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Abstract. While big data technologies are growing rapidly and benefit a wide
range of science and engineering domains, many barriers remain for the remote
sensing community to fully exploit the benefits provided by these emerging pow-
erful technologies. To overcome these barriers, this paper presents the in-depth
experience gained when adopting a distributed computing framework — Hadoop
HBase — for storage, indexing, and integration of large scale, high resolution laser
scanning point cloud data. Four data models were conceptualized, implemented,
and rigorously investigated to explore the advantageous features of distributed,
key-value database systems. In addition, the comparison of the four models fa-
cilitated the reassessment of several well-known point cloud management tech-
niques founded in traditional computing environments in the new context of the
distributed, key-value database. The four models were derived from two row-key
designs and two columns structures, thereby demonstrating various considera-
tions during the development of a data solution for high-resolution, city-scale
aerial laser scan for a portion of Dublin, Ireland. This paper presents lessons
learned from the data model design and its implementation for spatial data man-
agement in a distributed computing framework. The study is a step towards full
exploitation of powerful emerging computing assets for dense spatio-temporal
data.

Keywords: LiDAR, point cloud, Big Data, spatial data management, Hadoop,
HBase, distributed database

1 Introduction and background

Three-dimensional point cloud is increasingly considered as an important geospatial
resource for a vast range of applications. Point clouds are being collected at an unprec-
edented rate even at national scale [1]. Yet efforts to harness the usefulness of such
datasets is increasingly threatened by the data’s expanded scale, intensified density, and
enhanced complexity. Effective storage, querying, and visualization are essential to
successfully address these data challenges. While traditional relational database man-
agement systems (RDBMSs) have been in service for decades, recently there has been
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the advent of non-relational alternatives with a wide range of attractive prospects. Many
non-relational data systems are demonstrated as capable of handling petabytes of data
emerging from the Big Data regime. To begin exploring the capability of the powerful
computing assets, this paper presents an investigation of HBase — a distributed, non-
relational, key-value storage platform within the Hadoop ecosystem for point cloud
storage and querying.

To achieve this, the good practices established for point cloud data management in
traditional environments are implemented and evaluated in the non-relational database
context with 4 hypothetical data models. Throughout the paper, comparisons against
previous RDBMS implementations are highlighted. The main aim is to share the les-
sons learned from the migration from an RDBMS context to a non-relational alternative
with the prospect of building an integrated distributed, spatio-temporal database system
for urban data at a future date. At the time of writing, the system is capable of providing
concurrent access to laser scanning point data in the forms of exact match and three-
dimensional (3D) range search. Data compression is supported by HBase’s in-built
compression mechanisms (e.g. Snappy, LZO, GZIP). The query accuracy of range
searches can be set at the point or block level so that users can prioritize either accuracy
or querying speed. Additional functionalities such as level-of-detail is currently not
supported but will be considered in future research.

To provide the necessary background for the work presented in the paper, the re-
maining of this section introduces essential concepts behind Big Data and several tech-
nologies for handling Big Data, including non-relational databases. This includes an
introduction of HBase — a non-relational database system on which this paper is based.

1.1  Big Data challenges and Hadoop technologies

According to the in-development ISO standard, ISO/IEC DIS 20546, Big Data are da-
tasets of extensive volume, variety, velocity, and/or variability, that require scalable
technologies for efficient storage, manipulation, management, and analysis. While the
specific traits attributable to the nature of Big Data are still a subject to debate [2], the
main technological challenge incurred by Big Data is the profound demand on perfor-
mant and scalable computing power to handle the data’s growth in (1) size of individual
data sets, (2) speed of accumulation, and (3) complexity. The two common solutions to
source the increasingly needed computing power involve a more powerful stand-alone
computer (i.e. a supercomputer); or distributing the computation over multiple comput-
ers (i.e. a computing cluster). The two approaches are referred to as scale-up and scale-
out solutions. The scale-out approach, also known as distributed computing, is often
more cost effective and more sustainable when the data growth continues. The hard-
ware configuration (i.e. scale-out or scale-up) must be accompanied by an appropriate
programming framework. Dominant amongst existing distributed programming para-
digms for scale-out computing clusters are the Message Passing Interface (MPI) and
MapReduce. MPI suits tightly-coupled problems that require certain intensive commu-
nication between computing nodes to share data and the computational states. In con-
trast, MapReduce (which falls under the shared-nothing category) is restricted to com-



putations that can be decoupled into independent components that require highly lim-
ited exchanges between them.

Critical to the recent advancements in Big Data technologies are the increasing pop-
ularity of low-cost hardware and open-source software enabling parallel programming
across large amounts of data. Amongst the existing parallel, distributed computation
frameworks, Hadoop is perhaps one of the most familiar names. The name Hadoop
originated from a MapReduce web indexing project lead by Doug Cutting in 2002 that
replicated the distributed data storage system and processing framework developed at
Google [3-4]. Today, the name Hadoop is used beyond that initial single project to
indicate an entire ecosystem of software and hardware solutions supporting distributed
computing on commodity computing clusters. Facebook, Google, Yahoo, IBM are
amongst the prominent Hadoop cluster owners, but there is speculation that these pow-
erful computing assets may soon be as accessible as personal computers became in the
1990s. In fact, cloud computing has already made the technology available to anyone
with a reliable internet connection and a credit card, irrespective of physical geo-posi-
tioning.

Hadoop is neither the only nor the first distributed computing technology. Parallel
computing and distributed computation were well developed field long before the emer-
gence of Hadoop. However, Hadoop is amongst the most-used distributed computing
technologies today [S5]. Other critical distinguishing features behind the popularity of
Hadoop is attributable to its accessibility via open-source, its suitability for a wide va-
riety of generic applications, and its friendliness to non-expert users. Hadoop abstracts
most of the complexity of distributed computing away from users while only exposing
a rather high-level, highly-simplified programming interface to the users. Users need
not directly handle all of the internal complexity of distributed computation to be able
to exploit its power.

