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Abstract

We consider the problem of assessing value of demand sharing in a multi-stage supply chain

in which the retailer observes stationary autoregressive moving average demand with Gaussian

white noise (shocks). Similar to previous research, we assume each supply chain player constructs

its best linear forecast of the leadtime demand and uses it to determine the order quantity via

a periodic review myopic order-up-to policy. We demonstrate how a typical supply chain player

can determine the extent of its available information under demand sharing by studying the

properties of the moving average polynomials of adjacent supply chain players. Hence, we

study how a player can determine its available information under demand sharing, and use this

information to forecast leadtime demand. We characterize the value of demand sharing for a

typical supply chain player. Furthermore, we show conditions under which (i) it is equivalent

to no sharing, (ii) it is equivalent to full information shock sharing, and (iii) it is intermediate

in value to the two previously described arrangements. We then show that demand propagates

through a supply chain where any player may share nothing, its demand, or its full-information

shocks with an adjacent upstream player as quasi-ARMA in - quasi-ARMA out. We also provide

a convenient form for the propagation of demand in a supply chain that will lend itself to future

research applications.
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1 Introduction

We consider the problem of assessing value of demand sharing in a multi-stage supply chain in which

the retailer observes covariance-stationary autoregressive moving average demand with Gaussian

white noise (shocks). We assume that all supply chain players use a myopic order-up- to inventory

policy where negative order quantities are allowed, but the probability of negative demand or

negative orders is negligible. It is assumed that the lead time guarantee holds, i.e., if an upstream

player does not have enough stock to fill an order from the adjacent downstream player, then the

upstream player will meet the shortfall from an alternative source, with additional cost representing

the penalty cost to this shortfall. Excess demand at the retailer is backlogged. Similar to previous

research, we assume each supply chain player constructs its best linear forecast of the leadtime

demand and uses it to determine the order quantity via a periodic review myopic order-up-to

policy.

With respect to the information structure, we assume, as others have (c.f. [Lee et al., 2000]

(hereafter LST) that the form and parameters of the model generating a downstream player’s

demand are known to the adjacent upstream player. However the downstream player’s demand

realizations, and shocks that generate all of the player’s information (the downstream player’s

full information shocks), may be private knowledge. When there is no information sharing, the

upstream player receives only an order from the adjacent downstream player. When there is

demand sharing, the downstream player provides its demand in addition to placing its order with

the upstream player. Finally, when there is full information shock sharing, the downstream player

provides its full information shocks in addition to placing its order with the upstream player.

2



The existing literature either does not distinguish between demand sharing and shock sharing

[Gaur et al., 2005] (hereafter GGS) and [Zhang, 2004] (hereafter Zhang)) or focuses on the value of

full information shock sharing in a supply chain without allowing for the possibility that a player

may share its demand as opposed to its full information shocks [Giloni et al., 2012] (hereafter

GHS). We demonstrate how a typical supply chain player can determine the extent of its available

information under demand sharing by studying the properties of the moving average polynomials of

adjacent supply chain players. We utilize the methods and results described in GHS (2012) where

they demonstrate how a typical supply chain player can determine its available information under

full information shock sharing or possibly under no sharing arrangement. We study how a player

can determine its available information under demand sharing, and use this information to forecast

leadtime demand. Furthermore, we show conditions under which (i) it is equivalent to no sharing,

(ii) it is equivalent to full information shock sharing, and (iii) it is intermediate in value to the two

previously described arrangements.

After characterizing a player’s information set under demand sharing, we then study how de-

mand propagates through a supply chain where any player may share nothing, its demand, or

its full-information shocks with an adjacent upstream player. Specifically, we find that demand

propagates as quasi-ARMA (QUARMA) in - quasi-ARMA out even with the possibility of demand

sharing. We also introduce a convenient mathematical structure for the propagation of demand,

notappearing in previous literature. This is done by studying QUARMA propagation as sums of

polynomials rather than linear combinations of coefficients. This form provides more intuition be-

hind how demand propagates upstream in the supply chain. Furthermore, it allows for the study of

various supply chain dynamics, such as the bullwhip effect and the asymptotic behavior of supply

chains with many stages.

We provide several important contributions to the literature. The first is in characterizing a
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player’s information set when the adjacent downstream player shares demand. The second is in

establishing the new result that demand sharing can be intermediate in value. We provide examples

of this by demonstrating what a player’s full information shocks and mean square forecast error

(MSFE) would be under the three aforementioned sharing arrangements. The third is that we show

that under the possibility of either no sharing, demand sharing, or full information shock sharing,

demand propagates upstream the supply chain as quasi-ARMA in - quasi-ARMA out. The fourth

is that we provide a convenient form for the propagation of demand in a supply chain that will lend

itself to future research applications.

2 The Research Problem

2.1 Recovering Shocks from Historical Data

In this paper we represent a player’s information in terms of a white noise series. It is therefore

essential to understand if and when a series of shocks can be recovered from present and past

observations. It is sometimes assumed (incorrectly) that this is always possible. The following

example illustrates this problem for a simple moving average (MA) model.

Example 1. Part I

Consider the following MA(1) model:

Dt = c+ εt − θ1εt−1 (1)

Consider trying to solve for εt in terms of present and past values of {Dt}. Note that (1) can

be rewritten as

εt = Dt − c+ θ1εt−1

or

εt = Dt − c+ θ1(Dt−1 − c+ θ1εt−2).

Continuing in the same manner we have for any N > 0

εt = c
N−1∑
n=0

θn1 +
N−1∑
n=0

θn1Dt−n + θN1 εt−N (2)
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If |θ1|< 1 then the last term in (2) will approach 0 and we get the representation:

εt = c

∞∑
n=0

θn1 +

∞∑
n=0

θn1Dt−n

which shows that εt can be written as a convergent series of present and past observations {Dt}.

Any {Dt} that satisfies this property is said to be invertible with respect to shocks {εt}. Note that

|θ1|< 1 if and only if the root of 1− θ1z is outside the unit circle. As we will discuss in Remark 1,

the location of roots is central to a discussion of invertibility.

However, if |θ1|> 1, we will show in Example 1 Part II that one cannot express the current

shock as a convergent series of present and past observations. The case of |θ1|> 1 occurs if and

only if the root of 1 − θ1z is inside the unit circle. Here the demand series {Dt} is said to be

non-invertible with respect to shocks {εt}.

If |θ1|= 1, then it is possible to recover εt from present and past values of {Dt}, however this is

accomplished in a different way than described for the case when |θ1|< 1. We still say that {Dt} is

invertible with respect to shocks {εt} for this case. Refer to GHS for a discussion of invertibility.

The invertibility concepts described in this example extend naturally for an MA(q) model.

Similarly, for an AR(p) model, we say that demand series {Dt} is causal with respect to shocks

{εt} if we can write Dt as a linear combination of present and past {εt}.

Remark 1. A series {Dt} is causal and invertible ARMA(p,q) with respect to a series of indepen-

dent Gaussian random variables {εt}, called “shocks”, having mean zero and variance σ2
ε if it can

be written as

Dt = c+ φ1Dt−1 + φ2Dt−2 + ...+ φpDt−p + εt − θ1εt−1 − θ2εt−2 − ...− θqεt−q, (3)

where c is a constant and the roots of the polynomials 1− φ1z − ...− φpzp and 1− θ1z − ...− θqzq

are outside the unit circle for z ∈ C.

It is often useful to express (3) in terms of the backshift operator, B, where Bsεt = εt−s

and BrDt = Dt−r. In order to do so, let φ(B) = 1 − φ1B − φ2B
2 − ... − φpB

p and θ(B) =

1− θ1B − θ2B
2 − ...− θqBq. Then {Dt} in (3) can be expressed as

φ(B)Dt = c+ θ(B)εt (4)
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For some more intuition behind invertibility and the use of the backshift operator, consider the

following:

Example 1. Part II

We can rewrite the model (1) in terms of the backshift operator as

Dt = c+ (1− θ1B)εt (5)

which can be rewritten as

εt = − 1

1− θ1B
c+

1

1− θ1B
Dt (6)

Suppose |θ1|< 1. Through a formal Taylor series expansion of
1

1− θ1B
, this can be rewritten as

εt = −
∞∑
n=0

(θ1B)nc+
∞∑
n=0

(θ1B)nDt

or equivalently

εt = −
∞∑
n=0

(θ1B)nc+

∞∑
n=0

θn1Dt−n

and hence we can write εt as a linear combination of present and past values {Dn}tn=−∞. Thus

here the model in (5) is invertible.

Suppose now that |θ1|> 1 and consider the term
1

1− θ1B
in (6). Doing some manipulations we

have that
1

1− θ1B
=

1/B

B−1 − θ1
=

1/B

θ1(θ−1
1 B−1 − 1)

= (−θ−1
1 /B)

1

1− θ−1
1 B−1

Since |θ1|> 1, it is obvious that | 1
θ1
|> 1 and through a formal Taylor series expansion of

1

1− θ−1
1 B−1

,

we rewrite (6) as

εt = (θ−1
1 /B)

∞∑
n=0

(θ−1
1 B−1)nc+ (−θ−1

1 /B)

∞∑
n=0

(θ−1
1 B−1)nDt

which can be rewritten as

εt = (θ−1
1 /B)

0∑
n=−∞

(θ1B)nc+ (−θ−1
1 /B)

0∑
n=−∞

(θ1B)nDt

or equivalently

εt = (θ−1
1 /B)

0∑
n=−∞

(θ1B)nc+ (−θ−1
1 /B)

∞∑
n=0

θ−n1 Dt+n
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Here εt is expressed through values in the sequence {Dn}∞n=t+1, which are in fact unknown in

practice at time t. Thus the model in (5) is not invertible if |θ1|< 1.

From this example, we get the intuition behind Remark 1. We can see this by rewriting (4) as

εt = −θ−1(B)c+ φ(B)θ−1(B)Dt

The polynomial θ(z) = 1− θ1z − ...− θqzq, having roots z1, ..., zq, can be factorized as

q∏
j=1

(1− z

zj
).

Therefore the previous equation is equivalent to

εt = −θ−1(B)c+
φ(B)

q∏
j=1

(1− z−1
j B)

Dt (7)

We can treat the terms
1

1− z−1
j B

in the same way we treated
1

1− θ1B
in Example 1 Part II.

In doing so, when we express εt through observations {Dt}, we will require some values in the

sequence {Dn}∞n=t+1 if and only if there is a root zj such that |zj |< 1.

In accordance with GHS, we say that {Dt} is QUARMA(p, q, J) with respect to shocks {εt} if

it can be written as

Dt = c+ φ1Dt−1 + φ2Dt−2 + ...+ φpDt−p + εt−J − θ1εt−J−1 − θ2εt−J−2 − ...− θqεt−J−q (8)

or, in terms of the backshift operator,

φ(B)Dt = c+BJθ(B)εt (9)

where φ(B) and θ(B) are as previously defined. We refer to φ(z) and θ(z) as the AR and MA

polynomials in the QUARMA representation of {Dt} with respect to {εt}. We refer to J as the

QUARMA degree. Note that {Dt} which is QUARMA with respect to {εt} is ARMA with respect

to {BJεt}. As in GHS, if J > 0 in (9), then {Dt} is non-invertible with respect to {εt} since, at time

t, there would be no way to recover εt from present and past values {Dn}tn=−∞. The model in (9)

7



will be central to our study of demand propagation as we will show that demand {Dk,t} of player

k may be QUARMA, with a QUARMA degree Jk > 0, even though the retailer observes ARMA

demand. Henceforth {Dk,t} and {εk,t} will refer to player k’s demand series and full information

shock (FIS) series, defined below in Definition 1. Dk,t and εk,t will refer to player k’s demand and

shock at time t.

