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the Hungarian Academy of Sciences

Supervisor: László Lovász
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Chapter 1

Introduction

This thesis revolves around two main topics. In the first part we consider the behaviour
of roots of graph polynomials, notably the chromatic polynomial and the matching poly-
nomial, on a sequence of graphs that is convergent in the Benjamini-Schramm sense. In
the second part we suggest a possible structural characterization for positive graphs along
with some partial results to support our conjecture. The two areas are connected by the
use of algebraic and analytic tools in a graph-theoretic setting, especially homomorphisms
and measures but also convergence, moments, quantum graphs and some spectral theory.

For a finite graph G, let chG(q) denote the number of proper colorings of G with q
colors. Discovered by Birkhoff [9], this is a polynomial in q, called the chromatic polyno-
mial of G. While some of its coefficients, roots and substitutions correspond to classical
graph-theoretic invariants of G, chromatic roots also play an important role in statistical
mechanics, where they control the behaviour of the antiferromagnetic Potts model at zero
temperature. In particular, physicists are interested in the so-called thermodynamic limit,
where the underlying graph is a lattice with size approaching infinity.

In the last decade, convergence of graph sequences became an important concept in math-
ematics. Motivated by efforts to better understand the structure of the internet, social
networks and other huge networks in biology, physics and industrial processes, several
theories appeared. The main idea in each of the theories is that we have a very large
graph that is impractical to process or even to know its edges precisely, but we can sam-
ple it in some way and then produce smaller graphs that are structurally similar to it in
the sense that they give rise to similar samples. If we have a sequence of graphs whose
samples approximate those of the original graph arbitrarily closely then we say that this
sequence converges to the original graph.

The most prevalent theories are the one about convergence of dense graphs by Lovász
and Szegedy [38] and the one about convergence of bounded degree graphs by Benjamini
and Schramm [8]. The latter one is also useful as a generalization of the aforementioned
thermodynamic limit. Given a sequence of finite graphs Gn with bounded degree, we call
it convergent in the Benjamini-Schramm sense if for every positive R and finite rooted
graph α the probability that the R-ball centered at a uniform random vertex of Gn is
isomorphic to α is convergent. In other words, we can not statistically distinguish Gn

from Gn′ for large n and n′ by randomly sampling them with a fixed radius of sight. For
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instance, we can approximate the infinite lattice Zd using bricks with side lengths tending
to infinity.

In Chapter 2, which is joint work with Miklós Abért, we examine the behaviour of chro-
matic roots on a Benjamini-Schramm convergent graph sequence. We define the root
measure as the uniform distribution on the roots. We show that for a convergent se-
quence of graphs the root measure also converges in a certain sense.

The most natural sense here would be weak convergence, meaning that the integral of
any continuous function wrt. the measure is convergent. However, this does not generally
hold, as evidenced by the merged sequence of paths and cycles which is still BS convergent
but the corresponding measures converge to different limits. Instead we prove convergence
in holomorphic moments, showing that the integral of any holomorphic function wrt. the
measure is convergent. In many cases we can use a separate argument to restrict the
chromatic roots to a well-behaved set where convergence in holomorphic moments does
imply weak convergence.

Our main vehicle of proof is counting homomorphisms. For two finite graphs F and G let
hom(F,G) denote the number of edge-preserving mappings from V (F ) to V (G). Moments
of the chromatic root measure can be written as a linear combination of homomorphism
numbers from connected graphs. For instance, the third moment equals

p3(G) = 1
8

hom( , G) + 3
4

hom( , G) + 1
4

hom( , G)−
3
8

hom
(

, G
)

+ 3
4

hom
(

, G
)
− 1

8
hom

(
, G
)
.

Since these homomorphism numbers converge after normalization, so do the moments
themselves, therefore we get the convergence of measures. It also follows that the nor-
malized logarithm of the chromatic polynomial, called the free energy, converges to a real
analytic function outside a disc, which answers a question of Borgs [10, Problem 2].

Our results have been recently extended by Csikvári and Frenkel [16] to a much broader
class of polynomials, namely multiplicative graph polynomials of bounded exponential
type. In addition to the chromatic polynomial this includes the Tutte polynomial, the
modified matching polynomial, the adjoint polynomial and the Laplacian characteristic
polynomial.

In light of this generalization we also investigate the matching measure in Chapter 3,
which is joint work with Miklós Abért and Péter Csikvári. The matching polynomial of a
finite graph G is defined as ∑

k

(−1)kmk(G)x|V (G)|−2k

where mk(G) denotes the number of matchings in G with exactly k edges. It also relates
to statistical physics, this time to the monomer-dimer model. We can follow our path from
Chapter 2 by defining the matching measure as the uniform distribution on the roots of
the matching polynomial, and since the Heilmann-Lieb theorem [32] constrains these roots
to a compact subset of the real line, we get weak convergence from the Csikvári-Frenkel
result, allowing us to automatically extend the definition to infinite vertex transitive
lattices.
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Alternatively, one can use spectral theory to define the matching measure directly on an
infinite vertex transitive lattice L. A walk in L is called self-avoiding if it touches every
vertex of L at most once. We can define the tree of self-avoiding walks at v by connecting
two of them if one is a one step extension of the other. As proved in Chapter 3, the
matching measure of L equals the spectral measure of this tree.

We continue by expressing the free energies of monomer-dimer models on Euclidean lat-
tices from their respective matching measures, which allows us to give new, strong esti-
mates. While free energies are traditionally estimated using the Mayer series, the advan-
tage of our approach is that certain natural functions can be integrated along the measure
even if the corresponding series do not converge.

In general, no explicit formulae are known for the matching measures themselves, only
in some special cases like the infinite d-regular tree. We can show, however, that the
matching measure of a broad class of infinite lattices is atomless.

In Chapter 4 we turn our focus towards positive graphs. This chapter is joint work with
Omar Antoĺın Camarena, Endre Csóka, Gábor Lippner and László Lovász. We already
considered homomorphism numbers in Chapter 2, but here we extend the definition to
allow weighted target graphs. By adding a real weight wij to each edge ij of the finite
graph G we have

hom(F,G) =
∑

ϕ:V (F )→V (G)

∏
ij∈E(F )

wϕ(i)ϕ(j).

Using arbitrary real edge weights means that the homomorphism number can easily be-
come negative. It turns out, however, that there are certain finite graphs F that always
exhibit a nonnegative hom(F,G) regardless of the weighted graph G. We call such an F
a positive graph.

The following are some examples of positive graphs:

while the ones below are not positive:

For instance, K3 is not positive, since hom(K3, G) < 0 if G is a copy of K3 with all edges
having weight −1. This construction shows that no graph having an odd number of edges
can be positive.

But why is the cycle of length 4 positive? We can write

hom(C4, G) =
∑
ϕ

wϕ(1)ϕ(2)wϕ(2)ϕ(3)wϕ(3)ϕ(4)wϕ(4)ϕ(1) =

=
∑
ϕ(1)
ϕ(3)

(∑
ϕ(2)

wϕ(1)ϕ(2)wϕ(2)ϕ(3)

)(∑
ϕ(4)

wϕ(3)ϕ(4)wϕ(4)ϕ(1)

)
=
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=
∑
ϕ(1)
ϕ(3)

(∑
ϕ(2)

wϕ(1)ϕ(2)wϕ(2)ϕ(3)

)2

Once we fix the images of two opposite vertices, the number of homomorphisms into any
target graph G can be written as a square. So the total homomorphism number is a sum
of squares and thus nonnegative.

This construction can be generalized. Suppose we have a graph H where the vertices
s1, s2, . . . sk form an independent set. Let H ′ be a disjoint copy of H and identify each si
with s′i. A graph F obtained this way is called symmetric.

s1

s2

s3

s4

H
H ′

Once we fix the images of the si’s, H and H ′ have the same number of homomorphisms
into our target graph G, and these mappings are independent from each other. Therefore
the total number of homomorphisms is again a sum of squares, and thus all symmetric
graphs are positive.

We conjecture that this implication is in fact an equivalence, i.e. all positive graphs are
also symmetric.

To prove some special cases of the conjecture, we introduce a partitioning technique that
allows us to disprove the positivity of certain graphs. The idea is to restrict the set of
possible images for each vertex. In a simplified explanation, we may color the vertices of
both F and G and only consider those homomorphisms that map each vertex into one of
the same color. There are colored graphs F that feature a nonnegative hom(F,G) into any
colored and edge-weighted graph G, and these obviously only depend on the partition N
of V (F ) corresponding to the coloring. Such an N is called a positive partition of V (F ).
(For the full analytic definition, see Chapter 4.)

Several operations on positive partitions preserve their positivity, such as merging classes
together or restricting the underlying graph F to the union of certain classes. We may
also split a class according to the degrees of the vertices, or even the number of edges
going from a given vertex into some other specific class.

Starting from the trivial partition on F and successively dividing classes using these
operations, we get to the walk-tree partition of F where two vertices belong to the same
class if and only the universal cover of F as seen from these two vertices are isomorphic.
Therefore any union of classes from the walk-tree partition of a positive graph is still
positive, which immediately proves the conjecture for trees, and combined with a computer
search also proves the conjecture for all graphs on at most 10 vertices, except one.
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We end the chapter with some statements about positive graphs, including that they have
a homomorphic image with at least half the original number of nodes, in which every edge
has an even number of pre-images.
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Chapter 2

Chromatic measure and
Benjamini-Schramm convergence

This chapter is based on the article [2], which is joint work with Miklós Abért.

2.1 Introduction

Let G be a finite undirected graph without multiple edges and loops. A map f : V (G)→
{1, . . . , q} is a proper coloring if for all edges (x, y) ∈ E(G) we have f(x) 6= f(y). For
a positive integer q let chG(q) denote the number of proper colorings of G with q colors.
Then chG is a polynomial in q, called the chromatic polynomial of G. The complex roots
of chG are called the chromatic roots of G.

The study of chromatic polynomials and its roots has been initiated by Birkhoff. Since
then, the subject has gotten considerable interest, partially because of its connection to
statistical mechanics. In particular, the chromatic roots control the behaviour of the
antiferromagnetic Potts model at zero temperature. For a survey on the subject see [47].

For a finite graph G, a finite rooted graph α and a positive integer R, let P(G,α,R) denote
the probability that the R-ball centered at a uniform random vertex of G is isomorphic
to α. We say that a graph sequence (Gn) of bounded degree is Benjamini-Schramm
convergent if for all finite rooted graphs α and R > 0, the probabilities P(Gn, α, R)
converge (see [8]). This means that one can not statistically distinguish Gn and Gn′ for
large n and n′ by sampling them from a random vertex with a fixed radius of sight.
An example (that is regularly used in statistical physics) is to approximate the infinite
lattice Zd by bricks with all the side lengths tending to infinity. More generally, amenable
vertex transitive graphs can be obtained as the Benjamini-Schramm limits of their Følner
sequences.

For a simple graph G let µG, the chromatic measure of G denote the uniform distribution
on its chromatic roots. By a theorem of Sokal [46], µG is supported on the open disc of
radius Cd around 0, denoted by

D = B(0, Cd)
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where d is the maximal degree of G and C < 8 is an absolute constant.

Theorem 2.1. Let (Gn) be a Benjamini-Schramm convergent graph sequence of abso-

lute degree bound d, and D̃ an open neighborhood of the closed disc D. Then for every
holomorphic function f : D̃ → C, the sequence∫

D

f(z)dµGn(z)

converges.

Let ln denote the principal branch of the complex logarithm function. For a simple graph
G and z ∈ C let

tG(z) =
ln chG(z)

|V (G)|
where this is well-defined. In statistical mechanics, tG(z) is called the entropy per vertex
or the free energy at z. In their recent paper [11], Borgs, Chayes, Kahn and Lovász
proved that if (Gn) is a Benjamini-Schramm convergent graph sequence of absolute degree
bound d, then tGn(q) converges for every positive integer q > 2d. Theorem 2.1 yields the
following.

Theorem 2.2. Let (Gn) be a Benjamini-Schramm convergent graph sequence of absolute
degree bound d with |V (Gn)| → ∞. Then tGn(z) converges to a real analytic function on
C \D.

In particular, tGn(z) converges for all z ∈ C \ D. Theorem 2.2 answers a question of
Borgs [10, Problem 2] who asked under which circumstances the entropy per vertex has a
limit and whether this limit is analytic in 1/z. Note that for an amenable quasi-transitive
graph and its Følner sequences, this was shown to hold in [42].

To prove Theorem 2.1 we show that for a finite graph G and for every k, the number

pk(G) = |V (G)|
∫
D

zkdµG(z)

can be expressed as a fixed linear combination of hom(H,G) where the H are connected
finite graphs and hom(H,G) denotes the number of graph homomorphisms from H to
G. Since a sequence of graphs Gn of bounded degree is Benjamini-Schramm convergent
if and only if

hom(H,Gn)

|V (Gn)|
converges for all connected graphs H. This gives convergence of all the holomorphic
moments of µGn , and this is equivalent to Theorem 2.1. For instance, for the fourth
moment we get

p4(G) = −1
3

hom( , G) + 4
3

hom( , G)− 1
2

hom( , G) + 1
3

hom
(

, G
)

+

hom
(

, G
)
− 1

2
hom

(
, G
)

+ hom
(

, G
)
− 1

3
hom

(
, G
)
−
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1
3

hom
(

, G
)

+ 1
3

hom
(

, G
)

+ 2
5

hom
(

, G
)
− 2 hom

(
, G

)
+

2 hom
(

, G
)
− hom

(
, G
)

+ hom
(

, G
)
− 1

2
hom

(
, G
)

+

1
3

hom
(

, G
)
− 1

30
hom

(
, G
)
.

One could speculate that assuming Benjamini-Schramm convergence of Gn, maybe the
complex measures µGn themselves will weakly converge. That is, Theorem 2.1 would hold
for any continuous real function on D or, equivalently, convergence would hold in all the
moments ∫

D

zkzjdµGn(z).

However, this is not true in general, as the following easy counterexample shows. Let Pn
denote the path of length n and let Cn denote the cycle of length n. Then Pn and Cn
converge to the same object, the infinite rooted path, while we have

chPn(z) = z(z − 1)n−1 and chCn(z) = (z − 1)n + (−1)n(z − 1).

Thus, the weak limit of µPn is the Dirac measure on 1 and the weak limit of µCn is the
normalized Lebesgue measure on the unit circle centered at 1.

Still, using Theorem 2.1, we are able to prove the weak convergence of µGn for some
natural sequences of graphs. For example, let Tn = C4 × Pn denote the 4 × n tube, i.e.
the cartesian product of the 4-cycle with a path on n vertices. Tn is a 4-regular graph
except at the ends of the tube.

Proposition 2.3. The chromatic measures µTn weakly converge.

The proof is as follows: as Salas and Sokal [45] showed, the pointwise limit X of supports of
µTn is part of a particular algebraic curve, so any subsequential weak limit is supported on
X. The complement of X is connected, so by Mergelyan’s theorem [40], every continuous
function on X can be uniformly approximated by polynomials. Using Theorem 2.1 this
yields weak convergence of µTn . See Section 2.4 for details.

In this case one can use the so-called transfer matrix method to control the support of the
chromatic measures (see [45] for various models related to the square lattice). In general,
even for models of the square lattice, the complement of the limiting set may not be
connected, and hence one can not invoke Mergelyan’s theorem. It is expected, however,
that for any model where the transfer matrix method can be used, the chromatic measures
do converge weakly.

Another naturally interesting case is when the girth of G (the minimal size of a cycle) is
large. One can show that∫

D

zkdµ(z) =
|E(G)|
|V (G)| (1 ≤ k ≤ girth(G)− 2)

13



that is, the moments are all the same until the girth is reached (see Lemma 2.13). This
implies that for a sequence of d-regular graphs Gn with girth tending to infinity, the limit
of the free entropy

lim
n→∞

tGn(z) = ln q +
d

2
ln(1− 1

q
)

for q > Cd. This is one of the main results in [6]. Note that their proof works for q > d+1,
while our approach only works for q > Cd. The advantage of our approach is that it gives
an explicit estimate on the number of proper colorings of large girth graphs.

