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Abstract. While big data technologies are growing rapidly and benefit a wide 
range of science and engineering domains, many barriers remain for the remote 
sensing community to fully exploit the benefits provided by these emerging pow-
erful technologies. To overcome these barriers, this paper presents the in-depth 
experience gained when adopting a distributed computing framework – Hadoop 
HBase – for storage, indexing, and integration of large scale, high resolution laser 
scanning point cloud data. Four data models were conceptualized, implemented, 
and rigorously investigated to explore the advantageous features of distributed, 
key-value database systems. In addition, the comparison of the four models fa-
cilitated the reassessment of several well-known point cloud management tech-
niques founded in traditional computing environments in the new context of the 
distributed, key-value database. The four models were derived from two row-key 
designs and two columns structures, thereby demonstrating various considera-
tions during the development of a data solution for high-resolution, city-scale 
aerial laser scan for a portion of Dublin, Ireland. This paper presents lessons 
learned from the data model design and its implementation for spatial data man-
agement in a distributed computing framework. The study is a step towards full 
exploitation of powerful emerging computing assets for dense spatio-temporal 
data. 

Keywords: LiDAR, point cloud, Big Data, spatial data management, Hadoop, 
HBase, distributed database 

1 Introduction and background  

Three-dimensional point cloud is increasingly considered as an important geospatial 
resource for a vast range of applications. Point clouds are being collected at an unprec-
edented rate even at national scale [1]. Yet efforts to harness the usefulness of such 
datasets is increasingly threatened by the data’s expanded scale, intensified density, and 
enhanced complexity. Effective storage, querying, and visualization are essential to 
successfully address these data challenges. While traditional relational database man-
agement systems (RDBMSs) have been in service for decades, recently there has been 
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the advent of non-relational alternatives with a wide range of attractive prospects. Many 
non-relational data systems are demonstrated as capable of handling petabytes of data 
emerging from the Big Data regime. To begin exploring the capability of the powerful 
computing assets, this paper presents an investigation of HBase – a distributed, non-
relational, key-value storage platform within the Hadoop ecosystem for point cloud 
storage and querying.  

To achieve this, the good practices established for point cloud data management in 
traditional environments are implemented and evaluated in the non-relational database 
context with 4 hypothetical data models. Throughout the paper, comparisons against 
previous RDBMS implementations are highlighted. The main aim is to share the les-
sons learned from the migration from an RDBMS context to a non-relational alternative 
with the prospect of building an integrated distributed, spatio-temporal database system 
for urban data at a future date. At the time of writing, the system is capable of providing 
concurrent access to laser scanning point data in the forms of exact match and three-
dimensional (3D) range search. Data compression is supported by HBase’s in-built 
compression mechanisms (e.g. Snappy, LZO, GZIP). The query accuracy of range 
searches can be set at the point or block level so that users can prioritize either accuracy 
or querying speed. Additional functionalities such as level-of-detail is currently not 
supported but will be considered in future research.   

To provide the necessary background for the work presented in the paper, the re-
maining of this section introduces essential concepts behind Big Data and several tech-
nologies for handling Big Data, including non-relational databases. This includes an 
introduction of HBase – a non-relational database system on which this paper is based. 

1.1 Big Data challenges and Hadoop technologies        

According to the in-development ISO standard, ISO/IEC DIS 20546, Big Data are da-
tasets of extensive volume, variety, velocity, and/or variability, that require scalable 
technologies for efficient storage, manipulation, management, and analysis. While the 
specific traits attributable to the nature of Big Data are still a subject to debate [2], the 
main technological challenge incurred by Big Data is the profound demand on perfor-
mant and scalable computing power to handle the data’s growth in (1) size of individual 
data sets, (2) speed of accumulation, and (3) complexity. The two common solutions to 
source the increasingly needed computing power involve a more powerful stand-alone 
computer (i.e. a supercomputer); or distributing the computation over multiple comput-
ers (i.e. a computing cluster). The two approaches are referred to as scale-up and scale-
out solutions. The scale-out approach, also known as distributed computing, is often 
more cost effective and more sustainable when the data growth continues. The hard-
ware configuration (i.e. scale-out or scale-up) must be accompanied by an appropriate 
programming framework. Dominant amongst existing distributed programming para-
digms for scale-out computing clusters are the Message Passing Interface (MPI) and 
MapReduce. MPI suits tightly-coupled problems that require certain intensive commu-
nication between computing nodes to share data and the computational states. In con-
trast, MapReduce (which falls under the shared-nothing category) is restricted to com-
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putations that can be decoupled into independent components that require highly lim-
ited exchanges between them.  

Critical to the recent advancements in Big Data technologies are the increasing pop-
ularity of low-cost hardware and open-source software enabling parallel programming 
across large amounts of data. Amongst the existing parallel, distributed computation 
frameworks, Hadoop is perhaps one of the most familiar names. The name Hadoop 
originated from a MapReduce web indexing project lead by Doug Cutting in 2002 that 
replicated the distributed data storage system and processing framework developed at 
Google [3-4]. Today, the name Hadoop is used beyond that initial single project to 
indicate an entire ecosystem of software and hardware solutions supporting distributed 
computing on commodity computing clusters. Facebook, Google, Yahoo, IBM are 
amongst the prominent Hadoop cluster owners, but there is speculation that these pow-
erful computing assets may soon be as accessible as personal computers became in the 
1990s. In fact, cloud computing has already made the technology available to anyone 
with a reliable internet connection and a credit card, irrespective of physical geo-posi-
tioning.   

Hadoop is neither the only nor the first distributed computing technology. Parallel 
computing and distributed computation were well developed field long before the emer-
gence of Hadoop. However, Hadoop is amongst the most-used distributed computing 
technologies today [5]. Other critical distinguishing features behind the popularity of 
Hadoop is attributable to its accessibility via open-source, its suitability for a wide va-
riety of generic applications, and its friendliness to non-expert users. Hadoop abstracts 
most of the complexity of distributed computing away from users while only exposing 
a rather high-level, highly-simplified programming interface to the users. Users need 
not directly handle all of the internal complexity of distributed computation to be able 
to exploit its power. 

