
Shadow Probability Theory and Ambiguity Measurement

Yehuda Izhakian∗†

January 9, 2012

Abstract

Ordering alternatives by their degree of ambiguity is a crucial element in decision

processes in general and in asset pricing in particular. So far the literature has not

provided an applicable measure of ambiguity allowing for such ordering. The current

paper addresses this need by introducing a novel empirically applicable ambiguity measure

derived from a new model of decision making under ambiguity, called shadow probability

theory, in which probabilities of events are themselves random. In this model a complete

distinction is attained between preferences and beliefs and between risk and ambiguity that

enables the degree of ambiguity to be measured. The merits of the model are demonstrated

by incorporating ambiguous probabilities into asset pricing and it is proved that the well-

defined ambiguity premium that the paper proposes can be measured empirically.
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1 Introduction

How should uncertain alternatives be ranked by the criterion of ambiguity? Consider, for

example, the following: a large urn contains 30 balls which are either black or yellow and a

second smaller urn contains only 10 balls which are also either black or yellow. In both cases

the proportions of black and yellow balls are unknown. Which of the following two bets is more

ambiguous? ”a ball drawn from the large urn is black” or ”a ball drawn from the small urn is

black.”1 Ordering different alternatives by their degree of ambiguity is an important element of

any decision process, insofar as answering questions of this type is part of almost any real-life

decision. However, so far the literature has not provided a useable measure of ambiguity that

allows for such ordering. For example, the neoclassical finance literature, dealing with risk

tolerance usually ignores the presence of ambiguity and unrealistically assumes that decision

makers (DMs) are able to precisely evaluate the probability distribution of returns on assets.

The main reason for this oversight is simply a lack of methods for ambiguity measurement.

The goal of this paper is to provide a theoretical basis and applicable measure that addresses

this need.

This paper makes three contributions to the existing literature. The first and the main con-

tribution is that it introduces a novel, empirically applicable, ambiguity measure, underpinned

by a new theoretical concept.2 The second contribution is that it presents a decision-making

model to derive this measure which achieves a complete distinction between preferences and

beliefs and between risk and ambiguity, thereby enabling an exploration of the nature of am-

biguity and the behavioral aspects of attitude toward ambiguity. The advantage of isolating

ambiguity from risk and beliefs from preferences is twofold: first, the degree of ambiguity can

be measured independently of preferences, especially in empirical studies; second, aspects of

preferences concerning ambiguity can be easily monitored in behavioral studies. The third con-

tribution is that it generalizes classical asset pricing theory to incorporate ambiguity, providing

a well-defined mathematical formula for the ambiguity premium which is clearly distinguished

from risk, and can be tested empirically.

Assuming that probabilities of events are themselves random, this paper introduces a novel

1Formally, risk is defined as a situation in which the event to be realized is a-priori unknown, but the odds
of all possible events are perfectly known. Ambiguity, or Knightian uncertainty, is the case where not only is the
event to be realized a-priori unknown, but the odds of all possible events are also either not uniquely assigned
or are unknown.

2Throughout this paper the term ambiguity measure is used literally and not formally.
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model of decision making, called shadow probability theory (shadow theory for short), which

aims to capture the multi-dimensional nature of uncertainty. In this model, there are two tiers

of uncertainty, one with respect to consequences (outcomes) and the other with respect to the

probabilities of these consequences. Each tier is modeled by a separate state space. This struc-

ture introduces a complete distinction of risk from ambiguity with regard to both beliefs and

preferences. The degree of ambiguity and the DM’s attitude toward it are then measured with

respect to one space, while risk and risk attitude apply to the second space. As a consequence

of random probabilities and probabilistic sensitivity (i.e., the nonlinear ways in which individ-

uals may interpret probabilities) perceived probabilities are nonadditive. Ambiguity aversion

results in a subadditive subjective probability measure, while ambiguity seeking results in a

superadditive measure.

The main idea of shadow theory is that, like measuring the degree of risk by the variance of

outcomes, the degree of ambiguity can be measured by the variance of probabilities.3 However,

concerning the variance of probabilities, the question is: to the probability of which event is

the variance applied? Given a classification of outcomes as a loss or as a gain, this paper proves

that the degree of ambiguity can be measured by four times the variance of the probability of

loss, which is equal to four times the variance of the probability of gain. Formally, our measure

of ambiguity is given by

f2 = 4Var [PL] = 4Var [PG] ,

where PL and PG are the random probabilities of loss and gain, respectively, and the variance is

taken with respect to second-order probabilities. The intuition behind this new measure is that

ambiguity is caused by a perturbation of probabilities with respect to a meaningful reference

point. Its main advantage is that it can be easily computed from the data and can be used in

empirical tests (see, for example, Brenner and Izhakian (2011)).