Theorem 2.4. Let G be a finite graph of girth g and maximal degree d. Then for all
q > Cd we have ∣∣∣∣ ln chG(q)

|V (G)| −
(

ln q +
|E(G)|
|V (G)| ln(1− 1

q
)

)∣∣∣∣ ≤ 2
(Cd/q)g−1

1− Cd/q .

When G is d-regular with asymptotically maximal girth, i.e. g = c ln |V (G)|, this yields∣∣∣∣ ln chG(q)

|V (G)| −
(

ln q +
d

2
ln(1− 1

q
)

)∣∣∣∣ ≤ O(|V (G)|−c′)

for some explicit constant c′ > 0. Counting the number of proper colorings of random
d-regular graphs have been considered in [6]. These graphs do not have logarithmic girth,
but they have few shorter cycles, so one can obtain a similar result for them.

Here we wish to raise attention to an interesting phenomenon, of which we only have some
computational evidence. We have computed the chromatic measures of several 3-regular
large girth graphs and surprisingly, it looks like one may also get weak convergence of
chromatic measures.

Problem 2.5. Let Gn be a sequence of d-regular graphs with girth tending to infinity.
Does µGn weakly converge?

This would be interesting because one could consider the limit as the ‘chromatic measure
of the d-regular infinite tree’. Observe that any subsequential weak limit µ of µGn satisfies∫

D

zkdµ(z) =
d

2
(k ≥ 1)

that is, the holomorphic moments of µ are independent of k. While Figure 2.1 looks very
promising, one misleading aspect of it may be that 3-regular graphs having 32 vertices
and (maximal possible) girth 7 may exhibit structural restrictions that are much stronger
than just large girth.

It would be interesting to generalize our results to the Tutte polynomial TG(x, y). This
two-variable polynomial encodes a lot of interesting invariants ofG. For instance, TG(z, 0) =
chG(z), TG(2, 1) counts the number of forests, TG(1, 1) is the number of spanning trees

14
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Figure 2.1: Chromatic roots of the 30368 cubic graphs of size 32 and girth 7

and TG(1, 2) is the number of connected spanning subgraphs. By a result of Lyons [39],
we know that

log TGn(1, 1)

|V (Gn)|
converges for a Benjamini-Schramm convergent sequence of graphs Gn of bounded degree.
Also, in [11] it is shown that the same holds at the places (q, y) where 0 ≤ y < 1 and q is
large enough in terms of the maximal degree. It would be interesting to see whether this
also holds at other places. The places (2, 1) and (1, 2) would be good test points as they
have a natural combinatorial meaning. Also, it is not clear whether Theorem 2.1 holds
for pG(z) = TG(z, y0) for all fixed y0. Note that even for the chromatic polynomial, in
general, the above log convergence will not hold, for instance at (2, 0), because cycles of
even and odd length converge to the same limit, but even cycles have a proper 2-coloring,
while odd cycles do not. This may not be so surprising, since TG(2, 0) ≤ 2c(G) where
c(G) is the number of components of G. So for a nontrivial graph sequence Gn, TGn(2, 0)
is subexponential in |V (Gn)|, which points to the proximity of roots of TGn . To apply
Theorem 2.1 in its present form, one needs that some small neighbourhood of the place
is sparse in terms of roots.

Remark. Note that recently Csikvári and Frenkel [16] generalized Theorem 2.2 to a large
class of graph polynomials, including the Tutte polynomial. In particular, they show that
convergence holds for the normalized log of T (x, y) where x, y have large enough absolute
value.
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2.2 Preliminaries

For a simple graph H on n vertices let the number of legal colorings of H with q colors
be denoted by chH(q). Then for any edge e of H the following recursion holds:

chH(q) = chH\e(q)− chH/e(q)

where H \e is obtained from H by deleting e and H/e is obtained by gluing the endpoints
of e and erasing multiple edges and loops. This implies that chH is a polynomial of degree
n in q with integer coefficients, called the chromatic polynomial of G and that the above
recursion holds for the polynomials themselves. It also follows that the constant coefficient
of chH is zero and its main coefficient is 1. So, we can write

chH(z) = zn − e1(H)zn−1 + . . .+ (−1)kek(H)zn−k + . . .+ (−1)n−1en−1(H)z =

=
n∏
i=1

(z − λi(H)).

The ek(H) are called the chromatic coefficients of H and λi(H) are its chromatic roots.
For k ≥ 0 let

pk(H) =
n∑
i=1

λki (H).

The Newton identities establish connections between the roots and coefficients of a poly-
nomial. In this chapter we will use the following version:

pk = (−1)k−1kek +
k−1∑
i=1

(−1)k−i−1piek−i.

Let H,G be simple graphs. A map f : V (H)→ V (G) is a homomorphism if for all edges
(x, y) ∈ E(H) we have (f(x), f(y)) ∈ E(G). We denote the number of homomorphisms
from H to G by hom(H,G). The quantity hom(H,G) is nice to work with, mainly because
of the following property.

Lemma 2.6. Let H be the disjoint union of H1 and H2. Then

hom(H,G) = hom(H1, G) hom(H2, G)

for all simple graphs G.

We leave the proof to the reader.

For a random rooted graph G, a finite rooted graph α and a positive integer R, let
P(G,α,R) denote the probability that the R-ball centered at the root of G is isomorphic
to α. Analogously, for an unrooted finite graph G, let P(G,α,R) denote the probability
that the R-ball centered at a uniform random vertex of G is isomorphic to α. A graph
sequence Gn has bounded degree if there is an absolute upper bound on the degrees of
vertices of Gn.

16



A graph sequence (Gn) of bounded degree is Benjamini-Schramm convergent if for all
finite rooted graphs α and R > 0 the probabilities P(Gn, α, R) converge.

The limit of a Benjamini-Schramm convergent sequence of graphs is the random rooted
graph G satisfying

P(G,α,R) = lim
n→∞

P(Gn, α, R)

for all R > 0 and α. It is easy to see that G is well defined. In the most transparent
case, G is just one graph, which then has to be vertex transitive. For instance, the d
dimensional lattice

Zd = lim
n→∞

(Z/nZ)d = lim
n→∞

Bd
n

where (Z/nZ)d is the d dimensional torus and Bd
n is the box of side length n in Zd. The

same way, one can obtain any connected vertex transitive amenable graph as a limit. Let
G be a connected vertex transitive graph of bounded degree. A sequence of connected
subgraphs Fn of G is a Følner sequence, if

lim
n→∞

|∂Fn|
|V (Fn)| = 0

where ∂Fn denotes the external vertex boundary of Fn. Note that G is amenable if and
only if it has a Følner sequence. It is easy to show that any connected vertex transitive
amenable graph is the Benjamini-Schramm limit of its Følner sequences.

Let us consider now the d-regular tree Td, which is in many senses the farthest possible
from being amenable. One can obtain Td as the limit of finite graphs, but it is worth
to point out that Td can not be obtained as a limit of finite trees. Indeed, the expected
degrees of finite trees are approximately 2 and this passes on to their limits. It is a good
exercise to understand what the limit of the balls in Td is (it is a fixed tree where the root
is random). The right way to approximate Td in Benjamini-Schramm convergence is to
take finite d-regular graphs Gn with girth tending to infinity.

Benjamini-Schramm convergence can also be expressed in terms of graph homomorphisms
using the following lemma (see [36], Proposition 5.6).

Lemma 2.7. Let Gn be a graph sequence of bounded degree. Then Gn is Benjamini-
Schramm convergent if and only if for every finite connected graph H, the limit

lim
n→∞

hom(H,Gn)

|V (Gn)|
exists.

Note that one needs connectedness in Lemma 2.7, as hom(H,G) may be the order of
|V (G)|c where c is the number of components in H.

2.3 Expressing moments from homomorphisms

In this section we give an explicit formula for the holomorpic moments of the chromatic
measure in terms of graphs homomorphisms.
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For a finite, simple graph G let P(G) be defined as the set of partitions of V (G) where
no edge of G connects two vertices in the same class. A partition P ∈ P(G) can be
considered as a surjective homomorphism from G to the simple graph G/P obtained by
contracting each class of P and erasing multiple edges. For simple graphs G and T let

P(G, T ) = {P ∈ P(G) | G/P ∼= T}

be the collection of partitions of G with quotient isomorphic to T . For P ∈ P(G) let

‖P‖ =
∏
p∈P

(|p| − 1)!

where p ∈ P runs through the P -classes.

Let Aut(G) denote the automorphism group of G. Let G(k) denote the set of graphs
without isolated vertices, where the number of vertices minus the number of components
equals k and let

G(≤ k) = ∪j≤kG(j).

Note that G(≤ k) is a finite set.

Base parameters. Now we introduce a sequence of parameters that will connect mo-
ments with chromatic coefficients. For a simple graph T and k > 0 let

ck(T ) =
∑

G∈G(k)

(−1)|E(G)|+|V (G)|+|V (T )|+k

|Aut(G)|
∑

P∈P(G,T )
‖P‖ .

It turns out that these parameters allow us to express ek(H) in a nice way.

Lemma 2.8. Let H be a simple graph. Then we have

ek(H) =
∑

T∈G(≤k)
ck(T ) hom(T,H).

Proof. We derive the lemma from two easy claims. Let inj(G,H) denote the number of
injective homomorphisms from G to H.

Claim 1. We have

ek(H) =
∑

G∈G(k)

(−1)|E(G)|+k

|Aut(G)| inj(G,H).

To see this, we use the following identity, that is sometimes used as a definition.

chH(z) =
∑
G⊆H

spanning

(−1)|E(G)|zc(G)

where c(G) is the number of connected components in the spanning subgraph G. It is
enough to prove this for positive integer values of z. In this case, there are exactly zc(G)
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colorings that violate the legal coloring constraint for all edges of G, and the equation
follows from the inclusion-exclusion principle.

The value of ek(H) is (−1)k times the coefficient of zn−k, which contains the terms where
c(G) = n − k, or equivalently, where the graph G, when erasing its isolated vertices, is
in Gk. A graph G is counted as many times as it appears in H as a spanning subgraph,
which equals inj(G,H)/ |Aut(G)|. Claim 1 is proved.

Claim 2. Let G ∈ G(k) and let H be a simple graph. Then we have

inj(G,H) =
∑

T∈G(≤k)

(−1)|V (G)|+|V (T )| ∑
P∈P(G,T )

‖P‖

 hom(T,H).

To see this, let us consider the partially ordered set P(G) with respect to refinement. For
P, P ′ ∈ P(G) with P ′ ≤ P (i.e. P ′ refines P ), let p1, . . . , pr be a list of the P -classes and

let ai be the number of P ′-classes contained in pi (1 ≤ i ≤ r). Let s =
r∑
i=1

ai be the

number of classes in P ′. Then the Mobius function is

µ(P ′, P ) = (−1)r+s
r∏
i=1

(ai − 1)!

(see e.g. [43]). In particular, for the discrete partition P0 we get

µ(P0, P ) = (−1)|V (G)|+|V (G/P )| ‖P‖ .

On the other hand, we have

hom(G/P ′, H) =
∑

P ′≤P∈P(G)

inj(G/P,H).

Now the Mobius inversion formula yields

inj(G,H) =
∑

P∈P(G)

(−1)|V (G)|+|V (G/P )| ‖P‖ hom(G/P,H)

which, when collecting terms by T = G/P ∈ G(≤ k) gives the formula in Claim 2.

The lemma follows from substituting the formula in Claim 2 into the formula in Claim 1
and collecting terms. �

Now we show that the base parameters of a disconnected graph can be expressed as a
convolution of the base parameters of its connected components, normalized by a constant
computed from the multiplicities:

Lemma 2.9. Let T be the disjoint union of the connected graphs T1, T2, . . . , Tl. Let S =
{j | @i < j : Ti ∼= Tj} contain the indices of nonisomorphic Tj’s and mj = |{i | Ti ∼= Tj}|
denote the multiplicity of Tj. Define σ =

∏
j∈S

mj!. Then for all k > 0 we have

ck(T ) =
1

σ

∑
(x1,...,xl)

x1+···+xl=k

l∏
j=1

cxj(Tj).
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Proof. Recall that

ck(T ) =
∑

G∈G(k)

(−1)|E(G)|+|V (G)|+|V (T )|+k

|Aut(G)|
∑

P∈P(G,T )
‖P‖ .

For a fixedG and P , the connected components ofG/P can be identified with T1, T2, . . . , Tl
in σ possible ways. Each of these matchings gives a subdivision G = G1 ∪ G2 ∪ . . . ∪ Gl

by applying the inverse image of the quotient map to the Ti’s. The restrictions Pi = P |Gi
of the partition P satisfy Pi ∈ P(Gi, Ti) and

l∏
j=1

‖Pj‖ = ‖P‖ .

Therefore

ck(T ) =
∑

G∈G(k)

(−1)|E(G)|+|V (G)|+|V (T )|+k

|Aut(G)|
∑

G=G1∪...∪Gl

∑
Pj∈P(Gj ,Tj)

1≤j≤l

1

σ

l∏
j=1

‖Pj‖ .

If we already know the isomorphism classes of G1, G2, . . . , Gl, there are still

|Aut(G)|
l∏

j=1

|Aut(Gj)|

possibilities to arrange them as a subdivision of G. It follows that ck(T ) equals

∑
(x1,...,xl)

x1+...+xl=k

∑
Gj∈G(xj)
1≤j≤l

|Aut(G)|
l∏

j=1

|Aut(Gj)|
· (−1)|E(G)|+|V (G)|+|V (T )|+k

|Aut(G)|
∑

Pj∈P(Gj ,Tj)
1≤j≤l

1

σ

l∏
j=1

‖Pj‖ .

By using

|E(G)|+ |V (G)|+ |V (T )|+ k =
l∑

j=1

(|E(Gj)|+ |V (Gj)|+ |V (Tj)|+ xj)

and rearranging we get

ck(T ) =
1

σ

∑
(x1,...,xl)

x1+...+xl=k

l∏
j=1

∑
Gj∈G(xj)

(−1)|E(Gj)|+|V (Gj)|+|V (Tj)|+xj

|Aut(Gj)|
∑

Pj∈P(Gj ,Tj)
‖Pj‖ =

=
1

σ

∑
(x1,...,xl)

x1+...+xl=k

l∏
j=1

cxj(Tj). �

We can use the following variant of Lemma 2.9 when we would like to detach one connected
component of T at a time:
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Lemma 2.10. Let T be the disjoint union of the connected graphs T1, T2, . . . , Tl where
l ≥ 2. Let S = {j | @i < j : Ti ∼= Tj} contain the indices of nonisomorphic Tj’s. Then we
have

kck(T )−
k−1∑
i=1

∑
j∈S

ici(Tj)ck−i(T \ Tj) = 0.

Proof. Let mj denote the multiplicity of Tj and σ =
∏
j∈S

mj! as in Lemma 2.9. Since

isomorphic Tj’s have identical ci(Tj) and ck−i(T \ Tj), it follows that

∑
j∈S

ici(Tj)ck−i(T \ Tj) =
l∑

t=1

i

mt

ci(Tt)ck−i(T \ Tt).

By using Lemma 2.9 for T and σ and also for T \ Tt and σ
mt

we obtain:

kck(T )−
k−1∑
i=1

∑
j∈S

ici(Tj)ck−i(T \ Tj) = kck(T )−
k−1∑
i=1

l∑
t=1

i

mt

ci(Tt)ck−i(T \ Tt) =

=
k

σ

∑
(x1,...,xl)

x1+...+xl=k

l∏
j=1

cxj(Tj)−
k−1∑
i=1

l∑
t=1

i

mt

· mt

σ

∑
(x1,...,xl)

x1+...+xl=k
xt=i

l∏
j=1

cxj(Tj) =

=
1

σ

∑
(x1,...,xl)

x1+...+xl=k

(
k −

l∑
t=1

xt

)
l∏

j=1

cxj(Tj) = 0.

The last equation follows from k −
l∑

t=1

xt = 0. �

Now we show that pk(H) can be expressed using the number of homomorphisms from
connected graphs.

Theorem 2.11. Let H be a simple graph on n vertices and let k > 0 be an integer. Then

pk(H) =
∑

T∈G(≤k)
T is connected

(−1)k−1kck(T ) hom(T,H).