1.2 HBase - a distributed data management system within Hadoop

Within the Hadoop ecosystem is HBase, an open-sourced replica of Google’s BigTable
[6]. This data management system allows random data retrieval on data at a petabyte
scale distributed over thousands of servers. Unlike the Hadoop Distributed File System
(HDFS), the original Hadoop data storage system, which only supports batch pro-
cessing, HBase allows random access to the distributed data. Since the data are distrib-
uted, HBase databases are inherently highly parallelized. Thus, data retrieval is highly
efficient. Compared to traditional relational database management systems (RDBMS),
HBase provides much higher flexibility, as it does not require a rigid data schema or
even data types. All HBase data are maintained in their arbitrary binary form and can
be interpreted at the time of reading.

At the lower level, HBase data are maintained as a large multidimensional sorted
map, which can be expressed programmatically as in Figure 1 [7]. According to that
data structure, an HBase table is a sorted map ‘2’ of pairs of RowKey 2’ and List 3"
Each element of List 3’ is called a column family in HBase. A row key is a user-
defined, unique identifier of each row in the HBase table. Notably, the row key plays



an important role in HBase indexing as it is the primary key for sorting and also dis-
tributing the data. As a result, deciding upon the row key design is of utmost importance
in HBase table design, as will be demonstrated in the latter part of this paper. Each
column family [i.e. SortedMap ‘4] is composed of pairs of the table column ‘2" and a
list (® of table value and timestamp pairs [i.e. ‘® and ‘8']. The value is the actual data
content stored in the table, while the timestamp denotes the creation time of the content.
The timestamp allows storage of multiple versions of the content in HBase. The data
structure of a HBase table is sometimes viewed at a higher level as a collection of key-
value pairs, in which a key is composed of a row-key, a column family name, a column
name, and a timestamp. The value is the actual datum.

SortedMap<RowKey, List<SortedMap<Column, List<Value, Timestamp>>>>

® ©® @

(a) Low-level data storage structure in HBase

(Table, RowKey, Family, Column, Timestamp) — Value

(b) A high-level view of HBase data structure

Fig. 1. HBase’s data storage structure

Despite all of its favorable characteristics, HBase is not a replacement for a traditional
RDBMS. While aiming for higher performance and greater flexibility, the HBase de-
sign (as with most other non-relational database systems) loosens parts of the relational
features such as the compliance to Codd’s 12 rules and the guarantees against transac-
tion validity (a.k.a. ACID) — the traditional, widely-adopted RDBMS standards [7].
Even though these trade-offs are not acceptable in domains such as banking and medi-
cal databases, they are not fatally problematic in many applications such as web search-
ing or point cloud visualization. Another feature that may defer the use of HBase is the
lack of capability to model data relations. Notably, each HBase table is independent
and contains no explicit relation with other tables. Powerful functionalities in RDBMS
including foreign key and join are not inherently supported in HBase. In summary,
HBase is introduced in this section as being representative of a new generation of high-
performance, highly scalable, cost-effective non-relational data management systems
that serve as alternatives to traditional relational databases. While HBase and other non-
relational systems surpass traditional RDBMS with respect to many important criteria,
they are not the definitive choice in every scenario. The decision between an RDBMS
and a more relaxed non-relational option must be based on a rigorous justification of
the features of the candidate technologies with respect to the specific data storage and
retrieval demands. Some of the rationales for the selection of non-relational solutions
for point cloud data storage and management are presented in Section 1.3.

1.3  Laser scanning point cloud as a growing source of Big Data

One fast growing area where a Big Data solution is clearly needed is in the storage of
Light Detection And Ranging (LiDAR) data. The LiDAR technology (also known as
laser scanning) [8-9] samples visible surfaces of physical objects in a 3D space. In its



most basic form, the data resulting from laser scanning is a collection of discrete,
densely sampling points in 3D, commonly referred to as a point cloud. A Big Data
solution is needed for LiDAR data sets as they are being acquired at a national level
with increasingly high density and frequency at large scale in many parts of the world
including Denmark, England, Finland, Japan, the Netherlands, the Philippines, Slove-
nia, and Switzerland [1]. In addition, periodic repetition of national and regional Li-
DAR scans is becoming a more common practice for purposes such as change moni-
toring. All of these factors contribute to an increasingly significant burden for data stor-
age, management, and processing.

Point cloud data are inherently spatial and share common characteristics with both
raster and vector data. However, traditional vector and raster solutions are arguably
unsatisfactory for point cloud data storage requiring a distinctive data representation
strategies [10]. A point cloud data management system is often required to enable ac-
cess to a large amount of data. A basic example is a data retrieval system that allows
users to extract subsets (e.g. using range search) of a large point cloud. Data manage-
ment systems are also frequently used as the backend of point cloud visualization en-
gines. Point subsets need to be fetched from the database for rendering by the visualizer.
Range search is also a relevant query in such a scenario. Additionally, point cloud pro-
cessing systems can be integrated with a supporting database to retrieve the data needed
for their processing workflows. Depending on what is needed for the particular pro-
cessing, different kinds of query (e.g. range, neighbor, temporal search) may be re-
quired. The database, in this case, can allow the processing systems to scale to larger
datasets.

As set forth by van Oosterom et al. [10], a point cloud data representation should be
able to represent the point coordinates (i.e. X, y, z) together with the point attributes
(e.g. intensity, color values, classification tags). There should be mechanisms to organ-
ize the point data based on spatial coherence, to compress the data, to support concur-
rent data access by multiple levels-of-detail (LoD), and to control the query accuracy.
The authors also suggested a rich set of needed functionalities on point data that include
data loading, data querying, simple and complex analysis, data conversions, object re-
construction, LoD use/access, and data updates. Additionally, parallel processing
should be considered for all point cloud data operations with the performance of data
loading and querying of the utmost importance for a point cloud database implementa-
tion. These criteria are the basis for recent developments including the point cloud
server by Cura et al. [11], which is a full-fledge, functionality-rich point cloud manage-
ment system in PostgresSQL built atop the pgPointCloud project.

Given the sheer size of point cloud data being generated, and the importance of par-
allelizing point cloud operations, significant research has been undertaken to exploit
Big Data approaches for both point cloud analytics and management. They include var-
ious applications of tools such as MapReduce and Spark for point cloud processing [12-
16]. Such research has proven that generic Big Data analytics frameworks are best-
suited for computing problems that are perfectly parallelizable (a.k.a. embarrassingly
parallel [17]). Examples include to assign a data point to a raster grid [12, 14] or to treat
a large point cloud dataset as a group of wholly independent tiles with certain spatial
buffer allowance [13]. For computing problems not obviously parallelizable, more



complicated strategies such as a master-slave distributed method are needed [15]. No-
tably, such arrangements may impede the efficiency of the parallelization or even pre-
clude the feasibility of the solution formulation. Research efforts in this area [18-21]
are discussed in detail in the next section showing both the state of the art and the gen-
eral assumption that a Big Data approach will have to be at least part of the solution for
future LiDAR point cloud management.

