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Chapter 1

Introduction

Rigidity theory investigates the rigidity and �exibility of frameworks. One well-

studied example is the following: designated points of the d-dimensional Euclidean

space represent universal joints that are connected with �xed-length bars. These

structures are called bar-and-joint frameworks. A bar-and-joint framework is �exible

if there is a continuous motion that changes the distance between at least one pair

of joints not connected by a bar without changing the lengths of the bars. Otherwise

the framework is rigid. The problem of rigidity of bar-and-joint frameworks is central

in rigidity theory, however, this �eld of mathematics studies many di�erent types of

frameworks. For instance instead of the bars we can put cables and struts between

the joints or the joints can be replaced by higher dimensional bodies. Instead of

the Euclidean space the framework can live on a surface of the space or in an

a�ne or projective space. There are also frameworks whose underlying structure is

a hypergraph and point sets de�ned by hyperedges have to preserve for instance

some a�ne relation or the volume of the polyhedron they de�ne.

A number of questions in rigidity theory were motivated by applications, such

as engineering, biology, chemistry, robotics. Most of the topics discussed in this

work focus on the rigidity of bar-and-joint frameworks but we will also consider

frameworks on hypergraphs in Chapters 5 and 7.

The thesis is organized as follows. In the remainder of this chapter we review

the standard theory of rigid structures and sparse graphs. We also give a brief

introduction of symmetric rigidity any scene analysis.

Chapter 2 focuses on the two-dimensional generic rigidity matroid, R2(G). We

investigate the correspondence between the high connectivity of R2(G) and the

uniqueness of the graph de�ning this matroid. The main result of this chapter is

that if G is 7-connected then G is uniquely determined by R2(G). This implies that

if R2(G) is 11-connected, then it uniquely determines G.
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In Chapter 3 we give upper and lower bounds for the edge number of minimally

highly vertex-redundantly rigid graphs in Rd for every d.

The main result of Chapter 4 is a characterization for the existence of a two-

dimensional in�nitesimally rigid realization with two coincident vertices.

In Chapter 6 we consider symmetric frameworks in the plane. We characterize

minimally symmetry-forced rigid graphs for point groups Ck for k ≥ 1 and for Dk
where k is odd.

In Chapter 5 we �rst give a constructive characterization of 4-uniform (1,3)-

tight hypergraphs. Then using this result we give a combinatorial characterization

of generically projectively rigid hypergraphs on the projective line. With the con-

struction we can also characterize 4-uniform a�nely rigid hypergraphs in the plane.

In Chapter 7 we focus on the symmetric version of scene analysis. The main result

of the chapter is a C3-symmetric version of the constructive characterization given

in Chapter 5. Using this construction we characterize C3-symmetric two-dimensional

'symmetry-generic' minimally �at scenes.

1.1 Rigidity and in�nitesimal rigidity of bar-and-

joint frameworks

A d-dimensional bar-and-joint framework or framework (G, p) is a graph G =

(V,E) and a map p : V → Rd. We say that the framework (G, p) is a realization of

the graph G in Rd. Two frameworks (G, p) and (G, q) are said to be equivalent if

‖ p(u) − p(v) ‖=‖ q(u) − q(v) ‖ holds for every edge uv ∈ E. If ‖ p(u) − p(v) ‖=
=‖ q(u) − q(v) ‖ for every pair u, v ∈ V , then (G, p) and (G, q) are congruent. We

say that a framework (G, p) is rigid if there exists an ε > 0 such that if (G, q) is

equivalent to (G, p) and ‖ p(v)− q(v) ‖< ε for all v ∈ V then (G, q) is congruent to

(G, p).

An other possible equivalent de�nition of rigidity is described below. A �exing

of the framework (G, p) is a continuous function π : (−1, 1) × V → Rd such that

π(0) = p, and the frameworks (G, p) and (G, π(t)) are equivalent for all t ∈ (−1, 1).

The �exing π is trivial if the frameworks (G, p) and (G, π(t)) are congruent for all

t ∈ (−1, 1). A framework is said to be �exible if it has a non-trivial �exing otherwise

it is called rigid. (G, p) is minimally rigid, if it is rigid but after deleting any edge

of G the framework becomes �exible.

It is not di�cult to see that framework (G, p) is rigid in R1 if and only if G

is connected. Deciding rigidity of frameworks in higher dimensions is a hard prob-

lem, Abbot [1] showed that this is NP-hard for even two-dimensional frameworks.
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To make these problems more tractable we often consider 'generic' realizations. A

framework (G, p) is generic if the set of coordinates of the points p(v), v ∈ V , is

algebraically independent over the rationals. Graph G is said to be (generically)

rigid if it has a rigid generic realization.

An in�nitesimal motion is an assignment of in�nitesimal velocities to the vertices

of G, m : V → Rd satisfying

(p(u)− p(v))(m(u)−m(v)) = 0 for every pair u, v with uv ∈ E.

For instance if π is a smooth �exing, then with the de�nition π̇(v) = d
dt
π(t, v)|t=0, π̇

is an in�nitesimal motion. An in�nitesimal motion is trivial if it is an in�nitesimal

motion of (K|V |, p). A framework is in�nitesimally �exible, if it has a non-trivial

in�nitesimal motion, otherwise it is in�nitesimally rigid. Gluck [15] proved that if

a framework (G, p) is in�nitesimally rigid, then it is rigid. The converse does not

hold in general but, for generic frameworks rigidity and in�nitesimal rigidity are

equivalent [3, 4].

The set of in�nitesimal motions of a framework (G, p) is a linear subspace of

Rd|V | given by the system of |E| linear equations. If we collect these linear equations
into a matrix we get the d-dimensional rigidity matrix of the framework. This is

the matrix Rd(G, p) of size |E| × d|V |, where, for each edge uv ∈ E, in the row

corresponding to uv, the entries in the d columns corresponding to the vertices u

and v contain the d coordinates of (p(u)− p(v)) and (p(v)− p(u)), respectively, and

the remaining entries are zeros.

Thus m ∈ Rd|V | is an in�nitesimal motion if and only if R(G, p)m = 0. Each

isometry of Rd gives rise to a smooth motion of (G, p) and hence to a trivial in-

�nitesimal motion of (G, p). Hence

Lemma 1.1.1 [68] Let (G, p) be a framework in Rd. Then

rankR(G, p) ≤ S(n, d)

where n = |V | and

S(n, d) =

{
nd−

(
d+1
2

)
, if n ≥ d+ 2;(

n
2

)
, if n ≤ d+ 1.

Thus a framework (G, p) is in�nitesimally rigid in Rd if and only if rankR(G, p) =

S(n, d). We say that (G, p) is independent if the rows of R(G, p) are linearly inde-

pendent. An independent and in�nitesimally rigid framework is called minimally

in�nitesimally rigid.
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Rd(G, p) de�nes the d-dimensional rigidity matroid of (G, p) on the ground set

E by linear independence. Since the entries of the rigidity matrix are polynomial

functions with integer coe�cients, any two generic d-dimensional frameworks (G, p)

and (G, q) have the same rigidity matroid. We call this the d-dimensional rigidity

matroid Rd(G) of the graph G. We denote the rank of Rd(G) by rd(G). It follows

from the discussions above that a graph G on n vertices is rigid in Rd if and only if

rd(G) = S(n, d). Rd(G) is characterized for d = 1, 2, see Section 1.2 for details. It

remains an open problem to �nd good characterizations for independence or, more

generally, the rank function in the d-dimensional rigidity matroid of a graph when

d ≥ 3.

1.2 Sparse graphs and count matroids

Theorem 1.2.1 [34] For integers k ≥ 0 and l, the following de�nition gives the

independent sets of a matroidMk,l(H) on the edges of a hypergraph H = (V, F ):

A set of hyperedges F is independent if and only if all non-empty subsets F ′ on

vertices V ′ satisfy |F ′| ≤ k|V ′| − l.

The matroids de�ned in Theorem 1.2.1 are called count matroids or sometimes

sparsity matroids. A hypergraph H = (V, F ) is independent in Mk,l(H) if F is

independent in H = (V, F ). Hypergraphs that are independent in Mk,l(H) are

called (k, l)-sparse. If they also satisfy |E| = k|V | − l then are called (k, l)-tight

hypergraphs.

If l ≥ 2k, the matroid will have all graph edges dependent. Therefore, for graphs

we should assume that l < 2k. We also need l < k to make loops into independent

elements. In general, we need l < sk to make the matroid non-trivial on s-tuple

edges.

As mentioned earlier a framework (G, p) is rigid in one dimension if and only if

G is connected. Therefore minimally rigid graphs in one dimension are trees. Thus

R1(G), the cycle matroid of G and theM1,1(G) count matroid are isomorphic.

S(n, 2) = 2n − 3 hence if G is independent in R2(G) then it has to be (2, 3)-

sparse. A celebrated result of Laman [32] (see Theorem 1.3.1) states that R2(G) is

isomorphic toM2,3(G).

There are e�cient algorithms for testing independence in count matroids, see [7].

Thus independence in R1(G) and R2(G) can also be tested e�ciently.

Count matroids and sparse graphs are frequently used in rigidity theory. When

one tries to �nd a characterization for some rigidity matroid then often gets a neces-

sary sparsity condition for independent graphs. Sometimes it turns out that the spar-

10



sity condition is su�cient (e.g. for R1(G) and R2(G)). For higher dimensions we can

also obtain necessary sparsity conditions for independence in Rd(G), however these

conditions are not su�cient. For instance if d = 3 and n ≥ 3 then S(n, d) = 3n− 6.

Hence every edge set with at least two edges has to be (3, 6)-sparse.

1.3 Constructive characterizations

By constructive characterization or inductive construction we mean the following

approach for describing a certain class of graphs, G. A set of operations is given so

that performing any of the given operations on a graph in G gives another graph in G,
and moreover, we can construct every graph in G by a sequence of these operations

starting from a small initial set of basic instances in G.
Constructive characterizations are often used in rigidity theory as they provide

a useful tool for proving rigidity or independence of certain families of frameworks.

The following theorem summarizes the results of Henneberg, Laman [32] and

Tay and Whiteley [58].

Theorem 1.3.1 For a graph G, the following are equivalent:

1. G is minimally generically rigid in the plane;

2. G is (2, 3)-tight;

3. G can be built up from a single edge by a sequence of the following operations:

(i) add a new vertex z and connect it to two di�erent existing vertices x and

y,

(ii) subdivide an edge uv with a new vertex z and add a new edge between z

and an existing vertex w di�erent from u and v.

Operations (i) and (ii) are called the two-dimensional (Henneberg-)0-extension and

(Henneberg-)1-extension, respectively. We prove a result in Chapter 4 similar to

Theorem 1.3.1 in order to characterize graphs that have a rigid realization in which

two designated vertices coincide.

Let K(i, j, k) denote the following operation: pinch j edges of the graph with

a new vertex z, add i loops incident to z and k edges between z and old vertices.

Let Pl denote the graph with a single vertex and l loops. With this notation the

two-dimensional 0-extension is K(0, 0, 2) while the 1-extension is K(0, 1, 2). These

two operations have d-dimensional variants for every d ≥ 2. The d-dimensional 0-

extension is K(0, 0, d) and the d-dimensional 1-extension is K(0, 1, d). As they are
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known to preserve both d-dimensional rigidity and independence we will use the

d-dimensional extensions in the proofs of Chapter 3.

Theorem 1.3.2 [13] For 1 ≤ l ≤ k a graph is (k, l)-tight if and only if it can be

obtained from Pk−l by iteratively applying K(i, j, k) operations with i + j ≤ k − 1,

i, j ≥ 0, i ≤ k − l.
The graph is (k, 0)-tight if and only if it can be built up from Pk by iteratively

applying K(i, j, k) operations with i+ j ≤ k, i, j ≥ 0

We prove a version of Theorem 1.3.2 for 'gain graphs' (that are directed graphs

whose edges are labeled with the elements of a group) for k = 2, l = 0 and l = 1

in Chapter 6 which provides a constructive characterization for two classes of gain-

graphs. The construction then is used to characterize symmetrically rigid graphs.

1.4 Rigidity with symmetry

1.4.1 Symmetric realizations

We shall �rst need the de�nition of symmetric graphs and hypergraphs. As graphs

are special hypergraphs we give the de�nitions for hypergraphs only. Let H = (V, F )

be a hypergraph. An automorphism of H is a permutation π : V → V such that

{v1, . . . , vk} ∈ F if and only if {π(v1), . . . , π(vk)} ∈ F . The set of all automorphisms

of H forms a group under decomposition known as the automorphism group Aut(H)

of H.

Let S be a group. An action of S on H is a group homomorphism ρ : S →
Aut(H). An action ρ is called free if ρ(g)(v) 6= v for any v ∈ V and any non-identity

g ∈ S. We say that a hypergraph H is (S, ρ)-symmetric if S acts on H by ρ. If ρ

is clear from the context, we will simply denote ρ(g)(v) by g · v or gv. (S is often

a subgroup of Aut(H) and in such a case ρ is usually an embedding.) Note that,

for g ∈ S, {v1, . . . , vk} ∈ F if and only if {gv1, . . . , gvk} ∈ F , and hence there is an

induced action of S on F de�ned by g · {v1, . . . , vk} = {gv1, . . . , gvk}.
A discrete point group (or simply a point group) is a �nite discrete subgroup

of O(Rd), the orthogonal group of dimension d, i.e., the set of d × d orthogonal

matrices over R. In this work we only consider two-dimensional point groups. These

are classi�ed into two classes, groups Ck of k-fold rotations and dihedral groups Dk
of order 2k. For a special case, D1 consists of a mirror-re�ection and the identity.

Suppose that H is (S, ρ)-symmetric for a point group S. A joint-con�guration p

is said to be (S, ρ)-symmetric (or, simply, S-symmetric) if

gp(v) = p(gv) for all g ∈ S and for all v ∈ V (H).

12
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Figure 1.1: Two symmetric realizations of the triangular prism. Realization (a) is

D1-symmetric and realization (b) is C3-symmetric.

Such a pair (H, p) is called an (S, ρ)-symmetric framework (or simply an S-symmetric

framework or a symmetric framework).

1.4.2 Incidental versus forced symmetry of bar-and-joint frame-

works

Figure 1.2: A re�ection-symmetric framework which is symmetry-forced rigid but

not rigid. The two arrows represent the velocities of a non-trivial and non-symmetric

motion.

Symmetry is ubiquitous in both natural and man-made structures, hence study-

ing the rigidity of symmetric frameworks has received much attention in the past

several years. When investigating the rigidity of a symmetric bar-and-joint frame-

work we can think of two di�erent approaches. One of these is incidental symmetry

in which one studies a symmetric framework that may move in unrestricted ways.
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The other approach is forced symmetry where a framework must maintain symmetry

with respect to a speci�c group throughout its motion.

We will consider symmetric frameworks in Sections 6 and 7. In Section 6 we

characterize symmetry-forced rigid graphs for point groups Ck for every k ≥ 2 and

for Dk where k is even. In Section 7 we give a characterization for minimally �at

C3-symmetric 2-scenes.
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Notation

Graphs

G = (V,E) an undirected graph

G[X] the subgraph of G induced by X ⊆ V

EG(X) the set of edges of G[X]

iG(X) = |EG(X)|
dG(v) the degree of v in G for v ∈ V
NG(v) the set of neighbors of v in G

VG(F ) the set of endvertices of edges in F for F ⊆ E

dF (v) = dG[F ](v) where F ⊆ E

∆(G) the maximum degree in G

Kn the complete graph with n vertices

Cn the cycle on n vertices

Matroids

Rd(G) the d-dimensional rigidity matroid of G

rd(G) the rank of G in the d-dimensional rigidity matroid

Groups

Ck group of k-fold rotations

Dk dihedral group of order 2k generated by a k-fold rotation and a re�ection

We may omit the subscripts referring to G (d) if the graph (dimension, respec-

tively) is clear from the context.
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Chapter 2

Highly connected rigidity matroids

have unique underlying graphs

Let M be a d-dimensional generic rigidity matroid of some graph G. In this

chapter we consider the following problem, posed by Brigitte and Herman Servatius

in 2006: is there a (smallest) integer kd such that the underlying graph G ofM is

uniquely determined, provided thatM is kd-connected? Since the one-dimensional

generic rigidity matroid of G is isomorphic to its cycle matroid, a celebrated result of

Hassler Whitney implies that k1 = 3. We extend this result by proving that k2 ≤ 11.

To show this we prove that

(i) if G is 7-vertex-connected then it is uniquely determined by its two-dimensional

rigidity matroid, and

(ii) if a two-dimensional rigidity matroid is (2k − 3)-connected then its underlying

graph is k-vertex-connected.

We also prove the reverse implication: if G is a k-connected graph for some

k ≥ 6 then its two-dimensional rigidity matroid is (k − 2)-connected. Furthermore,

we determine the connectivity of the d-dimensional rigidity matroid of the complete

graph Kn, for all pairs of positive integers d, n.

Since no good characterization is known for independence in the three-dimensional

rigidity matroid, the question whether k3 exists seems more di�cult. We note that

three-dimensional versions of some of the key results that we used in the proofs

exist as conjectures: Lovász and Yemini [35] conjecture that 12-vertex-connected

graphs are rigid in three-space, while Jackson and Jordán [20] conjecture that if G

is 5-vertex-connected and R3(G) is 2-connected then G is redundantly rigid. The

bounds on the vertex connectivity would be best possible in both conjectures.
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2.1 Problem formulation and basic de�nitions

LetM be a matroid on ground set E with rank function r and let k be a positive

integer. We say that a partition (X, Y ) of E is a vertical k-separation if

min{r(X), r(Y )} ≥ k, and (2.1)

r(X) + r(Y ) ≤ r(E) + k − 1. (2.2)

The vertical connectivity of M, denoted by κ(M), is de�ned to be the smallest

integer j for which M has a j-separation. If M has no vertical separations at all,

we let κ(M) = r(E). We say thatM is vertically h-connected if κ(M) ≥ h holds.

The Tutte connectivity ofM, denoted by λ(M), is de�ned analogously, except that

in the de�nition of a k-separator (2.1) is replaced by min{|X|, |Y |} ≥ k. Hence

vertical 2-connectivity is equivalent to Tutte 2-connectivity, while λ(M) ≤ κ(M)

holds in general. We refer the reader to [44] for more details on matroids and matroid

connectivity.

This chapter was motivated by the following question, posed by Brigitte and

Herman Servatius [2, Problem 17].

Let G be a graph and Rd(G) its d-dimensional generic rigidity matroid. Is there a

(smallest) constant kd such that G is uniquely determined by Rd(G) provided that

Rd(G) is kd-connected?

The original question was formulated in terms of Tutte connectivity, but, as we

shall see, it is more convenient and more general to work with vertical connectivity.

R1(G) is isomorphic to the cycle matroid of G, which implies, by a theorem of

H. Whitney [71], that k1 = 3. A k-vertex separation of G is a pair (G1, G2) of edge-

disjoint subgraphs of G each with at least k+ 1 vertices such that G = G1 ∪G2 and

|V (G1) ∩ V (G2)| = k. The graph is said to be k-vertex-connected if it has at least

k + 1 vertices and has no j-vertex separation for all 0 ≤ j ≤ k − 1.

In Sections 2.2 and 2.3 we shall prove that k2 exists and provide an explicit

bound k2 ≤ 11. Our results lead to further questions about vertical connectivity of

rigidity matroids. In Section 2.4 we determine κ(Rd(Kn)) for all pairs d, n, while in

Section 2.5 we show that if G is highly vertex-connected then κ(R2(G)) is also high

(which does not hold for λ(R2(G))).

It is a major open problem to �nd a good characterization for independence in

d-dimensional rigidity matroids, for d ≥ 3. Thus the higher dimensional versions of

our problem are probably substantially harder.
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Henceforth we shall assume that d = 2 and omit the subscripts referring to

the dimension (except in Section 2.4). Moreover, by a k-connected graph (matroid)

we shall always mean a k-vertex-connected graph (vertically k-connected matroid,

respectively).

2.2 Highly connected graphs

We �rst show that if G is highly connected then its rigidity matroid uniquely

determines G. We shall rely on the following three results.

Lemma 2.2.1 [18, Theorem 4.7.2], [21, Lemma 3.1] Suppose thatR(G) is 2-connected.

Then G is redundantly rigid.

Theorem 2.2.2 [35, Theorem 2] Every 6-connected graph is redundantly rigid.

Theorem 2.2.3 [21, Theorem 3.2] Suppose that G is 3-connected and redundantly

rigid. Then R(G) is 2-connected.

The proof method of our �rst result is motivated by a proof for (a special case

of) Whitney's theorem, due to J. Edmonds (see [44]). Let J ⊆ E be a set of elements

in matroidM. We say that J is a 2-hyperplane ofM if r(J) = r(E) − 2 and J is

closed, that is, for all e ∈ E − J we have r(J + e) = r(E)− 1.

Theorem 2.2.4 Let G and H be two graphs and suppose that R(G) is isomorphic

to R(H). If G is 7-connected then G is isomorphic to H.

Proof. We say that a 2-hyperplane J of R(G) is 2-connected if the matroid restric-

tion of R(G) to J is 2-connected. Since G is 7-connected, Theorems 2.2.2 and 2.2.3

imply that G is rigid and E(G− v) (i.e. the edge set E minus the vertex bond of v)

is a 2-connected 2-hyperplane of R(G) for all v ∈ V (G).

Now consider an arbitrary 2-connected 2-hyperplane J of R(G). By Lemma 2.2.1

the subgraph L = (V (J), J) of G on the set of end vertices of J is rigid. Thus r(J) =

2|V (J)| − 3 and, since 2-hyperplanes are closed sets, it follows that L is an induced

subgraph of G. By using the fact that G is rigid, we obtain |V (G)| = |V (J)| + 1.

Thus the complement of J corresponds to a vertex bond of G.

It follows that there is a bijection between V (G) and the 2-connected 2-hyperplanes

of R(G) and that R(G) uniquely determines the vertex-edge incidencies in G.

By the assumption of the theorem R(G) and R(H) are isomorphic. It follows

from Theorems 2.2.2 and 2.2.3 that R(G) is 2-connected. Thus R(H) is also 2-

connected and hence H is rigid by Lemma 2.2.1. This implies that 2|V (G)| − 3 =
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r(G) = r(H) = 2|V (H)| − 3 and hence |V (G)| = |V (H)|. Thus R(H) has |V (H)|
2-connected 2-hyperplanes. So G and H are isomorphic, as claimed. �

2.2.1 Examples

The bound on the connectivity of G in Theorem 2.2.4 could perhaps be improved

to 6, but it cannot be replaced by 5. To see this consider the following example. Let

G be a complete graph on six vertices. Split every vertex of G into 5 vertices of

degree one, and identify these 5 vertices with the vertices of a complete graph K5

or with �ve vertices of an arbitrary 5-connected graph H. It is easy to see that the

resulting graph G′ is 5-connected. See Figure 2.1 for two (non-isomorphic) examples,

where K5 is used �ve times, and for the remaining vertex H is chosen to be K7 minus

an edge.

By using the Henneberg inductive construction to verify independence, one can

easily show that the graphs of Figure 2.1 are both rigid, in which all cross edges (i.e.

edges corresponding to the edges of G) are bridges in their rigidity matroids. Thus

the rigidity matroid of both graphs is isomorphic to the direct sum of �ve copies of

R(K5), one copy of R(K7− e), and �fteen copies of R(K2). On the other hand, the

two graphs are clearly non-isomorphic, since their degree sequences are di�erent.

Figure 2.1: Two non-isomorphic rigid 5-connected graphs with isomorphic rigidity

matroids.
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2.3 Highly connected matroids

In this section we show that highly connected rigidity matroids have unique

underlying graphs. We shall need Theorem 2.2.4 and the following two lemmas. Let

d(v) denote the degree of vertex v in G and let δ(G) = min{d(v) : v ∈ V (G)} denote
the minimum degree of G.

Lemma 2.3.1 Let G = (V,E) be a rigid graph on at least three vertices and suppose

that R(G) is k-connected for some k ≥ 1. Then δ(G) ≥ k + 1.

Proof. Since G is rigid, G is 2-connected and δ(G) ≥ 2. Let X be the set of edges

obtained from the star of some vertex v (i.e. from the set of edges incident with v)

of degree d(v) by deleting an arbitrary edge. Let Y = E − X. The 2-connectivity

of G implies that (V, Y ) is connected, and hence r(Y ) ≥ |V | − 1 ≥ d(v). Thus

min{r(X), r(Y )} ≥ d(v)− 1 holds. Since X is a co-circuit of R(G), we have

r(X) + r(Y ) ≤ d(v)− 1 + r(E)− 1 = r(E) + d(v)− 2.

Hence (X, Y ) is a (d(v) − 1)-separator of R(G), which implies δ(G) ≥ k + 1, as

required. �

Lemma 2.3.2 Let G = (V,E) be a graph and suppose that R(G) is (2k − 3)-

connected for some k ≥ 3. Then G is k-connected.

Proof. The hypothesis of the lemma implies that R(G) is 2-connected. Thus G

is rigid by Lemma 2.2.1. Hence r(E) = 2|V | − 3 and, by Lemma 2.3.1, we have

δ(G) ≥ 2k − 2 and |V | ≥ 2k − 1 ≥ k + 1.

For a contradiction suppose that G has a j-vertex separation (G1, G2) for some

j ≤ k − 1. Let X = E(G1) and Y = E(G2). Since δ(G) ≥ 2k − 2, we must have

min{r(X), r(Y )} ≥ 2k − 2. By using (??) we can now deduce that r(X) + r(Y ) ≤
2|V (G1)|−3 + 2|V (G2)|−3 = 2(|V |+ j)−6 ≤ 2|V |+ 2k−8 = r(E) + 2k−5. Hence

(X, Y ) is a (2k − 4)-separator of R(G), a contradiction. This proves the lemma. �

The main result of this section is now a direct corollary of Theorem 2.2.4 and

Lemma 2.3.2.

Theorem 2.3.3 Let G and H be two graphs and suppose that R(G) is isomorphic

to R(H). If R(G) is 11-connected then G is isomorphic to H.

As we remarked earlier, Theorem 2.3.3 is valid for Tutte connectivity, too, since

λ(R(G)) ≤ κ(R(G)). Theorem 2.3.3 implies that k2 ≤ 11. It is not di�cult to

construct a pair of non-isomorphic rigidity circuits (i.e. graphs whose edges sets

are circuits in their rigidity matroids) with the same number of edges. By such an

example we have k2 ≥ 3.
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2.4 The connectivity of Rd(Kn)

One question which remains open after Theorem 2.3.3 is whether there exist

graphs with arbitrarily highly connected rigidity matroids. In this section we give

an a�rmative answer by determining κ(Rd(Kn)) for all pairs d, n. We shall use the

following simple lemma. Part (i) is just one version of the Vertex Addition Lemma

[68, Lemma 11.1.1], while part (ii) follows from the Edge Split Theorem [68, Theorem

11.1.7]. For a graph G let rd denote the rank function of Rd(G).

Lemma 2.4.1 Let G be a graph and let G′ be obtained from G by adding a new

vertex v and j new edges incident with v.

(i) If j ≤ d then rd(G
′) = rd(G) + j,

(ii) If v is connected to all vertices of G and G is a non-rigid graph with |V (G)| ≥
d+ 1 then rd(G

′) ≥ rd(G) + d+ 1.

The edge set of Kn is independent in Rd(Kn) if n ≤ d + 1. Thus it su�ces to

consider the case when n ≥ d+ 2.

Theorem 2.4.2 Let Kn = (V,E) be a complete graph on n vertices with n ≥ d+ 2.

Then

κ(Rd(Kn)) = n− d.

Proof. For simplicity let r denote the rank function ofRd(Kn). SinceKn is rigid and

n ≥ d+2, we have r(E) = dn−
(
d+1
2

)
. First we show that Rd(Kn) has no (n−d−1)-

separations. To this end consider a �red-blue 2-coloring�, that is, a partition (R,B)

of E, with min{r(R), r(B)} ≥ n− d− 1 and suppose, for a contradiction, that

r(R)+r(B) ≤ r(E)+n−d−2 = dn−
(
d+ 1

2

)
+n−d−2 = (d+1)n−

(
d+ 2

2

)
−1.

(2.3)

Let GR = (V,R) and GB = (V,B) denote the corresponding subgraphs of Kn.

Clearly, these subgraphs are both non-rigid.

Let W ⊆ V be a largest set of vertices with

r(R|W ) + r(B|W ) ≥ (d+ 1)|W | −
(
d+ 2

2

)
, (2.4)

where R|W (resp. B|W ) denotes the set of red (blue) edges induced by W . Since

the sets R,B are non-empty, Kn has a bicolored complete graph on d + 2 vertices,

which is a circuit in Rd(Kn) and hence it satis�es (2.4). Thus W exists and we have

|W | ≥ d+ 2. On the other hand we cannot have W = V by (2.3).
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Consider a vertex v ∈ V −W . The edges incident with v must have the same

color, since otherwise r(R|(W + v)) + r(B|(W + v)) ≥ r(R|W ) + r(B|W ) + d+ 1 ≥
(d+1)(|W |+1)−

(
d+2
2

)
would follow by Lemma 2.4.1(i), contradicting the maximality

ofW . Now suppose that v is incident with, say, red edges only. Then GR[W ] is rigid,

for otherwise r(R|(W + v)) ≥ r(R|W ) + d + 1 would hold by Lemma 2.4.1(ii),

contradicting the maximality of W as above. Similarly, if v is incident with blue

edges only then GB[W ] must be rigid.

Suppose that each vertex in V −W is incident with, say, red edges only. Then

GR[W ] is rigid, and hence GR[V ] is also rigid by Lemma 2.4.1(i), a contradiction.

Hence we may suppose that V −W contains at least one vertex incident with red,

and also at least one vertex incident with blue edges only. Then GR[W ] and GB[W ]

are both rigid. Hence for any vertex v ∈ V −W we have

r(R|(W +v))+r(B|(W +v)) = 2d|W |−2

(
d+ 1

2

)
+d ≥ (d+1)(|W |+1)−

(
d+ 2

2

)
,

which contradicts the maximality of W . It follows that Rd(Kn) has no (n− d− 1)-

separations, as claimed.

To complete the proof of the theorem we show that Rd(Kn) has no k-separations

for k ≤ n− d− 2. Suppose that (R,B) is a partition of E with min{r(R), r(B)} =

k ≤ n− d− 2 and

r(R) + r(B) ≤ r(E) + k − 1 = dn−
(
d+ 1

2

)
− 1 + k. (2.5)

We may assume, by symmetry, that r(R) = k. Since r(E) = dn −
(
d+1
2

)
, there is a

setM ⊂ B with |M | = n−d−1−k for which r(R∪M) = n−d−1. Let R′ = R∪M
and B′ = B−M . We also have r(B) ≥ r(B′) ≥ dn−

(
d+1
2

)
− (n−d−1) ≥ n−d−1,

and hence min{r(R′), r(B′)} = n− d− 1. By using (2.5) we can now deduce that

r(R′)+r(B′) ≤ r(R)+(n−d−1−k)+r(B) ≤ dn−
(
d+ 1

2

)
−1+k+(n−d−1−k).