Proof. The Newton identites tell us that

pk(H) = (−1)k−1kek(H) +
k−1∑
i=1

(−1)k−i−1pi(H)ek−i(H)

for all k > 0. Using induction on k, we can assume that the result holds for all j < k.
Lemma 2.8 gives us a formula for ek(H) in the parameters ck(T ), namely we have

ek(H) =
∑

T∈G(≤k)
ck(T ) hom(T,H).
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Using that hom is multiplicative (stated as Lemma 2.6) we get pk(H) as a fixed linear
combination of the hom(T,H)’s. Let qk(T ) denote the formal coefficient of hom(T,H) in
this sum. So, we have

pk(H) =
∑

T∈G(≤k)
qk(T ) hom(T,H).

This leads to the following equality for all T :

qk(T ) = (−1)k−1kck(T ) +
k−1∑
i=1

(−1)k−i−1
∑

U1∈G(≤i)
U2∈G(≤k−i)
U1∪U2=T

qi(U1)ck−i(U2)

where T is isomorphic to the disjoint union of U1 and U2.

Let T ∈ G(≤ k). We claim that

qk(T ) = (−1)k−1kck(T )

if T is connected and 0 otherwise. If T is connected then it is impossible to choose U1 and
U2 in the second sum above, so the claim holds. If T is disconnected then as in Lemma
2.10, let T be the disjoint union of the connected graphs T1, T2, . . . , Tl and let S contain
the indices of nonisomorphic Tj’s. Using induction on k we can assume that qi(U1) = 0
unless U1 is isomorphic to one of the Tj’s. This gives

qk(T ) = (−1)k−1kck(T ) +
k−1∑
i=1

(−1)k−i−1
∑
j∈S

qi(Tj)ck−i(T \ Tj).

We know from the induction hypothesis that qi(Tj) = (−1)i−1ici(Tj) and therefore we get

qk(T ) = (−1)k−1
(
kck(T )−

k−1∑
i=1

∑
j∈S

ici(Tj)ck−i(T \ Tj)
)

which is 0 according to Lemma 2.10. �
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2.4 Convergence of chromatic measures

In this section we prove Theorem 2.1, Theorem 2.2 and Proposition 2.3. For the conve-
nience of the reader, we state the theorems again.

Theorem 2.1. Let (Gn) be a Benjamini-Schramm convergent graph sequence of abso-

lute degree bound d, and D̃ an open neighborhood of the closed disc D. Then for every
holomorphic function f : D̃ → C, the sequence∫

D

f(z)dµGn(z)

converges.

Proof. We have ∫
D

zkdµG(z) =
1

|V (G)|

|V (G)|∑
i=1

λki (G) =
pk(G)

|V (G)|

for k ≥ 0.

Since f is holomorphic, it equals its Taylor series

f(z) =
∞∑
n=0

anz
n

on an open neighborhood of D. Let

fk(z) =
k∑

n=0

anz
n

denote the partial sums. The fk’s converge uniformly on D, so we also know that

Fk(G) =

∫
D

fk(z)dµG(z) =
k∑

n=0

an

∫
D

zndµG(z) =
k∑

n=0

an
pn(G)

|V (G)|

converges to

F (G) =

∫
D

f(z)dµG(z)

uniformly on the set of graphs G with µG supported on D. By Theorem 2.11 we have

pn(G) =
∑

T∈G(≤n)
T is connected

(−1)n−1ncn(T ) hom(T,G).

By rearranging, this gives

Fk(G) =
∑
T

bk,T
hom(T,G)

|V (G)|

23



where T runs through connected graphs on at most k + 1 vertices. Now let Gn be a
Benjamini-Schramm convergent sequence of graphs. By Lemma 2.7, the sequences

hom(T,Gn)

|V (Gn)|
converge for every connected T . (Note that for non-connected T this is in general false).
This implies that Fk(Gn) is convergent for every k. Since we already know that Fk(Gn)
uniformly converges to F (Gn) for every n, we obtain that F (Gn) is also convergent. It
also follows that

F (Gn, u) =

∫
D

f(z + u)dµGn(z)

uniformly converges to a holomorphic function in a neighborhood of 0. �

We are ready to prove Theorem 2.2.

Theorem 2.2. Let (Gn) be a Benjamini-Schramm convergent graph sequence of absolute
degree bound d with |V (Gn)| → ∞. Then tGn(z) converges to a real analytic function on
C \D.

Proof. The principal branch of the complex logarithm function only takes values with

an imaginary part in (−π, π]. Therefore =tGn(z) is always in the interval
(

−π
|V (Gn)| ,

π
|V (Gn)|

]
and |V (Gn)| → ∞ implies =tGn(z)→ 0.

To prove convergence for the real part <tGn(z), consider a fixed z0 ∈ C\D. Since the disc
B(z0, Cd) is bounded away from 0, there exists a branch ln∗ of the complex logarithm
function whose branch cut is a half-line emanating from 0 that is disjoint from the disc. It
follows that f(z) = ln∗(z0− z) is holomorphic on an open neighborhood of D. According
to Theorem 2.1, ∫

D

ln∗(z0 − z)dµGn(z)

converges uniformly in a neighborhood of z0, which implies that

<tGn(z0) =
< ln chGn(z0)

|V (Gn)| =

∑
λ root

< ln(z0 − λ)

|V (Gn)| =

∫
D

< ln(z0 − z)dµGn(z) =

=

∫
D

< ln∗(z0 − z)dµGn(z) = <
∫
D

ln∗(z0 − z)dµGn(z)

is locally uniformly convergent as a function of z0. Since < ln(z0−λ) is a harmonic function
for all chromatic roots λ, so is <tGn(z0), and the harmonicity of lim tGn(z0) = lim<tGn(z0)
follows from local uniform convergence. The observation that all harmonic functions are
real analytic concludes the proof. �

Now we prove Proposition 2.3. Note that already Salas and Sokal [45] showed that the
pointwise limit of supports of µTn is part of a particular algebraic curve. For convenience,
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we include some details on that, also adding a picture on the supporting set, but we do
not introduce the transfer matrix method here. See [45] for a description of the transfer
matrix method.

Proposition 2.3. The chromatic measures µTn weakly converge.

Proof. We defined Tn as the cartesian product of C4 and Pn. By the transfer matrix
method we obtain

chTn(z) = v1M
n−11T

with

v1 =
(
z4−6z3+11z2−6z 2z3−6z2+4z z2−z

)
M =

 z4−10z3+41z2−84z+73 2z3−14z2+38z−40 z2−5z+8
z4−10z3+40z2−77z+60 2z3−13z2+32z−29 z2−4z+5
z4−10z3+39z2−70z+48 2z3−12z2+26z−20 z2−3z+3


1T =

 1
1
1


.

Using the eigenvectors of M as our new basis we can diagonalize M and rewrite the above
expression as

chTn(z) = u1D
n−1u2

where

u1 =

 z7−10z6+44z5−105z4+143z3−109z2+36z+z3r−2z2r+zr
2z3−12z2+28z−24

z7−10z6+44z5−105z4+143z3−109z2+36z−z3r+2z2r−zr
2z3−12z2+28z−24

0

T

D =

 z4−8z3+29z2−55z+46+r
2

0 0

0 z4−8z3+29z2−55z+46−r
2

0
0 0 1


u2 =

 z4−8z3+27z2−47z+36+r
2r

−z4+8z3−27z2+47z−36+r
2r

0


and

r =
√
z8−16z7+118z6−526z5+1569z4−3250z3+4617z2−4136z+1776.

The matrix Dn−1 is straightforward to calculate, so we get the following closed formula
for the chromatic polynomial:

chTn(z) = a1λ
n−1
1 + a2λ

n−1
2

where

ai =
z(z−1)(z4−8z3+27z2−47z+36+ri)(z

5−9z4+35z3−70z2+73z−36+zri−ri)
4ri(z−2)(z2−4z+6)
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and

λi =
z4−8z3+29z2−55z+46+ri

2

with r1,2 = ±r.
We are interested in the complex roots of this expression if n is very large. We don’t need
to specify them exactly, but we’ll prove a necessary condition. If the eigenvalues λi differ
in their absolute value for some z, there will be an arbitrarily large multiplicative gap
between a1λ

n−1
1 and a2λ

n−1
2 for any values of ai unless both a1λ1 = 0 and a2λ2 = 0 holds.

It follows that all roots must have |λ1| = |λ2| with the possible exception of a finite set
consisting of the roots and singularities of a1, a2, λ1 and λ2, or equivalently, the roots of

z(z−1)(z−2)(2z−5)(z2−3z+1)(z2−4z+6)·
·(z6−12z5+61z4−169z3+269z2−231z+85)·

·(z8−16z7+118z6−526z5+1569z4−3250z3+4617z2−4136z+1776).

Let’s ignore this set S of special roots for now and concentrate on the general case of
|λ1| = |λ2|:

λ1λ1 = λ2λ2

z4−8z3+29z2−55z+46+r

2
· z

4−8z3+29z2−55z+46+r

2
=

=
z4−8z3+29z2−55z+46−r

2
· z

4−8z3+29z2−55z+46−r
2

(z4−8z3+29z2−55z+46)r + (z4−8z3+29z2−55z+46)r = 0

Our last expression means that (z4−8z3+29z2−55z+46)r is purely imaginary, which is
equivalent to its square being a nonpositive real. When calculated, this gives a degree 14
algebraic curve clipped by a degree 16 algebraic curve, shown as the set C on the Figure
2.2.

It follows that the curve C is compact, has an empty interior and its complement is
connected. Hence the same holds for C ′ = C ∪ S.

Now Mergelyan’s theorem [40] says that every continuous function on C ′ can be uniformly
approximated by polynomials. This implies that if two probability measures µ1 and µ2

are supported on C ′ and the holomorphic moments satisfy∫
C′

zkdµ1(z) =

∫
C′

zkdµ2(z) (k ≥ 1)

then ∫
C′

f(z)dµ1(z) =

∫
C′

f(z)dµ2(z)

for all continuous functions f : C ′ → R. Hence, we have µ1 = µ2. Since any subsequential
weak limit of µTn is supported on C ′, we get that µTn is weakly convergent. �
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Figure 2.2: Possible limit points of chromatic roots of Tn = C4 × Pn as n→∞

Remark. As we saw in the introduction, weak convergence does not hold in general. The
phenomenon where an associated measure blows up by a small change of the graph but
keeps its holomorphic moments unchanged also occurs in the spectral theory of directed
graphs. Namely, the weak limit of the eigenvalue distributions of the directed path of
length n is the Dirac measure at 0, while for the directed n-cycle the limit is the uniform
measure on the unit circle centered at 0. In both the chromatic and the spectral case, the
reason is that the change only affects the coefficients of small index in the corresponding
polynomial, and the k-th moment only depends on the k highest index coefficients. It
would be interesting to study this blow-up phenomenon using just abstract polynomials.

2.5 Graphs of large girth

In this section we study graphs with large girth and prove Theorem 2.4.

Lemma 2.12. Suppose that the finite graphs G and H both have girth at least g and
|E(G)| = |E(H)|. Then ei(G) = ei(H) holds for i = 0, 1, . . . , g − 2.

Proof. We use induction on |E(G)| = |E(H)|. If the number of edges is zero, the claim
is trivial, as is when g ≤ 3. Otherwise pick e ∈ E(G) and f ∈ E(H) arbitrarily and use
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the deletion-contraction argument:

ei(G) = ei(G \ e) + ei−1(G/e)

ei(H) = ei(H \ f) + ei−1(H/f)

The claim follows from the observation that G \ e and H \ f have girth ≥ g while G/e
and H/f have girth ≥ g − 1. �

Lemma 2.13. Let G be a finite graph with girth ≥ g. Then pi(G) = |E(G)| for i =
1, 2, . . . , g − 2.

Proof. Let H be an arbitrary tree on |E(G)| + 1 vertices and use the previous lemma.
Since the chromatic polynomial of H is q(q − 1)|E(G)|, we have ei(H) =

(|E(G)|
i

)
for i ≤

|E(G)|, which translates into ei(G) =
(|E(G)|

i

)
for i ≤ g − 2. Substituting the ei’s into

Newton’s identities completes the proof. �

Theorem 2.4. Let G be a finite graph of girth g and maximal degree d. Then for all
q > Cd we have ∣∣∣∣ ln chG(q)

|V (G)| −
(

ln q +
|E(G)|
|V (G)| ln(1− 1

q
)

)∣∣∣∣ ≤ 2
(Cd/q)g−1

1− Cd/q .

Proof. The normalized log of the chromatic polynomial can be expanded as

ln chG(q)

|V (G)| =

∫
D

ln(q − z)dµG(z) = ln q +

∫
D

ln

(
1− z

q

)
dµG(z) =

= ln q −
∞∑
n=1

1

nqn

∫
D

zndµG(z)

where the Sokal bound |z| ≤ Cd gives the constraint∣∣∣∣∣∣
∫
D

zndµG(z)

∣∣∣∣∣∣ ≤ (Cd)n

for the holomorphic moments, and our last lemma implies∫
D

zndµG(z) =
pn(G)

|V (G)| =
|E(G)|
|V (G)|

for n ≤ g − 2. We also know that any real number x ∈ [0, 1) satisfies

∞∑
n=g−1

xn

n
=

x∫
0

∞∑
n=g−2

tndt =

x∫
0

tg−2

1− tdt ≤ x · x
g−2

1− x =
xg−1

1− x .
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Now we have

∣∣∣∣ ln chG(q)

|V (G)| −
(

ln q +
|E(G)|
|V (G)| ln(1− 1

q
)

)∣∣∣∣ =

=

∣∣∣∣∣∣
ln q −

∞∑
n=1

1

nqn

∫
D

zndµG(Z)

−(ln q −
∞∑
n=1

1

nqn
· |E(G)|
|V (G)|

)∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣
∞∑

n=g−1

1

nqn

∫
D

zndµG(z)− |E(G)|
|V (G)|

∣∣∣∣∣∣ ≤
∞∑

n=g−1

1

nqn

∣∣∣∣∣∣
∫
D

zndµG(z)

∣∣∣∣∣∣+
|E(G)|
|V (G)|

 ≤
≤

∞∑
n=g−1

(Cd)n + |E(G)|/|V (G)|
nqn

≤
∞∑

n=g−1

2(Cd)n

nqn
≤ 2

(Cd/q)g−1

1− Cd/q .

The theorem holds. �
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2.6 Appendix

In the appendix we publish some data that may be useful for further analysis.

For abbreviation, we use the following terminology:

hom

(
n∑
i=1

αiGi, H

)
=

n∑
i=1

αi hom(Gi, H)

where the Gi and H are finite graphs.

One can express the first 4 chromatic coefficients as a linear combination of homomor-
phisms as follows:

e0(G) = hom( , G)

e1(G) = hom
(
1
2

, G
)

e2(G) = hom
(
− 1

4
− 1

6
+ 1

8
, G
)

e3(G) = hom
(

1
24

+ 1
4

+ 1
12

− 1
8

− 1
8

+ 1
4

− 1
24

− 1
12

+ 1
48

, G
)

e4(G) = hom
(

1
12

− 1
3

+ 1
8

+ 5
96

− 1
12

− 1
4

+ 1
8

− 1
4

+ 1
12

+

1
8

+ 1
12

− 1
32

+ 1
12

− 1
12

− 1
10

+ 1
2
− 1

2
+ 1

4
− 1

4
+

1
8
− 1

12
+ 1

120
− 1

16
+ 1

8
− 1

48
+ 1

72
− 1

48
+ 1

384
, G
)

Also, one can express the first 5 chromatic moments as a linear combination of homomor-
phisms as follows.

p0(G) = hom( , G)

p1(G) = hom
(
1
2

, G
)

p2(G) = hom
(
1
2

+ 1
3

, G
)

p3(G) = hom
(
1
8

+ 3
4

+ 1
4
− 3

8
+ 3

4
− 1

8
, G
)

p4(G) = hom
(
− 1

3
+ 4

3
− 1

2
+ 1

3
+ − 1

2
+ − 1

3
− 1

3
+ 1

3
+

2
5

− 2 + 2 − + − 1
2

+ 1
3

− 1
30

, G
)
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p5(G) = hom

(
− 19

72
− 5

16
− 15

16
+ 125

72
+ 5

8
+ 25

24
+ 35

48
− 35

24
−

25
144

+ 5
48

+ 5
8

− 5
4

+ 5
4

− 25
24

+ 25
24

+ 5
16

+ 3
4

− 15
4

+

15
4

+ 5
4

− 5
12

− 25
8

+ 25
8

− 25
16

+ 25
24

− 5
48

− 5
48

+ 5
48

+

5
4
− 5

2
− 5

4
+ 5

2
+ 5

8
− 5

8
− 5

12
+ 5

4
+ 5

2
−5 − 5

2
+

5
2

− 5
8

+ 5
2

+ 5
4

− 5
2

+ 5 + 5
6

− 5
2

+ 5
4

+ 5
72

−
5
12

− 5
4

+ 5
12

− 5
36

− 5
4

+ 5
2

+ 5
2

+ 5
4

− 5
2
− 5

16
+ 5

16
−

5
2

− 5
4

+ 5
2

− 1
2

+ 5
12

− 5
2
− 5

2
+ 5

2
− 5

4
− 5

2
− 5

8
+

5
2

− 5
12

+ 5
12

+ 5
4

+ 5
12

+ 5
8

− 5
4

− 5
48

+ 5
16

− 5
48

+ 1
144

, G

)
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Chapter 3

Matching measure and the
monomer-dimer free energy

This chapter is based on the article [3], which is joint work with Miklós Abért and Péter
Csikvári.