2 Related works on relational and non-relational point
cloud data management

This section provides a comprehensive review of major techniques successfully em-
ployed for point cloud data management in RDBMS and recent attempts in embracing
emerging, distributed, non-relational database technologies. The motivation behind
consideration of non-relational databases is also discussed.

In response to the demand for efficient management of spatial data, spatial capabil-
ities have been integrated into a number of RDBMSs including IBM DB2 Spatial Ex-
tender, MySQL Spatial, Oracle Spatial, and PostGIS. Some of these spatial DBMSs
provide support for point cloud data, often in form of a purpose-built point cloud data
representation augmenting the existing spatial capability (e.g. Oracle’s SDO_PC, and
pgPointCloud’s PCPATCH for PostGIS). Without such extensions, generic spatial sys-
tems appear to suffer from various performance and storage penalties under significant
data volumes [22-24]. The key strategy behind those RDBMS point cloud extensions
is the reduction in the indexing granularity. Namely, points are grouped into blocks
(a.k.a. chunks or patches), which are handled inside the data system as atomic data
units. That reduction significantly decreases the number of data items (e.g. by as little
as hundreds to as many as millions of times depending on the specified block size),
which in turn decreases the storage, indexing, and management overheads. The draw-
back of the method is that access to points within a block requires reading and parsing
of the entire block. In addition, by grouping points into blocks, certain levels of flexi-
bility in data updating and insertion are lost. Nevertheless, this strategy has been a de-
facto standard for point cloud storage in RDBMSs [e.g. 11, 23, 25, 26].

In addition to the aforementioned point grouping method, the use of space filling
curves (SFC) is another important strategy increasingly adopted for point cloud storage.
A space filling curve is a continuous, surjective mapping from a one-dimensional (1D)
space to a higher-dimensional space [27]. Since physical storage devices are essentially
1D and the majority of database systems natively structure data by a singular key, the
internal query resolving engine needs to re-formulate multi-dimensional data opera-
tions as a 1D problem. SFC is one of the approaches enabling such dimensionality re-
duction, thus it can be exploited to facilitate multidimensional queries on essentially
1D data systems. The use of SFC for point cloud data querying is rather a specific case
of a broader class of data retrieval solutions. Though SFC usage is not restricted to the
relational database technology nor point cloud data, there have been many successful
attempts to utilize SFC within RDBMSs for point cloud storage and retrieval. Examples
include the works by Psomadaki et al. [29], van Oosterom et al. [10]; Vo [26], and



Wang and Shan [28]. Interestingly, to store point clouds within an Oracle Index Orga-
nized Table, Psomadaki et al. [29] used an SFC, thereby, integrating both space and
time as indexes for the data points. Since the SFC-based index already encodes the
point coordinates that are selected for indexing (e.g. X, y, z, timestamp), the authors
chose not to explicitly store the indexed point coordinates to minimize the storage costs.
Even though the storage method allocates one point per row, the method appeared to
be highly scalable. That may be attributable to the architecture of the Index Organized
Table, which sorted the data by the primary key (i.e. SFC order in this particular imple-
mentation). The non-standard architecture is distinguishable from typical RDBMS ta-
bles that store the data in their original, unsorted state and maintains separately, rather
large data indexes to support the data retrieval.

Even though improvements such as granularity reduction and use of a space filling
curve as presented above have made RDBMS point cloud storage viable up to a certain
level, there is a certain motivation for considering alternative storage solutions outside
the relational database domain. The prime reason is the demand for greater scalability
and performance.

As explained in Section 2, Big Data technologies including many non-relational data
architectures are not absolute replacements for traditional RDBMSs. The prospects of
better scalability, performance, availability, and/or functionality of most non-relational
data systems come at a cost of lower assurance against violation of traditional database
standards such as ACID. The main question while considering a non-relational database
implementation is whether some relaxation is tolerable with respect to the specific ap-
plication requirements. In the context of point cloud data storage, there is an ample
space for such compromise. Namely, LiDAR point clouds are often static and are rarely
require updating. Thus, maintaining data consistency is not as demanding as that for
frequently updated data sets in domains such as banking. In addition, point clouds are
weakly relational. Except for the relation between a point cloud and its metadata, most
relationships of a point cloud with other point clouds (as well as other geo-spatial da-
tasets) can be implicitly represented via the data’s spatial, temporal, and/or spatio-tem-
poral properties. While the potential losses may not be consequential, most of the flex-
ibility provided by non-relational alternatives is meaningful for point cloud manage-
ment. For example, the schema-less feature allows efficient handling of the heteroge-
neity of point data derived from different sources. The high level of inherent parallel-
ism, and the potentially high compression rate are amongst the most relevant, favorable
traits one can expect from a non-relational database solution.

Given the above context, there have been several attempts to employ distributed,
non-relational databases for point cloud data management. They include work by Bau-
mann et al. [18], Boehm and Liu [19], Martinez-rubi et al. [20], and Whitby et al. [21].
For example, selecting MongoDB - a document data store - as its basis, Boechm and Liu
[19] stored LiDAR data tiles in their original formats as GridFS files and built a spatial
index for the files’ spatial extents. That system handles various metadata of the point
cloud (e.g. project ID, file type) as BSON (i.e. Binary JSON) documents. Even though
this approach is capable of handling a large number of LiDAR files, its usefulness is
restricted to file selections since data management is only performed at the file abstrac-



tion level. Another investigation of non-relational database for point cloud data man-
agement is presented by Martinez-Rubi et al. [20]. In that research, three different ap-
proaches for point cloud storage in MonetDB — a column data store — were investigated.
All three followed the one point per row method. The first approach indexed point data
by the native Imprints indexing in MonetDB while the second and third approaches
used two-dimensional (2D) Morton order (i.e. an SFC approach) to sort the point data.
The third differed from the second in the way it replaces the indexed coordinates (i.e. x
and y) with the Morton code to achieve a 30% reduction in storage overhead. The au-
thors concluded that SFC-based approaches consumed more time for indexing but were
faster and more scalable in querying responses. The authors also emphasized that keep-
ing point data in their binary formats enormously reduced data loading time.