Thus (R′, B′) is an (n− d− 1)-separation in Rd(Kn), a contradiction. This implies

κ(Rd(Kn)) ≥ n− d. To see that equality holds observe that by partitioning E into

a set X of n− d edges of a star of some vertex v, and its complement Y = E −X,

we obtain an (n− d)-separation of Rd(Kn). �

Since vertical connectivity is monotone with respect to edge deletions, Theorem

2.4.2 implies the existence of d-dimensional rigidity matroids with vertical connec-

tivity l for all pairs of positive integers l, d.
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2.5 Highly connected graphs revisited

One may also wonder whether a kind of converse of Lemma 2.3.2 holds. First

observe that a highly connected graph G does not necessarily have a highly Tutte-

connected rigidity matroid. The existence of a complete graph K4 in G (whose edge

set is a circuit in R(G)) implies that λ(R(G)) ≤ 6, even if G is highly connected. On

the other hand, as we shall show in this section, if G is highly connected then the

vertical connectivity of its rigidity matroid must also be high. We need the following

result of Lovász and Yemini which describes the rank funtion of the two-dimensional

rigidity matroid of a graph G. A cover of G is a family of subgraphs {G1, G2, ..., Gp}
of G, where each Gi has at least two vertices and E(G1)∪E(G2)∪...∪E(Gp) = E(G).

Theorem 2.5.1 [35] Let G = (V,E) be a graph. Then

r(G) = min

p∑
i=1

(2|V (Gi)| − 3),

where the minimum is taken over all covers {G1, G2, ..., Gp} of G.

Let G = (V,E) be a graph. We say that a partition (X, Y ) of E is essential if

(V,X) and (V, Y ) are both non-rigid graphs.

Lemma 2.5.2 Let G = (V,E) be a k-connected graph, where k ≥ 6, and let (X, Y )

be an essential partition of E. Then

r(X) + r(Y ) ≥ 2|V |+ k − 6. (2.6)

Proof. The proof is by induction on k. First we consider the case k = 6. For a

contradiction suppose that there is a 6-connected graph G = (V,E) with an essential

partition (X, Y ) of E for which

r(X) + r(Y ) ≤ 2|V | − 1. (2.7)

We may assume thatG has the least possible number n of vertices among such graphs

and that G has the largest number of edges among such graphs on n vertices. We

must have n ≥ 8, because the only 6-connected graph on seven vertices is K7, for

which the lemma follows from Theorem 2.4.21.

1To see this observe thatK7 remains rigid after deleting any set F ⊂ E(K7) of edges with r(F ) ≤
3. Hence an essential partition (X,Y ) of E(K7) must satisfy min{r(X), r(Y )} ≥ 4. Therefore the

violation of (2.6), that is, r(X)+ r(Y ) ≤ 13 = r(K7)+2 would imply that (X,Y ) is a 4-separation

in K7, contradicting Theorem 2.4.2.
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By Theorem 2.5.1 there exists a cover Gi = (Vi, Ei), 1 ≤ i ≤ p, of (V,X) and a

cover Gj = (Vj, Ej), p + 1 ≤ j ≤ p + q, of (V, Y ), for which
∑p

i=1(2ni − 3) = r(X)

and
∑p+q

i=p+1(2ni− 3) = r(Y ), where ni = |Vi| for 1 ≤ i ≤ p+ q. Note that Gi is rigid

for all 1 ≤ i ≤ p+ q. Hence

p+q∑
i=1

(2ni − 3) ≤ 2|V | − 1. (2.8)

We may suppose, by the maximality of |E|, that G[Vi] is complete, for 1 ≤ i ≤ p+q.

Claim 2.5.3 Every vertex of G occurs in at least two subgraphs Gi.

Proof. Without loss of generality we may suppose that v ∈ G1 but v /∈ Gi for all

2 ≤ i ≤ p+q. Since G is 6-connected, n1 ≥ 7 must hold. Let G′ = G−v, G′1 = G1−v,
n′1 = n1 − 1, and let G′i = Gi, n′i = ni for all 2 ≤ i ≤ p + q. Let S(v) denote the

star of vertex v, i.e. the set of edges incident with v in G. Now X ′ = X − S(v) and

Y form a partition of the edge set of G′. We claim that this partition is essential.

Let V ′ = V − v. If (V ′, X ′) is rigid then (V,X) is also rigid by Lemma 2.4.1(i),

contradicting the fact that (X, Y ) is an essential partition. If (V ′, Y ) is rigid then,

using the fact that (V,X) contains a rigid graph on at least seven vertices, we obtain

r(X) + r(Y ) ≥ r(G1) + 2|V ′| − 3 ≥ 11 + 2|V | − 2− 3 = 2|V |+ 6, contradicting (2.7).

Now, since the Gi's cover X ′ and Y , respectively, we have

r(X ′) + r(Y ) ≤ 2n′1 − 3 +

p+q∑
i=2

(2ni − 3) =

p+q∑
i=1

(2ni − 3)− 2 ≤ 2|V | − 3 = 2|V ′| − 1.

By the minimality of |V | this implies that G− v is not 6-connected. Thus there is a

set of vertices U ⊆ V − v with |U | ≤ 5 for which G− v − U is disconnected. Since

G − U is connected, there must be two vertices a, b adjacent to v in G that are in

di�erent components of G− v − U . But, since G[V1] is complete, the neighbours of

v are pairwise adjacent in G, which contradicts the fact that a and b are in di�erent

components of G− v − U . �

We can now proceed as in the proof of [35, Theorem 2]. Since G is 6-connected,

we have
∑

v∈Vi(ni−1) ≥ 6 for all v ∈ V . This inequality and Claim 2.5.3 imply that∑
Vi3v

(2− 3

ni
) ≥ 2

for all v ∈ V . Thus
p+q∑
j=1

(2nj − 3) =

p+q∑
j=1

nj(2−
3

nj
) =

∑
v∈V

∑
Vi3v

(2− 3

ni
) ≥ 2|V |,
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which contradicts (2.8). The statement of the lemma now follows for k = 6.

Next suppose k ≥ 7 and that the statement of the lemma holds for every l-

connected graph with 6 ≤ l ≤ k − 1. Suppose for a contradiction that there exists

a k-connected graph G = (V,E) with an essential partition (X, Y ) of E violating

(2.6). Let v ∈ V be a vertex with S(v) ∩ X 6= ∅ 6= S(v) ∩ Y . Since G is rigid, by

Theorem 2.2.2, we have that X and Y are both non-empty, and hence v exists.

Consider the graph G− v and the partition (X −S(v), Y −S(v)) of E(G− v) =

E − S(v). We claim that this partition is essential. By symmetry it su�ces to show

that (V − v,X − S(v)) is not rigid. Suppose that it is rigid. Then |S(v) ∩ X| = 1

follows by Lemma 2.4.1(i), and we have

r(X) + r(Y ) ≥ r(X − S(v)) + r(S(v))− 1 ≥ 2|V − v|+ k − 4 = 2|V |+ k − 6,

which contradicts the assumption that (X, Y ) is an essential partition of E violating

(2.6).

By using the induction hypothesis, the choice of v, and that G − v is (k − 1)-

connected we can now deduce that

r(X) + r(Y )− 3 ≥ r(X − S(v)) + r(Y − S(v)) ≥ 2|V ′|+ (k − 1)− 6 = 2|V |+ k − 9

which contradicts the assumption that (X, Y ) is an essential partition of E violating

(2.6). This completes the proof of the lemma. �

Theorem 2.5.4 Let G = (V,E) be a k-connected graph, where k ≥ 6. Then κ(R(G)) ≥
k − 2.

Proof. IfX, Y is a vertical l-separation of the matroidM for some l then max{r(X), r(Y )} <
r(M) must hold. Thus the theorem follows from Lemma 2.5.2. �

The lower bound of Theorem 2.5.4 is best possible for all k ≥ 6. To see this take

two disjoint k-connected graphs and connect them by k disjoint edges e1, e2, ..., ek.

Call the resulting graph G = (V,E). It is easy to see that G is k-connected. Let

X = {e1, e2, ..., ek−2} and Y = E −X. The partition (X, Y ) is a (k − 2)-separation

of R(G), which shows that κ(R(G)) ≤ k − 2.

We also remark that Theorem 2.5.4 and the fact that the smallest bipartite

graph whose two-dimensional rigidity matroid is a circuit is K3,4 imply that the

Tutte connectivity of R(Km,n) is at least 11, for all m,n ≥ 13 (c.f. Theorem 2.3.3).
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Chapter 3

Highly vertex-redundantly rigid

graphs

A graph G = (V,E) is called k-rigid in Rd if |V | ≥ k + 1 and after deleting any

set of at most k − 1 vertices the resulting graph is rigid in Rd. A k-rigid graph G is

called minimally k-rigid if the omission of an arbitrary edge results in a graph that

is not k-rigid. B. Servatius showed that a 2-rigid graph in R2 has at least 2|V | − 1

edges and this bound is sharp. We extend this lower bound for arbitrary values of

k and d and show its sharpness for the cases where k = 2 and d is arbitrary and

where k = d = 3. We also provide a sharp upper bound for the number of edges of

minimally k-rigid graphs in Rd for all k.

3.1 k-rigid graphs

A graph G = (V,E) is called k-rigid in Rd, or simply [k, d]-rigid, if |V | ≥ k + 1

and, for any U ⊆ V with |U | ≤ k−1, the graph G−U is rigid in Rd. In this context,

we will call graphs that are rigid in Rd [1, d]-rigid. Every [k, d]-rigid graph is [l, d]-

rigid by de�nition for 1 ≤ l ≤ k. We remark that another equivalent de�nition of

[k, d]-rigidity is also used in the literature. By this equivalent de�nition a graph is

[k, d]-rigid if |V | ≥ k + 1 and the deletion of any set of k − 1 vertices results in a

graph that is rigid in Rd. The following well-known lemma shows the equivalence of

these two de�nitions.

Lemma 3.1.1 A graph G = (V,E), with |V | ≥ k + 1, is [k, d]-rigid if and only if

the deletion of any set of k − 1 vertices results in a graph that is rigid in Rd.

We will use both de�nitions.
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G is called minimally [k, d]-rigid if it is [k, d]-rigid but G − e fails to be [k, d]-

rigid for every e ∈ E. G is said to be strongly minimally [k, d]-rigid if it is minimally

[k, d]-rigid and there is no (minimally) [k, d]-rigid graph on the same vertex set with

less edges. If G is minimally [k, d]-rigid but not strongly minimally [k, d]-rigid, then

it is called weakly minimally [k, d]-rigid.

The investigation of [k, d]-rigid graphs was commenced in the plane by B. Ser-

vatius [52] and was continued recently in higher dimensions by Anderson, Monte-

vallian, Summers and Yu [40, 41, 54, 55] motivated by multi-agent formations and

sensor networks.

The following theorem gives a formula for the edge number of minimally rigid

graphs.

Theorem 3.1.2 ([68]) Let G = (V,E) be minimally [1, d]-rigid. If |V | ≥ d+1 then

|E| = d|V | −
(
d+1
2

)
.

We note that the proof of this theorem follows from the fact that the edge set

of a minimally [1, d]-rigid graph corresponds to a base of the rigidity matroid of the

graph. Hence it is not surprising that the edge sets of minimally [1, d]-rigid graphs

on the same node set have the same cardinality. However, as we will see later, this is

not true for [k, d]-rigid graphs when k ≥ 2, there are minimally [k, d]-rigid graphs for

all k ≥ 2 and d ≥ 1 with di�erent edge numbers, that is, the set of weakly minimally

[k, d]-rigid graphs is not empty for any d if k ≥ 2.

To see a simple example, consider the case where d = 1. G is rigid in R1 if and

only if G is connected. Hence G is minimally [k, 1]-rigid if and only if it is minimally

k-connected. It is easy to construct minimally k-connected graphs with di�erent

edge-numbers, for example, the complete bipartite graph Kn−k,k is minimally k-

connected with k(n − k) edges and there are k-regular k-connected graphs that

must be minimal and have kn/2 edges.

It was shown by B. Servatius [52] that the smallest possible number of edges in a

[2, 2]-rigid graph is 2|V |− 1 and this bound is sharp. Later, lower and upper bounds

were provided for the edge number of minimally [k, d]-rigid graphs for d = 2 and 3

in [40, 41, 54, 55]). We summarize these results in the following theorem.

Theorem 3.1.3 Let G = (V,E) be a minimally [k, d]-rigid graph. Then

(i) |E| ≥ 2|V | − 1 if k = d = 2 and |V | is su�ciently large. This bound is sharp.

(ii) |E| ≥ 2|V | + 2 if k = 3, d = 2 and |V | is su�ciently large. This bound is

sharp.
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(iii) |E| ≥
⌈
k+1
2
|V |
⌉
if k is arbitrary, d = 2 and |V | is su�ciently large.

(iv) |E| = Ω
((
k+d
2

)
n
)
if k is arbitrary and d = 2 or 3.

The main result of this chapter is a sharp upper bound for the number of edges

of minimally [k, d]-rigid graphs for every pair [k, d]. We provide a lower bound for

the number of edges of minimally [k, d]-rigid graphs which is sharp for k = 2 for all

d and for k = 3, d ≤ 3. We also show that weakly minimally [k, d]-rigid graphs exist

for every pair [k, d] and we disprove a conjecture of Summers, Yu and Anderson

[54, 55].

3.2 Preliminaries � Operations preserving rigidity

Constructive characterizations are useful tools in combinatorial rigidity. Even

though we do not have a constructive characterization theorem for the class of rigid

graphs for d ≥ 3 it can be very useful to �nd operations that preserve rigidity. In

this section we mention some of these operations.

The d-dimensional Henneberg-0 extension, or simply 0-extension, on G adds a

new vertex and connects it to d distinct vertices ofG. The d-dimensional 1-extension,

or simply 1-extension, deletes an edge uw ∈ E, adds a new vertex v and connects

it to u, v and d− 1 other vertices of G. The d-dimensional 0-extension is also called

d-valent vertex addition and the d-dimensional 1-extension is also called d+1-valent

edge split.

Theorem 3.2.1 ([59]) If G is rigid in Rd and G′ is obtained from G by a d-

dimensional 0-extension or 1-extension operation then G′ is rigid in Rd.

As d-dimensional 0- and 1-extensions are used when we are in Rd, we will simply

call them 0- and 1-extensions if d is clear from context. There are some more oper-

ations that are known to preserve rigidity in higher dimensions. In this paper, we

will use the following that we call a (d-dimensional) simplex-based X-replacement.

Let d ≥ 2 and let a, b, w1, . . . , wd−2 be a complete subgraph of G and cd ∈ E

an edge which is node-disjoint from the simplex. The d-dimensional simplex-based

X-replacement extension deletes ab, cd, adds a new vertex v and connects it to

a, b, c, d, w1, . . . , wd−2. When d = 2 or 3, we call a d-dimensional simplex-based

X-replacement a 2-dimensional X-replacement or a triangle-based X-replacement,

respectively. It is folklore that these latter two operations preserve rigidity as the

following lemma shows (in a more general way). For completeness, we give the proof

of this lemma.
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Lemma 3.2.2 Let G be rigid in Rd and let G′ be the result of a d-dimensional

simplex-based X-replacement applied to G. Then G′ is rigid in Rd.

Proof. In the proof, we will use special (non-generic) realizations of graphs. It is

well-known that for a 0-extension we do not really need a generic realization, that

is:

Claim 3.2.3 Let (G, p) be independent in the d-dimensional rigidity matroid and

let G′ be the graph that arises from G by a d-dimensional 0-extension such that

V (G′) = V (G) + v and let p′ be a realization of G′ in Rd such that p(u) = p′(u)

for every u ∈ V . Suppose that p′(v) and its d neighbors have full a�ne span. Then

(G′, p′) is independent in the d-dimensional rigidity matroid.

We may assume that G is minimally rigid in Rd by deleting some redundant edges

of G other than those we use for the extension. Let (G, p) be a generic realization of

G. Let S be the hyperplane that contains the (d−1) dimensional simplex spanned by

p(a), p(b), p(w1), . . . , p(wd−2) and let ` be the line of p(c), p(d). Put p(v) = S ∩ ` and
let G0 = (V + v, E ∪ {va, vc} ∪ {vwi : 1 ≤ i ≤ d− 2}). By Lemma 3.2.3 framework

(G0, p) is independent and hence minimally rigid.

Now we construct framework (G′, p) from (G0, p) by replacing edges ab and cd

with vb and vd, respectively. We shall prove that (G′, p) is rigid. First add vb, let

G1 = G0 + vb. There is a unique M-circuit in (G1, p) in the d-dimensional rigid-

ity matroid which is the Kd+1 induced by v, a, b, w1, . . . , wd−2. (Note that points

p(v), p(a), p(b), p(w1), . . . , p(wd−2) lie on a hyperplane.) Thus with the notation G1−
ab = G2 framework (G2, p) is independent.

Similarly, with the notation G3 = G2 + vd the unique M-circuit in the the d-

dimensional rigidity matroid of the framework (G3, p) is the triangle spanned by

v, c, d. Again, with removing cd we get an independent framework, equivalently

(G′, p) is rigid as we claimed. �

3.3 The e�ect of coning on [k, d]-rigid graphs

We shall also use another type of operation that not only preserves rigidity of

graphs but augments a [1, d]-rigid graph to a [1, d+ 1]-rigid one. The cone graph of

G is the graph that arises from G by adding a new vertex v and edges vu for every

u ∈ V . We will denote this graph by G ∗ v. The operation that creates the cone

graph of G is called coning.
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Theorem 3.3.1 (Whiteley [65]) A graph G is [1, d]-rigid if and only if the cone

graph G ∗ v is [1, d+ 1]-rigid.

Next, we prove some important consequences of Theorem 3.3.1 that will be useful

throughout this paper. We refer the reader to [29] for the proof of the next lemma.

Lemma 3.3.2 Let e ∈ E be an M-bridge in Rd(G). Then e is a M-bridge in

Rd+1(G ∗ v).

We remark that Theorem 3.3.1 cannot be generalized to k-rigid graphs. That is,

if G is [k, d]-rigid for some k ≥ 2, then G ∗ v is not necessarily [k, d + 1]-rigid. For

example, Cn is [2, 1]-rigid, but Cn ∗ v (which is the wheel graph with n+ 1 vertices)

is not [2, 2]-rigid. However, the following results show that coning can be used to

construct [k, d]-rigid graphs.

Lemma 3.3.3 Let G be a [k, d+ 1]-rigid graph. Then G is [k + 1, d]-rigid.

Proof. Let G′ be a [1, d + 1]-rigid graph that we obtain from G by deleting k − 1

arbitrary vertices. Suppose, for a contradiction, that there is a vertex u ∈ V (G′) such

that G′ − u is not [1, d]-rigid. Then (G′ − u) ∗ u is not [1, d + 1]-rigid by Theorem

3.3.1 which contradicts the [1, d+ 1]-rigidity of G′ ⊆ (G′ − u) ∗ u. �

Lemma 3.3.4 Let k ≥ 2 and d ≥ 1 be integers and let G = (V,E) be a [k − 1, d]-

rigid graph. Then G ∗ v is [k, d]-rigid.

Proof. We need to show that, after deleting k − 1 vertices, G ∗ v remains [1, d]-

rigid. If v is omitted, then we are done by the [k− 1, d]-rigidity of G. Otherwise, let

u1, ..., uk−1 be the omitted vertices. G−{u1, ..., uk−2} is [1, d]-rigid and v is connected

to every neighbor of vk−1. Hence (G ∗ v)− {u1, ..., uk−1} has a subgraph isomorphic

to the [1, d]-rigid graph G− {u1, ..., uk−2} showing that it is [1, d]-rigid. �

3.4 Lower bounds for the number of edges in [k, d]-

rigid graphs

In this section, we present several lower bounds for the number of edges in

[k, d]-rigid graphs for arbitrary positive integers k and d. Theorem 3.1.3 (i)-(iii)

summarizes the lower bounds that were known earlier. First we extend (i) and (ii)

to every dimension d.
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Theorem 3.4.1 If a graph G = (V,E) is [k, d]-rigid with |V | ≥ d2 + d+ k then

|E| ≥ d|V | −
(
d+ 1

2

)
+ (k − 1)d+ max

{
0,

⌈
k − 1− d+ 1

2

⌉}
. (3.1)

Note that the bound given in (3.1) coincides with the bounds given in Theorem

3.1.3 (i)-(ii) for [k, d] = [2, 2], [3, 2] hence it is sharp for these values of k and d. In

Sections 3.6 and 3.7, we show that this lower bound is sharp for [k, d] = [2, d] where

d is arbitrary, and for [k, d] = [3, 3].

Proof. We prove this theorem by induction on k. For k = 1, the theorem immedi-

ately follows by Theorem 3.1.2.

Now, let G = (V,E) be a [k, d]-rigid graph for k ≥ 2 with |V | ≥ d2 + d + k and

assume that the theorem is true for k− 1. Let v ∈ V be a node of maximum degree

in G. As G− v is [k − 1, d]-rigid with at least d2 + d+ k − 1 nodes,

|E(G− v)| ≥ d(|V | − 1)−
(
d+ 1

2

)
+ (k − 2)d+ max

{
0,

⌈
k − 2− d+ 1

2

⌉}
by induction. Using this inequality, we have

|E| ≥ d(|V | − 1)−
(
d+ 1

2

)
+ (k − 2)d+ max

{
0,

⌈
k − 2− d+ 1

2

⌉}
+ ∆(G)

= d|V | −
(
d+ 1

2

)
+ (k − 1)d+ max

{
0,

⌈
k − 2− d+ 1

2

⌉}
+ (∆(G)− 2d)

Here, max
{

0,
⌈
k − 2− d+1

2

⌉}
= 0 = max

{
0,
⌈
k − 1− d+1

2

⌉}
if k − 1 ≤ d+1

2
; and

max
{

0,
⌈
k − 2− d+1

2

⌉}
+1 =

⌈
k − 2− d+1

2

⌉
+1 =

⌈
k − 1− d+1

2

⌉
= max

{
0,
⌈
k − 1− d+1

2

⌉}
if k − 1 > d+1

2
. Therefore, we need to prove that ∆(G) ≥ 2d for all k and ∆(G) ≥

2d+ 1 also holds if k − 1 > d+1
2
.

To prove that ∆(G) ≥ 2d for all k, let us observe that if a graph H = (V ′, E ′)

is [1, d]-rigid with |V ′| ≥ d2 + d + 2 then ∆(H) ≥ 2d. (To see this suppose that

∆(H) ≤ 2d− 1. Then |E ′| ≤ |V ′|d− |V
′|

2
< |V ′|d−

(
d+1
2

)
which contradicts Theorem

3.1.2.) Since a [k, d]-rigid graph is also [1, d]-rigid and we have |V | ≥ d2 + d+ k, we

get that ∆(G) ≥ 2d. But then

|E| ≥ d|V | −
(
d+ 1

2

)
+ (k − 1)d+ max

{
0,

⌈
k − 2− d+ 1

2

⌉}
and hence |E| > d|V | if k−1 > d+1

2
. Therefore, we get ∆(G) ≥ 2d+ 1 if k−1 > d+1

2

as we wanted. �

The following theorem gives a better lower bound if k is large compared to d.

This result extends Theorem 3.1.3 (iii) for higher dimensions.

Theorem 3.4.2 Let k ≥ d + 2 and let G = (V,E) be a [k, d]-rigid graph with

|V | ≥ d+ k. Then |E| ≥
⌈
d+k−1

2
|V |
⌉
.

32



Proof. If we delete k − 1 neighbors of a node v we get a [1, d]-rigid graph with

at least d + 1 nodes. Since the minimum degree of such a graph is at least d, we

get dG(v) ≥ k − 1 + d. Thus the minimum degree in G is at least k − 1 + d hence

|E| ≥
⌈
d+k−1

2
|V |
⌉
. �

3.5 Upper bound for the number of edges in mini-

mally [k, d]-rigid graphs

In this section, we give an upper bound for the number of edges of minimally

[k, d]-rigid graphs. We refer to [29] for the proof of the following lemma.

Lemma 3.5.1 Suppose that G is a minimally [k, d]-rigid graph. Then G is indepen-

dent in Rd+k−1(G).

By combining Lemma 3.5.1 and Theorem 3.1.2, we immediately get the following

upper bound.

Theorem 3.5.2 Let G = (V,E) be a minimally [k, d]-rigid graph. Then

|E| ≤ (d+ k − 1)|V | −
(
d+ k

2

)
.

The sharpness of this bound for d ≥ 2 will be proved later in Lemma 3.7.4. As

a graph is [k, 1]-rigid if and only if it is k-connected Mader's sharp upper bound

for the edge number of minimally k-connected graphs can be applied for the edge

number of minimally [k, 1]-rigid graphs, see [36]. This gives us the following.

Theorem 3.5.3 Let G = (V,E) be a minimally [k, 1]-rigid graph with |V | ≥ 3k−1.

Then

|E| ≤ k|V | − k2

and this bound is sharp.

3.6 Minimally [2, d]-rigid graphs

In this section, we consider the case where k = 2. First we give an example that

shows the lower bound given in Theorem 3.4.1 is sharp for k = 2 in any dimension

and next we disprove Conjecture 3.6.3.

Consider graph Cd
n and its subgraph Ld induced by vertices vn−d+1, . . . , vn. (Note

that Ld is isomorphic to Kd.) Hd
n,2 = Cd

n−E(Ld) denotes the graph we get from Cd
n

after deleting the edge set of Ld. First we prove that Hd
n,2 is [2, d]-rigid.
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Lemma 3.6.1 Hd
n,2 is [2, d]-rigid if n ≥ 3d.

The proof of Lemma 3.6.1 is the generalization of the construction showed on Figure

3.1. See [29] for the details.

v7

v6

v5

v4

v2

v1

v3

v9

v8

v11

v10

v12

v13

(a) Add v5 with a 0-extension.

v7

v8

v5

v4

v2

v1

v3

v9

v8

v11

v10

v12

v13

(b) Add v7, v8, v9 with 0-

extensions by adding the extra

edges vjv1 for 7 ≤ j ≤ 9.

v7

v8

v5

v4

v2

v1

v3

v9

v8

v11

v10

v12

v13

(c) Add v10 with 1-extension on

the extra edge v7v1 by adding the

extra edge v10v1

v7

v8

v5

v4

v2

v1

v3

v9

v8

v11

v10

v12

v13

(d) Add v11, v12, v13 with

1-extensions on the edges

v8v1, v9v1, v10v1, respectively.

Figure 3.1: Building up C3
13 − E(L3)− v5 using Henneberg operations.

If G = (V,E) is [2, d]-rigid then |E| ≥ d|V | −
(
d+1
2

)
+ d = d|V | −

(
d
2

)
if |V | ≥

d2+d+2 by Theorem 3.4.1. |E(Hd
n,2)| = dn−

(
d
2

)
since Cd

n has dn edges if n ≥ 2d+1

and the deleted edges form a complete subgraph with d vertices. Hence by Lemma

3.6.1 we get the main result of this section:

Theorem 3.6.2 If G = (V,E) is a strongly minimally [2, d]-rigid graph with |V | ≥
d2 + d+ 2 then |E| = d|V | −

(
d
2

)
.
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3.6.1 A counterexample for a conjecture of Summers et al.

B. Servatius proved a constructive characterization theorem for the class of

strongly minimally [2, 2]-rigid graphs that only uses 1-extensions in [52]. As far as we

know, �nding an inductive construction for the class of minimally [2, 2]-rigid graphs

is an open problem. It was observed in [55] that the 2-dimensional X-replacement

preserves minimally [2, 2]-rigidity in speci�c cases. Summers, Yu and Anderson con-

jectured that the 3-valent vertex addition and the 2-dimensional X-replacement

operations are su�cient to build up every minimally [2, 2]-rigid graph with at least

nine vertices.

Conjecture 3.6.3 ([54, 55]) Let G = (V,E) be a minimally [2, 2]-rigid graph with

at least nine vertices. Then there exists either (a) a degree 4 vertex on which a

reverse X-replacement operation can be performed to obtain a minimal [2, 2]-rigid

graph or (b) there exists a degree three vertex on which a reverse 3-valent vertex

addition can be performed to obtain a minimally [2, 2]-rigid graph.

Now we disprove Conjecture 3.6.3 by constructing minimally [2,2]-rigid graphs

that do not have a vertex at which the reverse degree 3 vertex addition or the

reverse X-replacement can be performed. To give such an example, we will need the

following simple observation.

We de�ne an operation called K4-extension that preserves [2, 2]-rigidity. Let

G = (V,E) be a graph with |V | ≥ 4, and let v1, v2, v3, v4 ∈ V be four distinct

vertices. The K4-extension adds four new vertices u1, u2, u3, u4 to G, connects vi to

ui for every 1 ≤ i ≤ 4 and uk to ul for every pair 1 ≤ k, l ≤ 4.

Claim 3.6.4 If G = (V,E) is [2, 2]-rigid then G′ = (V ′, E ′) obtained by a K4-

extension is also [2, 2]-rigid. Furthermore G′−e is not [2, 2]-rigid for any e ∈ E ′−E.

Proof. Clearly, G′ − v is rigid for any v ∈ V ′. Consider the graph G′ − e for some

e ∈ E ′ − E. Let ui ∈ V ′ − V be such that e is not incident to ui. We claim that

G′′ = G′ − ui − e is not rigid. G′′ consist of G and a set of three vertices that is

incident to �ve edges only. Hence there are only 2|V |−3+5 = 2|V ′|−4 independent

edges in G′′ thus G′′ is not rigid as we claimed. �

Now let G0 = (V0, E0) be a [2, 2]-rigid graph with V0 ≥ 4. Apply some K4-

extensions to vertices of V0, let the resulting graph be G1 = (V1, E1) (see Figure

3.2). Suppose that every vertex in V0 is incident to at least �ve edges from E1−E0.

After the extensions, delete edges from E1 (if necessary) to obtain a minimally [2, 2]-

rigid graph G2 = (V1, E2). By Claim 3.6.4, deleting any edge from E1 − E0 results
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in a graph that is not [2, 2]-rigid hence the minimum degree in G2 is four and all the

degree four vertices are in V1 − V0. Clearly we cannot perform the reverse degree 3

vertex addition in G2. Every vertex in V1 − V0 is contained in a K4 subgraph of G2

and every reverse X-replacement on one of these vertices creates a parallel pair of

edges. Thus no reverse X-replacement operation preserves minimal [2, 2]-rigidity of

G2. This disproves Conjecture 3.6.3.

d c

ba

Figure 3.2: A counterexample H for Conjecture 3.6.3 that we get by performing �ve

K4-extensions on the subgraph induced by vertices a, b, c, d. K4 is minimally [2, 2]-

rigid hence H is [2, 2]-rigid by Claim 3.6.4. It can be easily seen that deleting any of

the edges bc, cd, db from graph H−a results in a non-rigid graph. By symmetry, the

deletion of any edge of the starting graph results in a graph that is not [2, 2]-rigid.

This implies that Gc is minimally [2, 2]-rigid.

We remark that for any positive integer t graph G1 can be constructed such that

every vertex in V0 is incident to at least t edges from E1 −E0. Hence the minimum

degree in G2 is four and the vertices in V0 have degree at least t. Since t can be

arbitrarily large this example shows that it may not be easy to �nd a constructive

characterization that only uses operations that add low-degree vertices.

3.7 Strongly minimally [3, 3]-rigid graphs

In this section, we give an example that shows that the lower bound given in

Theorem 3.4.1 is sharp when k = d = 3.

Lemma 3.7.1 C3
n is [3, 3]-rigid if n ≥ 9.

The proof of Lemma 3.6.1 is the generalization of the construction showed on Figure

3.3. See [29] for the details.

We have proved that C3
n is [3, 3]-rigid. It is easy to see that C3

n has 3n edges if

n ≥ 7. These together with Theorem 3.4.1 gives the following:
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v6

v13
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v3

v4
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v9
v10

v11

v12

(a) Add u5 with a 0-extension.

v6

v13

v1

v2
v3

v4

v5

v7

v8

v9
v10

v11

v12

(b) Add v7, v8, v9 with 0-

extensions by adding extra edges

vi+mvσ(i).

v6

v13

v1

v2
v3

v4

v5

v7

v8

v9
v10

v11

v12

(c) Add v10 and v11 with 1-

extensions on edges v7v2, v8v1, re-

spectively. By performing the �rst

of these extensions we create the

extra edge v10v2.

v6

v13

v1

v2
v3

v4

v5

v7

v8

v9
v10

v11

v12

(d) Add v12 with triangle-

based X-replacement on edges

v2v10, v1v9. (Note that v1v9v11 is

a triangle.)