1.2 HBase -  a distributed data management system within Hadoop 

Within the Hadoop ecosystem is HBase, an open-sourced replica of Google’s BigTable 
[6]. This data management system allows random data retrieval on data at a petabyte 
scale distributed over thousands of servers. Unlike the Hadoop Distributed File System 
(HDFS), the original Hadoop data storage system, which only supports batch pro-
cessing, HBase allows random access to the distributed data. Since the data are distrib-
uted, HBase databases are inherently highly parallelized. Thus, data retrieval is highly 
efficient. Compared to traditional relational database management systems (RDBMS), 
HBase provides much higher flexibility, as it does not require a rigid data schema or 
even data types. All HBase data are maintained in their arbitrary binary form and can 
be interpreted at the time of reading.  

At the lower level, HBase data are maintained as a large multidimensional sorted 
map, which can be expressed programmatically as in Figure 1 [7]. According to that 
data structure, an HBase table is a sorted map  of pairs of RowKey  and List . 
Each element of List  is called a column family in HBase. A row key is a user-
defined, unique identifier of each row in the HBase table. Notably, the row key plays 
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an important role in HBase indexing as it is the primary key for sorting and also dis-
tributing the data. As a result, deciding upon the row key design is of utmost importance 
in HBase table design, as will be demonstrated in the latter part of this paper. Each 
column family [i.e. SortedMap ] is composed of pairs of the table column  and a 
list  of table value and timestamp pairs [i.e.  and ]. The value is the actual data 
content stored in the table, while the timestamp denotes the creation time of the content. 
The timestamp allows storage of multiple versions of the content in HBase. The data 
structure of a HBase table is sometimes viewed at a higher level as a collection of key-
value pairs, in which a key is composed of a row-key, a column family name, a column 
name, and a timestamp. The value is the actual datum. 

 
Fig. 1. HBase’s data storage structure 

Despite all of its favorable characteristics, HBase is not a replacement for a traditional 
RDBMS. While aiming for higher performance and greater flexibility, the HBase de-
sign (as with most other non-relational database systems) loosens parts of the relational 
features such as the compliance to Codd’s 12 rules and the guarantees against transac-
tion validity (a.k.a. ACID) – the traditional, widely-adopted RDBMS standards [7]. 
Even though these trade-offs are not acceptable in domains such as banking and medi-
cal databases, they are not fatally problematic in many applications such as web search-
ing or point cloud visualization. Another feature that may defer the use of HBase is the 
lack of capability to model data relations. Notably, each HBase table is independent 
and contains no explicit relation with other tables. Powerful functionalities in RDBMS 
including foreign key and join are not inherently supported in HBase. In summary, 
HBase is introduced in this section as being representative of a new generation of high-
performance, highly scalable, cost-effective non-relational data management systems 
that serve as alternatives to traditional relational databases. While HBase and other non-
relational systems surpass traditional RDBMS with respect to many important criteria, 
they are not the definitive choice in every scenario. The decision between an RDBMS 
and a more relaxed non-relational option must be based on a rigorous justification of 
the features of the candidate technologies with respect to the specific data storage and 
retrieval demands. Some of the rationales for the selection of non-relational solutions 
for point cloud data storage and management are presented in Section 1.3. 

1.3 Laser scanning point cloud as a growing source of Big Data 

One fast growing area where a Big Data solution is clearly needed is in the storage of 
Light Detection And Ranging (LiDAR) data. The LiDAR technology (also known as 
laser scanning) [8-9] samples visible surfaces of physical objects in a 3D space. In its 

SortedMap<RowKey, List<SortedMap<Column, List<Value, Timestamp>>>>

1 2 3 4 5 6 7 8

(a) Low-level data storage structure in HBase

(Table, RowKey, Family, Column, Timestamp)    Value

(b) A high-level view of HBase data structure
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most basic form, the data resulting from laser scanning is a collection of discrete, 
densely sampling points in 3D, commonly referred to as a point cloud. A Big Data 
solution is needed for LiDAR data sets as they are being acquired at a national level 
with increasingly high density and frequency at large scale in many parts of the world 
including Denmark, England, Finland, Japan, the Netherlands, the Philippines, Slove-
nia, and Switzerland [1]. In addition, periodic repetition of national and regional Li-
DAR scans is becoming a more common practice for purposes such as change moni-
toring. All of these factors contribute to an increasingly significant burden for data stor-
age, management, and processing.  

Point cloud data are inherently spatial and share common characteristics with both 
raster and vector data. However, traditional vector and raster solutions are arguably 
unsatisfactory for point cloud data storage requiring a distinctive data representation 
strategies [10]. A point cloud data management system is often required to enable ac-
cess to a large amount of data. A basic example is a data retrieval system that allows 
users to extract subsets (e.g. using range search) of a large point cloud. Data manage-
ment systems are also frequently used as the backend of point cloud visualization en-
gines. Point subsets need to be fetched from the database for rendering by the visualizer. 
Range search is also a relevant query in such a scenario. Additionally, point cloud pro-
cessing systems can be integrated with a supporting database to retrieve the data needed 
for their processing workflows. Depending on what is needed for the particular pro-
cessing, different kinds of query (e.g. range, neighbor, temporal search) may be re-
quired. The database, in this case, can allow the processing systems to scale to larger 
datasets.  

As set forth by van Oosterom et al. [10], a point cloud data representation should be 
able to represent the point coordinates (i.e. x, y, z) together with the point attributes 
(e.g. intensity, color values, classification tags). There should be mechanisms to organ-
ize the point data based on spatial coherence, to compress the data, to support concur-
rent data access by multiple levels-of-detail (LoD), and to control the query accuracy. 
The authors also suggested a rich set of needed functionalities on point data that include 
data loading, data querying, simple and complex analysis, data conversions, object re-
construction, LoD use/access, and data updates. Additionally, parallel processing 
should be considered for all point cloud data operations with the performance of data 
loading and querying of the utmost importance for a point cloud database implementa-
tion. These criteria are the basis for recent developments including the point cloud 
server by Cura et al. [11], which is a full-fledge, functionality-rich point cloud manage-
ment system in PostgresSQL built atop the pgPointCloud project. 

