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Abstract

We consider pure-jump transaction-level models for asset prices in continuous
time, driven by point processes. In a bivariate model that admits cointegration, we
allow for time deformations to account for such effects as intraday seasonal patterns
in volatility, and non-trading periods that may be different for the two assets. We
also allow for asymmetries (leverage effects). We obtain the asymptotic distribution
of the log-price process. For the weak fractional cointegration case, we obtain the
asymptotic distribution of the ordinary least-squares estimator of the cointegrating
parameter based on data sampled from an equally-spaced discretization of calendar
time, and justify a feasible method of hypothesis testing for the cointegrating pa-
rameter based on the corresponding t-statistic. In the strong fractional cointegration
case, we obtain the limiting distribution of a continuously-averaged tapered estimator
as well as other estimators of the cointegrating parameter, and find that the rate of
convergence can be affected by properties of intertrade durations. In particular, the
persistence of durations (hence of volatility) can affect the degree of cointegration.
We also obtain the rate of convergence of several estimators of the cointegrating pa-
rameter in the standard cointegration case. Finally, we consider the properties of the
ordinary least squares estimator of the regression parameter in a spurious regression,
i.e., in the absence of cointegration.
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1 Introduction

The increasingly widespread availability of transaction-level financial price data motivates
the development of models to describe such data, as well as theory for widely-used statistics
of interest under the assumption of a given transaction-level generating mechanism. We
focus here on a bivariate pure-jump model in continuous time for log prices proposed
by Hurvich and Wang [2009, 2010] which yields fractional or standard cointegration. The
motivation for using a pure-jump model is that observed price series are step functions, since
no change is possible in observed prices during time periods when there are no transactions.
Examples of data sets that would fit into the framework of this model include: buy prices
and sell prices of a single stock; prices of two different stocks within the same industry;
stock and option prices of a given company; option prices on a given stock with different
degrees of maturity or moneyness; corporate bond prices at different maturities for a given
company; Treasury bond prices at different maturities.

Though our paper is not entirely focused on the case of fractional cointegration, we
present here some evidence that this case may arise in practice in financial econometrics.
We considered option and underlying best-available bid prices for 69 different options on
IBM at 390 one-minute intervals from 9:30 AM to 4 PM on May 31, 2007. Using a log-
periodogram estimator based on 3900.5 frequencies, we found that the logs of the original
series had estimated memory parameters close to 1, while the residuals from the OLS re-
gression of the log stock price on the log option price had estimated memory parameters
that were typically less than 1. Specifically, of the 69 estimated memory parameters based
on these residuals, the values ranged from 0.05 to 1.14 with a mean of 0.55 and a stan-
dard deviation of 0.28, with 30 of these estimates lying between 0.5 and 1, while 32 were
between 0 and 0.5. Thus, there is evidence for cointegration in most of the series studied,
and often the evidence points towards fractional rather than standard cointegration. Fur-
thermore, the OLS estimate of the cointegrating parameter (assuming that cointegration
exists) ranged from −0.21 to 0.39, with a mean of 0.04 and a standard deviation of 0.13.
This provides evidence that the cointegrating parameter is in general not equal to one in
the present context, so it is of interest to study properties of estimates of this parameter.

Two basic questions that we address in this paper are the asymptotic distribution of
the log prices as time t →∞, and of the usual OLS estimator of the cointegrating param-
eter based on n observations of the log prices at equally-spaced time intervals as n →∞.
Most of the existing methods for deriving such limit laws (see Robinson and Marinucci
[2001]) cannot be applied here because the continuous-time log-price series are not diffu-
sions and because the discretized log-price series are not linear in either an i.i.d. sequence,
a martingale difference sequence or a strong mixing sequence. Nevertheless, it is of interest
to know whether and under what conditions the existing limit laws, based, say, on lin-
earity assumptions in discrete time, continue to hold under a transaction-level generating
mechanism.

In the model of Hurvich and Wang [2010, 2009] the price process in continuous time is
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specified by a counting process giving the cumulative number of transactions up to time t,
together with the process of changes in log price at the transaction times. This structure
corresponds to the fact that most transaction-level data consists of a time stamp giving
the transaction time as well as a price at that time. In such a setting, another observable
quantity of interest is the durations, i.e., the waiting times between successive transactions
of a given asset. There is a growing literature on univariate models for durations, including
the seminal paper of Engle and Russell [1998] on the autoregressive conditional duration
models (ACD), as well as Bauwens and Veredas [2004] on the stochastic duration model
(SCD), and Deo et al. [2010] on the long-memory stochastic duration model (LMSD).

Deo et al. [2009b] showed that, subject to regularity conditions, if partial sums of cen-
tered durations, scaled by n−(d+1/2) with d ∈ [0, 1/2), satisfy a functional central limit
theorem then the counting process N(t) has long or short memory (for d > 0, d = 0,
respectively) in the sense that VarN(t) ∼ Ct2d+1 as t → ∞ (with C > 0), and they gave
conditions under which this scaling would lead to long memory in volatility. In particular,
LMSD durations with d > 0 lead to long memory in volatility. The latter property has
been widely observed in the econometrics literature, while evidence for long memory in
durations was found in Deo et al. [2010].

Hurvich and Wang [2010, 2009] did not derive limit laws for the log price series or
the OLS estimator of the cointegrating parameter, but focused instead on properties of
variances and covariances for log price series and returns, and on lower bounds on the rate
of convergence for the OLS estimator.

In this paper, for a slightly modified version of the model of Hurvich and Wang [2010,
2009], but under assumptions that are more general than theirs, we obtain the limit law
for the log prices, and for the OLS and tapered estimators of the cointegrating parameter.
In our result on the limit law for log prices, Theorem 3.1, we allow for a stochastic time-
varying intensity function in the counting processes. This allows for such effects as dynamic
intraday seasonality in volatility (as observed, for example, in Deo et al. [2006], as well
as fixed nontrading intervals such as holidays and overnight periods. We also allow in
most of our results for asymmetries (leverage effects), and show that this opens up the
possibility that long memory in durations may affect the rate of convergence of estimators
of the cointegrating parameter. This raises some heretofore unrecognized ambiguities in
the choice of a definition of standard cointegration. Finally, we consider the properties
of the ordinary least squares estimator in a spurious regression, i.e., in the absence of
cointegration.

The remainder of this paper is organized as follows. In Section 2 we write the model for
the log price series and state our assumptions on the counting process, the time-deformation
functions, and the return shocks. In Section 3, we provide our main results on: the long-run
behavior of the log-price process (Subsection 3.1), the OLS estimator for the cointegrating
parameter under weak fractional, strong fractional and standard cointegration (Subsec-
tion 3.2, divided into 3.2.1 on the weak case with leverage, including feasible inference for
the cointegrating parameter, and 3.2.2 on the no-leverage strong and no-leverage standard
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cases), a tapered estimator under weak fractional, strong fractional and standard cointe-
gration (Subsection 3.3, allowing for leverage), a continuously-averaged tapered estimator
under strong fractional and standard cointegration (Subsection 3.4, under conditions that
are easier to check) and the ordinary least squares estimator in the spurious regression case
(Subsection 3.5). Section 4 provides proofs.

2 Transaction-level model

As in Hurvich and Wang [2010, 2009], we consider a bivariate pure-jump transaction-level
price model that enables cointegration. We define the log-price process y = (y1, y2) =
(y(t) : t ≥ 0) by

y1(t) =

N1(t)∑

k=1

(e1,k + η1,k) + θ

N2(t1,N1(t))∑

k=1

e2,k, (2.1)

y2(t) =

N2(t)∑

k=1

(e2,k + η2,k) + θ−1

N1(t2,N2(t))∑

k=1

e1,k, (2.2)

where for i = 1, 2, Ni(·) are counting processes on the real line (see Daley and Vere-Jones
[2003, page 43]) such that, for t ≥ 0, Ni(t) gives the total number of transactions of Asset
i in (0, t], and ti,k is the clock time (calendar time) for the kth transaction of Asset i,
with · · · ti,−1 ≤ ti,0 ≤ 0 < ti,1 ≤ ti,2 · · · . The quantity N2(t1,N1(t)) denotes the number of
transactions of Asset 2 between time 0 and the time t1,N1(t) of the most recent transaction
of Asset 1, with an analogous interpretation for N1(t2,N2(t)). The efficient shock sequences
{ei,k}∞k=1 model the permanent component and the microstructure noise sequences {ηi,k}∞k=1

model the transitory component of the log-price process. Efficient shock spillover effects
are weighted by θ and θ−1, thus yielding cointegration with cointegrating parameter θ,
assumed nonzero.

A detailed economic justification for this model, derivation of a common-components
representation, as well as a comparison with certain discrete-time models, is given in
Hurvich and Wang [2010, 2009]. We summarize some of the salient economic features here.
The model is consistent with a variety of stylized facts regarding series of transaction-based
prices in financial markets, including the following. Log prices of a given asset are constant
between transactions on that asset, so realizations of the log price series are step functions.
The times between transactions on a given asset (the durations) are random, and serially
dependent. Clusters of short (long) durations lead to periods of high (low) volatility in
calendar-time returns. Shocks to the log price consist of both permanent contributions
to the intrinsic log value and transitory (microstructure) fluctuations, due for example to
liquidity impact of orders and to other effects that produce short-term deviations from
a martingale structure of log prices. Leverage-type effects typically observed in actual
data (e.g. a negative correlation between the current calendar-time return and the future
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squared return) are allowed to arise from the transaction-level price dynamics, through a
potential dependence between the microstructure noise series and the intertrade durations.
The cointegration arises from the fact that each series responds to both sets of efficient
shocks, in different ways, producing a common component in the log prices in calendar
time. (See Hurvich and Wang [2010] Equation (2)). The strength of the cointegration is
determined (most straightforwardly, in the weak fractional cointegration case) by the rate
at which partial sums of the microstructure noise (transitory component) become negligi-
ble compared to the efficient components of log price. This rate is of economic importance
as it quantifies how fast deviations from equilibrium will tend to dissipate, so for example
knowledge of the rate would help pairs traders to assess how long they would need to hold
their position in order to have a good chance to profit from a given anomalous configu-
ration of the price series. The transaction-level dynamics for the model are reasonably
simple. Whenever a transaction on a given asset takes place, the log price changes by an
amount equal to the sum of an efficient and microstructure shock for that asset, in addition
to an equally-weighted sum of all efficient shocks for the other asset occurring since the
previous transaction of the given asset. Through this spillover effect, relevant intervening
economically intrinsic shocks are finally impounded in the price of the given asset, but only
when it actually trades.

In the mathematical theory presented in this paper, all random variables and stochastic
processes are defined on a single probability space (Ω,F ,P). Expectation with respect to P
will be denoted by E and var and cov will denote the variance and covariance with respect

to P. Convergence in P-probability will be denoted by
P→ , convergence in distribution

under P of sequences of random variables will be denoted by →. We use ⇒ to denote
weak convergence under P in the space D([0,∞)) of left-limited, right-continuous (càdlàg)
functions, endowed with Skorohod’s J1 topology. See Billingsley [1968] or Whitt [2002] for
details about weak convergence in D([0,∞)). Whenever the limiting process is continuous,
this topology can be replaced by the topology of uniform convergence on compact sets.

Following Daley and Vere-Jones [2003, page 47], a point process is said to be simple if
the probability is zero that there exists a time t at which more than one event occurs. We
do not assume that the counting processes are simple. Thus we allow for the possibility
that several transactions may occur at the same time. The transaction times ti,k are related
to the point process by the following duality.

Ni(t) = k ⇔ ti,k ≤ t < ti,k+1 .

The durations are then defined by

τi,k = ti,k − ti,k−1 .

If the process is simple, then Ni(ti,k) = k. Otherwise, it only holds that Ni(ti,k) ≥ k.

There is no requirement that either the point processes Ni or the durations {τk} be
stationary under P. Therefore we make the following ergodicity-type assumptions.
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Assumption 2.1. The sequences {ti,k} are nondecreasing and there exists λi ∈ (0,∞)
such that

ti,k/k
P→ 1/λi . (2.3)

When the counting processes are simple, this is equivalent to Ni(t)/t
P→ λi. Since we

do not assume simplicity, we must introduce an additional assumption.

Assumption 2.2. Ni(t)/t
P→ λi.

If the counting processes are defined from stationary ergodic durations, then Assump-
tion 2.1 holds. If the counting processes are moreover simple, then Assumption 2.2 also
holds. Conversely, if Ni is stationary and ergodic then Assumption 2.2 holds, and if Ni is
moreover simple, then Assumption 2.1 also holds.

It should be stressed that stationarity of durations and of the point process cannot
hold simultaneously under the same probability measure (except for the Poisson point
process). See for instance Baccelli and Brémaud [2003] or Daley and Vere-Jones [2003] for
the mathematical theory and Deo et al. [2009b] for an econometric interpretation. We now
give an example which illustrates this duality.

Example 2.1. For the LMSD model, consider a probability measure (called the Palm mea-
sure) P 0 on (Ω,F) under which τk = εke

σYk where σ is a positive constant, {εk} is an
i.i.d. sequence of almost surely positive random variables with finite mean and {Yk} is a
stationary standard Gaussian process, independent of {εk}, whose covariance function goes
to 0 at infinity. It follows from the latter assumption and Gaussianity that the process
{Yk} is ergodic Ibragimov and Rozanov [1978], hence so is {τk}. Suppose now that the
restriction of P to the sigma-field generated by N is equal to P 0, then Assumption 2.1
holds with λ−1 = µeσ2/2 where µ is the expectation of ε0 under P 0, and since the durations
are almost surely positive, so does Assumption 2.2. Now, by the Palm duality theory, there
exists a probability measure P under which the associated point process N is stationary (in
which case, as mentioned above, the durations are no longer stationary). If the restriction
of P to the sigma-field generated by N is equal to P , then Assumptions 2.1 and 2.2 still
hold with the same λ as defined above.