Unlike the works by Boehm and Liu [19] and Martinez-Rubi et al. [20], which are
implementations of point cloud storage using existing non-relational databases,
EarthServer by Baumann et al. [18] and Geowave by Whitby et al. [21] are full-fledged
geo-spatial data systems capable of accommodating point cloud data. Built atop a multi-
dimensional array database architecture, EarthServer is capable of handling and inte-
grating a vast range of Earth observation data types derived from climatic, oceanic, and
geological fields for the purpose of spatio-temporal data analytics for data at a petabyte
scale. Parallelization across multiple servers is inherently supported at both the inter-
query and the intra-query levels (i.e. distributed query processing). As of 2015, point
cloud data were experimentally considered as part of the coverage support that also
encloses regular grids (i.e. raster), irregular grids, and general meshes. Another system
that fits in the same category of integrated geo-spatial database is Geowave [21]. Ge-
owave is an open-sourced, geo-spatial software library capable of augmenting distrib-
uted, key-value databases (i.e. Apache Accumulo and Apache HBase) with spatio-tem-
poral functionalities. The main technique backing Geowave is the use of an SFC-based
index for row key construction. That technique is the backbone of Geowave, thereby
enabling multi-dimensional querying within the key-value data stores. Notably, Ge-
owave is rich in functionality (e.g. data integration, multiple LoD support, MapReduce
and Spark integration) and is highly extensible. For example, the concept of Data
Adapter (i.e. user-defined data encoder) allows users to model a customized data type
of their choice. The point cloud is supported in Geowave via Point cloud Data Abstrac-
tion Library (PDAL).

3 Schematic designs and implementation of point cloud
data storage in HBase

This paper presents the first steps towards building an integrated distributed, spatio-
temporal database system for urban data that takes a point cloud as the central data
component. Instead of continuing an existing platform, the authors decided to gather
the good practices learned from the existing works to construct several hypothetical
point cloud data models atop a representative key-value data store — Apache HBase.
The primary purpose is to evaluate the advantages and limitations of each model, as
well as to understand the core differences of a non-relational database implementation



versus the previous RDBMS works.

To guide the database design and later to aid in evaluating the proposed point cloud
data storage models (as described in Section 4), an aerial laser scanning dataset of
1.5km” area of the city center of Dublin, Ireland was employed throughout the paper
(Figure 2). The data acquisition was conducted in March 2015, by a Riegl LMS-Q680i
scanner. The total number of discrete points captured was 1,420,982,142. The typical
local point density on horizontal surfaces is approximately 335 points/m* with an ap-
proximate vertical surface density about 1/10™ of that. The LiDAR point data were
delivered in the LAS 1.2 format and occupies approximately 30 GB of disk space. The
main data content consists of a series of point records, in addition to the file-level
metadata encoding information such as the spatial extent, the data creation date, and
the coordinate system. Each point data record is composed of 28 bytes. The first 12
bytes represent the 3 point coordinates (x, y, z). The subsequent bytes compactly encode
the LiDAR intensity (2 bytes), return number (3 bits), number of returns (3 bits), scan
direction flag (1 bit), edge of flight line (1 bit), classification flag (1 byte), scan angle
rank (1 byte), user data (1 byte), point source ID (2 bytes), and timestamp (8 bytes).
Notably, some of the attributes can be left blank. Examples include the user data, the
point source 1D, and the classification attributes.

500 meters

height 0 e W60 m

L4
(a) Full coverage of Dublin LiDAR point cloud (b) 3D rendering of a data subset

Fig. 2. 2015 Dublin point cloud

Given the data structure described in Section 2.2, an HBase data model must be con-
structed from decisions on (1) row-key, (2) column family, (3) column, (4) data cell
content, and (5) versioning. Amongst those, the decisions on column family allocation
and versioning are relatively obvious, while the others require rigorous evaluation.
Since data stored in HBase are physically separated by column family, the column fam-
ily should be used to group the data that are frequently accessed together. In this imple-
mentation, only one column family is allocated given that there is no prior assumption
about querying patterns. Regarding the versioning, since the point cloud is static with-
out updating or insertion requirements, only one version is needed. In other words, the
versioning function is deactivated presently in this HBase design.

As seen in the literature, representations of a point cloud in binary formats are much
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more efficient than in text-based formats [10,23]. As such, the compact LAS encoding
is preserved for the point record representation in this paper. The only exception is that
whenever possible, empty fields are excluded from storage. The remaining concerns
about the data model design are about (1) the row-key design: construct a proper row-
key to facilitate the needed queries on the point data; and (2) the column structure:
whether all the attributes should be grouped in one column or separated into multiple
columns. As there is no insightful reasoning known to the authors, two hypothetical
row-key designs (so called Single-Hilbert and Dual-Hilbert) and two column structures
(i.e. Separate-Attributes, and Grouped-Attributes) are implemented and experimentally
evaluated in this paper. Combinations of these options results in four data models are
shown in Figure 3. Details about the row-key and columns designs are elaborated in
Section 3.1 and 3.2.

Row-key design

Dual-Hilbert Single-Hilbert

Model 1 Model 3

T

Column structure

/

Grouped-Attrs Separate-Attrs

Model 2 Model 4

Fig. 3. Conceptual design of four data models for point cloud storage in HBase

3.1 Row-key design

Access to data in a key-value storage system is most efficiently performed via data
lookup by keys (i.e. row-keys). Consequently, row-key design is the single most im-
portant element of any key-value storage solution. A row-key design is driven by dom-
inant data access patterns. Within the scope of this project, 3D spatial queries (i.e. exact
point match and range query) were selected as the primary means to access a point
cloud data. Given the successful implementations of space filling curves in the authors’
previous work [26] as well as in related research [e.g. 20, 21, 29], a 3D Hilbert curve
was selected as the primary index to support the specified queries. Hilbert curves are
defined to index given 3D spaces (e.g. [4 km X 4 km x 0.5 km]) enclosing the entire
spatial extents of the geographical sites of interest at specific resolutions (e.g. 1 meter).
In the first row-key design named Single-Hilbert, the LiDAR points are indexed by the
Hilbert order of the voxel (e.g. [l m x 1 m x 1 m]) containing the point. All points
sharing the same voxel carry the same index, thus multiple points share the same row-
key and are stored on the same row of the database. This multiple-point-per-row method
is an approximate analog to the well-founded point cloud storage approaches used in
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many relational database management systems such as Oracle’s SDO_PC and pgPoint-
Cloud’s PCPATCH.