Figure 3.3: Building up C3
12 − {u, v}.

Theorem 3.7.2 If G = (V,E) is a strongly minimally [3, 3]-rigid graph with |V | ≥
15, then |E| = 3|V |.

3.7.1 Examples for minimally [k, d]-rigid graphs

The question whether weakly minimally [k, d]-rigid graphs exist for every pair

[k, d] can still be solved without knowing the edge count of strongly minimally

[k, d]-rigid graphs. There are examples for weakly minimally [2, 2]-rigid graphs in

[52, 54, 55] but the existence of weakly minimally [k, d]-rigid graphs for other values

of k and d was open so far. In this section, we will give examples for minimally

[k, d]-rigid graphs with the same number of vertices but with di�erent number of
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edges. Such a pair of graphs shows that the graph with the larger number of edges

has to be weakly minimally [k, d]-rigid.

Let Hd
n,i denote the cone graph of Hd

n,(i−1) for i ≥ 3. (For the de�nition of Hd
n,2

see Section 3.6.) By Lemma 3.3.4 and Lemma 3.6.1, we can get get a minimally

[k, d]-rigid graph by deleting some edges of Hd
t,k (to obtain minimality).

Corollary 3.7.3 Let n, d and k be three positive integers such that t ≥ 3d and

k ≥ 2. Then there exists a minimally [k, d]-rigid graph Hd
t,k,reduced with n = t+ k− 2

vertices and at most (d+ k − 2)n−
(
d
2

)
+
(
k−2
2

)
− (d+ k − 2)(k − 2) edges.

We shall use Lemma 3.3.3 in the proof of the following lemma that also shows

that the upper bound given in Theorem 3.5.2 is sharp for d ≥ 2.

Lemma 3.7.4 Let t ≥ 1, k ≥ 1 and d ≥ 2 be three integers. There exists a min-

imally [k, d]-rigid graph with n = t + k + d − 1 vertices and (k + d − 1)n −
(
k+d
2

)
edges.

Proof. De�ne graph Y c
t as follows for any integers c and t. Take the disjoint union

of an independent set It of t nodes (on the vertex set {v1, . . . , vt}) and a complete

graph Kc (on the vertex set {w1, . . . , wc}) and add edges viwj for every pair 1 ≤ i ≤
t, 1 ≤ j ≤ c (see Figure 3.4).

I6

K3

Figure 3.4: Y 3
6 .

Y 1
t is minimally [1, 1]-rigid as it is a tree. Hence by Theorem 3.3.1, we get that

Y c
t is minimally [1, c]-rigid as we get this graph after using the coning operation c−1

times on Y 1
t . Thus Y

k+d−1
t is [1, k+d−1]-rigid and hence it is [k, d]-rigid by Lemma

3.3.3.

Next we show that Y k+d−1
t is minimally [k, d]-rigid. We have seen this for k = 1.

Now let k, d ≥ 2. Let uv ∈ E(Y k+d−1
t ) be an arbitrary edge. By symmetry, we can

assume that u, v ∈ {v1, v2, w1, w2}. Observe that, after the omission of the k − 1

nodes vd+1, . . . , vk+d+1 from Y k+d−1
t , we get Y d

t that is a minimally [1, d]-rigid graph

as we observed before. Since d ≥ 2, uv ∈ E(Y d
t ) also holds. But Y d

t −uv is not [1, d]-

rigid by the minimally [1, d]-rigidity of Y d
t , hence Y

k+d−1
t − uv is not [k, d]-rigid.

Therefore, Y k+d−1
t is minimally [k, d]-rigid.
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Clearly, |V (Y k+d−1
t )| = t+k+d−1 =: n and |E(Y k+d−1

t )| =
(
k+d−1

2

)
+(k+d−1)t =

(k + d− 1)(t+ k + d− 1)− (k + d− 1)2 +
(
k+d−1

2

)
= (k + d− 1)n−

(
k+d
2

)
. �

Corollary 3.7.5 The upper bound given in Theorem 3.5.2 is sharp for all pair [k, d]

with k, d ≥ 2.

Some other examples for minimally [k, d]-rigid graphs can be found in a pre-

liminary version of this paper (see [28]). Now, we are ready to prove the following

theorem.

Theorem 3.7.6 Let d and k be positive integers with k ≥ 2. Then there are weakly

minimally [k, d]-rigid graphs, that is, there are minimally [k, d]-rigid graphs that are

not strongly minimally [k, d]-rigid.

Proof. We only prove the theorem for d ≥ 2 as we have seen in the Introduction

that there are weakly minimally [k, 1]-rigid graphs. By Corollary 3.7.3, there exists

a minimally [k, d]-rigid graph on n nodes with at most (d+ k− 2)n−
(
d
2

)
+
(
k−2
2

)
−

(d+ k− 2)(k− 2) edges if n ≥ 3d+ k− 2. By Lemma 3.7.4, Y k+d−1
n−k−d+1 is a minimally

[k, d]-rigid graph on n nodes with at most (k + d− 1)n−
(
k+d
2

)
edges if n ≥ k + d.

Since (d+ k − 2)n−
(
d
2

)
+
(
k−2
2

)
− (d+ k − 2)(k − 2) < (k + d− 1)n−

(
k+d
2

)
if n is

su�ciently large, Y k+d−1
n−k−d+1 is a weakly minimally [k, d]-rigid graph for all pair [k, d]

with k, d ≥ 2 if n is su�ciently large. �

3.8 Related problems

The results presented in this chapter are about the edge numbers of minimally

[k, d]-rigid graphs. Similar questions were asked about minimally globally [k, d]-rigid

graphs in [41, 54] where G = (V,E) is globally [k, d]-rigid if |V | ≥ k + 1 and after

deleting any set of at most k− 1 vertices the resulting graph is globally rigid in Rd.

Other version of the problem is [k, d]-edge-rigidity (and global [k, d]-edge-rigidity)

where instead of any set of at most k− 1 vertices we delete any set of at most k− 1

edges of the graph. Proving similar results on these variants of the problem is a

possible direction of future research. Some of our methods (for example our lower

bound for large k in Theorem 3.4.2) can be used easily for these graph classes. For

example, as rigidity is a necessary condition for global rigidity, all our lower bounds

are valid for globally [k, d]-rigid graphs. We note that a sharp upper bound for the

edge number of minimally [2,2]-edge-rigid graphs was recently given by Jordán [24],

as follows.
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Theorem 3.8.1 (Jordán [24]) Let G = (V,E) be a minimally [2, 2]-edge-rigid

simple graph with |V | ≥ 7. Then

|E| ≤ 3|V | − 9.

The complete bipartite graph graph K3,n−3 shows that this bound is sharp.

A di�erent direction is to characterize inductively the class of graphs mentioned

above for some values of [k, d] which seems to be an interesting and di�cult open

question.
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Chapter 4

Rigid two-dimensional frameworks

with two coincident points

To verify the rigidity of (special families of) generic frameworks it is sometimes

useful to consider non-generic realizations of graphs. For example, to prove a ma-

jor conjecture of Tay and Whiteley [58], stating that a graph operation called X-

replacement preserves rigidity in three-space, it could be useful to have a character-

ization of when a graph has an in�nitesimally rigid realization in R3 in which the

positions of four given vertices are coplanar, see [58, 61, 68].

Motivated by this connection, Jackson and Jordán [22] characterized when a

graph has an in�nitesimally rigid realization in R2 in which three given vertices are

collinear. Recall that a set X of vertices in a minimally rigid graph G is tight if

iG(X) = 2|X|−3. An obstacle for an ordered triple (x, y, z) of vertices is an ordered

triple of tight sets (X, Y, Z) for which X ∩Y = {z}, X ∩Z = {y}, and Y ∩Z = {x}.

Theorem 4.0.2 [22] Let G = (V,E) be a minimally rigid graph and let x, y, z ∈ V
be distinct vertices. Then G has an in�nitesimally rigid realization (G, p), in which

(p(x), p(y), p(z)) are collinear if and only if G contains no obstacle for the triple

(x, y, z).

Watson [61] introduced the concept of �at realizations. He called a d-dimensional

framework (G, p) U-�at, for some U ⊆ V (G) with 2 ≤ |U | ≤ d + 1, if the set

{p(x) : x ∈ U} is not a�nely independent. He veri�ed a number of results on U -�at

realizations in R3 and formulated a conjecture for the existence of a two-dimensional

U -�at realization. The special case when |U | = 3 is settled by Theorem 4.0.2 above.

A slightly reformulated, but equivalent version of his conjecture for the case when

|U | = 2 is as follows.
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Conjecture 4.0.3 [61, Conjecture 4.40] Let G = (V,E) be a minimally rigid graph

and u, v ∈ V be two distinct vertices. Then there exists an in�nitesimally rigid

realization (G, p) of G in which p(u) = p(v) if and only if

(i) uv 6∈ E,
(ii) there is no w ∈ V for which G contains an obstacle for {u, v, w},
(iii) u and v have at most two common neighbours in G.

We have found a counterexample to Conjecture 4.0.3, see the graph of Figure

4.1.

u v

Figure 4.1: The graph G of this �gure is minimally rigid and satis�es conditions

(i)-(iii) of Conjecture 4.0.3 with respect to the designated vertex pair u, v. However,

it does not have an in�nitesimally rigid realization in which p(u) = p(v). To see this

observe that the existence of such a realization would imply that the graph obtained

from G by contracting the vertex pair u, v is rigid (c.f. Theorem 4.2.6) but G/{u, v}
is not rigid.

Our main result in this chapter is a characterization for the existence of a two-

dimensional U -�at realization for a given graph G and U ⊆ V (G) with |U | = 2,

which completes the solution of the two-dimensional �atness problem.

We need the following de�nitions. Let G = (V,E) be a graph and let u, v ∈ V be

two distinct vertices of G. A realization (G, p) is called uv-coincident if p(u) = p(v)

holds. A uv-coincident realization is uv-generic if the set of coordinates of the points

{p(z) : z ∈ V − v} is algebraically independent over the rationals. Any two uv-

coincident uv-generic frameworks (G, p) and (G, p′) have the same rigidity matroid.

We call this the two-dimensional uv-rigidity matroid Ruv(G) = (E, ruv) of the graph

G. We denote the rank of Ruv(G) by ruv(G). We say that the graph G is uv-rigid

in R2 if ruv(G) = 2|V | − 3 holds. A set F ⊆ E is said to be uv-independent if F is

independent in Ruv(G). The graph G is said to be minimally uv-rigid if G is uv-rigid

and E is uv-independent.
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b

c

g
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Figure 4.2: A rigid but not uv-rigid graph G = (V,E) with |V | = 10. Consider the

cover K = {{{u, v, a, h}, {u, v, e, d}}, {a, b, c}, {c, d}, {e, f}, {f, g, h}} of E. Its value
equals 16, which is less than 2|V | − 3 = 17 and hence G is not uv-rigid by Theorem

6.6.5 and Lemma 4.1.7.

4.1 The count matroid

Let G = (V,E) be a graph and u, v ∈ V be two distinct vertices of G. Let

H = {H1, ..., Hk} be a family with Hi ⊆ V , 1 ≤ i ≤ k. We say that H is uv-

compatible if u, v ∈ Hi and |Hi| ≥ 3 hold for all 1 ≤ i ≤ k. We de�ne the value of

subsets of V of size at least two and of uv-compatible families as follows. For H ⊆ V

with |H| ≥ 2 and H 6= {u, v} we let

val(H) = 2|H| − 3,

and put val({u, v}) = 0. For a uv-compatible family H = {H1, H2, . . . , Hk} we let

val(H) =
k∑
i=1

(2|Hi| − 3)− 2(k − 1).

Note that if H = {H} is a uv-compatible family containing only one set then the

two de�nitions are compatible, i.e. val(H) = val(H) holds.

The value of a system K = {H1,H2, . . . ,Hl} of set families (which may consist of

uv-compatible families as well as subsets of V ) is de�ned by val(K) =
∑l

i=1 val(Hi).

Figure ?? shows an example for a cover containing a uv-compatible family.

The next lemmas will enable us to consider uv-compatible families of special

types in the proof of Lemma 4.1.5 which is the main proof of this section.

43



Lemma 4.1.1 Let H = {H1, . . . , Hk} be a uv-compatible family. If |Hi ∩ Hj| ≥ 3

for some pair 1 ≤ i < j ≤ k, then there is a uv-compatible family H′ with cov(H) ⊆
cov(H′) for which val(H′) ≤ val(H)− 1.

Proof. We may assume that i = k− 1 and j = k. Let H′ = {H1, . . . , Hk−2, (Hk−1 ∪
Hk)}. Then

val(H) =
k∑
l=1

(2|Hl| − 3)− 2(k − 1) =

=
k−2∑
l=1

(2|Hl| − 3)− 2((k − 1)− 1) + (2|Hk−1| − 3) + (2|Hk| − 3)− 2 =

=
k−2∑
l=1

(2|Hl|−3)+(2|Hk−1∪Hk|−3)−2((k−1)−1)+(2|Hk−1∩Hk|−3)−2 ≥ val(H′)+1.

Clearly, we have cov(H) ⊆ cov(H′). �

Let G = (V,E) be a graph and u, v ∈ V be distinct vertices. We say that G

is uv-sparse if for all H ⊆ V with |H| ≥ 2 we have iG(H) ≤ val(H) and for all

uv-compatible families H we have iG(H) ≤ val(H). Note that if G is uv-sparse then

uv /∈ E must hold. A set H ⊆ V of vertices with |H| ≥ 2 (resp. a uv-compatible

family H = {H1, . . . , Hk} ) is called tight if iG(H) = val(H) (resp. iG(H) = val(H))

holds.

Lemma 4.1.2 Let H = {H1, . . . , Hk} be a uv-compatible family with |Hi ∩Hj| = 2

for all 1 ≤ i < j ≤ k, and let Y ⊆ V be a set of vertices with |Y ∩ {u, v}| ≤ 1

and |Y ∩Hi| ≥ 2 for some 1 ≤ i ≤ k. Then there is a uv-compatible family H′ with
cov(H)∪cov(Y ) ⊆ cov(H′) for which val(H′) ≤ val(H)+val(Y ) holds. Furthermore,

if G is uv-sparse and H and Y are both tight then H′ is also tight.

Proof. By renumbering the sets of H, if necessary, we may assume that |Y ∩Hi| ≥ 2

if i ≥ j, for some j ≤ k, and |Y ∩Hi| ≤ 1 for all 1 ≤ i ≤ j − 1. Let X = Y ∪∪ki=jHi

and H′ = {H1, . . . , Hj−1, X}. With this notation

|X| =
k∑
i=j

|Hi|+ |Y | − 2(k − j)−
k∑
i=j

|Hi ∩ Y |+ |Y ∩ {u, v}|(k − j).

Then we have cov(H) ∪ cov(Y ) ⊆ cov(H′) and

val(H) + val(Y ) =
k∑
i=1

(2|Hi| − 3)− 2(k − 1) + (2|Y | − 3) =

=

j−1∑
i=1

(2|Hi| − 3)− 2(j − 1) +
k∑
i=j

(2|Hi| − 3)− 2(k − j) + (2|Y | − 3) =
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=

j−1∑
i=1

(2|Hi| − 3) + (2|X| − 3)− 2(j − 1) + 4(k − j)− 3(k − j + 1)+

+2
k∑
i=j

|Y ∩Hi| − 2(k − j)− 2|Y ∩ {u, v}|(k − j) ≥

≥ val(H′) +
k∑
i=j

val(Y ∩Hi).

Now suppose that H and Y are tight. Then we have

i(H′) +
k∑
i=j

i(Y ∩Hi) ≥ i(H) + i(Y ) = val(H) + val(Y ) ≥

≥ val(H′) +
k∑
i=j

val(Y ∩Hi) ≥ i(H′) +
k∑
i=j

i(Y ∩Hi),

where the �rst inequality follows from the fact that edges spanned by H or Y are

spanned by H′ and if some edge is spanned by both H and Y then it is spanned

by Y ∩Hi for some i. The �rst equality holds because H and Y are tight, and the

second inequality holds by our calculations above. The last inequality holds because

G is uv-sparse. Hence equality must hold everywhere, which implies that H′ is also
tight. �

Lemma 4.1.3 Let H = {H1, . . . , Hk} be a uv-compatible family with |Hi ∩Hj| = 2

for all 1 ≤ i < j ≤ k, and let Y ⊆ V be a set of vertices with Y ∩ {u, v} = ∅ and
|Y ∩Hi| ≤ 1 for all 1 ≤ i ≤ k, for which |Y ∩Hi| = |Y ∩Hj| = 1 for some pair 1 ≤
i < j ≤ k. Then there is a uv-compatible family H′ with cov(H)∪ cov(Y ) ⊆ cov(H′)
for which val(H′) = val(H) + val(Y ). Furthermore, if G is uv-sparse and H and Y

are both tight then H′ is also tight.

Proof. We may assume that i = k− 1 and j = k. Let H′ = {H1, . . . , Hk−2, (Hk−1 ∪
Hk ∪ Y )}. Then

val(H) + val(Y ) =
k∑
i=1

(2|Hi| − 3)− 2(k − 1) + (2|Y | − 3) =

=
k−2∑
i=1

(2|Hi| − 3)− 2((k − 1)− 1)− 2 + (2|Hk−1| − 3) + (2|Hk| − 3) + (2|Y | − 3) =

=
k−2∑
i=1

(2|Hi| − 3)− 2((k − 1)− 1) + (2(|Hk−1|+ |Hk|+ |Y |)− 3)− 8 =
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=
k−2∑
i=1

(2|Hi| − 3) + (2|Hk−1 ∪Hk ∪ Y | − 3)− 2((k − 1)− 1) = val(H′).

Clearly, we have cov(H) ∪ cov(Y ) ⊆ cov(H′).
Now suppose that G is uv-sparse and H and Y are tight. Then we have

i(H) + i(Y ) = val(H) + val(Y ) = val(H′) ≥ i(H′) ≥ i(H) + i(Y )

where the last inequality follows since |Y ∩Hk−1| = |Y ∩Hk| = 1 and |Y ∩Hi| ≤ 1

for all 1 ≤ i ≤ k. Hence equality must hold everywhere, which implies that H′ is
also tight. �

Lemma 4.1.4 Let G = (V,E) be uv-sparse and let X, Y ⊆ V be tight sets in G

with |X ∩Y | ≥ 2 and X 6= {u, v} 6= Y . Then X ∩Y 6= {u, v} and X ∪Y and X ∩Y
are also tight.

Proof. If X ∩ Y 6= {u, v} then the lemma follows as in [22, Lemma 2.3]. Otherwise

we obtain i({u, v}) = 1, which contradicts the fact that G is uv-sparse. �

Lemma 4.1.5 Let G = (V,E) be uv-sparse and suppose that there is a tight uv-

compatible family in G. Then there is a unique tight uv-compatible family Hmax in

G for which cov(H) ⊆ cov(Hmax) for all tight uv-compatible families H of G.

Proof. It follows from Lemma 4.1.1 that if H = {X1, X2, . . . , Xk} is a tight uv-

compatible family in G then Xi ∩ Xj = {u, v} holds for all 1 ≤ i < j ≤ k.

Now consider a pair H1 = {X1, X2, . . . , Xk} and H2 = {Y1, Y2, . . . , Yl} of tight

uv-compatible families. Let F = (V, E) be a hypergraph where E = {Xi − {u, v} :

1 ≤ i ≤ k} ∪ {Yj − {u, v} : 1 ≤ j ≤ l} and let C1 = (V1, E1), . . . , Ct = (Vt, Et) be the
connected components of F . We de�ne the following families:

H∪ = {Hs : Hs = (∪(Xi−{u,v})∈EsXi) ∪ (∪(Yj−{u,v})∈EsYj) for 1 ≤ s ≤ t}

H∩ = {Z ⊆ V : |Z| ≥ 3,∃1 ≤ i ≤ k, 1 ≤ j ≤ l such that Xi ∩ Yj = Z}

It is easy to see that H∪ and H∩ are both uv-compatible. For convenience we rename

the families as H∪ = {A1, . . . , Ap} and H∩ = {B1, . . . , Bq}. By using that Xi∩Xj =

Yi′∩Yj′ = {u, v} we obtain p+q ≥ k+l. We also have i(H1)+i(H2) ≤ i(H∪)+i(H∩),
since the family H∪ spans all the edges spanned by H1 or H2 and H∩ spans all the
edges spanned by both H1 and H2. Thus

k∑
i=1

(2|Xi| − 3)− 2(k − 1) +
l∑

j=1

(2|Yj| − 3)− 2(l − 1) = val(H1) + val(H2) =
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= i(H1) + i(H2) ≤ i(H∪) + i(H∩) ≤ val(H∪) + val(H∩) =

=

p∑
s=1

(2|As| − 3)− 2(p− 1) +

q∑
t=1

(2|Bt| − 3)− 2(q − 1) =

=

p∑
s=1

2(|As| − 2)− (p− 2) +

q∑
t=1

2(|Bt| − 2)− (q − 2) ≤

≤
k∑
i=1

2(|Xi| − 2)− (k − 2) +
l∑

j=1

2(|Yj| − 2)− (l − 2) =

=
k∑
i=1

(2|Xi| − 3)− 2(k − 1) +
l∑

j=1

(2|Yj| − 3)− 2(l − 1),

where the last inequality follows from
∑p

k=1(|Ak|−2)+
∑q

l=1(|Bl|−2) =
∑k

i=1(|Xi|−
2)+

∑l
j=1(|Yj|−2) and p+q ≥ k+ l. Hence we can deduce that H∪ and H∩ are both

tight. Clearly, we have cov(H1) ∪ cov(H2) ⊆ cov(H∪). Thus the lemma follows by

choosing the tight uv-compatible family Hmax of G for which cov(Hmax) is maximal.

Note that the set of pairs of vertices covered by a tight uv-compatible family H
uniquely determines H and hence Hmax is indeed unique. �

4.1.1 The matroid and its rank function

Let G = (V,E) be a graph and u, v ∈ V be distinct vertices of G. In this

subsection we prove that the family

IG = {F : F ⊆ E,H = (V, F ) is uv-sparse} (4.1)

is a family of independent sets of a matroid on ground-set E. We shall also charac-

terize the rank function of this matroid. We need the following de�nition.

Let H = {X1, . . . , Xt} be a uv-compatible family and let H1, . . . , Hk be subsets

of V of size at least two. We say that the system K = {H1, . . . , Hk} is thin if

(i) |Hi ∩Hj| ≤ 1 for all pairs 1 ≤ i, j ≤ k.

The system L = {H, H1, . . . , Hk} is thin if (i) holds and

(ii) Xi ∩Xj = {u, v} for all pairs 1 ≤ i, j ≤ t, and

(iii) |Hi ∩ ∪tj=1Xj| ≤ 1 for all 1 ≤ i ≤ k.

Theorem 4.1.6 Let G = (V,E) be a graph and u, v ∈ V be distinct vertices of G.

ThenMuv(G) = (E, IG) is a matroid on ground-set E, where IG is de�ned by (4.1).

The rank of a set E ′ ⊆ E inMuv(G) is equal to

min{val(K) : K is a thin cover of E ′}.

47



Proof. Let I = IG, let E ′ ⊆ E and let F ⊆ E ′ be a maximal subset of E ′ in I.
Since F ∈ I we have |F | ≤ val(K) for all covers K of E ′. We shall prove that there

is a (thin) cover K of E ′ with |F | = val(K), from which the theorem will follow.

Let J = (V, F ) denote the subgraph induced by the edge set F . First suppose

that there is no tight uv-compatible family in J and consider the following cover of

F :

K1 = {H1, H2, . . . , Hk},

where H1, H2, . . . , Hk are the maximal tight sets in J . Every edge f ∈ F induces a

tight set in J , hence K1 is indeed a cover of F . It is thin by Lemma 4.1.4. Thus

|F | =
k∑
j=1

|EJ(Hj)| =
k∑
j=1

(2|Hj| − 3) = val(K1)

follows. We claim that K1 is a cover of E ′. To see this consider an edge ab = e ∈
E ′−F . Since F is maximal subset of E ′ in I we have F + e 6∈ I. By our assumption

there is no tight uv-compatible family in J , and hence there must be a tight set X

in J with a, b ∈ X. Hence X ⊆ Hi for some 1 ≤ i ≤ k which implies that K1 covers

e, too.

Next suppose that there is a tight uv-compatible family in J and consider the

following cover of F :

K2 = {Hmax, H1, H2, . . . , Hk},

whereHmax = {X1, X2, . . . , Xl} is the uv-compatible family ofG for which cov(Hmax)

is maximal (c.f. Lemma 4.1.5) and H1, H2, . . . , Hk are maximal tight sets of J ′ =

(V, F −E(Hmax)). It is easy to see that K2 is indeed a cover of F . By Lemmas 4.1.1,

4.1.2, 4.1.3 and 4.1.4 the cover K2 is thin, and hence

|F | =
l∑

i=1

|EJ(Xi)|+
k∑
j=1

|EJ(Hj)| =
l∑

i=1

(2|Xi|−3)−2(l−1)+
k∑
j=1

(2|Hi|−3) = val(K2).

We claim that K2 is a cover of E ′. As above, let ab = e ∈ E ′−F be an edge. By the

maximality of F we have F + e 6∈ I. Thus either there is a tight set X ⊆ V in J

with a, b ∈ X or there is a tight uv-compatible family H′ = {Y1, . . . , Yt} in J with

a, b ∈ Yi for some 1 ≤ i ≤ t.

In the latter case Lemma 4.1.5 implies that cov(H′) ⊆ cov(Hmax) and hence e

is covered by K2. In the former case, when a, b ∈ X for some tight set X in J we

have two possibilities. First suppose that |X ∩ ∪li=1Xi| ≥ 2. Then we can deduce

that X ⊆ Xi for some 1 ≤ i ≤ l by using Lemma 4.1.2 or 4.1.3 and the maximality

of Hmax, which implies that K2 covers e. Next suppose that |X ∩∪li=1Xi| ≤ 1. Then

E(X) ⊆ E(J ′) and hence X ⊆ Hi for some 1 ≤ i ≤ k, since every edge of J ′ induces
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a tight set and every tight set is contained in a maximal tight set. Hence e is covered

by K2, as claimed. �

4.1.2 Independence

Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Let Guv denote

the graph obtained from G by contracting the vertex pair u, v into a new vertex zuv

(and deleting the resulting loops and parallel copies of edges). Given a realization

(Guv, puv) of Guv, we obtain a uv-coincident realization (G, p) of G by putting p(u) =

p(v) = puv(zuv) and p(x) = puv(x) for all x ∈ V − {u, v}. Furthermore, each vector

in the kernel of R(Guv, puv) determines a vector in the kernel of R(G, p) in a natural

way. It follows that

dim KerR(G, p) ≥ dim KerR(Guv, puv). (4.2)

We can use this fact to prove that uv-independence implies independence in

Muv(G). The reverse implication will be veri�ed in the next section.

Lemma 4.1.7 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. If G

is uv-independent then E is independent inMuv(G).

Proof. Let (G, p) be an independent uv-coincident realization of G. Independence

implies that i(H) ≤ val(H) holds for allH ⊆ V with |H| ≥ 2. Since p(u) = p(v),uv /∈
E follows.

Let H = {X1, . . . , Xk} be a uv-compatible family and consider the subgraph

F = (∪ki=1Xi,∪ki=1E(Xi)). By contracting the vertex pair u, v in F we obtain the

graph Fuv, in which Huv = {X1/{u, v}, . . . , Xk/{u, v}} is a cover where Xi/{u, v}
denotes the set that we get from Xi by identifying u and v. Thus we get r(Fuv) ≤∑k

i=1(2(|Xi|−1)−3) by using (the easy direction of) the Lovász-Yemini rank formula.

This bound and (4.2) imply that dim KerR(F, p) ≥ dim KerR(Fuv, puv) ≥ 2(| ∪ki=1

Xi| − 1)−
∑k

i=1(2|Xi| − 5). Since (G, p) is uv-independent, we have

iF (H) = |F | ≤ 2

∣∣∣∣∣
k⋃
i=1

Xi

∣∣∣∣∣−
(

2

(
|
k⋃
i=1

Xi| − 1

)
−

k∑
i=1

(2|Xi| − 5)

)
=

k∑
i=1

(2|Xi| − 3)− 2(k − 1) = val(H).

Thus E is independent inMuv(G), as claimed. �
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4.2 Inductive constructions

We shall need the following specialized versions of the two-dimensional Henneberg-

extensions. Let u, v ∈ V be two distinct vertices. The 0-uv-extension operation is

a 0-extension on a pair a, b with {a, b} 6= {u, v}. The 1-uv-extension operation is a

1-extension on some edge ab and vertex c for which {u, v} is not a subset of {a, b, c}.
The inverse operations are called 0-uv-reduction and 1-uv-reduction, respectively.

The Henneberg operations preserve independence in the two-dimensional rigidity

matroid, see e.g. [68, Lemma 2.1.3, Theorem 2.2.2]. The same arguments can be used

to verify the next lemma.

Lemma 4.2.1 Let G = (V,E) be an uv-independent graph and suppose that G′ is

obtained from G by a 0-uv-extension or a 1-uv-extension. Then G′ is uv-independent.

u

v

Figure 4.3: The graph K4 − uv.

Lemma 4.2.2 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices.

Suppose that |E| = 2|V | − 3, E is independent in Muv(G), and d(a) ≥ 3 for all

a ∈ V − {u, v}. Then either G = K4 − uv or there is a vertex z ∈ V − {u, v} with
d(z) = 3 and |N(z) ∩ {u, v}| ≤ 1.

Proof. For a contradiction suppose that for all z ∈ V − {u, v} with d(z) = 3 we

have z ∈ N(u) ∩ N(v) and let m denote the number of vertices of degree three in

N(u) ∩N(v). We may assume that m ≤ d(u) ≤ d(v). By our assumptions we have

4|V | − 6 = 2|E| =
∑

d(v) ≥ d(u) + d(v) + 3m+ 4(|V | −m− 2)

= 4|V | −m+ d(u) + d(v)− 8 ≥ 4|V |+ d(v)− 8,

which implies that m = d(u) = d(v) = 2 must hold. Let N(u)∩N(v) = {a, b}. Then
either ab ∈ E and hence G = K4 − uv or U = V − {u, v, a, b} is non-empty and

i(U) ≥ 2|U | − 1 holds, contradicting the fact that E is independent inMuv(G). �
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Lemma 4.2.3 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices.

Suppose that E is independent in Muv(G) and let z ∈ V − {u, v} be a vertex with

d(z) = 3 and |N(z) ∩ {u, v}| ≤ 1. Then there is a 1-reduction at z which leads to a

graph G′ which is independent inMuv(G
′).

Proof. Let F = {ab /∈ E : a, b ∈ N(z)}, let G1 = G − z + F and G2 = G + F .

For a contradiction suppose that ruv(G1) ≤ ruv(G) − 3. Consider a base B1 of

Muv(G1) which contains the triangle on N(z) and let B2 be a base of Muv(G2)

with B1 ⊆ B2. Since K4 is a circuit of Muv(G2), we have ruv(G2) ≤ ruv(G1) + 2.

Thus ruv(G) ≤ ruv(G2) ≤ ruv(G)− 1, a contradiction. �

Theorem 4.2.4 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices.

Then G is uv-independent if and only if E is independent inMuv(G).

Proof. Necessity follows from Lemma 4.1.7. Now suppose that E is independent in

Muv(G). We prove that G is uv-independent by induction on |V |. By extending E

to a base ofMuv(K|V |), if necessary, we may assume that |E| = 2|V | − 3 holds. If

|V | ≤ 4 then we must have G = K4 − uv, which is uv-independent. Thus we may

assume that |V | ≥ 5.