2.2 Assumptions

We consider a K-stage supply chain where at discrete equally-spaced time periods, the retailer

(assumed to be at stage 1) faces external demand {D1,t}, for a single item. Let {D1,t} follow a

covariance stationary ARMA (p, q1) process with p ≥ 0, q1 ≥ 0:

φ(B)D1,t = d+ θ1(B)ε1,t (10)

where d > 0 is a constant and the roots of φ(z) and θ1(z) are outside the unit circle to insure that the

retailer’s demand is causal and invertible with respect to {ε1,t}. Following LST, Zhang and GHS,

we assume that the shocks {ε1,t} are Gaussian white noise. Let the replenishment leadtime from the

retailer’s supplier to the retailer be `1 periods. Excess demand at the retailer is backlogged. Let the

replenishment leadtime from the player at stage k+ 1 to stage k be `k periods. We assume that all

supply chain players use a myopic order-up-to inventory policy where negative order quantities are

allowed, but d is sufficiently large so that the probability of negative demand or negative orders is

negligible. Furthermore, hk and pk are player k’s unit holding and shortage (or backorder) costs per

time period. Player k’s required service level is given by ck = Φ−1[ pk
pk+hk

], where Φ is the standard

Normal cdf. It is assumed that for k ≥ 1 the `k period lead time guarantee holds, i.e., if the player

at stage k+1 does not have enough stock to fill an order from the player at stage k, then the player

at stage k + 1 will meet the shortfall from an alternative source, with additional cost representing

the penalty cost to this shortfall. [Gallego and Zipkin, 1999] show how this assumption allows one
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to decompose a multi-stage system with no alternative source into single-stage systems and to

approximate the cost of the system.

Hence, at the end of time period t, after demand D1,t has been observed, the retailer observes

the inventory position and places order D2,t with its supplier. The retailer receives the shipment of

this order at the beginning of period t+ `1 + 1, where `1 ≥ 0. The sequence of events at all supply

chain players is similar. However, it is further assumed that all upstream supply chain players

observe their demand, observe their inventory positions and place their orders instantaneously at

the end of time period t.

We assume that all players place their orders based on the best linear forecast of their lead-time

demand. This means that player k’s order will be based on its best linear forecast of the demand it

will observe through time period t+ `k + 1 (that is
∑`k+1

i=1 Dk,t+i). It is assumed that all upstream

supply chain players observe their demand, observe their inventory positions and place their orders

instantaneously at the end of every time period t.

We assume that, at time t, along with placing its order, a player may choose to share nothing,

its demand Dk,t, or its FIS εk,t, with an adjacent upstream player. It is assumed that all players are

aware of the retailer’s model and all sharing arrangements that occur downstream. We will show

that this assumption guarantees that all players know the model for their own demand {Dk,t} with

respect to their FIS {εk,t}. The last assumption also guarantees the information structure assumed

by GHS (2012), GGS (2005), LST (2000), Raghunathan (2001), and Zhang (2004), namely that,

for k ≥ 2 the form and parameters of the model generating player k − 1’s demand are known to

player k. However player k − 1’s demand realizations and/or full information shocks may not be

observable by player k.
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2.3 Information Sets and Full Information Shocks

As mentioned above, each player will forecast lead-time demand based on their information set

at time t. As in GHS, we denote the full information set available to player k as Mk
t . Let

MDk
t = sp{1, Dk,t, Dk,t−1, Dk,t−2, . . .}, where “sp{}” refers to the “closed linear span”. Then

MDk
t is the Hilbert space generated by {1, Dk,t, Dk,t−1, Dk,t−2, . . .} with inner product given by

the covariance. We will at times refer to MDk
t as the “linear past” of {Dk,t}. Similarly let Mεk

t =

sp{1, εk,t, εk,t−1, εk,t−2, . . .}. For the linear past of two time series, for example, {Dk−1,t} and {Dk,t},

we write MDk−1,Dk

t = sp{1, Dk−1,t, Dk,t, Dk−1,t−1, Dk,t−1, . . .}.

As an example on how to determine a player’s information set, consider the retailer’s information

setM1
t . Since at any time period t the retailer knows the series {D1,t}, the retailer can also compute

any linear combination of {1, D1,t, D1,t−1, D1,t−2, . . .}. Since the retailer only observes D1,t, we say

thatM1
t =MD1

t . However, if we recall our assumption that the retailer’s demand is invertible and

causal with respect to the shocks {ε1,t}, we find that the retailer can recover the series {ε1,t} from the

series {D1,t} and vice-versa (see [Brockwell and Davis, 1991], pp 83-88 for a complete discussion of

invertibility and causality). Therefore we can say thatMD1
t =Mε1

t . Thus the retailer’s information

set is also M1
t =Mε1

t . In the presence of information sharing, there are several possible forms for

player k’s information set Mk
t .

Now that we have defined player k’s information set, we can define player k’s full information

shocks as they appear in GHS (2012).

Definition 1. Suppose for k > 0 we can represent player k’s demand series {Dk,t} as a QUARMA

with respect to a series of shocks {εk,t}. We say that {εk,t} are player k’s Full Information Shocks

(FIS) if Mk
t =Mεk

t .

This definition implies two key properties of full information shocks. Player k’s information set

can be used to characterize player k’s full information shocks. Also, player k’s information set can
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be characterized using player k’s full information shocks.

We now introduce an example that we will study throughout the paper. This example will

show how information is gained from various sharing arrangements. Furthermore this example

demonstrates the importance of studying various sharing arrangements because the difference in

value of the arrangements can be significant even for the very simple model provided below.

Example 2. Part I

Suppose the retailer observes ARMA(2,2) demand given by

(1 +
1

3
B +

1

2
B2)D1,t = d+ (1− 83

57
B +

289

456
B2)ε1,t (11)

We will assume that `1 = 1 and `2 = 1.

Note that φ(z) = 1 + 1
3z + 1

2z
2 has roots −0.333333 + 1.374369i and −0.333333 − 1.374369i

which are outside the unit circle and θ1(z) = 1 − 83
57z + 289

456z
2 has roots 1.148789 + 0.508074i and

1.148789−0.508074i which are also outside the unit circle. Therefore the retailer’s demand is causal

and invertible with respect to ε1,t.

Suppose the retailer shares its shocks with the supplier. Following the propagation described

in GHS (under shock-sharing), with `1 = 1, we find that the supplier observes the following

ARMA(2,2) demand:

(1 +
1

3
B +

1

2
B2)D2,t = d+ (1− 32

3
B +

20

3
B2)ε2,t

where ε2,t = (−9/152)ε1,t. We denote the innovation variance of {ε2,t} by σ2
ε2.

We stop the discussion of this example here for now and will continue it later in Section 3 once

we derive the necessary tools to study it further.

2.4 Demand Propagation from Stage k − 1 to k

GHS show that when players can either share nothing or their full information shocks, ARMA

demand at the retailer given in equation (10) propagates up the supply chain such that player k

(with k > 1) faces QUARMA(p, qk, Jk) demand with respect to its full information shocks, {εk,t},
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i.e.,

Dk,t = d+φ1Dk,t−1+φ2Dk,t−2+· · ·+φpDk,t−p+εk,t−Jk−θk,1εk,t−Jk−1−θk,2εk,t−Jk−2−· · ·−θk,qkεk,t−Jk−qk .

(12)

where θk,qk 6= 0. Note that in equation (12) the most recent Jk shocks do not appear. As long as

Jk < ∞, the QUARMA(p, qk, Jk) model for player k’s demand with respect to shocks {εk,t} may

be expressed using the backshift operator B as,

φ(B)Dk,t = d+BJkθk(B)εk,t, (13)

where θk(B) = 1−
∑qk

j=1 θk,jB
j .

A key contribution of this paper is showing that an equation of the form (13) holds when

demand sharing is also allowed throughout the chain. We prove this by mathematical induction on

k in Theorem 3 of Section 5. The inductive hypothesis in the proof is that for a particular k > 1

we can express player k − 1’s demand {Dk−1,t} in terms of {εk−1,t} as

φ(B)Dk−1,t = d+BJk−1θk−1(B)εk−1,t (14)

Sections 3-4 use (14) to obtain general formulas for player k’s full information shocks {εk,t}. The-

orem 3 makes use of the results found in these sections to show that (13) indeed holds even when

players can share their demand.

In Section 3 we will discuss how player k−1 will forecast its demand and place its order to player

k according to a myopic order-up-to-policy sharing either nothing, Dk−1,t, or εk−1,t. Section 3 will

discuss how player k receives the order, which we show is QUARMA with respect to player k− 1’s

full information shocks. Note that when describing player k−1’s order it is unnecessary to consider

the sharing arrangement between player k − 1 and player k. Section 4 will discuss how player k

will recover its full information shocks {εk,t} based on its information set, which may depend on

its sharing arrangement with player k − 1. These shocks determine the QUARMA representation
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of player k’s demand {Dk,t} with respect to {εk,t}. At this stage we have come back to equation

(14) with k replacing k − 1 and demand propagation will continue from player k to player k + 1.

Once we have described the concepts mentioned above, it will be possible to tackle the out-

standing issue of showing that Equation (13) does in fact hold for all k > 1. As mentioned, this

will be covered in detail in Section 5. In Section 6 we will compare the various sharing arrangments

between players k−1 and k to see if there could be value gained in changing sharing arrangements.

It will turn out that player k − 1 sharing its demand can lead to the variance of player k’s FIS

being intermediate to the variance of player k’s FIS when player k − 1 shares nothing or its full

information shocks. This would imply that player k’s MSFE will also be intermediate when player

k forecasts one step ahead. We will illustrate this with several examples. In Section 7, we will

summarize the contributions of this paper.

3 Player k − 1’s Order to Player k

As mentioned previously, the inductive hypothesis in Theorem 3 is that player k − 1 > 0 observes

QUARMA demand {Dk−1,t} with respect to its full information shocks.

φ(B)Dk−1,t = d+BJk−1θk−1(B)εk−1,t

We will call this player k − 1’s “demand equation”. Here we will discuss how player k − 1 goes

about creating its optimal order to player k. Since player k − 1 has already recovered its FIS, it

can forecast its lead-time demand using its demand equation. As in GHS, we call this forecast

and its MSFE mk−1,t and vk−1,t. Using a myopic-order-up-to-policy, player k − 1 determines its

order-up-to-level, Sk−1,t = mk−1,t + ck−1
√
vk−1,t. Then player k − 1 constructs its order to player

k,

Dk,t = Dk−1,t + Sk−1,t − Sk−1,t−1 = Dk−1,t +mk−1,t −mk−1,t−1
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where the last equality holds because each player’s MSFE is time invariant (ie. vk−1,t = vk−1).

Note that both player k − 1’s order as well as player k’s demand is Dk,t. While it is indeed the

case that numerically player k − 1’s order is player k’s demand, it is important to study Dk,t with

respect to the information that is available to player k − 1 and player k separately.

Recall that mk−1,t and mk−1,t−1 are player k−1’s best linear forecasts, at time t and t−1, of its

lead-time demand and therefore will be a linear combination of present and past values of {εk−1,t}

(see Lemma 1 of GHS). Player k− 1’s demand, Dk−1,t, can also be written as a linear combination

of present and past values of {εk−1,t} since these are player k − 1’s FIS. Therefore it stands to

reason that Dk,t can be expressed as a linear combination of present and past values of {εk−1,t}.