3.1 Introduction

The aim of this chapter is to define the matching measure of an infinite lattice L and
show how it can be used to analyze the behaviour of the monomer-dimer model on L.
The notion of matching measure has been recently introduced by Abért, Csikvári, Frenkel
and Kun in [1]. There are essentially two ways to define it: in this chapter we take the
path of giving a direct, spectral definition for infinite vertex transitive lattices, using self-
avoiding walks and then connect it to the monomer-dimer model via graph convergence.
Recall that a graph L is vertex transitive if for any two vertices of L there exists an
automorphism of L that brings one vertex to the other.

Let v be a fixed vertex of the graph L. A walk in L is self-avoiding, if it touches every
vertex at most once. There is a natural graph structure on the set of finite self-avoiding
walks starting at v: we connect two walks if one is a one step extension of the other.
The resulting graph is an infinite rooted tree, called the tree of self-avoiding walks of L
starting at v.

Definition 3.1. Let L be an infinite vertex transitive lattice. The matching measure ρL
is the spectral measure of the tree of self-avoiding walks of L starting at v, where v is a
vertex of L.

By vertex transitivity, the definition is independent of v. For a more general definition,
also covering lattices that are not vertex transitive, see Section 3.2.

To make sense of why we call this the matching measure, we need to recall the notion of
Benjamini–Schramm convergence from Chapter 2. Let Gn be a sequence of finite graphs.
We say that Gn Benjamini–Schramm converges to L, if for every R > 0, the probability
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that the R-ball centered at a uniform random vertex of Gn is isomorphic to the R-ball in
L tends to 1 as n tends to infinity. That is, if by randomly sampling Gn and looking at
a bounded distance, we can not distinguish it from L in probability.

All Euclidean lattices L can be approximated this way by taking sequences of boxes with
side lengths tending to infinity, by bigger and bigger balls in L in its graph metric, or by
suitable tori. When L is a Bethe lattice (a d-regular tree), finite subgraphs never converge
to L and the usual way is to set Gn to be d-regular finite graphs where the minimal cycle
length tends to infinity.

For a finite graph G and k > 0 let mk(G) be the number of monomer-dimer arrangements
with k dimers (matchings of G using k edges). Let m0(G) = 1. Let the matching
polynomial

µ(G, x) =
∑
k

(−1)kmk(G)x|G|−2k

and let ρG, the matching measure of G be the uniform distribution on the roots of µ(G, x).
Note that µ(G, x) is just a reparametrization of the monomer-dimer partition function.
The matching polynomial has the advantage over the partition function that its roots are
bounded in terms of the maximal degree of G.

Using previous work of Godsil [25] we show that ρL can be obtained as the thermody-
namical limit of the ρGn .

Theorem 3.2. Let L be an infinite vertex transitive lattice and let Gn Benjamini–
Schramm converge to L. Then ρGn weakly converges to ρL and limn→∞ ρGn({x}) =
ρL({x}) for all x ∈ R.

So in this sense, the matching measure can be thought of as the ‘root distribution of
the partition function for the infinite monomer-dimer model’, transformed by a fixed
reparametrization.

It turns out that the matching measure can be effectively used as a substitute for the
Mayer series. An important advantage over it is that certain natural functions can be
integrated along this measure even in those cases when the corresponding series do not
converge. We demonstrate this advantage by giving new, strong estimates on the free
energies of monomer-dimer models for Euclidean lattices, by expressing them directly
from the matching measures.

The computation of monomer-dimer and dimer free energies has a long history. The
precise value is known only in very special cases. Such an exceptional case is the Fisher-
Kasteleyn-Temperley formula [21, 34, 44] for the dimer model on Z2. There is no such
exact result for monomer-dimer models. The first approach for getting estimates was the
use of the transfer matrix method. Hammersley [28, 29], Hammersley and Menon [30] and
Baxter [7] obtained the first (non-rigorous) estimates for the free energy. Then Friedland
and Peled [23] proved the rigorous estimates 0.6627989727±10−10 for d = 2 and the range
[0.7653, 0.7863] for d = 3. Here the upper bounds were obtained by the transfer matrix
method, while the lower bounds relied on the Friedland-Tverberg inequality. The lower
bound in the Friedland-Peled paper was subsequently improved by newer and newer results
(see e.g. [22]) on Friedland’s asymptotic matching conjecture which was finally proved
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by L. Gurvits [26]. Meanwhile, a non-rigorous estimate [0.7833, 0.7861] was obtained via
matrix permanents [33]. Concerning rigorous results, the most significant improvement
was obtained recently by D. Gamarnik and D. Katz [24] via their new method which
they called sequential cavity method. They obtained the range [0.78595, 0.78599]. More
precise, but non-rigorous estimates can be found in the paper [14]. This chapter uses
Mayer-series with many coefficients computed in the expansion. The related paper [13]
may lead to further development through the so-called Positivity conjecture of the authors.

Here we only highlight one computational result. More data can be found in Section 3.3,
in particular, in Table 3.2. Let λ̃(L) denote the monomer-dimer free energy of the lattice
L, and let Zd denote the d-dimensional hyper-simple cubic lattice.

Theorem 3.3. We have

λ̃(Z3) = 0.7859659243± 9.88 · 10−7,

λ̃(Z4) = 0.8807178880± 5.92 · 10−6.

λ̃(Z5) = 0.9581235802± 4.02 · 10−5.

The bounds on the error terms are rigorous.

Our method allows to get efficient estimates on arbitrary lattices. The computational
bottleneck is the tree of self-avoiding walks, which is famous to withstand theoretical
interrogation.

It is natural to ask what are the actual matching measures for the various lattices. In
the case of a Bethe lattice Td, the tree of self-avoiding walks again equals Td, so the
matching measure of Td coincides with its spectral measure. This explicit measure, called
Kesten-McKay measure has density

d

2π

√
4(d− 1)− t2
d2 − t2 χ{|t|≤2

√
d−1}.

We were not able to find such explicit formulae for any of the Euclidean lattices. However,
using Theorem 3.2 one can show that the matching measures of hypersimple cubic lattices
admit no atoms.

Theorem 3.4. The matching measures ρZd have no atoms.

In Section 3.4 we prove a more general result which also shows that for instance, the
matching measure of the hexagonal lattice has no atoms. For some images on the matching
measures of Z2 and Z3 see Section 3.4. We expect that the matching measures of all
hypersimple cubic lattices are absolutely continuous with respect to the Lebesque measure.
We also expect that the radius of support of the matching measure (that is, the spectral
radius of the tree of self-avoiding walks) carries further interesting information about the
lattice. Note that the growth of this tree for Zd and other lattices has been under intense
investigation [5, 19, 27], under the name connective constant.
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The chapter is organized as follows. In Section 3.2, we define the basic notions and prove
Theorem 3.2. In Section 3.3 we introduce the entropy function λG(p) for finite graphs G
and related functions, and we gather their most important properties. We also extend this
concept to lattices. In this section we provide the computational data too. In Section 3.4,
we prove Theorem 3.4.

3.2 Matching measure

3.2.1 Notations

This section is about the basic notions and lemmas needed later. Since the same objects
have different names in graph theory and statistical mechanics, for the convenience of the
reader, we start with a short dictionary.

Graph theory Statistical mechanics
vertex site
edge bond

k-matching monomer-dimer arrangement with k dimers
perfect matching dimer arrangement

degree coordination number
d-dimensional grid (Zd) hyper-simple cubic lattice

infinite d-regular tree (Td) Bethe lattice
path self-avoiding walk

Table 3.1: A dictionary between graph theory and statistical mechanics

Throughout the chapter, G denotes a finite graph with vertex set V (G) and edge set E(G).
The number of vertices is denoted by |G|. For an infinite graph L, we will use the word
lattice. The degree of a vertex is the number of its neighbors. A graph is called d-regular
if every vertex has degree exactly d. The graph G − v denotes the graph obtained from
G by erasing the vertex v together with all edges incident to v.

For a finite or infinite graph T , let l2(T ) denote the Hilbert space of square summable
real functions on V (T ). The adjacency operator AT : l2(T )→ l2(T ) is defined by

(ATf)(x) =
∑

(x,y)∈E(T )

f(y) (f ∈ l2(T )).

When T is finite, in the standard base of vertices, AT is a square matrix, where au,v =
1 if the vertices u and v are adjacent, otherwise au,v = 0. For a finite graph T , the
characteristic polynomial of AT is denoted by φ(T, x) = det(xI − AT ).

A matching is set of edges having pairwise distinct endpoints. A k-matching is a matching
consisting of k edges. A graph is called vertex-transitive if for every vertex pair u and v,
there exists an automorphism ϕ of the graph for which ϕ(u) = v.
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3.2.2 Matching measure and tree of self-avoiding walks

The matching polynomial of a finite graph G is defined as

µ(G, x) =
∑
k

(−1)kmk(G)x|G|−2k,

where mk(G) denotes the number of k-matchings in G. Let ρG, the matching measure of
G be the uniform distribution on the zeros of the matching polynomial of G.

The fundamental theorem for the matching polynomial is the following.

Theorem 3.5 (Heilmann and Lieb [32]). The roots of the matching polynomial µ(G, x)
are real, and if the largest degree D is greater than 1, then all roots lie in the interval
[−2
√
D − 1, 2

√
D − 1].

A walk in a graph is self-avoiding if it touches every vertex at most once. For a finite
graph G and a root vertex v, one can construct Tv(G), the tree of self-avoiding walks at v
as follows: its vertices correspond to the finite self-avoiding walks in G starting at v, and
we connect two walks if one of them is a one-step extension of the other. The following
figure illustrates that in general, Tv(G) very much depends on the choice of v.

1

2

3

4

5 1

2

5

4

3

3

4

5

3
2

5 4

4
5 24

3

2

5

5

2

3

5
4

32

2
34

2

3
451

1
5

1

4

5
5

4

1

3

4

5

4
3

5
5

4

3

5

1

3

4

4

3

4

1
3

31

Figure 3.1: The pyramid graph and its trees of self-avoiding walks starting from 1 and 2

respectively.

Recall that the spectral measure of a (possibly infinite) rooted graph (T, v) is defined as
follows. Assume that T has bounded degree. Then the adjacency operator AT : l2(T )→
l2(T ) is bounded and self-adjoint, hence it admits a spectral measure PT (X) (X ⊆ R
Borel). This is a projection-valued measure on R such that for any polynomial F (x) we
have

F (A) =

∫
F (x)dPx (Sp)

where Px = P ((−∞, x)). We define δ(T,v), the spectral measure of T at v by

δ(T,v)(X) = 〈PT (X)χv, PT (X)χv〉 = 〈PT (X)χv, χv〉 (X ⊆ R Borel)

where χv is the characteristic vector of v. It is easy to check that δ(T,v) is a probability
measure supported on the spectrum of the operator AT . Also, by (Sp), for all k ≥ 0, the
k-th moment of δ(T,v) equals∫

xkdδ(T,v) =
〈
Akχv, χv

〉
= ak(T, v)
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where ak(T, v) is the number of returning walks of length k starting at v.

It turns out that the matching measure of a finite graph equals the average spectral
measure over its trees of self-avoiding walks.

Theorem 3.6. Let G be a finite graph and let v be a vertex of G chosen uniformly at
random. Then

ρG = Evδ(Tv(G),v).

Equivalently, for all k ≥ 0, the k-th moment of ρG equals the expected number of returning
walks of length k in Tv(G) starting at v.

In particular, Theorem 3.6 gives one of the several known proofs for the Heilmann-Lieb
theorem. Indeed, spectral measures are real and the spectral radius of a tree with degree
bound D is at most 2

√
D − 1.

To prove Theorem 3.6 we need the following result of Godsil [25] which connects the
matching polynomial of the original graph G and the tree of self-avoiding walks:

Theorem 3.7. [25] Let G be a finite graph and v be an arbitrary vertex of G. Then

µ(G− v, x)

µ(G, x)
=
µ(Tv(G)− v, x)

µ(Tv(G), x)
.

We will also use two well-known facts which we gather in the following proposition:

Proposition 3.8. [25] (a) For any tree or forest T , the matching polynomial µ(T, x)
coincides with the characteristic polynomial φ(T, x) of the adjacency matrix of the tree T :

µ(T, x) = φ(T, x).

(b) For any graph G, we have

µ′(G, x) =
∑
v∈V

µ(G− v, x).

Proof of Theorem 3.6. First, let us use part (a) of Proposition 3.8 for the tree Tv(G) and
the forest Tv(G)− v:

µ(Tv(G)− v, x)

µ(Tv(G), x)
=
φ(Tv(G)− v, x)

φ(Tv(G), x)
.

On the other hand, for any graph H and vertex u, we have

φ(H − u, x)

φ(H, x)
= x−1

∞∑
k=0

ck(u)x−k,

where ck(u) counts the number of walks of length k starting and ending at u. So this
is exactly the moment generating function of the spectral measure with respect to the
vertex u. Putting together these with Theorem 3.7 we see that

µ(G− v, x)

µ(G, x)
=
µ(Tv(G)− v, x)

µ(Tv(G), x)
= x−1

∞∑
k=0

ak(v)x−k
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is the moment generating function of the spectral measure of the tree of self-avoiding
walks with respect to the vertex v.

Now let us consider the left hand side of Theorem 3.7. Let us use part (b) of Proposi-
tion 3.8:

µ′(G, x) =
∑
u∈V

µ(G− u, x).

This implies that

Ev
µ(G− v, x)

µ(G, x)
=

1

|G|
µ′(G, x)

µ(G, x)
= x−1

∞∑
k=0

µkx
−k,

where

µk =
1

|G|
∑

λk,

where the summation goes through the zeros of the matching polynomial. In other words,
µk is k-th moment of the matching measure defined by the uniform distribution on the
zeros of the matching polynomial. Putting everything together we see that

µk = Evak(v).

Since both ρG and Evρ(v) are supported on {|x| ≤ ‖AG‖}, we get that the two measures
are equal.

We already defined Benjamini–Schramm convergence in Chapter 2, but we give an ex-
tended definition here that also includes a notion of the limit, at least in the special case
when it is a vertex transitive lattice.

Definition 3.9. For a finite graph G, a finite rooted graph α and a positive integer r,
let P(G,α, r) be the probability that the r-ball centered at a uniform random vertex of G
is isomorphic to α. We say that a graph sequence (Gn) of bounded degree is Benjamini–
Schramm convergent if for all finite rooted graphs α and r > 0, the probabilities P(Gn, α, r)
converge. Let L be a vertex transitive lattice. We say that (Gn) Benjamini–Schramm
converges to L, if for all positive integers r, P(Gn, αr, r)→ 1 where αr is the r-ball in L.