Given the sheer size of point cloud data being generated, and the importance of par-
allelizing point cloud operations, significant research has been undertaken to exploit 
Big Data approaches for both point cloud analytics and management. They include var-
ious applications of tools such as MapReduce and Spark for point cloud processing [12-
16]. Such research has proven that generic Big Data analytics frameworks are best-
suited for computing problems that are perfectly parallelizable (a.k.a. embarrassingly 
parallel [17]). Examples include to assign a data point to a raster grid [12, 14] or to treat 
a large point cloud dataset as a group of wholly independent tiles with certain spatial 
buffer allowance [13]. For computing problems not obviously parallelizable, more 
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complicated strategies such as a master-slave distributed method are needed [15]. No-
tably, such arrangements may impede the efficiency of the parallelization or even pre-
clude the feasibility of the solution formulation. Research efforts in this area [18-21] 
are discussed in detail in the next section showing both the state of the art and the gen-
eral assumption that a Big Data approach will have to be at least part of the solution for 
future LiDAR point cloud management.    

2 Related works on relational and non-relational point 
cloud data management 

This section provides a comprehensive review of major techniques successfully em-
ployed for point cloud data management in RDBMS and recent attempts in embracing 
emerging, distributed, non-relational database technologies. The motivation behind 
consideration of non-relational databases is also discussed.   

In response to the demand for efficient management of spatial data, spatial capabil-
ities have been integrated into a number of RDBMSs including IBM DB2 Spatial Ex-
tender, MySQL Spatial, Oracle Spatial, and PostGIS. Some of these spatial DBMSs 
provide support for point cloud data, often in form of a purpose-built point cloud data 
representation augmenting the existing spatial capability (e.g. Oracle’s SDO_PC, and 
pgPointCloud’s PCPATCH for PostGIS). Without such extensions, generic spatial sys-
tems appear to suffer from various performance and storage penalties under significant 
data volumes [22-24]. The key strategy behind those RDBMS point cloud extensions 
is the reduction in the indexing granularity. Namely, points are grouped into blocks 
(a.k.a. chunks or patches), which are handled inside the data system as atomic data 
units. That reduction significantly decreases the number of data items (e.g. by as little 
as hundreds to as many as millions of times depending on the specified block size), 
which in turn decreases the storage, indexing, and management overheads. The draw-
back of the method is that access to points within a block requires reading and parsing 
of the entire block. In addition, by grouping points into blocks, certain levels of flexi-
bility in data updating and insertion are lost. Nevertheless, this strategy has been a de-
facto standard for point cloud storage in RDBMSs [e.g. 11, 23, 25, 26]. 

In addition to the aforementioned point grouping method, the use of space filling 
curves (SFC) is another important strategy increasingly adopted for point cloud storage. 
A space filling curve is a continuous, surjective mapping from a one-dimensional (1D) 
space to a higher-dimensional space [27]. Since physical storage devices are essentially 
1D and the majority of database systems natively structure data by a singular key, the 
internal query resolving engine needs to re-formulate multi-dimensional data opera-
tions as a 1D problem. SFC is one of the approaches enabling such dimensionality re-
duction, thus it can be exploited to facilitate multidimensional queries on essentially 
1D data systems. The use of SFC for point cloud data querying is rather a specific case 
of a broader class of data retrieval solutions. Though SFC usage is not restricted to the 
relational database technology nor point cloud data, there have been many successful 
attempts to utilize SFC within RDBMSs for point cloud storage and retrieval. Examples 
include the works by Psomadaki et al. [29], van Oosterom et al. [10]; Vo [26], and 
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Wang and Shan [28]. Interestingly, to store point clouds within an Oracle Index Orga-
nized Table, Psomadaki et al. [29] used an SFC, thereby, integrating both space and 
time as indexes for the data points. Since the SFC-based index already encodes the 
point coordinates that are selected for indexing (e.g. x, y, z, timestamp), the authors 
chose not to explicitly store the indexed point coordinates to minimize the storage costs. 
Even though the storage method allocates one point per row, the method appeared to 
be highly scalable. That may be attributable to the architecture of the Index Organized 
Table, which sorted the data by the primary key (i.e. SFC order in this particular imple-
mentation). The non-standard architecture is distinguishable from typical RDBMS ta-
bles that store the data in their original, unsorted state and maintains separately, rather 
large data indexes to support the data retrieval.  

Even though improvements such as granularity reduction and use of a space filling 
curve as presented above have made RDBMS point cloud storage viable up to a certain 
level, there is a certain motivation for considering alternative storage solutions outside 
the relational database domain. The prime reason is the demand for greater scalability 
and performance.  

As explained in Section 2, Big Data technologies including many non-relational data 
architectures are not absolute replacements for traditional RDBMSs. The prospects of 
better scalability, performance, availability, and/or functionality of most non-relational 
data systems come at a cost of lower assurance against violation of traditional database 
standards such as ACID. The main question while considering a non-relational database 
implementation is whether some relaxation is tolerable with respect to the specific ap-
plication requirements. In the context of point cloud data storage, there is an ample 
space for such compromise. Namely, LiDAR point clouds are often static and are rarely 
require updating. Thus, maintaining data consistency is not as demanding as that for 
frequently updated data sets in domains such as banking. In addition, point clouds are 
weakly relational. Except for the relation between a point cloud and its metadata, most 
relationships of a point cloud with other point clouds (as well as other geo-spatial da-
tasets) can be implicitly represented via the data’s spatial, temporal, and/or spatio-tem-
poral properties. While the potential losses may not be consequential, most of the flex-
ibility provided by non-relational alternatives is meaningful for point cloud manage-
ment. For example, the schema-less feature allows efficient handling of the heteroge-
neity of point data derived from different sources. The high level of inherent parallel-
ism, and the potentially high compression rate are amongst the most relevant, favorable 
traits one can expect from a non-relational database solution. 

 Given the above context, there have been several attempts to employ distributed, 
non-relational databases for point cloud data management. They include work by Bau-
mann et al. [18], Boehm and Liu [19], Martinez-rubi et al. [20], and Whitby et al. [21]. 
For example, selecting MongoDB - a document data store - as its basis, Boehm and Liu 
[19] stored LiDAR data tiles in their original formats as GridFS files and built a spatial 
index for the files’ spatial extents. That system handles various metadata of the point 
cloud (e.g. project ID, file type) as BSON (i.e. Binary JSON) documents. Even though 
this approach is capable of handling a large number of LiDAR files, its usefulness is 
restricted to file selections since data management is only performed at the file abstrac-
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tion level. Another investigation of non-relational database for point cloud data man-
agement is presented by Martinez-Rubi et al. [20]. In that research, three different ap-
proaches for point cloud storage in MonetDB – a column data store – were investigated. 
All three followed the one point per row method. The first approach indexed point data 
by the native Imprints indexing in MonetDB while the second and third approaches 
used two-dimensional (2D) Morton order (i.e. an SFC approach) to sort the point data. 
The third differed from the second in the way it replaces the indexed coordinates (i.e. x 
and y) with the Morton code to achieve a 30% reduction in storage overhead. The au-
thors concluded that SFC-based approaches consumed more time for indexing but were 
faster and more scalable in querying responses. The authors also emphasized that keep-
ing point data in their binary formats enormously reduced data loading time.   