As we will see by Proposition 1 and Theorem 1 below, {Dk,t} will be QUARMA with respect to

{Cεk−1,t} where C is some constant when Jk−1 <∞. The case of constant demand (Jk−1 =∞) is

trivial.

The following proposition gives a useful characterization of the QUARMA model.

Proposition 1. We can represent a series {Dt} in terms of a shock series {εt} as

φ(B)Dt = c+ λ(B)εt (15)

where λ(z) is some polynomial in z ∈ C such that we can write λ(z) = λ0+λ1z+λ2z
2+...+λq+Jz

q+J

with λq+J 6= 0 and J = inf{j ≥ 0|λj 6= 0} 6= ∞ if and only if Dt is QUARMA with respect to

{λJεt}:

φ(B)Dt = c+BJθ(B)λJεt

where θ(z) = z−Jλ(z)/λJ has a leading coefficient of 1 and no roots at zero.

Proof. First assume that representation (15) holds and write the polynomial λ(z) as the product

of two polynomials and a constant term. The first polynomial will have roots only at 0 (if there

are any roots at 0), and the other will have no roots at 0 and a leading coefficient of 1. To do this,

we note that J represents the multiplicity of the 0-root of λ(z) and that λJ is the first non-zero

coefficient of λ(z). Let θ(z) = z−Jλ−1
J λ(z). Therefore (15) can be rewritten as

φ(B)Dt = c+BJθ(B)λJεt, (16)
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Note the first polynomial is zJ and the second is θ(z) where either zJ has all its roots at 0 or

zJ ≡ 1, while θ(z) has no roots at 0 and a leading coefficient of 1.

The necessity of (15) follows from the the definition of θ(z). By simple arithmetic we can express

λ(z) = zJθ(z)λJ to get λ(z) and equation (15) holds.

At present we are interested in representing player k − 1’s order {Dk,t} in terms of player

k − 1’s FIS {εk−1,t}. It follows from Proposition 1 that if we can find a polynomial λk(z) =

λ0 + λ1z + λ2z
2 + ...+ λq̃k+J̃k

zq̃k+J̃k with λq̃k+J̃k
6= 0 and J̃k = inf{j ≥ 0|λj 6= 0} 6=∞ such that

φ(B)Dk,t = d+ λk(B)εk−1,t (17)

then {Dk,t} will be QUARMA with respect to {λk,J̃kεk−1,t}. The parameters J̃k and q̃k are con-

ceptually different from the Jk and qk appearing in player k’s demand equation since here we are

expressing {Dk,t} in terms of {εk−1,t}. The following theorem shows how to find λk(z) from the

polynomials appearing in player k − 1’s demand equation. The formula below is the backbone for

many of the concepts discussed in this paper. It is crucial in finding an example of demand sharing

being intermediate in value to no sharing and shock sharing, which we will see once Example 2

is completed in Section 6. Furthermore, it can be also used to study the asymptotic behavior of

supply chains (including the bullwhip effect), which we leave to future research.

Theorem 1. For k ≥ 2, assume that player k − 1 observes demand series {Dk−1,t} that is

QUARMA(p, qk−1, Jk−1) with respect to shocks {εk−1,t}

φ(B)Dk−1,t = d+BJk−1θk−1(B)εk−1,t (18)

Then, player k − 1’s order to player k, {Dk,t}, will be

φ(B)Dk,t = d+ λk(B)εk−1,t (19)

where
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φ(B)Dk,t = d+

{[
BJk−1 + 1{Jk−1>0}[B

max(0,Jk−1−(`k−1+1)) −BJk−1 ]

+ 1{`k−1≥Jk−1}[B
Jk−1−(`k−1+1) − 1]

]
θk−1(B)

+ 1{`k−1≥Jk−1}φ(B)

[ `k−1−Jk−1∑
L=0

ψk−1,L −BJk−1−(`k−1+1)

`k−1−Jk−1∑
L=0

ψk−1,LB
L

]}
εk−1,t

where ψk−1,L is the Lth MA(∞) coefficient of Dk−1,t with respect to {εk−1,n}
t−Jk−1
−∞ .

A proof can be found in the Appendix. The constant term d in (19) is the same as the one

appearing in (18). It can turn out that the sums in the above theorem have an upper limit that

is smaller than its lower limit. If this is the case, the sum is 0 by convention. It is important

that λk(z) not have any negative powers of z. Indeed, this can be checked to be the case. The

expression for λk(z) is universal when player k−1 observes QUARMA demand and places its order

according to the order-up-to policy. Combining this result with Proposition 1 we get that {Dk,t}

is QUARMA with respect to {λk,J̃kεk−1,t}.

We will write the QUARMA representation of {Dk,t} with respect to {λk,J̃kεk−1,t} as

φ(B)Dk,t = d+BJ̃k θ̃k(B)λk,J̃kεk−1,t (20)

where we use the “tilde” in θ̃k(z) and J̃k to differentiate that we are expressing {Dk,t} in terms of

{εk−1,t} rather than {εk,t}. We refer to (20) as player k − 1’s order equation.

The expression for λk(z) in Theorem 1 simplifies greatly when Jk−1 ≥ `k−1 +1 as demonstrated

by the corollary below.

Corollary 1. Consider the assumptions of Theorem 1 with Jk−1 ≥ `k−1 + 1.

Then, player k − 1’s order to player k, {Dk,t}, will be

φ(B)Dk,t = d+ λk(B)εk−1,t (21)

where
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λk(z) = zJk−1−(`k−1+1)θk−1(z)

Proof. If Jk−1 ≥ `k−1 + 1, then the expression in the conclusion of Theorem 1 simplifies to

λk(z) = zJk−1θk−1(z) + zJk−1−(`k−1+1)θk−1(z)− zJk−1θk−1(z)

which is simply

λk(z) = zJk−1−(`k−1+1)θk−1(z)

Corollary 1 shows an interesting relationship between player k−1’s demand equation and player

k − 1’s order equation. Specifically, when Jk−1 ≥ `k−1 + 1, we have that J̃k = Jk−1 − (`k−1 + 1)

and θ̃k(z) = θk−1(z).

Example 2. Part II

Recall that it was previously determined that the supplier observes demand equation:

(1 +
1

3
B +

1

2
B2)D2,t = d+ (1− 32

3
B +

20

3
B2)ε2,t (22)

Using Theorem 1 with J2 = 0 and `2 = 1 we have that

λ3(z) = −1

6
+

13

6
z − 5z2

By Proposition 1 this means that the supplier’s order equation is given by:

(1 +
1

3
B +

1

2
B2)D3,t = d+ (1− 13B + 30B2)

−1

6
ε2,t (23)

where θ̃3(z) = 1− 13z + 30z2.

4 The QUARMA representation of {Dk,t} with respect to {εk,t}

In order to establish the QUARMA representation of player k’s demand, i.e., {Dk,t} with respect

to {εk,t}, we must first establish player k’s FIS {εk,t}. As we will see, these will depend on the
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location of roots of θ̃k in (20) and the sharing arrangement between player k − 1 and k. Consider

player k − 1’s demand and order equations given in (14) and (20):

φ(B)Dk−1,t = d+BJk−1θk−1(B)εk−1,t

φ(B)Dk,t = d+BJ̃k θ̃k(B)λk,J̃kεk−1,t

Recall that player k’s FIS must satisfy two properties: {Dk,t} is QUARMA with respect to

{εk,t} andMk
t =Mεk

t . Therefore player k’s FIS depend on player k’s information set. Furthermore

since the QUARMA representation of {Dk,t} with respect to {εk,t} depends on player k’s FIS, it

inherently depends on player k’s information set as well. Thus understanding player k’s information

set is crucial to the study of propagation.

Note that player k’s information set consists of Dk,t and anything shared by player k − 1.

• If there is no sharing between player k and k − 1, Mk
t =MDk

t

• If player k − 1 shares its demand then Mk
t =MDk,Dk−1

t

• If player k − 1 shares its shocks then Mk
t =MDk,εk−1

t

This section will be divided into four subsections as we establish some notation and explore

player k’s FIS under the three possible sharing scenarios. The propositions found in Sections 4.2

and 4.4 are restatements of results found in GHS (2012), where the case of no sharing and shock

sharing has previously been studied. They are presented here to keep this paper self-contained and

because they yield insight into how to find and compare FIS under different sharing arrangements.

Section 4.3 focuses on demand sharing and contains several key results of our paper.

4.1 Notation

Before we can show the form of player k’s FIS under various sharing arrangments we must develop

some notation. A lot of the theory from this point on will involve working with the roots of the
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polynomials θk−1(z) and θ̃k(z). Furthermore, we will need to consider the multiplicity of the roots

in the polynomials. To do this we introduce the following definition:

Definition 2. For any z ∈ C and polynomial P , if z is a root of P we define m(z, P ) as the

multiplicity of z in P . If z is not a root of polynomial P we define m(z, P ) = 0.

It will soon be useful to factorize θ̃k(z) into factors having all roots on the the unit circle and

all roots not on the unit circle, for this we utilize the following notation:

Consider player k − 1’s demand and order equations. Suppose the polynomial θ̃k(z) has rk

distinct roots z1, . . . , zrk with respective multiplicities m(z1, θ̃k), . . . ,m(zrk , θ̃k). Note that rk ≤ q̃k.

Then θ̃k(z) has the factorization:

θ̃k(z) =

rk∏
j=1

(1− z

zj
)m(zj ,θ̃k)

Define the following:

θ̃INk :=
∏

{j:|zj |<1}

(1− z

zj
)m(zj ,θ̃k) (24)

θ̃OUTk :=
∏

{j:|zj |>1}

(1− z

zj
)m(zj ,θ̃k) (25)

θ̃ONk :=
∏

{j:|zj |=1}

(1− z

zj
)m(zj ,θ̃k) (26)

θ̃OFFk :=
∏

{j:|zj |6=1}

(1− z

zj
)m(zj ,θ̃k) (27)

If θ̃k has no roots inside the unit circle, then θ̃INk ≡ 1. The same convention holds for the others.

It should be clear that θ̃k = θ̃INk · θ̃OUTk · θ̃ONk by construction.

We will also be interested in identifying any common roots between θ̃k(z) and θk−1(z) inside

the unit circle. To do this we define the following:

θ̃I−Ck :=
∏

{j:|zj |<1}

(1− z

zj
)min(m(zj ,θ̃k),m(zj ,θk−1)) (28)
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The roots of θ̃I−Ck will all be inside the unit circle. Furthermore, since the term m(zj , θk−1) may be

0, θ̃I−Ck will only consist of those roots that are common to both θ̃k and θk−1. Also, the multiplicity

of each root is the minimum of the multiplicities of the root in θ̃k and θk−1. If θk−1(z) and θ̃k(z)

have no common roots inside the unit circle, then θ̃I−Ck ≡ 1.

Finally, define

θ̃I−NCk :=
∏

{j:|zj |<1}

(1− z

zj
)m(zj ,θ̃k)−min(m(zj ,θ̃k),m(zj ,θk−1)) (29)

The roots of θ̃I−NCk will all be inside the unit circle. Furthermore a root of θ̃k is a root of θ̃I−NCk if

m(zj , θ̃k) > m(zj , θk−1) and the multiplicity of each root in θ̃I−NCk ism(zj , θ̃k)−min(m(zj , θ̃k),m(zj , θk−1)).

If m(zj , θ̃k) ≤ m(zj , θk−1) for all j, then θ̃I−NCk ≡ 1. Note that θ̃INk = θ̃I−Ck · θ̃I−NCk by construction.