Example 2.2. The ACD model proposed in Engle and Russell [1998] is

τk = ψkεk, ψk = ω + ατk−1 + βψk−1, k ∈ Z, (2.4)

where ω > 0 and α, β ≥ 0, {εk}∞k=−∞ is an i.i.d. sequence of almost surely positive random
variables with mean 1. If α + β < 1 then the sequence {τk}∞k=−∞ is strictly stationary and
ergodic and has finite mean ω/(1− α− β). As in the above example, we can alternatively
assume that the durations form a stationary ACD process under P or that the associated
point process is stationary under P. In both cases, Assumptions 2.1 and 2.2 hold with
λ = (1− α− β)/ω.
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We now explain how time deformations can be used to obtain a nonstationary, possibly
non simple point process from a stationary ergodic simple one, while Assumptions 2.1
and 2.2 are preserved. Let Ñ(·) be a simple, stationary and ergodic counting process on
R with intensity λ̃ ∈ (0,∞) and let f be a deterministic or random function such that f
is nondecreasing and has càdlàg paths with probability one. Define then

N(t) = Ñ(f(t)) .

If the function f is random, we assume moreover that it is independent of the counting
process Ñ .

The function f is used to speed up or slow down the trading clock. To incorporate
dynamic intraday seasonality in volatility, the same time deformation can be used in each
trading period (of length, say, T ), assuming that f(t) has a periodic derivative (with period
T and with probability one), for example, f(t) = t + .5 sin(2πt/T ). Fixed nontrading
intervals, say, t ∈ [T1, T2), could be accommodated by taking f(t) = f(T1) for t ∈ [T1, T2)
so that f(t) remains constant for t in this interval, and then taking f(T2) > f(T1) so that
f(t) jumps upward when trading resumes at time T2. The jump allows for the possibility of
one or more transactions at time T2, potentially reflecting information from other markets
or assets that did trade in the period [T1, T2).

If the values of some series are only recorded at specific time points (e.g., quarterly in
the case of certain macroeconomic series) this could be handled by taking the corresponding
f(t) to be a pure-jump function. This provides scope for considering two (or more) series,
some of which are observed continuously, others at specific times, though not necessarily
contemporaneously. In future work, we hope to explore this scenario in detail, and its
possible connections with the MIDAS methodology, see Ghysels et al. [2006].

The use of the time-varying intensity function f renders the counting process N non-
stationary. Since it is possible that f has (upward) jumps, the N may also not be simple
even though the Ñ are simple. We now show, however, that if Ñ satisfies Assumptions 2.1
and 2.2, then so does the time deformed N under some restrictions on f .

Lemma 2.1. Assume that f is a nondecreasing (random) function such that t−1f(t)
P→ γ ∈

(0,∞) and
sup
t≥0

|f(t)− f(t−)| ≤ C

with probability one, where C ∈ (0,∞) is a deterministic constant. Let Ñ be a point process
such that Assumptions 2.1 and 2.2 hold for some λ̃ ∈ (0,∞). Let N be the counting process
defined by N(·) = Ñ(f(·)). Then Assumptions 2.1 and 2.2 hold for N with λ = λ̃γ.

Stationarity of Ñ is not required in this Lemma. For example, one could equally well
do the time deformation on a counting process that corresponds to a stationary duration
sequence (and hence the counting process is not stationary).

In order to show that our results on estimation of the cointegrating parameter (under
weak fractional and standard cointegration) hold in this time deformation framework,
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we will in Lemma 4.7 make further assumptions on the function f . These assumptions
mathematically embody natural economic constraints, viz. minimum duration of trading
and nontrading periods, maximum duration of nontrading periods and non stoppage of
trading time during trading periods.

We now state our assumptions on the return shocks.

Assumption 2.3. The efficient shocks {ei,k} are mutually independent i.i.d. sequences
with zero mean and variance σ2

i,e.

Although many of our results would continue to hold if the i.i.d. part of Assumption 2.3
were replaced by a weak-dependence assumption, we maintain the i.i.d. assumption here
in keeping with the economic motivation for the model as provided by Hurvich and Wang
[2010] that in the absence of the microstructure shocks and in the absence of any depen-
dence of the efficient shocks on the counting processes, each of the log price series would
be a martingale with respect to its own past. Since the trades of Asset 1 are not synchro-
nized in calendar time or in transaction time with those of Asset 2, it seems reasonable to
assume that the two efficient shock series are mutually independent, as we have done in
Assumption 2.3.

The following assumption implies that the microstructure noise does not affect the
limiting distribution of the log prices.

Assumption 2.4 (Microstructure Noise). The microstructure noise sequences {ηi,k} sat-

isfy n−1/2
∑[n·]

k=1 ηi,k⇒0.

This assumption simply enforces the negligibility of the microstructure noise with re-
spect to the long term behavior of the log price and indeed allows us to establish in Theo-
rem 3.1 that the log price behaves asymptotically as a random walk (and returns at long
horizons behave like a martingale difference sequence), consistent with what is assumed in
most econometric literature.

Dependence between the counting processes and return shocks allows for leverage effects
(for example, a correlation between a return in one time period and a squared return in a
subsequent time period). A transaction-level model yielding a leverage effect was proposed
(but justified only with simulations) in Hurvich and Wang [2009]. Models where the point
process need not be independent of the return shocks were discussed in Prigent [2001] in
the context of option pricing with marked point processes.

We do not make any assumption of independence between the counting processes and
the microsctucture shocks, unless explicitly noted otherwise. We will, however, assume
that the counting processes are independent of the efficient shocks except in Theorem 3.1
and in Section 3.5.

Assumption 2.4 is all we need to assume about the microstructure noise in order to
obtain a limit law for the log price series (such as Theorem 3.1 below). However, in order
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to discuss properties of estimators of the cointegrating parameter it is necessary to make
more specific assumptions on the degree of cointegration. In Hurvich and Wang [2009,
2010], three different cases were considered, according to the strength of the memory of the
microstructure noise sequences. These cases were labeled as weak fractional cointegration,
strong fractional cointegration and standard cointegration. In the current context, where
there may be a dependence between return shocks and counting processes, special care is
needed in defining the strong fractional and standard cointegration cases, as long memory
in durations may affect the rate of convergence of estimators of the cointegrating parameter
in these cases. On the other hand, we will define weak fractional cointegration essentially
as in Hurvich and Wang [2010].

Assumption 2.5. The shocks {e1,k}∞k=−∞, {e2,k}∞k=−∞, {η1,k}∞k=−∞ and {η2,k}∞k=−∞ are
mutually independent.

Mutual independence of the efficient and microstructure shock series of a given asset
can be justified on economic grounds, and is often made in the econometric literature for
calendar-time models. See, e.g., Barndorff-Nielsen et al. [2008]. Mutual independence of
the two microstructure series is justified by the lack of synchronization of the trading times
of the two assets.

We now discuss the weak fractional cointegration case. For H ∈ (0, 1), let BH denote
the standard fractional Brownian motion (FBM) with Hurst index H, i.e. the zero mean
Gaussian process with almost surely continuous sample paths and covariance function

cov(BH(s), BH(t)) =
1

2

{
s2H − |t− s|2H + t2H

}
.

For H = 1/2, B1/2 is the standard Brownian motion.

Assumption 2.6 (Weak Fractional Cointegration). There exists H ∈ (0, 1/2) such that

n−H

[n·]∑

k=1

ηi,k⇒ciB
(i)
H

where c1, c2 are nonnegative constants, not both zero and B
(1)
H and B

(2)
H are independent

standard fractional Brownian motions with common Hurst index H.

Assumption 2.6 is a strengthening of Assumption 2.4 and is needed to establish the
asymptotic distribution of estimators of the cointegrating parameter θ. Whereas Assump-
tion 2.4 allows for cointegration, an assumption such as Assumption 2.6 is a necessary
element for defining the degree of cointegration (the rate at which deviations from the long
run cointegrating relationship disappear), and is consistent with the finding reported in
Section 1 that the cointegrating residuals have weaker memory than a random walk.

Under Assumption 2.5, the independence of all the noise series implies that all the
previous convergences hold jointly. The situation where one of the constants c1 or c2 is
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zero could arise naturally if the memory in one of the microstructure noise series is weaker
than for the other.

In the case of weak fractional cointegration, we can define the memory parameter of
the microstructure noise series as dη = H − 1/2 ∈ (−1/2, 0), and the degree of fractional
cointegration (i.e. the rate of convergence of partial sums of the cointegrating error) is
completely determined by dη. More precisely, in this case the difference between the
memory parameters of the series of log prices and the cointegrating error (observed, say,
at equally-spaced intervals of calendar time) y1(j)− θy2(j), is −dη. This holds regardless
of any dependence between the counting processes and the microstructure shocks.

Next we discuss strong fractional and standard cointegration. We start with the as-
sumption that, for i = 1, 2, ηi,k = ξi,k − ξi,k−1 where {ξi,k} satisfy supk E[ξ2

i,k] < ∞. It then
follows that the cointegrating error at time j is

y1(j)− θy2(j)

=

N1(j)∑

k=N1(t2,N2(j))+1

e1,k − θ

N2(j)∑

k=N2(t1,N1(j))+1

e2,k + ξ1,N1(j) − ξ1,0 − θ(ξ2,N2(j) − ξ2,0). (2.5)

Under the assumptions we will make in this paper, and also under the assumptions made
in Hurvich and Wang [2010, 2009], the first two terms on the righthand side of (2.5) are
weakly dependent, so the degree of cointegration is determined by the rate of convergence
of partial sums of ξi,Ni(j).

Thus we will need to study the sequence ξi,Ni(j). We do not assume that the microstruc-
ture shocks are independent of the counting processes. Thus, even if the microstructure
shocks have zero mean, it may hold that E[ξi,Ni(j)] 6= 0.

In view of the discussion above it is clear that in order to specify the degree of cointe-
gration in the strong fractional and standard cointegration cases, it is necessary to make
an assumption on calendar-time aggregates of ξi,Ni(j). This is in contrast to Assumption
2.6 above where the degree of fractional cointegration is specified in terms of properties of
transaction-level aggregates of the microstructure noise.

Assumption 2.7 (Strong fractional and standard cointegration). The microstucture noise
sequences {ηi,k} can be expressed as ηi,k = ξi,k − ξi,k−1. There exist H ∈ [1/2, 1), constants
µ∗1, µ∗2 and nonnegative constants c1, c2, not both zero, such that

n−H

[n·]∑
j=1

{ξi,Ni(j) − µ∗i }⇒ciB
(i)
H

where B
(1)
H and B

(2)
H are independent fractional Brownian motions with Hurst index H.
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The case H > 1/2 corresponds to strong fractional cointegration whereas the case
H = 1/2 corresponds to standard cointegration.

It might be hard to verify Assumption 2.7 unless the durations are integer valued. Since
commonly-used duration models do not have integer-valued durations, we will introduce a
modification of the estimators which involves integrals instead of sums, thus allowing us to
avoid this restriction. This change requires a corresponding modification of Assumption 2.7.

Assumption 2.8 (Strong fractional and standard cointegration). The microstucture noise
sequences {ηi,k} can be expressed as ηi,k = ξi,k − ξi,k−1. There exist H ∈ [1/2, 1), constants
µ∗1, µ∗2 and nonnegative constants c1, c2, not both zero, such that

n−H

∫ n·

0

{ξi,Ni(s) − µ∗i } ds⇒ciB
(i)
H .

In their strong fractional cointegration case, Hurvich and Wang [2010] assumed, for
dη ∈ (−1,−1/2), that cov(ξi,k, ξi,k+j) ∼ Kj2dξ−1 as j → ∞ where K > 0 and dξ =
dη + 1 ∈ (0, 1/2). They then showed (in their Lemma 3), under the assumptions made
there, that cov(ξi,Ni(k), ξi,Ni(k+j)) ∼ K ′j2dξ−1 as j →∞ where K ′ > 0, so that the degree of
fractional cointegration was completely determined by the rate of decay of cov(ξi,k, ξi,k+j).
However, the proof of this result relied on the assumption that the microstructure shocks
are independent of the counting processes, an assumption which we do not make here.

We next provide an example showing that under dependence between the microstruc-
ture shocks and the counting processes, it is possible for {ξi,k} to be weakly dependent, and
yet the rate of convergence of suitably normalized integrals of the process (ξi,Ni(t) : t ≥ 0)
is determined by the degree of long memory in durations. Suppressing the i subscript, we
have the following lemma.

Lemma 2.2. Suppose that {τk} is given by the LMSD model τk = εke
Yk , {εk} are i.i.d.

standard exponential, independent of the stationary standard Gaussian series {Yk}, which
satisfies cov(Y0, Yn) ∼ cn2Hτ−2 where c > 0, and Hτ ∈ (1/2, 3/4). Define ξk = Y 2

k+1 − 1.
Then the autocovariance function of {ξk} is summable and there exists c′ > 0 such that

n−1/2

[n·]∑

k=1

ξk⇒c′B . (2.6)

Nevertheless, the randomly-indexed continuous-time process ξN(t) has long memory in the
sense that there exists a constant µ∗, as well as a constant c′′, such that

n−Hτ

∫ n·

0

{ξN(s) − µ∗} ds⇒c′′BHτ . (2.7)

Lemma 2.2 shows that long memory in durations can induce the same degree of long
memory in the cointegrating error (2.5) in calendar-time, even though the microstructure
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shocks, which are the source of the cointegration, have short memory as a sequence in
transaction time. In Lemma 2.2, this phenomenon was achieved by imposing a particular
functional relationship between the (zero mean) microstructure noise and the persistent
component of the durations, ξk = Y 2

k+1 − 1. This relationship implies a leverage effect,

since corr(ξk, τk+1) = 1/
√

2(e− 1) ≈ .539 > 0. In other words, a strongly negative mi-
crostructure shock to the return leads to a tendency of the next observed duration, as
well as subsequent durations, to be shorter than average. Such a string of short durations
increases the volatility, e.g., the expectation of squared calendar-time returns, as shown,
for example, under a particular return model in Deo et al. [2009b]. Furthermore, evidence
that stock market intertrade durations have long memory was provided in Deo et al. [2010].

In the absence of dependence between the counting processes and microstructure noise
series, in both cases of strong fractional and standard cointegration, the memory of du-
rations cannot affect the memory of the cointegrating error. See Lemma 4.9 for strong
fractional cointegration and Lemma 4.10 for standard cointegration.