Unlike the works by Boehm and Liu [19] and Martinez-Rubi et al. [20], which are 
implementations of point cloud storage using existing non-relational databases, 
EarthServer by Baumann et al. [18] and Geowave by Whitby et al. [21] are full-fledged 
geo-spatial data systems capable of accommodating point cloud data. Built atop a multi-
dimensional array database architecture, EarthServer is capable of handling and inte-
grating a vast range of Earth observation data types derived from climatic, oceanic, and 
geological fields for the purpose of spatio-temporal data analytics for data at a petabyte 
scale. Parallelization across multiple servers is inherently supported at both the inter-
query and the intra-query levels (i.e. distributed query processing). As of 2015, point 
cloud data were experimentally considered as part of the coverage support that also 
encloses regular grids (i.e. raster), irregular grids, and general meshes. Another system 
that fits in the same category of integrated geo-spatial database is Geowave [21]. Ge-
owave is an open-sourced, geo-spatial software library capable of augmenting distrib-
uted, key-value databases (i.e. Apache Accumulo and Apache HBase) with spatio-tem-
poral functionalities. The main technique backing Geowave is the use of an SFC-based 
index for row key construction. That technique is the backbone of Geowave, thereby 
enabling multi-dimensional querying within the key-value data stores. Notably, Ge-
owave is rich in functionality (e.g. data integration, multiple LoD support, MapReduce 
and Spark integration) and is highly extensible. For example, the concept of Data 
Adapter (i.e. user-defined data encoder) allows users to model a customized data type 
of their choice. The point cloud is supported in Geowave via Point cloud Data Abstrac-
tion Library (PDAL). 

3 Schematic designs and implementation of point cloud 
data storage in HBase 

This paper presents the first steps towards building an integrated distributed, spatio-
temporal database system for urban data that takes a point cloud as the central data 
component. Instead of continuing an existing platform, the authors decided to gather 
the good practices learned from the existing works to construct several hypothetical 
point cloud data models atop a representative key-value data store – Apache HBase. 
The primary purpose is to evaluate the advantages and limitations of each model, as 
well as to understand the core differences of a non-relational database implementation 
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versus the previous RDBMS works. 
To guide the database design and later to aid in evaluating the proposed point cloud 

data storage models (as described in Section 4), an aerial laser scanning dataset of 
1.5km2 area of the city center of Dublin, Ireland was employed throughout the paper 
(Figure 2). The data acquisition was conducted in March 2015, by a Riegl LMS-Q680i 
scanner. The total number of discrete points captured was 1,420,982,142. The typical 
local point density on horizontal surfaces is approximately 335 points/m2 with an ap-
proximate vertical surface density about 1/10th of that. The LiDAR point data were 
delivered in the LAS 1.2 format and occupies approximately 30 GB of disk space. The 
main data content consists of a series of point records, in addition to the file-level 
metadata encoding information such as the spatial extent, the data creation date, and 
the coordinate system. Each point data record is composed of 28 bytes. The first 12 
bytes represent the 3 point coordinates (x, y, z). The subsequent bytes compactly encode 
the LiDAR intensity (2 bytes), return number (3 bits), number of returns (3 bits), scan 
direction flag (1 bit), edge of flight line (1 bit), classification flag (1 byte), scan angle 
rank (1 byte), user data (1 byte), point source ID (2 bytes), and timestamp (8 bytes). 
Notably, some of the attributes can be left blank. Examples include the user data, the 
point source ID, and the classification attributes.  

 
Fig. 2. 2015 Dublin point cloud 

Given the data structure described in Section 2.2, an HBase data model must be con-
structed from decisions on (1) row-key, (2) column family, (3) column, (4) data cell 
content, and (5) versioning. Amongst those, the decisions on column family allocation 
and versioning are relatively obvious, while the others require rigorous evaluation. 
Since data stored in HBase are physically separated by column family, the column fam-
ily should be used to group the data that are frequently accessed together. In this imple-
mentation, only one column family is allocated given that there is no prior assumption 
about querying patterns. Regarding the versioning, since the point cloud is static with-
out updating or insertion requirements, only one version is needed. In other words, the 
versioning function is deactivated presently in this HBase design.  

As seen in the literature, representations of a point cloud in binary formats are much 
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more efficient than in text-based formats [10,23]. As such, the compact LAS encoding 
is preserved for the point record representation in this paper. The only exception is that 
whenever possible, empty fields are excluded from storage. The remaining concerns 
about the data model design are about (1) the row-key design:  construct a proper row-
key to facilitate the needed queries on the point data; and (2) the column structure:  
whether all the attributes should be grouped in one column or separated into multiple 
columns. As there is no insightful reasoning known to the authors, two hypothetical 
row-key designs (so called Single-Hilbert and Dual-Hilbert) and two column structures 
(i.e. Separate-Attributes, and Grouped-Attributes) are implemented and experimentally 
evaluated in this paper. Combinations of these options results in four data models are 
shown in Figure 3. Details about the row-key and columns designs are elaborated in 
Section 3.1 and 3.2.  

