
ABSTRACT: Imagery-based, three-dimensional (3D) reconstructions from Unmanned Aerial Vehicles (UAVs) hold the potential 
to provide a safer, more economical, and less disruptive approach for bridge inspection. This paper describes a methodology using 
a low-cost UAV to generate an imagery-based, dense point cloud for bridge deck inspection. Structure from motion (SfM) is 
employed to create a three-dimensional (3D) point cloud. Outlier data are removed through a density-based filtering method. Next,  
the unsupervised learning algorithm k-means and an object-based region growing algorithm are compared for accuracy with 
respect to bridge deck extraction. Last, an automatic pavement evaluation method is proposed to estimate the deck’s pavement 
condition. The procedure is demonstrated through an actual case study, in which a 3D point cloud of 16 million valid points was 
generated from 212 images. With that data set, the region growing method successfully extracted the deck area with an F-score 
close to 95%, while the unsupervised learning approach only achieved 76%. In the last, to evaluate the surface condition of the 
extracted pavement, a polynomial surface fitting method was designed to evaluate and visualise the damages.  
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1 INTRODUCTION	
Bridge inspection has traditionally been conducted by highly-
skilled inspectors but associated with safety problems, 
especially for those inspectors. While van- and robot-based 
inspection capabilities have been developed to replace in-
person methods [1], ultimately those inspection methods still 
rely on the physical inspectors or machines on site, which cause 
traffic closure and/or high equipment costs.  

Advances in the unmanned aerial vehicle (UAV) industry 
and in computer vision have enabled the introduction of low-
cost UAVs into the market and affiliate image process 
techniques that can be paired for bridge documentation. This 
type of  approach is attractive, because it involves non-contact 
measurement, no traffic closures, no heavy/special equipment, 
and no need for experienced inspectors on-site. Additionally, 
the state-of-the-art computer vision-based methods allow 
generation of accurate, highly dense point clouds from UAVs-
images with a single digital camera, which shows UAV-based 
abilities to capture three-dimensional (3D) topographic data of 
structures. These new abilities coupled with lower costs have 
accelerated the adoption of UAVs for infrastructure 
documentation related tasks including building modelling [2], 
dam inspection [3], and road surface evaluation [4].  

However, most existing UAV work is focused on 3D model 
generation and does not address the specific aspects related to 
inspection. To address these gaps, this study first presents a 
work flow of utilizing a Structure from Motion (SfM) approach 
to generate a point cloud from low-altitude, aerial images 
collected by a low–cost UAV. Then, a noise reduction 
algorithm is introduced. Next a comparison of two deck 
extraction methods is made (a machine learning clustering 
method and an object segmentation approach involving a 

region growing algorithm). Finally a means is provided for 
automated deck inspection. 

2 RELATED	WORKS		

 UAV	Based	3D	Reconstruction	and	Noise	Removal	

In recent years, less expensive and more easily controllable 
UAVs have increased their popularity for low altitude, close-
range infrastructure inspection [5]. To aid in such activities, a 
wide range of detectors have been applied, such as digital 
cameras [6],  laser scanners [7],  multi-spectral cameras [8] and 
thermal cameras [9]. Among those, the digital camera is the 
cheapest and most common. A straightforward approach to 
achieve documentation with this equipment involves capturing 
two-dimensional (2D) images for analysis. For example, Chen 
et al. collected 2D imagery for identifying highway bridge 
cracks [10]. However, 2D images do not provide depth 
information directly, which precludes calculating volumetric 
damage (e.g. spalling). An alternative solution involves using 
images captured from multiple view angles to reconstruct an 
object in three dimensions (3D). A common strategy to achieve 
this is through the application of SfM [11] to multiple images 
taken from a single camera. SfM has been extensively studied 
and widely applied for a range of related applications [e.g. 12-
14].  

In general, SfM detects key (i.e. unique) features from each 
image. As these images are taken from multiple viewpoints, by 
linking these key points together, a 3D structure can be 
assembled (e.g. [15]). Compared to the traditional 3D point 
cloud generation methods from laser scanning, the UAV 
imagery reconstructed point offers the opportunity to include 
data obtained from less restricted by view angles, than from 
many other means, thereby providing better coverage at lower 
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costs. However, imagery-based point clouds are often much 
noisier than those from laser scanning data. Noise typically 
occurs from structural artefacts in the acquisition process or 
mismatching of features in images during the reconstruction 
process [16]. Noisy points can affect further surface 
reconstruction or point classification for damage detection. To 
minimize these negative effects, post-processing is applied for 
noise reduction. A typical solution involves the Statistical 
outlier removal (SOR) filter, which assumes that noisy points 
have distinguishable characteristics from non-noisy point in a 
k-dimensional space when fitting the data to a standard 
probability distribution [17]. 