First suppose that there is a vertex w ∈ V − {u, v} with d(w) = 2. Let N(w) =

{a, b}. Clearly, a 6= b holds. If {a, b} = {u, v} then let H = {{u, v, w}, {V −w}}. We

have

2|V | − 3 = |E| = iE(H) ≤ val(H) = 2 · 3− 3 + 2(|V | − 1)− 3− 2 = 2|V | − 4,

a contradiction. Hence {a, b} 6= {u, v}, which implies that the 0-uv-reduction oper-

ation can be applied at w to obtain a graph G′ = (V − w,E ′) that is independent

in the matroid Muv(G
′) and satis�es |E ′| = 2|V − w| − 3. By induction, G′ is

uv-independent. Now Lemma 4.2.1 implies that G is uv-independent.

Next suppose that there is no vertex of degree two in G. By Lemmas 4.2.2 and

4.2.3 we may apply the 1-uv-reduction operation at some vertex z of degree three

to obtain a graph G′ = (V − w,E ′) that is independent in the matroid Muv(G
′)

and satis�es |E ′| = 2|V − w| − 3. By induction G′ is uv-independent. Lemma 4.2.1

implies that G is uv-independent. This completes the proof. �

As a by-product of the proof of Theorem 4.2.4 we obtain the following corollary.

Theorem 4.2.5 Let G = (V,E) be a graph with |E| = 2|V | − 3 and let u, v ∈ V be

distinct vertices. Then G is uv-independent if and only if G can be obtained from

K4 − uv by a sequence of 0-uv-extensions and 1-uv-extensions.
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4.2.1 Main result

Theorem 4.2.6 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices.

Then G is uv-rigid if and only if G− uv and Guv are both rigid.

Proof. Necessity follows from the fact that an in�nitesimally rigid uv-coincident

realization of G gives rise to an in�nitesimally rigid realization of G− uv as well as

Guv, by (4.2).

To prove su�ciency, suppose, for a contradiction, that G− uv and Guv are both

rigid but G is not uv-rigid. By Theorems 6.6.5 and 4.2.4 this implies that there is a

thin cover K of G − uv with val(K) ≤ 2|V | − 4. If K consists of subsets of V only,

then r(G− uv) ≤ 2|V | − 4 follows, which contradicts the fact that G− uv is rigid.

Hence K = {H, H1, . . . , Hk}, where H = {X1, . . . , Xl} is a uv-compatible family.

Contract the vertex pair u, v in G into a new vertex zuv. This leads to a graph Guv

and a cover

K′ = {X ′1, . . . , X ′l , H1, . . . , Hk}

of Guv, where X ′j is obtained from Xj by replacing u, v by zuv, for 1 ≤ j ≤ l. Then

we obtain
k∑
i=1

(2|Hi| − 3) +
l∑

j=1

(2|X ′j| − 3) =
k∑
i=1

(2|Hi| − 3)+

+
l∑

j=1

(2|Xj| − 3)− 2l = val(K)− 2 ≤ 2|V | − 4− 2 = 2(|V | − 1)− 4,

which implies that Guv is not rigid, a contradiction. This completes the proof. �

A similar proof can be used to verify the following more general result:

Theorem 4.2.7 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices.

Then ruv(G) = min{r(G− uv), r(Guv) + 2}.

Theorems 4.2.6 and 4.2.7 show that the polynomial-time algorithms for comput-

ing the rank of a graph in the two-dimensional rigidity matroid (see e.g. [7]) can be

used to test whether G is uv-rigid, or more generally, to compute ruv(G).

4.3 An obstacle for minimal uv-rigidity

We may also obtain a characterization of minimally uv-rigid graphs which is

similar to the obstacle-based characterization for the collinear problem given in

Theorem 4.0.2.
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Theorem 4.3.1 Let G = (V,E) be a minimally rigid graph and let u, v ∈ V be

distinct vertices. Suppose that uv /∈ E. Then the following statements are equivalent:

(i) G is uv-rigid,

(ii) there is no subgraph G′ = (V ′, E ′) of G with {u, v} ⊆ V ′ and |E ′| = 2|V ′|−(3+s)

such that G′ − {u, v} has at least s+ 2 components, for s = 0 or s = 1.

Proof. First suppose that there is a subgraph G′ = (V ′, E ′) of G with |E ′| =

2|V ′|−(3+s) for which G′−{u, v} has at least s+2 components, for s = 0 or s = 1.

Let G1 = (E1, V1), . . . , Gt = (Et, Vt) be the components of G− {u, v}. Consider the
following cover of G:

K = {{Vi ∪ {u, v} : 1 ≤ i ≤ t}} ∪ {{vp, vq} : vpvq ∈ E − E ′}.

Since t ≥ s+ 2, we obtain

ruv(E) ≤
t∑
i=1

(2|Vi + {u, v}|− 3)− 2(t− 1) + |E−E ′| =
t∑
i=1

2|Vi|− t+ 2 + |E−E ′| =

= 2|(
t⋃
i=1

Vi) ∪ {u, v}| − (t+ 2) + |E − E ′| ≤ 2|V ′| − (s+ 4) + |E − E ′| < |E|.

Thus G is not uv-independent (and hence not uv-rigid) by Lemma 4.1.7. Hence (i)

implies (ii).

Next suppose that G is not uv-rigid. Then, by Theorems 6.6.5 and 4.2.4, there is

a thin cover K0 of G with val(K0) ≤ 2|V |−4. Since G is rigid, K0 = {H, H1, . . . , Hk},
where H = {X1, . . . , Xl} is a uv-compatible family with l ≥ 2. Since K0 is thin, the

set {u, v} separates the subgraph G′ = (V ′, E ′), where V ′ = V (H) and E ′ = E(H) =

E(V ′).

We claim that by choosing K0 so that the number of its members is maximized,

we have i(Hi) = 2|Hi| − 3 for all 1 ≤ i ≤ k and i(Xi) ≥ 2|Xi| − 4 for all 1 ≤ j ≤ l.

The claim follows by observing that we can replace a set Hi or Xj violating these

counts by the pairs of end-vertices of the edges it covers to obtain another cover

with the same or smaller value. (If Xj ∈ H then we also remove Xj from the uv-

compatible family.) Furthermore, since G is independent and uv /∈ E, there can be

at most one Xi ∈ H with E(Xi) = 2|Xi| − 3, c.f. Lemma 4.1.4.

If there is a Xi ∈ H with E(Xi) = 2|Xi| − 3 then it is easy to see that we have

|E ′| = 2|V ′| − 3. Since l ≥ 2, G′ − {u, v} has at least two components.

If E(Xi) = 2|Xi| − 4 for all 1 ≤ i ≤ l then we have |E ′| = 2|V ′| − 4 and

l ≥ 3. To see the latter inequality suppose that l = 2 and take the cover K3 =

{H1, . . . , Hk} ∪ {{na, nb} : nanb ∈ E(X1)} ∪ {{na, nb} : nanb ∈ E(X2)}. We have

val(K3) = val(K0) < 2|V | − 3. Since there is no uv-compatible family in K3, this
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contradicts the fact that G is rigid. Hence l ≥ 3, as claimed, which implies that

G′ − {u, v} has at least three components. Thus (ii) implies (i). �

Finally we remark that the counterpart of [22, Corollary 4.4] is not true for uv-

coincident realizations. It is easy to �nd a minimally rigid graph G with an arbitrary

large number of vertices such that for a �xed v ∈ V (G) there is no u ∈ V (G) for

which G is uv-rigid. (Let G and v be such that v is connected with every other vertex

of G.) Furthermore, there is no pair u, v in K3,3 for which K3,3 would be uv-rigid

(an example due to John Owen).
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Chapter 5

Sparse hypergraphs with applications

in combinatorial rigidity

In this chapter we develop a new inductive construction of 4-regular (1, 3)-tight

hypergraphs and use it to solve problems in combinatorial rigidity.

We give a combinatorial characterization of generically projectively rigid hyper-

graphs on the projective line. Our result also implies an inductive construction of

generically minimally a�nely rigid hypergraphs in the plane. Based on the rank func-

tion of the corresponding count matroid on the edge set ofH we obtain combinatorial

proofs for some su�cient conditions for the generic a�ne rigidity of hypergraphs.

5.1 Introduction

Our goal is to provide combinatorial tools for attacking problems from rigidity

theory in which the underlying combinatorial structure is a hypergraph: projective

rigidity, a�ne rigidity, and scene analysis.

We develop a new inductive construction of 4-regular (1, 3)-tight hypergraphs.

By using this result we give a combinatorial characterization of generically projec-

tively rigid hypergraphs on the projective line, which was conjectured by George

and Ahmed [14]. Our result also implies an inductive construction of generically

minimally a�nely rigid hypergraphs in the plane. Based on the rank function of the

corresponding count matroid on the edge set of H we obtain combinatorial proofs

for some su�cient conditions for the generic a�ne rigidity of hypergraphs, due to

Gortler, Gotsman, Liu, and Thurston [16] and Zha and Zhang [74], respectively.
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5.2 Inductive constructions

Let H = (V,E) be a hypergraph and let X ⊆ V . We use iH(X) to denote the

number of edges induced by X in H. The hypergraph is called m-uniform, for some

positive integer m, if each hyperedge e ∈ E contains exactly m vertices. The degree

of a vertex v in H is denoted by dH(v) and the number of edges of H that contain

a given pair v, w ∈ V is denoted by dH(v, w). We may omit the subscript referring

to H if it is clear from the context.

We introduce a set of operations on (k+ 1)-uniform hypergraphs which preserve

(1, k)-sparsity and which can be used to generate all (k + 1)-uniform (1, k)-tight

hypergraphs from a single hyperedge, for all 1 ≤ k ≤ 3.

Let H = (V,E) be a (k + 1)-uniform hypergraph, let j be an integer with

0 ≤ j ≤ k − 1, and let v ∈ V be a vertex with d(v) ≥ j. The j-extension operation

at vertex v picks j hyperedges e1, e2, ..., ej incident with v, adds a new vertex z to H

as well as a new hyperedge e of size k + 1 incident with both v and z, and replaces

ei by ei − v + z for all 1 ≤ i ≤ j. Thus the new vertex z has degree j + 1 in the

extended hypergraph. See Figure ??. Note that a 0-extension operation simply adds

a new vertex z and a new hyperedge of size k + 1 incident with z.

e

z

v

e1

2

e

v

Figure 5.1: A 2-extension operation on a 4-uniform hypergraph.

The j-extension operation preserves sparsity in the following sense. The simple

proof of the next lemma is omitted.

Lemma 5.2.1 Let H = (V,E) be a (k+1)-uniform (1, k)-sparse ((1, k)-tight) hyper-

graph and let H ′ be obtained from H by a j-extension operation, where 0 ≤ j ≤ k−1.

Then H ′ is also (1, k)-sparse ((1, k)-tight, respectively).

The inverse operation of j-extension can be de�ned as follows. Let H = (V,E) be

a (k + 1)-uniform hypergraph. Consider a vertex z ∈ V with d(z) = j + 1, for some

0 ≤ j ≤ k−1, and let v be a neighbour of z in H with d(z, v) = 1. Let e1, e2, ..., ej+1

be the edges incident with z, where e1 is the unique edge which is incident with v,
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too. The j-reduction operation at vertex z on neighbour v deletes e1 and replaces ei

by ei − z + v for all 2 ≤ i ≤ j + 1. Observe that the inverse of j-extension is indeed

j-reduction.

We say that a j-reduction operation in a (k+1)-uniform (1, k)-sparse hypergraph

H is admissible if the hypergraph obtained from H by the operation is also (1, k)-

sparse. To obtain our inductive construction by induction we shall show that each

(k + 1)-uniform (1, k)-sparse hypergraph H (for k up to 3) has a vertex z of degree

at most k and that there exists an admissible (d(z)− 1)-reduction at z.

Note that the 2-uniform (1, 1)-tight hypergraphs are the trees, for which the

existence of a vertex of degree one (a leaf) and an admissible 0-reduction (leaf

deletion) is straightforward. The case when k = 2 is more complicated, but still

not very di�cult, so we shall omit the proof of this case. Instead, we shall focus

on 4-regular (1, 3)-tight hypergraphs (see Theorem 5.2.8 below, which is the main

result of this section).

It should also be noted that the above proof strategy does not work when

k ≥ 4. To see this consider the (1, 4)-tight 5-uniform hypergraph H = (V,E) with

V = {v1, v2, ..., v7} and E = {(v1, v2, v3, v4, v7), (v3, v4, v5, v6, v7), (v1, v2, v5, v6, v7)}.
We have d(v7) = 3 but each neighbour vi of v7 has d(v7, vi) ≥ 2, showing that no 2-

reduction can be performed at v7. Hence an inductive construction for higher values

of k is probably more di�cult to obtain.

Before dealing with the case of (1, 3)-sparse hypergraphs we prove some prelimi-

nary lemmas about (1, k)-sparse hypergraphs in general. The next lemma is easy to

verify by observing that the contribution of a hyperedge to the right hand side of

inequality (5.1) below cannot be less than its contribution to the left hand side.

Lemma 5.2.2 Let H = (V,E) be a hypergraph and let X, Y ⊆ V be subsets of

vertices. Then

i(X) + i(Y ) ≤ i(X ∪ Y ) + i(X ∩ Y ). (5.1)

Let H = (V,E) be a (k + 1)-uniform (1, k)-sparse hypergraph. We say that

a subset X ⊆ V is critical if i(X) = |X| − k holds. A subset Y ⊆ V is called

semi-critical if i(Y ) ≥ |Y | − k − 1.

Lemma 5.2.3 Let H = (V,E) be a (k + 1)-uniform (1, k)-sparse hypergraph and

let X, Y ⊆ V be subsets of vertices. If |X ∩ Y | ≥ k and

(i) if X and Y are both critical then X ∪ Y is also critical,

(ii) if X is critical and Y is semi-critical then X ∪ Y is semi-critical,

(iii) if X and Y are both semi-critical and X ∩ Y is not critical then X ∪ Y is

semi-critical.
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Furthermore,

(iv) if |X ∩ Y | = k − 1 and X and Y are both critical then X ∪ Y is semi-critical.

Proof. Suppose that X and Y are both critical. Then, by using Lemma 5.2.2, we

can deduce that

|X| − k + |Y | − k = i(X) + i(Y ) ≤ i(X ∪ Y ) + i(X ∩ Y ) ≤

≤ |X ∪ Y | − k + |X ∩ Y | − k = |X| − k + |Y | − k.

Thus we must have equality everywhere, which implies that X ∪ Y is also critical.

This proves (i). The proofs of (ii), (iii), and (iv) are similar. �

We also need the following observation.

Lemma 5.2.4 Let H = (V,E) be a (k + 1)-uniform (1, k)-tight hypergraph with

|V | ≥ k + 1. Then

(i) d(v) ≥ 1 for all v ∈ V , and
(ii) there is a vertex z ∈ V with d(z) ≤ k.

In what follows we shall consider the case when k = 3 and H is tight, that is,

when H is a 4-uniform (1, 3)-tight hypergraph. Let H = (V,E) be a hypergraph,

z ∈ V , and X ⊆ V . We denote the set of neighbours of z in H by NH(z) and the

number of edges e of H with z ∈ e and e ⊆ X ∪ {z} by e(z,X).

Theorem 5.2.5 Let H = (V,E) be a (1, 3)-tight 4-uniform hypergraph and let z ∈
V be a vertex with d(z) = j + 1 for some 0 ≤ j ≤ 2. Then there is an admissible

j-reduction at z.

Proof. First suppose that d(z) = 1. Then the 0-reduction at z, which deletes the

unique edge incident with z, is clearly admissible. Next suppose that d(z) = 2 holds

and let e1, e2 be the hyperedges incident with z. The following property, which is

implied by the sparsity of H, will be used several times in the proof. Let X be a

subset of V − z. Then

(*) if X is critical then e(z,X) ≤ 1 and if X is semi-critical then e(z,X) ≤ 2

holds.

To show the existence of an admissible 1-reduction at z we have to show that

for some neighbour v of z, for which d(z, v) = 1, the hypergraph obtained from

H by deleting z and adding e2 − z + v is (1, 3)-sparse, where e1 is the unique edge

containing z and v. Observe that the addition of the new hyperedge e2−z+v destroys

(1, 3)-sparsity if and only if there is a critical set X ⊆ V − z with e2 − z + v ⊆ X.
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Since H is (1, 3)-sparse and d(z) = 2, we have 4 ≤ |N(z)| ≤ 6. Hence there

exists a vertex a ∈ N(z) with d(z, a) = 1. Let e1 = (a, b, c, z) and e2 = (d, e, f, z). If

|N(z)| = 4 then the 2-reduction at z on neighbour a is admissible, for otherwise there

exists a critical set X with N(z) = {a, d, e, f} ⊆ X and e(z,X) ≥ 2, contradicting

(*). If |N(z)| = 5 then we may assume that c = d and e1 − e2 = {a, b}. Hence
d(z, a) = d(z, b) = 1. By assuming that the 1-reductions at a and b are both non-

admissible we could deduce that there exist critical sets X, Y with {a, d, e, f} ⊆ X

and {b, d, e, f} ⊆ Y . Then, by Lemma 5.2.3(i), X ∪ Y would also be critical. Since

N(z) ⊆ X∪Y , this would again contradict (*). The case when |N(z)| = 6 is similar.

Thus there is an admissible 1-reduction at z.

The last case to consider is when d(z) = 3. Let N1 denote the set of neighbours

x of z with d(z, x) = 1. Notice that

9 =
∑

x∈N(z)

d(z, x) ≥ 2|N(z)−N1|+ |N1| = 2|N(z)| − |N1|, (5.2)

so |N1| ≥ 2|N(z)|−9. Since H is (1, 3)-sparse and d(z) = 3, we have 5 ≤ |N(z)| ≤ 9.

Hence N1 6= ∅.
Let e1, e2, e3 be the hyperedges incident with z. To show the existence of an

admissible 2-reduction at z we have to show that for some neighbour v of z, for which

d(z, v) = 1, the hypergraph obtained from H by deleting z and adding e2−z+v and

e3−z+v is (1, 3)-sparse, where e1 is the unique edge containing z and v. Observe that

the addition of the new hyperedges e2−z+v and e3−z+v destroys (1, 3)-sparsity if

and only if there is a critical set X ⊆ V − z with ei− z+ v ⊆ X, for some 2 ≤ i ≤ 3,

or there is a semi-critical set Y ⊆ V − z with (e2− z + v)∪ (e3− z + v) ⊆ Y . These

critical or semi-critical sets X or Y , which show that the 3-reduction at z with v is

non-admissible, are called the blockers of v.

For a contradiction suppose that there is no admissible 3-reduction at z. Then

each vertex in N1 has a blocker.

Claim 5.2.6 Each blocker is critical.

Proof. Let x ∈ N1 and suppose, for a contradiction, that x has a blocker Y which is

not critical. Let (z, x, a, b) be the unique edge containing z and x. Thus Y contains all

neighbours of z, except, possibly, a and b. We may suppose that Y is a maximal semi-

critical blocker of x. If a, b ∈ Y then N(z) ⊆ Y and e(z, Y ) ≥ 3 follow, contradicting

(*). If, say, a /∈ Y then a ∈ N1. Consider a blocker X of a. If X is critical then X∪Y
is also a semi-critical blocker of x by Lemma 5.2.3(ii), contradicting the maximality

of Y . If X is semi-critical then X contains all neighbours of z, except, possibly, x

and b. Since e(z,X ∩Y ) ≥ 2, (*) implies that X ∩Y is not critical. By using Lemma
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5.2.3(iii) we conclude that X ∪ Y is semi-critical, contradicting the maximality of

Y . �

Claim 5.2.7 Every edge e incident with z contains a vertex w with d(z, w) ≥ 2.

Proof. For a contradiction suppose, without loss of generality, that (e1− z)∩ (e2 ∪
e3) = ∅. Let e1 = (a, b, c, z). Then a, b, c ∈ N1 and by the sparsity of H we also have

e2 ∩ N1 6= ∅ and e3 ∩ N1 6= ∅. By symmetry may suppose that e2 − z ⊆ Xa ∩ Xb,

where Xa and Xb are critical blockers of a and b, respectively. By Lemma 5.2.3(i)

Xa ∪Xb is also critical.

Let f ∈ e2∩N1 and let Z be a critical blocker of f . If (e1−z) ⊆ Z then, by Lemma

5.2.3(i), Xa ∪ Xb ∪ Z is also critical. Since e(z,Xa ∪ Xb ∪ Z) ≥ 2, this contradicts

(*). So we may suppose that the critical blocker Zi of each vertex fi ∈ e2 ∩ N1,

1 ≤ i ≤ |e2 ∩N1|, satis�es (e3 − z) ⊆ Zi. But, again by Lemma 5.2.3(i), this would

imply that the union Z ′ of these sets Zi is also critical. Since e(z, Z ′) ≥ 2, this would

contradict (*). This proves the claim. �

Claim 5.2.7 implies that |N(z)| ≤ 7. First suppose that |N(z)| = 5. Let X be a

critical blocker of some vertex x ∈ N1. Then |N(z)−X| ≤ 1 and hence Y = N(z)∪X
is semi-critical. Since e(z, Y ) = 3, this contradicts (*).

Next suppose that |N(z)| = 6. Then we have |N1| ≥ 3 by (5.2). Hence we can

�nd two critical blockers Xa, Xb belonging to two distinct vertices a, b ∈ N1. Each

of these blockers contains at least four neighbours of z. If N(z) ⊆ (Xa ∪ Xb) then

|Xa ∩Xb| ≥ 2. Thus, by Lemma 5.2.3(i),(iv), it follows that Xa ∪Xb is semi-critical.

Since e(z,Xa ∪ Xb) = 3, this contradicts (*). If |(Xa ∪ Xb) ∩ N(z)| = 5 then a

similar argument, using Lemma 5.2.3(i) gives that Xa ∪ Xb is critical and hence

Y = Xa ∪ Xb ∪ N(z) is semi-critical, contradicting (*). If |(Xa ∪ Xb) ∩ N(z)| = 4

then Xa ∪Xb is critical, with e(z,Xa ∪Xb) = 2, contradicting (*).

It remains to consider the case when |N(v)| = 7. First suppose that there is a

vertex w ∈ N(z) with d(z, w) = 3. Then N1 = N(z) − w must hold. By symmetry

we may suppose that for some vertex a ∈ e1 ∩N1 and a critical blocker Xa of a we

have (e2 − z) ⊂ Xa. Let e2 = (z, w, c, d). Let Xc, Xd be critical blockers of c and d,

respectively. If (e1 − z) ⊂ Xc then Xa ∪Xc is critical, by Lemma 5.2.3(i), and has

e(z,Xa ∪Xc) ≥ 2, contradicting (*). A similar argument works for Xd. So we may

assume that (e3 − z) ⊆ Xc ∩Xd. But then, by Lemma 5.2.3(i), Xc ∪Xd is a critical

set with e(z,Xc ∪Xd) ≥ 2, contradicting (*).

Next suppose that each vertex w ∈ N(z) has d(z, w) ≤ 2. Then we have two

vertices p, q ∈ N(z) with d(z, p) = d(z, q) = 2 and the other neighbours of z are all

in N1. Furthermore, by using Claim 5.2.7, we can deduce that the edges incident
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with z can be labeled as e1 = (p, a, b, z), e2 = (p, q, c, z), and e3 = (q, d, e, z). By

symmetry we may suppose that a critical blocker Xc of c has (e1 − z) ⊂ Xc. Let

Xa and Xb be critical blockers of a and b, respectively. If, say, (e2 − z) ⊂ Xa holds

then, by Lemma 5.2.3(i) it follows that Xa ∪Xc is critical. Since e(z,Xa ∪Xc) ≥ 2,

this contradicts (*). A similar argument works for Xb. Thus we may assume that

(e3 − z) ⊆ Xa ∩ Xb. This gives that Xa ∪ Xb is critical and Y = Xa ∪ Xb ∪ Xc is

semi-critical, by using Lemma 5.2.3(i) and (iv), respectively. Since e(z, Y ) = 3, this

contradicts (*). With this �nal contradiction the proof of the theorem is complete.

�

As a corollary we obtain the main result of this section.

Theorem 5.2.8 Let H = (V,E) be a 4-uniform hypergraph. H is (1, 3)-tight if

and only if it can be obtained from a single hyperedge of size four by a sequence of

0-extensions, 1-extensions, and 2-extensions.

Proof. The 'if' part follows from Lemma 5.2.1. Theorem 5.2.5 implies the 'only if'

part by induction on the number of vertices. �

One can prove a similar result about reductions in 3-uniform (1, 2)-tight hy-

pergaphs, which leads to the following inductive construction. The proof, which is

similar to the �rst part of the proof of Theorem 5.2.5, where d(z) ≤ 2, is omitted.

Theorem 5.2.9 Let H = (V,E) be a 3-uniform hypergraph. H is (1, 2)-tight if and

only if it can be obtained from a single hyperedge of size three by a sequence of

0-extensions and 1-extensions.

5.3 Projective rigidity on the line

In a recent manuscript George and Ahmed [14] initiated the study of rigidity

properties of projective frameworks. A one-dimensional projective framework (H, p)

is a pair, where H is a 4-uniform hypergraph and p is a map from V (H) to distinct

points of the one-dimensional projective space P1. They call a smooth deformation

of the framework a �ex if it preserves the cross ratio1 for each 4-tuple that belongs

to the edge set of H and call a framework rigid if it has only trivial �exes (that

is, restrictions of a combination of some translation, scaling, and rotation of the

1Recall that the cross ratio of four points a, b, c, d, in this order, is

R(ab, cd) =
(a− c)(b− d)

(a− d)(b− c)
.
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space). As in the case of bar-and-joint frameworks with length constraints, one may

de�ne the in�nitesimal rigidity of projective frameworks by considering the rank of

the following projective rigidity matrix Q(H, p) of framework (H, p), in which the

entries are obtained as partial derivatives of a smooth �ex at time zero. Let us �x

an ordering (v1, v2, ..., vn) of V (H) and de�ne Q(H, p) to be the |E| × |V | matrix

in which each row (resp. column) corresponds to an edge (resp. vertex) of H. The

row corresponding to some edge e = {vi, vj, vk, vl} with i < j < k < l has non-zero

entries only in the columns of vi, vj, vk, vl, and has the following form:(
0...0 (b−d)(c−d)

(b−c)(a−d)2 0...0 (a−c)(d−c)
(a−d)(b−c)2 0...0 (d−b)(b−a)

(a−d)(b−c)2 0...0 (c−a)(a−b)
(b−c)(a−d)2 0...0

)
where we put p(vi) = a, p(vj) = b, p(vk) = c, p(vl) = d for simplicity.

It is not hard to show that the rank of Q(H, p) cannot exceed |V (H)| − 3. A

realization (H, p) of a 4-uniform hypergraph H = (V,E) in P1 is in�nitesimally

projectively rigid if rankQ(H, p) = |V |−3 (for some ordering of V (H)). We say that

H = (V,E) is generically projectively rigid in P1 if there exists an in�nitesimally

projectively rigid realization of H in P1. A minimally generically projectively rigid

hypergraph is a projectively rigid hypergraph with |E| = |V | − 3. Note that the

entries of the matrix depend on the chosen ordering of V (H) in a non-trivial way,

just like the cross ratio. We shall prove that the rank of the matrix does not depend

on the ordering (assuming that it equals |V | − 3 for some ordering) and hence the

chosen ordering of V (H) does not matter. It should also be noted that a hypergraph

H is generically projectively rigid if and only if every generic framework (H, p) is

in�nitesimally projectively rigid.

George and Ahmed [14] showed that an in�nitesimally rigid projective frame-

work is rigid. They also pointed out that a minimally generically projectively rigid

hypergraph is (1, 3)-tight and conjectured that this sparsity condition is also suf-

�cient to guarantee minimal projective rigidity. As an application of our inductive

construction (Theorem 5.2.8) in the rest of this section we shall prove this conjecture.

Lemma 5.3.1 Let (H, p) be a one-dimensional projective framework on n vertices.

Suppose that rankQ(H, p) = n − 3. Then any set of n − 3 columns of Q(H, p) is

linearly independent.

Proof. First observe that the kernel of Q(H, p) is at least three-dimensional, as it

contains the linearly independent vectors 1 = (1, 1, . . . , 1), p = (p(v1), p(v2), . . . , p(vn)),

and p2 = (p(v1)
2, p(v2)

2, . . . , p(vn)2). Let Ci denote the column of Q(H, p) that cor-

responds to vertex vi, 1 ≤ i ≤ n. Let us �x a triple {j, k, l} ⊆ {1, . . . , n}. We shall

prove that Cl is spanned by the set of columns {Ct : 1 ≤ t ≤ n, t 6= j, k, l}, from
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which the lemma follows. Let x = −p(vj)− p(vk) and y = p(vj)p(vk). Then we have

p(vj)
2 + xp(vj) + y = p(vk)

2 + xp(vk) + y = 0. Furthermore, p(vt)2 + xp(vt) + y = 0

if and only if t ∈ {j, k}.
Consider the vector p2 + xp + y1, which is in the kernel of Q(H, p). This gives

rise to a linear combination of the columns of Q(H, p), which gives the zero vector,

and in which the coe�cients of Cj, Ck are zeros and the coe�cient of Cl is nonzero.

Thus Cl is spanned by the set of columns {Ct : 1 ≤ t ≤ n, t 6= j, k, l}, as claimed. �

The next lemma implies that if the rank of the projective rigidity matrix attains

|V (H)| − 3 for some ordering of V (H), then it is the same for all orderings.

Lemma 5.3.2 Let (H, p) be a one-dimensional projective framework on n vertices.

Let Q(H, p) be the projective rigidity matrix in which the columns are labeled by ver-

tices v1, v2, . . . , vn, in this order. Suppose that rankQ(H, p) = n− 3. Let Q′(H, p) be

the projective rigidity matrix of (H, p) corresponding to the labeling v1, . . . , vi−1, vi+1, vi, vi+2 . . . , vn

for some 1 ≤ i ≤ n− 1. Then rankQ′(H, p) = n− 3.

Proof. Let Q1(H, p) and Q′1(H, p) be the matrices that we get by deleting the

columns of vi and vi+i from Q(H, p) and Q′(H, p), respectively. By Lemma 5.3.1

rankQ1(H, p) = n− 3.

We will show that every row of Q′1(H, p) can be obtained from the corresponding

row of Q1(H, p) by multiplying it with an appropriate scalar. First observe that if

hyperedge e contains at most one of vi and vi+i then the rows corresponding to e

in Q1(H, p) and Q′1(H, p) are equal. Suppose that e = vjvkvivi+1. We split the proof

into three cases.

First suppose that j < k < i. Put p(vj) = a, p(vk) = b, p(vi) = c, p(vi+1) = d.

With this notation the two nonzero entries of the row of e in Q1(H, p) are:

(b− d)(c− d)

(b− c)(a− d)2
,

(a− c)(d− c)
(a− d)(b− c)2

;

while the two entries in Q′1(H, p) are:

(b− c)(d− c)
(b− d)(a− c)2

,
(a− d)(c− d)

(a− c)(b− d)2
.

Hence we can get the row of e in Q′1(H, p) by multiplying the corresponding row in

Q1(H, p) with the scalar − (b−c)2(a−d)2
(b−d)2(a−c)2 .

If j < i < k then let p(vj) = a, p(vi) = b, p(vi+1) = c, p(vk) = d. Now the the two

nonzero entries of the row of e in Q1(H, p) are:

(b− d)(c− d)

(b− c)(a− d)2
,

(c− a)(a− b)
(b− c)(a− d)2
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and we get the corresponding row of Q′1(H, p) by multiplying with −1.