4.2 FIS Under No Sharing

If there is no sharing between player k and player k − 1, player k’s information set is

Mk
t =MDk

t .

Therefore player k’s FIS {εk,t} must satisfy Mεk
t =MDk

t .

Proposition 2. If zJ̃k θ̃k(z) has no roots inside the unit circle then

• {λk,J̃kεk−1,t} are player k’s full information shocks.

• Jk = 0 and θk(z) = θ̃k(z)

Since λk,J̃kεk−1,t are player k’s full information shocks, we say εk,t = λk,J̃kεk−1,t with

φ(B)Dk,t = d+BJkθk(B)εk,t

where Jk = 0 and θk(z) = θ̃k(z).

To state player k’s FIS when there is no sharing and θk(z) has roots inside the unit circle, some

additional notation is required:
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Definition 3. Suppose a polynomial P (z) factorizes as

P (z) =
h∏
s=1

(1− z

as
)

q∏
s=h+1

(1− z

as
)

such that |as|< 1 for 1 ≤ s ≤ h and |as|≥ 1 for h+ 1 ≤ s ≤ q.

Define P †(z) as the polynomial

P †(z) =
h∏
s=1

(1− āsz)
q∏

s=h+1

(1− z

as
) (30)

where ās is the complex conjugate of as

Proposition 3. Suppose that θ̃k(z) in player k− 1’s order equation has h > 0 roots inside the unit

circle. Then

• { θ̃k(B)

θ̃†k(B)
BJ̃kλk,J̃kεk−1,t} are player k’s full information shocks.

• Jk = 0 and θk(z) = θ̃†k(z)

The polynomial θ̃k(z) can be factorized as

θ̃k(z) =
h∏
s=1

(1− z

zs
)

q̃k∏
s=h+1

(1− z

zs
)

where the roots z1, ..., zq̃k of θ̃k(z) are such that |zs|< 1 for 1 ≤ s ≤ h and |zs|≥ 1 for h+1 ≤ s ≤ q̃k

and

θ̃†k(z) =

h∏
s=1

(1− z̄sz)
q̃k∏

s=h+1

(1− z

zs
)

When { θ̃k(B)

θ̃†k(B)
BJ̃kλk,J̃kεk−1,t} are player k’s full information shocks, we say that

εk,t =
θ̃k(B)

θ̃†k(B)
BJ̃kλk,J̃kεk−1,t

which can be rewritten as

θ̃†k(B)

θ̃k(B)
εk,t = BJ̃kλk,J̃kεk−1,t
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Even if J̃k = 0, there is no way to recover εk−1,t from present and past values of {εk,t} since

any Laurent series representation of
1

θ̃k(B)
will involve negative powers in B, as explained by

the comments immediately following Example 1 Part II. Thus {εk−1,t} cannot be player k’s full

information shocks.

The only scenario not yet covered is that none of the roots of θ̃k(z) are inside the unit circle,

but J̃k > 0. The following proposition gives the FIS in this case:

Proposition 4. Suppose that θ̃k(z) has no roots inside the unit circle and J̃k > 0. Then

• {BJ̃kλk,J̃kεk−1,t} are player k’s FIS

• Jk = 0 and θk(z) = θ̃k(z)

Proof. Let

γk−1,t = BJ̃kλk,J̃kεk−1,t (31)

Substituting this into (20) we have

φ(B)Dk,t = d+ θ̃k(B)γk−1,t

Since θ̃k(z) has no roots inside the unit circle Proposition 2 states that γk−1,t are player k’s full

information shocks. We say that {εk,t} = {BJ̃kλk,J̃kεk−1,t}. Furthermore θk(z) = θ̃k(z) and Jk =

0.

Thus we have found player k’s FIS and how to express {Dk,t} in terms of {εk,t} when there is

no sharing. We now consider Example 2 for the case that the supplier shares nothing with player

3.

Example 2. Part III

Recall that we previously determined that the supplier’s order equation is given by:

(1 +
1

3
B +

1

2
B2)D3,t = d+ (1− 13B + 30B2)

−1

6
ε2,t

where θ̃3(z) = 1 − 13z + 30z2 has roots .1 and 1/3. Since θ̃3(z) has a root inside the unit circle

and J̃3 = 0, if the retailer shares nothing, we can use Proposition 3 to determine that player 3’s
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full information shocks are

ε3,t =
1− 13z + 30z2

1− 13/30z + 1/30z2

−1

6
ε2,t

The polynomial θ̃†3(z) = 1−13/30z+1/30z2 is determined by (30). Furthermore player 3’s demand

equation is given by

(1 +
1

3
B +

1

2
B2)D3,t = d+ (1− 13

30
B +

1

30
B2)ε3,t

Also, from [Brockwell and Davis, 1991], pp. 125-127, the variance of the shocks {ε3,t} in this case

(no sharing) is given by

σ2
ε3,NS =

1

( 1
10)2

· 1

(1
3)2
· (1

6
)2 · σ2

ε2 = 900
1

36
σ2
ε2 (32)

4.3 FIS Under Demand Sharing

If player k − 1 shares its demand with player k, player k’s information set is

Mk
t =MDk,Dk−1

t

Therefore player k’s FIS {εk,t} must satisfy Mεk
t =MDk,Dk−1 . Before we can state player k’s full

information shocks under demand sharing we need to develop the following crucial Lemma:

Lemma 1. Suppose we can represent two sequences {X1,t} and {X2,t} in terms of a zero-mean

stationary process {ηt} as

φ(B)X1,t = d+BJ1Θ1(B)ηt (33)

φ(B)X2,t = d+BJ2Θ2(B)ληt (34)

where φ(z) has no roots inside the unit circle, Θ1(z) and Θ2(z) have a leading coefficient of 1 and

no roots at zero, and λ is a non-zero constant.

There exist functions ϑ(z) and ω(z) with one sided Laurent series representations converging in

a disk D that contains the unit circle such that ϑ(B)φ(B)X1,t+ω(B)φ(B)X2,t = ϑ(1)d+ω(1)d+ηt

if and only if the polynomials zJ1Θ1(z) and zJ2Θ2(z) have no common common roots inside or on

the unit circle.
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Lemma 1 states that we can write ηt as a linear combination of present and past values of

X1,t and X2,t if and only if zJ1Θ1(z) and zJ2Θ2(z) have no common common roots inside or on

the unit circle. This concept will play a major role when searching for player k’s FIS when there

is knowledge of both {Dk,t} and {Dk−1,t}. The importance of this lemma will be apparent when

proving the following theorem, which establishes player k’s FIS under demand sharing.

Theorem 2. Suppose that player k − 1 shares its demand series {Dk−1,t} with player k

(i) If zJ̃k θ̃k(z) and zJk−1θk−1(z) have no common roots inside the unit circle, then

• {λk,J̃kεk−1,t} are player k’s FIS.

• Jk = J̃k and θk(z) = θ̃k(z)

(ii) If zJ̃k θ̃k(z) has at least one root inside the unit circle in common with zJk−1θk−1(z), then

• {
θ̃I−Ck (B)

θ̃†I−Ck (B)
Bmin(J̃k,Jk−1)λk,J̃kεk−1,t} are player k’s FIS

• Jk = J̃k −min(J̃k, Jk−1) and θk(z) = θ̃OUTk (z)θ̃ONk (z)θ̃I−NCk (z)θ̃†I−Ck (z)

The polynomial θ̃†I−Ck (z) is defined using (28) and (30). Theorem 2 implies that if player k− 1

shares its demand, player k can recover player k−1’s full information shocks if and only if zJ̃k θ̃k(z)

and zJk−1θk−1(z) have no common roots inside the unit circle. One can see this by considering

εk,t =
θ̃I−Ck (B)

θ̃†I−Ck (B)
Bmin(J̃k,Jk−1)εk−1,t

which we can rewrite as

εk−1,t =
θ̃†I−Ck (B)

θ̃I−Ck (B)
B−min(J̃k,Jk−1)εk,t

If zJ̃k θ̃k(z) has at least one root inside the unit circle in common with zJk−1θk−1(z) then at least

one of the following must be true:

• min(J̃k, Jk−1) > 0
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• 1

θ̃I−Ck (z)
does not have a one-sided Laurent Series representation for z ∈ D where the disk D

contains the unit circle

This means that it is impossible to write εk−1,t as a linear combination of present and past values

of {εk,t} and MDk,Dk−1

t 6= Mεk−1

t . We will compare the full information shocks we see here and

those obtained when there is no sharing or full information shock sharing later in Section 6. For

now we continue Example 2 for the case that the supplier shares its demand with player 3.

Example 2. Part IV

Recall that we previously determined that the supplier’s order equation is given by:

(1 +
1

3
B +

1

2
B2)D3,t = d+ (1− 13B + 30B2)

−1

6
ε2,t

where θ̃3(z) = 1− 13z+ 30z2 has roots 1/10 and 1/3, which are inside the unit circle. From before,

θ2(z) = 1−32/3z+20/3z2 has roots 1/10 and 3/2. Therefore θ̃3(z) has a root inside the unit circle

in common with θ2(z). Here we assume that the supplier shares its FIS with player 3. By Theorem

2(ii) player 3’s full information shocks are

ε3,t =
1− 10z

1− 1/10z
(−1/6)ε2,t

The polynomial θ̃I−C3 (z) = 1 − 10z is found from (28) and θ̃†I−C3 (z) = 1 − 1/10z is found using

(30). Furthermore by Theorem 2(ii) we also have that J3 = 0 and θ3(z) = 1 · θ̃I−NC3 (z) · θ̃†I−C3 =

(1− 3z)(1− 1/10z). Therefore player 3’s demand equation is given by

(1 +
1

3
B +

1

2
B2)D3,t = d+ (1− 31

10
z +

3

10
z2)ε3,t

Also, following [Brockwell and Davis, 1991], pp. 125-127, we have that the variance of the shocks

{ε3,t} under demand sharing is

σ2
ε3,DS =

1

( 1
10)2

(1/6)2σ2
ε2 = 100

1

36
σ2
ε2 (35)

4.4 FIS Under Full Information Shock Sharing

We close this section by describing player k’s full information shocks when player k − 1 shares

its shocks. In this case player k’s information set is Mk
t = MDk,εk−1

t . Recall that MDk,εk−1

t =
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sp{1, Dk,t, εk−1,t, Dk,t−1, εk−1,t−1, . . .}. If we consider player k − 1’s order equation

φ(B)Dk,t = d+BJ̃k θ̃k(B)λk,J̃kεk−1,t

and note that φ(z) has no roots inside the unit circle, we can use the same reasoning as in the

proofs of the previous propositions to conclude that Dk,t can be written as the linear combination

of present and past {εk−1,t}. This means that the space sp{1, Dk,t, εk−1,t, Dk,t−1, εk−1,t−1, . . .} is

the same as the space sp{1, εk−1,t, εk−1,t−1, . . .}. Therefore Mk
t =MDk,εk−1

t =Mεk−1

t .

Consider γk−1 = λk,J̃kεk−1,t. It is readily seen thatMγk−1

t =Mεk−1

t and thereforeMk
t =Mγk−1

t .

Since the order equation above shows that we can represent {Dk,t} as QUARMA with repsect to

{γk−1,t} we conclude that {λk,J̃kεk−1,t} are player k’s FIS. Furthemore Jk = J̃k and θk(z) = θ̃k(z).

The following proposition restates this result.