 Possible	 Bridge	 Deck	 Extraction	 and	 Evaluation	
Approaches	

The task of bridge deck extraction relies on point cloud 
segmentation. This can be achieved by numerous means, but 
two common approaches involve either (1) machine learning or 
(2) object-based segmentation [18]. While machine learning 
based clustering can include multiple methods such as k-means, 
mean shift, neural network, and deep learning, this paper uses 
the k-means clustering. This method is able to classify 3D 
points into K groups using different features. The grouping is 
done by minimizing the sum of squares of distances between 
the point and the corresponding cluster centroid [19]. In 
contrast, object-based segmentation can be described as 
belonging to a class of procedures involving model fitting and 
region growing methods [20]. The model fitting method uses 
geometric primitives like planes, cylinders, and spheres to fit 
the point could and decompose the object. The approach works 
well for simple structures but tends to perform poorly in the 
face of large data sets or complex geometries [18]. Thus, this 
method is not considered further in this study, as the bridge 
structure is likely be too complex to decompose – a problem 
previously noted by researchers using laser scans [21, 22]. The 
region growing method uses local features extracted from a 
neighbourhood around each point to aggregate nearby points 
with similar properties and thereby segment a region of a point 
cloud [20].  

However, aforementioned studies have been focused on 
processing point cloud data derived from laser scanning. Such 
point clouds differ from those derived from imagery in several 
import ways. First, the laser scanning data do not contain red-
green-blue (RGB) values, unless captured with an integrated 
camera. Instead, they have affiliated intensity measurements 
based on the strength of the returning laser signal. Second, the 
distribution of laser scanning points tends to follow specified 
patterns based on the pre-programmed operational movements 
of the scanner. Conversely, the imagery derived points are more 
randomly distributed around the structure surface, especially 
when acquired from a UAV, even if the UAV is following a 
pre-programmed flight path. This difference in data acquisition 
leads to differences in density and normals.  

In the case of a stationary laser scanner, density degradation 
is more predictable (e.g. if scanning from a river bank, the angle 
of incidence combined with the offset will impact the point 
yield, as described in detail in [23] and demonstrated by 
Truong-Hong in the case of a metal bridge in [24]). As features 
play important roles in the point cloud segmentation process, 
there is a need to prioritize finding robust and relevant features 

in the derived heterogeneous point cloud. These issues have yet 
to be addressed systematically in the peer-reviewed literature. 

3 WORKFLOW	FOR	UAV-BASED	BRIDGE	DECK	INSPECTION		
To overcome some of these difficulties, a new work flow is 
proposed, as shown in Figure 1. First, a low-cost, commercial 
UAV is employed for image acquisition. Then, SfM is 
applied to generate a 3D point cloud from the 2D images. Next, 
noise caused by shadows and water reflections are removed 
automatically with a novel, new algorithm. Then an automatic 
deck extraction step occurs. Finally, a health evaluation matrix 
is proposed for deck assessment. Notably, herein two deck 
extraction approaches are compared:  k-means clustering and 
region growing. 

 

 
Figure 1. Flowchart of data processing of the developed 

bridge deck inspection system. 

 Image	Acquisition	
To validate the approach, a case study was conducted using the 
Blessington bridge in County Wicklow, Ireland. The bridge is 
of reinforced concrete and about 130 m long, 8 m wide, and 
situated 10 m above the water (Figure 2). A DJI Phantom 4 
quadrotor was equipped with a 4K camera and a 3-axis gimbal; 
(total cost about 1,500 euros). To ensure full acquisition, 7 
parallel flight paths along the bridge were undertaken (2 from 
each side of the bridge and 3 above the deck). Acquisition 
occurred from 10 to 20 m away. UAV operations were 
manually controlled by a remote pilot through a first-person 
view camera, with a safety inspector in attendance to watch for 
obstacles (e.g. trees, wires, birds). A total of 212 images were 
captured in a 1 hour duration. 
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a.  Aerial image 

 
b. Bridge deck 

Figure 2. Blessington bridge 
  

 3D	Reconstruction	

The 3D reconstruction process was performed in the 
commercial software PhotoScan [25] on a Dell XPS 15 laptop 
(i7 CPU with a clock speed 2.8Ghz, 4 cores, 16 Gb RAM, and 
the Microsoft Windows 10 operating system). The entire 
reconstruction processing took about 1 hour and generated a 
point cloud of approximately 16.8 million points (Figure 3). 
The achieved ground resolution was 8.18 mm/pix. See Table 1 
for more details.  

 
Figure 3. Original point cloud data with significant 

quantities of noise in evidence 

Table 1. 3D Reconstruction Result. 

Number of images 212 
Ground resolution 8.18 mm/pix 
Spare points number 261,442 
Spare reconstruction time 34 minutes 
Dense points number 16,805,020 points 
Dense reconstruction time 31 minutes 

 Outlier	Noise	Removing	

Point clouds reconstructed from UAV images tend to be noisy. 
In this case study, much of noise appeared just beyond the 
bridge’s boundaries, especially under the bridge. This was 
caused by waves, water reflection, and self-shadows. The noise 
greatly affects further point cloud processing. Therefore, an 
automatic denoising approach was devised. This involved 
calculating the volume density in a spherical neighbourhood of 
radius R (Figure 4a) for each point. In this case study, R was 
set to 0.5 m which mast bigger than the regular size of noise 
clusters. If the density was less than the threshold K, the point 
was labelled as an outlier. The threshold K was automatically 
set to equal the average density of the entire dataset minus one 
standard deviation. In this instance, K equalled 1600 points in 
the specified neighbourhood. 