To evaluate the suitability of the aforementioned traditional solution relative to the
simple and more intuitive one-point-per-row approach (a.k.a. flat model), a second row-
design called Dual-Hilbert was developed. With the Dual-Hilbert solution, the 1-meter
resolution Hilbert index (i.e. coarse Hilbert index) is concatenated with a second spatial
index computed locally within the voxel at a finer resolution (e.g. 1 millimeter) [i.e.
local Hilbert index]. The fine resolution is set to be finer than the point data resolution
(i.e. centimeter range) so that the concatenated Hilbert code is unique for each point.
This flat model approach abandoned by the relational database systems has the potential
to surpass more traditional multiple-point-per-row approaches since vertical databases
such as HBase perform best for “tall tables” (i.e. large number of rows with small
amount of data stored per row). Another potential benefit of using the fine-grained Hil-
bert index is that it can be used as a more compact replacement for the point coordinates
to reduce total disk and network I/O costs. The comparisons of Model 1 versus Model
3, and Model 2 versus Model 4 (Figure 3) aim to provide evidence to assess these hy-
potheses.

3.2 Column structures

As mentioned previously, each LiDAR data point contains a range of attributes in ad-
dition to the point coordinates. There are 10 such attributes for each point in the Dublin
scan, some of which contain empty values. However, the structure and the number of
point attributes are not the same for every LiDAR scan. File-based approaches includ-
ing the widely used LAS data exchange format handle that semi-structured situation by
providing a set of fixed templates to cover common data patterns. Each template con-
tains a pre-determined set of placeholders for point attributes. Users can then choose
the template that best matches their data, amongst the limited choices offered by the
format specification. This lack of versatility can be completely alleviated when column
family data stores such as HBase are used, as they are schema-less. Column family
stores have no restriction on data type, data name, or the number of the attributes stored
in each row. Two rows in the same table can have completely different sets of attributes.
However, the flexibility and versatility do not come without a cost (e.g. storing the
attribute names for each value). To better analyze the gains and costs of using HBase
to provide a flexible point attribute structure, two column structures are investigated in
this study. The first structure (i.e. Separate-Attributes) separates the point attributes into
different columns so that the points in a table do not have to conform to any fixed
template. The second structure (i.e. Grouped-Attributes) assimilates the LAS approach,
in which all attributes are maintained as a binary array in a fixed structure. Comparisons
of Model 1 versus Model 2, and Model 3 versus Model 4 aims to provide evidence for
the assessment of column structures as shown in Section 4.

3.3  Query processing

This section presents the query resolving strategies with respect to the four data models
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constructed in Section 3.1 and 3.2, which are depicted in a less abstract way in Figure
4.

Point query (a.k.a. exact point match) is the most basic type of query on point cloud
data. Point query aims to search for an exact match of a given point [i.e. an (X, y, z)
triplet] and return all the associated attributes of the found point record. For the Dual-
Hilbert data models, the exact match can be directly computed by transforming the (x,
y, z) triplet into a dual Hilbert code, and then looking up the corresponding HBase table
for a row-key matching the Hilbert code. Such lookup by key in HBase is termed Get.

Model 1
Row-key: | dual Hilbert code (one point per row)

Family: las: Columns: intensity, bit field enclosing [return num-
ber, number of returns, scan direction, edge of flig-
ht line], classification, scan angle rank, user data,
point source ID, timestamp

Model 2

Row-key: | dual Hilbert code (one point per row)

Family: las: Columns: raw LAS point record excluding X, y, z

Model 3
Row-key: | single Hilbert code (multiple points per row)

Family: las: Columns: ordered sequences of

(x, y, z, intensity, return number, number

of returns, scan direction, edge of flight line, classi-
fication, scan angle rank, user data, point source ID,
timestamp)

Model 4

Row-key: | single Hilbert code (multiple points per row)

as: Columns: block of raw LAS point records including
X, Y,z

Family:

Fig. 4. Detail data schema of the four data models

Resolving point queries for Single-Hilbert models is slightly more complicated and
less efficient. Since only the coarse Hilbert code (I m resolution) is available for
lookup, the returned data from a Get function is a block of points, which must be parsed
and validated to return the ultimate querying result. The point block parsing can be done
at either the client side or the server side in HBase. A server-side implementation (e.g.
a HBase Custom Filterer) is more complicated but is more efficient as it avoids sending
the entire block of points through the network, and the computing power on the server
side is more available to handle the computation. Ultimately, from the theoretical per-
spective, a design that separate attributes into distinct columns (i.e. Model 1 and Model
3) should result in better querying performance in cases where only a subset of attrib-
utes is requested.
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Spatial range search is another important type of point cloud query. A range query re-
turns all data points enclosed within a given querying window, which often has the form
of'a 3D polygonal shape. The simplest case of a querying window is a rectilinear box.
Spatial range search is useful for applications including downloading a data subset or
clipping point data by a viewing frustum for visualization. Resolving a range query on
point data sorted by a space filling curve involves decomposing the bounding of the
querying windows into several continuous Hilbert segments (i.e. 1D numeric seg-
ments). The number of Hilbert segments is equivalent to the number of 1D range
searches invoked against the database. Data querying can be slow, if a querying window
is highly fragmented and requires a large number of range searches. The fragmentation
issue can be alleviated by loosening the continuous constraint within each Hilbert seg-
ment. Namely, if the separation between two Hilbert segments is smaller than a certain
level (e.g. 500 cells), the segments are grouped to reduce the number of total segments
(i.e. number of database invokes). The strategy can greatly accelerate data queries at
the cost of including more false-positive results (i.e. the gaps within the Hilbert seg-
ments), which may result in higher pressure on later filtering steps. Setting the value
for the allowable Hilbert gap to optimize query performance is the matter of balancing
the two factors and requires empirical tuning.

