups we need to find a non-trivial symmetry p of
the Dynkin diagram. We restrict our attention to those twisted groups which
are defined using a symmetry of order 3 and we also assume that the roots
in 2 have the same length. It is well known that such a symmetry p can
be extended to a unique isometry 7 of the vector space spanned by €2. We
assume that Aut) K+contains an element f of order 3, where K [ GF)q+
Then the Chevalley group G has an automorphism of order 3, which we
denote by a such that z,)k [ xz)k+for every r /o ® and k / K, where
k[ f)k+and 7| 7)r+ Furthermore, z,)k2 [ z7)y.k+for every r / Q and
k / K with 3. [ o2
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Let U be the subgroup of G generated by the elements z,)t-Hor all 7 / QF
and t / K and let V be generated by the elements z,)t+for all » / Q and
t / K. The subgroup U! is the set of elements u / U such that u® [ wu
and similarly V1 [ }v /V \v® [ v{. The twisted group G' is generated by
U' and V!, The subgroups H* and N?! are defined as the intersection of G*
with H and N, respectively, where H and N are defined in Section 4.4.1. We
denote by W' the elements w of the Weyl group W such that 7wt ' [ w.
There is a natural isomorphism of the group W' to N'/H' and we denote
by nl an element of N' > N which corresponds to w' / W'

The set of positive roots Q% has a partition where the elements of the

partition are of the following form:

Z[| }r\r/Q and 7| r(
Z| }r,7\r /Qtand r0 7 / Q
Z| }r,mr07\r /Qtand r0 7 / Q(.

We denote by ®! the collection of sets which are elements of the partition.
For each set Z in the partition there is a unique element wz / W1, which is an
element of the subgroup generated by w, for r / Z, such that wz)Z+ Z.

These elements are the following:

wyz [ we if Z[ }r\r/Q and7[ r(
wy [ wawr if Z[ }r,7\r /Qtandr0 7 /
wz [ Wer [ wowpw, if Z | }T,F,TO 7\r /Qfand r0 7 / Q( .

Every element of ®! can be obtained as w)Z+ where w / W' and Z contains
a fundamental root. Those sets which contain a fundamental root are called
fundamental sets. Moreover, W' is generated by }wz \Z / ®!(.

For every Z / ®' we denote by Xz the subgroup generated by the root
subgroups X, for r / Z, and we set X% [ Xz { G.
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448 2A,5, 1

The fundamental sets in this case are the following:
Zn [ }Tn( , Zi [ }7'1:,7'271 ;'(for 2>i>2n 2,

and the corresponding elements of the Weyl group W' are:

wz, [ Wy, and wz, [ wjwg, ;for2>i>n 2

We may assume (see |Car, p.233|) that the subgroups defined above are of

the following form:

X[ e\t [ B i Z[
X5 [ Yantse)tne / K( i Z[ Y.

Let nl | Nyt Ny - - - and he | by, ) A\ 4h=) A+ where A generates the mul-
tiplicative group of the finite field K [ GF)q+ In the following in order to
simplify notation we write n, instead of n.

We also define z, [z, )24,,, ,)2+which is an element of X7 and which
can also be written as zp, )24y )2-F [ zy,)240m)2+

Lemma 97. x., n, and h. generate the group G*.
Proof. The proof can be found in |Ste, Theorem 4.1]. U

Let
e [ Cﬂy G: }xeaxe linw:n’wlah’eih’el<['

Let
K. | )X%,XIZQ,X%,X]ZS,...,Xén,XIZJ
and let
n 2
Se[ V Kenl,

=0
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K. can be considered as a twisted group which is a subgroup of the Cheval-
ley group generated by the root subgroups X,, X v, Xoy 00 X ry s
The corresponding set of fundamental roots is p-invariant and we denote by
(5, 3 the root system generated by these roots. The restriction of p to the
set }ro,r3, ..., Ton o{ gives a symmetry of the Dynkin diagram of these roots
which extends to an isometry. This isometry is the restriction of 7. This
gives that for Z / ®! the subgroup X7 is a subgroup of K, if and only if
Z — Qo 3. Clearly, h,)t+is in )X, X' ,| =G it Z [ }r{ withr [ 7. If
Z [ }r,7(, then there is a homomorphism of SLy)K+onto ) X%, X' ,| —G*
which shows that z,)t-w7)t+/ G and h,)t+hz)t+/ G .