Measuring the degree of ambiguity allows alternatives to be ranked by the criterion of

ambiguity. It provides a way to address important questions that arise regarding the nature

of ambiguity, in general, and the nature of the aggregate ambiguity of portfolios, in particular.

The nature of ambiguity and the relationship between risk and ambiguity may shed some light

on various puzzling financial phenomena. Notable examples are the fact that individuals tend

to hold very small portfolios, 3-4 stocks (Goetzmann and Kumar (2008)), the equity premium

3Measuring risk by the variance of outcomes is admissible under some conditions; the same is true for
measuring ambiguity by the variance of probabilities.
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puzzle (Mehra and Prescott (1985)), the risk-free rate puzzle (Weil (1989)), the phenomenon

of the observed equity volatility being too high to be justified by changes in the fundamentals

(Shiller (1981)), and the home bias puzzle (Coval and Moskowitz (1999)).

To demonstrate the value of shadow theory and its measure of ambiguity, this paper gener-

alizes asset pricing theory to incorporate ambiguity. Relaxing the assumption that probabilities

are known, the price of an asset in our model is determined not only by its degree of risk and

the DM’s attitude toward this risk, but also by its degree of ambiguity and the DM’s attitude

toward it. The current paper constructs the uncertainty premium and proves that it can be

separated into a risk premium and an ambiguity premium.4 It provides a well-defined ambiguity

premium, completely distinguished from risk and attitude toward risk, which can be computed

from the data. Using this model, in their empirical study Brenner and Izhakian (2011) show

that ambiguity, measured by f2, has a significant impact on the market portfolio’s return. We

are not aware of any other prior study that conducts direct empirical tests of models of decision

making under ambiguity other than through parametric fitting and calibrations.5

Shadow theory relies on the Choquet expected utility (CEU) of Schmeidler (1989), whose ax-

iomatic derivation paved the way for modeling decision making under ambiguity. Gilboa (1987)

and Schmeidler (1989), in their pioneering studies, introduce the idea that, in the presence of

ambiguity, the probabilities that reflect the DM’s willingness to bet cannot be additive, i.e.,

the sum of the probabilities can be either smaller or greater than 1. Shadow theory combines

the concept of nonadditive probabilities with the idea of reference-dependent beliefs. Reference

dependency is applied to differentiate between the probability of gain and the probability of

loss. It allows characterizing the DM’s preferences concerning ambiguity, with regard to these

obscure probabilities, with the different possible attitudes toward ambiguity when it concerns

loss and when it concerns gain.

Tversky and Kahneman’s (1992) Cumulative prospect theory (CPT) also applies a two-sided

CEU to gains and to losses.6 However, CPT focuses on reference-dependent preferences and

assumes a DM having different risk attitudes for losses and for gains, and asymmetric capacities

4This paper uses the term uncertainty to describe the aggregation of risk and ambiguity.
5Uppal and Wang (2003), Epstein and Schneider (2008), and Ju and Miao (2011), for example calibrate

their model to the data. Several papers attribute different explanatory variables to ambiguity. For example,
Anderson et al. (2009) attribute the degree of disagreement of professional forecasters to ambiguity, and Erbas
and Mirakhor (2007) use the World Bank institutional quality indexes as a proxy for ambiguity.

6Using the perception of rank-dependent and cumulative functionals proposed by Weymark (1981), Quiggin
(1982), Yaari (1987) and Schmeidler (1989), CPT generalizes the original prospect theory of Kahneman and
Tversky (1979) from risk to uncertainty. It modifies the probability weighting functionals of the original prospect
theory, such that it always satisfies stochastic dominance and supports an infinite state space.
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with different arbitrary weighting schemes for losses and for gains.7 Shadow theory general-

izes CPT and shows that capacities are not arbitrary and can be explained by the presence

of ambiguity and the DM’s preferences regarding it.8 It relies on the axiomatic foundation

proposed by Wakker (2010) for both preferences concerning risk and preferences concerning

ambiguity. Practically, shadow theory provides a bridge between the two main disciplines of

modeling ambiguity: the multiple priors (Gilboa and Schmeidler (1989)) and the nonadditive

probabilities (Gilboa (1987) and Schmeidler (1989)).

The rest of the paper is organized as follows. Section 2 introduces shadow theory. Section

3 applies this theory to a new decision-making model under uncertainty and characterizes

DMs’ attitudes toward ambiguity. Using this model, Section 4 suggests a novel measure of

ambiguity. To demonstrate an application of shadow theory for asset pricing, Section 5 models

the ambiguity premium and reviews some empirical results that test it. Section 6 discusses our

theoretical results with respect to the related literature and Section 7 concludes.