 
Fig. 3. Conceptual design of four data models for point cloud storage in HBase 

3.1 Row-key design 

Access to data in a key-value storage system is most efficiently performed via data 
lookup by keys (i.e. row-keys). Consequently, row-key design is the single most im-
portant element of any key-value storage solution. A row-key design is driven by dom-
inant data access patterns. Within the scope of this project, 3D spatial queries (i.e. exact 
point match and range query) were selected as the primary means to access a point 
cloud data. Given the successful implementations of space filling curves in the authors’ 
previous work [26] as well as in related research [e.g. 20, 21, 29], a 3D Hilbert curve 
was selected as the primary index to support the specified queries. Hilbert curves are 
defined to index given 3D spaces (e.g. [4 km × 4 km × 0.5 km]) enclosing the entire 
spatial extents of the geographical sites of interest at specific resolutions (e.g. 1 meter). 
In the first row-key design named Single-Hilbert, the LiDAR points are indexed by the 
Hilbert order of the voxel (e.g. [1 m × 1 m × 1 m]) containing the point. All points 
sharing the same voxel carry the same index, thus multiple points share the same row-
key and are stored on the same row of the database. This multiple-point-per-row method 
is an approximate analog to the well-founded point cloud storage approaches used in 
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many relational database management systems such as Oracle’s SDO_PC and pgPoint-
Cloud’s PCPATCH.  

To evaluate the suitability of the aforementioned traditional solution relative to the 
simple and more intuitive one-point-per-row approach (a.k.a. flat model), a second row-
design called Dual-Hilbert was developed. With the Dual-Hilbert solution, the 1-meter 
resolution Hilbert index (i.e. coarse Hilbert index) is concatenated with a second spatial 
index computed locally within the voxel at a finer resolution (e.g. 1 millimeter) [i.e. 
local Hilbert index]. The fine resolution is set to be finer than the point data resolution 
(i.e. centimeter range) so that the concatenated Hilbert code is unique for each point. 
This flat model approach abandoned by the relational database systems has the potential 
to surpass more traditional multiple-point-per-row approaches since vertical databases 
such as HBase perform best for “tall tables” (i.e. large number of rows with small 
amount of data stored per row). Another potential benefit of using the fine-grained Hil-
bert index is that it can be used as a more compact replacement for the point coordinates 
to reduce total disk and network I/O costs. The comparisons of Model 1 versus Model 
3, and Model 2 versus Model 4 (Figure 3) aim to provide evidence to assess these hy-
potheses.  

3.2 Column structures 

As mentioned previously, each LiDAR data point contains a range of attributes in ad-
dition to the point coordinates. There are 10 such attributes for each point in the Dublin 
scan, some of which contain empty values. However, the structure and the number of 
point attributes are not the same for every LiDAR scan. File-based approaches includ-
ing the widely used LAS data exchange format handle that semi-structured situation by 
providing a set of fixed templates to cover common data patterns. Each template con-
tains a pre-determined set of placeholders for point attributes. Users can then choose 
the template that best matches their data, amongst the limited choices offered by the 
format specification. This lack of versatility can be completely alleviated when column 
family data stores such as HBase are used, as they are schema-less. Column family 
stores have no restriction on data type, data name, or the number of the attributes stored 
in each row. Two rows in the same table can have completely different sets of attributes. 
However, the flexibility and versatility do not come without a cost (e.g. storing the 
attribute names for each value). To better analyze the gains and costs of using HBase 
to provide a flexible point attribute structure, two column structures are investigated in 
this study. The first structure (i.e. Separate-Attributes) separates the point attributes into 
different columns so that the points in a table do not have to conform to any fixed 
template. The second structure (i.e. Grouped-Attributes) assimilates the LAS approach, 
in which all attributes are maintained as a binary array in a fixed structure. Comparisons 
of Model 1 versus Model 2, and Model 3 versus Model 4 aims to provide evidence for 
the assessment of column structures as shown in Section 4. 

3.3 Query processing 

This section presents the query resolving strategies with respect to the four data models 
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constructed in Section 3.1 and 3.2, which are depicted in a less abstract way in Figure 
4. 

Point query (a.k.a. exact point match) is the most basic type of query on point cloud 
data. Point query aims to search for an exact match of a given point [i.e. an (x, y, z) 
triplet] and return all the associated attributes of the found point record. For the Dual-
Hilbert data models, the exact match can be directly computed by transforming the (x, 
y, z) triplet into a dual Hilbert code, and then looking up the corresponding HBase table 
for a row-key matching the Hilbert code. Such lookup by key in HBase is termed Get.  

 
Fig. 4. Detail data schema of the four data models 

Resolving point queries for Single-Hilbert models is slightly more complicated and 
less efficient. Since only the coarse Hilbert code (1 m resolution) is available for 
lookup, the returned data from a Get function is a block of points, which must be parsed 
and validated to return the ultimate querying result. The point block parsing can be done 
at either the client side or the server side in HBase. A server-side implementation (e.g. 
a HBase Custom Filterer) is more complicated but is more efficient as it avoids sending 
the entire block of points through the network, and the computing power on the server 
side is more available to handle the computation. Ultimately, from the theoretical per-
spective, a design that separate attributes into distinct columns (i.e. Model 1 and Model 
3) should result in better querying performance in cases where only a subset of attrib-
utes is requested.  
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Spatial range search is another important type of point cloud query. A range query re-
turns all data points enclosed within a given querying window, which often has the form 
of a 3D polygonal shape. The simplest case of a querying window is a rectilinear box. 
Spatial range search is useful for applications including downloading a data subset or 
clipping point data by a viewing frustum for visualization. Resolving a range query on 
point data sorted by a space filling curve involves decomposing the bounding of the 
querying windows into several continuous Hilbert segments (i.e. 1D numeric seg-
ments). The number of Hilbert segments is equivalent to the number of 1D range 
searches invoked against the database. Data querying can be slow, if a querying window 
is highly fragmented and requires a large number of range searches. The fragmentation 
issue can be alleviated by loosening the continuous constraint within each Hilbert seg-
ment. Namely, if the separation between two Hilbert segments is smaller than a certain 
level (e.g. 500 cells), the segments are grouped to reduce the number of total segments 
(i.e. number of database invokes). The strategy can greatly accelerate data queries at 
the cost of including more false-positive results (i.e. the gaps within the Hilbert seg-
ments), which may result in higher pressure on later filtering steps. Setting the value 
for the allowable Hilbert gap to optimize query performance is the matter of balancing 
the two factors and requires empirical tuning.  