The last case is when i < j < k. Now put p(vi) = a, p(vi+1) = b, p(vj) = c, p(vk) =

d. Here the two nonzero entries of the rows are

(d− b)(b− a)

(a− d)(b− c)2
,

(c− a)(a− b)
(b− c)(a− d)2

;

and
(a− d)(b− a)

(b− d)(a− c)2
,

(b− c)(a− b)
(a− c)(b− d)2

.

In this case the appropriate scalar is − (a−d)2(b−c)2
(d−b)2(a−c)2 .

Thus rankQ′(H, p) ≥ rankQ′1(H, p) ≥ rankQ1(H, p) = n− 3, as required. �

We are ready to prove the main result of this section.

Theorem 5.3.3 Let H = (V,E) be a 4-uniform hypergraph. Then H is minimally

generically projectively rigid in P1 if and only if H is (1, 3)-tight.

Proof. We have to show that there exists a realization (H, p) of H in P1 with

rankQ(H, p) = |V | − 3. We prove this by induction on |V |. If |V | = 4 then any

realization will do. Now suppose that |V | ≥ 5 and the theorem holds for all 4-

uniform hypergraphs with at most |V | − 1 vertices. By Theorem 5.2.8 H can be

obtained from a 4-uniform hypergraph H ′ = (V ′, E ′) by a j-extension operation at

some vertex v ∈ V ′, where 0 ≤ j ≤ 2. Recall that the operation adds a new vertex

z, replaces v by z in j edges incident with v and adds an additional edge e incident

with v and z. Let F be the (possibly empty) set of the j edges replaced.

By induction, H ′ has a realization (H ′, p′) for which rankQ(H ′, p′) = |V ′| − 3 =

|V | − 4 holds. We may suppose that the last j rows of Q(H ′, p′) correspond to the

edges in F . By Lemma 5.3.2 we may also assume that the last column is indexed

by v. Consider a realization (H, p) of H obtained from (H ′, p′) by making z and v

coincident, that is, letting p(z) = p′(v) and p(w) = p′(w) for all w ∈ V ′. Although
it is not a proper realization yet, we can consider its projective rigidity matrix and

use it to obtain the desired proper realization of H.

The matrix Q(H, p) can be obtained from Q(H ′, p′) by adding the new vertex to

the end of the vertex ordering of H ′, inserting a new column, corresponding to z,

next to the column of v and replacing the last j rows by j+1 new rows corresponding

to the edges in F∪{e}. Observe that by the choice of p(z) we can also obtain Q(H, p)

from Q(H ′, p′) by inserting the column of z, moving the entries corresponding to F

in the column of v to the column of z and then adding a new row corresponding to

e. All entries of this new row will be zeros, except the two entries in the columns

of v and z. Furthermore, these two entries are x and −x, for some non-zero real
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number x. Thus by adding the last column of Q(H, p) to its second last column we

obtain a block diagonal matrix with Q(H ′, p′) in the upper left block and a non-zero

number in the lower right block. Hence rankQ(H, p) = rankQ(H ′, p′) + 1 = |V |− 3,

as required. By perturbing the coordinates slightly, without decreasing the rank,

we can then make sure that the vertex coordinates are pairwise di�erent and the

realization is proper. �

5.4 A�ne rigidity

Gortler et al. [16] introduced the concept of a�ne rigidity, where a�ne constraints

are imposed on sets of points, see also [74]. A d-dimensional a�ne framework (H, p)

is a pair, where H is a hypergraph and p is a map from V (H) to Rd. Roughly speak-

ing, an a�ne framework (H, p) is a�nely rigid in Rd if every other d-dimensional

framework (H, q), for which the positions of the vertices in p of each hyperedge

e ∈ E(H) can be mapped to their positions in q by an a�ne map of Rd, can be

obtained by a single a�ne map of Rd, see also [16]. Gortler et al. [16] de�ne the

strong a�nity matrix of an a�ne framework (H, p) with H = (V,E), which has size

|E| × |V |, and show that the framework is a�nely rigid if and only if the rank of

this matrix is equal to |V | − (d+ 1). Thus we may call a hypergraph H generically

a�nely rigid in Rd if there exists an a�nely rigid d-dimensional framework on H,

or equivalently, if every generic framework on H is a�nely rigid. If, in addition,

|E| = |V | − (d+ 1) then H is said to be minimally generically a�nely rigid in Rd.

For an integer k and hypergraph H let Bk(H) denote the k-uniform hypergraph

whose hyperedges are all those k-element subsets of the vertex set that are contained

in some hyperedge of H. It is not hard to see that a generic a�ne framework (H, p)

is a�nely rigid in Rd if and only if the associated framework (Bd+2(H), p) is a�nely

rigid in Rd. Thus it su�ces to consider (d+ 2)-uniform hypergraphs.

There is also a strong connection between a�ne rigidity and a problem from poly-

hedral scene analysis. One can interpret each hyperedge of a planar a�ne framework

as a planar polygon and say that the framework is sharp if each vertex can be given

a third coordinate, such that, in the resulting three dimensional drawing, each poly-

gon remains planar, and the faces do not all lie in a single plane. (See Chapter 7 for

formal de�nitions.) The concept of sharpness can easily be generalized to arbitrary

dimension. Whiteley [64] showed that a framework has a non-trivial lifting if and

only if it is not a�nely rigid. Furthermore, the combinatorial characterization of

sharpness given in [64, Theorem 4.2] implies that a (d + 2)-uniform hypergraph is

minimally generically a�nely rigid in Rd if and only if it is (1, d+ 1)-tight.
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Thus an immediate corollary of Theorem 5.2.8 is an inductive construction of

the 4-uniform minimally generically a�nely rigid hypergraphs in the plane.

Theorem 5.4.1 Let H = (V,E) be a 4-uniform hypergraph. Then H is minimally

generically a�nely rigid in R2 if and only if it can be obtained from a single hyperedge

of size four by a sequence of 0-extensions, 1-extensions, and 2-extensions.

Figure 5.2: A graph G and its neighbourhood hypergraph N(G).

In order to deduce some further combinatorial results we recall that the edge sets

of the sparse subhypergraphs of a hypergraph correspond to the independent sets of a

matroid. These matroids, which can be de�ned for all sparsity parameters, are called

count matroids. Their rank function is known. See Frank [12] and Whiteley [68] for

more details as well as [53] for some related algorithmic problems. Let H = (V,E)

be a hypergraph. We shall focus on (1, k)-sparsity, which de�nes the count matroid

M1,k(H) with ground-set E and rank function r1,k. A cover of H = (V,E) is a

collection X = {X1, X2, ..., Xt} of subsets of V , each of size at least k+ 1, such that

E = ∪ti=1EH(Xi), where EH(X) denotes the set of edges of H induced by vertex-set

X. We say that a cover is s-thin if for each pair of distinct members Xi, Xj ∈ X we

have |Xi ∩Xj| ≤ s. If H is (k + 1)-uniform then the rank of H can be expressed in

the following simple form (see [12, Section 13.5]):

r1,k(E) = min
∑
X∈X

(|X| − k), (5.3)

where the minimum is taken over all (k− 1)-thin covers X of H. It follows from the

above discussion that a (d+ 2)-uniform hypergraph H is generically a�nely rigid in

Rd if and only if r1,d+1(E) = |V | − (d+ 1).

Zha and Zhang [74] found the following su�cient condition for generic a�ne

rigidity, for which we can give a short proof, using the above rank formula. We say

that H = (V,E) is (d + 1)-linked if for each pair e, e′ ∈ E there is a sequence of

hyperedges of H, starting with e and ending with e′, such that consecutive pairs of

hyperedges in the sequence share at least d+ 1 vertices.

Theorem 5.4.2 [74] Let H be a (d+ 1)-linked hypergraph without isolated vertices.

Then H is generically a�nely rigid in Rd.
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Proof. It is easy to see that H is (d + 1)-linked if and only if Bd+2(H) is (d + 1)-

linked. Thus we may assume that H = (V,E) is (d+ 2)-uniform. Suppose that H is

not generically a�nely rigid in Rd. By using (5.3) this implies that there is a d-thin

cover X = {X1, . . . , Xk} of H with
∑k

i=1(|Xi| − (d + 1)) ≤ |V | − (d + 1) − 1. Pick

an edge e of H and let, say, X1 be a member of X that contains e. Since X is d-thin

and H is (d+ 1)-linked we obtain that X1 contains all edges of H. The fact that H

has no isolated vertices gives X1 = V , a contradiction. �

A di�erent su�cient condition for a�ne rigidity was given by Gortler et al. [16].

Given a graph G, de�ne its neighbourhood hypergraph, denoted by N(G), on the

same set of vertices as follows: for each vertex v in G add a hyperedge to N(G)

consisting of v and its neighbours in G. See Figure 5.2.

Theorem 5.4.3 [16] Let G = (V,E) be a (d+ 1)-connected graph. Then the neigh-

bourhood hypergraph of G is generically a�nely rigid in Rd.

Next we give a purely combinatorial proof for the two-dimensional version of

Theorem 5.4.3 by verifying the following result. The original proof uses, among oth-

ers, non-symmetric stress matrices and rubber band embeddings. Our proof method

was inspired by [35].

Theorem 5.4.4 Let G = (V,E) be a 3-connected graph. Then

r1,3(B4(N(G)) = |V | − 3.

Proof. Suppose, for a contradiction, that there is a 3-connected graph G for which

r1,3(B4(N(G)) ≤ |V | − 4. Choose a counterexample G = (V,E) for which |V | is as
small as possible and within the family of counterexamples of this size, |E| is as

large as possible. Let H = B4(N(G)). The rank formula (5.3) implies that there is

a 2-thin cover X = {X1, . . . , Xk} of H for which

k∑
i=1

(|Xi| − 3) ≤ |V | − 4 (5.4)

holds. We say that a set Xi ∈ X is a core of some vertex v ∈ V if NG(v)∪{v} ⊆ Xi.

Claim 5.4.5 Each vertex v ∈ V has a unique core.

Proof. Since X covers H, each set {v, v1, v2, v3} ∈ F with {v1, v2, v3} ⊆ NG(v) is

covered by some Xj ∈ X . By using the fact that X is 2-thin, we can deduce that

there must be a unique set Xi ∈ X that contains v as well as all neighbours of v in

G. �
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We may also assume that X is chosen so that the left hand side of (5.4) is

minimized. Suppose that G[Xj] is disconnected for some 1 ≤ j ≤ k and consider the

family X ′ obtained from X by replacing Xj with the vertex sets of those components

of G[Xj] that contain at least four vertices. Observe that X ′ is also a (2-thin) cover

of H: each hyperedge e in H is a 4-element subset of NG(w) ∪ {w} for some vertex

w, and hence either the core Xi of w in X stays in X ′ and covers e (if i 6= j) or

one of the new smaller sets will be a core of w in X ′ (if i = j). Since X ′ would give

rise to a strictly smaller value on the left hand side of (5.4), it follows that G[Xj] is

connected for all 1 ≤ i ≤ k.

For each v ∈ V let b(v) denote the number of those members of X that contain

v.

Claim 5.4.6 b(v) ≥ 2 for every v ∈ V .

Proof. Suppose, for a contradiction, that some vertex v ∈ V is in X1, say, but it is

disjoint from Xi for all 2 ≤ i ≤ k. It follows from Claim 5.4.5 that for each vertex

vj ∈ NG(v) we must have NG(vj) ⊆ X1. This implies, by the maximality of |E|, that
G[NG(v)] is a complete subgraph of G. It also implies that |X1| ≥ 5 unless G is a

complete graph on four vertices, for which the theorem is trivially true.

Let X ′ = {X ′1, X ′2, . . . , X ′k}, where X ′1 = X1 − v and X ′i = Xi for all 2 ≤ i ≤ k.

Then X ′ is a cover of B4(N(G− v)) satisfying

k∑
i=1

(|X ′i| − 3) =
k∑
i=1

(|Xi| − 3)− 1 < |V | − 4 = |V (G− v)| − 3.

By the minimality of |V | the graph G−v is not a counterexample to the statement of

the theorem, so it follows thatG−v is not 3-connected, that is, the graphG−{v, x, y}
is disconnected for some pair of vertices x, y ∈ V . But G is 3-connected, so v must

have at least one neighbour in each connected component of G − {v, x, y}. This
contradicts the fact that G[NG(v)] is complete. �

Claim 5.4.7 Suppose that b(v) ≤ 3 and let X ∈ X be the core of v. Then |X| ≥ 6.

Proof. First suppose b(v) = 2. Let Y be the other member of X containing v. Since

G[Y ] is connected, it must contain a neighbour of v in G. The cover is 2-thin, so this

implies that X ∩Y = {v, y} for some y ∈ NG(v). In the subgraph G[Y ] vertex v has

degree one, hence y must have a neighbour in G which belongs to Y −X. It follows

that Y is the core of y. Since G is 3-connected, v has at least three neighbours in G.

Suppose that {a, b} ⊆ NG(v) − Y . Since b(v) = 2 the core of a and b must also be
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X. The fact that Y is the core of y implies that y cannot be adjacent to a or b. Now

the 3-connectivity of G gives that |X −{v, y, a, b}| ≥ 2, from which |X| ≥ 6 follows.

Next suppose b(v) = 3. Let Y, Z be the other members of X containing v. As

above, we obtain that X ∩Y = {v, y} and X ∩Z = {v, z} for distinct vertices y, z ∈
NG(v) and that Y is the core of y and Z is the core of z. Let a ∈ (NG(v)−{v, y, z}).
Since b(v) = 3, X is the core of a. Using that a cannot be adjacent to y or z we get

that a has at least two more neighbours in X and hence |X| ≥ 6 follows. �

Claim 5.4.8 Suppose that b(v) ≥ 3. Then
∑

Xi:v∈Xi

(
1− 3

|Xi|

)
≥ 1.

Proof. Since |Xi| ≥ 4 for all 1 ≤ i ≤ k, the claim follows immediately if b(v) ≥ 4.

Now suppose that b(v) = 3. By Claim 5.4.7 we get
∑

Xi:v∈Xi

(
1− 3

|Xi|

)
≥
(
1− 3

4

)
+(

1− 3
4

)
+
(
1− 3

6

)
= 1. �

To obtain a similar bound for the vertices with b(v) = 2, at least on average,

we have to deal with them together and we need a more careful counting argument.

Let J = {vx ∈ E : b(v) = 2, and for some pair X, Y ∈ X we have X ∩ Y = {v, x}},
let W = V (J) and Z1, Z2, ..., Z` be the vertex sets of the components of the graph

K = (W,J). Observe that each vertex with b(v) = 2 belongs to W and that each

component of K is a star in which each leaf vertex v has b(v) = 2. Furthermore, if

a component is a star on at least three vertices with center vertex y then the cores

of its leaves are pairwise di�erent and the core of y must contain all vertices of this

component.

Claim 5.4.9 ∑
v∈W

∑
Xi:v∈Xi

(
1− 3

|Xi|

)
≥ |W |.

Proof. It su�ces to show that
∑

v∈Zj

∑
Xi:v∈Xi

(
1− 3

|Xi|

)
≥ |Zj| for all 1 ≤ j ≤ `.

Consider the component on Zj. First suppose |Zj| ≥ 4. Then, by using Claim 5.4.7,

we can give a lower bound on the contributions of the |Zj| − 1 leaves and the center

vertex as follows:∑
v∈Zj

∑
Xi:v∈Xi

(
1− 3

|Xi|

)
≥ (|Zj| − 1)

(
1

2
+ 1− 3

|Zj|

)
+

+(|Zj| − 1)
1

2
+

(
1− 3

|Zj|

)
≥ |Zj|,

as required.

Now suppose that |Zj| = 3. If b(c) ≥ 4 for the center vertex c of the star then,

by using Claim 5.4.7 again, we obtain
∑

v∈Zj

∑
Xi:v∈Xi

(
1− 3

|Xi|

)
≥ 2

(
1
2

+ 1
4

)
+
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(
2 · 1

2
+ 2 · 1

4

)
= 3, as claimed. If b(c) = 3 then

∑
v∈Zj

∑
Xi:v∈Xi

(
1− 3

|Xi|

)
≥ 2 · 2 ·

1
2

+ 3 · 1
2
> 3 follows.

Finally, suppose that |Zj| = 2. Then either both vertices in Zj are contained by at

most three sets of X , in which case
∑

v∈Zj

∑
Xi:v∈Xi

(
1− 3

|Xi|

)
≥ 2(1

2
+ 1

2
) = 2, or one

of them, say c, has b(c) ≥ 4. In the latter case we get
∑

v∈Zj

∑
Xi:v∈Xi

(
1− 3

|Xi|

)
≥

1
2

+ 1
4

+ 1
2

+ 3 · 1
4

= 2. This completes the proof of the claim. �

The proof of the theorem follows by using Claims 5.4.8, 5.4.9 and the fact that

b(v) ≥ 3 for all v ∈ V −W :

k∑
i=1

(|Xi| − 3) =
k∑
i=1

|Xi|
(

1− 3

|Xi|

)
=
∑
v∈W

∑
Xi:v∈Xi

(
1− 3

|Xi|

)
+

+
∑

v∈V−W

∑
Xi:v∈Xi

(
1− 3

|Xi|

)
≥ |W |+ |V −W | = |V |,

contradicting (5.4). �

It may also be possible to use a similar method to deduce the higher dimensional

versions of Theorem 5.4.3 but the proof gets more complicated. On the other hand,

there is an even simpler combinatorial proof in the case when d = 1. It is based on

the fact that every 2-connected graph has an ear-decomposition and uses induction

on the number of ears. Each new ear added to G generates a set of new hyperedges

in B3(N(G)). By using Lemma 5.2.1 one can obtain a su�ciently large (1, 2)-tight

spanning subhypergraph of the extended hypergraph. We omit the details.
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Chapter 6

Gain-sparsity and Symmetry-forced

Rigidity in the Plane

This chapter deals with �nite bar-and-joint frameworks with point group symme-

try in the symmetry-forced setting and extends Laman's classical theorem as well as

its matroidal background and algorithmic implications, to planar frameworks with

rotational or dihedral symmetry, assuming that the joint positions are as generic

as possible subject to the symmetry conditions. In our symmetry-forced setting, a

framework is said to be symmetry-forced �exible if it has a non-trivial symmetric

in�nitesimal motion. For the symmetry-generic frameworks that we consider, this

is equivalent to the existence of a non-trivial symmetry preserving �ex [48], and

our main result characterizes symmetric frameworks that admit nontrivial symme-

try preserving �exes in terms of simple count conditions of the underlying quotient

group-labeled graphs, which can be checked in polynomial time by combinatorial

algorithms.

By using the orbit rigidity matrix introduced by Schulze and Whiteley [51], we

can reformulate our problems in terms of the generic rank of a matrix in which each

row corresponds to an edge orbit and each vertex orbit has two columns. This in turn

is equivalent to characterizing independence in a matroid de�ned on the edge set of

the group-labeled quotient graph, in which vertices and edges correspond to vertex

and edge orbits, respectively, and which concisely represents the graph structure

with the corresponding symmetry. Our main results characterize these matroids in

the case of rotation symmetry or dihedral symmetry Dk of order 2k with odd k. If

the underlying symmetry is cyclic, the matroid turns out to be a (k, l)-gain-count

matroid, in which independence is de�ned by imposing certain sparsity conditions on

the edge sets of a graph, whose edges are labeled by group elements. In the dihedral

case the matroid arises by a related, but more general construction.
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We prove our results by developing Henneberg type inductive constructions

for the bases of our matroids and show that these operations preserve the row-

independence of the orbit rigidity matrix. In our problems, due to the more complex

sparsity conditions and the group labeling, we also need some new operations and

extended geometric arguments, to handle the symmetry constraints.

The complete answer in the case of dihedral symmetry remains open. However,

most of our inductive steps (extending or reducing a symmetric framework or a

labeled graph, respectively) are valid also for dihedral groups Dk with even k, and

can be used to show that in the even case the irreducible graphs (frameworks),

where our reduction operations are not applicable, are very special. Interestingly,

the smallest such framework, which is predicted to be rigid by the matroidal count

but is �exible is the Bottema mechanism, a well-known mechanism in the kinematics

literature (see, e.g., [70]).

For the case when the underlying symmetry is cyclic, the same combinatorial

characterizations were also given by Malestein and Theran [38], [39] by a completely

di�erent proof approach. The main contributions of this paper are (i) to develop

a concise approach to analyze the rigidity of symmetric frameworks based on in-

ductive constructions and (ii) to give the �rst combinatorial characterization for

non-cyclic symmetry in the plane, which is far complicated than cyclic case. After

publishing the technical report [27] of this paper, our formulation and results on

inductive constructions were used for analyzing the in�nitesimal rigidity of symmet-

ric frameworks [50] or the symmetric-forced rigidity of symmetric frameworks on

surfaces [42].

Now let us introduce notations used throughout this chapter.

Let E be a �nite set. A partition P of E is a family of nonempty subsets of E

such that each element of E belongs to exactly one member of P . If E = ∅, the
partition of E is de�ned as the empty set. A subpartition of E is a partition of a

subset of E.

A vertex subset X ⊂ V (G) (resp., an edge subset X ⊂ E(G) is called a sepa-

rator (resp., a cut) if the removal of X disconnects G. A separator (resp., a cut) is

called nontrivial if its removal disconnects G into at least two nontrivial connected

components, where a connected component is called trivial if it consists of a single

vertex. G is called essentially k-connected (resp., essentially k-edge-connected) if the

size of any nontrivial separator (resp., any nontrivial cut) is at least k.

For simplicity, some properties of edge-induced subgraphs will be associated with

the corresponding edge sets as follows. Let F ⊆ E. F is called connected if G[F ] is

connected. A connected component of F is the edge set of a connected component
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of G[F ]. C(F ) denotes the partition of F into connected components of F , and let

c(F ) = |C(F )|.
LetG = (V,E) be a directed graph. A walk inG is a sequenceW = v0, e1, v1, e2, v2, . . . ,

vk−1, ek, vk of vertices and edges such that vi−1 and vi are the endvertices of ei for

every 1 ≤ i ≤ k. We often denote a walk as a sequence of edges implicitly assuming

the incidence at each vertex. For two walks W and W ′ for which the end vertex of

W and the starting vertex of W ′ coincide, we denote the concatenation of W and

W ′ (that is, the walk W followed by W ′) by W ∗W ′. A walk is called closed if the

starting vertex and the end vertex coincide.

It is sometimes convenient to regard the empty set as a subgroup of a group. Let

D be a dihedral group. For a cyclic subgroup C of D, C̄ denotes the maximal cyclic

subgroup containing C.
We refer the reader to [27] for the proofs not presented in this work.

6.1 Gain Graphs

In this section we shall review some basic properties of gain graphs. We refer the

reader to [19, 72, 73] for more details.

Let G = (V,E) be a directed graph which may contain multiple edges and

loops, and let S be a group. An S-gain graph (G, φ) is a pair, in which each edge is

associated with an element of S by a gain function φ : E → S. The orientation of G

is, in some sense, arbitrary, and is used only as a reference orentation: the orientation

of each edge may be changed, provided that we also modify φ such that if the edge

has gain g in one direction then it has gain g−1 in the other direction. Therefore we

often do not distinguish between G and the underlying undirected graph.

Let W be a walk in (G, φ). The gain of W is de�ned as φ(W ) = φ(e1) ·
φ(e2) · · ·φ(ek) if each edge is oriented in the forward direction through W , and

for a backward edge ei we replace φ(ei) with φ(ei)
−1 in the product. Note that

φ(W−1) = φ(W )−1.

Let (G, φ) be a gain graph. For v ∈ V (G) we denote by π1(G, v) the set of closed

walks starting at v. Similarly, for X ⊆ E(G) and v ∈ V (G), π1(X, v) denotes the

set of closed walks starting at v and using only edges of X, where π1(X, v) = ∅ if
v /∈ V (X).

Let X ⊆ E(G). The subgroup induced by X relative to v is de�ned as 〈X〉φ,v =

{φ(W ) | W ∈ π1(X, v)}. The subscript φ of 〈X〉φ,v is sometimes omitted if it is

clear from the context. Note that, for any connected X ⊆ E(G) and two vertices

u, v ∈ V (X), 〈X〉u is conjugate to 〈X〉ψ,v. (See, e.g., [19, page 88] for the proof.)
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6.1.1 The switching operation

For v ∈ V (G) and g ∈ S, a switching operation at v with g changes the gain

function φ on E(G) as follows.

φ′(e) =



g · φ(e) · g−1 if e is a loop incident with v

g · φ(e) if e is a non-loop edge and is directed from v

φ(e) · g−1 if e is a non-loop edge and is directed to v

φ(e) otherwise.

(6.1)

We say that a gain function φ′ on edge set E(G) is equivalent to another gain function

φ on E(G) if φ′ can be obtained from φ by a sequence of switching operations.

The following two facts are fundamental. (See, e.g., [19, Section 2.5.2] or [72,

Section 5] for the proofs.)

Proposition 6.1.1 Let (G, φ) be a gain graph. Let φ′ be the gain function obtained

from φ by a switching operation. Then, for any X ⊆ E(G) and u ∈ V (G), 〈X〉φ′,u
is conjugate to 〈X〉φ,u.

Proposition 6.1.2 Let (G, φ) be a gain graph. Then, for any forest F ⊆ E(G),

there is a gain function φ′ equivalent to φ such that φ′(e) = id for every e ∈ F .

6.1.2 Balanced and cyclic sets of edges

As we shall see, the subgroup 〈X〉ψ,v itself will not be important, when we de�ne

our matroids induced by gains. We only need to know whether 〈X〉ψ,v is trivial

or not, or whether it is cyclic or not. We now introduce notions to describe these

properties.

Let (G, φ) be a gain graph. An edge subset F ⊆ E(G) is called balanced if 〈F 〉ψ,v
is trivial for every v ∈ V (F ). Note that F is balanced if and only if every cycle in

F is balanced. The latter property is the de�nition of the balancedness given by

Zaslavsky [72].

In the same way, an edge subset F ⊆ E(G) is called cyclic if 〈F 〉ψ,v is cyclic for
every v ∈ V (F ). (Note that the terms balanced and cyclic are not exclusive.) A gain

graph (G, φ) is called balanced and cyclic if E(G) is balanced and cyclic, respectively.

Proposition 6.1.2 suggests a simple way to check the above introduced proper-

ties of X, in analogy with the fact that the cycle space of a graph is spanned by

fundamental cycles. For a connected X ⊆ E(G), take a spanning tree T of the

edge induced graph G[X]. By Proposition 6.1.2 we can convert the gain function

to an equivalent gain function such that φ(e) = id for all e ∈ T . Now consider any
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closed walk W ∈ π1(X, v), and denote W by W = v1v2, v2v3, . . . , vkvk+1, and let

Wi = Pi ∗ {vivi+1} ∗ P−1i+1 for 1 ≤ i < k, where Pi denotes the path from v to vi in

T . Then observe φ(W ) = φ(W1) · φ(W2) · · ·φ(Wk). By φ(e) = id for all e ∈ T , we
deduce that φ(W ) is a product of elements in {φ(e) : e ∈ X \ T}, implying that

〈X〉φ,v ⊆ 〈φ(e) : e ∈ X \ T 〉, where 〈φ(e) : e ∈ X \ T 〉 is the group generated by

{φ(e) : e ∈ X \ T}. Conversely, φ(e) is contained in 〈X〉φ,v for all e ∈ X \ T . Thus,
〈X〉φ,v = 〈φ(e) : e ∈ X \ T 〉. In particular, we proved the following.

Lemma 6.1.3 For a connected X ⊆ E(G) and a spanning tree T of G[X], suppose

that φ(e) = id for all e ∈ T . Then, 〈X〉φ,v = 〈φ(e) : e ∈ X \ T 〉. In particular, the

following hold.

(i) X is unbalanced if and only if there is an edge in X\T whose gain is non-identity.

(ii) X is cyclic if and only if all gains of X \ T are contained in a cyclic subgroup

of S.

The following technical lemmas will be used in the proof of our main theorem.

Lemma 6.1.4 Let (G, φ) be a S-gain graph, and X and Y be connected edge subsets

such that the graph (V (X) ∩ V (Y ), X ∩ Y ) is connected.

(1) If X and Y are balanced, then X ∪ Y is balanced.

(2) If X is balanced and Y is cyclic, then X ∪ Y is cyclic.

(3) If X, Y are cyclic and X ∩ Y is unbalanced, then X ∪ Y is cyclic, provided that

for every non-trivial cyclic subgroup C of S there is a unique maximal cyclic

subgroup C̄ of S containing C.

Proof. Since the graph (V (X)∩V (Y ), X∩Y ) is connected, there is a spanning tree

T in G[X ∪Y ] such that T ∩X is a spanning tree of G[X], T ∩Y is a spanning tree

of G[Y ], and T ∩X ∩ Y is a spanning tree of G[X ∩ Y ]. By Proposition 6.1.2, there

is a gain function φ′ equivalent to φ such that φ′(e) = id for each e ∈ T .
If X and Y are balanced, Lemma 6.1.3 implies that φ′(e) = id for all e ∈ X ∪ Y .

Thus (1) holds.

IfX is balanced, then every label inX∪Y is contained in 〈Y 〉φ′,v by Lemma 6.1.3,

and hence X ∪ Y is cyclic if Y is cyclic. This implies (2).

If X, Y are cyclic and X ∩ Y is unbalanced, then there is an edge e ∈ X ∩ Y
for which φ′(e) is non-identity. Let C be a cyclic subgroup of S generated by φ′(e)

and C̄ be the maximal cyclic subgroup containing C. Since X and Y are cyclic,

Lemma 6.1.3 implies that φ′(e) ∈ C̄ holds for every e ∈ X and for every e ∈ Y .

Therefore X ∪ Y is cyclic. �
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Lemma 6.1.5 Let (G, φ) be a gain graph, and X and Y be connected balanced edge

subsets. If the number of connected components of the graph (V (X)∩ V (Y ), X ∩ Y )

is two, then X ∪ Y is cyclic.

Proof. We take a spanning tree T of G[X∪Y ] such that T ∩X is a spanning tree of

G[X]. Since the number of connected components of (V (X)∩ V (Y ), X ∩ Y ) is two,

T ∩ Y consists of two connected components, denoted T1 and T2. {V (T1), V (T2)}
partitions Y into three subsets {Y1, Y2, Y3} such that Yi = {e ∈ Y : V ({e}) ⊆ V (Ti)}
for i = 1, 2 and Y3 = Y \ (Y1 ∪ Y2).

By Proposition 6.1.2, we can take a gain function φ′ equivalent to φ such that

φ′(e) = id for e ∈ T . Since X and Y are balanced, we have φ′(e) = id for e ∈
X ∪ Y1 ∪ Y2. Moreover, assuming that every edge in Y3 is oriented toward V (Y1),

we have φ′(e) = φ′(f) for all e, f ∈ Y3, since otherwise T1 ∪ T2 ∪ {e, f} contains

an unbalanced cycle, contradicting the fact that Y is balanced. Therefore X ∪ Y is

cyclic. �

6.2 Gain Count Matroids

6.2.1 Matroids induced by submodular functions

Let E be a �nite set. A function µ : 2E → R is called submodular if µ(X)+µ(Y ) ≥
µ(X ∪ Y ) + µ(X ∩ Y ) for every X, Y ⊆ E. µ is monotone if µ(X) ≤ µ(Y ) for any

X ⊆ Y . A monotone submodular function µ : 2E → Z induces a matroid on E,

where F ⊆ E is independent if and only if |I| ≤ µ(I) for every nonempty I ⊆ F .

See e.g. [12, Section 13.4]. This matroid is denoted byM(µ).

For a monotone submodular function µ, let ν = µ− 1. Then, ν is monotone sub-

modular and induces the matroidM(ν). This matroid is referred to as the Dilworth

truncation of M(µ). Although the details are omitted here, the name of Dilworth

truncation is justi�ed from a connection with Dilworth truncation for general ma-

troids, see [12] for more details.