The Hilbert segments are then used to retrieve the point candidates by the native 1D
range search on the row-keys. The Hilbert order only facilitates a coarse filtering for
range querying. Namely, the candidate points resulting from a Hilbert decomposition
include not only the true result but also some false positive points. The false positive
points include those that fall outside the querying window but are inside its bounding
box or those share the same Hilbert order with the actual resulting points. In order to
get the exact results, a final fine-filtering is needed to perform a spatial check for each
and every candidate points returned by the Hilbert coarse filtering. This relatively costly
fine filtering should preferably be pushed to the server side to take advantage of the
parallelism and data locality. Compared to the Single-Hilbert models, the dual level
Hilbert codes in Model 1 and Model 2 allow Hilbert filtering at one extra level, thus
reducing the amount of data passed through the fine filtering. The fine filtering can be
skipped for some applications that can tolerate false positive points such as many visu-
alizations. Skipping the fine filtering can greatly accelerate querying speed and is done
natively in some existing systems such as pgPointCloud [23]. In the current HBase
implementations introduced in this paper, the fine filtering can be enabled or disabled
at the time of querying.

3.4 Data ingestion and querying workflows

Starting with a large, unstructured point data set in the binary LAS format, this section
introduces a workflow for loading the data into HBase, while exploiting the Hadoop
distributed framework (Figure 5). One of the issues during the data ingestion is that the
original data format (i.e. LAS) is not suitable for processing in parallel on a computing
cluster. To address that, the original LAS formatted data are transformed into a Hadoop
Sequence File format (Step 1 in Figure 5). Sequence File (SF) is a Hadoop mechanism
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for encapsulating arbitrary binary data into a key-value format, while making the data
split-able for parallel processing on Hadoop clusters. The LAS-to-Sequence transfor-
mation parses point records from the input LAS files and encodes them as values in the
corresponding SFs. In this particular case, the point cloud SF’s keys are not useful and,
thus, left blank. The SF’s metadata, which is a set of text-based key-value pairs, is ex-
ploited to store offset and scale parameters; the information needed for parsing the LAS
point data. Subsequent to the sequential transformation, which occurs outside the clus-
ter, the point cloud is uploaded to the Hadoop Distributed File System (HDFS) (Step 2
in Figure 5). Thus, the transformation to Sequence File enables parallel processing of
large point cloud data.

Sequential transformation outside HDFS

Point cloud o Point cloud
in LAS format in Sequence File format

Parallel transformation within HDFS
Point cloud 3 Hilbert-coded point cloud Q HFil
in Sequence File format in Sequence File format les

Fig. 5. Data ingestion workflow

The data ingestion procedure continues with the Hilbert computation for every point
record. A MapReduce program is used for this purpose (Step 3 in Figure 5). The mapper
computes a coarse Hilbert code for each point record and outputs the result as
<coarse-hilbert; raw-las-point-record>. The sort and shuffle process
automatically handled by Hadoop MapReduce is responsible for grouping the point
records by the coarse Hilbert code. Arriving at the reduce phase, the point data are
grouped into blocks by the coarse Hilbert codes. The fine Hilbert codes are then com-
puted, and the resulting codes are appended ahead of each point of the block. Ulti-
mately, the Sequence Files resulting from the Hilbert computation have the format of
<coarse-hilbert; fine-hilbert-coded-point-block>. Prior to being
loaded into HBase, the point data need to be transformed once more into a so-called
HFile format, which is the native file format underlying HBase (Step 4 in Figure 5).
During this transformation, the row-key, column family, column, and data content are
set. The final step of ingesting HFile data into HBase tables and distributing the data
across multiple servers is facilitated by an in-built HBase function.

4 Performance evaluation

To aid in the performance evaluation, three different subsets of varying sizes (Small -
S, Medium - M, and Large - L) were extracted from the 2015 Dublin point cloud. The
Large dataset includes all the 2015 Dublin point cloud while the coverages of the Small
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and Medium datasets are shown in Figure 2. The approximate number of points in the
S, M and L datasets are 90 million, 360 million, and 1.43 billion, respectively. All of
the experiments were run on a 10-node Hadoop cluster. Each node consists of 2 Intel
Haswell (E5-2695 v3) CPUs and 128GB DDR4-2133 RAM.

4.1 Data ingestion

Amongst the 4 steps of the data ingestion process presented in Figure 5, only Step 4 is
model-dependent and needs to be run for each of the 4 models. The results of the other
3 steps are shared for all data models. Thus, they were executed only once. The LAS-
to-Sequence transformation processed the data with multi-threading parallelization at a
speed of 2,855,020 points/sec. The Hilbert computation operated on the cluster at a
speed of 813,536 points/sec. The HFile creation speed, total data loading speed, and
disk consumption of the all the experiments corresponding to the 3 datasets and the 4
models are presented in Table 1.

Table 1. Data loading speed and disk consumption

Data Dataset Number of Size HFile creation speed
model points (bytes/point) (points/sec)
1 S 89,970,106 244.5 57,285
2 S 89,970,106 51.3 182,324
3 S 89,970,106 322 944,593
4 S 89,970,106 28.4 1,250,587
pgpe S 89,970,106 21.0 52,698
1 M 365,612,527 244.5 60,914
2 M 365,612,527 51.3 177,407
3 M 365,612,527 32.0 1,328,281
4 M 365,612,527 28.4 1,908,530
pgpe M 365,612,527 21.0 61,939
1 L 1,420,982,142 235.0 41,283
2 L 1,420,982,142 48.3 181,110
3 L 1,420,982,142 31.2 1,344,047
4 L 1,420,982,142 26.9 2,372,243
pgpc L 1,420,982,142 21.0 57,0917

The corresponding storage cost and data loading speed of equivalent tests using a
pgPointCloud database [23] are also included in the table for comparison. Except for
Model 1, the total ingestion time for all other 3 data models, including the Hadoop
Sequence file conversion and Hilbert computation, were significantly shorter [i.e. 2.5
to 8.0 times] than the time needed to load data into pgPointCloud databases. The data
ingestion times for Model 1 were 1.5 times longer than that for pgPointCloud. The disk
consumption of all the HBase models was higher than the pgPointCloud data.