The Hilbert segments are then used to retrieve the point candidates by the native 1D 
range search on the row-keys. The Hilbert order only facilitates a coarse filtering for 
range querying. Namely, the candidate points resulting from a Hilbert decomposition 
include not only the true result but also some false positive points. The false positive 
points include those that fall outside the querying window but are inside its bounding 
box or those share the same Hilbert order with the actual resulting points. In order to 
get the exact results, a final fine-filtering is needed to perform a spatial check for each 
and every candidate points returned by the Hilbert coarse filtering. This relatively costly 
fine filtering should preferably be pushed to the server side to take advantage of the 
parallelism and data locality. Compared to the Single-Hilbert models, the dual level 
Hilbert codes in Model 1 and Model 2 allow Hilbert filtering at one extra level, thus 
reducing the amount of data passed through the fine filtering. The fine filtering can be 
skipped for some applications that can tolerate false positive points such as many visu-
alizations. Skipping the fine filtering can greatly accelerate querying speed and is done 
natively in some existing systems such as pgPointCloud [23]. In the current HBase 
implementations introduced in this paper, the fine filtering can be enabled or disabled 
at the time of querying. 

3.4 Data ingestion and querying workflows 

Starting with a large, unstructured point data set in the binary LAS format, this section 
introduces a workflow for loading the data into HBase, while exploiting the Hadoop 
distributed framework (Figure 5). One of the issues during the data ingestion is that the 
original data format (i.e. LAS) is not suitable for processing in parallel on a computing 
cluster. To address that, the original LAS formatted data are transformed into a Hadoop 
Sequence File format (Step 1 in Figure 5). Sequence File (SF) is a Hadoop mechanism 
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for encapsulating arbitrary binary data into a key-value format, while making the data 
split-able for parallel processing on Hadoop clusters. The LAS-to-Sequence transfor-
mation parses point records from the input LAS files and encodes them as values in the 
corresponding SFs. In this particular case, the point cloud SF’s keys are not useful and, 
thus, left blank. The SF’s metadata, which is a set of text-based key-value pairs, is ex-
ploited to store offset and scale parameters; the information needed for parsing the LAS 
point data. Subsequent to the sequential transformation, which occurs outside the clus-
ter, the point cloud is uploaded to the Hadoop Distributed File System (HDFS) (Step 2 
in Figure 5). Thus, the transformation to Sequence File enables parallel processing of 
large point cloud data. 

 
Fig. 5. Data ingestion workflow 

The data ingestion procedure continues with the Hilbert computation for every point 
record. A MapReduce program is used for this purpose (Step 3 in Figure 5). The mapper 
computes a coarse Hilbert code for each point record and outputs the result as 
<coarse-hilbert; raw-las-point-record>. The sort and shuffle process 
automatically handled by Hadoop MapReduce is responsible for grouping the point 
records by the coarse Hilbert code. Arriving at the reduce phase, the point data are 
grouped into blocks by the coarse Hilbert codes. The fine Hilbert codes are then com-
puted, and the resulting codes are appended ahead of each point of the block. Ulti-
mately, the Sequence Files resulting from the Hilbert computation have the format of 
<coarse-hilbert; fine-hilbert-coded-point-block>. Prior to being 
loaded into HBase, the point data need to be transformed once more into a so-called 
HFile format, which is the native file format underlying HBase (Step 4 in Figure 5). 
During this transformation, the row-key, column family, column, and data content are 
set. The final step of ingesting HFile data into HBase tables and distributing the data 
across multiple servers is facilitated by an in-built HBase function. 

4 Performance evaluation 

To aid in the performance evaluation, three different subsets of varying sizes (Small - 
S, Medium - M, and Large - L) were extracted from the 2015 Dublin point cloud. The 
Large dataset includes all the 2015 Dublin point cloud while the coverages of the Small 
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and Medium datasets are shown in Figure 2. The approximate number of points in the 
S, M and L datasets are 90 million, 360 million, and 1.43 billion, respectively. All of 
the experiments were run on a 10-node Hadoop cluster. Each node consists of 2 Intel 
Haswell (E5-2695 v3) CPUs and 128GB DDR4-2133 RAM. 

4.1 Data ingestion 

Amongst the 4 steps of the data ingestion process presented in Figure 5, only Step 4 is 
model-dependent and needs to be run for each of the 4 models. The results of the other 
3 steps are shared for all data models. Thus, they were executed only once. The LAS-
to-Sequence transformation processed the data with multi-threading parallelization at a 
speed of 2,855,020 points/sec. The Hilbert computation operated on the cluster at a 
speed of 813,536 points/sec. The HFile creation speed, total data loading speed, and 
disk consumption of the all the experiments corresponding to the 3 datasets and the 4 
models are presented in Table 1.  

Table 1. Data loading speed and disk consumption 

Data 
model 

Dataset Number of 
points 

Size 
(bytes/point) 

HFile creation speed  
(points/sec) 

1 S 89,970,106  244.5  57,285  
2 S 89,970,106  51.3   182,324  
3 S 89,970,106  32.2   944,593  
4 S 89,970,106  28.4   1,250,587  

pgpc  S 89,970,106  21.0  52,698(1) 
1 M 365,612,527  244.5   60,914  
2 M 365,612,527  51.3   177,407  
3 M 365,612,527  32.0   1,328,281  
4 M 365,612,527  28.4   1,908,530  

pgpc  M 365,612,527  21.0  61,939(1)  
1 L 1,420,982,142 235.0   41,283  
2 L 1,420,982,142  48.3   181,110  
3 L 1,420,982,142  31.2   1,344,047  
4 L 1,420,982,142  26.9   2,372,243  

pgpc L 1,420,982,142  21.0  57,091(1) 
 
The corresponding storage cost and data loading speed of equivalent tests using a 
pgPointCloud database [23] are also included in the table for comparison. Except for 
Model 1, the total ingestion time for all other 3 data models, including the Hadoop 
Sequence file conversion and Hilbert computation, were significantly shorter [i.e. 2.5 
to 8.0 times] than the time needed to load data into pgPointCloud databases. The data 
ingestion times for Model 1 were 1.5 times longer than that for pgPointCloud. The disk 
consumption of all the HBase models was higher than the pgPointCloud data.  