 
a. Point density distribution 

 
b. Point cloud after automatic noise removal 

Figure 4. Input data 

 Bridge	Deck	Extraction	

As mentioned previously, two methods were compared herein: 
k-means clustering and region growing. The k-means 
processing is achieved by the blind-in function in the Matlab 
software [26]. While, the details of the implemented region 
growing algorithm can be found in reference [20]. For both 
methods, features of each point must be calculated prior to the 
extraction process. In this study, the geometric location (x y z), 
normal (Nx Ny Nz), colour information (R G B), density (with 
a searching radius r = 0.25 m), Gaussian curvature (r = 0.25m), 
and Roughness (r = 0.25m) were calculated within the software 
CloudCompare [27].  

 Extraction	Performance	Comparison	
To evaluate the performance of two extraction methods, three  
metrics were employed to measure the overall accuracy and 
effectiveness of a segmentation. They were precision (Eqn 1), 
recall (Eqn 2) and F-score (Eqn 3). These metrics are based on 
the following values: (i) True Positives (TP), which represents 
proper segmentation that matches with a manually generated 
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ground truth benchmarked by human experts; (ii) False 
Positives (FP), which denotes over-segmentation within point 
cloud models that results in segmenting one ‘reference’ 
segment into several parts; and (iii) False Negatives (FN), 
which happens when two or more separate segments are 
wrongly grouped together leading to under-segmenting the 3D 
model. 

!"#$%&%'( = |+!|
+! + |-!| 

(1) 

.#$/00 = |+!|
+! + |-1| 

(2) 

- − &$'"# = 2× !"#$%&%'(×.#$/00
!"#$%&%'( + .#$/00 

(3) 

 Pavement	Evaluation	

To evaluate the surface condition of the extracted pavement, a 
second-order polynomial surface (Eqn 4) was generated to fit 
the dataset to simulate the original pavement surface. Then, for 
each point Pi, the distance Di (Eqn 5) from the current surface 
to the artificial simulated surface was calculated to identify the 
wear condition of the deck surface.  

&5 6, 8 = !9 + !:×; + !<×= + !>×;<
+ !?×=< + !@×;×= 

(4) 

AB = 	 DB 		− 	&5	(	6B	, 8B	) (5) 

4 RESULT	ANALYSIS	

 Extraction	Result	Analysis	

First, the k-means clustering process was applied individually 
to each of the six sets of feature (see section 3.4). As shown in 
Table 2 and Figure 5, the result based on the ‘normal’ had a 
higher F-score, 0.76. When the  normal was paired with other 
features (Figure 6 and Table 3), the combination of the normal 
and the z (elevation) produced the best outcome of the 
combined features. However, the top score 0.75 was slightly 
less than that produced using only the normal. Thus 
demonstrating that the presence of more features does not 
guarantee a more accurate result. 
 
As the results could have been affected by the expected cluster 
numbers, k, a further test was conducted to segment the dataset 
into 6, 8, 9, 10 and 12 clusters, as shown in Table 4. Figure 7 
shows that the k value does not have a significant effect on the 
results. However, a higher k value will decrease the recall rate, 
because of over-segmentation of the deck into small sections 
resulting in their exclusion from the main cluster. 

Table 2. k-means Results with one feature 

 

  
Figure 5. Single feature comparison 

 
Table 3. k-means Result with two features 

 
 

 
Figure 6. Multiple feature comparison 

 
Table 4. k-means results with different K values when using 

both the normal and z feature 

 
 

 
Figure 7. Comparison of different K values 
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The results of the region growing method are shown in Table 5 
and Figure 8. Normal feature, elevation (z), curvature, and 
residual were applied. The F-score reached 0.94 which was 
nearly 20% better than achieved by than the k-Means method, 
(Table 2 vs Table 5). 

 
Table 5. The region growing method result 

Time Precision Recall F-score 
188.61 0.9177 0.9809 0.9482 

 

 
a 

 
b 

Figure 8. The extraction results a. k-means b. R growing 

 Pavement	Condition	Analysis	
The extracted bridge deck was then subjected to the pavement 
condition approach introduced in section 3.6. The result are 
shown in Figure 9. The condition map of the extracted 
pavement shows that the overall damage was heavier in the 
quarter span location, with small localized damage like 
potholes or erosions also visible. 

   
Figure 9. Pavement condition map showing damage and 

erosion 

5 CONCLUSIONS	
Using UAV-based imagery, this paper introduces a complete 
workflow for bridge deck assessment, which involves prior 
steps of 3D point cloud reconstruction, noise reduction, deck 
extraction. Importantly, the proposed deck evaluation approach 
offers an automated means to estimate the surface conditions. 
This approach can be used for generating the health map as a 
reference for safety analysis. Additionally two bridge deck 
segmentation methods (k-means and region growing method) 
were compared, where the region growing method was able to 
generate an F-score close to 95% for bridge deck extraction, 
while the k-means only achieved 76%.   
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