3 Main results

3.1 The long-run behavior of the bivariate log-price process

With the assumptions made in Section 2, the long-run behavior of the bivariate process
y = (y1, y2) can be determined. The following theorem shows that the log-prices are
approximately integrated. Even though independence is assumed between the various
shock series, the log-price process y = (y(t) : t ≥ 0) exhibits a nontrivial variance-covariance
structure which is determined by a complex interplay of the model parameters.

Theorem 3.1. Under Assumptions 2.1, 2.2, 2.3, 2.4, n−1/2(y1(n·), y2(n·))⇒B, where

B =
(
σ1,e

√
λ1B1 + θσ2,e

√
λ2B2 , θ−1σ1,e

√
λ1B1 + σ2,e

√
λ2B2

)
. (3.1)

and B1 and B2 are independent standard Brownian motions.

In Theorem 3.1, we have not assumed that the counting processes are independent of
either the efficient shocks or the microstructure shocks.

Hurvich and Wang [2010, 2009] have in their Theorem 1 computed the long-run vari-
ances of y1(t) and y2(t) which are given as (σ2

1,eλ1 + θ2σ2
2,eλ2)t and (σ2

1,eλ1/θ
2 + σ2

2,eλ2)t,
respectively. Our theorem yields the variances as well as the covariances in the limiting
distribution of (t−1/2y(t) : t ≥ 0). More importantly, our theorem provides the limiting
distribution itself for the (normalized) log-price process y which, in turn, can be used for
asymptotic statistical inference. Indeed, most of the subsequent results in this paper use
Theorem 3.1 and its proof as a building block. In particular, a slightly generalized ver-
sion of this theorem directly yields asymptotics for estimators in spurious regressions and
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therefore can be used to motivate tests for the null hypothesis of no cointegration, as we
describe in Section 3.5.

3.2 OLS estimator of the cointegrating parameter

In this section, we derive the asymptotic behavior of the ordinary least-squares estimator
(OLS) of the cointegrating parameter θ. To do so, we assume that the log-price series are
observed at integer multiples of ∆t. We will work here, without loss of generality, with
∆t = 1 in order to keep the notation simple. Then (2.1) and (2.2) become

y1(j) =

N1(j)∑

k=1

(e1,k + η1,k) + θ

N2(t1,N1(j))∑

k=1

e2,k,

y2(j) =

N2(j)∑

k=1

(e2,k + η2,k) + θ−1

N1(t2,N2(j))∑

k=1

e1,k.

Regressing y1(1), . . . , y1(n) on y2(1), . . . , y2(n) without intercept, we obtain the OLS esti-
mator of θ as

θ̂OLS

n =

∑n
j=1 y2(j)y1(j)∑n

j=1 y2
2(j)

. (3.2)

Hurvich and Wang [2010, 2009] have shown in their Theorem 6 (under conditions that are
for the most part stronger than the ones we assume here) that θ̂OLS

n is weakly consistent
for θ and obtained a lower bound on the rate of convergence in the case of weak fractional,
strong fractional and standard cointegration. The exact limit distributions, however, were
not given. We fill in this gap next for weak fractional cointegration.

3.2.1 OLS and inference for the cointegrating parameter under weak fractional
cointegration

Theorem 3.2. Let Assumptions 2.1, 2.2, 2.3, 2.5 and 2.6 hold. Assume in addition that
the counting processes N1 and N2 are mutually independent and independent of the efficient
shocks and there exists a constant C such that

sup
s≥0
E[ti,Ni(s)+1 − s] ≤ C . (3.3)

Then

n1/2−H(θ̂OLS

n − θ)→Σ1

∫ 1

0
B(t)BH(t) dt∫ 1

0
B2(t) dt

13



where B is a standard Brownian motion, BH is a fractional Brownian motion, independent
of B, and

Σ2
1 =

c2
1λ

2H
1 + θ2c2

2λ
2H
2

θ−2λ1σ2
1,e + λ2σ2

2,e

.

The result in Theorem 3.2 is similar to that obtained in Robinson and Marinucci [2001,
Proposition 6.5, formula (6.8)], under their Assumption 6.1, for which a sufficient condition
(their formula (6.5)) was verified in Marinucci and Robinson [2000] to hold for weak (but
not strong) fractional cointegration in the case where the process is linear with respect to
i.i.d. innovations.

Next, we provide sufficient conditions for Condition (3.3) to hold for the LMSD and
ACD models under both frameworks for stationarity considered in Examples 2.1 and 2.2.

• Note first that as long as the point processes Ni are stationary under P, then con-
dition (3.3) holds provided that E[t1] < ∞ (equivalently E0[τ 2

0 ] < ∞ where E0 rep-
resents expectation with respect to the Palm measure), since the forward recurrence
time {ti,Ni(s) − s} is then stationary.

• If the durations form a stationary LMSD sequence under P, then Lemma 4.8 shows
that if E[εq

0] < ∞ for all q ≥ 1, then (3.3) holds.

• If the durations form a stationary ACD sequence under P, then Lemma 4.6 shows
that (3.3) holds as long as E[τ 3

0 ] < ∞. By Carrasco and Chen [2002, Corollary 6],
this holds true if E[(β + αεt)

3] < 1.

• If Ñ is a point process that satisfies Condition (3.3) under P, and if f is a time defor-
mation function that satisfies the economically justified assumptions of Lemma 4.7,
then the time deformed point process N (defined by N(t) = Ñ(f(t)) still satis-
fies (3.3).

Next, we consider inference for the cointegrating parameter θ under weak fractional
cointegration. It is seen from Theorem 3.2 that the asymptotic distribution of n1/2−H(θ̂OLS

n −
θ) depends on a variety of unknown quantities. To alleviate the dependence on nuisance
parameters and to thereby facilitate inference on θ, we consider the t-statistic for testing
the null hypothesis H0 : θ = θ0. If the null hypothesis is true, then the t-statistic is given
by

tn =
θ̂OLS

n − θ

σ̂θ̂OLS
n

where σ̂θ̂OLS
n

is the traditional estimated standard error for θ̂OLS
n , with

σ̂2
θ̂OLS
n

=
n−1

∑n
j=1[y1(j)− θ̂OLS

n y2(j)]
2

∑n
j=1 y2

2(j)
.

We have the following theorem.
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Theorem 3.3. Under the assumptions of Theorem 3.2,

n−1/2tn→
∫ 1

0
B(t)BH(t)dt√∫ 1

0
B2(t)dt

∫ 1

0
B2

H(t)dt−
[∫ 1

0
B(t)BH(t)dt

]2

where B is a standard Brownian motion and BH is a standard fractional Browninan motion,
independent of B.

Note that by the Cauchy-Schwarz Inequality,
∣∣∣∣
∫ 1

0

B(t)BH(t)dt

∣∣∣∣
2

≤
∫ 1

0

B2(t)dt

∫ 1

0

B2
H(t)dt ,

and in fact the inequality above is strict since B and BH are mutually independent, so
that the limiting distribution in Theorem 3.3 is well-defined.

Note that the limiting distribution in Theorem 3.3 depends only on H. Thus, if H
can be consistently estimated, one can conduct asymptotically valid hypothesis tests for θ
based on the test statistic n−1/2tn. The asymptotic null distribution of the test statistic is
given by Theorem 3.3, and it is easily seen that if θ 6= θ0 then n−1/2tn diverges.

We now show that H can indeed be consistently estimated, using an aggregation method
considered in Giraitis et al. [1999]. Let m be an integer sequence such that 1/m+m/n → 0.
We work with the differences of the cointegrating residuals, xj = ∆(y1(j) − θ̂OLS

n y2(j)),
where ∆ is the differencing operator. Divide the data set into contiguous, non-overlapping
blocks of size m. The kth block average is

X
(m)
k =

1

m

m∑
t=1

xt+(k−1)m .

Denote the sample variance of these block averages by

s2
m = bn/mc−1

bn/mc∑

k=1

(
X

(m)
k

)2

.

Now, define Ĥ = 1 + log s2
m

2 log m
. The next theorem states that Ĥ is a consistent estimator of

H under assumptions that imply those of Theorem 3.2, but are more restrictive. We make
these restrictions to facilitate a reasonably simple proof.

Theorem 3.4. Let Assumptions 2.3 and 2.5 hold. Assume that ηi,t = σi{Bi,H(t)−Bi,H(t−
1)}, i = 1, 2 where Bi,H are mutually independent standard fractional Brownian motions
with H ∈ (0, 1/2). Assume that N1 and N2 are stationary mutually independent ergodic
point processes, independent of the processes Bi,H , such that E[N4

i (1)] < ∞ and

sup
t≥2
E

[(
Ni(t)

t

)4H−8

1{Ni(t)>0}

]
< ∞ . (3.4)

Then, Ĥ
P→ H.
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We now continue the discussion of the LMSD and ACD models (see Example 2.1
and 2.2 and the discussion immediately after Theorem 3.2). The proof of the claims is in
Section 4.5, following Lemma 4.11 which it uses.

• Assume that the point process N is stationary under the probability P and that under
the Palm probability P 0 the durations form an LMSD sequence {τk} with memory
parameter Hτ ∈ (1/2, 1) as in Example 2.1. If E0[ε9−4H

0 ] < ∞ condition (3.4) holds.
If E0[εq

0] < ∞ with q > 4/(1−Hτ ), then E[N4(1)] < ∞.

• Assume that point process N is stationary under the probability P and that under the
Palm probability P 0 the durations form an ACD sequence {τk} as in Example 2.2.
If moreover ε0 admits a strictly positive density on [0,∞) and E0[τ 9−4H+η

1 ] < ∞
for some η > 0, then E[N4(1)] < ∞ and condition (3.4) holds. A condition for
E0[τ 9−4H+η

1 ] < ∞ is E0[(αε0 + β)9−4H+η] < 1.

We next present some results from a simulation study on statistical inference for θ
in the case of weak fractional cointegration based on Theorems 3.3 and 3.4. For H =
0.1, 0.2, 0.3, 0.4 we first tabulated the asymptotic null distribution of n−1/2tn based on
Theorem 3.3 using 1000 replications. From this, we obtained (approximations to) various
relevant percentiles of the asymptotic distribution. Next, for each of two sample sizes,
n = 500 and n = 2000, we simulated 1000 replications of (y1(t), y2(t)) from the model
(2.1), (2.2), from which we constructed the equally-spaced observations y1(1), · · · , y1(n)
and y2(1), · · · , y2(n).

Our specific choices in simulating the model (2.1), (2.2) were as follows. We used
dη = −0.3, corresponding to H = 0.2. This gives weak fractional cointegration of a degree
that we feel is often observed in practice. Other choices could be tried, for this and for
other aspects of the model, but the main point of this study is to examine the feasibility of
inference based on Theorems 3.3 and 3.4. The durations for both series were taken to be
mutually independent LMSD processes (see Example 2.1), both with memory parameter
dτ = 0.2, which is consistent with the stylized facts for the persistence in volatility of
financial assets. Specifically, in each LMSD model we took εk to be unit exponential and
{Yk} to obey the ARFIMA(0, dτ , 0) model Yk = (1 − B)−dτ ek, where B is the backshift
operator, {ek} are i.i.d. standard normal, independent of the {εk}, and σ was selected
to yield intensities λ1 = λ2 = 20. So one unit of time corresponds to the amount of
time in which (on average) 20 transactions take place. We deliberately took a reasonably
small number of transactions per unit time to examine the effect (if any) of the pure-jump
nature of the realizations on the distributions of various statistics of interest. For the
cointegrating parameter, we used θ = 1. The efficient shocks e1,k and e2,k were mutually
independent i.i.d. standard normal sequences. The microstructure shocks {η1,k} and {η2,k}
were mutually independent Gaussian ARFIMA(0,−0.3, 0) with unit innovation variance.

For the null hypothesis H0 : θ = 1, which would often be the hypothesis of econometric
interest in practice, we constructed, for each realization, the t-statistic as well as the
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estimated degree of cointegration as measured by Ĥ. We used the aggregation-based
estimator Ĥ considered in Theorem 3.4, but we first standardized the data set of differenced
cointegrating residuals x1, ..., xn by dividing by the sample standard deviation. This makes
the estimator invariant to the multiplicative scale of the input series, and it can be easily
shown that Ĥ is still consistent under this modification. We then tested the null hypothesis
versus a two-tailed alternative HA : θ 6= 1. The test statistic used was |n−1/2tn|. The critical
values were obtained from the tabulations of the asymptotic distribution of n−1/2tn, which
is symmetric about zero. This distribution does depend on H, however, and for H we
used the value in {0.1, 0.2, 0.3, 0.4} that came closest to Ĥ. We used two values for the
significance level, α = 0.05 and α = 0.01. The critical values for the two corresponding
tests were, respectively, the 97.5th percentile and 99.5th percentile of the distribution for
n−1/2tn, using the value of H as described above. For the purpose of calibration, we also
considered an infeasible version of these tests where H is assumed known to be 0.2.

For the nominal significance level α = 0.05, based on the 1000 simulated realizations,
the rate at which the null hypothesis was (incorrectly) rejected (with rates for the infeasible
test in parentheses) was 0.065 (0.049) for n = 500 and 0.078 (0.054) for n = 2000. For the
nominal significance level α = 0.01, the rejection rates were 0.017 (0.007) for n = 500 and
0.024 (0.015) for n = 2000.

For the infeasible method, the observed rates are not statistically significantly different
from the nominal 0.05 and 0.01, given that we only have 1000 realizations. For the feasible
method, the tests are somewhat oversized, apparently due to the variability arising from
the estimation of H. It should also be noted that for both the infeasible and feasible
tests, the differences between the observed rejection rates for the two sample sizes are not
statistically significant.