Conjugating by n?, / N! we get the following;

' Xzniy [ 1) Xz { Gl [ 1" Xogmi, { ny,'Glngy [ Xoyi(zy { G
1
(4.11)

Lemma 98. W{i‘*\)\ > ﬁ

Proof. We claim that S, is the union of n 2 disjoint subsets. K.nl, [ K.nJ
if and only if nJ, 7' / K, so we have to show that n}, / K, if2>i>n 3.
We claim that w*)ri+ ryif2>i>n 3. Ifk>n 4, then

w)rpH WiWap 1 ... WpWan kWey1)Tkt
since 7y is orthogonal to r; if j ~ k0 3. Therefore

w)reH wiwon 1...wE)rE 0 TR+
[ wwan 1... Wk 1)Tk1H Tkt

since T+ is orthogonal to the roots ron k,...,7T2n 1 and 74y is orthogonal
to 71,...,7k 1. It follows that w *)Z;;1+ Z1 and hence by equation (4.11)
Xz, —n, ' Kent if 2>4>n 3. This proves that nl, / K. if2>i>n 3

hence \S.\[ )n 2-RK.\
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It is easy to see that Se contains Kenlny, if i [ 1,2,...,n 4 and S
contains Kentn,tifi[ 2,3,...,n 3.

We use again the fact that Kenlyg [ Knl, if and only if nl gn,* / K.
Since nl,x,,)240," [ Twir))+Hor some § / K and . [ xp,)24,, )2 we

have

niumTl)Q—H;Tl)Q—gnwi [ njnxf‘l)Q—mwinju‘Tf‘l)Q—’gnwi
[ niule)Q—mwi)njuxrl)Q—mwi—ﬁ [ $wi(rl))£—wwi(f‘1))£—|g [ xf‘i+1)£—kr7‘i+1)£ﬁ-

This shows that n!,z.n,' / Xéiﬂ which proves that if 2 [ 2,3,...,n 3,
then n’,z5'n,' / Ke and hence Kenl,zS' [ Kenl, since Zip1 —Qan 3.

We also have néhe ) A hm) My, | by, )04 )0%Hor some 0,0%°/ K.
Using the fact that w / W' we have w7+ wi)ri+50 Ry, ;)00
by )0475)0°% Clearly, nihen,' / H'. Thus 6] 6 and ni,hS'n,' |
)hr,.+1)9-b‘lm)9_ = / Ke since rig1 / Qo 3 if i [ 2,...,m 3. This
proves that K.nl,hS' [ Kenl ifi[ 2,...,n 3and hence 8)S.+—K.n N
Kn,'NK.zx.NK.z,' N Knh,NKh, !, finishing the proof of Lemma 98.

]

449 *D,
The fundamental sets in this case are the following:
Zy| Yri,re(, Zi] }riga(for3>i>n 2
and the corresponding elements of the Weyl group W are:
wz, | wws, and wy, [ wipq for3>i>n 2

Let ny [ nyinyg .. .nyy and hy [ by, ) A=) A+ where A generates K=
We also define =y [z, )24,,)2+which can also written as z, )24, )24 [
xf‘l)Q—LTﬁ)Q"L_
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Lemma 99. xs, ny and hy generate the group G'.
Proof. The proof can be found in |Ste, Theorem 4.1]. 1

Let,
f[ Cay G:}xfamflrnw:nwlahf:hfl<[-

Let
Kf [ )X%11X121}X%2}X122? e }X%n_QiXIZn_2|
and let
n 3
Si| v Kl
i=0

We denote by €2, 1 the root system generated by the fundamental roots

T1,T2,...4,Tp 1.