Example 3.10. Let us consider a sequence of boxes in Zd where all sides converge to
infinity. This will be Benjamini–Schramm convergent graph sequence since for every fixed
r, we will pick a vertex which at least r-far from the boundary with probability converging
to 1. For all these vertices we will see the same neighborhood. This also shows that we can
impose arbitrary boundary condition, for instance periodic boundary condition means that
we consider the sequence of toroidal boxes. Boxes and toroidal boxes will be Benjamini–
Schramm convergent even together.

We prove the following generalization of Theorem 3.2.

Theorem 3.11. Let (Gn) be a Benjamini–Schramm convergent bounded degree graph
sequence. Then the sequence of matching measures ρGn is weakly convergent. If (Gn)
Benjamini–Schramm converges to the vertex transitive lattice L, then ρGn weakly converges
to ρL and limn→∞ ρGn({x}) = ρL({x}) for all x ∈ R.
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Remark 3.12. The first part of the theorem was first proved in [1]. The proof given there
relied on a general result on graph polynomials given in [16]. For completeness, we give
an alternate self-contained proof here.

We will use the following theorem of Thom [48]. See also [4] where this is used for
Benjamini–Schramm convergent graph sequences.

Theorem 3.13 (Thom). Let (qn(z)) be a sequence of monic polynomials with integer
coefficients. Assume that all zeros of all qn(z) are at most R in absolute value. Let ρn
be the probability measure of uniform distribution on the roots of qn(z). Assume that ρn
weakly converges to some measure ρ. Then for all θ ∈ C we have

lim
n→∞

ρn({θ}) = ρ({θ}).

Proof of Theorem 3.2 and 3.11. For k ≥ 0 let

µk(G) =

∫
zk dρG(z)

be the k-th moment of ρG. By Theorem 3.6 we have

µk(G) = Evak(G, v)

where ak(G, v) denotes the number of closed walks of length k of the tree Tv(G) starting
and ending at the vertex v.

Clearly, the value of ak(G, v) only depends on the k-ball centered at the vertex v. Let
TW (α) = ak(G, v) where the k-ball centered at v is isomorphic to α. Note that the value
of TW (α) depends only on the rooted graph α and does not depend on G.

Let Nk denote the set of possible k-balls in G. The size of Nk and TW (α) are bounded
by a function of k and the largest degree of G. By the above, we have

µk(G) = Evak(G, v) =
∑
α∈Nk

P(G,α, k) · TW (α).

Since (Gn) is Benjamini–Schramm convergent, we get that for every fixed k, the sequence
of k-th moments µk(Gn) converges. The same holds for

∫
q(z) dρGn(z) where q is any

polynomial. By the Heilmann–Lieb theorem, ρGn is supported on [−2
√
D − 1, 2

√
D − 1]

where D is the absolute degree bound for Gn. Since every continuous function can be uni-
formly approximated by a polynomial on [−2

√
D − 1, 2

√
D − 1], we get that the sequence

(ρGn) is weakly convergent.

Assume that (Gn) Benjamini–Schramm converges to L. Then for all k ≥ 0 we have
P(Gn, αk, k)→ 1 where αk is the k-ball in L, which implies

lim
n→∞

µk(Gn) = lim
n→∞

∑
α∈Nk

P(Gn, α, k) · TW (α) = TW (αk) = ak(L, v)

where v is any vertex in L. This means that all the moments of ρL and lim ρGn are equal,
so lim ρGn = ρL.

Since the matching polynomial is monic with integer coefficients, Theorem 3.13 gives
limn→∞ ρGn({x}) = ρL({x}) for all x ∈ R.
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3.3 The function λG(p)

Let G be a finite graph, and recall that |G| denotes the number of vertices of G, and mk(G)
denotes the number of k-matchings (m0(G) = 1). Let t be the activity, a non-negative
real number, and

M(G, t) =

b|G|/2c∑
k=0

mk(G)tk,

We callM(G, t) the matching generating function or the partition function of the monomer-
dimer model. Clearly, it encodes the same information as the matching polynomial. Let

p(G, t) =
2t ·M ′(G, t)

|G| ·M(G, t)
,

and

F (G, t) =
lnM(G, t)

|G| − 1

2
p(G, t) ln(t).

Note that

λ̃(G) = F (G, 1)

is called the monomer-dimer free energy.

The function p = p(G, t) is a strictly monotone increasing function which maps [0,∞) to

[0, p∗), where p∗ = 2ν(G)
|G| , where ν(G) denotes the number of edges in the largest matching.

If G contains a perfect matching, then p∗ = 1. Therefore, its inverse function t = t(G, p)
maps [0, p∗) to [0,∞). (If G is clear from the context, then we will simply write t(p)
instead of t(G, p).) Let

λG(p) = F (G, t(p))

if p < p∗, and λG(p) = 0 if p > p∗. Note that we have not defined λG(p∗) yet. We simply
define it as a limit:

λG(p∗) = lim
p↗p∗

λG(p).

We will show that this limit exists, see part (d) of Proposition 3.15. Later we will extend
the definition of p(G, t), F (G, t) and λG(p) to infinite lattices L.

The intuitive meaning of λG(p) is the following. Assume that we want to count the
number of matchings covering p fraction of the vertices. Let us assume that it makes
sense: p = 2k

|G| , and so we wish to count mk(G). Then

λG(p) ≈ lnmk(G)

|G| .

The more precise formulation of this statement will be given in Proposition 3.15. To prove
this proposition we need some preparation.

We will use the following theorem of Darroch.
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Lemma 3.14 (Darroch’s rule [17]). Let P (x) =
∑n

k=0 akx
k be a polynomial with only

positive coefficients and real zeros. If

k − 1

n− k + 2
<
P ′(1)

P (1)
< k +

1

k + 2
,

then k is the unique number for which ak = max(a1, a2, . . . , an). If, on the other hand,

k +
1

k + 2
<
P ′(1)

P (1)
< k + 1− 1

n− k + 1
,

then either ak or ak+1 is the maximal element of a1, a2, . . . , an.

Proposition 3.15. Let G be a finite graph.
(a) Let nG be n disjoint copies of G. Then

λG(p) = λnG(p).

(b) If p < p∗, then
d

dp
λG(p) = −1

2
ln t(p).

(c) The limit
λG(p∗) = lim

p↗p∗
λG(p)

exists.
(d) Let k ≤ ν(G) and p = 2k

|G| . Then∣∣∣∣λG(p)− lnmk(G)

|G|

∣∣∣∣ ≤ ln |G|
|G| .

(e) Let k = ν(G), then for p∗ = 2k
|G| we have

λG(p∗) =
lnmk(G)

|G| .

(f) If for some function f(p) we have

λG(p) ≥ f(p) + o|G|(1)

then
λG(p) ≥ f(p).

Proof. (a) Let nG be the disjoint union of n copies of G. Note that

M(nG, t) = M(G, t)n

implying that p(nG, t) = p(G, t) and λnG(p) = λG(p).

(b) Since

λG(p) =
lnM(G, t)

|G| − 1

2
p(G, t) ln(t)
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we have

dλG(p)

dp
=

(
1

|G| ·
M ′(G, t)

M(G, t)
· dt
dp
− 1

2

(
ln(t) + p · 1

t
· dt
dp

))
= −1

2
ln(t),

since
1

|G| ·
M ′(G, t)

M(G, t)
=

p

2t

by definition.

(c) From d
dp
λG(p) = −1

2
ln t(p) we see that if p > p(G, 1), the function λG(p) is monotone

decreasing. (Note that we also see that λG(p) is a concave-down function.) Hence

lim
p↗p∗

λG(p) = inf
p>p(G,1)

λG(p).

(d) First, let us assume that k < ν(G). In case of k = ν(G), we will slightly modify our
argument. Let t = t(p) be the value for which p = p(G, t). The polynomial

P (G, x) = M(G, tx) =
n∑
j=0

mj(G)tjxj

considered as a polynomial in variable x, has only real zeros by Theorem 3.5. Note that

k =
p|G|

2
=
P ′(G, 1)

P (G, 1)
.

Darroch’s rule says that in this case mk(G)tk is the unique maximal element of the coef-
ficient sequence of P (G, x). In particular

M(G, t)

|G| ≤ mk(G)tk ≤M(G, t).

Hence

λG(p)− ln |G|
|G| ≤

lnmk(G)

|G| ≤ λG(p).

Hence in case of k < ν(G), we are done.

If k = ν(G), then let p be arbitrary such that

k − 1

2
<
p|G|

2
< k.

Again we can argue by Darroch’s rule as before that

λG(p)− ln |G|
|G| ≤

lnmk(G)

|G| ≤ λG(p).
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Since this is true for all p sufficiently close to p∗ = 2ν(G)
|G| and

λG(p∗) = lim
p↗p∗

λG(p),

we have ∣∣∣∣ lnmk(G)

|G| − λG(p∗)

∣∣∣∣ ≤ ln |G|
|G|

in this case too.

(e) By part (a) we have λnG(p) = λG(p). Note also that if k = ν(G), then mnk(nG) =
mk(G)n. Applying the bound from part (d) to the graph nG, we obtain that∣∣∣∣ lnmk(G)

|G| − λG(p∗)

∣∣∣∣ ≤ ln |nG|
|nG| .

Since
ln |nG|
|nG| → 0

as n→∞, we get that

λG(p∗) =
lnmk(G)

|G| .

(f) This is again a trivial consequence of λnG(p) = λG(p).

Our next aim is to extend the definition of the function λG(p) for infinite lattices L. We
also show an efficient way of computing its values if p is sufficiently separated from p∗.

The following theorem was known in many cases for thermodynamic limit.

Theorem 3.16. Let (Gn) be a Benjamini–Schramm convergent sequence of bounded de-
gree graphs. Then the sequences of functions
(a)

p(Gn, t),

(b)
lnM(Gn, t)

|Gn|
converge to strictly monotone increasing continuous functions on the interval [0,∞).
If, in addition, every Gn has a perfect matching then the sequences of functions
(c)

t(Gn, p),

(d)

λGn(p)

are convergent for all 0 ≤ p < 1.
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Remark 3.17. In part (c), we used the extra condition to ensure that p∗ = 1 for all these
graphs. We mention that H. Nguyen and K. Onak [41], and independently G. Elek and
G. Lippner [20] proved that for a Benjamini–Schramm convergent graph sequence (Gn),
the following limit exits:

lim
n→∞

2ν(Gn)

|Gn|
= lim

n→∞
p∗(Gn).

In particular, one can extend part (c) to graph sequences without perfect matchings.
Since we are primarily interested in lattices with perfect matchings, we leave it to the
Reader.

To prove Theorem 3.16, we essentially repeat an argument of the paper [1].

Proof of Theorem 3.16. First we prove part (a) and (b). For a graph G let S(G) denote
the set of zeros of the matching polynomial µ(G, x), then

M(G, t) =
∏

λ∈S(G)
λ>0

(1 + λ2t) =
∏

λ∈S(G)

(1 + λ2t)1/2.

Then

lnM(G, t) =
∑

λ∈S(G)

1

2
ln
(
1 + λ2t

)
.

By differentiating both sides we get that

M ′(G, t)

M(G, t)
=
∑

λ∈S(G)

1

2

λ2

1 + λ2t
.

Hence

p(G, t) =
2t ·M ′(G, t)

|G| ·M(G, t)
=

1

|G|
∑

λ∈S(G)

λ2t

1 + λ2t
=

∫
tz2

1 + tz2
dρG(z).

Similarly,

lnM(G, t)

|G| =
1

|G|
∑

λ∈S(G)

1

2
ln
(
1 + λ2t

)
=

∫
1

2
ln
(
1 + tz2

)
dρG(z).

Since (Gn) is a Benjamini–Schramm convergent sequence of bounded degree graphs, the
sequence (ρGn) weakly converges to some ρ∗ by Theorem 3.11. Since both functions

tz2

1 + tz2
and

1

2
ln
(
1 + tz2

)
are continuous, we immediately obtain that

lim
n→∞

p(Gn, t) =

∫
tz2

1 + tz2
dρ∗(z),

and

lim
n→∞

lnM(Gn, t)

|Gn|
=

∫
1

2
ln
(
1 + tz2

)
dρ∗(z).
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Note that both functions

tz2

1 + tz2
and

1

2
ln
(
1 + tz2

)
are strictly monotone increasing continuous functions in the variable t. Thus their inte-
grals are also strictly monotone increasing continuous functions.

To prove part (c), let us introduce the function

p(L, t) =

∫
tz2

1 + tz2
dρ∗(z).

We have seen that p(L, t) is a strictly monotone increasing continuous function, and equals
limn→∞ p(Gn, t). Since for all Gn, p∗(Gn) = 1, we have limt→∞ p(Gn, t) = 1 for all n. This
means that limt→∞ p(L, t) = 1. Hence we can consider inverse function t(L, p) which maps
[0, 1) to [0,∞). We show that

lim
n→∞

t(Gn, p) = t(L, p)

pointwise. Assume by contradiction that this is not the case. This means that for some
p1, there exists an ε and an infinite sequence ni for which

|t(L, p1)− t(Gni , p1)| ≥ ε.

We distinguish two cases according to
(i) there exists an infinite sequence (ni) for which

t(Gni , p1) ≥ t(L, p1) + ε,

or (ii) there exists an infinite sequence (ni) for which

t(Gni , p1) ≤ t(L, p1)− ε.

In the first case, let t1 = t(L, p1), t2 = t1 + ε and p2 = p(L, t2). Clearly, p2 > p1. Note
that

t(Gni , p1) ≥ t(L, p1) + ε = t2

and p(Gni , t) are monotone increasing functions, thus

p(Gni , t2) ≤ p(Gni , t(Gni , p1)) = p1 = p2 − (p2 − p1) = p(L, t2)− (p2 − p1).

This contradicts the fact that

lim
n→∞

p(Gni , t2) = p(L, t2).

In the second case, let t1 = t(L, p1), t2 = t1 − ε and p2 = p(L, t2). Clearly, p2 < p1. Note
that

t(Gni , p1) ≤ t(L, p1)− ε = t2
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and p(Gni , t) are monotone increasing functions, thus

p(Gni , t2) ≥ p(Gni , t(Gni , p1)) = p1 = p2 + (p1 − p2) = p(L, t2) + (p1 − p2).

This again contradicts the fact that

lim
n→∞

p(Gni , t2) = p(L, t2).

Hence limn→∞ t(Gn, p) = t(L, p).

Finally, we show that λGn(p) converges for all p. Let t = t(L, p), and

λL(p) = lim
n→∞

lnM(Gn, t)

|Gn|
− 1

2
p ln(t).

Note that

λGn(p) =
lnM(Gn, tn)

|Gn|
− 1

2
p ln(tn),

where tn = t(Gn, p). We have seen that limn→∞ tn = t. Hence it is enough to prove that
the functions

lnM(Gn, u)

|Gn|
are equicontinuous. Let us fix some u0 and let

H(u0, u) = max
z∈[−2

√
D−1,2

√
D−1]

∣∣∣∣12 ln
(
1 + u0z

2
)
− 1

2
ln
(
1 + uz2

)∣∣∣∣ .
Clearly, if |u− u0| ≤ δ for some sufficiently small δ, then H(u0, u) ≤ ε, and∣∣∣∣ lnM(Gn, u)

|Gn|
− lnM(Gn, u0)

v(Gn)

∣∣∣∣ =

∣∣∣∣∫ 1

2
ln
(
1 + u0z

2
)
dρGn(z)−

∫
1

2
ln
(
1 + uz2

)
dρGn(z)

∣∣∣∣ ≤
≤
∫ ∣∣∣∣12 ln

(
1 + u0z

2
)
− 1

2
ln
(
1 + uz2

)∣∣∣∣ dρGn(z) ≤
∫
H(u, u0) dρGn(z) ≤ ε.

This completes the proof of the convergence of λGn(p).

Definition 3.18. Let L be an infinite lattice and (Gn) be a sequence of finite graphs
which is Benjamini–Schramm convergent to L. For instance, Gn can be chosen to be an
exhaustion of L. Then the sequence of measures (ρGn) weakly converges to some measure
which we will call ρL, the matching measure of the lattice L. For t > 0, we can introduce

p(L, t) =

∫
tz2

1 + tz2
dρL(z)

and

F (L, t) =

∫
1

2
ln
(
1 + tz2

)
dρL(z)− 1

2
p(L, t) ln(t).
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If the lattice L contains a perfect matching, then we can choose Gn such that all Gn

contain a perfect matching. Then p(L, t) maps [0,∞) to [0, 1) in a monotone increasing
way, and we can consider its inverse function t(L, p). Finally, we can introduce

λL(p) = F (L, t(L, p))

for all p ∈ [0, 1). We will define λL(1) as

λL(1) = lim
p↗1

λL(p).