3.2.2 OLS under strong fractional and standard cointegration

We now consider the case where the microstructure noise series {ηi,k} are differences of
strongly or weakly dependent processes {ξi,k}.
Theorem 3.5. Let Assumptions 2.1, 2.2, 2.3, 2.5, and 2.7 hold. Assume moreover that

• the efficient shocks are i.i.d. Gaussian,

• the counting processes N1 and N2 are independent of each other and independent
of the microstructure noise sequences and of the efficient shocks and there exists a
constant C such that

sup
t≥0
E[(ti,Ni(t)+1 − t)2] ≤ C . (3.5)

• E[ξi,k] = 0, supk E[ξ2
i,k] < ∞, and ξi,0 = 0.
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Then,

• if 1/2 < H < 1,

n3/2−H(θ̂OLS

n − θ)→
√

c2
1 + θ2c2

2

θ−2λ1σ2
1,e + λ2σ2

2,e

∫ 1

0
B(s) dBH(s)∫ 1

0
B2(s) ds

, (3.6)

where B is standard Brownian motion independent of the standard fractional Brow-
nian motion BH ;

• if H = 1/2, n(θ̂OLS
n − θ) = OP (1).

The rate of convergence obtained in the standard cointegration case improves on the one
obtained by Hurvich and Wang [2010]. The sufficient conditions for (3.3) discussed after
Theorem 3.2 become sufficient conditions for (3.5) after augmenting by 1 the exponent in
the moment conditions appearing there. The assumptions in Theorem 3.5 are quite strong,
ruling out leverage effects and providing one motivation for our subsequent consideration
of tapered estimators.

3.3 A Tapered Estimator of the Cointegrating parameter

Even in existing discrete-time models for cointegration the OLS estimator lacks any par-
ticular optimality properties. Here we consider an estimator based on discrete Fourier
transforms of the tapered differences of y1(j), y2(j), 1 ≤ j ≤ n. It was shown in
Chen and Hurvich [2003a] that this estimator can have a faster rate of convergence than
OLS in certain cases of fractional cointegration. In the weak fractional cointegration case,
our limit results for the tapered estimator (Theorem 3.6) are obtained under identical
conditions as those assumed in Theorem 3.2 for OLS. However, under strong fractional
and standard cointegration, the conditions for our results on the tapered estimator (The-
orem 3.7) allow for leverage, unlike the corresponding theorem for OLS.

We introduce all relevant notation using a generic time series {xj}∞j=−∞. Let h : I 7→ R
be a general continuous taper function on an open interval I containing [0, 1] such that
h(0) = h(1) = 0. For ` = 1, 2, . . . , denote by ω` = 2π`/n the Fourier frequencies. The
tapered DFT of {xj}∞j=−∞ with taper function h is defined by

dx,` =
n∑

j=1

h
( j

n

)
xj eijω` =

n∑
j=1

h`

( j

n

)
xj.

where h`(t) = h(t)e2πi`t. Denote by {∆xj}∞j=−∞ the first difference of the series {xj}, where
∆xj = xj −xj−1. We define the tapered DFT of the first difference {∆xj}∞j=−∞ with taper
function h by

d∆x,` =
n∑

j=1

h
( j

n

)
∆xj eijω` =

n∑
j=1

h`

( j

n

)
∆xj. (3.7)
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In our setting, we observe the cointegrated component processes y1 and y2 at equidis-
tant sample points. Defining the cointegrating error zj = y1,j − θy2,j and following
Chen and Hurvich [2003b], we can now introduce the estimator

θ̂Tap
n = Re(θ̃n) ,

where Re(z) signifies the real part of a complex number z = a + ib and, letting z̄ = a− ib
be the complex conjugate of z,

θ̃n =

∑m
`=1 d∆y1,` d̄∆y2,`∑m

`=1 |d∆y2,`|2 .

Therein, any tapered DFT of differenced sequences is defined according to (3.7). Note that
θ̂Tap

n is the real part of the ratio of the averaged tapered cross-periodogram between the
series y1 and y2 and the averaged tapered periodogram of the series y2.

3.3.1 Discrete tapered estimator under weak fractional cointegration

Theorem 3.6. Let Assumptions 2.1, 2.2, 2.3, 2.5 and 2.6 hold. Assume moreover that
the counting processes are mutually independent and independent of the efficient shocks
and (3.3) holds. Then

n1/2−H(θ̂Tap
n − θ)→

√
c2
1λ

2H
1 + θ2c2

2λ
2H
2

θ−2λ1σ2
1,eλ1 + λ2σ2

2,e

∑m
`=1 Re

(∫ 1

0
h`(s) dB(s)

∫ 1

0
h`(t) dBH(t)

)

∑m
`=1

∣∣∣
∫ 1

0
h`(s) dB(s)

∣∣∣
2

where B is a standard Brownian motion, BH is a standard fractional Brownian motion
and B and BH are independent.

Since the assumptions of Theorem 3.6 are the same as in Theorem 3.2, the comments
immediately following that theorem also applies here.

3.3.2 Discrete tapered estimator under strong fractional and standard coin-
tegration

Theorem 3.7. Let Assumptions 2.1, 2.2, 2.3 2.5 and 2.7 hold. Assume moreover that
the counting processes are mutually independent and independent of the efficient shocks
and (3.5) holds.

• If 1/2 < H < 1, then

n3/2−H(θ̂Tap
n − θ)→

√
c2
1 + θ2c2

2

θ−2λ1σ2
1,e + λ2σ2

2,e

∑m
`=1 Re

(∫ 1

0
h`(s) dB(s)

∫ 1

0
h′`(s) dBH(s)

)

∑m
`=1 |

∫ 1

0
h`(s) dB(s)|2

where BH is a standard fractional Brownian motion independent of the standard
Brownian motion B.
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• If H = 1/2, n(θ̂Tap
n − θ) = OP (1).

The assumptions of this theorem are weaker than those of Theorem 3.5 on the OLS
estimator. The microstructure shocks are not assumed to be independent of the count-
ing processes and the efficient shocks are not assumed to be Gaussian. Theorem 3.5 can
presumably be proved without the Gaussian assumption. It might be much more diffi-
cult in the proof of Theorem 3.5 to avoid the assumption of independence between the
microstructure shocks and the counting processes.

3.4 A Continuous-Time Tapered Estimator

The estimators of θ we have considered so far are based on equally-spaced observations
of the log price series. However, under the model (2.1), (2.2), a continuous-time record
is available, and it is of interest to consider using all of the available data to estimate θ.
Here, for the sake of theoretical tractability, and in view of the discussion just above
Assumption 2.8, we consider a tapered estimator θ̃ based on continuously-averaged log
prices on adjacent non-overlapping time intervals. Since the problems with discretization
appear only in the strong fractional and standard cointegration cases, we only consider
them in this section. There is no difference in the case of weak fractional cointegration.

We first establish some notation. Let {X(t)} be any time series defined for all t ≥ 0,
and suppose that we have data on {Xt} for t ∈ [0, T ]. Let δ > 0 be fixed. In practice, we
might take δ to be 5 minutes, but the choice of δ does not affect the asymptotic distribution
we derive below. Define n = bT/δc, X̃(0) = 0, and

X̃(k) =

∫ kδ

u=(k−1)δ

X(u) du , k = 1, · · · , n .

Then we can define an estimator θ̃δ based on these averaged observations by

θ̂Tap
n,δ = Re(θ̃n,δ)

with

θ̃n,δ =

∑m
`=1 d∆ỹ1,`d̄∆ỹ2,`∑m

`=1 |d∆ỹ2,`|2 .

3.4.1 Continuous-time tapered estimator under strong fractional and stan-
dard cointegration

Theorem 3.8. Let Assumptions 2.1, 2.2, 2.3, 2.5 and 2.8 hold. Assume moreover that
the counting processes are mutually independent and independent of the efficient shocks
and (3.5) holds.
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• If 1/2 < H < 1, then

n3/2−H(θ̂Tap
n,δ − θ)→

√
δ2H(c2

1 + θ2c2
2)

θ−2λ1σ2
1,e + λ2σ2

2,e

∑m
`=1 Re

(∫ 1

0
h`(s) dB(s)

∫ 1

0
h′`(s)dBH(s)

)

∑m
`=1 |

∫ 1

0
h`(s) dB(s)|2

where BH is a standard FBM independent of the standard Brownian motion B.

• If H = 1/2, n(θ̂Tap
n,δ − θ) = OP (1).

Because Assumption 2.8 involves an integral rather than a sum, we are able to verify
that it holds for certain models with noninteger durations such as ACD and LMSD under
certain relationships with the microstructure shocks.

In Theorem 3.8, we allow for leverage effects, and therefore care is required in defining
standard cointegration. As demonstrated in Lemma 2.2 (which assumes LMSD durations)
if there is a leverage effect, even when the microstructure shocks are the differences of a
weakly-dependent sequence, the cointegrating error need not be I(0). In such a case we
have strong fractional cointegration rather than the standard cointegration which might
have been anticipated.

It is also possible that even though a leverage effect exists, the memory of durations
has no effect on the degree of cointegration. Specifically, if in Lemma 2.2 we replace
ξk = Y 2

k+1− 1 by ξk = H2(Yk+1)− .75H3(Yk+1), where H2(y) = y2− 1 and H3(y) = y3− 3y
(the second and third Hermite polynomials, respectively), then there is a leverage effect
with corr(τk+1, ξk) = .082. Nevertheless it follows from an argument similar to the proof
of Lemma 2.2 that Assumption 2.8 holds in this example with H = 1/2, so that we have
standard cointegration and Theorem 3.8 holds with H = 1/2.

Lemma 4.10 provides an example of standard cointegration allowing for both time
deformation and dependence between the counting processes and microstructure shocks.
Theorem 3.8 would hold for this example with H = 1/2.

3.5 Spurious Regressions

In this subsection only, we consider a non-cointegrated version of the model defined by
(2.1) and (2.2),

y1(t) =

N1(t)∑

k=1

(e1,k + η1,k) + θ21

N2(t1,N1(t))∑

k=1

e2,k, (3.8)

y2(t) =

N2(t)∑

k=1

(e2,k + η2,k) + θ12

N1(t2,N2(t))∑

k=1

e1,k, (3.9)

where θ12 6= θ−1
21 . We examine here the properties of the OLS estimator in the (spurious)

regression of y1 on y2 in discrete time and then briefly discuss corresponding tests for the
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null hypothesis of cointegration. Corollary 3.1 below follows directly from the proof of
Theorem 3.1.

Corollary 3.1. If Assumptions 2.1, 2.2, 2.3 and 2.4 are satisfied and y = (y1, y2) is given
by (3.8) and (3.9) with θ12 6= θ−1

21 , then as n →∞,
(

1√
n

y(nu) : u ∈ [0, 1]

)
⇒By = (By(u) : u ∈ [0, 1]),

where By is a bivariate Brownian motion with 2×2 covariance matrix Σ = (Σi,j : i, j = 1, 2)
given by the entries

Σ1,1 = λ1σ
2
1,e + θ2

21λ2σ
2
2,e , Σ2,2 = θ2

12λ1σ
2
1,e + λ2σ

2
2,e ,

Σ1,2 = θ12λ1 σ2
1,e + θ21λ2 σ2

2,e = Σ2,1.

Next, we consider the discretization of y1(t) and y2(t) given by (3.8) and (3.9) at integer
time values,

y1,j =

N1(j)∑

k=1

(e1,k + η1,k) + θ21

N2(t1,N1(j))∑

k=1

e2,k, (3.10)

y2,j =

N2(j)∑

k=1

(e2,k + η2,k) + θ12

N1(t2,N2(j))∑

k=1

e1,k. (3.11)

Regressing y1,1, . . . , y1,n on y2,1, . . . , y2,n without intercept, we obtain the OLS estimator

δ̂n =

∑n
j=1 y2,jy1,j∑n

j=1 y2
2,j

. (3.12)

Corollary 3.2 below follows directly from Corollary 3.1 and the Continuous Mapping The-
orem.

Corollary 3.2. If Assumptions 2.1, 2.2, 2.3 and 2.4 are satisfied and y = (y1, y2) is given
by (3.8) and (3.9) with θ12 6= θ−1

21 , then as n →∞,

δ̂n→
∫ 1

0
B2,y(u)B1,y(u) du∫ 1

0
B2

1,y(u) du
,

where By = (B1,y, B2,y) is the bivariate Brownian motion given in Corollary 3.1.

Corollary 3.2 together with Corollary 3.1 can be used to motivate tests for the null
hypothesis of no cointegration. We do not pursue the details here, but it seems clear
that the null distribution for unit root tests based on the residuals {y1,j − δ̂ny2,j}n

j=1 can
be derived from Corollaries 3.1 and 3.2, and that these null distributions will have form
similar to the distributions listed, for example, in Hamilton [1994, Proposition 19.4].
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4 Proofs

Proof of Lemma 2.1. Write

N(t)

t
=

Ñ(f(t))

t
=

Ñ(f(t))

f(t)

f(t)

t
.

By assumption, f(t) 7→ ∞ (in probability if f is random), thus Ñ(f(t))/f(t) converges in

probability to λ̃. By assumption, it also holds that t−1f(t)
P→ γ. Thus, N(t)

t

P→ λ̃γ, so that

Assumption 2.2 holds for N with λ = λ̃γ. Next, we note that N(t−k ) ≤ k, thus

1 ≤ N(tk)

k
= 1 +

N(tk)− k

k
≤ 1 +

N(tk)−N(t−k )

k

= 1 +
Ñ(f(t−k ), f(tk)]

k
≤ 1 +

Ñ(f(tk)− C, f(tk)]

f(tk)

f(tk)

k

using the definition of N and the boundedness requirement on the jumps of f . Since f(tk)
tends to infinity, it suffices to prove that if Assumptions 2.1 and 2.1 hold for Ñ , then for
any fixed positive C, it holds that

Ñ(t− C, t]

t

P→ 0 .

Without loss of generality, set λ̃ = 1. Fix some ε ∈ (0, 1/2). Since t̃k/k
P→ 1, with

probability arbitrarily close to 1 (say bigger than 1 − ε), there exists k0 such that t̃k/k ∈
[1 − ε, 1 + ε] for all k ≥ k0. For k ≥ k0, if tk ∈ (t − C, t], it necessarily holds that
t − C ≤ k(1 + ε) and k(1 − ε) ≤ t. Hence, (t − C)/(1 + ε) ≤ k ≤ t/(1 − ε). This implies
that for t large enough (t < C + k0(1 + ε)), Ñ(t−C, t) is less than the number of integers
between (t − C)/(1 + ε) and t/(1 − ε), i.e. Ñ(t − C, t] ≤ cεt, for some constant c > 0.