Proposition 5. If player k − 1 shares its shocks,

• {λk,J̃kεk−1,t} are player k’s FIS

• Jk = J̃k and θk(z) = θ̃k(z)

Example 2. Part V

Recall that we previously determined that the supplier’s order equation is given by:

(1 +
1

3
B +

1

2
B2)D3,t = d+ (1− 13B + 30B2)

−1

6
ε2,t

where θ̃3(z) = 1−13z+30z2 has roots 1/10 and 1/3, which are inside the unit circle. If the supplier

shares its shocks, we can use Proposition 5 to conclude that player 3’s full information shocks are

ε3,t = (−1/6)ε2,t

and that player 3’s demand equation is

(1 +
1

3
B +

1

2
B2)D3,t = d+ (1− 13B + 30B2)ε3,t

The variance of ε3,t in this case is given by

σ2
ε3,SS =

1

36
σ2
ε2 (36)
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We have now recovered player k’s full information shocks and described player k’s demand

equation for every conceivable scenario when player k−1’s demand equation is given by (14). Having

described player k’s demand equation it is possible to continue the propagation forward in the same

way to player k+ 1. The following section summarizes the results in the last three subsections and

uses them to prove that demand does indeed propagate as QUARMA-in QUARMA-out.

5 QUARMA-in-QUARMA-out

In the previous section we found player k’s FIS under no sharing, demand sharing, and full infor-

mation shock sharing when player k − 1’s demand follows demand equation (14). In this section

we will use those results to show that indeed player k − 1’s demand can be modeled as such. We

summarize player k’s FIS from the previous section in the following table:

No Sharing Demand Sharing Full Information

Shock Sharing

Scenario 1 {λk,J̃kεk−1,t} {λk,J̃kεk−1,t} {λk,J̃kεk−1,t}

Scenario 2 { θ̃k(B)

θ̃†k(B)
BJ̃kλk,J̃kεk−1,t} {λk,J̃kεk−1,t} {λk,J̃kεk−1,t}

Scenario 3 { θ̃k(B)

θ̃†k(B)
BJ̃kλk,J̃kεk−1,t} { θ̃

I−C
k (B)

θ̃†I−C
k (B)

Bmin(J̃k,Jk−1)λk,J̃kεk−1,t} {λk,J̃kεk−1,t}

Table 1: FIS under various conditions and sharing arrangements.

The scenarios described in Table 1 are as follows:

• Scenario 1:= zJk−1θk−1(z) has no roots inside the unit circle

• Scenario 2:= zJ̃k θ̃k(z) has no roots in common with zJk−1θk−1(z) inside the unit circle

• Scenario 3:= zJ̃k θ̃k(z) has a root in common with zJk−1θk−1(z) inside the unit circle

Note that there are three unique forms for the full information shocks in the above table. We
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will refer to this table when proving the central theorem of this section, stated here.

Theorem 3. Suppose the retailer observes causal and invertible ARMA demand

φ(B)D1,t = d+ θ1(B)ε1,t

and that any player can share nothing, its demand, or its full information shocks with an adjacent

upstream player. Then for any k ≥ 1 we can express player k’s demand as QUARMA with respect

to player k’s full information shocks:

φ(B)Dk,t = d+BJkθk(B)εk,t (37)

where θk(z) has a leading coefficient 1 and no roots at zero.

The only assumption of the above theorem is that the retailer observes causal and invertible

ARMA demand. As we have done throughout this paper, we assume that players can share nothing,

demand, or full information shocks with adjacent upstream players. The conclusion of the theorem

states that demand will propagate as QUARMA throughout the supply chain.

Proof of Theorem 3. The proof follows by induction. It is true for k = 1 by assumption since we

can take J1 = 0. Assume that (37) holds for k ≥ 1. We need to show that we can find Jk+1 and

θk+1(z) such that we can express player k + 1’s demand as

φ(B)Dk+1,t = d+BJk+1θk+1(B)εk+1,t

As given by Equation (20) in Section 3, with k+1 and k replacing k and k−1, we can write Dk+1,t

as

φ(B)Dk+1,t = d+BJ̃k+1 θ̃k+1(B)λk+1,J̃k+1
εk,t (38)

In accordance with Table 1, player k + 1’s full information shocks are one of the following:

(i) εk+1,t = λk+1,J̃k+1
εk,t

(ii) εk+1,t =
θ̃k+1(B)

θ̃†k+1(B)
BJ̃k+1λk+1,J̃k+1

εk,t

(iii) εk+1,t =
θ̃I−Ck+1 (B)

θ̃†I−Ck+1 (B)
Bmin(J̃k+1,Jk)λk+1,J̃k+1

εk,t
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For (i), we would write (38) as

φ(B)Dk+1,t = d+BJ̃k+1 θ̃k+1(B)λk+1,J̃k+1
εk+1,t

Here we can take Jk+1 = J̃k+1 and θk+1(z) = θ̃k+1(z) to get the required equation

φ(B)Dk+1,t = d+BJk+1θk+1(B)εk+1,t

For (ii), we would write (38) as

φ(B)Dk+1,t = d+BJ̃k+1 θ̃k+1(B)
θ̃†k+1(B)

θ̃k+1(B)
B−J̃k+1εk+1,t

which simplifies as

φ(B)Dk+1,t = d+ θ̃†k+1(B)εk+1,t

We would take Jk+1 = 0 and θk+1(z) = θ̃†k+1(z) to get the required equation.

Finally, for (iii), we would write (38) as

φ(B)Dk+1,t = d+BJ̃k+1 θ̃k+1(B)
θ̃†I−Ck+1 (B)

θ̃I−Ck+1 (B)
B−min(J̃k+1,Jk)εk+1,t

which simplifies as

φ(B)Dk+1,t = d+BJ̃k+1−min(J̃k+1,Jk)θ̃OUTk+1 (B)θ̃I−NCk+1 (B)θ̃†I−Ck+1 (B)εk+1,t (39)

Here we can take Jk+1 = J̃k+1 −min(J̃k+1, Jk) and θk+1(z) = θ̃OUTk+1 (z)θ̃I−NCk+1 (z)θ̃†I−Ck+1 (z)

Thus we have found a suitable Jk+1 and θk+1 in every case and induction is proved.

6 Comparison of Various Sharing Arrangements

We present here a discussion of the value of demand sharing within a supply chain in contrast to

full information shock sharing and no sharing. We do this by studying the best linear forecast of

lead-time demand for the three sharing arrangements.

Given player k’s demand equation and Lemma 1 of GHS, the best linear forecast of player k′s

leadtime demand is given by mk,t =
∑∞

i=`k+1 ωk,iεk,t+`k+1−i + (`k + 1)µd =
∑∞

i=0 ωk,i+`k+1εk,t−i +
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(`k + 1)µd with an associated Mean Squared Forecast Error MSFEk = σ2
εk

`k∑
i=0

ω2
k,i, where σ2

εk
=

V ar(εk,t) and ωk,i are given by

ωk,i =



0 i < 0

ψk,i i = 0

ωk,i−1 + ψk,i 0 < i < `k + 1

ωk,i−1 + ψk,i − ψk,i−`k−1 i ≥ `k + 1

(40)

where ψk,j is the jth coefficient in the MA(∞) representation of player k’s demand with respect to

its FIS. From this it is clear that player k’s MSFEk is related to the variance of its full information

shocks, σ2
εk

. The following proposition states the variance of player k’s full information shocks

under the three arrangements of no sharing (σ2
εk,NS

), demand sharing (σ2
εk,DS

) and shock sharing

(σ2
εk,SS

).

Proposition 6. Below are the variances of player k’s full information shocks when player k − 1’s

shares its shocks, its demand, or nothing with player k.

• (i) σ2
εk,SS

= λ2
k,J̃k

σ2
εk−1

• (ii) σ2
εk,DS

=
∏

j:|zj |<1

|zj |−2·min(m(zj ,θ̃k),m(zj ,θk−1))λ2
k,J̃k

σ2
εk−1

• (iii) σ2
εk,NS

=
∏

j:|zj |<1

|zj |−2·m(zj ,θ̃k)λ2
k,J̃k

σ2
εk−1

This Proposition follows immediately from the form of player k’s FIS under the three shar-

ing arrangements and [Brockwell and Davis, 1991], pp. 125-127. The expressions for σ2
εk,DS

and

σ2εk,NS are not necessarily in simplest form. For example if min(m(zj , θ̃k),m(zj , θk−1)) = 0 for all

roots zj of θ̃k with |zj |< 1 then (ii) would become σ2
εk,DS

= λ2
k,J̃k

σ2
εk−1

.

The following theorem illustrates the relationship of the variances given in Proposition 6. Note

that we are still considering all the assumptions in Section 2.2.
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Theorem 4. Suppose the retailer observes causal and invertible ARMA demand. For any k > 1,

(i) Suppose θ̃k(z) has at least one root in common with θk−1(z) inside the unit circle. Suppose

further that there is a root zj of θ̃k(z) such that |zj |< 1 and m(zj , θ̃k) > m(zj , θk−1). Then σ2
εk,SS

<

σ2
εk,DS

< σ2
εk,NS

.

(ii) Suppose θ̃k(z) has at least one root in common with θk−1(z) inside the unit circle. Suppose

further that any root zj of θ̃k(z) where |zj |< 1 is such that m(zj , θ̃k) ≤ m(zj , θk−1). Then σ2
εk,SS

<

σ2
εk,DS

= σ2
εk,NS

.

(iii) Suppose θ̃k(z) has no roots in common with θk−1(z) inside the unit circle.

(a) If θ̃k(z) has a root inside the unit circle, then σ2
εk,SS

= σ2
εk,DS

< σ2
εk,NS

(b) If θ̃k(z) has no roots inside the unit circle, then σ2
εk,SS

= σ2
εk,DS

= σ2
εk,NS

Cases (i) and (ii) exhaust the event that θ̃k(z) and θk−1(z) have at least one common root

inside the unit circle. Case (iii) considers what happens when θ̃k(z) and θk−1(z) have no common

roots inside the unit circle. It should be further noted that any roots of θ̃k(z) outside or on the

unit circle have no impact on the variance of the full information shocks.

Example 2. Part VI

Recall the variance of player 3’s full information shocks under the three different sharing ar-

rangements given by (32) (35) and (36):

σ2
ε3,NS = 900

1

36
σ2
ε2

σ2
ε3,DS = 100

1

36
σ2
ε2

σ2
ε3,SS =

1

36
σ2
ε2

We see that indeed

σ2
ε3,SS < σ2

ε3,DS < σ2
ε3,NS . (41)

Furthermore the differences are stark. The polynomial θ̃3(z) has a root, 1/10, in common with

θ2(z) inside the unit circle. Furthermore, θ̃3(z) has a root, 1/3, inside the unit circle, such that

1 = m(1/3, θ̃3) > m(1/3, θ2) = 0. Therefore the conditions of (i) hold and thus (41) is to be

expected.

Theorem 4 also leads to the following useful Corollaries:
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Corollary 2. For any player k, the full information shocks {εk} will be such that σ2
εk,SS

≤ σ2
εk,DS

≤

σ2
εk,NS

.

The proof follows immediately from Theorem 4.

Corollary 3. For any k > 1 where `k = 0 and J̃k = 0, θ̃k(z) has at least one root in common

with θk−1(z) inside the unit circle and there is a root zj of θ̃k(z) such that |zj |< 1 and m(zj , θ̃k) >

m(zj , θk−1) if and only if

MSFEk,SS < MSFEk,DS < MSFEk,NS

This corollary only applies when player k has to forecast one step ahead. In this case MSFEk =

σ2
εk

and the corollary follows immediately from Theorem 4.