=

Lemma 100. \@Lf)\ >

AN

Proof. The Coxeter element in this case is exactly the same as in Section

4.4.6. This gives that nfn)'rn i+[ mmfor 1 >4 >mn 4 The fundamen-

2]

tal sets Z2, Z3, ..., Zn 1 consist of only one element thus n! Syn,* contains
1 1
Xwi(zn_l_,-) [ Xwi(f'n—i) [ Xrn [ XZn_l
X, . This proves that if 2>¢>n 4, then nl, / K;. Thus Sy is the union
of n 3 disjoint subsets of the same cardinality. Therefore \S¢\[ )n  3-RK[\

if 2>4>mn 4since Sy contains

Using the definiton of Sy one can see that Kynin, —S;ifi[ 1,...,n 5
and K¢nin,' —=Spifi[ 2,...,n 4.

The elements n! z,n,* are of the form z,)t4r)o t+for some r / Q and
t / K% In order to prove that these elements are in K¢ fori[ 1,2,...,n 4
we only have to show that r /€, 1. Using the fact that the Coxeter element,
in this case is the same as in Section 4.4.6 we have that both w*)r;+and w*)ro+
are of the form 7,0 730 7,0 ...0 7347 or 750 730 740 ...0 7;4,. These roots are

clearly in the root system generated by the fundamental roots r1,79,...,77 1
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if « >n 3. This proves that nfnx%nw“ isin Kfpif 1 >4 >mn 4 and hence
Sf&?% —>Sf.

Similarly, the elements n’,hsn,’ are of the form h,)t4hz)t+Hor some 7 / Q
and t / K*and it is easy to see that r /Sy 1if1>i>n 4. This proves
that niuh%nwi isin Kfif 1 >4 >mn 4 and hence th% — 55

Therefore 8)S;+< K;n? 2N Kn,', which shows that PN > 2%\ .

]

finishing the proof of Lemma 100.

4.4.10 2A,,
The fundamental sets are the following:
Zi[ }rasTnssn 0 Toga (G Zi [ }ragn i Taga( for 3> >mn.

Let ng, [ nyiyy .. nyy and hy | h,. ) A=) A+ where A generates K=
We also define zg [ &, )24, ., ) 240, +rnyq ) otwith K0 k[ 2.

Lemma 101. z,, n,, and h, generate the group G*.

Proof. The proof can be found in |Ste, Theorem 4.1].

O
Let
g [ C{Iy G: }"EQ‘} 1179 lantm nw11 hg} h’g 1( [ .
Let
Kg [ >Xé1}XlzliX%2?XIZQ) e :X%n_lezn_ll
and let
n 2
S,V K,nl,.
i=0

P(Sa)\ 2
Lemma 102. \ggg\ > =
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Proof. First, we show that Sy is the union of n 2 disjoint subsets of the
same cardinality. It is enough to show that n!, / Kyfori[ 2,...,n 3. This
will be done by proving that X%ﬂ is contained in n%, K n,’. Using equation
(4.11) we only have to show that w*)Z, ;+ Z,fori[ 2,...n 3.

The fundamental root rgy; is contained in Z, . Let us assume that

2>k>n 3.

W)Tpp1H WnWnp WpWp 1Wnis . . . W1 Wap ) Thy1+

| WnpWnt1WnWn 1Wnta .. . Wkt1Wan kWk)Tkt1+

since Tk41 is orthogonal to the roots r; if j > nor j < k 2. Clearly,

Wk+1Won kWk)Tk+1+H Tk SO
W)rk+1H  WnWni1Wn .. Wei2Won k 1)TkH Tk

since the remaining reflections fix r.