Thus Ñ(t)/t ≤ cε with probability tending to 1, and this proves that Ñ(t − C, t]/t
P→ 0.

It follows that N(tk)/k = 1 + oP (1), i.e. N(tk)/tk converges in probability to 1. Thus

tk
k

=
tk

N(tk)

N(tk)

k

P→ 1

λ
.

Proof of Lemma 2.2. Denote Hτ by H to simplify the notation. Define ξk = Y 2
k+1 −

1. Then ξk is centered, has finite variance summable autocovariance function, since
cov(ξ0, ξk) = 2cov2(Y0, Yk+1). Thus {ξk} has a summable autocovariance function because
H ∈ (1/2, 3/4). By Arcones [1994, Theorem 4], this implies that {ξk} is in the domain of
attraction of the standard Brownian motion, i.e.

n−1/2

[n·]∑

k=1

ξk⇒c′B ,
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with c′2 = var(ξ0) + 2
∑∞

k=1 cov(ξ0, ξk). This proves (2.6).

Assume now that τk = εke
σYk (with σ = 1 in the statement of the Lemma). The

properties of Hermite polynomials yield that E[eσY0Hj(Y0)] = σjeσ2/2 for all j ≥ 1. Denote
now λ−1 = E[τk] = E[eσYk ] = eσ2/2, m = E[ξk−1τk] = E[(Y 2

k − 1)eYk ] = σ2eσ2/2 and
G(y) = (y2 − 1)eσy −m. We now prove that (2.7) holds with µ∗ = λm. Write

∫ T

0

(ξN(s) − λm) ds

= t1ξ0 +

N(T )∑

k=1

τk+1ξk − λmT + (tN(T )+1 − T )ξN(T )+1

= t1ξ0 +

N(T )∑

k=1

(εk+1 − 1)ξke
σYk+1 +

N(T )∑

k=0

G(Yk+1) (4.1)

+ m(N(T )− λT )− (tN(T )+1 − T )ξN(T )+1 .

By Lemma 4.8 and applying Hölder’s inequality, it can be shown that (tN(T )+1−T )(ξN(T )+1−
ρ) = OP (1). Since the sequence {εk} is independent of the Gaussian process {Yk}, the sec-
ond term in the righthand side of (4.1) is in the domain of attraction of the standard
Brownian motion, and the normalizing sequence is

√
n. Thus we must obtain the joint

asymptotic behavior of
∑N(Tt)

k=1 G(Yk) and N(Tt)− λTt.

The durations are in the domain of attraction of the fractional Brownian motion with
Hurst index H, since

n∑

k=1

(τk − λ−1) =
n∑

k=1

(εk − 1)eσYk +
n∑

k=1

(eσYk − λ−1) .

The first term in the righthand side is OP (
√

n) and the second sum, suitably normalized
converges to the fractional Brownian motion with Hurst index H because the function
x 7→ eσx − λ−1 has Hermite rank 1. See e.g. Arcones [1994]. More precisely, let c1 =
E[Y1e

σY1 ] = σeσ2/2 and define g(y) = eσy − λ−1 − c1y. The function g has Hermite rank 2,
and since H ∈ (1/2, 3/4), this implies that

var

(
n∑

k=1

g(Yk)

)
= O(n) .

Thus
∑n

k=1(τk − λ−1) is asymptotically equivalent to c1

∑n
k=1 Yk. Let BH denote the stan-

dard fractional Brownian motion with hurst index H. The assumption on the covariance
of the Gaussian process {yk} implies that

n−H

[n·]∑

k=1

Yk⇒ϕBH
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with ϕ2 = c/{H(2H − 1)}. Denote now c2 = E[Y1G(Y1)] = σ(σ2 + 2)eσ2/2 and define
h(y) = G(y) − c2y. Then h has Hermite rank 2 and thus by similar arguments as above,∑n

k=1 G(Yk) is asymptotically equivalent to c2

∑n
k=1 Yk. Thus we obtain

n−H




[nt]∑

k=1

(τk − λ−1),

[nt]∑

k=1

G(Yk)


⇒(c1ϕBH(t), c2ϕBH(t)) .

By Vervaat’s Lemma (see Vervaat [1972] or Resnick [2007, Proposition 3.3]), the previous
convergence implies that

n−H


N(nt)− λnt,

[nt]∑

k=1

G(Yk)


⇒(−λc1ϕBH(λt), c2ϕBH(t)) .

By the continuity of the composition map, this yields

n−H


N(nt)− λnt,

N(nt)∑

k=1

G(Yk)


⇒(−λc1ϕBH(λt), c2ϕBH(λt)) .

Next we obtain that

n−H





N(nt)∑

k=1

G(Yk) + m(N(nt)− λnt)



⇒ϕ(c2 − λmc1)BH(λt)

with c2−λmc1 = 2σeσ2/2 > 0. We conclude that n−H
∫ n·

0
{ξN(s)−λm} ds⇒ϕ(c2−λmc1)BH .

4.1 Proof of Theorem 3.1 and Corollary 3.1

We first need the following Lemma.

Lemma 4.1. Under Assumption 2.1 and 2.2, Ni(tj,Nj(nt))/n converges in probability uni-
formly on compact sets to λit, where {i, j} = {1, 2}.

Proof of Lemma 4.1. The sequence of (random) functions Ni(n·)/n is nondecreasing and
converges pointwise in probability to λit by ergodicity. A sequence of nondecreasing func-
tion converging to a continuous function converges uniformly on compact sets. This results
is known as Dini’s Theorem. Cf. Resnick [1987, page 3]. Thus the convergence of Ni(n·)/n
is uniform on compact sets. Assumptions 2.1 and 2.2 imply that Ni(t)

P→∞ and ti,n
P→∞.

Thus

Ni(tj,Nj(nu))

n
=

Ni(tj,Nj(nu))

tj,Nj(nu)

× tj,Nj(nu)

Nj(nu)
× Nj(nu)

n

P→ λi × 1

λj

× λju = λiu .

Applying again Dini’s lemma, we also have that Ni(tj,Nj(nu))/n converges uniformly on
compact sets to λiu.
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Proof of Theorem 3.1. Denote Se
i,n(t) =

∑[nt]
k=1 ei,k and Sη

i,n(t) =
∑[nt]

k=1 ηi,k, i = 1, 2. Under

Assumptions 2.3 and 2.4, n−1/2(Se
1,n, Se

2,n, Sη
1,n, Sη

1,n) converges weakly to (σ1,eB1, σ2,eB2, 0, 0),
where B1 and B2 are independent standard Brownian motions. This follows from the in-
dependence of e1 and e2 and the local uniform convergence to 0 in probability of n−1/2Sη

i,n.
With the previous notation, (3.8) and (3.9) become

y1(nt) = Se
1,n(N1(nt)) + θ21S

e
2,n(N2(t1,N1(nt))) + Sη

1,n(N1(nt)) ,

y2(nt) = Se
2,n(N2(nt)) + θ12S

e
1,n(N1(t2,N2(nt))) + Sη

2,n(N2(nt)) .

By Lemma 4.1 and the continuity of the composition map on C×C endowed with the metric
of uniform convergence on compact sets (see e.g. Billingsley [1968, Chapter 3, Section 17]),
we obtain the joint convergence of

n−1/2
(
Se

1,n(N1(n·)), Se
1,n(N1(t2,N2(n·))),

Se
2,n(N2(n·)), Se

2,n(N2(t1,N1(n·))), S
η
1,n(N1(n·)), Sη

2,n(N2(n·))
)

to (σ1,e

√
λ1B1, σ1,e

√
λ2B1, σ2,e

√
λ2B2, σ2,e

√
λ2B2, 0, 0). This yields Corollary 3.1 and The-

orem 3.1 by setting θ21 = θ and θ12 = θ−1.

4.2 Proof of Theorems 3.2 3.3 3.4 and 3.5

Proof of Theorem 3.2. Write

θ̂OLS
n = θ +

∑n
j=1{y1(j)− θy2(j)}y2(j)∑n

j=1 y2
2(j)

.

Assumptions 2.1, 2.2, 2.3, 2.5 and 2.6 imply those of Theorem 3.1. Thus we can apply the
Continuous Mapping Theorem and obtain

n−2

n∑
j=1

y2
2(j)→{θ−2λ1σ

2
1,e + λ2σ

2
2,e}

∫ 1

0

B2(s) ds , (4.2)

where B is a standard Brownian motion. Thus, in order to study the convergence of
θ̂OLS

n − θ suitably renormalized, it suffices to study the sum

n∑
j=1

{y1(j)− θy2(j)}y2(j) .
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We further decompose the cointegrating error. Denote

ye
1(j) =

N1(j)∑

k=1

e1,k + θ

N2(t1,N1(j))∑

k=1

e2,k , yη
1(j) =

N1(j)∑

k=1

η1,k ,

ye
2(j) =

N2(j)∑

k=1

e2,k + θ−1

N1(t2,N2(j))∑

k=1

e1,k , yη
2(j) =

N2(j)∑

k=1

η2,k ,

r1,j =

N1(j)∑

k=N1(t2,N2(j))+1

e1,k , r2,j =

N2(j)∑

k=N2(t1,N1(j))+1

e2,k .

With this notation, we can write

n∑
j=1

{y1(j)− θy2(j)}y2(j) =
n∑

j=1

{r1,j − θr2,j}y2(j) +
n∑

j=1

{yη
1(j)− θyη

2(j)}y2(j) . (4.3)

Applying Theorem 3.1, Assumption 2.6 and the Continuous Mapping Theorem, we obtain

n−3/2−H

n∑
j=1

{yη
1(j)− θyη

2(j)}y2(j)

→
∫ 1

0

{θ−1
√

λ1σ1,eB1(t) +
√

λ2σ2,eB2(t)}{c1B1,H(λ1t)− θc2B2,H(λ2t)} dt

law
= Σ

∫ 1

0

B(t)BH(t) dt

where B is a standard Brownian motion, BH is a fractional Brownian motion, independent
of B and

Σ2 = (θ−2λ1σ
2
1,e + λ2σ

2
2,e)(c

2
1λ

2H
1 + θ2c2

2λ
2H
2 ) . (4.4)

There only remains to prove that, for i = 1, 2,

n−3/2

n∑
j=1

ri,jy2(j) = OP (1) . (4.5)

The convergence of n−1/2y2 is uniform on [0, 1], so n−1/2 max1≤j≤n |y2(j)| = OP (1). There-
fore, it suffices to prove that

n−1

n∑
j=1

|ri,j| = OP (1) . (4.6)

Recall that Ni(s) < k ⇔ ti,k > s. Thus, for k ≤ N1(n),

N1(t2,N2(j)) < k ≤ N1(j) ⇔ t2,N2(j) < t1,k ≤ j .
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The first inequality on the righthand side means that there is no point of N2 between t1,k

and j, i.e. j ≤ t2,N2(t1,k)+1. Let A2(t) = t2,N2(t)+1 − t denote the forward recurrence time of
N2, i.e. the time between t and the next event of N2 after t. Thus,

n∑
j=1

|r1,j| ≤
n∑

j=1

N1(j)∑

k=N1(t2,N2(j))+1

|e1,k| =
N1(n)∑

k=1

|e1,k|{A2(t1,k) + 1} .

We thus get the bound for the conditional expectation given the sigma-field N generated
by the counting processes N1 and N2:

E

[
n∑

j=1

|r1,j| | N
]
≤ C

N1(n)∑

k=1

A2(t1,k) .

Conditioning on N1 and applying (3.3) yields

E

[
n∑

j=1

|r1,j| | N1

]
≤ CN1(n) = OP (n) .

This proves (4.6) and concludes the proof of Theorem 3.2.

Proof of Theorem 3.3. We have

n−1/2tn =
n1/2−H(θ̂OLS

n − θ)

n1/2−H
√

nσ̂2
θ̂OLS
n

.

Furthermore,

nσ̂2
θ̂OLS
n

=

∑n
j=1[y1(j)− θ̂OLS

n y2(j)]
2

∑n
j=1 y2

2(j)
=

∑n
j=1[y1(j)− θy2(j) + (θ − θ̂OLS

n )y2(j)]
2

∑n
j=1 y2

2(j)

=

∑n
j=1[y1(j)− θy2(j)]

2

∑n
j=1 y2

2(j)
− (θ − θ̂OLS

n )2 .

Note that

n−2H−1

n∑
j=1

[y1(j)− θy2(j)]
2

= n−2H−1

n∑
j=1

[yη
1(j)− θyη

2(j)]
2

+ n−2H−1

n∑
j=1

(r1,j − θr2,j)
2 + 2n−2H−1

n∑
j=1

(r1,j − θr2,j)(y
η
1(j)− θyη

2(j)) .
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By Theorem 3.1 and the Continuous Mapping Theorem, the first term is OP (1). We will
prove below that n−1

∑n
j=1(r1,j − θr2,j)

2 = OP (1), implying that the second and last terms
are oP (1). By the proof of Theorem 3.2, we also have that

n1/2−H(θ̂OLS
n − θ) =

n−3/2−H
∑n

j=1[y
η
1(j)− θyη

2(j)]y2(j) + oP (1)

n−2
∑n

j=1 y2
2(j)

.

Thus, we can write

n−1/2tn =
n−3/2−H

∑n
j=1[y

η
1(j)− θyη

2(j)]y2(j) + oP (1)

n−2
∑n

j=1 y2
2(j)

·




n−2H−1
∑n

j=1[y
η
1(j)− θyη

2(j)]
2 + oP (1)

n−2
∑n

j=1 y2
2(j)

−
[

n−3/2−H
∑n

j=1[y
η
1(j)− θyη

2(j)]y2(j) + oP (1)

n−2
∑n

j=1 y2
2(j)

]2




−1/2

By Theorem 3.1 and Assumption 2.6, we know that (n−1/2y2(n·), n−H [yη
1(n·) − θyη

2(n·)])
converge jointly to (ςB, ςHBH), where B is a standard Brownian motion, BH is a standard
fractional Brownian motion, mutually independent, and ς and ςH are positive constants.
Thus, by the Continuous Mapping Theorem, we have

n−1/2tn→
ςςH

∫ 1

0
B(t)BH(t)dt

ς2
∫ 1

0
B2(t)dt





ς2
H

∫ 1

0
B2

H(t)dt

ς2
∫ 1

0
B2(t)dt

−
ς2ς2

H

[∫ 1

0
B(t)BH(t)dt

]2

ς4
[∫ 1

0
B2(t)dt

]2





−1/2

=

∫ 1

0
B(t)BH(t)dt√∫ 1

0
B2(t)dt

∫ 1

0
B2

H(t)dt−
[∫ 1

0
B(t)BH(t)dt

]2
.