Next we consider Example 2 and explore player 3’s MSFE for the three sharing arrangements

given various lead-times.

Example 2. Part VII

Recall that player 3’s MSFE is given by MSFE3 = σ2
ε3

`3∑
i=0

ω2
3,i where ω3,i’s are given by (40).

From Example 2 we have the variance of player 3’s full information shocks under the three different

sharing arrangements given by (32), (35), and (36):

σ2
ε3,NS = 900

1

36
σ2
ε2

σ2
ε3,DS = 100

1

36
σ2
ε2

σ2
ε3,SS =

1

36
σ2
ε2

We can use (40) and player 3’s demand equations under the three sharing scenarios to find ω3,i

for i = 1, ..., `k for any lead-time `k. We can hence compute the ratios of the MSFEs that arise

given the different sharing arrangements to the MSFE that arises when nothing is shared, which is

displayed in Figure 1 below.

We see that the MSFE that arises under demand sharing is strictly between the other two. We

continue with an example of intermediate value to demand for k > 1 in which J̃k > Jk−1 > 0
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Figure 1: The ratios of player 3’s MSFE under demand sharing and shock sharing to no sharing

for the model given in Example 2

Example 3. Suppose the retailer has lead time `1 = 0, shares its full information shocks with the

supplier and observes the following ARMA(4,4) model of its demand:

(1 + .5B − .2B2 − .4B3 + .4B4)D1,t = d+ (1− .5B + .3B2 − .7B3 + .1B4)ε1,t (42)

Using Theorem 1 we can compute

λ2(z) = (1− .5z + .3z2 − .7z3 + .1z4) + (z−1 − 1)((1− .5z + .3z2 − .7z3 + .1z4)

− (1 + .5z − .2z2 − .4z3 + .4z4))

= (1− .5z + .3z2 − .7z3 + .1z4) + (z−1 − 1)(−z + .5z2 − .3z3 − .3z4)

= 1− .5z + .3z2 − .7z3 + .1z4 +−1 + .5z − .3z2 − .3z3 + z − .5z2 + .3z3 + .3z4

= z − .5z2 − .7z3 + .4z4
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Thus we have λ2(z) = z(1− .5z− .7z2 + .4z3). From Proposition 1 we have that θ̃2(z) = (1− .5z−

.7z2 + .4z3) and J̃2 = 1. Furthermore since the retailer shared its shocks, Proposition 5 tells us that

θ2(z) = θ̃2(z) and J2 = 1 so the supplier observes the following QUARMA(4,1,3) model:

(1 + .5B − .2B2 − .4B3 + .4B4)D2,t = d+B(1− .5B − .7B2 + .4B3)ε2,t (43)

The roots of θ2(z) are 1.4575 + 0.147i, 1.4575 − 0.147i, and − 1.165, which are all outside the unit

circle. Assuming that the Supplier has a leadtime `2 = 1 and continuing the propagation using

Theorem 1 we get,

λ3(z) = (1 + .5z − .2z2 − .4z3 + .4z4) + z−1(1− .5z − .7z2 + .4z3

− (1 + .5z − .2z2 − .4z3 + .4z4))

= (1 + .5z − .2z2 − .4z3 + .4z4) + z−1(−z − .5z2 + .8z3 − .4z4)

= 1 + .5z − .2z2 − .4z3 + .4z4 − 1− .5z + .8z2 − .4z3

= .6z2 − .8z3 + .4z4

Thus we have that λ3(z) = z2(.6− .8z + .4z2). Again by Proposition 1 we get θ̃3(z) = 1− 4
3z + 2

3z
2

and J̃3 = 2. Player 3’s demand model with respect to player 2’s full information shocks would be

(1 + .5B − .2B2 − .4B3 + .4B4)D3,t = d+B2(1− 4

3
B +

2

3
B2)(

3

5
)ε2,t (44)

Note that θ̃3(z) has roots 1+0.707i and 1−0.707i which are outside the unit circle, but J̃3 > J2.

This will be central to the intermediate value of demand sharing in this case. For the three sharing

arrangements we have player 3’s FIS and demand equation given by

NS:

ε3,t =
3

5
B2ε2,t

and

(1 + .5B − .2B2 − .4B3 + .4B4)D3,t = d+ (1− 4

3
B +

2

3
B2)ε3,t

DS:

ε3,t =
3

5
Bε2,t

and

(1 + .5B − .2B2 − .4B3 + .4B4)D3,t = d+B(1− 4

3
B +

2

3
B2)ε3,t
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SS:

ε3,t =
3

5
ε2,t

and

(1 + .5B − .2B2 − .4B3 + .4B4)D3,t = d+B2(1− 4

3
B +

2

3
B2)ε3,t

Note that the variance of player 3’s full information shocks (σ2
ε3 = 9/25σ2

ε2) is the same for all three

sharing arrangements. Furthermore θ3(z) is also the same. The only difference is in J3. We can

compute ω2
3,i using (40) for i = 0, ..., `k for any `k ≥ 0. Thereby we obtain the ratio of the MSFEs

resulting from the three different sharing arrangements to the MSFE that arises when nothing is

shared given in Figure 2 below for lead-times 1,..., 11.
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Figure 2: The ratios of player 3’s MSFE under demand sharing and shock sharing to no sharing

for the model given in Example 3

If the supplier shares its demand, player 3 would have a perfect forecast when forecasting 1-step

ahead. If the supplier shares its FIS, player 3 would have a perfect forecast when forecasting 1
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or 2-steps ahead. Furthermore the resulting MSFE when demand is shared is strictly between the

MSFE when nothing is shared and when shocks are shared for the lead-times considered.

At time t, with no knowledge of the supplier’s demand, player 3 has no way to recover ε2,t or

ε2,t−1. However if the supplier shares its demand then player 3 can recover ε2,t−1. Furthermore, if

the supplier shares its full information shock series then player 3 would know both ε2,t and ε2,t−1.

Having completed Examples 2 and 3, we see that demand sharing between player k − 1 and k

can be intermediate in value in the case when J̃k = 0 as well as in the case of strict-QUARMA

(J̃k > 0). A discussion on how to find such examples is provided in the Appendix.

7 Conclusions and Direction for future research

The major contribution of this paper is that we extended the existing literature by assuming that

there may be one of three possible sharing arrangements between adjacent players:

• no information sharing,

• demand sharing, or

• full information shock sharing.

We demonstrated that the value provided by a demand sharing arrangement can be equivalent

to no sharing, equivalent to full information shock sharing, or intermediate to no sharing and full

information shock sharing. We further characterized when each of these three cases will occur under

demand sharing. We also derive a player’s full information set, its full information shocks, as well

as its best linear forecast under demand sharing and show how demand propagates upstream.

We proved that demand propagates according to QUARMA-in-QUARMA-out in the presence

of either no sharing, demand sharing, or full information shock sharing. We further showed that

demand sharing provides intermediate value to player k when (i) the MA polynomials for player
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k-1’s demand and order have at least one common root inside the unit circle, and (ii) the MA

polynomial for player k-1’s order has at least one additional root inside the unit circle.

Finally, we have provided a simpler methodology for the way in which demand propagates in a

supply chain in the presence of no sharing or shock sharing. Based upon this approach, we have a

convenient way of exploring other features of possibly large supply chains which we leave to future

research.

8 Appendix

Proof of Theorem 1. Let ψk−1(B) =
θk−1(B)
φ(B) =

∞∑
j=0

ψk−1,jB
j with ψk−1,0 = 1. Such a representation

exists because φ(z) is assumed to have all its roots outside the unit circle. We can then write

Dk−1,t =
d

φ(1)
+BJk−1ψk−1(B)εk−1,t (45)

Note that d
φ(1) is indeed the correct constant term since we know that E[φ(B)Dk−1,t] = φ(1)E[Dk−1,t].

According to the order-up-to policy, Dk,t = Dk−1,t +mk−1,t−mk−1,t−1 where mk−1,t and mk−1,t−1

are the best linear forecasts of leadtime demand at time t and t− 1 respectively.

Because player k−1’s leadtime is `k−1, the player would have to forecastDk−1,t+1, ..., Dk−1,t+`k−1+1.

Using (45) we have, for any nonnegative integer n,

Dk−1,t+n =
d

φ(1)
+BJk−1−nψk−1(B)εk−1,t

And consequently, since mk−1,t is the best linear forecast of
∑`k−1+1

i=1 Dk−1,t+i

mk−1,t =
d

φ(1)
+

`k−1+1∑
n=1

BJk−1−n
∞∑

j=max(0,n−Jk−1)

Bjψk−1,jεk−1,t (46)

If `k−1 + 1 > Jk−1 we can write (46) as

mk−1,t =
d

φ(1)
+

{ Jk−1∑
n=1

BJk−1−nψk−1(B)+

`k−1+1∑
n=Jk−1+1

BJk−1−n
[
ψk−1(B)−

n−Jk−1−1∑
L=0

ψk−1,LB
L

]}
εk−1,t

(47)

If `k−1 + 1 ≤ Jk−1 we can write (46) as

mk−1,t =
d

φ(1)
+

`k−1+1∑
n=1

BJk−1−nψk−1(B)εk−1,t (48)
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Combining (47) and (48), and using the convention that if the upper limit is smaller than the

lower limit of a sum, that sum is 0, we have that

mk−1,t =
d

φ(1)
+

{min(Jk−1,`k−1+1)∑
n=1

BJk−1−nψk−1(B)+

`k−1+1∑
n=Jk−1+1

BJk−1−n
[
ψk−1(B)−

n−Jk−1−1∑
L=0

ψk−1,LB
L

]}
εk−1,t

(49)

or equivalently,

mk−1,t =
d

φ(1)
+

{ Jk−1−1∑
n=max(0,Jk−1−(`k−1+1))

Bnψk−1(B)+

`k−1+1−Jk−1∑
n=1

B−n
[
ψk−1(B)−

n−1∑
L=0

ψk−1,LB
L

]}
εk−1,t.

(50)

Using the backshift operator, the order-up-to policy dictates that Dk,t = Dk−1,t+(1−B)mk−1,t.