All data models including the pgPointCloud databases appear scalable, as the data

! total data ingestion time into a pgPointCloud database using PDAL (https://www.pdal.io)



16

speed remains relatively constant with respect to significant increases in data size. The
disk consumption appears to largely independent from the total data size. The HBase
models can be sorted as Model 1, Model 2, Model 3, Model 4 in a descending order of
both the data loading speed and the storage costs. Model 1, which stores one point per
row with point attributes separated in different columns, is significantly larger and took
much more time to load. The above experimental results can be interpreted as the sep-
aration of point attributes, and the use of dual Hilbert codes introduces significant over-
heads, which is understandable when considering the physical storage structure in
HBase. Namely, HBase stores data as key-value pairs. While the total amount of values
— the actual point data content - is unchanged among the models, the keys vary largely.
A key in HBase is an aggregation of row-key, column family name, column name, and
timestamp. Both the separation of attributes and the use of dual Hilbert code increase
the number of key-value pairs. In addition, the former results in significantly more con-
tent stored in the keys. The empirical result shows that the flexibility in the data schema
provided by HBase as maximized in the Separate-Attributed data models comes with
significant overheads.

4.2  Point query

One thousand points subsampled from the Small dataset were used as querying points
for the point query performance evaluation. The queries were executed consecutively.
The first query was a cold query, which often takes a longer time to process compared
to subsequent queries (also known as hot queries). The difference between hot and cold
query speed is mostly attributable to caching.

The point query response times are presented in Figure 6 (hot queries), Figure 7 (cold
queries), and Table 2. Box plots are selected to present the distribution of the perfor-
mance of the 1000 hot queries. In each box plot, the notched rectangle (i.e. box) repre-
sents the middle 50% of the response time values. The bottom and the top of the box
are called the lower and the upper quartiles, which bound the middle 50% of the sam-
ples. The notch itself shows the median value, which equally bisects the sample popu-
lation. The crosses are outliers, which are the values exceeding 1.5 times the upper
quartiles or lesser than 1.5 times the lower quartiles. The two whiskers projected from
the box represents the values outside the middle 50% of the population excluding the
outliers.

As expected, the cold queries were approximately 300 to 500 milliseconds slower
than the hot queries. For both cold and hot queries, Model 3 appeared to be the slowest
requiring 400 to 500 milliseconds for the first runs and 22 to 26 milliseconds for the
subsequent invokes. For the other models, cold queries were in the range of 300 to 450
seconds, while hot queries were from 4 to 11 seconds. The lower performance of Model
3 was caused by the difference between the stored data structure and point record struc-
ture returning to the queries. More specifically, as seen in Figure 4, point data stored in
Model 3 are partitioned by attributes. Each cell contains an ordered sequence of the
same attributes, e.g. X, X, X, ..., X,. I r€SpONSe to a query, these attribute sequences
need to be parsed and re-organized into the point record structure, e.g. X, Yo, Zo, inten-
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sityo, ..., timestamp,. The restructuring overhead is the reason for the lower perfor-
mance of Model 3. Nevertheless, the most significant observation extracted from the
experiment demonstrated that all data models were scalable in point querying. There
was no observable performance degradation with respect with the growth in data vol-
ume.

100 Small dataset Medium dataset Large dataset
¥ 1
* § + + +
80 . 1 . +
) + + + *
g + +
2 E: + + * *
£ + ]
: ™, ! : i :
s + 3 +
&
c 40 1 ¥ 1 + +
s +
8
-4
204 1 1
0 T + = + T + T T T T T T
ml m2 m3 mé ml m2 m3 m4 ml m2 m3 mé
Fig. 6. Hot point query response times
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Fig. 7. Cold point query response times

Table 2 also presents the corresponding querying response times for point data stored
in a PostgreSQL database with a pgPointCloud extension [23]. Since pgPointCloud
does not support exact match queries, approximately equivalent range queries were
used with additional filtering by the Point Data Abstraction Library (PDAL). The que-
rying scripts can be seen in Appendix B. Compared to Model 3 — the slowest model
amongst the 4 HBase candidates — exact match queries with pgPointCloud were at least
5 times slower. The differences between the pgPointCloud performance and the other
3 data models were from 12 to 34 times. Notably, there was no observable difference
between the cold and hot queries in the pgPointCloud tests.
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Table 2. Point query response time

Data Dataset Point query response time (msec)
model Hot (median) Cold
1 S 4 469
2 S 10 459
3 S 26 528
4 S 8 418
pgpc S 124 120
1 M 4 329
2 M 11 323
3 M 22 419
4 M 4 337
pgpc M 135 130
1 L 5 390
2 L 4 382
3 L 25 504
4 L 4 345
pgpc L 134 110

4.3 Range query

The first 50 samples of the querying points used for testing the point queries in Section
4.2 were re-used to evaluate the performance and scalability of the 4 data models in
supporting range queries. Two classes of range queries were investigated. The first type
considered small querying windows that are cubes with 3m long sides. The second class
considered large querying windows having a side length of 50m. To alleviate the effects
of data density, the range query response times were normalized by the number of re-
turning points. The results of cold queries and hot queries corresponding to each class
are plotted in Figure 8-11, and Table 3. Equivalent tests of PostgreSQL pgPointCloud
databases are reported alongside the tests of the 4 data models for comparison. Notably,
the HBase and pgPointCloud tests were not completely equivalent because pgPoint-
Cloud only supports 2D queries, while the HBase queries are in 3D. All the response
times reported in this section include the entire costs for extracting data from the data-
bases and exporting the resulting points to LAS files.

An important observation is that all 4 data models and the pgPointCloud databases
are perfectly scalable. The querying response times remained largely unchanged despite
the growth in data volume. Model 4 appears to be the best performer amongst the in-
vestigated solutions. Model 4 was 3 to 4 times faster than the other 3 data models in the
cases of small, hot queries. The factors were larger (i.e. from 4 to 8 times) for the large
queries. Compared to pgPointCloud, Model 4 was consistently faster (i.e. from 2 to 4
times). The difference between Model 4 and pgPointCloud was less significant in the
tests with the large querying windows. The better performance of Model 4 compared
to the other 3 data models is likely to be attributable to several factors. First, the aggre-
gation of points into blocks and the attribute grouping greatly reduced the number of
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key-value pairs. Despite the side-effect of having larger datum per value, the number
of key-value pairs reduction seems to have had a positive effect on both the querying
time and the storage overhead. The second factor contributing to the better performance
of Model 4 was that the data model preserved the original structure of LAS point data
records, which was also the data format returned to the range queries. As such, the
binary sequences stored in the database were returned directly without having to un-
dergo restructuring as was required in the other models.