We now deal with the remainder term n−1
∑n

j=1(r1,j−θr2,j)
2. We only prove that n−1

∑n
j=1 r2

1,j =
OP (1), the proof for the term involving r2,j being similar. Since the counting processes
and the efficient shocks are independent, taking conditional expectations, we obtain

E

[
n∑

j=1

r2
1,j | N

]
=

n∑
j=1

N1(j)∑

k=N1(t2,N2(j))+1

σ2
1,e = σ2

1,e

N(n)∑

k=1

{A2(t1,k) + 1} .

Since the counting processes are mutually independent, we can apply Condition (3.3) to
see that the expectation of the sum in the righthand side is O(n). Thus

∑n
j=1 r2

1,j = OP (n)
and this concludes the proof.

Proof of Theorem 3.4. We will prove below that there exists a positive constant C such
that

m2−2Hs2
m

P→ C . (4.7)
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Thus,

log(m2−2Hs2
m)

P→ log C ,

and

Ĥ = 1 +
log(s2

m)

2 log m
= H +

log(m2−2Hs2
m)

2 log m

P→ H .

Proof of (4.7). Elementary algebra yields

mX
(m)
k = Ak,m + Vk,m −Rk,m

where

Ak,m = σ1{B1,H(N1(km))−B1,H(N1((k − 1)m))}
− θσ2{B2,H(N2(km))−B2,H(N2((k − 1)m))} ,

Rk,m = (θ̂OLS
n − θ)[y2(km)− y2((k − 1)m)] ,

Vk,m =

N1(km)∑

`=N1(t2,N2(km))+1

e1,` − θ

N2(km)∑

`=N2(t1,N1(km))+1

e2,`

−
N1((k−1)m)∑

`=N1(t2,N2((k−1)m))+1

e1,` + θ

N2((k−1)m)∑

`=N2(t1,N1((k−1)m))+1

e2,` .

The convergence (4.7) is a consequence of the following three convergences.

m1−2Hn−1

bn/mc∑

k=1

R2
k,m

P→ 0 , (4.8)

m1−2Hn−1

bn/mc∑

k=1

V 2
k,m

P→ 0 , (4.9)

m1−2Hn−1

bn/mc∑

k=1

A2
k,m

P→ C . (4.10)

We will only prove (4.10), the other convergences being similarly and more easily obtained.

Let Tn = m1−2Hn−1
∑bn/mc

k=1 A2
k,m and let N denote the sigma-field generated by the point

processes N1 and N2. We will prove that there exists a positive constant C such that

lim
n→∞

E[Tn | N ] = C , (4.11)

lim
n→∞

var(Tn | N ) = 0 . (4.12)
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By the Bienaymé-Chebyshev inequality, (4.11) and (4.12), we have

P(|Tn − C| > ε | N ) ≤ ε−2E[|Tn − C|2 | N ]

≤ ε−2var(Tn | N ) + ε−2(E[Tn | N ]− C)2 P→ 0 .

This precisely means that Tn converges to C in conditional probability, i.e. for all ε > 0,

lim
n→∞

P(|Tn − C| > ε | N ) = 0 .

Since a probability is bounded by one and P(|Tn − C| > ε) = E[P(|Tn − C| > ε | N )], the
bounded convergence theorem implies that for all ε > 0,

lim
n→∞

P(|Tn − C| > ε) = 0 ,

i.e. Tn
P→ C.

For simplicity of notation, we also assume that n/m is an integer. For any a < b,
Ni(a, b] denotes the number of points of Ni in the interval (a, b]. Note that Ni(0, t] = Ni(t)
for all t > 0. Since B1,H and B2,H are independent of N , we have, for any s < t,

var(Bi,H(Ni(t))−Bi,H(Ni(s)) | N ) = {Ni(s, t]}2H . (4.13)

Since moreover B1,H and B2,H are mutually independent, this yields

E[Tn | N ]

= σ2
1m

1−2Hn−1

n/m∑

k=1

{N1(((k − 1)m, km])}2H + σ2
2θ

2m1−2Hn−1

n/m∑

k=1

{N2(((k − 1)m, km])}2H

= σ2
1T1,n + σ2

2θ
2T2,n .

We will prove that Ti,n converges in probability to λ2H
i , i = 1, 2, where λi is the intensity

of Ni, i.e. E[Ni(0, 1]] = λi. This will imply (4.11) with C = σ2
2λ

2H
1 + σ2

2θ
2λ2H

2 .

Since Ni is stationary, we have

E
[∣∣Ti,n − λ2H

i

∣∣] ≤ E [∣∣{m−1Ni(m)}2H − λ2H
i

∣∣] .

For brevity, we now omit the subscript i. By stationarity and ergodicity, m−1N(m)
converges almost surely to λ as m goes to infinity. Since 0 < 2H < 1, it holds that
|a2H − b2H | ≤ |a− b|2H for all real numbers a, b. Thus, for any ε > 0,

E
[∣∣{m−1N(m)}2H − λ2H

∣∣]

≤ ε2H + E
[∣∣{m−1N(m)}2H − λ2H

∣∣1|m−1N(m)−λ|>ε}
]

≤ ε2H + E
[{m−1N(m)}2H1|m−1N(m)−λ|>ε}

]
+ λ2HP(|m−1N(m)− λ| > ε) .

31



By ergodicity, the last term above tends to zero as m tends to infinity. To deal with the
middle term, we apply Hölder’s inequality and obtain

E[{m−1N(m)}2H1|m−1N(m)−λ|>ε}]

≤ E2H [m−1N(m)]P1−2H(|m−1N(m)− λ| > ε)

= λ2HP1−2H(|m−1N(m)− λ| > ε) → 0 ,

as m → ∞, again by ergodicity. Thus we obtain that limn→infty E
[∣∣Ti,n − λ2H

i

∣∣] = and
this concludes the proof of (4.11).

We now prove (4.12). We denote the conditional variance and covariance given N by
varN and covN , respectively. Since Ak,m is conditionally Gaussian, we have, for all k, k′,

covN(A2
k,m, A2

k′,m)) = 2cov2
N(Ak,m, Ak′,m) .

Thus, denoting Sn =
∑[n/m]

k=1 A2
k,m, we have

varN(Sn) = 2

n/m∑

k=1

var2
N(Ak,m) + 4

n/m−1∑

k=1

n/m∑

k′=k+1

cov2
N(Ak,m, Ak′,n) = 2× I + 4× II .

Applying (4.13) to compute varN(Ak,m) and taking expectation, we have, by stationarity,

m2−4Hn−2E[I] = σ2
1mn−1E[(N1(m)/m)4H ] + σ2

2θ
2mn−1E[(N2(m)/m)4H ] .

Since 4H < 2, by Jensen’s inequality, E[N4H
i (m)] ≤ {E[N2

i (m)]}2H and by stationarity
E[N2

i (m)] ≤ m2E[N2
i (1)]. Thus m2−4Hn−2E[I] = O(m/n).

Consider now the last term II. For any positive real numbers s < t < u < v and a
standard fractional Brownian motion H, we have

cov(BH(t)−BH(s), BH(v)−BH(u)) = |v − s|2H − |v − t|2H + |u− t|2H − |u− s|2H .

Thus,

covN(Ak,m, Ak′,n) = σ2
1

{
N2H

1 ((k − 1)m, k′m]−N2H
1 (km, k′m]

+ N2H
1 (km, (k′ − 1)m]−N2H

1 ((k − 1)m, (k′ − 1)m]
}

+ σ2
2θ

2
{
N2H

2 ((k − 1)m, k′m]−N2H
2 (km, k′m]

+ N2H
2 (km, (k′ − 1)m]−N2H

2 ((k − 1)m, (k′ − 1)m]
}

= σ2
1Ck,k′ + σ2

2θ
2C ′

k,k′ .

Hereafter, we only deal with the terms related to N1, the other terms being similarly dealt
with and we omit the subscript 1. For any a, c ≥ 0 and b > 0, since 0 < 2H < 1, we have

0 ≤ (a + b)2H − b2H − (a + b + c)2H + (b + c)2H

= 2H(1− 2H)

∫ a+b

b

∫ z+c

z

u2H−2du dz ≤ acb2H−2 .
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Applying this bound with ak = N((k − 1)m, km], bk,k′ = N(km, (k′ − 1)m] yields

C2
k,k′ ≤ b4H−4

k,k′ a2
ka

2
k′1{bk,k′>0} .

Taking expectation, we have, by stationarity,

m2−4Hn−2
∑

1≤k<k”≤n/m

E[C2
k,k′1{bk,k′>0}]

≤ m1−4Hn−1

n/m∑

k=1

E
[
N4H−4(km)1{N(km)>0}N

2(m)N2((k − 1)m, km]
]

.

Applying Hölder’s inequality yields

m2−4Hn−2
∑

1≤k<k”≤n/m

E[C2
k,k′1{bk,k′>0}]

≤ m−2E1/2[N4(m)]
m

n

n/m∑

k=1

E1/2
[{N(km)/km}8H−81{N(km)>0}

]
k4H−4 .

By stationarity, E[N4(m)] = O(m4), and applying Assumption (3.4), we obtain, for some
constant c,

m2−4Hn−2
∑

1≤k<k”≤n/m

E[C2
k,k′1{bk,k′>0}] ≤ c

m

n

n/m∑

k=1

k4H−4 = o(1) .

Consider now the event {bk,k′ = 0}. Then, using the above notations, we have

E[C2
k,k′1{bk,k′=0}] = E[{a2H

k + a2H
k′ − (ak + ak′)

2H}21{bk,k′=0}] ≤ 4E[(a4H
k + a4H

k′ )1{bk,k′=0}] .

Thus, by stationarity of N , we have

m2−4Hn−2
∑

1≤k<k”≤n/m

E[C2
k,k′1{bk,k′=0}]

≤ m1−4Hn−1

n/m∑

k=1

E[N4H(m)1{N(m,km]=0}]

+ m1−4Hn−1

n/m∑

k=1

E[N4H((k − 1)m, km]1{N((k−1)m)=0}] .

Applying Hölder’s inequality, E[N2(m)] = O(m2) and stationarity yields

m1−4Hn−1

n/m∑

k=1

E[N4H(m)1{N(m,km]=0}] = m1−4Hn−1E[N4H(m)1{N(m,n]=0}]

≤ m1−4Hn−1E2H [N2(m)]P1−2H(N(m,n] = 0) ≤ Cmn−1P1−2H(N(n−m) = 0) .
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Since n/m →∞, it holds that limn→∞ P(N(n−m) = 0) = 0. Similarly,

m1−4Hn−1

n/m∑

k=1

E[N4H((k − 1)m, km]1{N((k−1)m)=0}]

≤ m1−4Hn−1E2H [N2(m)]

n/m∑

k=1

P1−2H(N((k − 1)m) = 0) ≤ P1−2H(N(n) = 0)

and this last term tends to 0 as n tends to infinity. This concludes the proof of (4.12) and
of (4.7).

Proof of Theorem 3.5. The proof is a consequence of the convergence (4.2), the decompo-
sition (4.3), and Lemmas 4.2 and 4.3, whose assumptions are those of the Theorem.

Lemma 4.2. Under the assumptions of Theorem 3.5,

n−H−1/2

n∑
j=1

{yη
1(j)− θyη

2(j)}y2(j)→Σ0

∫ 1

0

B(s) dBH(s) . (4.14)

where BH is a standard fractional Brownian motion independent of B and

Σ0 = (θ−2λ1σ
2
1,e + λ2σ

2
2,e)(c

2
1 + θ2c2

2) .

Proof of Lemma 4.2. Denote Sn =
∑n

j=1{yη
1(j)− θyη

2(j)}y2(j) and write y2 = ye
2 + yη

2 with
obvious notation. Denote ζj = yη

1(j)− θyη
2(j) = ξ1,N1(j) − θξ2,N2(j). Then

Sn =
n∑

j=1

ζjy
e
2(j) +

n∑
j=1

ζjξ2,N2(j) . (4.15)

By the last part of Assumption 2.7, the last term in the righthand side of (4.15) is OP (n).
Consider the first term in the righthand side of (4.15), say S1,n. Write

S1,n =
n∑

j=1

ζj

N2(j)∑

k=1

e2,k + θ−1

n∑
j=1

ζj

N1(t2,N2(j))∑

k=1

e1,k

=

N2(n)∑

k=1

e2,k

∑

{j≤n: N2(j)≥k}
ζj + θ−1

N1(t2,N2(n))∑

k=1

e1,k

∑

{j≤n: N1(t2,N2(j))≥k}
ζj

= T1,n + θ−1T2,n .

Denote Wn(t) =
∑[nt]

j=1 ζj. Since N2(j) < k iff j < t2,k, we obtain

T1,n = ye2
2 (n)Wn(1)−

N2(n)∑

k=1

e2,kWn(t2,k/n) .
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By Assumption 2.7 and Theorem 3.1, n−1/2−Hye2
2 (n)Wn(1)→√λ2σ2B2(1)Z(1) with Z =

c1B
(1)
H − θc2B

(2)
H

law
=

√
c2
1 + θ2c2

2 BH . Let the last term be denoted by Un. Since the shocks
ei,k are i.i.d. Gaussian, we can compute the characteristic function of Un.

E[exp{itn−1/2−HUn}] = E


exp



−

σ2
2,et

2

2

1

n

N2(n)∑

k=1

(
n−HWn(t2,k/n)

)2








→ E
[
exp

{
−λ2σ

2
2,et

2

2

∫ 1

0

Z2(s) ds

}]
.