One can see by induction that w*)r;+[ r for i [ 2,...n 3 and
since w / W' we have w')Fig+| wi)rigi+| 72n and hence w)Z, i+ Zp.
This proves that for i [ 2,...,n 3 the subgroup nl,) Ky, contains X7 .

Therefore \S,\[ )n  2-HK,\

The definition of S, shows that K nin, —S;ifi{ n 3and K;nln,' —

Sy if i { 1. It remains to investigate the elements of the form n:b,a:ggnw* and
ipC, i
ny,hsny,'.

We claim that w')rp+[ 7,0 7, 10 ...0 r ;ifi > n 3. Using the
orthogonality of the fundamental roots r;, rg, where \j  k\~ 3 we get the
following:

’IU)T‘n—l—[ WpWn 1 WnpWp 1Wnyo ... W an)Tn+

(4.12)
[ wnwn-i—lwnwn I)Tn—l'[ wnwn-i—l)rn 1+[ Tn 10 Tn-
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Similarly, if 2>k >mn 3, then

’IU)T‘n k+[ WnWp41 Wy W lwn+2---w1w2n)rn k+
[ WnWn41Wn .. . Wy kWntk+1Wn k l)rn kT (413)

[ WnWp41Wh - - . Wy k+l)Tn k 1+[ n k 1-

Since w is linear we get using (4.12) and (4.13) that
wé)’rn—i—[ 0 r 10 ...0 rp i (4.14)

From equation (4.14) one can see that if ¢ [ 1,...,mn 3, then both r;
and 9, are orthogonal to w")r,+ and similarly r; and 7y, are orthogonal to

wé)rn+1+[ wi)ﬁ—l—[ w)rp+H  Trtir1. This shows that for
wcx{ WpWn 1 WnWn 1Wnyo ... Walllap 1

we have w')rp+[ )w¥)rp+and w')rpp+[ )w¥)rni+ Therefore w')ry, 0
Tnpt+[ )wH)7r, 0 ropi+ Moreover, nizon,* [ nfb,,a:gnwf and nih,n," |
niu,hgnwf.

Clearly, n, / K, and hence the elements n,zSn. ! and n! hSn_ ! are in
Y, Ny g w

g tw w''Yg T rw
K,ifi[ 1,2,...,n 3.
O

In order to finish the proof of Theorem 82 we have to verify that for those
sets S for which the boundary 9)S-Hs relatively small we have \S\ > g\ The

order of the investigated simple groups is the following:

A)gt= e T Uin)d 2+
B))g+= Tand Uin)d® 2+
Ci)g+= aad Ui )e* 2+
Dlgt= gime 7 Uis)d® 2+

1(1—1) i )

A= g U§=1)q o) Qﬁl(
l i

QDE)QZ_i_: (4,ql+l)ql(£ 1) ql 0 2[Ua’=l )q2 2+



4. Expander graphs 107

It is easy to see that such a simple group cannot have a subgroup of index

at most 3l, finishing the proof of Theorem 82.

4.4.11 Identification

In this section we give explicit generators of the groups that we investigated in
Sections 4.4.2 and 4.4.7. We also show how to find the subsets of the vertices
S for which 0)Ss relatively small. We only handle the case of special linear
groups which can easily be transformed to the case of the projective special
linear groups which is clearly the easiest one. This example includes the
original idea which was extended to several different series of simple groups.
In order to show the simplicity of the original construction we forget about

the machinery which was built up before.