All data models including the pgPointCloud databases appear scalable, as the data 
                                                             
1  total data ingestion time into a pgPointCloud database using PDAL (https://www.pdal.io) 
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speed remains relatively constant with respect to significant increases in data size. The 
disk consumption appears to largely independent from the total data size. The HBase 
models can be sorted as Model 1, Model 2, Model 3, Model 4 in a descending order of 
both the data loading speed and the storage costs. Model 1, which stores one point per 
row with point attributes separated in different columns, is significantly larger and took 
much more time to load. The above experimental results can be interpreted as the sep-
aration of point attributes, and the use of dual Hilbert codes introduces significant over-
heads, which is understandable when considering the physical storage structure in 
HBase. Namely, HBase stores data as key-value pairs. While the total amount of values 
– the actual point data content - is unchanged among the models, the keys vary largely. 
A key in HBase is an aggregation of row-key, column family name, column name, and 
timestamp. Both the separation of attributes and the use of dual Hilbert code increase 
the number of key-value pairs. In addition, the former results in significantly more con-
tent stored in the keys. The empirical result shows that the flexibility in the data schema 
provided by HBase as maximized in the Separate-Attributed data models comes with 
significant overheads.  

4.2 Point query 

One thousand points subsampled from the Small dataset were used as querying points 
for the point query performance evaluation. The queries were executed consecutively. 
The first query was a cold query, which often takes a longer time to process compared 
to subsequent queries (also known as hot queries). The difference between hot and cold 
query speed is mostly attributable to caching.  

The point query response times are presented in Figure 6 (hot queries), Figure 7 (cold 
queries), and Table 2. Box plots are selected to present the distribution of the perfor-
mance of the 1000 hot queries. In each box plot, the notched rectangle (i.e. box) repre-
sents the middle 50% of the response time values. The bottom and the top of the box 
are called the lower and the upper quartiles, which bound the middle 50% of the sam-
ples. The notch itself shows the median value, which equally bisects the sample popu-
lation. The crosses are outliers, which are the values exceeding 1.5 times the upper 
quartiles or lesser than 1.5 times the lower quartiles. The two whiskers projected from 
the box represents the values outside the middle 50% of the population excluding the 
outliers.  

As expected, the cold queries were approximately 300 to 500 milliseconds slower 
than the hot queries. For both cold and hot queries, Model 3 appeared to be the slowest 
requiring 400 to 500 milliseconds for the first runs and 22 to 26 milliseconds for the 
subsequent invokes. For the other models, cold queries were in the range of 300 to 450 
seconds, while hot queries were from 4 to 11 seconds. The lower performance of Model 
3 was caused by the difference between the stored data structure and point record struc-
ture returning to the queries. More specifically, as seen in Figure 4, point data stored in 
Model 3 are partitioned by attributes. Each cell contains an ordered sequence of the 
same attributes, e.g. x0, x1, x2, …, xn. In response to a query, these attribute sequences 
need to be parsed and re-organized into the point record structure, e.g. x0, y0, z0, inten-
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sity0, …, timestamp0. The restructuring overhead is the reason for the lower perfor-
mance of Model 3. Nevertheless, the most significant observation extracted from the 
experiment demonstrated that all data models were scalable in point querying. There 
was no observable performance degradation with respect with the growth in data vol-
ume. 

 
Fig. 6. Hot point query response times 

 
Fig. 7. Cold point query response times 

Table 2 also presents the corresponding querying response times for point data stored 
in a PostgreSQL database with a pgPointCloud extension [23]. Since pgPointCloud 
does not support exact match queries, approximately equivalent range queries were 
used with additional filtering by the Point Data Abstraction Library (PDAL). The que-
rying scripts can be seen in Appendix B. Compared to Model 3 – the slowest model 
amongst the 4 HBase candidates – exact match queries with pgPointCloud were at least 
5 times slower. The differences between the pgPointCloud performance and the other 
3 data models were from 12 to 34 times. Notably, there was no observable difference 
between the cold and hot queries in the pgPointCloud tests.  
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Table 2. Point query response time 

Data 
model 

Dataset Point query response time (msec) 
Hot (median) Cold 

1 S 4 469 
2 S 10 459 
3 S 26 528 
4 S 8 418 

pgpc S 124 120 
1 M 4 329 
2 M 11 323 
3 M 22 419 
4 M 4 337 

pgpc M 135 130 
1 L 5 390 
2 L 4 382 
3 L 25 504 
4 L 4 345 

pgpc L 134 110 
 

4.3 Range query 

The first 50 samples of the querying points used for testing the point queries in Section 
4.2 were re-used to evaluate the performance and scalability of the 4 data models in 
supporting range queries. Two classes of range queries were investigated. The first type 
considered small querying windows that are cubes with 3m long sides. The second class 
considered large querying windows having a side length of 50m. To alleviate the effects 
of data density, the range query response times were normalized by the number of re-
turning points. The results of cold queries and hot queries corresponding to each class 
are plotted in Figure 8-11, and Table 3. Equivalent tests of PostgreSQL pgPointCloud 
databases are reported alongside the tests of the 4 data models for comparison. Notably, 
the HBase and pgPointCloud tests were not completely equivalent because pgPoint-
Cloud only supports 2D queries, while the HBase queries are in 3D. All the response 
times reported in this section include the entire costs for extracting data from the data-
bases and exporting the resulting points to LAS files.  

An important observation is that all 4 data models and the pgPointCloud databases 
are perfectly scalable. The querying response times remained largely unchanged despite 
the growth in data volume. Model 4 appears to be the best performer amongst the in-
vestigated solutions. Model 4 was 3 to 4 times faster than the other 3 data models in the 
cases of small, hot queries. The factors were larger (i.e. from 4 to 8 times) for the large 
queries. Compared to pgPointCloud, Model 4 was consistently faster (i.e. from 2 to 4 
times). The difference between Model 4 and pgPointCloud was less significant in the 
tests with the large querying windows. The better performance of Model 4 compared 
to the other 3 data models is likely to be attributable to several factors. First, the aggre-
gation of points into blocks and the attribute grouping greatly reduced the number of 
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key-value pairs. Despite the side-effect of having larger datum per value, the number 
of key-value pairs reduction seems to have had a positive effect on both the querying 
time and the storage overhead. The second factor contributing to the better performance 
of Model 4 was that the data model preserved the original structure of LAS point data 
records, which was also the data format returned to the range queries. As such, the 
binary sequences stored in the database were returned directly without having to un-
dergo restructuring as was required in the other models. 