The convergence is actually joint with that of n−1/2−Hye2
2 (n)Wn, thus we have

n−1/2−HT1,n→
√

λ2σ2,eB2(1)Z(1)−
√

λ2σ2,e

∫ 1

0

Z(s) dB2(s) .

The limit can also be written as
√

λ2σ2,e

∫ 1

0
B2(s) dZ(s). Consider now the term T2,n. Note

that N1(t2,N2(j)) < k iff j ≤ t2,N2(t1,k)+1. Thus

T2,n =

N1(t2,N2(n))∑

k=1

e1,kWn(1)−
N1(t2,N2(n))∑

k=1

e1,kWn(t2,N2(t1,k)+1/n) .

By similar arguments as previously, we obtain

n−H−1/2T2,n→
√

λ1σ1B1(1)Z(1)−
√

λ1σ1

∫ 1

0

Z(s) dB1(s) .

All convergences hold jointly, thus (4.14) holds.

Lemma 4.3. Under the assumptions of Theorem 3.5,

n∑
j=1

{r1,j − θr2,j}y2(j) = OP (n) , (4.16)

Proof of Lemma 4.3. We first study the term with r1,j and split it into three parts.

n∑
j=1

r1,jy2(j) =
n∑

j=1

r1,jy
e1
2 (j) +

n∑
j=1

r1,jy
e2
2 (j) +

n∑
j=1

r1,jy
η
2(j)

We start with the last one. Recall that N1(t2,N2(j)) < k ≤ N1(j) iff t1,k ≤ j ≤ t1,k +A2(t1,k).
Thus

n∑
j=1

r1,jy
η
2(j) =

n∑
j=1

ξ2,N2(j)

∑

N1(t2,N2(j))<k≤N1(j)

e1,k . (4.17)
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If the microstructure shocks are independent of the counting processes, then

E







n∑
j=1

e1,k

∑

t1,k≤j<t1,k+A2(t1,k)

ξ2,N2(j)




2

| N



= σ2
1,e

N1(n)∑

k=1

E





 ∑

t1,k≤j<t1,k+A2(t1,k)

ξ2,N2(j)




2

| N

 ≤ C

N1(n)∑

k=1

(A2(t1,k) + 1)2 sup
`
E[ξ2

2,`] .

Conditioning on N1 and then taking expectation yields

E
[( n∑

j=1

e1,k

∑

t1,k≤j<t1,k+A2(t1,k)

ξ2,N2(j)

)2]
≤ CE[N1(n)] sup

t
E[{1 + A2(t)}2] sup

`
E[ξ2

` ] = O(n) .

Consider now R2,n =
∑n

j=1 r1,jy
e2
2 (j).

R2,n =
n∑

j=1

ye2
2 (j)

N1(j)∑

N1(t2,N2(j))+1

e1,k =

N1(n)∑

k=1

e1,k

∑

t1,k≤j<t1,k+A2(t1,k)

ye2
2 (j) .

By independence of the efficient shocks and the counting processes, we have

E[R2
2,n | N ] ≤ CN1(n)

N1(n)∑

k=1

(A2(t1,k) + 1)2 = OP (n2) .

This proves that R2,n = OP (n). Consider finally R1,n =
∑n

j=1 r1,jy
e1
2 (j). By definition,

e1,k is independent of ye1
2 (j) for j such that N1(t2,N2(j)) < k. Thus, we can compute the

conditional variance given N .

E[R2
1,n | N ] = σ2

1,e

N1(n)∑

k=1

E





 ∑

t1,k≤j<t1,k+A2(t1,k)

ye1
2 (j)




2

| N



≤ CN2(n)

N1(n)∑

k=1

(A2(t1,k) + 1)2 = OP (n)

by (3.5). This concludes the proof of Lemma 4.3.

4.3 Proof of Theorems 3.6 and 3.7

Write

θ̃n = θ +

∑m
`=1 d∆r,` d̄∆y2,`∑m

`=1 |d∆y2,`|2 +

∑m
`=1 d∆yη ,` d̄∆y2,`∑m

`=1 |d∆y2,`|2
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with yη(j) = yη
1(j)− θyη

2(j), r(j) = r1(j)− θr2(j) and

r1(j) =

N1(j)∑

k=N1(t2,N2(j))+1

e1,k , r2(j) =

N2(j)∑

k=N2(t1,N1(j))+1

e2,k .

By summation by parts, since h(0) = h(1) = 0, for any time series {xj}, we can write

d∆x,` =
n−1∑
j=0

{h`(j/n)− h`((j + 1)/n)}xj = − 1

n

n−1∑
j=0

w`(j, n)xj (4.18)

with w`(j, n) = n{h`((j + 1)/n)− h`(j/n)}. Applying (4.18) to y2 yields

d∆y2,` = − 1

n

n−1∑
j=0

w`(j, n)y2(j) .

Since the assumptions of Theorems 3.6 and 3.7 imply those of Theorem 3.1, the Continuous
Mapping Theorem yields

{n−1/2d∆y2,`, 1 ≤ ` ≤ m}→
{
−Σe

∫ 1

0

h′`(s)B(s) ds , 1 ≤ ` ≤ m

}
(4.19)

where B is a standard Brownian motion and Σ2
e = θ−2λ1σ

2
1,e + λ2σ

2
2,e. By integration by

parts, the integral can also be expressed as

−
∫ 1

0

h′`(s)B(s) ds =

∫ 1

0

h`(s) dB(s) .

This in turn implies

n−1

m∑

`=1

|d∆y2,`|2→Σ2
e

m∑

`=1

∣∣∣∣
∫ 1

0

h`(s) dB(s)

∣∣∣∣
2

. (4.20)

Applying now (4.18) to yη we obtain

d∆yη ,` = − 1

n

n−1∑
j=0

w`(j, n){yη
1(j)− θyη

2(j)} .

In the case of weak fractional cointegration, we apply Assumption 2.6, the Continuous
Mapping Theorem and integration by parts to obtain

n−H`(n)d∆yη ,` = −n−1−H`(n)
n−1∑
j=0

w`(j, n){yη
1(j)− θyη

2(j)}→
∫ 1

0

h`(t) dZH(t) (4.21)
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where, by independence of B
(1)
H and B

(2)
H ,

ZH(t) = c1B
(1)
H (λ1t)− θc2B

(2)
H (λ2t)

law
=

√
λ2H

1 c2
1 + λ2H

2 θ2c2
2 BH

and BH is a standard fractional Brownian motion. The first part of Lemma 4.4 shows that
d∆r,` is negligible under the assumptions of Theorem 3.6. This, and the convergences (4.19),
(4.20) and (4.21) conclude the proof of Theorem 3.6.

We now prove Theorem 3.7. Since h`(0) = h`(1) = 0, we have
∑n−1

j=0 w`(j, n) = 0, hence

n−1∑
j=0

w`(j, n)yη
i (j) =

n−1∑
j=0

w`(j, n)(ξi,Ni(j) − ξi,0) =
n−1∑
j=0

w`(j, n)(ξi,Ni(j) − µ∗i ) .

Denote Si,0 = 0 and for k ≥ 1, Si,k =
∑k

j=1(ξi,Ni(j)−µ∗i ). Define ω`(j, n) = n{w`(j +1, n)−
w`(j, n)}. Applying again summation by parts, we have

n−1∑
j=0

w`(j, n)yη
i (j) = − 1

n

n−1∑
j=1

ω`(j, n)Si,j + w`(n, n)Si,n−1 + w`(0, n)(ξi,0 − µ∗i ) ,

Under Assumption 2.7, by the Continuous Mapping Theorem, we obtain

n1−γ`(n)d∆yη ,` = −n−γ`(n)
n∑

j=1

w`(j, n)yη
i (j)

→
∫ 1

0

h′′` (t)B
(i)
H (t) dt− h′(1)B

(i)
H (1)

law
= −

∫ 1

0

h′`(s) dB
(i)
H (s) . (4.22)

The second part of Lemma 4.4 implies that the term d∆r,` does not contribute to the
limit under the Assumptions of Theorem 3.7. This, and the convergences (4.19), (4.20)
and (4.22) conclude the proof of Theorem 3.7.

Lemma 4.4. Under the assumptions of Theorem 3.6, then d∆r,` = OP (1). Under the
assumptions of Theorem 3.7, then d∆r,` = OP (n−1/2).

Proof. Applying (4.18) to r, we see that we only need to prove that the independence be-
tween the counting processes and the efficient shocks and (3.3) implies that

∑n
j=1 w`(j, n)ri,j =

Op(n) and (3.5) implies that
∑n

j=1 w`(j, n)ri,j = Op(n
1/2). We start with r1.

n∑
j=1

w`(j, n)r1,j =

N1(n)∑

k=1

e1,k

∑

t1,k≤j<t1,k+A2(t1,k)

w`(j, n) .

Taking conditional expectation yields, for q = 1, 2,

E

[∣∣∣∣∣
n∑

j=1

w`(j, n)r1,j

∣∣∣∣∣

q

| N
]
≤ C

N1(n)∑

k=1

(A2(t1,k) + 1)q .
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Applying (3.3) if q = 1 and (3.5) if q = 2 shows that the last term is OP (n). This proves
that

∑n
j=1 w`(j, n)r1,j = OP (n) under the assumptions of Theorem 3.6 and OP (

√
n) under

the assumptions of Theorem 3.7. The term
∑n

j=1 w`(j, n)r2,j is dealt with similarly.

4.4 Proof of Theorem 3.8

Write

θ̃n,δ = θ +

∑m
`=1 d∆r̃,`d̄∆ỹ2,`∑m

`=1 |d∆ỹ2,`|2 +

∑m
`=1 d∆ỹη ,`d̄∆ỹ2,`∑m

`=1 |d∆ỹ2,`|2

with ỹ(j) = ỹη
1(j)− θỹη

2(j), r̃(j) = r̃1(j)− θr̃2(j) and

r1(s) =

N1(s)∑

k=N1(t2,N2(s))+1

e1,k , r2(s) =

N2(s)∑

k=N2(t1,N1(s))+1

e2,k .

and the DFT is defined as in (3.7). Applying summation by parts as in (4.18), we obtain

d∆ỹ2,` = − 1

n

n−1∑
j=0

w`(j, n)ỹ2(j) = − 1

n

∫ nδ

0

w`(ds/δe, n)y2(s) ds = −
∫ δ

0

w`(dnt/δe, n)y2(ns) dt ,

with w`(j, n) = n{h`((j + 1)/n)− h`(j/n)} as before, and dte is the smallest integer larger
than or equal to t. This yields

n−1/2dỹ2,`→− Σe

∫ 1

0

h′`(s)B(δs) ds
law
= Σe

∫ 1

0

h`(s) dB(s) .

Since ηj = ξj − ξj−1, we have

ỹη
i (j) =

∫ jδ

(j−1)δ

ξi,Ni(s) ds− δξi,0 .

Differencing cancels the term δξ0. Applying (4.18) and summation by parts and the prop-
erty that

∑n−1
j=0 w`(j, n) = 0, we obtain

d∆ỹη
i ,` = − 1

n

n−1∑
j=0

w`(j, n)

∫ jδ

(j−1)δ

ξi,Ni(s) ds = − 1

n

n−1∑
j=0

w`(j, n)

∫ jδ

(j−1)δ

{ξi,Ni(s) − µ∗i } ds

=
1

n2

n−1∑
j=1

ω`(j, n)

∫ jδ

0

{ξi,Ni(s) − µ∗i } ds− 1

n
w`(n, n)

∫ (n−1)δ

0

{ξi,Ni(s) − µ∗i } ds .

Under Assumption 2.8, we thus have, with Z = B
(1)
H − θB

(2)
H ,

n1−H{d∆ỹη
1 ,` − θd∆ỹη

2 ,`}→
∫ 1

0

h′′` (s)Z(δs) ds− h′(1)Z(δ) .
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We must now deal with the remaining terms of the cointegrating error. If H > 1/2,
Lemma 4.5 implies that the term d∆r̃,` does not contribute to the limit. If H = 1/2, both
terms are of the same order. This concludes the proof of Theorem 2.8.

Lemma 4.5. Under the assumptions of Theorem 3.8

d∆r̃i,` = OP (n−1/2) .

Proof. Applying as usual summation by parts, we obtain

d∆r̃1,` = − 1

n

N1(nδ)∑

k=1

e1,k

n∑
j=1

w`(j, n)

∫ jδ

(j−1)δ

1{t1,k≤s<t1,k+A2(t1,k)} ds

= − 1

n

N1(nδ)∑

k=1

e1,k

∫ nδ

0

w`(ds/δe, n)1{t1,k≤s<t1,k+A2(t1,k)} ds

= − 1

n

N1(nδ)∑

k=1

e1,k

∫ {t1,k+A2(t1,k)}∧(nδ)

t1,k∧(nδ)

w`(ds/δe, n) ds

= −
N1(nδ)∑

k=1

e1,k

∫ {(t1,k+A2(t1,k))/n}∧δ

(t1,k/n)∧δ

w`(dnt/δe, n) dt . (4.23)

Taking conditional expectation and applying (3.5), we obtain

E
[|d∆r̃1,`|2 | N

] ≤ C

n2

N(n)∑

k=1

A2
2(t1,k) = OP (n−1) .

4.5 Additional Lemmas

Lemma 4.6. If the durations ti,k − ti,k−1 form a stationary ergodic sequence with finite
moment of order 2p + 1, if P(ti,1 > 0) = 1 and if the associated point process has finite
intensity, then

sup
s≥0
E[(ti,Ni(s)+1 − s)p] < ∞ .