Remark 3.19. In the literature, the so-called Mayer series are computed for various lattices
L:

p(L, t) =
∞∑
n=1

bnt
n

for small enough t. Let us compare it with

p(L, t) =

∫
tz2

1 + tz2
dρL(z) =

∫ ( ∞∑
n=1

(−1)n+1z2ntn

)
dρL(z) =

∞∑
n=1

(−1)n+1

(∫
z2ndρL(z)

)
tn.

Hence if we introduce the moment sequence

µk =

∫
zkdρL(z),

we see that

µ2n =

∫
z2ndρL(z) = (−1)n+1bn.

Note that µ0 = 1 and µ2n−1 = 0 since the matching measures are symmetric to 0. Since
the support of the measure ρL lie in the interval [−2

√
D − 1, 2

√
D − 1], we see that the

Mayer series converges whenever |t| < 1
4(D−1) . We also would like to point out that the

integral is valid for all t > 0, while the Mayer series does not converge if t is ’large’.

3.3.1 Computation of the monomer-dimer free energy

The monomer-dimer free energy of a lattice L is λ̃(L) = F (L, 1). Its computation can be
carried out exactly the same way as we proved its existence: we use that

λ̃(L) = F (L, 1) =

∫
1

2
ln
(
1 + z2

)
dρL(z).

Assume that we know the moment sequence (µk) for k ≤ N . Then let us choose a
polynomial of degree at most N , which uniformly approximates the function

1

2
ln
(
1 + z2

)
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on the interval [−2
√
D − 1, 2

√
D − 1], where D is the coordination number of L. A good

polynomial approximation can be found by Remez’s algorithm. Assume that we have a
polynomial

q(z) =
N∑
k=0

ckz
k

for which ∣∣∣∣12 ln
(
1 + z2

)
− q(z)

∣∣∣∣ ≤ ε

for all z ∈ [−2
√
D − 1, 2

√
D − 1]. Then∣∣∣∣λ̃(L)−

∫
q(z) dρL(z)

∣∣∣∣ ≤ ∫ ∣∣∣∣12 ln
(
1 + z2

)
− q(z)

∣∣∣∣ dρL(z) ≤ ε,

and ∫
q(z) dρL(z) =

N∑
k=0

ckµk.

Hence ∣∣∣∣∣λ̃(L)−
N∑
k=0

ckµk

∣∣∣∣∣ ≤ ε.

How can we compute the moment sequence (µk)? One way is to use its connection with the
Mayer series (see Remark 3.19). A good source of Mayer series coefficients is the paper
of P. Butera and M. Pernici [14], where they computed bn for 1 ≤ n ≤ 24 for various
lattices. (More precisely, they computed dn = bn/2 with the notation of the paper [14]
since they expanded the function ρ(t) = p(t)/2.) This means that we know µk for k ≤ 49
for these lattices. For instance, for the square lattice Z2, the sequence µ0, µ1, µ2, . . . starts
as 1, 0, 4, 0, 28, 0, 232, 0, 2084, . . . (See Table 1 of [14].)

The other strategy to compute the moment sequence is to use its connection with the
number of closed walks in the self-avoiding walk tree.

Since the moment sequence is missing for the honeycomb lattice (hexagonal lattice), we
computed the first few elements of the moment sequence for this lattice:

1, 0, 3, 0, 15, 0, 87, 0, 543, 0, 3543, 0, 23817, 0, 163551, 0, 1141119, 0, 8060343, 0,

57494385, 0, 413383875, 0, 2991896721, 0, 21774730539, 0, 159227948055, 0,

1169137211487, 0, 8615182401087, 0, 63683991513351, 0, 472072258519041, 0,

3508080146139867, 0, 26127841824131313, 0, 194991952493587371, 0,

1457901080870060919, 0, 10918612274039599755, 0, 81898043907874542705

The following table contains some numerical results. The bound on the error terms are
rigorous. The paper [14] contains very similar non-rigorous results.
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Lattice λ̃(L) Boundonerror p(L,1) Boundonerror
2d 0.6627989725 3.72·10−8 0.638123105 5.34·10−7

3d 0.7859659243 9.89·10−7 0.684380278 1.14·10−5

4d 0.8807178880 5.92·10−6 0.715846906 5.86·10−5

5d 0.9581235802 4.02·10−5 0.739160383 3.29·10−4

6d 1.0237319240 1.24·10−4 0.757362382 8.91·10−4

7d 1.0807591953 3.04·10−4 0.772099489 1.95·10−3

hex 0.58170036638 1.56·10−9 0.600508638 2.65·10−8

Table3.2:Numericalestimatesofλ̃(L)andp(L,1)witherrorbounds

3.4 Densityfunctionof matching measures.

Itisnaturalproblemtoinvestigatethematchingmeasure. Oneparticularquestionis
whetheritisatomlessornot.Ingeneral,ρLcancontainatoms.Forinstance,ifGisa
finitegraphthenclearlyρGconsistsofatoms.Ontheotherhand,itcanbeshownthat
foralllatticesinTable3.2,themeasureρL

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

isatomless. Weusethefollowinglemmas.

Figure3.2: AnapproximationforthematchingmeasureofZ2,obtainedbysmoothing
thematchingmeasureofthefinitegridC10×P100byconvolutionwithatriweightkernel.

Wewillonlyneedpart(a)ofthefollowinglemma,weonlygivepart(b)forthesakeof
completeness.

Lemma3.20.[25,32](a)Themaximummultiplicityofazeroofµ(G,x)isatmostthe
numberofvertex-disjointpathsrequiredtocoverG.

(b)Thenumberofdistinctzerosofµ(G,x)isatleastthelengthofthelongestpathinG.

ThefollowinglemmaisadeepresultofC.Y.Kuand W.Chen[35].

Lemma3.21.[35]IfGisafiniteconnectedvertextransitivegraph,thenallzerosofthe
matchingpolynomialaredistinct.

NowwearereadytogiveageneralizationofTheorem3.4.

Theorem3.22.LetLbealatticesatisfyingoneofthefollowingconditions.
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(a)ThelatticeLcanbeobtainedasaBenjamini–Schrammlimitofafinitegraphsequence
GnsuchthatGncanbecoveredbyo(|Gn|)disjointpaths.

(b)ThelatticeLcanbeobtainedasaBenjamini–Schrammlimitofconnectedvertex
transitivefinitegraphs.

ThenthematchingmeasureρLisatomless.

Proof.Weprovethetwostatementstogether.Letmult(Gn,θ)denotethemultiplicityof
θasazeroofµ(Gn,x).ThenbyTheorem3.13wehave

ρL({θ})=lim
n→∞

mult(Gn,θ)

|Gn|
.

NotethatbyLemma3.20wehave mult(Gn,θ)isat mostthenumberofpathsre-
quiredtocoverthegraphGn.IncaseofconnectedvertextransitivegraphsGn,we
havemult(Gn,θ)=1byLemma3.21.ThismeansthatinbothcasesρL({θ})=0.

ProofofTheorem3.4.NotethatZdsatisfiesbothconditionsofTheorem3.22bytaking
boxesorusingpart(b),takingtoroidalboxes.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

Figure3.3:AnapproximationforthematchingmeasureofZ3. Workingwithreasonably
sizedfinitegridswouldhavebeencomputationallytooexpensive,sothistimewetook
theL2projectionoftheinfinitemeasuretothespaceofdegree48polynomialswhichcan
becalculatedfromthesequenceofmoments.
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Chapter 4

Positive graphs

This chapter is based on the article [15], which is joint work with Omar Antoĺın Camarena,
Endre Csóka, Gábor Lippner and László Lovász.

4.1 Problem description

For a graph G we are going to denote the set of its vertices by V (G) and the set of its
edges by E(G), but may simply write V and E when the it is clear from the context which
graph we are talking about.

Let G and H be two simple graphs. A homomorphism G → H is a map V (G) → V (H)
that preserves adjacency. We denote by hom(G,H) the number of homomorphisms G→
H. We extend this definition to graphs H whose edges are weighted by real numbers
βij = βji (i, j ∈ V (H)):

hom(G,H) =
∑

f : V (G)→V (H)

∏
ij∈E(G)

βf(i)f(j).

(One could extend it further by allowing nodeweights, and also by allowing weights in
G. Positive nodeweights in H would not give anything new; whether we get anything
interesting through weighting G is not investigated here.)

We call the graph G positive if hom(G,H) ≥ 0 for every edge-weighted graph H (where
the edgeweights may be negative). It would be interesting to characterize these graphs;
in this chapter we offer a conjecture and line up supporting evidence.

We call a graph symmetric, if its vertices can be partitioned into three sets (S,A,B) so
that S is an independent set, there is no edge between A and B, and there exists an
isomorphism between the subgraphs spanned by S ∪ A and S ∪B which fixes S.

Conjecture 4.1. A graph G is positive if and only if it is symmetric.

There is an analytic definition for graph positivity which is sometimes more convenient
to work with. A kernel is a symmetric bounded measurable function W : [0, 1]2 → R. A
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map p : V (G) → [0, 1] can be thought of as a homomorphism into W . It also naturally
induces a map p : E(G)→ [0, 1]2. The weight of p ∈ [0, 1]V (G) is then defined as

hom(G,W, p) =
∏
e∈E

W
(
p(e)

)
=

∏
(a,b)∈E

W
(
p(a), p(b)

)
.

The homomorphism density of a graph G = (V,E) in a kernel W is defined as the expected
weight of a random map:

t(G,W ) =

∫
[0,1]V

hom(G,W, p) dp =

∫
[0,1]V

∏
e∈E

W
(
p(e)

)
dp. (4.1)

Graphs with real edge weights can be considered as kernels in a natural way: Let H be a
looped-simple graph with edge weights βij; assume that V (H) = [n] = {1, . . . , n}. Split
the interval [0, 1] into n intervals J1, . . . , Jn of equal length, and define

WH(x, y) = βij for x ∈ Ji, y ∈ Jj.

Then it is easy to check that for every simple graph G and edge-weighted graph H, we have
t(G,WH) = t(G,H), where t(G,H) is a normalized version of homomorphism numbers
between finite graphs:

t(G,H) =
hom(G,H)

|V (H)||V (G)| .

(For two simple graph G and H, t(G,H) is the probability that a random map V (G)→
V (H) is a homomorphism.)

It follows from the theory of graph limits [12, 38] that positive graphs can be equivalently
be defined by the property that t(G,W ) ≥ 0 for every kernel W .

Hatami [31] studied “norming” graphs G, for which the functional W 7→ t(G,W )|E(G)| is
a norm on the space of kernels. Positivity is clearly a necessary condition for this (it is far
from being sufficient, however). We don’t know whether our Conjecture can be proved
for norming graphs.

4.2 Results

In this section, we state our results (and prove those with simpler proofs). First, let us
note that the “if” part of the conjecture is easy.

Lemma 4.2. If a graph G is symmetric, then it is positive.

Proof. For any map p : V → [0, 1] and any subset M ⊂ V let pM denote the restriction
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of p to M . Let further G[M ] denote the subgraph of G spanned by M .

t(G,W )
(4.1)
=

∫
[0,1]V

∏
e∈E

W
(
p(e)

)
dp

=

∫
[0,1]V

( ∏
e∈G[S∪A]

W
(
p(e)

))( ∏
e∈G[S∪B]

W
(
p(e)

))
dp

=

∫
[0,1]S

( ∫
[0,1]A

∏
e∈G[S∪A]

W
(
p(e)

)
dpA

)( ∫
[0,1]B

∏
e∈G[S∪B]

W
(
p(e)

)
dpB

)
dpS

=

∫
[0,1]S

( ∫
[0,1]A

∏
e∈G[S∪A]

W
(
p(e)

)
dpA

)2
dpS ≥ 0.

In the reverse direction, we only have partial results. We are going to prove that the
conjecture is true for trees (Corollary 4.20) and for all graphs up to 9 nodes (see Section
4.5).

We state and prove a number of properties of positive graphs. Each of these is of course
satisfied by symmetric graphs.

Lemma 4.3. If G is positive, then G has an even number of edges.

Proof. Otherwise, choosing W to be the constant −1 kernel we get t(G,W ) = (−1)|E(G)| =
−1.

We call a homomorphism even if the preimage of each edge is has even cardinality.

Lemma 4.4. If G is positive, then there exists an even homomorphism of G into itself.

Proof. Let H be obtained from G by assigning random ±1 weights to its edges, and
let f be a random map V (G) → V (H). Then Ef (hom(G,H, f)) = t(G,H) ≥ 0, and
t(G,H) > 0 if all weights are 1, so EHEf (hom(G,H, f)) > 0. Hence there is a f for
which EH(hom(G,H, f)) > 0. But clearly EH(hom(G,H, f)) = 0 unless f is an even
homomorphism of G into itself.

For two looped-simple graphs G1 and G2, we denote by G1×G2 their categorical product,
defined by

V (G1 ×G2) = V (G1)× V (G2),

E(G1 ×G2) =
{(

(i1, i2), (j1, j2)
)

: (i1, j1) ∈ E(G1), (i2, j2) ∈ E(G2)
}
.

Let K+
n denote the complete graph on the vertex set [n] with loops at all vertices, where

n ≥ |V (G)|.

Theorem 4.5. If a graph G is positive, then there exists an even homomorphism f : G→
K+
n ×G so that

∣∣f(V (G))
∣∣ ≥ 1

2

∣∣V (G)
∣∣.
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We will prove this theorem in Section 4.4.

There are certain operations on graphs that preserve symmetry. Every such operation
should also preserve positiveness. We are going to prove three results of this kind; such
results are also useful in proving the conjecture for small graphs.

We need some basic properties of the homomorphism density function: Let G1 and G2 be
two simple graphs, and let G1G2 denote their disjoint union. Then for every kernel W

t(G1G2,W ) = t(G1,W )t(G2,W ). (4.2)

We note that if at least one of G1 and G2 is simple (has no loops) then so is the product.
The quantity t(G1 × G2,W ) cannot be expressed as simply as (4.2), but the following
formula will be good enough for us. For a kernel W and looped-simple graph H, let us
define the function WH : ([0, 1]V )2 → R by

WH
(
(x1, . . . , xk), (y1, . . . , yk)

)
=

∏
(i,j)∈E(H)

W (xi, yj) (4.3)

(every non-loop edge of H contributes two factors in this product). Then we have

t(G×H,W ) = t(G,WH). (4.4)

The following lemma implies that it is enough to prove the conjecture for connected
graphs.

Lemma 4.6. A graph G is positive if and only if every connected graph that occurs among
the connected components of G an odd number of times is positive.

Proof. The “if” part is obvious by (4.2). To prove the converse, let G1, . . . , Gm be the
connected components of a positive graph G. We may assume that these connected
components are different and non-positive, since omitting a positive component or two
isomorphic components does not change the positivity of G. We want to show that m = 0.
Suppose that m ≥ 1.

Claim 4.7. We can choose kernels W1, . . . ,Wm so that t(Gi,Wi) < 0 and t(Gi,Wj) 6=
t(Gj,Wj) for i 6= j.

For every i there is a kernel Wi such that t(Gi,Wi) < 0, since Gi is not positive. Next
we show that for every i 6= j there is a kernel Wij such that t(Gi,Wij) 6= t(Gj,Wij). If
|V (Gi)| 6= |V (Gj)| then the kernel Wij = 1(x, y ≤ 1/2) does the job, as in this case,
due to the connectivity of the graphs, t(Gi,Wij) = (1/2)|V (Gi)|. So we may suppose that
|V (Gi)| = |V (Gj)|. Then by [36, p475, Theorem 5.29] there is a simple graph H such
that hom(Gi, H) 6= hom(Gj, H), and hence we can choose Wij = WH .

