


## МОДЕЛИРОВАНИЕ ПРОЦЕССА ПЛАЗМОХИМИЧЕСКОГО СИНТЕЗА ОКСИДНЫХ КОМПОЗИЦИЙ ИЗ ВОДНО-ОРГАНИЧЕСКИХ НИТРАТНЫХ РАСТВОРОВ ДЛЯ ПЕРСПЕКТИВНЫХ ВИДОВ ЯДЕРНОГО ТОПЛИВА

Зубов В.В., Каренгин А.Г.

Томский политехнический университет, 634050, г. Томск, пр-т Ленина, 30 E-mail: kaberne1812@yandex.ru

Одним из перспективных направлений дальнейшего развития атомной энергетики является использование дисперсионного ЯТ, в котором ядерные материалы в виде гранулированных оксидных композиций размещают в матрице, имеющей высокий коэффициент теплопроводности [1]. Однако использование в качестве матрицы порошков металлов (алюминия, молибдена, вольфрама, нержавеющей стали и др.) увеличивает коэффициент теплопроводности, но приводит к ухудшению нейтронного баланса дисперсионного ЯТ из-за резонансного поглощения нейтронов.

Предлагается совместный плазмохимический синтез наноразмерных оксидных композиций, включающих ядерные материалы (оксиды урана, тория, плутония) и матрицу (оксиды магния, бериллия и др.) с высоким коэффициентом теплопроводности и низким резонансным поглощением нейтронов, из диспергированных водно-органических нитратных растворов (ВОНР) на основе смесевых водных нитратных растворов и органического компонента (спирты, кетоны и др.). Это обеспечит прямой плазмохимический синтез в воздушной плазме нанодисперсных оксидных композиций с гомогенным распределением фаз и требуемым стехиометрическим составом (MgO–UO<sub>2</sub>, MgO–UO<sub>2</sub>—PuO<sub>2</sub> и др.) без дополнительного водородного восстановления, а также высокую производительность и существенное снижение энергозатрат на их получение.

Для прямого плазмохимического синтеза ВОНР предлагается использование воздушно-плазменного потока, генерируемого высокочастотным плазмотроном.

Для определения оптимальных режимов процесса плазмохимического синтеза ВОНР были проведены расчеты равновесных составов газообразных и твердофазных продуктов. Для расчётов использовалась лицензионная программа «TERRA».

Результаты проведенных исследований могут быть использованы при разработке альтернативной отечественной энергоэффективной технологии плазмохимического синтеза нанодисперсных оксидных композиций для перспективных видов ядерного топлива.

## **ЛИТЕРАТУРА**

1. Алексеев С.В., Зайцев В.А., Толстоухов С.С. Дисперсионное ядерное топливо. — М.: Техносфера, 2015. — 248 с.