Proof of Lemma 4.6. We omit the index i. Let θt denote the shift operator and let A(t)
be the forward recurrence time. Then A(s) = tN(s)+1 − s = t1 ◦ θs. Since the sequence
{τi} is stationary under P, there exists a probability law P ∗ such that N is a stationary
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ergodic point process under P ∗, see Baccelli and Brémaud [2003, Section 1.3.5]. Applying
Baccelli and Brémaud [2003, Formula 1.3.3], we obtain

E[Ap(s)] = λ−1E∗



N(1)∑

k=1

tp1 ◦ θs ◦ θtk


 = λ−1E∗




N(1)∑

k=1

Ap(s + tk)




= λ−1E∗



N(1)∑

k=1

{tN(s+tk)+1 − s− tk}p


 ≤ λ−1E∗




N(1)∑

k=1

{tN(s+1)+1 − s}p




= λ−1E∗[N(1){tN(s+1)+1 − s}p] ≤ λ−1{E∗[N(1)2]}1/2{E∗[(tN(s+1)+1 − s)2p]}1/2 .
(4.24)

Since N is stationary under P ∗, the last term does not depend on s, and by the Ryll-
Nardzewski inversion formula (Baccelli and Brémaud [2003, Formula 1.2.25]), we have

E∗[(tN(s+1)+1 − s)2p] = E∗[(t1 + 1)2p] = λE[

∫ t1

0

(t1 + 1− s)2p ds ≤ λE[(1 + t1)
2p+1]

By Baccelli and Brémaud [2003, Property 1.6.3], the point process N is stationary and
ergodic under P ∗ since the sequence of durations τk is stationary and ergodic. Thus, By
Daley and Vere-Jones [2003, Theorem 3.5.III], E∗[N(0, 1)2] < ∞. Plugging the last two
bounds into (4.24), we obtain that E[Ap(s)] is uniformly bounded.

Lemma 4.7. Assume that there exists an increasing sequence {sn, n ≥ 0} such that s0 = 0
and

(a) f is either constant or strictly increasing and differentiable on (sn, sn+1) and the jumps
of f occur at some (but not necessarily all) of the sn;

(b) if f is either constant or increasing on both intervals (sn, sn+1) and (sn+1, sn+2), then
f has a jump at sn+1.

Assume moreover that

• (minimum duration of trading and nontrading periods) there exists δ0 > 0 such that
sn+1 − sn ≥ δ0 for all n ≥ 0;

• (maximum duration of nontrading periods) there exists C0 such that for all n ≥ 0, if
f is constant on (sn, sn+1), then sn+1 − sn ≤ C0;

• (non stoppage of time during trading periods) there exists δ1 > 0 such that for all
n ≥ 0, f is either constant on (sn, sn+1), or f ′(t) ≥ δ1 for all t ∈ (sn, sn+1).

Let Ñ be a point process with event times {t̃k} and let N be the point process de-
fined by N(·) = Ñ(f(·)) with event times {tk}. If sups≥0 E[(t̃Ñ(s)+1 − s)p] < ∞, then
sups≥0 E[(tN(s)+1 − s)p] < ∞.
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Proof of Lemma 4.7. Define the nondecreasing left-continuous inverse f← of a nondecreas-
ing càdlàg function f by

f←(u) = inf{t | f(t) ≥ u} .

Note first that f←(u) ≤ t if only if u ≤ f(t) and f←(f(t)) ≤ t. Thus we see that

f←(t̃n) ≤ t ⇔ t̃n ≤ f(t)

⇔ Ñ(f(t)) ≥ n

⇔ N(t) ≥ n .

This characterizes the sequence {tn}, thus we obtain that tn = f←(t̃n). The assumptions
on f imply the following properties of f←.

• The jumps of f← correspond to the intervals (sn, sn+1) where f is constant. More
precisely, if f is constant on (sn, sn+1), then f← has a jump at f(sn) of size sn+1−sn.
Since f← is left continuous, it holds that

f←(f(sn)) = sn , lim
u→f(sn),u>f(sn)

= sn+1 .

Thus the jumps of f← are of size C0 at most.

• If f is increasing on an interval (sn, sn+1), then f← is differentiable on (f(sn), f(s−n ))
and (f←)′(t) ≤ δ−1

1 for all t ∈ (f(sn), f(s−n )).

• The jumps of f create no singularity in f←. If f(sn) > f(s−n ), then f← is constant
on the interval (f(s−n ), f(sn)).

Let dxe denote the smallest integer greater than or equal to the real number x. Then, for
0 ≤ s ≤ t,

0 ≤ f←(t)− f←(s) ≤ C0

⌈t− s

δ0

⌉
+ δ−1

1 (t− s) .

Thus, there exits constants c1, c2 such that for all s ≤ t,

0 ≤ f(t)− f(s) ≤ c1 + c2(t− s) .

Consider now the forward recurrence time of the point process N . Then

0 ≤ tN(s)+1 − s = f←(t̃Ñ(s)+1)− f←(f(s)) + f←(f(s))− s

≤ f←(t̃Ñ(f(s))+1)− f←(f(s)) ≤ c1 + c2{t̃Ñ(f(s))+1 − f(s)} .

Thus, there exists constants c3 and c4 such that

sup
s≥0
E[(tN(s)+1 − s)p] ≤ c3 + c4 sup

s≥0
E[(t̃Ñ(s)+1 − s)p]
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Lemma 4.8. Let {εk} be a sequence of i.i.d. positive random variables with finite mean
µε. Let {Yk} be a stationary standard Gaussian process such that

cov(Y0, Yk) = `(n)n2H−2 (4.25)

for H ∈ (1/2, 1) and ` a slowly varying function. For k ≥ 1, define

τk = εke
σYk .

Then the sequence {τk} is ergodic and Assumption 2.1 holds with λ−1 = µεe
σ2/2. If P(ε1 >

0) = 1 the Assumption 2.2 holds with µ = λ = µ−1
ε e−σ2/2. If moreover E[εq

1] < ∞ for all
q ≥ 1, then (3.3) and (3.5) hold.

Remark 4.1. If instead of (4.25) we assume that

∞∑

k=1

|cov(Y0, Yk)| < ∞ ,

then the moment requirement can be relaxed to E[ε3
1] < ∞ to obtain (3.3) and E[ε5

1] < ∞
to obtain (3.5).

Proof of Lemma 4.8. Note first that E[τ p
k ] < ∞ as long as E[εp

1] < ∞. By Lemma 4.6,
in order to check condition (3.3), we must only prove that the induced point process has
finite intensity, i.e. there exists t > 0 such that E[N(t)] < ∞. See Baccelli and Brémaud
[2003, Section 1.3.5]. Note that

E[N(x)] =
∞∑

k=1

P(N(x) ≥ k) =
∞∑

k=1

P(tk ≤ x) .

Thus, it suffices to prove that the series on the righthand side is summable. Denote
µ = E[τk] and ρn = cov(Y0, Yn). Applying Deo et al. [2009b, Proposition 1], we have

E

[∣∣∣∣∣
n∑

k=1

τk − nµ

∣∣∣∣∣

p]
= O(vp

n)

with vn = nH`(n). If E[εp
1] < ∞ for p such that p(1 −H) > 1, for n such that nµ > x, it

holds that

P(tk ≤ x) = O(x−1vp
k)

and this series is summable.

Lemma 4.9. Assume that {τk} and {ξk} are mutually independent stationary sequences
such that E[ξk] = 0, E[τ 2

k ] < ∞ and E[ξ2
k] < ∞. Assume that the sequence of durations is
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weakly stationary and that cov(τ0, τn) = 0(n−δ) for some δ > 0 and sups≥0 E[tN(s)+1− s] <
∞. Assume that cov(ξ1, ξn) ∼ cn2H−2, with H ∈ (1/2, 1) and c > 0, and that

n−H

[n·]∑

k=1

ξk⇒c′BH

for some c′ > 0. Then

n−H

∫ Tt

0

ξN(s) ds⇒c′′BH(t)

for some c′′ > 0.

Proof of Lemma 4.9. Denote E[τk] = µ > 0.

∫ T

0

ξN(s) ds =

N(T )∑

k=0

τk+1ξk − (tN(T )+1 − T )ξN(T )+1

=

N(T )∑

k=0

(τk+1 − µ)ξk + µ

N(T )∑

k=0

ξk − (tN(T )+1 − T )ξN(T )+1 .

By independence of {τk} and {ξk}, we have (assuming without loss of generality that
2H − δ > 1),

var

(
n∑

k=0

(τk+1 − µ)ξk

)
= O(n2H−δ) .

Thus, n−H
∑[n·]

k=0(τk+1− µ)ξk⇒0. Hence by the continuous mapping theorem, it also holds

that n−H
∑N(T ·)

k=0 (τk+1−µ)ξk⇒0. By independence and by assumption, (tN(t)+1−T )ξN(T ) =

OP (1). By the continuous mapping theorem, n−H
∑N(Tt)

k=0 ξk⇒c′BH(µ−1t).

Lemma 4.10. Let {τk}, {Vk} and {ζk} be sequences of random variables such that

• {ζk} is an i.i.d. sequence of zero-mean and unit variance random variables; {τk} and
{Vk} are sequences of positive random variables;

• the sequences {(τk, Vk)} and {ζk} are mutually independent;

• there exists s > 0 such that n−1
∑n

k=1 τ 2
k+1V

2
k

P→ s2;

• supk≥0 E[τ 2+ε
k+1V

2+ε
k ] < ∞ for some ε > 0;

• sups≥0 E[tN(s)+1 − s] < ∞.

Define ξk = ζkVk. Then T−1/2
∫ T ·

0
ξN(s) ds⇒cB for some c > 0.
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Proof. Let Fk be the sigma-field generated by random variables {τj+1, ζj, Vj, j ≤ k}. Then
E[ξkτk+1 | Fk−1] = τk+1VkE[ζk] = 0. Thus, {τk+1ξk} is a martingale difference sequence.
Under the stated assumptions, the martingale invariance principle Hall and Heyde [1980,

Theorem 4.1] yields that n−1/2
∑[n·]

k=1 τk+1ξk⇒cB for some c > 0. As in the proof of
Lemma 4.9, denote E[τk] = µ > 0 and write

∫ T

0

ξN(s) ds =

N(T )∑

k=0

τk+1ξk + (tN(T )+1 − T )ξN(T ) .

By the continuous mapping theorem, we have that T−1/2
∑N(T ·)

k=1 τkξ−1⇒λcB. As previ-
ously, the last term is a negligible edge effect. This concludes the proof.

Lemma 4.11. Let N be a stationary point process under P with intensity λ and let P 0

denote the Palm probability associated to P . Let γ > 0. Assume that there exist δ ∈ (0, 1)
and q > 0 such that

sup
k≥1

k−qδE0[|tk − λ−1k|q] < ∞ . (4.26)

If (4.26) holds with q ≥ γ + 1, then

sup
t≥2
E

[(
Ni(t)

t

)−γ

1{Ni(t)>0}

]
< ∞ . (4.27)

If (4.26) holds with q > 1 + γ/(1− δ), then E[Nγ(1)] < ∞.

Proof. For k ≥ 2, define ck = (k−1)−γ−k−γ. Then,
∑∞

k=2 ck = 1 and applying summation
by parts, we have

E[N−γ(t)1{N(t)>0}] =
∞∑

k=1

k−γP(N(t) = k) =
∞∑

k=1

k−γ{P(N(t) ≥ k)− P(N(t) ≥ k + 1)}

= P(N(t) ≥ 1)−
∞∑

k=2

ckP(N(t) ≥ k)

= P(t1 ≤ t)−
∞∑

k=2

ckP(tk ≤ t) = −P(t1 > t) +
∞∑

k=2

ckP(tk > t) .

Without loss of generality, assume that the intensity of the point process is λ = 1. Then,
by definition of ck, we have, for t ≥ 2,

tγ
∑

k≥[t/2]+1

ckP(tk > t) ≤ tγ([t/2])−γ = O(1) .

45



For k ≤ [t/2], we have, by Markov’s inequality,

P(tk > t) = P(tk − k > t− k) ≤ P(tk − k > t/2) ≤ ct−γE[|tk − k|γ]
Applying the Ryll-Nardzewski inversion formula (Baccelli and Brémaud [2003, Formula
1.2.25]), we have

E[|tk − k|γ] = E0[t1|tk − k|γ] ≤ {E0[t1+γ
1 ]}1/(γ+1){E0[|tk − k|γ+1|]}γ/(γ+1) .

Thus, applying Condition (4.26), we obtain that P(tk > t) ≤ c′t−γkγδ and thus

tγ
∑

2≤k≤[t/2]

ckP(tk > t) ≤ c′
∑

2≤k≤[t/2]

ckk
γδ ≤ c′

∑

2≤k≤[t/2]

k−γ(1−δ)−1 = O(1) .

This concludes the proof of (4.27). We now consider the positive moments of N(1). Ap-
plying summation by part, we have

E[Nγ(1)] =
∞∑

k=1

{kγ − (k − 1)γ}P(N(1) ≥ k) =
∞∑

k=1

{kγ − (k − 1)γ}P(tk ≤ 1) .

For k ≥ 2 and q > 0, we have, still assuming that λ = 1,

P(tk ≤ 1) ≤ P(tk − k ≤ −k/2) ≤ E[|tk − k|q]k−q .

Applying again the Ryll-Narzewski formula and Condition (4.26), we obtain, for k ≥ 2,

P(tk ≤ 1) ≤ ck−q(1−δ) .

Thus,

E[Nγ(1)] ≤ 1 + c

∞∑

k=1

{kγ − (k − 1)γ}k−q(1−δ) .

The series is convergent as long as q(1− δ) > γ.

Proof of (3.4) for the LMSD model. Consider the LMSD model of Example 2.1. It is
proved in Deo et al. [2009a, Proposition 1] that (4.26) holds with δ = Hτ if E[εp

0] < ∞
for all p ≥ 1. Actually, a close inspection of the first lines of the proof shows that only q
finite moments of ε0 are needed. Thus (3.4) holds if E0[ε9−4H

0 ] < ∞, and E[N4(1)] < ∞ if
E0[εq

0] < ∞ for some q > 1 + 4/(1−Hτ ).

Proof of (3.4) for the ACD model. Under the assumptions of Example 2.2, the sequence
{τk} is geometrically β-mixing Carrasco and Chen [2002, Proposition 17]. Denote m =
E0[τ1]. The sequence {tk} is geometrically mixing, hence geometrically strong mixing.
Thus, by Rio [2000, Theorem 2.5], for q ≥ 2, if E0[τ q+1+ε

1 ] < ∞ for some ε > 0, then
E0[|tn −mn|q+1] = O(n(q+1)/2). Thus (4.26) holds with δ = 1/2.
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