By (50) and (18) we have that

φ(B)Dk,t = d +

{
BJk−1θk−1(B) + (1−B)

Jk−1−1∑
j=max(0,Jk−1−(`k−1+1))

Bjθk−1(B)

+ (1−B)

`k−1+1−Jk−1∑
j=1

B−j
[
θk−1(B)− φ(B)

j−1∑
L=0

ψk−1,LB
L

]}
εk−1,t (51)

Note that (1−B)

Jk−1−1∑
j=max(0,Jk−1−(`k−1+1))

Bjθk−1(B)

=

Jk−1−1∑
j=max(0,Jk−1−(`k−1+1))

Bjθk−1(B)−
Jk−1∑

j=max(1,Jk−1−(`k−1))

Bjθk−1(B)

= 1{Jk−1>0}[B
max(0,Jk−1−(`k−1+1)) −BJk−1 ] (52)

Furthermore

(1−B)

`k−1+1−Jk−1∑
j=1

B−jθk−1(B) =

`k−1+1−Jk−1∑
j=1

B−jθk−1(B)−
`k−1−Jk−1∑

j=0

B−jθk−1(B)

= 1{`k−1≥Jk−1}[B
Jk−1−(`k−1+1) − 1]θk−1(B) (53)

and likewise,
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(1−B)

`k−1+1−Jk−1∑
j=1

B−j
j−1∑
L=0

ψk−1,LB
L

=

`k−1+1−Jk−1∑
j=1

B−j
j−1∑
L=0

ψk−1,LB
L −

`k−1−Jk−1∑
j=0

B−j
j∑

L=0

ψk−1,LB
L

= BJk−1−(`k−1+1)

`k−1−Jk−1∑
L=0

ψk−1,LB
L +

`k−1−Jk−1∑
j=1

B−j
j−1∑
L=0

ψk−1,LB
L

−
`k−1−Jk−1∑

j=1

B−j
j∑

L=0

ψk−1,LB
L −B0ψk−1,0B

0

= 1{`k−1≥Jk−1}

[
BJk−1−(`k−1+1)

`k−1−Jk−1∑
L=0

ψk−1,LB
L −

`k−1−Jk−1∑
j=1

B−jψk−1,jB
j − ψk−1,0

]

= 1{`k−1≥Jk−1}

[
BJk−1−(`k−1+1)

`k−1−Jk−1∑
L=0

ψk−1,LB
L −

`k−1−Jk−1∑
j=0

ψk−1,j

]
(54)

Therefore using (52), (53) and (54), (51) becomes

φ(B)Dk,t = d+

{[
BJk−1 + 1{Jk−1>0}[B

max(0,Jk−1−(`k−1+1)) −BJk−1 ]

+ 1{`k−1≥Jk−1}[B
Jk−1−(`k−1+1) − 1]

]
θk−1(B)

+ 1{`k−1≥Jk−1}φ(B)

[ `k−1−Jk−1∑
L=0

ψk−1,L −BJk−1−(`k−1+1)

`k−1−Jk−1∑
L=0

ψk−1,LB
L

]}
εk−1,t

Proof of Proposition 2. Let γk−1,t = λk,J̃kεk−1,t

We can rewrite player k − 1’s order equation as

Dk,t =
d

φ(1)
+BJ̃k

θ̃k(B)

φ(B)
γk−1,t

The term d
φ(1) is indeed the correct constant here since we know that E[φ(B)Dk−1,t] = φ(1)E[Dk−1,t].

Since φ(B) has no roots inside the unit circle, there exists a one-sided Laurent series expansion

Lφ(z) of
1

φ(z)
for z ∈ D such that disk D contains the unit circle. Inserting this into the previous

expression,

Dk,t =
d

φ(1)
+BJ̃k θ̃k(B)Lφ(B)γk−1,t
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The Laurent series expansion Lφ(z) has the form

Lφ(z) =

∞∑
n=0

Ψnz
nforz ∈ D

This shows that, for any t, we can write Dk,t as a linear combination of present and past γk−1,t ie.

Dk,t ∈ sp{1, γk−1,t, γk−1,t−1, γk−1,t−2, ...} and therefore MDk
t ⊂Mγk−1

t .

Furthermore, we can also rewrite player k − 1’s order equation as

φ(B)

θ̃OFFk (B)
Dk,t −

d

θ̃OFFk (1)
= BJ̃k θ̃ONk (B)γk−1,t

where θ̃OFFk (z) and θ̃ONk (z) are defined in 27 and 26. Let {νk−1,t} = {θ̃ON (B)γk−1,t} and rewrite

this as
φ(B)

θ̃OFFk (B)
Dk,t −

d

θ̃OFFk (1)
= BJ̃kνk−1,t

Note that zJ̃k θ̃k(z) has no roots inside or on the unit circle, J̃k = 0 and there exists a one-sided

Laurent Series Expansion Lθ̃k(z) of
1

θ̃OFFk (z)
for z ∈ D such that disk D contains the unit circle.

Therefore, for any t, we can write νk−1,t as a linear combination of present and past Dk,t.

Thus Mνk−1

t ⊂ MDk
t . Finally, by [Brockwell and Davis, 1991] Proposition 4.4.1 Mγk−1

t ⊂

Mνk−1

t . Therefore Mγk−1

t ⊂MDk
t .

Thus we have shown that MDk
t = Mγk−1

t . Since Mk
t = MDk

t we have that Mγk−1

t = Mk
t . If

we can show that player k’s demand {Dk,t} can be written as QUARMA with respect to {γk−1,t}

then these will be player k’s FIS. To do this recall that εk−1,t = γk−1,t/λk,J̃k . Substituting this into

player k − 1’s order equation we get

φ(B)Dk,t = d+BJ̃k θ̃k(B)γk−1,t

Thus if we take Jk = J̃k = 0 and θk(z) = θ̃k(z) we will get the QUARMA representation of Dk,t

with respect to γk−1,t. This completes the proof.

Proof of Proposition 3. Let

γk−1,t =
θ̃k(B)

θ̃†k(B)
BJ̃kλk,J̃kεk−1,t (55)

We can rewrite εk−1,t in terms of γk−1,t as

λk,J̃kεk−1,t =
θ̃†k(B)

θ̃k(B)
B−J̃kγk−1,t
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Substituting this into (20) we have

φ(B)Dk,t = d+BJ̃k θ̃k(B)
θ̃†k(B)

θ̃k(B)
B−J̃kγk−1,t

and simplifying

φ(B)Dk,t = d+ θ̃†k(B)γk−1,t

The polynomial θ̃†k(B) has no roots inside the unit circle. Therefore by Proposition 2 we have

that γk−1,t are player k’s full information shocks. Thus we say that {εk,t} =
θ̃k(B)

θ̃†k(B)
BJ̃kλk,J̃kεk−1,t.

Furthermore θk(z) = θ̃†k(z) and Jk = 0.

Proof of Lemma 1. We can rewrite (33) and (34) as

φ(B)

ΘOUT
1 (B)

X1,t =
d

ΘOUT
1 (1)

+BJ1ΘIN
1 (B)ΘON

1 (B)ηt (56)

φ(B)

ΘOUT
2 (B)

X2,t =
d

ΘOUT
2 (1)

+BJ2ΘIN
2 (B)ΘON

2 (B)ληt (57)

Where ΘIN
1 , ΘIN

2 , ΘOUT
1 , ΘOUT

2 , ΘON
1 and ΘON

2 are polynomials defined in the same way as θ̃INk (z),

θ̃OUTk (z) and θ̃ONk are defined in (24), (25) and (26).

Consider the polynomials P1(z) = zJ1ΘIN
1 (z)ΘON

1 (z) and P2(z) = λzJ2ΘIN
2 (z)ΘON

2 (z). Sup-

pose P2(z) has r2 distinct non-zero roots b1, ..., br2 .

Define

GCD(P1, P2) := zmin(J1,J2)
r2∏
j=1

(1− z

bj
)min{m(bj ,P1),m(bj ,P2)}

The roots of GCD(P1, P2) are those roots that are common to both P1 and P2. Furthermore

the multiplicity of each root is the minimum of the multiplicities of the root in P1 and P2. By

construction, the coefficient in front of the lowest power of z of GCD(P1, P2) is 1.

By the Euclidean Algorithm for polynomials (cf. [Koblitz, 1998] pg 63) we know that there

exist polynomials Q1(z) and Q2(z) such that

Q1P1 +Q2P2 = GCD(P1, P2) (58)

Suppose ΘON
1 (z) has r1,on distinct roots b1, ..., br1,on . Define ΘON−C

1 as

ΘON−C
1 :=

r1,on∏
j=1

(1− z

bj
)min(m(bj ,Θ

ON
1 ),m(bj ,Θ

ON
2 ))
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Note that if ΘON
1 (z) and ΘON

2 (z) have no common roots, then ΘON−C
1 ≡ 1.

Noting that GCD(zJ1ΘIN
1 (z)ΘON

1 (z), λzJ2ΘIN
2 (z)ΘON

2 (z)) = zmin(J1,J2)ΘI−C
1 (z)ΘON−C

1 (z) the

Euclidean Algorithm tells us how to find polynomials Q1(z) and Q2(z) such that

zJ1Q1(z)ΘIN
1 (z) + λzJ2Q2(z)ΘIN

2 (z) = zmin(J1,J2)ΘI−C
1 (z)ΘON−C

1 (z) (59)

Therefore multiplying (56) and (57) by Q1(B) and Q2(B) and summing we get

1

ΘOUT
1 (B)

φ(B)Q1(B)X1,t +
1

ΘOUT
2 (B)

φ(B)Q2(B)X2,t = C +Bmin(J1,J2)ΘI−C
1 (B)ΘON−C

1 ηt (60)

where C = Q1(1)d

ΘOUT
1 (1)

+ Q2(1)d

ΘOUT
2 (1)

is a constant.

IfBJ1ΘIN
1 (z)ΘON

1 (z) andBJ2ΘIN
2 (z)ΘON

2 (z) have no common roots then ΘI−C
1 (z) ≡ 1, ΘON−C

1 (z) ≡

1 (and min(J1, J2) = 0) in (60) and therefore we can take ϑ(z) = Q1(z)

ΘOUT
1 (z)

and ω(z) = Q2(z)

ΘOUT
2 (z)

to

get

ϑ(B)φ(B)X1,t + ω(z)φ(B)X2,t = C + ηt

Furthermore since ΘOUT
1 (z) and ΘOUT

2 (z) have no roots inside or on the unit circle by construc-

tion, their reciprocals have one-sided Laurent series representations that converge in a disk D that

contains the unit circle. Therefore the constructed ϑ(z) and ω(z) have one-sided Laurent Series

Representations that converge for all z ∈ D. Note that C = ϑ(1)d+ ω(1)d.

Now suppose that there exist functions ϑ(z) and ω(z) with one sided Laurent Series Representa-

tions that converge in D such that ϑ(B)φ(B)X1,t+ω(B)φ(B)X2,t = C+ηt where C = ϑ(1)d+ω(1)d.

From (33) and (34) we can rewrite this as

ϑ(1)d+ ω(1)d+BJ1ϑ(B)Θ1(B)ηt +BJ2ω(B)Θ2(B)ληt = C + ηt

which simplifies to

BJ1ϑ(B)Θ1(B)ηt +BJ2ω(B)Θ2(B)ληt = ηt (61)

Define L(z) := zJ1ϑ(z)Θ1(z) + zJ2ω(z)Θ2(z)λ − 1. Note that (61) implies that for all µ ∈

[−π, π], L(e−iµ) ≡ 0. Consider the Laurent series expansion of L(z) for z ∈ D,

L(z) =
∞∑

k=−∞
gkz

k = zJ1ϑ(z)Θ1(z) + zJ2ω(z)Θ2(z)λ− 1 (62)

The Laurent Series (62) must have the same coefficients gk as the Fourier series expansion

L(e−iµ) =

∞∑
k=−∞

gke
−iµk = e−iµJ1ϑ(e−iµ)Θ1(e−iµ) + e−iµJ2ω(e−iµ)Θ2(e−iµ)λ− 1 (63)
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Since L(e−iµ) ≡ 0, gk ≡ 0 for all k in (63) and therefore in (62). This shows that L(z) ≡ 0 for

all z ∈ D.

If Θ1(z) and Θ2(z) had a common root z0 inside or on the unit circle then we would have

L(z0) = −1 in (62) which is a contradiction.

Proof of Theorem 2. To show (i) suppose zJ̃k θ̃k(z) and zJk−1θk−1(z) have no common roots inside

the unit circle. We would like to show thatMDk,Dk−1

t =Mεk−1

t . Since φ(z) has no roots inside the

unit circle we can rewrite (14) and (20) as:

Dk−1,t =
d

φ(1)
+

∞∑
j=0

Ψk−1,jεk−1,t−j−Jk−1

Dk,t =
d

φ(1)
+
∞∑
j=0

Ψ̃k,jλk,J̃kεk−1,t−j−J̃k

where {Ψk−1,j} and {Ψ̃k,j} converge exponentially fast to zero. This shows that MDk,Dk−1

t ⊂

Mεk−1

t .