Let us denote x = (x1, . . . , xm) and define W ′
j(x) = Wj+

∑
i6=j xiWij. Expanding the prod-

uct in the definition of t(−,−) one easily sees that Qj(x) = t(Gi,W
′
j(x)) (i = 1, . . . ,m)

are all different polynomials in the variables x, and hence their values are all different for
a generic choice of x. If x is chosen close to 0, then t(Gj,W

′
j(x)) < 0, and hence we can

replace Wj by W ′
j(x). This proves the Claim.
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Let W0 = 1 denote the identically 1 kernel. For nonnegative integers k0, . . . , km, construct
a kernel Wk0,...,km by arranging ki rescaled copies of Wi for each i on the “diagonal”. Then

t(G1 . . . Gm,Wk0,...,km)
(4.2)
=
(∑

ki

)−∑ |V (Gj)| m∏
j=1

( m∑
i=0

kit(Gj,Wi)
)
.

We know that this expression is nonnegative for every choice of the ki. Since the right
hand side is homogeneous in k0, . . . , km, it follows that

m∏
j=1

(
1 +

m∑
i=1

xit(Gj,Wi)
)
≥ 0 (4.5)

for every x1, . . . , xm ≥ 0. But the m linear forms `j(x) = 1+
∑m

i=1 xit(Gj,Wi) are different
by the choice of the Wi, and each of them vanishes on some point of the positive orthant
since t(Gj,Wj) < 0. Hence there is a point x ∈ Rm

+ where the first linear form vanishes
but the other forms do not. In a small neighborhood of this point the product (4.5)
changes sign, which is a contradiction.

Proposition 4.8. If G is a positive simple graph and H is any looped-simple graph, then
G×H is positive.

Proof. Immediate from (4.4).

Let G(r) be the graph obtained from G by replacing each node with r twins of it. Then
G(r) ∼= G × K◦r , where K◦r is the complete r-graph with a loop added at every node.
Hence we get:

Corollary 4.9. If G is a positive simple graph, then so is G(r) for every positive integer
r.

As a third result of this kind, we will show that the subgraph of a positive graph spanned
by nodes with a given degree is also positive (Corollary 4.18). This proof, however, is
more technical and is given in the next section. Unfortunately, these tools do not help us
much for regular graphs G.

4.3 Subgraphs of positive graphs

In this section we develop a technique to show that one can partition the vertices of a
positive graph in a certain way so that subgraphs spanned by each part are also positive.
The main idea is to limit, over what maps p : V → [0, 1] one has to average to check pos-
itivity. Using this idea recursively we can finally reduce to maps that take each partition
to disjoint subsets of [0, 1]. This in turn allows us to conclude positivity of the spanned
subgraphs.
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To this end, first we have to introduce the notion of F -positivity. Let G = (V,E) be a
simple graph. For a measurable subset F ⊆ [0, 1]V and a bounded measurable weight
function ω : [0, 1]→ (0,∞), we define

t(G,W, ω,F) =

∫
p∈F

hom(G,W, ω, p) dp, (4.6)

where the weight of a p : V → [0, 1] is

hom(G,W, ω, p) =
∏
v∈V

ω
(
p(v)

)∏
e∈E

W
(
p(e)

)
(4.7)

With the measure µ with density function ω (i.e., µ(X) =
∫
X
ω), we can write this as

t(G,W, ω,F) =

∫
F

∏
e∈E

W
(
p(e)

)
dµV (p). (4.8)

We say that G is F-positive if for every kernel W and function ω as above, we have
t(G,W, ω,F) ≥ 0. It is easy to see that G is [0, 1]V -positive if and only if it is positive.

We say that F1,F2 ⊆ [0, 1]V are equivalent if there exists a bijection ϕ : [0, 1]→ [0, 1] such
that both ϕ and ϕ−1 are measurable, and p ∈ F1 ⇔ ϕ(p) ∈ F2, where ϕ(p)(v) = ϕ

(
p(v)

)
.

Lemma 4.10. If F1 and F2 are equivalent, then G is F1-positive if and only if it is
F2-positive.

Proof. Let ϕ denote the bijection in the definition of the equivalence. For a kernel W
and weight function ω, define the kernel Wϕ(x, y) = W

(
ϕ(x), ϕ(y)

)
, and weight function

ωϕ(x) = ω
(
ϕ(x)

)
, and let µ and µϕ denote the measures defined by ω and ωϕ, respectively.

With this notation,

t(G,Wϕ, ωϕ,F2) =

∫
F2

∏
e∈E

Wϕ
(
p(e)

)
dµVϕ (p)

=

∫
F1

∏
e∈E

W
(
p(e)

)
dµV (p) = t(G,W, ω,F1).

This shows that if G is F2-positive if and only if it is F1-positive.

For a nonnegative kernel W : [0, 1]2 → [0, 1] (these are also called graphons), function
ω : [0, 1]→ [0,∞), and F ⊆ [0, 1]V , define

s = s(G,W, ω,F) = sup
p∈F

(∏
v∈V

ω
(
p(v)

)
·
∏
e∈E

W
(
p(e)

))
, (4.9)

and
Fmax =

{
p ∈ F :

∏
v∈V

ω
(
p(v)

)
·
∏
e∈E

W
(
p(e)

)
= s
}
.

If the Lebesgue measure λ(Fmax) > 0, then we say that Fmax is emphasizable from F ,
and (W,ω) emphasizes it.

58



Lemma 4.11. If G is F1-positive and F2 is emphasizable from F1, then G is F2-positive.

Proof. Suppose that (U, τ) emphasizes F2 from F1, and let s = s(G,U, τ,F1). Assume
that G is not F2-positive, then there exists a kernel W and a weight function ω with
t(G,W, ω,F2) < 0. Consider the kernel Wn = UnW and weight function ωn = s−n/|V |τnω.
Then ∏

v∈V
ωn
(
p(v)

)
·
∏
e∈E

Wn

(
p(e)

)
=
(∏
v∈V

ω
(
p(v)

)
·
∏
e∈E

W
(
p(e)

))
· a(p)n,

where

a(p) =
1

s

∏
v∈V

τ
(
p(v)

)
·
∏
e∈E

U
(
p(e)

){= 1 if p ∈ F2,

< 1 otherwise.

Thus (by the dominated convergence theorem)

t(G,Wn, ωn,F1) =

∫
F1

∏
v∈V

ωn
(
p(v)

)
·
∏
e∈E

Wn

(
p(e)

)
dp

→
∫
F2

∏
v∈V

ω
(
p(v)

)
·
∏
e∈E

W
(
p(e)

)
dp = t(G,W, ω,F2) < 0,

which implies that G is not F1-positive.

For a partition P of [0, 1] into a finite number of sets with positive measure and a function
π : V → P , we call the box F(π) = {p ∈ [0, 1]V : p(v) ∈ π(v) ∀v ∈ V } a partition-box.
Equivalently, a partition-box is a product set

∏
v∈V Sv, where the sets Sv ⊆ [0, 1] are

measurable, and either Su ∩ Sv = ∅ or Su = Sv for all u, v ∈ V .

A partition N of V is positive if for any partition P as above, and any π : V → P such
that π−1(P) = N , G is F(π)-positive.

Lemma 4.12. If F1 ⊇ F2 are partition-boxes, and G is F2-positive, then it is F1-positive.

Proof. Let Fi be a product of classes of partition Pi; we may assume that P2 refines P1.
For P ∈ P2, let P denote the class of P1 containing P . Since every definition is invariant
under measure preserving automorphisms of [0, 1], we may assume that every partition
class of P1 and P2 is an interval.

Consider any kernel W and any weight function ω. Let ϕ : [0, 1]→ [0, 1] be the function
that maps each P ∈ P2 onto P in a monotone increasing and affine way. The map ϕ is
measure-preserving, because for each A ⊆ Q ∈ P1,

λ
(
ϕ−1(A)

)
=
∑
P∈P2
P⊆Q

λ
(
ϕ−1(A) ∩ P

)
=
∑
P∈P2
P⊆Q

λ(A)
λ(P )

λ(Q)
= λ(A). (4.10)

Applying ϕ coordinate-by-coordinate we get a measure preserving map ψ : [0, 1]V →
[0, 1]V . Then ψ′ = ψ|F2 is an affine bijection from F2 onto F1, and clearly det(ψ′) > 0.
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Hence

t(G,Wϕ, ωϕ,F2)
(4.6)
=

∫
F2

∏
v∈V

ωϕ
(
p(v)

)
·
∏
e∈E

Wϕ
(
p(e)

)
dp

=

∫
F2

∏
v∈V

ω
(
(ψ′(p))(v)

)
·
∏
e∈E

W
(
(ψ′(p))(e)

)
dp

= det(ψ′)−1 ·
∫
F1

∏
v∈V

ω
(
p(v)

)
·
∏
e∈E

W
(
p(e)

)
dp

(4.6)
= det(ψ′)−1 · t(G,W, ω,F1).

Since G is F2-positive, the left hand side is positive, and hence t(G,W, ω,F1) ≥ 0, proving
that G is F1-positive.

Corollary 4.13. If N2 refines N1 and N2 is positive, then N1 is positive as well.

Lemma 4.14. Suppose that F1 is a partition-box defined by a partition P and function
π1. Let Q ∈ P and let U be the union of an arbitrary set of classes of P. Let θ be a
positive number but not an integer. Split Q into two parts with positive measure, Q+ and
Q−. Let deg(v, U) denote the number of neighbors u of v with π1(u) ⊆ U . Define

π2(v) =


π1(v) if π1(v) 6= Q,

Q+ if π1(v) = Q and deg(v, U) > θ,

Q− if π1(v) = Q and deg(v, U) < θ,

and let F2 be the corresponding partition-box. Then there exists a pair (W,ω) emphasizing
F2 from F1.

Proof. Clearly, λ(F2) > 0. First, suppose that Q 6⊆ U . Let W be 2 in Q+ × U and in
U × Q+, and 1 everywhere else. Let ω(x) be 2−θ if x ∈ Q+ and 1 otherwise. It is easy
to see that the weight of a p ∈ F1 is 2a, where a =

∑
v∈p−1(Q+)

(
deg(v, U) − θ

)
. This

expression is maximal if and only if p ∈ F2.

In the case when Q ⊂ U the only difference is that one has to let W = 4 in the intersection
Q+ × U ∩ U ×Q+.

Corollary 4.15. If N1 is a positive partition of the vertex set, U is an arbitrary union
of classes, Q is a single class, θ > 0 is not an integer, and N2 is obtained from N1 by
splitting Q according to whether (by abuse of notation) deg(v, U) > θ or not for each
vertex v ∈ Q, then N2 is also positive.

We can use Corollary 4.15 iteratively: we start with the trivial partition, and refine
it so that it remains positive. This is essentially the 1-dimensional Weisfeiler–Lehman
algorithm, which classifies vertices recursively ([49], see e. g. [18]). It starts splitting
vertices into classes according to their degree. Then in each step it refines the existing
classes according to the number of neighbors in each of the current classes. The analogy
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will be clear from the proofs below. There is a non-iterative description of the resulting
partition, and this is what we are going to describe next.

The walk-tree of a rooted graph (G, v) is the following infinite rooted tree R(G, v): its
nodes are all finite walks starting from v, its root is the 0-length walk, and the parent
of any other walk is obtained by deleting its last node. The walk-tree partition R is
the partition of V in which two nodes u, v ∈ V belong to the same class if and only if
R(G, u) ∼= R(G, v).

Proposition 4.16. If a graph G is positive, then its walk-tree partition is also positive.

Proof. Let the k-neighborhood of r in R(G, r) be denoted by Rk(G, r). The k-walk-tree
partition Rk is the partition of V in which two nodes u, v ∈ V belong to the same
class if and only if Rk(G, u) ∼= Rk(G, v). Clearly, if for two vertices R(G, u) 6= R(G, v)
then there is a k = k(u, v) such that Rk(G, u) 6= Rk(G, v). Since V is finite, choosing
k0 = maxu,v∈V k(u, v) we see that Rk0 = R. Thus we are done if we show that Rk is
positive for every k.

We prove this by induction. If k = 0 then R0 is the trivial partition, hence the assertion
follows from the positivity of G. Now let us assume that the statement is true for k.
Clearly, Rk+1(G, v) is determined by the neighborhood profile, the multi-set {Rk(G, u) :
u ∼ v}. Using Corollary 4.15, we separate each class Q into subclasses so that u, v ∈ Q
end up in the same class if and only if their neighborhood profiles are the same. The new
partition is exactly Rk+1.

Corollary 4.17. Let G(V,E) be a positive graph, and let S ⊂ V be the union of some
classes of the walk-tree partition. Then G[S] is also positive.

Proof. By Corollary 4.13 the partitionN = {S, V \S} is positive. Let P = {[0, 1/2], (1/2, 1]}
and define π : V → P by π(v) = [0, 1/2] if and only if v ∈ S. Suppose that G[S] is negative
as demonstrated by some W . Let us define

W ′(x, y) =

{
W (2x, 2y) : x, y ∈ [0, 1/2]
1 : otherwise

Then t(G,W ′, 1,F(π)) < 0 contradicting the positivity of the partition N .

Corollary 4.18. If G is positive, then for each k the subgraph of G spanned by all nodes
with degree k is positive as well.

Corollary 4.19. For each odd k the number of nodes of G with degree k must be even.

Proof. Otherwise, consider the partition-box F that separates the vertices of G with
degree d to class A = [0, 1/2] and the other vertices to Ā = (1/2, 1]. Consider the kernel W
which is −1 between A and Ā and 1 in the other two cells. Then for each map p ∈ [0, 1]V ,
the total degree of the nodes mapped into class A is odd, so there is an odd number of edges
between A and Ā. So the weight of p is −1, therefore t(G,W, 1,F) = −λ(F) < 0.

Corollary 4.20. Conjecture 4.1 is true for trees.
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Proof. From the walk-tree of a vertex v of the tree G, we can easily decode the rooted
tree (G, v). We call a vertex central if it cuts G into components with at most |V |/2
nodes. There can be either one central node or two neighboring central nodes of G. If
there are two of them, then their walk-trees are different from the walk-trees of every
other node. But these two points span a graph with a single edge, which is not positive,
therefore Corollary 4.17 implies that neither is G. If there is only one central node, then
consider the walk-trees of its neighbors. If there is an even number of each kind, then G
is symmetric (and is thus positive by Lemma 4.2). Otherwise we can find two classes (one
consist of the central node, the other consists of an odd number of its neighbors) whose
union spans a graph with an odd number of edges, hence it is negative by Lemma 4.3.

4.4 Homomorphic images of positive graphs

The main goal of this section is to prove Theorem 4.5. In what follows, let n be an integer.
Let us fix a graph G. Let G×n = K+

n × G. For a homomorphism f : F → G×n, we call
an edge e ∈ E(G×n) f -odd if

∣∣f−1(e)∣∣ is odd. We call a vertex v ∈ V (G×n) f -odd if there
exists an f -odd edge incident with v. Let Eodd(f) and Vodd(f) denote the set of f -odd
edges and nodes of G×n, respectively, and define

r(f) =
∣∣V (F )

∣∣− ∣∣f(V (F )
)∣∣+

1

2

∣∣Vodd(f)
∣∣. (4.11)

Lemma 4.21. Let Gi = (Vi, Ei) (i = 1, 2) be two graphs, let f : G1G2 → G×n, and let
fi : Gi → G×n denote the restriction of f to Vi. Then r(f) ≥ r(f1) + r(f2).

Proof. Clearly |V (G1G2)| = |V1| + |V2| and |V (f(G1G2))| = |f(V1)| + |f(V2)| − |f(V1) ∩
f(V2)|. Furthermore, Eodd(f) = Eodd(f1)4Eodd(f2), which implies that Vodd(f) ⊇ Vodd(f1)4Vodd(f2).
Hence

|Vodd(f)| ≥ |Vodd(f1)|+ |Vodd(f2)| − 2|Vodd(f1) ∩ Vodd(f2)|
≥ |Vodd(f1)|+ |Vodd(f2)| − 2|f(V1) ∩ f(V2)|.

Substituting these expressions in (4.11), the lemma follows.