Let
\2 2 (

A 2

), 2

where A; / GF)gD* 1+ et

\1 1 1 .1 1) 24f
2 1 1 11 1
2 1 11 1

B |
11...2 11 1
11 ... 1 21 1
Ji11 .01 12 1

We denote by C; the diagonal matrix diag)$, A, 2,2,...,2+/ GF)g4+1* (1),
where A generates GF)q-£
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We denote by e;; the matrix with 2 in the )i, j+th position and zeros
everywhere else and let T;;)0+[ [0 de;ij, where I denotes the identity
matrix and 6 / K. Using this notation we can write A; [ T72)2+

The standard generator z,, )2+of the Chevalley group given in Section
4.4.3 corresponds to the matrix A; and the Coxeter element n, can be iden-
tified with B;. Finally, C; plays the role of h,, )A+

Clearly, T;)a;)B+[ Tij)a0 B+and |T;)atTik)B+ [ Tix)of+if
i{ k, where ]g,h"[ g 'h 'gh denotes the commutator of g and h.

Lemma 103. For every l / N the set } Ay, B, Ci( forms a generating set of
SO 2, ¢+

Proof. We fix the size of the matrices and hence we can write A[ A, B[ B,
and C [ C. Let H| )A,B,C|. It is enough to verify that T;;)0+/ H for
every i { jand § / GF)q+
It is easy to see that AC" [ T1,2)2—{‘—3k [ Ty12)A*+ Using T o)af )8+

Ti2)a0 B+we get that Ti2)6+/ )A,C| > H for every § / GF)q+ For i{ j
we have B*T;;)04B * [ Titkj+x)o 6+ where the indices are taken modulo
[0 2 and hence T ;41)0+/ H for every 2 > i > [ and for every 6 / GF)q+
This implies that for every 2 <1 >10 2 and for every 6 / GF)q+

. T12)0+T53)24, T34)2+. . ., Ty 1x)2+ ] Tix)o+/ H.

Using again the fact that B*Ty;)6+4B ¥ [ Tiix)o 0+we get that Tj;)6+/
H for every i { j and for every § / GF)q+

So })f ;[/SL)JO 2.4 /SL)z,q<.

For every 2 > i > [ we define

]

Let

S [ SoB.
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Finally, let
11
S| V8.
i=0

S SL+1,0)\ ;
It is easy to see that \S\< =542 0f [ ~ 2.

V(SN ~ 8
Lemma 104. Bcw > 7

Proof. Every element of S has exactly [ columns with 1 in the last row, and
exactly 2 column with 1 in the first [ rows and 2 in the last row. The sets S;
are pairwise disjoint since an invertible matrix can not have a column with
only zero entries. Furthermore, they all have the same cardinality since Sp
is a subgroup of SL)I0 2,g+and S; are right cosets of Sp in SL)I0 2, g+

It is easy to see that SB1 S < SpB! [ Siand SB 11 S <SB! The
remaining elements of 8)S+are of the form MA, MC and MA ', MC !
where M / S.

Let us assume that M / S;. Then

M D 1 D
1 2 1

for some D / GF)q+! ¢ and D®/ GF)q+t. Multiplying a matrix M by A
or A ! from the right only modifies the second column of M. Therefore if
M / S;withi{ Il 2, then it is easy to see that MA,MA ' / S;.

Multiplying a matrix M by C or C' ! from the right only modifies the
first and the second columns of M thus if M / S; with ¢ { [l 2, then
MC<' /S,

This gives that 8)S+< S;NSyB 'NS; 1ANS A 'nS CnS C 1!
since S [ NL_LS;.

O]
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Summary

Two major topics are discussed in this thesis. The central objects we investi-
gate in both of them are the Cayley graphs of finite groups. First, we shortly
define Cayley graphs and we collect basic facts about them.

Chapter 1, 2 and 3 are devoted to the investigation of Cayley graphs cor-
responding to the same group. More precisely, Chapter 1 can be considered
as an introduction to the isomorphism problem of Cayley graphs, where we
recall the concepts of Cl-graphs and Cl-groups and related notions.

In Chapter 2 we construct non-Cl-graphs for elementary abelian p-groups
which are the most important candidates for Cl-groups. Improving earlier
results of Muzychuk [Muz3| and Spiga |Spil|, for every prime p > 3 we exhibit
a Cayley graph on ng+3 which is not a Cl-graph.