Similar to what observed from the point queries, Model 3 was also the slowest 
amongst all the solutions with respect to range queries. In fact, Model 1, 2, and 3 were 
all slower than pgPointCloud, which has an underlying structure similar to Model 4. 
More specifically, the point data in both pgPointCloud and Model 4 were grouped into 
spatial coherent groups, while the attributes of each point record were serialized into a 
fixed-length binary string. The observation demonstrated that the concepts established 
for enhancing the performance and scalability of point cloud storage in traditional en-
vironments are also applicable to distributed databases.  

Table 3. Range query response times 

Data 
model 

Dataset Point query response time 
(msec per 1000 points) 

Small queries [3×3×3] Large queries [50×50×50] 
Hot Cold Hot  Cold 

1 S 69 200 50 60 
2 S 56 184 39 48 
3 S 81 203 62 67 
4 S 17 101 9 14 

pgpc S 52 46 14 15 
1 M 62 185 47 61 
2 M 59 175 41 50 
3 M 79 201 67 66 
4 M 17 96 8 13 

pgpc M 49 44 15 28 
1 L 65 163 51 49 
2 L 53 153 42 43 
3 L 92 200 65 67 
4 L 18 89 9 10 

pgpc L 69 62 15 15 
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Fig. 8. Hot range query response times for small querying windows 

 
Fig. 9. Cold range query response times for small querying windows 

 
Fig. 10. Hot range query response times for large querying windows 

 
Fig. 11. Cold range query response times for large querying windows 
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For all 4 models and pgPointCloud, the unit querying costs per point decreased with 
larger querying windows. A more detailed analysis actually shows that the decrease 
stops after the querying size reaches to a certain level (e.g. around 30m in the investi-
gated tests). This may be due to some overheads that are independent of the number of 
resulting points. When more points are returned from larger querying windows, the 
distribution of the overheads per point gets smaller and becomes insignificant at a cer-
tain querying size. The same logic is behind the dissimilarity of the hot and the cold 
query response times in the cases of large querying windows. In these large queries, the 
overheads needed in the first query get distributed to more points and becomes insig-
nificant fractions. Notably, the cold queries of pgPointCloud databases does not appear 
to be slower than subsequent queries. Thus, the first queries of pgPointCloud were 
sometimes faster than the corresponding queries of all the HBase data models.  

5 Concluding remarks 

As a demonstration for an implementation of a distributed, non-relational, key-value 
store for large and high-resolution point cloud data, this paper presents four data models 
for storage, indexing, and querying point clouds. The four models are constructed from 
two row-key designs (i.e. Single-Hilbert and Dual-Hilbert) and two column structures 
(i.e. Separate-Attributes and Grouped-Attributes). The Dual-Hilbert models resemble 
the flat model approach in RDBMS point cloud storage, while the Single-Hilbert mod-
els are largely similar to the standard point block solution. In addition, the Dual-Hilbert 
codes were used as replacement for the point coordinates. The experimental evaluations 
of up to 1.4 billion points showed that the flat models are as scalable as the block models 
within HBase, unlike what has been observed in traditional RDBMS environments. The 
only notable demerit of the flat models is that they required more storage space and 
were slower to create initially, without any benefit in the querying speed. The two col-
umns structures, Separate-Attributes and Grouped-Attributes, were compared to eval-
uate the capability of HBase in supporting flexible data schema. The separation of point 
attributes to different columns allowed the heterogeneity in point record structure and 
avoided storage of empty fields.  However, doing so in HBase resulted in significant 
storage overhead as reflected by the sharp increase in the number of key-value pairs 
and the longer key content. That increase in the number of stored data entities seemed 
to affect the querying performance in the case of range querying.  

Amongst the investigated data models, Model 4, which indexes point data at the 
block level and preserves the aggregation of the point attributes, appears to be the most 
competitive solution. The simple structure of Model 4 allows the data to be loaded 7 to 
46 times faster than the Dual-Hilbert models (Model 1, Model 2) and at least 1.3 times 
faster than Model 3. Range queries with Model 4 are from 3 to 8 times faster than the 
other models while its point query performance is among the highest. Future research 
will investigate Model 4 further with regard to its capability to support queries that seek 
for only a subset of point attributes. Since Model 4 does not index the data at the point 
attribute level as in Model 1 and Model 3, there is a potential that it may not be as 
effective as the other models in supporting the attribute-specific queries. In addition, 
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heterogeneous datasets (i.e. point data with various attribute structures) will be used to 
further evaluate the storage efficiency of the data models and explore the schema-less 
feature of HBase. 

The evaluation against pgPointCloud, which is an existing relational database solu-
tion, showed that all the HBase data models were faster than pgPointCloud in support-
ing point queries. With respect to range queries, Model 4 was from 1.5 to 4 times faster 
than pgPointCloud. However, the other 3 HBase data models were slower than the tra-
ditional solution. The result shows that grouping data into blocks and preserving the 
point record structure are good strategies for encoding point cloud data in HBase. No-
tably, the unit querying speed per point of the range queries decreased with a larger 
querying size. The differences between the first (i.e. cold) queries and subsequent (i.e. 
hot) queries were also reduced when the query size got larger. Due to the built-in par-
allel mechanism of Hadoop, loading point data into HBase was considerably faster than 
the pgPointCloud data ingestion despite the requirement of some data preprocessing 
steps. There was an exception with Model 1 where the extreme indexing decelerated 
the data ingestion to as much as 1.5 times slower than the pgPointCloud. Finally, these 
advances do come at a cost. Namely, all the HBase data models consumed more disk 
space than the pgPointCloud.    

In summary, distributed, non-relational databases can be promising for point cloud 
data storage, because point clouds are weakly relational and do not strictly require trans-
actional consistency. The most significant gains expected from migrating to a non-re-
lational alternative include an improved possibility to scale the system for large 
amounts of data and better performance due to the inherent parallelism in the frame-
work. The experimental results presented in this paper show that HBase, a representa-
tive distributed database, was scalable and faster than the relational PostgreSQL 
pgPointCloud database when similar data encoding strategies were used (Model 4). The 
storage of one point per row in HBase (Model 1 and Model 2) did not encounter a 
scalability issue as previously observed in relational databases [10]. However, they 
were slower than the storage scheme that groups data into blocks. Future research 
should consider different techniques to further optimize the performance of both the 
non-relational and relational solutions. Testing the databases with data of greater vol-
umes and complexity should also be considered. 
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