Now we consider the union of two matroids induced by monotone submodular

functions µ1 and µ2. Since monotonicity and submodularity are both preserved under

the sum operation, µ1 + µ2 is monotone and submodular. In general, the union of

M(µ1) andM(µ2) is not equal toM(µ1 +µ2). We do have equality in some special

cases, for example, when µ1 = µ2 or when both µ1 and µ2 are nonnegative.

As an example, consider the union of two copies of the graphic matroid of a graph

G = (V,E). It is the matroid induced by f2,2 de�ned by f2,2(F ) = 2|V (F )| − 2 on

2E, as f2,2/2 induces the graphic matroid on G. The 2-dimensional generic rigidity
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matroid is the one induced by f2,2 − 1, and hence it is the Dilworth truncation of

the union of two copies of the graphic matroid.

In general, for a graph G = (V,E) and two integers k and l with k ≥ 1 and

l ≤ 2k − 1, let

fk,l(F ) = k|V (F )| − (l − k) (F ⊆ E).

G is called (k, l)-sparse if |F | ≤ fk,l(F ) for any nonempty F ⊆ E. The matroid

induced by fk,l is the (k, l)-count matroid on G. If l ≥ 0, M(fk,l) is indeed the

one induced by fk,0, truncated l times. See e.g. [12] for more detail. Below we shall

apply the same construction to the union of some copies of a frame matroid to de�ne

gain-count matroids.

6.2.2 Gain-count matroids

We shall consider frame matroids on gain graphs. Let S be a group and (G, φ)

be an S-gain graph. The frame matroid of (G, φ) is de�ned such that F ⊆ E is

independent if and only if each connected component of F contains no cycle or just

one cycle, which is unbalanced if exists [73]. If we de�ne gS : 2E → Z by

gS(F ) =
∑

Fi∈C(F )

(|V (Fi)| − 1 + αS(Fi)) (6.2)

where

αS(F ) =

1 if F is unbalanced

0 otherwise,
(6.3)

then the frame matroid is the matroid induced by gS . We omit the subscript S from

αS if it is clear from the context.

For an S-gain graph and two positive integers k and l with k ≤ l, we de�ne

gk,l : 2E → Z by

gk,l(F ) = kgS(F )− (l − k) (F ⊆ E). (6.4)

We call the matroid M(gk,l) induced by gk,l a (k, l)-gain-count matroid or g-count

matroid for short. This matroid is the union of k copies of the frame matroid, followed

by l − k Dilworth truncations. In this paper, we shall investigate the (2, 3)-g-count

matroid and its variants.

The independence ofM(gk,l) can be described in a compact form. (See [27] for

the proof, which is a rather straightforward calculation.)

Lemma 6.2.1 Let (G, φ) be an S-gain graph with G = (V,E). Then E is inde-

pendent in M(gk,l) if and only if |F | ≤ k|V (F )| − l + kα(F ) for any nonempty

F ⊆ E.
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In this sense, we may de�ne (k, l)-gain-sparsity as in the case of (k, l)-sparsity of

undirected graphs as follows.

De�nition 6.2.2 Let k and l be positive integers with k ≤ l and (G, φ) be an S-gain
graph with a graph G = (V,E) and a group S. An edge set X ⊆ E is called (k, l)-

gain-sparse (or (k, l)-g-sparse for short) if |F | ≤ gk,l(F ) for any nonempty F ⊆ X,

i.e.,

• |F | ≤ k|V (F )| − l for every nonempty balanced F ⊆ X;

• |F | ≤ k|V (F )| − l + k for every nonempty unbalanced F ⊆ X,

and it is clalled (k, l)-gain-tight (or (k, l)-g-tight for short) if it is (k, l)-g-sparse with

|X| = gk,l(X).

(G, φ) is called (k, l)-g-sparse if so is E, and it is called maximum (k, l)-g-tight

if it is (k, l)-g-sparse with |E| = k|V | − l + k.

Remark 6.2.3 Note that the value of gk,l is invariant under switching operations,

and thus the induced matroid is uniquely determined up to equivalence of gain func-

tions.

6.3 Constructive characterization of maximum (2.3)-

g-tight graphs

6.3.1 Operations preserving (2,3)-g-sparsity

In this section we de�ne three operations, called extensions, that preserve (2, 3)-

g-sparsity. The �rst two operations generalize the Henneberg operations [60, 68] to

gain graphs.

Let (G, φ) be an S-gain graph. The 0-extension adds a new vertex v and two

new non-loop edges e1 and e2 to G such that the new edges are incident to v and

the other endvertices are two not necessarily distinct vertices of V (G). If e1 and e2

are not parallel then their labels can be arbitrary. Otherwise the labels are assigned

such that φ(e1) 6= φ(e2), assuming that e1 and e2 are directed to v.

The 1-extension �rst chooses an edge e and a vertex z, where e may be a loop

and z may be an endvertex of e. It subdivides e, with a new vertex v and new edges

e1, e2 such that the tail of e1 is the tail of e and the tail of e2 is the head of e. The

labels of the new edges are assigned such that φ(e1)·φ(e2)
−1 = φ(e). The 1-extension

also adds a third edge e3 oriented to v. The label of e3 is assigned so that it is locally

unbalanced, i.e., every two-cycle eiej, if exists, is unbalanced.
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The loop 1-extension adds a new vertex v to G and connects it to a vertex

z ∈ V (G) by a new edge with any label. It also adds a new loop l incident to v with

φ(l) 6= id.

(a) (b) (c)

Figure 6.1: (a) 0-extension, where the new edges may be parallel. (b) 1-extension,

where the removed edge may be a loop and the new edges may be parallel. (c)

loop-1-extension.

The 0-extension and the 1-extension were already considered by Ross [45] for

Z2-gain graphs. In the covering graph each operation can be seen as a graph oper-

ation that preserves the underlying symmetry. Some of them can be recognized as

performing Henneberg operations [60, 68] simultaneously. In case of 3-fold rotation

symmetry, these operations are considered by Schulze [48].

Lemma 6.3.1 Let (G, φ) be a (2,3)-g-sparse S-gain graph. Applying the 0-extension,

1-extension or loop 1-extension to G results in a (2,3)-g-sparse graph (G′, φ′) with

|V (G′)| = |V (G)|+ 1 and |E(G′)| = |E(G)|+ 2.

Proof. For a contradiction, suppose that G′ contains an edge set F ⊆ E(G′) for

which |F | > 2|V (F )| − 3 + 2α(F ). Let v be the new vertex added by the extension,

and let Ev be the set of edges incident to v. Since E(G′) \Ev ⊆ E(G), Ev ∩ F 6= ∅.
In particular, v ∈ V (F ). Also, since the new labeling is assigned to be locally

unbalanced, F is not contained in Ev.

If G′ is constructed by a 1-extension then let e be the subdivided edge of G and

let e1 and e2 be the resulting two new edges.

Let F ′ = F \ Ev. If G′ is constructed by a 1-extension and {e1, e2} ⊆ F , then

we further insert e to F ′. We then have |F ′| ≥ |F | − 2, |V (F ′)| = |V (F )| − 1, and

α(F ′) ≤ α(F ) in each case. These imply |F ′| ≥ |F | − 2 > 2|V (F )| − 5 + 2α(F ) ≥
2|V (F ′)|−3 + 2α(F ′), contradicting the (2, 3)-g-sparsity of G as ∅ 6= F ′ ⊆ E(G). �

We shall de�ne the inverse moves of the operations above, which are called

reductions. For a vertex v and two incoming non-loop edges e1 = (u, v) and e2 =

(w, v), we denote by e1 · e−12 a new edge from u to w with label φ(e1) · φ(e2)
−1 (by

extending φ). If u = w then e1 · e−12 is a loop. Each reduction corresponds to one of

the following operations on a gain graph (G, φ).
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(a)

(b)

(c)

Figure 6.2: (a) 0-extension, (b) 1-extension, (c) loop-1-extension in the covering

graph.

The 0-reduction chooses a degree two vertex and deletes it from G.

The 1-reduction chooses a vertex v with d(v) = 3 that is not incident to a loop.

Let e1, e2, e3 be the edges incident to v. Without loss of generality we may assume

that each ei is oriented to v. The 1-reduction deletes v with the incident edges and

adds one of e1 · e−12 , e2 · e−13 and e3 · e−11 as a new edge.

The loop 1-reduction chooses a vertex incident to exactly one loop and one non-

loop edge and deletes the chosen vertex with the incident edges.

A 1-reduction may destroy the (2, 3)-g-sparsity of a graph. We say that a reduc-

tion (at a vertex v) is admissible if the resulting graph is (2, 3)-g-sparse.
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6.3.2 Constructive characterization

Lemma 6.3.2 Let (G, φ) be a (2,3)-g-sparse graph and v ∈ V (G) a vertex not

incident to a loop with d(v) = 3. Then there is an admissible 1-reduction at v.

Proof. Let E = E(G), G′ = G − v and E ′ = E(G′). Let e1, e2, e3 be the edges

incident to v in G. Without loss of generality we may assume that each ei is oriented

to v. For simplicity we put ei,j = ei · e−1j .

Suppose for a contradiction that there is no admissible splitting at v, that is,

none of E ′ + e1,2, E ′ + e2,3 and E ′ + e3,1 is independent in M(g2,3). Equivalently,

e1,2, e2,3, e3,1 ∈ clg(E
′), where clg denotes the closure operator ofM(g2,3). Let X =

{e1, e2, e3, e1,2, e2,3, e3,1}.

Claim 6.3.3 e1 ∈ clg(X − e1).

Proof. We split the proof into three cases depending on the cardinality of N(v).

If |N(v)| = 3 then, by Proposition 6.1.2, we may assume φ(e1) = φ(e2) = φ(e3) =

id. We then have φ(e1,2) = φ(e2,3) = φ(e3,1) = id. Therefore X forms a balanced K4,

which is a circuit ofM(g2,3). Thus, e1 ∈ clg(X − e1) holds.
If |N(v)| = 2 then we may assume that e1 and e2 are parallel. By Proposi-

tion 6.1.2, we may assume that φ(e2) = φ(e3) = id. This implies φ(e1,3) = φ(e1) and

φ(e2,3) = id. Since G is (2, 3)-g-sparse, we have φ(e1) 6= id by φ(e2) = φ(e3) = id,

which implies that e1,2 is an unbalanced loop with φ(e1,2) = φ(e1). It can be easily

checked, by counting, that X is indeed a circuit inM(g2,3). Thus, e1 ∈ clg(X − e1)
holds.

If |N(v)| = 1 then let X ′ = {e1, e2, e3, e1,2}. We have |X ′| = 2|V (X ′)| and X ′ is
a circuit ofM(g2,3). Therefore e1 ∈ clg(X

′ − e1) ⊂ clg(X − e1). �

Since e1,2, e2,3, e3,1 ∈ clg(E
′), by Claim 6.3.3, we have e1 ∈ clg(X− e1) ⊆ clg(E

′+

X − e1) = clg(E
′ + e2 + e3) = clg(E − e1), which contradicts the (2, 3)-g-sparsity of

G. �

The following constructive characterization of maximum (2, 3)-g-tight graphs is

a direct consequence of Lemma 6.3.1 and Lemma 6.3.2. (See [27] for the concrete

proof.)

Theorem 6.3.4 An S-gain graph (G, φ) is maximum (2,3)-g-tight if and only if it

can be built up from an S-gain graph with one vertex and an unbalanced loop incident

to it with a sequence of 0-extensions, 1-extensions, and loop-1-extensions.

Proof. By Lemma 6.3.1, by applying any of the extension operations we obtain a

maximum (2,3)-g-tight graph from a maximum (2, 3)-g-tight graph.
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To prove the other direction it is su�cient to show that G can be reduced to a

smaller (2, 3)-g-tight graph. Since |E(G)| = 2|V (G)| − 1, the average degree is less

than 4, which implies that there is a vertex v of degree at most 3 and the minimum

degree in G is not smaller than two. If d(v) = 2, the 0-reduction can be applied at

v which is always admissible. If d(v) = 3, we have two cases depending on whether

v is incident to a loop or not. If v is incident to a loop, the loop-1-reduction, which

is always admissible, can be applied at v to obtain a smaller (2, 3)-g-tight graph.

Otherwise, by Lemma 6.3.2, there is an admissible 1-reduction at v. �

6.4 Symmetry-forced rigidity

In this section we de�ne the notion of symmetry-forced in�nitesimal rigidity, in-

troduced by Schulze and Whiteley [51]. We have already introduced S-symmetric

graphs in Section 1.4.1. In Section 6.4.2 we introduce symmetry-forced in�nites-

imal rigidity, which is only concerned with in�nitesimal motions invariant under

the underlying symmetry. In Section 6.4.3 we introduce the orbit rigidity matrix,

which is the main tool for investigating symmetry-forced in�nitesimal rigidity in the

subsequent sections. In Section 6.4.4 we prove a necessary condition for symmetric

frameworks to be symmetry-forced in�nitesimally rigid.

6.4.1 Quotient graphs of S-symmetric graphs

Let H be an (S, ρ)-symmetric graph. The quotient graph H/S of H is a multi-

graph on the set V (H)/S of vertex orbits, together with the set E(H)/S of edge

orbits as the edge set. An edge orbit may be represented by a loop inH/S. Figure 6.3
provides an example when S is a dihedral group.

id

r

Cπ

id

r

Figure 6.3: A D4-symmetric graph and the quotient gain graph.

Di�erent graphs may have the same quotient graph. However, if we assume that ρ

is free, then a gain labeling makes the relation one-to-one. To see this, we arbitrarily
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choose a vertex v as a representative vertex from each vertex orbit. Then, each orbit

is written by Sv = {gv : g ∈ S}. If ρ is a free action, an edge orbit connecting Su
and Sv in H/S can be written by {{gu, ghv} : g ∈ S} for a unique h ∈ S. We then

orient the edge orbit from Su to Sv in H/S and assign to it the gain h. In this way,

we obtain the quotient S-gain graph, denoted (H/S, φ).

Conversely, any S-gain graph (G, φ) can be �lifted� as an (S, ρ)-symmetric graph

with a free action ρ. To see this, we simply denote the pair (g, v) of g ∈ S and

v ∈ V (G) by gv. The covering graph (also known as the derived graph) of (G, φ)

is the simple graph with vertex set S × V (G) = {gv : g ∈ S, v ∈ V (G)} and the

edge set {{gu, gφ(e)v} : e = (u, v) ∈ E(G), g ∈ S}. Clearly, S freely acts on the

covering graph, under which the quotient gain graph comes back to (G, φ). For

more properties of covering graphs, see e.g. [19].

6.4.2 Symmetry-forced in�nitesimal rigidity

We shall consider �symmetry-preserving� in�nitesimal motions of symmetric frame-

works. We say that an in�nitesimal motion m : V (H)→ Rd is symmetric if

gm(v) = m(gv) for all g ∈ S and for all v ∈ V (H). (6.5)

The set of in�nitesimal isometries and the set of in�nitesimal motions form a linear

space, denoted by iso(P ) and L(H, p), respectively.

The set of S-symmetric in�nitesimal motions and the set of trivial ones form lin-

ear subspaces of L(H, p) and tri(H, p), denoted LS(H, p) and triS(H, p), respectively.

We say that (H, p) is symmetry-forced in�nitesimally rigid if LS(H, p) = triS(H, p).

A set P of points is called S-symmetric if gP = {gp : p ∈ P} = P for all g ∈ S.
An in�nitesimal isometry m : P → Rd of an S-symmetric point set P is called

S-symmetric if gm(x) = m(gx) for all x ∈ P and g ∈ S. The set of S-symmetric

in�nitesimal isometries forms a linear subspace of iso(P ), denoted isoS(P ). Clearly,

triS(H, p) is isomorphic to isoS(p(H)).

Example 6.4.1 Let us consider point groups in O(R2). Let P be an S-symmetric

point set in R2. See Figure 6.4 for examples of Ck-symmetric in�nitesimal isometries.

In general, if |P | > 1,

dim isoCk(P ) =

3 if k = 1

1 if k ≥ 2,

and if P = {x},

dim isoCk(P ) =

2 if k = 1

0 if k ≥ 2 (where x should be the origin)
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(a) (b) (c)

Figure 6.4: Three independent in�nitesimal isometries in the plane, among which (a)

is symmetric with respect to the group of a vertical re�ection, (b) is symmetric with

respect to the group of a horizontal re�ection, and (c) is symmetric with respect to

the group of rotations.

Similarly, for the dihedral group Dk of order 2k,

dim isoDk(P ) =

1 if k = 1

0 if k ≥ 2,

A result of Schulze [48] motivates us to look at S-symmetric in�nitesimal rigidity,

which states that if (H, p) is not symmetry-forced in�nitesimally rigid on an S-
generic p, then (H, p) has a nontrivial continuous motion that preserves the (S, ρ)-

symmetry.

6.4.3 The orbit rigidity matrix

Let (H, p) be an (S, ρ)-symmetric framework in Rd. Due to (6.5), the system

〈m(u)−m(v), p(u)− p(v)〉 = 0 for all {u, v} ∈ E(H) (6.6)

of linear equations (with respect to m) is redundant. Schulze and Whiteley [51]

pointed out that the system can be reduced to |E(H)/S| linear equations.
To see this, we �rst de�ne a joint-con�guration p̃ of vertex orbits by p̃ : V (H)/S →

Rd. By taking a representative vertex v from each vertex orbit Sv, we set p̃(Sv) =

p(v). (Then, the locations of the other non-representative vertices are uniquely de-

termined by (1.4.1).)

In a similar way, we de�ne an in�nitesimal motion of (H/S, p̃) by m̃ : V (H)/S →
Rd. By using the representative vertices determined above, we �x a one-to-one cor-

respondence between S-symmetric in�nitesimal motions of V (H) and in�nitesimal

motions of V (H)/S by m̃(Sv) = m(v) for each vertex orbit Sv.
Let (H/S, φ) be the quotient S-gain graph of H. Recall that each (oriented) edge

orbit Se connecting Su and Sv with gain he can be written by Se = {{gu, ghev} : g ∈
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S}. The system (6.6) is hence written by

〈m(gu)−m(ghev), p(gu)− p(ghev)〉 = 0 for all {gu, ghev} ∈ Se (6.7)

over all edge orbits Se ∈ E(H)/S. Recall that the transpose of g is g−1 for any

g ∈ O(Rd). By (1.4.1) and (6.5),

〈m(gu)−m(ghev), p(gu)− p(ghev)〉 =〈m(u)− hem(v), p(u)− hep(v)〉

=〈m(u), p(u)− hep(v)〉+ 〈m(v), p(v)− h−1e p(u)〉

=〈m̃(Su), p̃(Su)− hep̃(Sv)〉+ 〈m̃(Sv), p̃(Sv)− h−1e p̃(Su)〉.

Therefore, for p̃ : V (H)/S → Rd, a mapping m̃ : H/S → Rd is an in�nitesimal

motion of (H/S, p̃) if and only if

〈m̃(Su), p̃(Su)− hep̃(Sv)〉+ 〈m̃(Sv), p̃(Sv)− h−1e p̃(Su)〉 = 0 (6.8)

for every oriented edge orbit Se with φ(Se) = he. By regarding (6.8) as a system

of linear equations of m̃, the corresponding |E(H)/S| × d|V (H)/S|-matrix is called

the orbit rigidity matrix.

In general, for an S-gain graph (G, φ) and p̃ : V → Rd, we shall de�ne the orbit

rigidity matrix as an |E(G)| × d|V (G)|-matrix, in which each row corresponds to an

edge, each vertex is associated with a d-tuple of columns, and the row corresponding

to e = (u, v) ∈ E(G) is written by

u︷ ︸︸ ︷ v︷ ︸︸ ︷
0 . . . 0 p̃(u)− φ(e)p̃(v) 0 . . . 0 p̃(v)− φ(e)−1p̃(u) 0 . . . 0

if e is not a loop, and by

v︷ ︸︸ ︷
0 . . . 0 (2Id − φ(e)− φ(e)−1)p̃(v) 0 . . . 0

if e is a loop. The orbit rigidity matrix of (G, φ, p̃) is denoted by O(G, φ, p̃). From

the above discussion, it follows that the dimension of the S-symmetric in�nites-

imal motions can be computed from the rank of the orbit rigidity matrix of the

corresponding quotient gain graph, which is formally stated as follows:

Theorem 6.4.2 (Schulze and Whiteley [51]) Let (H, p) be an (S, ρ)-symmetric

framework with a free action ρ. Then,

dimLS(H, p) = d|V (H)/S| − rankO(H/S, φ, p̃),

where (H/S, φ) is the quotient S-gain graph and p̃ is a joint-con�guration of vertex

orbits corresponding to p.
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6.4.4 Necessary condition for symmetric in�nitesimal rigidity

We can show a necessary condition for the row independence of orbit rigidity

matrices.

Lemma 6.4.3 Let (G, φ) be an S-gain graph with underlying graph G = (V,E),

and let p : V → Rd. If O(G, φ, p) is row independent, then

|F | ≤
∑

Fi∈C(F )

{d|V (Fi)| − dim iso〈Fi〉φ,w(p(Fi))}

for all F ⊆ E and w ∈ V (Fi), where p(Fi) = {gp(v) : v ∈ V (Fi), g ∈ S}.

This, together with Theorem 6.4.2, directly implies a necessary condition for

symmetric frameworks to be symmetry-forced in�nitesimally rigid.

Recall that S is a �nite family of orthogonal matrices. Let QS be the �eld gen-

erated by Q and the entries of all the matrices in S. Since S is �nite, almost all

numbers in R are transcendental over QS . For a given gain graph (G, φ), a mapping

p̃ : V (G)→ Rd is called S-generic if the set of coordinates of p̃(v) for all v ∈ V (G) is

algebraically independent over QS . Similarly, for a given (S, ρ)-symmetric graph H,

an (S, ρ)-symmetric joint-con�guration p : V (H)→ Rd is called S-generic if the cor-
responding joint-con�guration p̃ of the vertex orbits is S-generic. An S-symmetric

framework is called S-generic if the joint con�guration is S-generic.
We will check that the condition of Lemma 6.4.3 is indeed su�cient for generic

symmetric frameworks in the plane with cyclic groups and dihedral groups Dk with
odd k, respectively.

6.5 Characterization of symmetry-forced rigid graphs

for cyclic point groups

The following lemma is a key observation, which is an extension of the one given

in [60, 68] for proving Laman's theorem. The lemma is not limited to cyclic groups.

Lemma 6.5.1 Let (G, φ) be an S-gain graph for a point group S ⊂ O(R2). Let

(G′, φ′) be an S-gain graph obtained from (G, φ) by a 0-extension, 1-extension, or

loop-1-extension. If there is a mapping p : V (G) → R2 such that O(G, φ, p) is row

independent, then there is a mapping p′ : V (G′)→ R2 such that O(G′, φ′, p′) is row

independent.

Proof. If there is a p such that O(G, φ, p) is row independent, then O(G, φ, q) is row

independent for all S-generic q. Hence, we may assume that p is S-generic. We only
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show the di�cult case where (G′, φ′) is constructed from (G, φ) by a 1-extension.

(See [27] for the easier case where (G′, φ′) is constructed from (G, φ) by a 0-extension

or a loop-1-extension.)

Suppose that (G′, φ′) is obtained from (G, φ) by a 1-extension, by removing an

existing edge e and adding a new vertex v with three new non-loop edges e1, e2, e3

incident to v. We may assume that ei is outgoing from v. Let ui be the other

endvertex of ei, and let gi = φ′(ei) and pi = p(ui) for i = 1, 2, 3. By the de�nition of

1-extension, we have φ(e) = g−11 g2.

Claim 6.5.2 The three points gipi (i = 1, 2, 3) do not lie on a line.

Proof. Since p is S-generic, u1 = u2 = u3 should hold if they lie on a line. Then

p1 = p2 = p3. By the de�nition of 1-extensions, gi 6= gj if ui = uj. This implies that

g1p1, g2p2, g3p3 are three distinct points on a circle. Thus, they do not lie on a line.

�

We take p′ : V (G′) → R2 such that p′(w) = p(w) for all w ∈ V (G), and p′(v) is

a point on the line through g1p1 and g2p2 but neither g1p1 nor g2p2. O(G′, φ′, p′) is

described as follows: if u1 6= u2

v u1 u2

e3 p′(v)− g3p3 ∗ ∗ ∗
e1 p′(v)− g1p1 p1 − g−11 p′(v) 0 0

e2 p′(v)− g2p2 0 p2 − g−12 p′(v) 0

E(G)− e 0 O(G− e, φ, p)

where the right-bottom block O(G − e, φ, p) denotes the orbit rigidity matrix ob-

tained from O(G, φ, p) by removing the row of e, whereas, if u1 = u2,

v u1

e3 p′(v)− g3p3 ∗ ∗
e1 p′(v)− g1p1 p1 − g−11 p′(v) 0

e2 p′(v)− g2p1 p1 − g−12 p′(v) 0

E(G)− e 0 O(G− e, φ, p)

We consider the case when u1 6= u2. (The case when u1 = u2 is similar.) Since

p′(v) lies on the line through g1p1 and g2p2, p′(v) − gip(ui) is a scalar multiple of

g1p1−g2p2 for i = 1, 2. Hence, by multiplying the rows of e1 and e2 by an appropriate
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scalar, O(G′, φ′, p′) becomes

v u1 u2

e3 p′(v)− g3p3 ∗ ∗ ∗
e1 g1p1 − g2p2 −g−11 (g1p1 − g2p2) 0 0

e2 g1p1 − g2p2 0 −g−12 (g1p1 − g2p2) 0

E(G)− e 0 O(G− e, φ, p)

Subtracting the row of e1 from that of e2, we �nally get

v u1 u2

e3 p′(v)− g3p3 ∗ ∗ ∗
e1 g1p1 − g2p2 −g−11 (g1p1 − g2p2) 0 0

e2 0 p1 − g−11 g2p2 p2 − g−12 g1p1 0

E(G)− e 0 O(G− e, φ, p)

Since φ(e) = g−11 g2, the row of e2 is equal to the row of e in O(G, φ, p). This means

that the right-bottom block together with the row of e2 forms O(G, φ, p), which is

row independent. Thus, the matrix is row independent if and only if the top-left

block is row independent. Since gipi (i = 1, 2, 3) are not on a line by Claim 6.5.2,

the line through p′(v) and g3p3 is not parallel to the line through g1p1 and g2p2. This

implies that the top-left block is row independent, and consequently O(G′, φ′, p′) is

row independent. �

We are now ready to prove a combinatorial characterization of the in�nitesimal

rigidity of S-generic symmetric frameworks with cyclic point groups in the plane. The

same statement was also proved in [39] for rotation group and in [38] for re�ection

group by completely di�erent proofs.

Theorem 6.5.3 Let C ⊂ O(R2) be a cyclic point group, that is, either a group of k-

fold rotations or a group of a re�ection, and let (H, p) be a generic (C, ρ)-symmetric

framework in the plane with a free action ρ. Then (H, p) is symmetry-forced in�nites-

imally rigid if and only if the quotient C-gain graph contains a spanning maximum

(2, 3)-g-tight subgraph.

Proof. By Theorem 6.4.2 it su�ces to show that for the quotient C-gain graph

(H/C, φ) and any C-generic p̃ : V (H/C) → R2, O(H/C, φ, p̃) is row independent if

and only if (H/C, φ) is (2, 3)-g-sparse. Let us simply denote G = H/C.
(�If part�) It su�ces to consider the case when G is maximum (2, 3)-g-tight. The

proof is done by induction on |V (G)|. For |V (G)| = 1, G consists of single vertex

with an unbalanced loop. Then O(G, φ, p̃) consists of a nonzero row, which implies

that O(G, φ, p̃) is row-independent.
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For |V (G)| > 1, by Theorem 6.3.4, G can be built up from a C-gain graph with

one vertex and an unbalanced loop with a sequence of 0-extensions, 1-extensions,

and loop-1-extensions. Thus, there is a maximum (2, 3)-g-tight graph (G′, φ′) from

which (G, φ) is constructed by a 0-extension, 1-extension, or loop-1-extension. By

induction, there is a p′ such that O(G, φ′, p′) is row independent. Thus, Lemma 6.5.1

implies that there is a p such that O(G, φ, p) is row independent, which in turn

implies that O(G, φ, q) is row independent for all C-generic q.
(�Only-if part�) The necessity is based on Lemma 6.4.3. Suppose that O(G, φ, p̃)

is row independent. Recall that we have seen the exact value of dim isoC(P ) for

C ⊂ O(R2) and a C-symmetric point set P ⊆ R2 in Example 6.4.1. Since p̃ is

C-generic, we have

iso〈F 〉v(p̃(F )) =

3 (if F is balanced)

1 (otherwise)

for all connected F ⊆ E(G) and v ∈ V (F ), where p̃(F ) = {gp̃(v) : v ∈ V (F ), g ∈ C}.
Therefore, by Lemma 6.4.3, we have

|F | ≤
∑

F ′∈C(F )

{2|V (F ′)| − iso〈F ′〉v(p̃(F
′))} ≤ 2|V (F )| −

3 (if F is balanced)

1 (otherwise)

for all F ⊆ E(G). Therefore, (G, φ) is (2, 3)-g-sparse. �

6.6 Combinatorial characterization of symmetry-forced

rigidity with Dk-symmetry for odd k

In the previous sections we gave a constructive characterization of (2, 3)-g-sparse

graphs and their realizations as symmetry-forced rigid frameworks in the plane with

cyclic point group symmetry. We next move to non-cyclic point groups, that is, di-

hedral groups of order 2k that we denote by Dk (or simply by D). The corresponding
matroid, that we construct in the next subsection, is slightly di�erent from the (2, 3)-

g-count matroid, as we need to take into account the fact that the underlying group

is not cyclic.

6.6.1 D-sparsity

Let (G, φ) be a D-gain graph with underlying graph G = (V,E). We de�ne a

function fD : 2E → Z by

fD(X) = 2|V (X)| − 3 + β(X) (X ⊆ E)
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where

β(X) =


0 (if X is balanced)

2 (if X is unbalanced and cyclic)

3 (otherwise),

and de�ne a class of sparse graphs determined by fD as follows.

De�nition 6.6.1 Let (G, φ) be a D-gain graph. An edge set X ⊆ E(G) is called

D-sparse if |F | ≤ fD(F ) for any nonempty F ⊆ X, and it is called D-tight if it is
D-sparse with |X| = fD(X).

(G, φ) is said to be D-sparse if so is E(G), and it is called maximum D-tight if
it is D-sparse with |E(G)| = 2|V (G)|.

By a simple degree of freedom counting argument based on Example 6.4.1 and

Lemma 6.4.3, it is not di�cult to see that the D-sparsity is a necessary condition for

orbit rigidity matrices to be row independent in case of dihedral symmetry. (A formal

proof will be given in Lemma 6.6.12.) To prove the su�ciency, the �rst question is

whether D-sparsity de�nes a collection of independent sets of a matroid. This will

be proved in this subsection.

We will use the following technical lemmas on properties of D-tight sets.

Lemma 6.6.2 Let (G, φ) be a D-sparse graph with G = (V,E) and F ⊆ E be a

D-tight set. Then, the following holds.

(i) If F is cyclic, then F is connected.

(ii) If F is balanced with |F | > 1, then F has neither parallel edges nor loops and

is 2-connected and essentially 3-edge-connected.

Proof. Since G is D-sparse and β is monotone nondecreasing, we have |F | ≤∑
F ′∈C(F ) fD(F ′) ≤ 2|V (F )| − (3 − β(F ))c, where c denotes the number of con-

nected components in F . Hence, if F is not connected and β(F ) < 3, then |F | <
2|V (F )| − 3 + β(F ), implying that F is not D-tight. Therefore if β(F ) < 3 then X

is connected.