Similar to what observed from the point queries, Model 3 was also the slowest
amongst all the solutions with respect to range queries. In fact, Model 1, 2, and 3 were
all slower than pgPointCloud, which has an underlying structure similar to Model 4.
More specifically, the point data in both pgPointCloud and Model 4 were grouped into
spatial coherent groups, while the attributes of each point record were serialized into a
fixed-length binary string. The observation demonstrated that the concepts established
for enhancing the performance and scalability of point cloud storage in traditional en-
vironments are also applicable to distributed databases.

Table 3. Range query response times

Data Dataset Point query response time
model (msec per 1000 points)
Small queries [3x3x3] Large queries [50x50x50]

Hot Cold Hot Cold
1 S 69 200 50 60
2 S 56 184 39 48
3 S 81 203 62 67
4 S 17 101 9 14
pgpc S 52 46 14 15
1 M 62 185 47 61
2 M 59 175 41 50
3 M 79 201 67 66
4 M 17 96 8 13
pgpe M 49 44 15 28
1 L 65 163 51 49
2 L 53 153 42 43
3 L 92 200 65 67
4 L 18 89 9 10
pgpc L 69 62 15 15
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For all 4 models and pgPointCloud, the unit querying costs per point decreased with
larger querying windows. A more detailed analysis actually shows that the decrease
stops after the querying size reaches to a certain level (e.g. around 30m in the investi-
gated tests). This may be due to some overheads that are independent of the number of
resulting points. When more points are returned from larger querying windows, the
distribution of the overheads per point gets smaller and becomes insignificant at a cer-
tain querying size. The same logic is behind the dissimilarity of the hot and the cold
query response times in the cases of large querying windows. In these large queries, the
overheads needed in the first query get distributed to more points and becomes insig-
nificant fractions. Notably, the cold queries of pgPointCloud databases does not appear
to be slower than subsequent queries. Thus, the first queries of pgPointCloud were
sometimes faster than the corresponding queries of all the HBase data models.

5 Concluding remarks

As a demonstration for an implementation of a distributed, non-relational, key-value
store for large and high-resolution point cloud data, this paper presents four data models
for storage, indexing, and querying point clouds. The four models are constructed from
two row-key designs (i.e. Single-Hilbert and Dual-Hilbert) and two column structures
(i.e. Separate-Attributes and Grouped-Attributes). The Dual-Hilbert models resemble
the flat model approach in RDBMS point cloud storage, while the Single-Hilbert mod-
els are largely similar to the standard point block solution. In addition, the Dual-Hilbert
codes were used as replacement for the point coordinates. The experimental evaluations
ofup to 1.4 billion points showed that the flat models are as scalable as the block models
within HBase, unlike what has been observed in traditional RDBMS environments. The
only notable demerit of the flat models is that they required more storage space and
were slower to create initially, without any benefit in the querying speed. The two col-
umns structures, Separate-Attributes and Grouped-Attributes, were compared to eval-
uate the capability of HBase in supporting flexible data schema. The separation of point
attributes to different columns allowed the heterogeneity in point record structure and
avoided storage of empty fields. However, doing so in HBase resulted in significant
storage overhead as reflected by the sharp increase in the number of key-value pairs
and the longer key content. That increase in the number of stored data entities seemed
to affect the querying performance in the case of range querying.

Amongst the investigated data models, Model 4, which indexes point data at the
block level and preserves the aggregation of the point attributes, appears to be the most
competitive solution. The simple structure of Model 4 allows the data to be loaded 7 to
46 times faster than the Dual-Hilbert models (Model 1, Model 2) and at least 1.3 times
faster than Model 3. Range queries with Model 4 are from 3 to 8 times faster than the
other models while its point query performance is among the highest. Future research
will investigate Model 4 further with regard to its capability to support queries that seek
for only a subset of point attributes. Since Model 4 does not index the data at the point
attribute level as in Model 1 and Model 3, there is a potential that it may not be as
effective as the other models in supporting the attribute-specific queries. In addition,
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heterogeneous datasets (i.e. point data with various attribute structures) will be used to
further evaluate the storage efficiency of the data models and explore the schema-less
feature of HBase.

The evaluation against pgPointCloud, which is an existing relational database solu-
tion, showed that all the HBase data models were faster than pgPointCloud in support-
ing point queries. With respect to range queries, Model 4 was from 1.5 to 4 times faster
than pgPointCloud. However, the other 3 HBase data models were slower than the tra-
ditional solution. The result shows that grouping data into blocks and preserving the
point record structure are good strategies for encoding point cloud data in HBase. No-
tably, the unit querying speed per point of the range queries decreased with a larger
querying size. The differences between the first (i.e. cold) queries and subsequent (i.e.
hot) queries were also reduced when the query size got larger. Due to the built-in par-
allel mechanism of Hadoop, loading point data into HBase was considerably faster than
the pgPointCloud data ingestion despite the requirement of some data preprocessing
steps. There was an exception with Model 1 where the extreme indexing decelerated
the data ingestion to as much as 1.5 times slower than the pgPointCloud. Finally, these
advances do come at a cost. Namely, all the HBase data models consumed more disk
space than the pgPointCloud.

In summary, distributed, non-relational databases can be promising for point cloud
data storage, because point clouds are weakly relational and do not strictly require trans-
actional consistency. The most significant gains expected from migrating to a non-re-
lational alternative include an improved possibility to scale the system for large
amounts of data and better performance due to the inherent parallelism in the frame-
work. The experimental results presented in this paper show that HBase, a representa-
tive distributed database, was scalable and faster than the relational PostgreSQL
pgPointCloud database when similar data encoding strategies were used (Model 4). The
storage of one point per row in HBase (Model 1 and Model 2) did not encounter a
scalability issue as previously observed in relational databases [10]. However, they
were slower than the storage scheme that groups data into blocks. Future research
should consider different techniques to further optimize the performance of both the
non-relational and relational solutions. Testing the databases with data of greater vol-
umes and complexity should also be considered.
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