To show that Mεk−1

t ⊂ MDk,Dk−1

t first suppose that θk−1(z) and θ̃k have no common roots on

the unit circle. Since zJ̃k θ̃k(z) and zJk−1θk−1(z) have no common roots inside the unit circle, from

Lemma 1, there exist functions ϑ(z) and ω(z) with one-sided Laurent series representations such

that

ϑ(B)Dk−1,t + ω(B)Dk,t = ϑ(1)d+ ω(1)d+ εk−1,t

Thus Mεk−1

t ⊂MDk,Dk−1

t .

Now suppose that θk−1(z) and θ̃k(z) have h > 0 distinct common roots on the unit circle and

θ̃k(z) has rk,on distinct roots b1, ..., brk,on on the unit circle. Define θ̃ON−Ck as

θ̃ON−Ck :=

rk,on∏
j=1

(1− z

bj
)min(m(bj ,θk−1),m(bj ,θ̃k))

Thus we can rewrite player k − 1’s demand and order equations as

φ(B)Dk−1,t = d+BJk−1θ∗k−1(B)θ̃ON−Ck (B)εk−1,t (64)

φ(B)Dk,t = d+BJ̃k θ̃∗k(B)θ̃ON−Ck (B)λk,J̃kεk−1,t (65)

where θ∗k−1 =
θk−1

θ̃ON−C
k

and θ̃∗k = θ̃k
θ̃ON−C
k

. Let νk−1,t = θON−Ck−1 (B)εk−1,t. Note that we can rewrite

(64) and (65) as

φ(B)Dk−1,t = d+BJk−1θ∗k−1(B)νk−1,t
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φ(B)Dk,t = d+BJ̃k θ̃∗k(B)λk,J̃kνk−1,t

where the last equality comes from the fact that θON−Ck−1 (z) = θ̃ON−Ck (z). Noting that θ∗k−1(z) and

θ̃∗k(z) have no common roots on or inside the unit circle we can use Lemma 1 to get functions ϑ(z)

and ω(z) with one sided Laurent series representations converging in a disk D that contains the

unit circle such that

ϑ(B)φ(B)Dk−1,t + ω(B)φ(B)Dk,t = ϑ(1)d+ ω(1)d+ νk−1,t

Therefore Mνk−1

t ⊂ MDk,Dk−1

t . Furthermore by [Brockwell and Davis, 1991] Proposition 4.4.1

Mεk−1

t ⊂Mνk−1

t and thus Mεk−1

t ⊂MDk,Dk−1

t in this case as well.

Finally let γk−1,t = λk,J̃kεk−1,t. Noting that Mγk−1

t = Mεk−1

t = Mk
t and plugging γk−1,t into

player k’s order equation we get

φ(B)Dk,t = d+BJ̃k θ̃k(B)γk−1,t

Thus we can write {Dk,t} as QUARMA with respect to {γk−1,t} and therefore these are player k’s

full information shocks. Furthemore Jk = J̃k and θk(z) = θ̃k(z) and the proof of (i) is complete.

To show part (ii) suppose that zJ̃k θ̃k(z) and zJk−1θk−1(z) have a common root inside the unit

circle. Let ξk−1,t =
θ̃I−C
k (B)

θ̃†I−C
k (B)

Bmin(J̃k,Jk−1)εk−1,t where θ̃I−Ck is defined in (28) and θ̃†I−Ck is defined

by (30). Since θ̃†I−Ck (B) has all its roots outside the unit circle, ξk−1,t ∈M
εk−1

t . We will show that

MDk,Dk−1

t =Mξk−1

t .

Define θI−C
c

k−1 :=
θk−1

θ̃I−C
k

and θ̃I−C
c

k := θ̃k
θ̃I−C
k

. Then we can rewrite player k−1’s demand and order

equations as

φ(B)Dk−1,t = d+BJk−1θI−C
c

k−1 (B)θ̃I−Ck (B)εk−1,t

φ(B)Dk,t = d+BJ̃k θ̃I−C
c

k (B)θ̃I−Ck (B)λk,J̃kεk−1,t

Replacing εk−1,t with
θ̃†I−C
k (B)

θ̃I−C
k (B)

B−min(J̃k,Jk−1)ξk−1,t we get

φ(B)Dk−1,t = d+BJk−1−min(J̃k,Jk−1)θI−C
c

k−1 (B)θ̃†I−Ck (B)ξk−1,t (66)

φ(B)Dk,t = d+BJ̃k−min(J̃k,Jk−1)θ̃I−C
c

k (B)θ̃†I−Ck (B)λk,J̃kξk−1,t (67)

The polynomials θI−C
c

k−1 (z) and θ̃I−C
c

k (z) have no common roots inside the unit circle by defini-

tion. Therefore the polynomials zJk−1−min(J̃k,Jk−1)θI−C
c

k−1 (B)θ̃†I−Ck (B) and zJ̃k−min(J̃k,Jk−1)θ̃I−C
c

k (z)θ̃†I−Ck (z)
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have no common roots inside the unit circle. Thus by part (i) we have that λk,J̃kξk−1,t are player

k’s full information shocks. Thus we have the result that εk,t = λk,J̃k
θ̃I−C
k (B)

θ̃†I−C
k (B)

Bmin(J̃k,Jk−1)εk−1,t.

Furthermore θk(z) = θ̃I−C
c

k (B)θ̃†I−Ck (B) and Jk = J̃k −min(J̃k, Jk−1). Noting that θ̃I−C
c

k (B) =

θ̃OUTk (z)θ̃ONk θ̃I−NCk we get the intended result.

Proof of Theorem 4. Recall Proposition 6 which states that

σ2
εk,SS

= λ2
k,J̃k

σ2
εk−1

(68)

σ2
εk,DS

=
∏

j:|zj |<1

|zj |−2·min(m(zj ,θ̃k),m(zj ,θk−1))λ2
k,J̃k

σ2
εk−1

(69)

σ2
εk,NS

=
∏

j:|zj |<1

|zj |−2·m(zj ,θ̃k)λ2
k,J̃k

σ2
εk−1

(70)

To prove (i) consider (69). Since θ̃k(z) and θk−1(z) share a root inside the unit circle, there

is a zj in the product such that m(zj , θ̃k) > 0 and m(zj , θk−1) > 0. Since |zj |< 1 we have that

σ2
εk,SS

< σ2
εk,DS

.

Now consider (70). There exists zj with |zj |< 1 such that m(zj , θ̃k) > m(zj , θk−1) by assumption

and therefore σ2
εk,DS

< σ2
εk,NS

. Combining this with the previous result and we have that σ2
εk,SS

<

σ2
εk,DS

< σ2
εk,NS

.

To prove (ii) consider (69) again. Since θ̃k(z) and θk−1(z) share a root inside the unit circle,

there is a zj in the product such that m(zj , θ̃k) > 0 and m(zj , θk−1) > 0. Since |zj |< 1 we have

that σ2
εk,SS

< σ2
εk,DS

.

Furthermore, by assumption, all roots zj of θ̃k where |zj |< 1 are such that m(zj , θ̃k) ≤

m(zj , θk−1). Therefore for all j, min(m(zj , θ̃k),m(zj , θk−1)) = m(zj , θ̃k) and (70) is equivalent

to (69). Therefore σ2
εk,DS

= σ2
εk,NS

and the result is proved.

To prove (iii) consider (69) again. If θ̃k(z) has no roots in common with θk−1(z) inside the unit

circle then min(m(zj , θ̃k),m(zj , θk−1)) = 0 for all j. Thus (69) is equivalent to (68) and we have

that σ2
εk,SS

= σ2
εk,DS

.

For part (a), since θ̃k has a root inside the unit circle, there exists a root zj such that |zj |< 1

and m(zj , θ̃k) > 0. Therefore σ2
εk,NS

given by (70) is such that σ2
εk,NS

> σ2
εk,SS

and we have the

result that σ2
εk,SS

= σ2
εk,DS

< σ2
εk,NS

.

For part (b), assuming that θ̃k(z) has no roots inside the unit circle, we note from (70) that

σ2
εk,NS

= λ2
k,J̃k

σ2
εk−1

and therefore by (68) we get that σ2
εk,NS

= σ2
εk,SS

. Therefore σ2
εk,SS

= σ2
εk,DS

=
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σ2
εk,NS

.

Finding Examples of Intermediate Value of Demand Sharing

There are several examples in this paper that illustrate how intermediate value to demand

sharing can arise. Here we present a discussion on how such examples can be found. The main

focus here is finding some k > 0 such that player k − 1 sharing its demand will be intermediate in

value to the other two possible sharing arrangements and Jk−1 = J̃k = 0 (the non-strict-QUARMA

case) where the retailer observes casual and invertible ARMA demand. In particular we show a

set of conditions for the coefficients of the retailer’s model such that all the requirements hold and

there is intermediate value to player 2 sharing its demand with player 3 where J2 = J̃3 = 0 and

`3 = 0.

Since we need for J2 = J̃3 = 0, it could be shown that player 2 and player 3 must observe

ARMA(2,2) demand with respect to player 2’s full information shocks in this case. According to

Corollary 3, there will be intermediate value to demand sharing if θ2(z) and θ̃3(z) have a root

inside the unit circle in common and θ̃3(z) has a root r inside the unit circle such that |r|< 1

m(r, θ̃3) > m(r, θ2). We can therefore express the roots of θ2(z) as z0 and z2,1 and the roots of

θ̃3(z) as z0 and z̃3,1 where z0 is the common root and z̃3,1 6= z2,1.

The following Remark lists conditions under which the retailer observes causal and invertible

ARMA and there is intermediate value to player 2 sharing its demand with player 3 where J2 =

J̃3 = 0.

Remark 2. Suppose the retailer observes ARMA(2,2) demand such that the following conditions
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hold for θ1(z) and φ(z):

φ1 + φ2 < 1, φ2 − φ1 < 1, − 1 < φ2 < 1 (71)

θ1,1 + θ1,2 < 1, θ1,2 − θ1,1 < 1, − 1 < θ1,2 < 1 (72)

1 + φ1 = 1/z2,1 where z2,1 is a root of θ2(z) (73)

|1 + φ1 − θ2,1| > 1 (74)

|φ2 − φ1| < |φ2| (75)

1

1 + φ1
6= φ2 − φ1

φ1
(76)

Suppose further that the retailer shares the equivalent of its full information shocks with player 2

and that J2 = J̃3 = 0, `1 = 1, `2 = 1 and `3 = 0. Then the retailer’s demand is causal and invertible

with respect to its full information shocks and player 2 sharing its demand will be intermediate to

no sharing or full information shock sharing.

Note that z2,1 and θ2,1 in (73) and (74) are not free parameters. They will depend on choices of

φ(z) and θ1(z). Constraints (71) and (72) are triangle conditions that guarantee that the retailer

observes a causal and invertible ARMA(2,2) model. Constraints (73)-(76) guarantee that we have

intermediate value to demand sharing between player 2 and player 3. The proof of this latter fact

is done by analyzing the relationship of the parameters of the retailers ARMA model on the roots

of θ2(z) and θ̃3(z).

The constraints in Remark 2 form the backbone for finding the Examples of intermediate value

of demand sharing. The space defined by these constraints is certainly non-empty as demonstrated

by the Examples in this paper.
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