Suppose further that F is balanced. Then we have β(X) = 0 for any X ⊆ F .

This means that |X| ≤ f2,3(X) for any nonempty X ⊆ F , and |F | = fD(F ) =

2|V (F )| − 3 = f2,3(F ). In other words, F is independent in the generic 2-rigidity

matroid M(f2,3) of G[F ]. It is known that, in the generic 2-rigidity matroid, an

independent set F with |F | = f2,3(F ) and |F | > 1 has neither parallel edges nor a

loop and is 2-connected and essentially 3-edge-connected (see e.g. [21]). �
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Lemma 6.6.3 Let (G, φ) be a D-sparse graph with G = (V,E). Let X, Y ⊆ E be

D-tight edge sets with X ∩ Y 6= ∅. Then X ∪ Y is D-tight.

Proof. Without loss of generality, assume β(X) ≥ β(Y ).

Let d = 2|V (X∪Y )|−|X∪Y |. Note that X∪Y is D-tight if one of the following
holds: (i) d = 0, (ii) d ≤ 1 and X ∪ Y is cyclic, or (iii) d ≤ 3 and X ∪ Y is balanced.

Let c0 be the number of isolated vertices in the graph (V (X)∩V (Y ), X∩Y ) and c1

be the number of connected components inX∩Y . We have |X| = 2|V (X)|−3+β(X)

and |Y | = 2|V (Y )| − 3 + β(Y ). We also have

|X ∩ Y | ≤
∑

F∈C(X∩Y )

fD(F ) = 2|V (X ∩ Y )| − 3c1 +
∑

F∈C(X∩Y )

β(F )

= 2|V (X) ∩ V (Y )| − 2c0 − 3c1 +
∑

F∈C(X∩Y )

β(F )

≤ 2|V (X) ∩ V (Y )| − 2c0 − 3c1 + β(Y )c1 (6.9)

since β is monotone non-decreasing. Therefore,

d = 2|V (X ∪ Y )| − |X ∪ Y | = 2|V (X ∪ Y )| − (|X|+ |Y | − |X ∩ Y |)

≤ 6− β(X)− β(Y )− 2c0 − 3c1 + β(Y )c1

≤ 3− β(X)− 2c0 − (3− β(Y ))(c1 − 1). (6.10)

Note that c1 ≥ 1 by X ∩ Y 6= ∅ and hence (3− β(Y ))(c1 − 1) ≥ 0.

If β(X) = 3, then (6.10) implies that d = 0 and hence X ∪ Y is D-tight.
Therefore we assume β(X) < 3. Then X and Y are connected by Lemma 6.6.2.

We split the proof into two cases depending on the value of β(X).

(Case 1) If β(X) = 2, then (6.10) implies that d ≤ 1. Since d = 0 implies the D-
tightness of X∪Y , let us assume d = 1 and prove that X∪Y is cyclic. If d = 1, then

the inequalities of (6.9) and (6.10) hold with equalities, and in particular c0 = 0,

c1 = 1 and

|X ∩ Y | = 2|V (X ∩ Y )| − 3 + β(Y ). (6.11)

By c0 = 0 and c1 = 1, the number of connected components in the graph (V (X) ∩
V (Y ), X ∩ Y ) is one. If β(Y ) = 2, then X ∩ Y is unbalanced cyclic by (6.11) and

hence Lemma 6.1.4(3) implies that X ∪ Y is cyclic. If β(Y ) = 0, then Y is balanced

and, again, Lemma 6.1.4(2) implies that X ∪ Y is cyclic. Thus X ∪ Y is D-tight.
(Case 2) If β(X) = 0, then β(Y ) = 0 and we have d ≤ 6−2c0−3c1 by (6.10). By

c1 ≥ 1, we have three possible pairs (c0, c1) = (0, 1), (1, 1), (0, 2). If (c0, c1) = (0, 1),

then d ≤ 3 and Lemma 6.1.4 implies that X ∪ Y is balanced. Thus, X ∪ Y is

a balanced D-tight set. If (c0, c1) = (1, 1) or (c0, c1) = (0, 2), then d ≤ 1 and

Lemma 6.1.5 implies that X ∪ Y is cyclic. Thus, X ∪ Y is a cyclic D-tight set.
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This completes the proof. �

Lemma 6.6.4 Let (G, φ) be a D-gain graph with G = (V,E) and X and Y be

D-tight sets with X ⊆ Y ⊆ E. For e ∈ E \ Y , if fD(X) = fD(X + e), then

fD(Y ) = fD(Y + e).

Proof. Since fD(X) = fD(X + e), the endvertices of e are contained in V (X),

implying V (Y +e) = V (Y ). If X or Y is not cyclic, then we have β(Y ) = β(Y +e) =

3, meaning that fD(Y ) = fD(Y + e).

We hence assume thatX and Y are cyclic, and they are connected by Lemma 6.6.2.

Take a spanning tree T in G[Y ] such that X ∩ T is a spanning tree of G[X]. By

Proposition 6.1.2, there is an equivalent gain function φ′ to φ such that φ′(f) = id

for f ∈ T . By Lemma 6.1.3, there is a cyclic subgroup C of D such that φ′(f) ∈ C for
every f ∈ Y , where C is the trivial group if Y is balanced. Since fD(X) = fD(X+ e)

and X ⊆ Y , we have φ′(e) ∈ C̄, and hence fD(Y ) = fD(Y + e) holds. �

We are ready to prove that the family of D-sparse edge subsets is a family of

independent sets of a matroid on ground-set E. We shall also characterize the rank

function of this matroid.

Theorem 6.6.5 Let (G, φ) be a D-gain graph with G = (V,E) and I be the family

of all D-sparse edge subsets in E. ThenMD(G, φ) = (E, I) is a matroid on ground-

set E. The rank of a set E ′ ⊆ E inMD(G, φ) is equal to

min

{
t∑
i=1

fD(E ′i) : {E ′1, . . . , E ′t} is a partition of E ′

}
.

Proof. For a partition P = {E ′1, . . . , E ′t} of E ′ ⊆ E, we denote val(P) =
∑t

i=1 fD(E ′t).

We shall check the following independence axiom of matroids: (I1) ∅ ∈ I; (I2) for
any X, Y ⊆ E with X ⊆ Y , Y ∈ I implies X ∈ I; (I3) for any E ′ ⊆ E, maximal

subsets of E ′ belonging to I have the same cardinality.

I obviously satis�es (I1) and (I2). To see (I3), let E ′ ⊆ E and let F ⊆ E ′ be a

maximal subset of E ′ in I. Since F ∈ I we have |F | ≤ val(P) for all partitions P of

E ′. We shall prove that there is a partition P of E ′ with |F | = val(P), from which

(I3) follows.

Let J = (V, F ) denote the subgraph with the edge set F . Consider the family

{F1, F2, . . . , Ft} of all maximal D-tight sets in J . Since each edge f ∈ F forms a

D-tight set, ∪ti=1Fi = F holds. Since Fi ∩ Fj = ∅ for every pair 1 ≤ i < j ≤ t

by Lemma 6.6.3 and the maximality, PF = {F1, F2, . . . , Ft} is a partition of F and

|F | = val(PF ) follows.
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Based on PF , we construct a partition P of E ′ with val(P) = val(PF ) = |F |.
Consider an edge (u, v) = e ∈ E ′ − F . Since F is a maximal subset of E ′ in I we

have F + e 6∈ I. Hence there must be a tight set Xe in J with u, v ∈ V (Xe) and

Xe + e 6∈ I. Xe ⊆ Fi for some 1 ≤ i ≤ t. Choose such an Fi for every e ∈ E ′ − F
and de�ne Ei = Fi ∪ {e : Fi was chosen for e}. Clearly P = {E1, E2, . . . , Et} is a
partition of E ′. By Lemma 6.6.4, fD(Fi) = fD(Ei) for every 1 ≤ i ≤ t and hence

val(P) = val(PF ) = |F |. �

The matroid which was introduced and denoted byMD(G, φ) in Theorem 6.6.5

is called the D-sparsity matroid of (G, φ).

6.6.2 Constructive characterization of maximum D-tight graphs

We now present a constructive characterization of maximum D-tight graphs.

Notice that the average vertex degree in a maximum D-tight graph (G, φ) is four,

which means that G has a vertex of degree at most 3 if and only if G is not 4-regular.

Thus we shall take a special care of 4-regular D-sparse graphs.

0-extension, 1-extension, and loop-1-extension

Before looking at 4-regular graphs and vertices of degree four, we consider the

0-extension, 1-extension, and loop-1-extension operations. Recall that the corre-

sponding inverse operations are called reductions. A reduction is admissible if the

resulting graph is D-sparse.

Lemma 6.6.6 Let (G, φ) be a D-sparse graph with G = (V,E). Applying a 0-

extension, 1-extension or loop-1-extension to G results in a D-sparse graph with

|V |+ 1 vertices and |E|+ 2 edges.

Conversely, for any vertex v of degree 2 or 3, the 0-reduction, loop-1-reduction,

or some of the 1-reductions at v is admissible if |V | ≥ 2.

Proof. The proof of the �rst claim is exactly the same as the proof of Lemma 6.3.1.

(Indeed, we just need to change 2α(F ) with β(F ) in the proof of Lemma 6.3.1.)

To see that some reduction is admissible at a vertex v of degree three, we just

need to observe that each circuit of M(g2,3) appearing in the proof of Claim 6.3.3

is also a circuit in MD(G, φ). We can thus apply exactly the same proof as in

Lemma 6.3.2 to conclude that some reduction is admissible at v. �
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Figure 6.6: Loop-2-extensions.

2-extension and loop-2-extension

Besides 0-extensions, 1-extensions and loop-1-extensions, we shall introduce 2-

extensions and loop-2-extensions for constructing 4-regular D-sparse graphs.
In a 2-extension, we take two existing edges e = (v1, v2) and f = (v3, v4) and

pinch them by inserting a new vertex v. More precisely, a 2-extension removes e and

f , inserts a new vertex v with four new edges, ei from vi to v for each i = 1, . . . , 4. The

gain function φ is extended on E ∪{e1, . . . , e4} so that φ(e1) ·φ(e2)
−1 = φ(e), φ(e3) ·

φ(e4)
−1 = φ(f) and it is locally D-sparse, i.e., {e1, . . . , e4} is D-sparse. Depending

on the multiplicity of the vi's we have seven cases as shown in Figure 6.5.

In a loop-2-extension, we remove an existing edge e = (v1, v2), insert a new vertex

v, a new loop l at v and two new edges, ei from vi to v for each i = 1, 2. φ is extended

on E ∪ {e1, e2, l} so that φ(e1) · φ(e2)
−1 = φ(e), φ(l) 6= id and it is locally D-sparse.

Depending on whether e is a loop or not, we have two cases as shown in Figure 6.6.

The following lemma shows that these operations preserve D-sparsity.

Lemma 6.6.7 Let (G, φ) be a D-sparse graph. Then, any D-gain graph (G′, φ′)

obtained from G by a 2-extension or a loop-2-extension is D-sparse.
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Proof. Suppose that (G′, φ′) is obtained by a 2-extension. Let us denote the removed

edges by e and f and the new edges by e1, . . . , e4 as above. Suppose that there

is F ⊆ E(G′) that violates the D-sparsity condition. Let F ′ = F \ {e1, . . . , e4}.
Since {e1, . . . , e4} satis�es the D-sparsity condition, F ′ 6= ∅. Let us add e to F ′

if {e1, e2} ⊆ F and add f to F ′ if {e3, e4} ⊆ F . Observe that |F ′| ≥ |F | − 2,

|V (F )| ≥ |V (F ′)| + 1 and β(F ) ≥ β(F ′). Since |F | > fD(F ), we obtain |F ′| ≥
|F |−2 > fD(F )−2 = 2|V (F )|−3+β(F )−2 ≥ 2|V (F ′)|−3+β(F ′) = fD(F ′). This

contradicts the D-sparsity of G since ∅ 6= F ′ ⊆ E(G). Therefore (G′, φ′) is D-sparse.
In the same manner, it can be easily checked that a loop-2-extension also pre-

serves D-sparsity. �

We shall de�ne the inverse moves of these operations. Recall that, for a vertex v

and two incoming non-loop edges e1 = (u, v) and e2 = (w, v), we denote by e1 · e−12

a new edge from u to w with gain φ(e1) · φ(e2)
−1.

Let v be a vertex of degree four, not incident to a loop, and ei = (vi, v) for

i = 1, . . . , 4 be the edges incident to v, assuming that all of them are oriented to v.

The 2-reduction (at v) deletes v and adds one of {e1 · e−12 , e3 · e−14 }, {e1 · e−13 , e2 · e−14 }
and {e1 · e−14 , e2 · e−13 }. We sometimes refer to a speci�c one: the 2-reduction at v

through (ei, ej) and (ek, el) deletes v and adds {ei · e−1j , ek · e−1l }.
Let v be a vertex of degree four, incident to a loop l, and ei = (vi, v) for i = 1, 2

be the non-loop edges incident to v, assuming that all of them are oriented to v.

The loop-2-reduction (at v) deletes v and adds e1 · e−12 .

A 2-reduction or a loop-2-reduction is said to be admissible if the resulting graph

is D-sparse.

Base graphs

Our main theorem asserts that these operations are su�cient to construct all

4-regular D-sparse graphs from certain classes of D-sparse graphs. Here, the classes
can be categorized into three groups: the �rst group includes special small graphs

as in the conventional constructive characterizations, the second group is a class of

graphs, which are obtained from cycles by duplicating each edge, and the third one

consists of near-cyclic 4-regular graphs.

The �rst group consists of three types of special D-tight graphs, called trivial

graphs, fancy triangles, and fancy hats. A trivial graph is a D-sparse graph with a

single vertex and with two loops as shown in Figure 6.7(a). The gain function is

assigned so that the gains of two loops generate a non-cyclic group.

A fancy triangle is a D-gain graph whose underlying graph is obtained from
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a triangle by adding a loop to each vertex, as shown in Figure 6.7(b). The gain

function is assigned so that it is D-sparse and the triangle is balanced.

A hat is a graph obtained from K2,3 by adding an edge to the class of cardinality

two, and the fancy hat is a D-gain graph obtained from the hat by adding a loop to

each degree two vertex, as shown in Figure 6.7(c). The gain function is assigned so

that it is D-sparse and the hat is balanced.

(a)

idid

id

g1

g2g3

(b)

id

id id

id id

id id

g1

g2

g3

(c)

Figure 6.7: Special graphs: (a) a trivial graph, (b) a fancy triangle, and (c) a fancy

hat.

The second group consists ofD-sparse graphs whose underlying graphs are double
cycles, where, for n ≥ 2, the double cycle C2

n is de�ned as the graph obtained from

the cycle on n vertices by replacing each edge by two parallel edges as shown in

Figure 6.8. As we will see later, key properties of this group depend on the parity

of k of the underlying dihedral group Dk.

(a) (b)
(c)

Figure 6.8: Double cycles: (a)C2
2 , (b)C

2
3 , (c)C

2
6 .

The third group consists of near-cyclic graphs, which, intuitively speaking, are

the D-tight graphs closest to (2, 3)-g-tight graphs. More precisely, we say that a

D-sparse graph (G, φ) is near-cyclic if there is an edge e such that (G − e, φ) is

cyclic.

The following lemma shows how to construct near-cyclic graphs.

Lemma 6.6.8 Let (G, φ) be a (2, 3)-g-sparse D-gain graph with G = (V,E), and

suppose that there is a cyclic subgroup C of D such that φ(e) ∈ C for all e ∈ E. If
we add a new edge e having a gain in D \ C̄, then (G+ e, φ) is D-sparse.
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Constructive characterizations

We are ready to state our constructive characterization of 4-regular D-sparse
graphs. We say that a 4-regular D-sparse graph is a base graph if it is a trivial

graph, a fancy triangle, a fancy hat, or a near-cyclic graph.

Theorem 6.6.9 Let (G, φ) be a D-gain graph. Then, (G, φ) is 4-regular and D-
sparse if and only if it can be built up from a disjoint union of base graphs and

D-sparse double cycles by a sequence of 2-extension and loop-2-extension operations.

Combining Theorem 6.6.9 and Lemma 6.6.6, we obtain the following:

Theorem 6.6.10 Let (G, φ) be a D-gain graph. Then, (G, φ) is maximum D-tight if
and only if it can be built up from a disjoint union of base graphs and D-sparse double
cycles by a sequence of 0-extension, 1-extension, loop-1-extension, 2-extension and

loop-2-extension operations.

The theorems can be strengthened if k is odd, in which case every Dk-sparse
double cycle can be reduced to a trivial graph.

Theorem 6.6.11 Let Dk be a dihedral group with odd k. Then a Dk-gain graph

(G, φ) is maximum Dk-tight if and only if it can be built up from a disjoint union of

base graphs by a sequence of 0-extension, 1-extension, loop-1-extension, 2-extension

and loop-2-extension operations.

6.6.3 The characterization

In this section we discuss our combinatorial characterization of symmetry-forced

in�nitesimal rigidity with dihedral symmetry. We begin with a necessary condition

based on Lemma 6.4.3.

Lemma 6.6.12 Let Dk be a dihedral group with k ≥ 2, and (H, p) be a generic

(Dk, ρ)-symmetric framework with a free action ρ. If (H, p) is symmetry-forced in-

�nitesimally rigid, then the quotient gain graph contains a spanning maximum Dk-
tight subgraph.

Theorem 6.6.13 Let Dk be a dihedral group with odd k ≥ 3, and (H, p) be a generic

(Dk, ρ)-symmetric framework with a free action ρ. Then (H, p) is symmetry-forced

in�nitesimally rigid if and only if the quotient gain graph contains a spanning max-

imum Dk-tight subgraph.
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Necessity follows from Lemma 6.6.12. Therefore, by Theorem 6.4.2, it su�ces to

prove that, for a maximum Dk-tight graph (G, φ), there is a mapping p : V (G)→ R2

such that O(G, φ, p) is row independent.

By Theorem 6.6.11, (G, φ) can be constructed from a disjoint union of base

graphs by 0-extension, 1-extension, loop-1-extension, 2-extension, and loop-2-extension

operations. Therefore, what we have to prove is that (i) the orbit rigidity matrix

of each base graph is row independent and (ii) each extension preserves the row

independence of the orbit rigidity matrix by extending p appropriately. (i) will be

solved in Lemma 6.6.14 whereas (ii) will be solved in Lemmas 6.6.15 and 6.6.16.

Note that there is no parity condition in these lemmas.

Lemma 6.6.14 Let (G, φ) be a base graph. Then, there is a mapping p : V (G)→ R2

such that O(G, φ, p) is row independent.

The next two lemmas show that loop-2-extensions and 2-extensions preserve the

independence of rigidity matrices.

Lemma 6.6.15 Let (G, φ) be a maximum Dk-tight graph with k ≥ 2 and (G′, φ′)

a maximum Dk-tight graph obtained from (G, φ) by a loop-2-extension. If there is

a mapping p : V (G) → R2 such that O(G, φ, p) is row independent, then there is a

mapping p′ : V (G′)→ R2 such that O(G′, φ′, p′) is row independent.

Lemma 6.6.16 Let (G, φ) be a maximum Dk-tight graph with k ≥ 2 and (G′, φ′) a

maximum Dk-tight graph obtained from (G, φ) by a 2-extension. If there is a mapping

p : V (G) → R2 such that O(G, φ, p) is row independent, then there is a mapping

p′ : V (G′)→ R2 such that O(G′, φ′, p′) is row independent.

Combining Theorem 6.6.11, Lemma 6.5.1, Lemma 6.6.12, Lemma 6.6.14, Lemma 6.6.15,

and Lemma 6.6.16, we can now complete the proof of Theorem 6.6.13.
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Chapter 7

Lifting symmetric pictures to

polyhedral scenes

Scene analysis is concerned with the reconstruction of d-dimensional objects,

such as polyhedral surfaces, from (d − 1)-dimensional pictures (i.e., projections of

the objects onto a hyperplane). Given a (d − 1)-dimensional picture the task is to

assign a dth coordinate to every vertex in the picture such that every face lies in a

hyperplane of the d-dimensional space. Such an assignment will always exist as we

can choose the last coordinates in such a way that all the vertices lie in the same

hyperplane. Two fundamental questions of scene analysis are that can we �nd an

assignment with not all the faces in the same hyperplane or with no two faces in the

same hyperplane?

In the generic setting Whiteley [64] answered both of these questions for every

d ≥ 2. In this chapter we investigate the impact of symmetry on the lifting properties

of 2-dimensional pictures.

7.1 Basic de�nitions

We �rst give the basic de�nitions of scene analysis.

A (polyhedral) incidence structure S is an abstract set of vertices V , an abstract

set of faces F , and a set of incidences I ⊆ V × F .
A (d− 1)-picture is an incidence structure S together with a corresponding map

r : V → Rd−1, ri = (xi, yi, . . . , wi), and is denoted by S(r).

A d-scene S(p, P ) is an incidence structure S = (V, F ; I) together with a pair

of maps, p : V → Rd, pi = (xi, . . . , wi, zi), and P : F → Rd, P j = (Aj . . . , Cj, Dj),

such that for each (i, j) ∈ I we have Ajxi + . . . + Cjwi + zi + Dj = 0. (We assume

that no hyperplane is vertical, i.e., is parallel to the vector (0, . . . , 0, 1)T .)
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A lifting of a (d−1)-picture S(r) is a d-scene S(p, P ), with the vertical projection

Π(p) = r. That is, if pi = (xi, . . . , wi, zi), then ri = (xi, . . . , wi) = Π(pi).

A lifting S(p, P ) is trivial if all the faces lie in the same plane. Further, S(p, P )

is folded (or non-trivial) if some pair of faces have di�erent planes, and is sharp if

each pair of faces sharing a vertex have distinct planes. A picture is called sharp if

it has a sharp lifting. Moreover, a picture which has no non-trivial lifting is called

�at (or trivial). A picture with a non-trivial lifting is called foldable.

The lifting matrix for a picture S(r) is the |I| × (|V | + d|F |) coe�cient matrix

M(S, r) of the system of equations for liftings of a picture S(r). For each (i, j) ∈ I
the corresponding row is:

vi
Fj︷ ︸︸ ︷

(i, j) 0 . . . 0 1 0 . . . 0 0 . . . 0 ri 1 0 . . . 0

︸ ︷︷ ︸
|V |

︸ ︷︷ ︸
d|F |

Theorem 7.1.1 [64, 68] A generic picture of S has independent rows in the lifting

matrix if and only if for all non-empty subsets I ′ of incidences, we have |I ′| ≤
|V ′|+ d|F ′| − d.

Theorem 7.1.2 [64, 68] A generic picture of an incidence structure S = (V, F ; I)

with at least two faces has a sharp lifting, unique up to lifting equivalence, if and

only if |I| = |V | + d|F | − (d + 1) and |I ′| ≤ |V ′| + d|F ′| − (d + 1) for all subsets I ′

of incidences with at least two faces.

Note that it follows from Theorem 7.1.1 that a generic picture of an incidence

structure S = (V, F ; I) is minimally �at, i.e. �at with independent rows in the lifting

matrix, if and only if |I| = |V |+d|F |−d and |I ′| ≤ |V ′|+d|F ′|−d for all non-empty

subsets I ′ of incidences. When S is (d+ 1)-uniform then this condition is equivalent

to the (1, d)-tightness of S.

As it will be more convenient to talk about hypergraphs instead of incidence

structures from now on we will use notation H = (V, F ) instead of S = (V, F ; I).

In this chapter we will prove the counterpart of Theorem 7.1.1 in the symmetric

setting for d = 2 and point group C3 for 4-uniform hypergraphs. Let C3 denote

the three-fold rotation. A vertex v of H is said to be �xed by C3 if C3v = v.

Similarly, a face f = {v1, . . . , vm} of H is said to be �xed by C3 if C3f = f , i.e., if

C3({v1, . . . , vm}) = {v1, . . . , vm}. Finally, an incidence (i, j) of H is said to be �xed

by C3 if C3((i, j)) = (i, j). V3, F3, I3 denotes the set of �xed vertices, faces and

incidences, respectively. In [49] Schulze showed that if a C3-symmetric symmetry-

generic picture of a 4-uniform hypergraph with |E| = |V | − 3 is minimally �at then
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H is (1, 3)-tight and |I3| = |V3| holds. The main result of this chapter is that these

two necessary conditions are su�cient for the existence of a minimally C3-symmetric

�at symmetry-generic picture:

Theorem 7.1.3 A C3-symmetric and symmetry-generic picture of a 4-uniform hy-

pergraph H with |E| = |V |−3 has independent rows in the lifting matrix if and only

if H is (1,3)-tight and |V3| = |I3|.

7.2 A constructive characterization for C3-symmetric

4-uniform (1,3)-tight hypergraphs

Recall that the j-extension operation at vertex v picks j hyperedges e1, e2, ..., ej

incident with v, adds a new vertex z to H as well as a new hyperedge e of size

k + 1 incident with both v and z, and replaces ei by ei − v + z for all 1 ≤ i ≤ j.

The j-reduction operation at vertex z on neighbour v deletes e1 and replaces ei by

ei − z + v for all 2 ≤ i ≤ j + 1.

In this section we show that if H is a 4-uniform C3-symmetric (1,3)-tight hyper-

graph with at least seven vertices and with |I3| = |V3|, then we can always reduce a

symmetric set of three vertices such that the resulting smaller hypergraph H ′ is also

C3-symmetric and (1,3)-sparse also satisfying |I3| = |V3|. Then assuming that H ′ has

an independent C3-symmetric realization we also prove that we can �nd positions

for the vertices of H that gives an independent picture.

Suppose that H is a 4-uniform C3-symmetric hypergraph with the following prop-

erties:

H is (1, 3)-tight; (7.1)

|I3| = |V3|; (7.2)

|V | > 6. (7.3)

Since |V3| ≤ 1 7.2 implies that there are two cases:

1. |I3| = |V3| = 0;

2. |I3| = |V3| = 1.

In this section v0 denotes the �xed vertex and f0 denotes the �xed hyperedge

(note that v0 and f0 may not exist).
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7.2.1 Preliminaries

We will use one of the key results from Chapter 5:

Theorem 5.2.5 Let H = (V,E) be a (1, 3)-tight 4-uniform hypergraph and let z ∈ V
be a vertex with d(z) = j for some 1 ≤ j ≤ 3. Then there is an admissible j-reduction

at z.

We shall also use the following two lemmas:

Lemma 7.2.1 If H is a (1, 3)-sparse 4-uniform hypergraph then H has at least four

vertices with degree at most three. Furthermore if there are exactly four vertices with

degree at most three then they must have degree one.

Lemma 7.2.2 The def function is submodular, that is def(X) + def(Y ) ≥ def(X ∪
Y ) + def(X ∩ Y ).

The next lemma follows immediately from Lemma 7.2.2.

Lemma 7.2.3 def(C3X) ≤ 3def(X)− def(X ∩ C3X)− def(C2
3X ∩ (X ∪ C3X)).

Lemma 7.2.4 Suppose that X ⊆ V is such that def(X ∩ C3X) ≥ def(X) and

def(Z) ≥ def(X) for any Z ⊇ X. Then def(X) = def(C3X).

Proof. By the symmetry of H, Lemma 7.2.2 and the conditions of the lemma we

get:

2def(X) = def(X) + def(C3X) ≥ def(X ∪ C3X) + def(X ∩ C3X) ≥ 2def(X).

Which implies that def(X ∪ C3X) = def(X). Furthermore

2def(X) = 2def(X ∪ C3X) = def(X ∪ C3X) + def(C3X ∪ C2
3X) ≥

≥ def(C3X) + def((X ∪ C3X) ∩ (C3X ∪ C2
3X)) ≥ 2def(X)

from which def(X) = def(C3X) follows. �

Lemma 7.2.5 def(C3X) ≡ 0, 1 mod 3 for every X ⊆ V .

Proof. By de�nition |C3X| − 3 − i(C3X) = def(C3X). The C3-symmetry implies

|C3X| ≡ 0, 1 mod 3 and i(C3X) ≡ 0, 1 mod 3. But i(C3X) ≡ 1 mod 3 implies

|C3X| ≡ 1 mod 3 hence def(C3X) ≡ 2 mod 3 is not possible. �
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7.2.2 Reducing low degree vertices

In this section we will de�ne symmetric reductions for C3-symmetric hypergraphs.

We will also prove that there is always a C3-symmetric reduction that preserves

sparsity.

Let u ∈ V be a vertex not incident with f0. Suppose that d(u, v) = 1 for some

v ∈ V . Reduce u on v then reduce C3u on C3v and then C2
3u on C2

3v. This operation

(that consists of three successive reductions) will be called a C3-symmetric reduction

or simply a symmetric reduction if the group is clear from context. We will say

that we reduce C3u on C3v. If the resulting hypergraph H ′ is (1,3)-sparse then the

symmetric reduction is called admissible.

Lemma 7.2.6 Let H be a C3-symmetric 4-uniform hypergraph and u ∈ V be a

vertex not incident with f0. Hypergraph H
′ obtained with a C3-symmetric reductions

is C3-symmetric.

Proof. It su�ces to show that for every hyperedge f ∈ E(H ′) we have C3f, C
2
3f ∈

E(H ′). This is clearly true for every hyperedge in E(H) ∩ E(H ′).

If an edge f1 ∈ E(H) is incident with both u and v then f1, C3f1, C
2
3f1 are deleted

during the reductions. If edge f2 ∈ E(H) is incident with u but is nor incident with

v then in f2 u (C3u and C2
3u) is replaced with v (C3v and C2

3v, respectively)and is

not di�cult to see that C3f
′
2, C

2
3f
′
2 ∈ E(H ′) holds. �

The main result of this section is that we can always �nd a symmetric set of

three vertices for which an admissible symmetric reduction exists. Our �rst task is

to �nd a vertex u with d(u) ≤ 3 that is not incident to f0. By Lemma 7.2.1 the

vertices of f0 are the only vertices with degree at most four, if and only if they all

have degree one. But then H has four vertices only. Hence we can always �nd an

appropriate u if |V | > 6.

Lemma 7.2.7 If d(C3u) = 3 then there is an admissible symmetric reduction at

C3u.

Proof. The result of an arbitrary symmetric reduction is the deletion of C3u together
with the incident hyperedges. This reduction is clearly admissible. �

Blockers for symmetric reductions

From now on we will assume that d(C3u) = 6 or 9 from which 2 ≤ d(u) ≤ 3

follows. We will denote the hyperedges incident with u by e1, e2 (and e3 if d(u) = 3)

and we will also use notation e−j = ej − u.
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Let a1, . . . , al denote the neighbors of u in V − C3u for which d(u, ai) = 1,

1 ≤ i ≤ l. Note that d(u) ≤ 3 implies l ≥ 1. We will also use notation N1(u) =

{a1, . . . , al}. The task is to �nd an index i for which reducing C3u on C3ai gives a
(1,3)-tight hypergraph. The reduced hypergraph H ′ is not (1,3)-sparse if and only

if there is a set of hyperedges F ⊆ E(H ′) − E(H) for which there is a vertex set

V (F ) ⊆ X ⊆ V (H)−C3u with def(X) ≤ |F |−1. We will call such a set X a blocker

for the symmetric reduction. Now we describe the blockers for symmetric reductions.

The blocker of ai will be denoted by Xi.

We will divide blockers into three groups to simplify discussion. Let Xi be a

blocker for the symmetric reduction of C3u on C3ai. We can assume that ai ∈ Xi

because C3ai ∩Xi 6= ∅ and if ai 6∈ Xi then we can replace Xi with C3Xi or C2
3Xi to

obtain a blocker that contains ai.

Vertices u and C3u may or may not share a hyperedge. First suppose that there

is no hyperedge incident to both u and C3u. In this case we can not reduce C3u on

C3ai if and only if one of the three following cases occurs.