Let F k denote the disjoint union of k copies of a graph F . This lemma implies that if
f : F k → G×n is any homomorphism and fi : F → G×n denotes the restriction of f to
the i-th copy of G, then

r(f) ≥
k∑
i=1

r(fi). (4.12)

Let us define

r̄(F ) = min
{
r(f)

∣∣n ∈ N, f : F → G×n
}

(4.13)

and

q(F ) = min
{∣∣V (F )

∣∣− ∣∣f(V (G)
)∣∣ ∣∣∣ n ∈ N, f : G→ G×n is even

}
(4.14)
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Since q(H) = min
{
r(f)

∣∣n ∈ N, f : G→ G×n is even
}

, it follows that

q(F ) ≥ r̄(F ). (4.15)

Furthermore, if there exists any injective f : G→ G×n, then

r̄(F ) ≤ r(f) =
∣∣V (F )

∣∣− ∣∣f(V (F )
)∣∣+

1

2

∣∣f(V (F )
)∣∣ =

1

2

∣∣V (F )
∣∣. (4.16)

Lemma 4.22.
r̄(Gk) = kr̄(G). (4.17)

Proof. For one direction, take an f : Gk → G×n with r(f) = r̄(Gk). Then

r̄(Gk) = r(f)
(4.12)

≥
k∑
i=1

r(fi)
(4.13)

≥
k∑
i=1

r̄(G) = k · r̄(G).

For the other direction, let us choose each fi so that r(fi) = r̄(G) and the images fi(G)
are pairwise disjoint. Then

r̄(Gk)
(4.13)

≤ r(f) =
k∑
i=1

r(fi) =
k∑
i=1

r̄(G) = k · r̄(G).

Lemma 4.23.
q(G2) = r̄(G2). (4.18)

Proof. We already know by (4.15) that q(G2) ≥ r̄(G2). For the other direction, we define
f : G2 → G×n as follows. We choose f1 so that r(f1) = r̄(G). Consider all points
v1, v2, ..., vl in f1

(
V (G)

)
which are not f1-odd. Let us choose pairwise different nodes

v′1, v
′
2, ..., v

′
l disjointly from f1

(
V (G)

)
so that vi and v′i have the same second coordinate

in V (G×n) ∼= V (K+
n )× V (G). Now we choose f2 so that for each x ∈ V (G), if f1(x) is an

f1-odd point, then f2(x) = f1(x), and if f1(x) = vi, then f2(i) = v′i.

If an edge e ∈ E(G×n) is incident to a vi, then
∣∣f−11 (e)

∣∣ is even and f−12 (e) = ∅. If e is
incident to a v′i, then

∣∣f−12 (e)
∣∣ is even and f−11 (e) = ∅. If e is not incident to any vi or v′i,

then
∣∣f−11 (e)

∣∣ =
∣∣f−12 (e)

∣∣. Therefore f is even. Thus,

q(G2)
(4.14)

≤ r(f)
(4.11)
=
∣∣V (G2)

∣∣− ∣∣f(V (G2))
∣∣

= 2
∣∣V (G)

∣∣− ∣∣∣f1(V (G)
)∣∣∣− ∣∣∣f2(V (G)

)∣∣∣+
∣∣∣f1(V (G)

)
∩ f2

(
V (G)

)∣∣∣
= 2
∣∣V (G)

∣∣− 2
∣∣∣f1(V (G)

)∣∣∣+ |Vodd(f1)|
(4.11)
= 2r(f1) = 2r̄(G)

(4.17)
= r̄(G2).

LetGw
×n denoteK|V (G×n)| equipped with an edge-weighting w : E(K|V (G×n)|)→ {−1, 0, 1},

where w(e) = 0 if and only if e is a non-edge in G×n. Let the stochastic variable G±1×n
denote Gw

×n with a uniform random w.
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Lemma 4.24. For a fixed graph G, and n→∞,

E
(
t(G,G±1×n)

)
=

{
Θ
(
n−q(G)

)
if q(G) <∞

0 otherwise.
(4.19)

Proof. If f is not a homomorphism to G×n, then there exists an edge e ∈ E(G) that
w
(
f(e)

)
= 0, therefore, hom(G,Gw

×n, f) = 0. If an edge e is f -odd, then changing the
weight on e changes the sign of the homomorphism, therefore Ew

(
hom(G,Gw

×n, f)
)

= 0.
On the other hand, if f is an even homomorphism toG×n, then for all w, hom(G,Gw

×n, f) =
1. Therefore, taking a uniformly random homomorphism f : G→ G×n,

E
(
t(G,G±1×n)

)
= Ew

(
t(G,Gw

×n)
)

= Ew
(
Ef
(

hom(G,Gw
×n, f)

))
= Ef

(
Ew
(

hom(G,Gw
×n, f)

))
= P

(
f is an even homomorphism G→ G×n

)
. (4.20)

If q(G) =∞ we are done. Otherwise we have

(4.20) ≤ P
(∣∣V (G)

∣∣− ∣∣f(V (G))
∣∣ ≥ q(G)

)
= O(|G×n|−q(G)) = O(n−q(G)).

On the other hand, consider an even homomorphism g : G → G×n with r(g) = q(G).
Consider now an arbitrary function σ : V

(
g(G)

)
→ V

(
G×n

)
which does not change the

second coordinate of V (G×n) ∼= V (K+
n )×V (G). Then σ◦g is also an even homomorphism.

These homomorphisms are pairwise different, and the number of such functions σ is
n|V (g(G))|. Therefore,

(4.20) ≥ n|V (g(G))|

|V (G×n)||V (G)| = Ω(n|g(V (G))|−|V (G)|)
(4.11)
= Ω(n−r(g)) = Ω(n−q(G)).

Now let us turn to the proof of Theorem 4.5. Assume that G is positive, then the random
variable X = t(G,G±1×n) is nonnegative. Applying the Cauchy-Schwarz inequality to X1/2

and X3/2 we get that
E(X) · E(X3) ≥ E(X2)2. (4.21)

Here

E(Xk) = E
(
t(G,G±1×n)k

) (4.2)
= E

(
t(Gk, G±1×n)

) (4.19)
= Θ

(
n−q(G

k)
)
,

so (4.21) shows that n−q(G) · n−q(G3) = Ω
(
n−2q(G

2)
)
, thus q(G) + q(G3) ≤ 2q(G2). Hence

4r̄(G)
(4.17)
= r̄(G) + r̄(G3)

(4.15)

≤ q(G) + q(G3) ≤ 2q(G2)
(4.18)
= 2r̄(G2)

(4.17)
= 4r̄(G). (4.22)

All expressions in (4.22) must be equal, therefore r̄(G) = q(G).

Finally, for an even f : G→ G×n with
∣∣V (G)

∣∣− ∣∣f(V (G))
∣∣ = q(G), we have

1

2

∣∣V (G)
∣∣ (4.16)≥ r̄(G) = q(G) =

∣∣V (G)
∣∣− ∣∣f(V (G))

∣∣,
therefore

∣∣f(V (G)
)∣∣ ≥ 1

2

∣∣V (G)
∣∣.
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4.5 Computational results

We checked Conjecture 4.1 for all graphs on at most 10 vertices using the previous results
and a computer program. Starting from the list of nonisomorphic graphs, we filtered
out those who violated one of our conditions for being a minimal counterexample. In
particular we performed the following tests:

1. Check whether the graph is symmetric, by exhaustive search enumerating all possi-
ble involutions of the vertices. If the graph is symmetric, it is not a counterexample.

2. Calculate the number of homomorphisms into graphs represented by 1× 1, 2× 2 or
3×3 matrices of small integers. (Checking 1×1 matrices is just the same as checking
whether or not the number of edges is even.) If we get a negative homomorphism
count, the graph is negative and therefore it is not a counterexample.

3. Calculate the number of homomorphisms into graphs represented by symbolic 3× 3
and 4×4 matrices and perform local minimization on the resulting polynomial from
randomly chosen points. Once we reach a negative value, we can conclude that the
graph is negative.

4. Partition the vertices of the graph in such a way that two vertices belong to the
same class if and only if they produce the same walk-tree (1-dimensional Weisfeiler–
Lehman algorithm). Check for all proper subsets of the set of classes whether their
union spans an asymmetric subgraph. If we find such a subgraph, the graph is not a
minimal counterexample: either the subgraph is not positive and by Corollary 4.17
the original graph is not positive either, or the subgraph is positive, and therefore
we have a smaller counterexample.

5. Consider only those homomorphisms which map all vertices in the ith class of the
partition into vertices 3i+ 1, 3i+ 2 and 3i+ 3 of the target graph represented by a
symbolic matrix. If we get a negative homomorphism count, the graph is negative
by Proposition 4.16. (In this case we work with a 3k×3k matrix where k denotes the
number of classes of the walk-tree partition, but the resulting polynomial still has
a manageable size because we only count a small subset of homomorphisms. Note
that if one of the classes consists of a single vertex, we only need one corresponding
vertex in the target graph.)

The tests were performed in such an order that the more efficient ones were run first,
restricting the later ones to the set of remaining graphs. For example, in step 4, we start
with checking whether any of the classes spans an odd number of edges, or whether the
number of edges between any two classes is odd. We used the SAGE computer-algebra
system for our calculations and rewritten the speed-critical parts in C using nauty for
isomorphism checking, mpfi for interval arithmetics and Jean-Sébastien Roy’s tnc package
for nonlinear optimization.

Our automated tests left only 4 graphs as possible counterexamples, out of the 12,293,435
graphs on at most 10 vertices. Of those, the non-positivity of G1 and G2 was proved
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manually by counting the number of homomorphisms into H1 and H2, respectively. The
dashed edges have weight −1 and all other edges have weight 1.

G1 H1

G2 H2

(H2
∼= K+

2 × G2
∼= K+

4 × C5. The edges with weight −1 form two vertex-disjoint cycles
of length 5 and 15. The latter one goes three times around.)

The graph G3 can be shown to be non-positive from the counterexample for G−3 . We
emphasized a tripartition of G3 by iteratively emphasizing the maximum cut, then we
used a generalized version of Corollary 4.17.

G3 G−3

This leaves only G4, which is not symmetric, but we could not decide whether it is positive.
There was no graph traced back to G4, therefore, the conjecture is proved to be true for
all graphs up to 10 nodes except G4.

G4
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Notice that all four graphs are regular, as is the case for all remaining graphs on 11
vertices. We have found step 5 of the algorithm quite effective at excluding graphs with
nontrivial walk-tree partitions.
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Abstract

A sequence of graphs is convergent in the Benjamini–Schramm sense if the local features of
the graphs, i.e. those observable by local sampling, are getting arbitrarily close to being
indistinguishable. Formally, Gn is convergent if for every positive R and finite rooted
graph α the probability that the R-ball centered at a uniform random vertex of Gn is
isomorphic to α is convergent.

The chromatic polynomial of G is defined as the number of proper colorings of G with
q colors, which gives a polynomial in q. In Chapter 2 we observe the behaviour of the
roots of the chromatic polynomial on a convergent sequence of graphs. To make sense
of a limit, we define the root measure as the uniform distribution on the roots. While
this measure is not necessarily weakly convergent, we can show that the integral of any
holomorphic function according to the measure converges. The proof goes by writing the
moments of the root measure as a linear combination of homomorphism numbers into
connected graphs, which already satisfy this requirement.

Our results have been generalized by Csikvári and Frenkel to a broader class of graph
polynomials, and we build on their work in Chapter 3 where we consider the roots of the
matching polynomial. The matching polynomial is defined as

∑
k(−1)kmk(G)x|V (G)|−2k

with mk(G) denoting the number of matchings with exactly k edges.

We can define the matching measure of G in analogy with the chromatic measure, as
the root measure of the matching polynomial. This time a convergent graph sequence
does imply weak convergence of the matching measure, extending its definition to infinite
lattices. We prove that the matching measure of an infinite lattice is equivalent to the
spectral measure of its tree of self-avoiding walks. Matching measures also allow us to
express the free energies of monomer-dimer models in statistical physics, giving us new
and strong estimates.

Chapter 4 concerns the other main topic of this thesis, positive graphs. By extending
the definition of homomorphism count to weighted target graphs we realize that for some
graphs F hom(F,G) is always nonnegative even if G contains edges with negative weights.
Such an F is called a positive graph. We suggest a possible structural characterization
stating that a graph is positive if and only if it exhibits a certain kind of symmetry. Then
we prove this conjecture for trees and – with the help of a computer program – for all but
one graphs on at most 10 vertices.

Chapter 2 is joint work with Miklós Abért. Chapter 3 is joint work with Miklós Abért
and Péter Csikvári. Chapter 4 is joint work with Omar Antoĺın Camarena, Endre Csóka,
Gábor Lippner and László Lovász.





Összefoglalás

Egy gráfsorozatot Benjamini–Schramm konvergensnek nevezünk, ha a gráfok lokális jel-
lemzői, vagyis azok, amiket lokális mintavételezéssel megfigyelhetünk, egy idő után megkü-
lönböztethetetlenné válnak, bármilyen kis hibával is nézzük. Formálisan Gn akkor konver-
gens, ha bármely pozit́ıv R és bármely α véges gyökeres gráf esetén annak a valósźınűsége,
hogy Gn egy egyenletes véletlen csúcsának R sugarú környezete α-val izomorf, konvergens.

Egy G gráf kromatikus polinomja azt adja meg, hogy hányféleképpen sźınezhető ki q
sźınnel, ami q-ban egy polinom. A 2. fejezetben a kromatikus polinom gyökeinek viselkedé-
sét vizsgáljuk konvergens gráfsorozatokon. Azért, hogy legyen értelme a határértékről
beszélni, bevezetjük a gyökmértéket, vagyis a gyökökön vett egyenletes eloszlást. Bár
ez a mérték nem feltétlenül gyengén konvergens, belátjuk, hogy bármilyen holomorf
függvény integrálja a mérték szerint már konvergens lesz. A bizonýıtás azon alapul, hogy
a mérték momentumait feĺırjuk összefüggő gráfokba menő homomorfizmusszámok lineáris
kombinációjaként, amik már teljeśıtik ezt a követelményt.

Ezeket az eredményeket Csikvári Péter és Frenkel Péter általánośıtották gráfpolinomok
egy tágabb osztályára. A 3. fejezetben az ő munkájukra éṕıtve vizsgáljuk a párośıtás-
polinom gyökmértékét. A párośıtás-polinomot a

∑
k(−1)kmk(G)x|V (G)|−2k képlet definiálja,

ahol mk(G) a pontosan k éllel rendelkező párośıtások száma.

EgyG gráf párośıtás-mértékét a kromatikus mértékhez hasonlóan definiálhatjuk a párośıtás-
polinom gyökmértékeként. Itt már teljesül, hogy konvergens gráfsorozatokra a párośıtás-
mérték gyengén konvergens, ezáltal értelmezhetjük végtelen rácsok párośıtás-mértékét is.
Megmutatjuk, hogy az ı́gy nyert mérték megegyezik a rács sétafájának spektrálmértékével.
A párośıtás-mérték seǵıtségével ki tudjuk fejezni a statisztikus fizikában használt monomer-
dimer modellek szabadenergiáját is, ami új, a korábban ismerteknél erősebb becsléseket
is ad.

A 4 fejezetben rátérünk az értekezés másik fő témájára, a pozit́ıv gráfokra. A homomor-
fizmusszámokat súlyozott célgráfokra kiterjesztve azt tapasztaljuk, hogy néhány F gráfra
a hom(F,G) homomorfizmusszámok mindig nemnegat́ıvak, akkor is, ha G negat́ıv éleket
is tartalmazhat. Az ilyen F -eket pozit́ıv gráfoknak nevezzük. Megfogalmazunk egy sejtést
a pozit́ıv gráfok strukturális léırásáról, miszerint egy gráf akkor és csak akkor pozit́ıv, ha
egy bizonyos szimmetria-feltételt teljeśıt. Utána bebizonýıtjuk ezt a sejtést fákra és egy
számı́tógépes program seǵıtségével egy kivétellel minden legfeljebb 10 csúcsú gráfra.

A 2. fejezet Abért Miklóssal közös munka, a 3. fejezet Abért Miklóssal és Csikvári Péterrel,
mı́g a 4. fejezet Omar Antoĺın Camarenával, Csóka Endrével, Lippner Gáborral és Lovász
Lászlóval közös kutatáson alapul.
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