On the positive side, in Chapter 3, for every prime p > 4 we prove that
Q £ Zy is a DCl-group, where @ denotes the quaternion group of order 9.
This gives a new infinite family of non-abelian Cl-groups, which are really
rare. Using the same method we reprove that Z3 +Z, is a Cl-group for every
prime p > 4, which was first obtained by Dobson and Spiga |D,S2|. Our new
result completes the description of Cl-groups of order 9p. We also apply our
method to prove that for every prime p > 4 the group Zq:tZg is a DCl-group
if ¢ is also a prime with ¢ > p3. Finally, we prove that if G is p-group which
is a DCI®_group, then G £Z, is a )¢ 2+DCl-group if q is a prime with
q>\G\

In Chapter 4 we solve a problem which was a conjecture of Lubotzky
|Lub2| about the Cayley graphs of series of finite simple groups. For every
infinite sequence of simple groups of Lie type of growing rank we exhibit
connected Cayley graphs of degree at most 21 such that the isoperimetric
number of these graphs converges to 1. This proves that these graphs do not

form a family of expanders.
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Osszefoglalo

Az értekezés két témat dolgoz fel. Mindkét esetben véges csoportok Cayley
grafjaival kapcsolatos problémékra keressiik a valaszt. Elscként definialjuk a
Cayley grafokat, és Gsszegyiijtjiik a legelemibb tulajdonsigaikat.

Az els6 harom fejezetben nagyrészt egyazon csoport kiilonbozé Cayley
grafjainak vizsgalataval foglalkozunk. Ezek koziil az elsGben ismertetjiik a
Cayley grafok izomorfizmusproblémajat, ahol is bevezetjiik a Cl-grafok, CI-
csoportok és ehhez kapcsolodo fogalmak definiciojat.

A mésodik fejezetben elemi Abel p-csoportokhoz konstrualunk nem-CI-
grafokat. Ezek a csoportok a legfontosabb jeloltek Cl-csoportokra. Belatjuk,
hogy a ngH nem Cl-csoport, ha p kettGnél nagyobb prim. Ez az eredmény
Muzychuk [Muz3| és Spiga [Spil| korabbi eredményét javitja meg.

A harmadik fejezetben Cl-csoportokkal kapcsolatos pozitiv eredményeket
bizonyitunk. Belatjuk, hogy QQ+Z,is DCI-csoport minden p > 4 primszamra,
ahol @) a kvaternioesoportot jeloli, gazdagitva ezzel az ismert nem kommu-
tativ Cl-csoportok halmazat. Ezzel parhuzamosan Dobson és Spiga |D,S2|
egy eredményére (Z3 + Z, egy Cl-csoport) is 1j bizonyitast kapunk. Ezek
az eredmények lezarjak a 9p rendii Cl-csoportok vizsgalatat. A kidolgozott
modszert alkalmazva belatjuk, hogy Zg:I:Zq is DCI-csoport, ahol g egy p*-nél
nagvobb primszam. Veégiil a Cayley grafok fokszamat korlatozva kapjuk a
kovetkezot. Legyen G egy DCI®)-csoport, ami raadasul p-csoport. Tovabba q
egy G rendjénél nagyobb primszam, akkor G+Z, egy )g 2+ DCI-csoport.

Az utolso fejezetben egy Lubotzky |Lub2| altal felvetett egyszerii csopor-
tok Cayley grafjainak sorozataival kapcsolatos kérdésre adunk valaszt. Lie-
tipusi egyszerii csoportok tetszileges végtelen sorozatahoz, ahol a csoportok
rendje tart a végtelenbe konstrualunk legfeljebb tizedfoku Cayley grafokat,
amiknek az izoperimetrikus szama nullahoz tart. Az ilyen tulajdonsagu gra-

fok nem alkotnak expander grafsorozatot.