1. The reduction of u on ai has a blocker not containing C3u and C2
3u. We will

call these type 1 blockers.

2. Suppose that the reduction of u on ai has no type 1 blocker and the resulting

hypergraph is G1. If the reduction of C3u on C3ai in G1 has a blocker that

does not contain C2
3u then such a blocker will be called a type 2 blocker.

3. If there is no type 1 or type 2 blocker then let the resulting hypergraph be G2.

If the reduction of C2
3u on C2

3ai in G2 has a blocker then that blocker is called

a type 3 blocker.

It follows from the de�nitions of type 1, 2 and 3 blockers that if X is a type

2 (or type 3) blocker then X must contain the vertex set of at least one (at least

two) previously reduced hyperedge. Consider �rst case d(u) = 2. In this case there

are three di�erent types of blockers. Let et for 1 ≤ t ≤ 2 be the edge not incident

with ai. If Xi is type 1 then def(Xi) = 0 and e−t + ai ⊆ Xi. If Xi is type 2 then

def(Xi) = 1 and (e−t + ai)∪C3(e
−
t + ai) ⊆ Xi while if Xi is type 3 then def(Xi) = 2

and C3(e−t + ai) ⊆ Xi.

Now suppose that d(u) = 3. This implies that d(C3u) = 9. To simplify notation

we will assume that ai ∈ e1.
If Xi is type 1 then def(Xi) = 0 or 1. In the former case e−t + ai ⊆ Xi and in the

latter case e−1 ∪ e−2 + ai ⊆ Xi for some 2 ≤ t ≤ 3.

If Xi is type 2 then 1 ≤ def(Xi) ≤ 3. ai, C3ai ∈ Xi and Xi contains at least one

of sets e−2 and e−3 and at least one of C3e
−
2 and C3e

−
3 and contains at least def(Xi)+1
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of these four vertex sets. There are two kinds of type 2 blockers that will play an

important role in the proofs. The �rst one is where def(Xi) = 1 and e−t ∪C3e
−
t ⊆ Xi

for some 2 ≤ t ≤ 3. We will call such an Xi a type 2a blocker. If def(Xi) = 1 and

e−t ∪ C3e
−
s ⊆ Xi for {s, t} = {2, 3} then Xi is a type 2b blocker.

And �nally, if Xi is type 3 then 2 ≤ def(Xi) ≤ 5. C3ai ⊆ Xi and Xi contains at

least one of sets e−2 and e−3 , at least one of C3e
−
2 and C3e

−
3 and at least one of C2

3e
−
2

and C2
3e
−
3 . Xi contains at least def(Xi) + 1 of these six vertex sets.

Now suppose that d(u) = 3 and u and C3u share an edge. d(u) ≤ 3 implies that

u and C3u cannot share more than one edge. In this case instead of e1, e2, e3 we

will use a di�erent notation for the edges incident to u. Let f be the unique edge

incident to both u and C3u, and so the edges incident to u are f, C3f, g for some

g ∈ F . We will use notation f− = f − u − C3u and g− = g − u. If f− ∩ C3f
− = ∅

then (f− ∪ C3f
−) ∩ N1(u) 6= ∅ and in this case we will reduce C3u on C3ai for

some ai ∈ f− ∪ C3f
−. If f− ∩ C3f

− 6= ∅ then either f = {u,C3u,w,C3w} or

f = {u,C3u,w, v0} for some w ∈ V − v0. In this case g ∩ N1(u) 6= ∅ and we will

reduce C3u on C3ai for some ai ∈ g−.
We will apply the same method as in the case before, that is reducing u on some

of its neighbors ai ∈ N1(u) then reducing C3u on C3ai and �nally C2
3u on C2

3ai. Note

that the �rst reduction is a 2-reduction but the other ones may be 1-reductions. In

either case this sequence of the three operations results in adding exactly three

hyperedges to H − C3u in a symmetric way. If ai ∈ f− then let hi = g− + ai and if

ai ∈ g− then let hi = f− + ai + C3ai. The three new hyperedges are C3hi.
If the reduction is not admissible then again we have three types of blockers.

Xi ⊆ V − C3u is a blocker for ai if one of the following holds:

1. hi ⊆ Xi and def(Xi) = 0;

2. hi ∪ C3hi ⊆ Xi and def(Xi) = 1;

3. C3hi ⊆ Xi and def(Xi) = 2.

If u,C3u share an edge then we will call these blockers type 1, 2 and 3, respectively.

We shall also use the following property of (1,3)-sparse symmetric hypergraphs

throughout this section. Let U ⊆ V − C3u be a vertex set. If U + u spans k edges

incident with u then def(U) ≥ k − 1 and def(C3U) ≥ 3(k − 1) for 2 ≤ k ≤ 3. We

will call this the (∗) property.
From now on we will suppose that ai has a blocker Xi for every 1 ≤ i ≤ l and

Xi will be a blocker with the smallest possible de�ciency among blockers of ai. Note

that it follows from the de�nition of type 1, 2 and 3 blockers that if Xi is type h

then there is no type k blocker for ai with k < h.
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Case d(u) = 2 and d(C3(u)) = 6

Lemma 7.2.8 If d(C3u) = 6 and d(u) = 2 then there is an admissible symmetric

reduction at C3u.

Proof. Suppose for a contradiction that there is no symmetric reduction at C3u.
Then there is a blocker Xi for every ai.

First we will show that every Xi is type 1 or type 2. Suppose for a contradiction

that Xi is type 3. By our assumption def(Y ) ≥ 2 for every Y ⊇ C3Xi and def(Xi ∩
C3Xi) ≥ 2 and hence we can use Lemma 7.2.4. We get that def(C3Xi) = 2 which

contradicts Lemma 7.2.5 hence Xi is type 1 or type 2 as we claimed.

Now suppose that Xi is type 2 for some 1 ≤ i ≤ l. If Xi ∩ C3Xi is tight then ai

has a type 1 blocker which is not possible, hence we must have def(Xi ∩C3Xi) ≥ 1.

We can use again Lemma 7.2.4 to obtain def(C3Xi) = 1.

By Theorem 5.2.5 it is not possible that every blocker is type 1. Therefore we can

assume that X1 is type 2. Assume further that a1 ∈ e1. Suppose �rst that Xj is type

1 for every aj ∈ e2. Then
⋃
aj∈e2 Xj is a tight set by Lemma 7.2.2 and contains every

neighbor of u which contradicts the (∗) property. Hence there must be an a2 ∈ e2
for which X2 is type 2. Consider sets C3X1 and C3X2. def(C3X1) = def(C3X2) = 1

and |C3X1 ∩ C3X2| ≥ 4. This implies def(C3X1 ∪ C3X2) ≤ 2 by Lemma 7.2.2 and so

C3X1 ∪ C3X2 violates sparsity by the (∗) property. This completes the proof. �

Case d(u) = 3 and d(C3(u)) = 9

Claim 7.2.9 Suppose Xi is type 3. Then def(Xi) ≤ 4 and if C3e−t ⊆ Xi for some

1 ≤ t ≤ 3 then def(Xi) ≥ 3.

Proof. Suppose that there is a type 3 blockerXi with def(Xi) = 5 or with C3e−t ⊆ Xi

for some 1 ≤ t ≤ 3 and def(Xi) = 2. In both of these cases we can use Lemma 7.2.4

to deduce def(C3Xi) = def(Xi) which contradicts Lemma 7.2.5. �

The next claim follows easily from Lemma 7.2.4.

Claim 7.2.10 If Xi is a type 2a blocker then def(C3Xi) = 1.

Lemma 7.2.11 Suppose that Y ⊆ V is such that def(C3Y ) ≤ 4 and C3(e−t ∪e−s ) ⊆ Y

for some pair 1 ≤ t, s ≤ 3. If ai 6∈ e−t ∪ e−s then def(C3Y ∪ C3Xi) ≤ 4.

Proof. It su�ces to show that def(C3Y ∪ C3Xi) ≤ 5 because the statement then

follows from Lemma 7.2.5.
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If Xi is type 1 and tight, then we can use Lemma 7.2.2 three times to deduce

def(C3Y ∪C3Xi) ≤ def(C3Y ). If Xi is type 1 with def(Xi) = 1 then def(C3Y ∩Xi) ≥ 1

must hold by the (∗) property. Similarly to the previous case using Lemma 7.2.2 three

times we can get def(C3Y ∪ C3Xi) ≤ def(C3Y ).

IfXi is type 2a then def(C3Xi) = 1 and hence def(C3Y ∪C3Xi) ≤ def(C3Y )+1 ≤ 5

by Lemma 7.2.2. If Xi is type 2b then def(C3Y ∪Xi) ≤ def(C3Y ) + 1. We also have

def((C3Y ∪Xi) ∩ C3Xi) ≥ 1 and def((C3Y ∪Xi ∪ C3Xi) ∩ C2
3Xi) ≥ 1. These imply

def(C3Y ∪ C3Xi) ≤ def(C3Y ∪Xi ∪ C3Xi) ≤ def(C3Y ∪Xi) ≤ def(C3Y ) + 1.

If Xi is not type 1, type 2a or type 2b then def(Xi) ≥ 2 holds.

Claim 7.2.12 If def(Xi) ≥ 2 then def(C3Xi) ≤ 4 holds.

Proof. Again, it su�ces to show that def(C3Xi) ≤ 5. We split the proof into several

cases. In each case we will use Lemma 7.2.3 and the fact that Xi is a blocker with

the smallest de�ciency.

If Xi is type 2 and def(Xi) = 2 then def(C3Xi) ≤ 6− 1− 1. If def(Xi) = 3 then

def(C3Xi) ≤ 9− 2− 2.

Now suppose that Xi is type 3. Suppose �rst that def(Xi) = 2. By the symmetry

and Claim 7.2.9 we can assume that Xi contains the vertices of e
−
t , C3e

−
t , C

2
3e
−
s . Then

def(C3Xi) ≤ 6− 1− 1.

If def(Xi) = 3 then there are two cases. We can assume in the �rst case that Xi

contains C3e−t , e−s while in the second one it contains e−t , e
−
s , C3e

−
s , C

2
3e
−
t . In the �rst

case we have def(C3Xi) ≤ 9− 3− 3 and in the second one def(C3Xi) ≤ 9− 2− 2.

And �nally if def(Xi) = 4 then def(C3Xi) ≤ 12 − 4 − 4. def(Xi) = 5 is not

possible by Claim 7.2.9 and this completes the proof. �

If def(Xi) ≥ 2 then def(C3Xi) ≤ 4 by Claim 7.2.12. In this case def(C3Y ∩C3Xj) ≥
3 follows from the (∗) property. Then by Lemma 7.2.3 def(C3Y ∪ C3Xj) ≤ 4 + 4− 3

and this completes the proof. �

Lemma 7.2.13 Suppose there is a set Y ⊆ V with def(C3Y ) ≤ 4 and C3(e−t ∪e−s ) ⊆
Y for some pair 1 ≤ t, s ≤ 3. Then H is not (1,3)-sparse.

Proof. Using Lemma 7.2.11 we get that def(C3Y
⋃
j:aj∈N1(u)\C3Y C3Xj) ≤ 4 and hence

set C3Y
⋃
j:aj∈N1(u)\C3Y C3Xj violates sparsity by the (∗) property. �

Lemma 7.2.14 def(Xi) ≤ 1 holds for every blocker Xi and if def(Xi) = 1 then Xi

is type 2.
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Proof. Suppose for a contradiction that 2 ≤ def(Xi) for some 1 ≤ i ≤ l. Then

def(C3Xi) ≤ 4 by Claim 7.2.12. Using Claim 7.2.9 we get that C3Xi contains C3e−s
and C3e−t for some pair 1 ≤ s, t ≤ 3. Then using Lemma 7.2.13 we get a contradiction.

For the second part of the statement suppose that Xi is type 1 with def(Xi) = 1.

Suppose ai ∈ e−1 . If Xj is type 1 for every aj ∈ e−1 , i 6= j then it can be seen

easily using Lemma 7.2.2 and the (∗) property that def(
⋃
j:aj∈e−1

Xj) ≤ 1 which is a

contradiction. Hence there is some ak ∈ e−1 with a type 2 blocker Xk. If Xk is type

2a then def(C3Xk) = 1 by Claim 7.2.10 from which def(Ck(Xj ∪ Xk)) ≤ 4 follows

which contradicts Lemma 7.2.13. While if Xk is type 2b then consider set Xj ∪Xk.

def(Xj ∪Xk) ≤ 2 and def((Xj ∪Xk)∩C3(Xj ∪Xk)) ≥ 0 and def((Xj ∪Xk)∪C3(Xj ∪
Xk) ∩ C23(Xj ∪Xk)) ≥ 1. Hence using Lemma 7.2.3 and 7.2.5 def(C3(Xj ∪Xk)) ≤ 4

and again we get a contradiction using Lemma 7.2.13 which completes the proof. �

We have shown so far that every blocker has to be a tight type 1 blocker, a type

2a or a type 2b blocker. We shall also use the following lemma.

Lemma 7.2.15 Suppose that |e−j ∩ e−k | ≥ 1 and e−k ⊆ Xi for some ai ∈ e−j . Then
Xi is not type 2a.

Proof. Suppose for a contradiction that Xi is type 2a. Then def(C3Xi) = 1 by

Lemma 7.2.4. Thus def(C3(Xi ∪ e−j )) ≤ 4 which is a contradiction by Lemma 7.2.13.

�

Now we will show that if there is a blocker Xi of ai for every 1 ≤ i ≤ l then H

cannot be (1, 3)-sparse.

Lemma 7.2.16 If d(u) = 3, u and C3u do not share a hyperedge then there is an

admissible symmetric reduction at C3u.

Proof. Suppose for a contradiction that there is no admissible symmetric reduction

at C3u. Then ai has a blocker for every 1 ≤ i ≤ l. By Lemma 7.2.14 Xi is a tight

type 1 or type 2a or type 2b blocker for every 1 ≤ i ≤ l. By Theorem 5.2.5 there is

a (non-symmetric) admissible reduction at u hence we can assume that a1 has no

type 1 blocker and hence X1 is a type 2 blocker.

Case 1: Suppose �rst that every blocker is either type 1 or type 2a.

Claim 7.2.17 Suppose that Xj is type 1 or type 2a for every aj ∈ e−s and e−s ∪e−t ⊆⋃
aj∈e−s Xj. Then e

−
t 6⊆

⋂
aj∈e−s Xj.
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Proof. Suppose the contrary for a contradiction. If Xi is type 2a for some ai ∈ e−s
then def(C3Xi) ≤ 1 by Claim 7.2.10 and we can easily deduce that def(

⋃
aj∈e−s C3Xj) ≤

3 using Lemma 7.2.2 and then we get a contradiction using Lemma 7.2.11. If Xj is

type 1 for every j then we have def(
⋃
aj∈e−s Xj) ≤ 1 which contradicts sparsity by

the (∗) property. �

We �rst claim that |e−j ∩N1(u)| ≤ 2 for every 1 ≤ j ≤ 3. Suppose for a contradic-

tion that e−1 ∩ (e−2 ∪ e−3 ) = ∅. Then e−1 = {ai, aj, ak} for some triple 1 ≤ i, j, k ≤ l. It

follows from Claim 7.2.17 that Xi∩Xj ∩Xk ⊇ e−t is not possible if t ∈ {2, 3}. Hence
we can assume that Xi + e−2 and Xj + e−3 . Assume Xk ⊇ e−2 . e

−
1 ∩ (e−2 ∪ e−3 ) = ∅

implies |e−2 ∩ N1(u)| ≥ 1 hence am ∈ e−2 for some 1 ≤ m ≤ l. If Xm ⊇ e−1 then we

claim that Xj ∪ Xk ∪ Xm violates sparsity. If Xj, Xk, Xm are type 1 blockers then

Xj ∪ Xk ∪ Xm is tight and hence violates sparsity. If at least one of Xj, Xk, Xm is

type 2a then def(C3(Xj∪Xk∪Xm)) ≤ 3 by Lemma 7.2.2 and the (∗) property which
violates sparsity by Lemma 7.2.11.

Hence Xm ⊇ e−3 for every am ∈ e−2 but this contradicts Claim 7.2.17. We deduce

that |e−j ∩N1(u)| ≤ 2 for every 1 ≤ j ≤ 3 which implies |N(u)| ≤ 7. There is a type

2a blocker hence e−j ∩ e−k = ∅ for some pair 1 ≤ j, k ≤ 3 by Lemma 7.2.15. This

implies |N(u)| ≥ 6.

If |N(u)| = 6 then l ≥ 3. Consider sets X1, X2. X1 is type 2a by our assumption,

hence def(C3X1) = 1 by Claim 7.2.10. If N(u) ⊆ X1∪X2 then |X1∩X2| ≥ 2. Hence if

X2 is type 1 then def(C3(X1∪X2)) ≤ 4 and ifX2 is type 2a then def(C3(X1∪X2)) ≤ 2.

In both cases we get a contradiction. If |N(u)∩ (X1∪X2)| = 5 then |X1∩X2| ≥ 3. If

X2 is type 1 then def(C3(X1∪X2)) = 1 and hence def(C3(N(u)∪X1∪X2)) ≤ 4 while

if X2 is type 2a then def(C3(X1 ∪X2)) ≤ 2 and hence def(C3(N(u)∪X1 ∪X2)) ≤ 5.

These contradict sparsity by the (∗) property.
The remaining case is where |N(u)| = 7 and |e−j ∩N1(u)| ≤ 2 for every 1 ≤ j ≤ 3.

The only possible con�guration is where e−1 ∩e−2 ∩e−3 = ∅ and |e−1 ∩e−2 | = |e−2 ∩e−3 | = 1,

thus |e−2 ∩ N1(u)| = 1 and |e−1 ∩ N1(u)| = |e−3 ∩ N1(u)| = 2. If a1 ∈ e−2 then

we get a contradiction by Lemma 7.2.15. Hence we can assume that a1 ∈ e−1 and

e−3 ⊆ X1. By Claim 7.2.17 there is an aj ∈ e−3 with e−1 ⊆ Xj. If Xj is type 1 then

def(C3(X1 ∪Xj)) ≤ 4 and if Xj is type 2a then def(C3(X1 ∪Xj)) ≤ 2. Both lead to

a contradiction by Lemma 7.2.13.

Case 2: It remains to consider the case where X1 is a type 2b blocker. We can

assume that e−3 ∪ C3e
−
2 ⊆ X1 and a1 ∈ e−1 .

Claim 7.2.18 If Xi is type 2b then Xi ∩ C3Xi = 1.

Proof. Suppose that Xi∩C3Xi ≥ 2 for a type 2b blocker Xi. Then by Lemma 7.2.3
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def(C3Xi) ≤ 3 + 1 + 1 and hence def(C3Xi) ≤ 4 by Lemma 7.2.5. Then we get a

contradiction using Lemma 7.2.11. �

e−2 ∩ e−3 = ∅ by Claim 7.2.18. We �rst claim that there is a vertex a2 ∈ e−2

for which X2 is type 2b. Suppose that Xj is type 1 or type 2a for every vertex in

e−2 ∩N1(u). Then by Claim 7.2.17 there must be an ak ∈ e−2 for which e−3 ⊆ Xk. But

if Xk is type 1 then X1 ∪ Xk is a type 2b blocker for a1 which contradicts Claim

7.2.18 and if Xk is type 2a then def(C3(X1 ∪ Xk)) ≤ 4 which contradicts Lemma

7.2.13. Hence there is a vertex, say a2 ∈ e−2 for which X2 is type 2b. Using a similar

argument we can conclude that there is an a3 ∈ e−3 with a type 2b blocker X3.

Then by Claim 7.2.18 sets e−1 , e
−
2 , e

−
3 are pairwise disjoint hence |N1(u)| = 9. It

also follows from the argument above that every blocker must be type 2b.

Now suppose that e−2 ∪ C3e
−
3 ⊆ X4 for some a4 ∈ e−1 . Then def(X1 ∪ C3X4) ≤ 2

and def((X1 ∪ C3X4) ∩ C3(X1 ∪ C3X4)) ≥ 1. This implies def(C3(X1 ∪X4)) ≤ 4 by

Lemma 7.2.3 which contradicts Lemma 7.2.13. Hence e−3 ∪ C3e
−
2 ⊆ X1 ∩ X4 ∩ X7

with notation e−1 = {a1, a4, a7}.
We can use a similar argument as above if e−3 ∪ C3e

−
1 ⊆ X2 for a2 ∈ e−2 to

deduce def(C3(X1 ∪X2)) ≤ 4 and get a contradiction. Hence e−1 ∪C3e
−
3 ⊆ X2 is the

only possible case. Then consider C3X2∪X1∪C3X4∪C2
3X7 which contains C3N(u).

We will prove that this set violates sparsity. def(X2 ∪ C3X4) ≤ 2 and adding sets

C3X2, C
2
3X7, C

2
3X2 in this order we can easily conclude def(X2 ∪ C3X4 ∪ C3X2 ∪

C2
3X7 ∪ C2

3X2) ≤ 5 because each set intersects the union of the previous ones in

at least three vertices. e−3 + a1 ⊆ (X2 ∪ C3X4 ∪ C3X2 ∪ C2
3X7 ∪ C2

3X2) ∩X1 hence

def(C3X2 ∪X1 ∪ C3X4 ∪ C2
3X7) ≤ 5. In each case we got a contradiction hence we

can always perform a symmetric reduction as we claimed. �

Case d(u) = 3 and d(C3(u)) = 6

Lemma 7.2.19 Suppose that d(u) = 3 and the hyperedges incident to u are f, C3f, g.

Then there is a vertex ai ∈ N1(u) such the reduction of C3u on C3ai is admissible.

Moreover, ai can be chosen such that if f− ∩ C3f
− = ∅ then ai ∈ f− ∪ C3f

− and if

f− ∩ C3f
− 6= ∅ then ai ∈ g−.

Proof. Suppose for a contradiction that there is a blocker Xi for every 1 ≤ i ≤ l.

It follows easily from Lemmas 7.2.5 and 7.2.4 every blocker is type 1 or type 2.

Suppose �rst that f− ∩ C3f
− = ∅. Consider the blockers for ai ∈ f− ∪ C3f

−. Let

Y =
⋃
i:ai∈f−∪C3f−

Xi. N(u) ⊆ Y hence def(Y ) ≥ 2 and def(C3Y ) ≥ 6 must hold

by the (∗) property. But if Xi is type 1 for every ai ∈ f− ∪ C3f
− then Y is tight.
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If there is some ai ∈ f− ∪ C3f
− for which Xi is type 2 then def(C3Y ) ≤ 3 follows

easily so in both cases we get a contradiction.

Now suppose that f−∩C3f
− 6= ∅. Consider blockers Xi for every ai ∈ g−. In this

case by using Lemma 7.2.3 we can deduce def(C3Xi) ≤ 1 for every ai ∈ g−. Hence
def(

⋃
i:ai∈g− Xi) ≤ 3 follows which is a contradiction. This completes the proof. �

If we combine the results of Lemmas 7.2.7, 7.2.8, 7.2.16 and 7.2.19 we get the

following:

Theorem 7.2.20 Let H = (V, F ) be a C3-symmetric (1,3)-tight hypergraph with

|V3| = |I3| and let u ∈ V be a vertex with d(u) ≤ 3 not incident to f0. Then there is

a C3-symmetric admissible reduction at C3u.

7.3 Preserving independence in the lifting matrix

In this section we �rst show that if H is a 4-uniform hypergraph with an inde-

pendent 2-picture and H ′ is obtained from H by a j-extension for some j ≥ 0 then

H ′ also has an independent 2-picture.

Theorem 7.3.1 Let (H, r) be an independent 2-picture where H = (V, F ) is a

4-uniform hypergraph and r : V → R2 is a location map. Let H ′ = (V ′, F ′) be

the hypergraph obtained from H by performing a j-extension at v ∈ V such that

V ′ = V + z and {a, b, v, z} ∈ F ′. Put r(z) = r(v). If r(a), r(b), r(v) do not lie on a

line then (H ′, r) is an independent 2-picture.

Proof. (H, r) is an independent 2-picture if and only if the rows of M(H, r) are

independent. We have to show that the rows of M(H ′, r) are also independent.

z v a b
e′i︷ ︸︸ ︷ e︷ ︸︸ ︷

? ?

(z, e′i) 1 0 0 0 0. . . 0 0. . . 0 r(z) 1 0. . . 0 0 0

? ?

(z, e) 1 0 0 0

0 0

r(z) 1

(v, e) 0 1 0 0 r(v) 1

(a, e) 0 0 1 0 r(a) 1

(b, e) 0 0 0 1 r(b) 1

= M(H ′, r)

M(H ′, r) can be constructed from M(H, r) as follows. First add 4 zero columns,

one of which corresponds to z and the rest of them correspond to e. Clearly,
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this operation results in a row-independent matrix. Then add the rows of inci-

dences (v, e), (a, e), (b, e). The rows of the matrix obtained are independent since

r(a), r(b), r(v) do not lie on a line. Then adding the row of (z, e) preserves the

independence because no other row has a non-zero element in the �rst column.

Now observe that what is left is to modify the rows corresponding to incidences

(z, e′i) for 0 ≤ i ≤ j. We can obtain the desired row of (z, e′i) by subtracting the row

of (v, e) and adding the row of (z, e). These operations also preserve independence

and this completes the proof. �

7.3.1 Base graphs and C3-symmetric extensions

First we shall see that the lifting matrices corresponding to the base hypergraphs

have full rank. Observe that for a hypergraph H with one edge only the �rst four

columns of M(H, r) form an identity matrix and hence its rows are independent.

Thus, in the �rst case where the base hypergraph H has only one hyperedge and

|V3| = |I3| = 1 we are ready.

In the second case H has six vertices and three hyperedges and |V3| = |I3| = 0.

Hence we have two vertex orbits, C3v1 and C3v2. There are two possible con�gurations
with these properties. In the �rst one F = C3(C3v1 + v2) and in the second one

F = C3(v1, v2, C3v1, C3v2). For both of these con�gurations we will construct a row-

independent C3-symmetric realization using Theorem 7.3.1. Let r(v1) 6= (0, 0) be

arbitrary, place C3v1 symmetrically.

In the �rst case start with hyperedge {C3vi, v2} and r(v1) = r(v2). Then add

{C3vi, C3v2} with r(C3v1) = r(C3v2) and �nally add {C3vi, C2
3v2} with r(C2

3v1) =

r(C2
3v2). This realization is row-independent by Theorem 7.3.1.

In the second case we put r(v2) = r(C3v1) (and then r(C3v2) = r(C2
3v1),

r(C2
3v2) = r(v1)). We start again with hyperedge {C3vi, C3v2}. Then apply a 1-

extension at C2
3v1. This results in deleting the only edge and adding {v1, v2, C3v1, C3v2}

and {C3vi, C3v2}. After one more 1-extension at v1 we obtain the hypergraph with

the desired edges. Both of these extensions satisfy the conditions of Theorem 7.3.1

hence we can conclude that this realization is row-independent.

We shall prove that inverse operations of symmetric reductions de�ned in Section

7.2.2 preserve the row-independence of the lifting matrix. These inverse operations

will be called symmetric extensions. Let us recall that the j-extension operation at

vertex v picks j hyperedges e1, e2, ..., ej incident with v, adds a new vertex z to H

as well as a new hyperedge e of size 4 incident with both v and z, and replaces ei

by ei − v + z for all 1 ≤ i ≤ j.
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Lemma 7.3.2 Every C3-symmetric extension preserves the independence of the rows

of the lifting matrix.

Proof. If we apply three j-extensions on H such that the 3 new vertices do not

share an edge, then we can apply Theorem 7.3.1 three times to see that the resulting

symmetric hypergraph has an independent symmetric 2-picture.

In the second case we can use a similar argument since the new hyperedge always

satis�es the conditions of Theorem 7.3.1. �

If we combine Theores 7.2.20 and Lemma 7.3.2 then we get 7.1.3.
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Chapter 8

Summary

The dissertation focuses on combinatorial problems connected to combinatorial

rigidity. In the �rst part of this work we consider bar-and-joint frameworks. A bar-

and-joint framework is �exible if there is a continuous motion that changes the

distance between at least one pair of joints without changing the lengths of the

bars. Otherwise the framework is rigid.

We show that if R2(G) (the two-dimensional rigidity matroid of graph G) is

11-connected then R2(G) uniquely determines G. This is a corollary of the following

statement considering graph connectivity: if G is 7-connected then it is uniquely

determined by R2(G). We provide a sharp upper bound for the number of edges of

minimally k-rigid graphs in Rd for all k. (These are graphs that remain rigid in Rd

after the deletion of at most k − 1 arbitrary vertices.) We also give lower bounds

for arbitrary values of k and d and show its sharpness for the cases where k = 2

and d is arbitrary and where k = d = 3. Next we focus on the rigidity of two

di�erent types of non-generic planar frameworks. We give a characterization for the

existence of an in�nitesimally rigid two-dimensional realization with two designated

vertices coincident. We characterize symmetry-forced rigid graphs in the plane for

every cyclic point group and for dihedral point groups Dk if k is odd. Both of these

results are based on an inductive construction.

In the second part of the thesis we investigate the rigidity of frameworks on

hypergraphs. We develop a new inductive construction of 4-regular (1,3)-tight hy-

pergraphs. Using this construction we characterize projectively rigid hypergraphs

on the projective line. We also prove a C3-symmetric version of this hypergraph con-

struction and use it to characterize minimally �at C3-symmetric 2-pictures - pictures

that are not the projection of a non-trivial three-dimensional polyhedral surface.
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Chapter 9

Összefoglaló (Summary in

Hungarian)

A dolgozat témája gráfok és szerkezetek merevségével kapcsolatos kérdések vizs-

gálata. A fejezetek többségében rúd-csukló szerkezetekkel foglalkozunk. Egy rúd-

csukló szerkezetetmerevnek mondunk, ha nincsen folytonos deformációja, azaz olyan

mozgása, amely meg®rzi a rudak hosszát, de megváltoztatja legalább két csukló

távolságát.

Bebizonyítjuk, hogy ha R2(G) (a G gráf kétdimenziós merevségi matroidja) 11-

összefügg®, akkor R2(G) egyértelm¶en meghatározza G-t. Ez az alábbi eredmény-

b®l következik: ha G 7-összefügg®, akkor R2(G) meghatározza G-t. Adunk egy éles

fels® korlátot az Rd-ben minimálisan k-merev gráfok élszámára minden d-re és k-

ra. (Akkor nevezünk egy gráfot k-merevnek Rd-ben, ha legfeljebb k − 1 tetsz®leges

pontjának törlése után merev marad Rd-ben.) Alsó korlátot is adunk minden k-ra

és d-re és megmutatjuk, hogy ezek a korlátok élesek k = 2-re tetsz®leges d mellett,

valamint k = d = 3 esetén.

Két különböz® nem-generikus síkbeli szerkezet merevségével is foglalkozunk. Karak-

terizáljuk azon gráfokat, amelyeknek van olyan merev realizációja a síkban, ahol két

kijelölt pont helyzete azonos. Szintén karakterizáljuk azon gráfokat, melyek szim-

metrikusan merevek a síkban a forgatáscsoportok és azon Dk diédercsoportok esetén,
amelyekre k páratlan. Mindkét eredmény alapja egy-egy konstruktív karakterizáció.

A dolgozat hipergráfokon értelmezett szerkezetekkel is foglalkozik. El®ször a

4-reguláris (1,3)-kritikus hipergráfok osztályára adunk egy konstruktív karakteri-

zációt. Ezt az eredményt használva jellemezzük a projektív egyenesen 'projektív

merev' hipergráfokat. A hipergráf-konstrukció egy C3-szimmetrikus változatát is

bebizonyítjuk, hogy jellemezni tudjuk a minimálisan nem-felemelhet® síkbeli C3-
szimmetrikus kép-szerkezeteket.
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