2 Shadow probability theory

Shadow theory assumes two different tiers of uncertainty, one with respect to consequences

and the other with respect to the probabilities of these consequences. Each tier is modeled by

a separate state space. Uncertainty with respect to consequences (outcomes) is modeled by

a subordinated outcome space, while uncertainty with respect to probabilities is modeled by a

directing probability space. In this section, we model the subordinated space and then add the

second tier of uncertainty, with respect to probabilities, by modeling the directing space. First,

we demonstrate the concept of ambiguity that emerges from our model with an illustration.

2.1 Illustration

To illustrate the new insight gained by shadow theory about the nature of ambiguity and the

way individuals perceive it, consider an Ellsberg urn with 90 colored balls, 30 of which are

red and the other 60 either black or yellow. Ellsberg (1961) suggested the following two-part

experiment. In each part of the experiment, before a ball is drawn at random from the urn,

7Capacities mean probabilities, possibly nonadditive. This paper usually uses the term probability in a
broad sense, i.e., it can be nonadditive and either subjective or objective. The terms subjective probabilities
and capacities are used interchangeably.

8To explain capacities, shadow theory does not assume asymmetric risk attitude, different ambiguity prefer-
ences for losses and for gains, or loss aversion.
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a DM is offered two alternative bets; winning the bet entitles her to a sum of $9. In the first

part, the DM has to choose between two alternative bets: the ball drawn is red (R) or the

ball drawn is black (B). Then, in the second part, the DM has to choose between betting on:

the ball drawn is red or yellow (RY ) or alternatively the ball drawn is black or yellow (BY ).

Behavioral experiments have demonstrated that individuals usually prefer R over B, but BY

over RY .9

Shadow theory can help us to understand the choices that emerge from these experiment.

The subordinated space is defined by the states of drawing different balls, i.e., {R, Y,B}, with

random probabilities. The probability of B can be one of the possible values 0
90
, 1
90
, 2
90
, . . . , 60

90
.

The precise probability of B is dominated by a second-order unobservable event in a directing

space. Such an event can be, for example, ”The experimenter put 30 red balls, 20 black balls

and 40 yellow balls in the urn.” The DM, however, does not have any additional information

indicating which of the possible probabilities is more likely and thus she assigns an equal weight

to each possibility.

The DM considers strictly positive outcomes ($9) as a gain; and otherwise, ($0) as a loss.

Computing the variance of the probability of gain from B to obtain the measure of ambiguity

indicates that its degree of ambiguity is f2 [B] = 0.1530. Since the probability of R is known,

1
3
, its degree of ambiguity is f2 [R] = 0. Clearly, since the expected outcomes of R and B are

identical, an ambiguity-averse DM prefers R, with the lower degree of ambiguity, over B. The

probability of gain from RY can take one of the possible values 30
90
, 31
90
, . . . 90

90
, which in turn also

implies an ambiguity degree of f2 [RY ] = 0.1530. The probability of gain from the alternative

BY is exactly 2
3
, which implies f2 [BY ] = 0. Obviously, an ambiguity-averse DM prefers BY

over RY . Table 1 is a stylized description of this example.

R Y B Prob E f2

(R) 9 0 0 1
3 3 0

(B) 0 0 9 0
90 ,

1
90 ,

2
90 , . . . ,

60
90 3 0.1530

(RY ) 9 9 0 30
90 ,

31
90 ,

32
90 , . . . ,

90
90 6 0.1530

(BY ) 0 9 9 2
3 6 0

Table 1: The Ellsberg example

9In expected utility theory, the DM’s assessments of the likelihoods of R, B and Y can be described by some
probability measure P. The DM is assumed to prefer a greater chance of winning $9 to a smaller chance of
winning $9, such that the choices above imply that P (R) > P (B) and P (B ∪ Y ) > P (R ∪ Y ). However, since
R, B and Y are mutually exclusive events, no such probability measure exists; hence, it is considered a paradox.
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2.2 The subordinated space

Observable events and their consequences are defined by the subordinated space. The proba-

bilities of these events are uncertain; as a consequence, perceived probabilities are nonadditive.

The foundation of Schmeidler’s (1989) CEU and Tversky and Kahneman’s (1992) CPT of also

assume that priors are nonadditive, but do not characterize the sources shaping these pri-

ors. The structure of the subordinated space relies on this foundation, while the reasoning for

nonadditive priors is provided later by the directing space.

Let S be a (finite or infinite) state space, called the subordinated space, endowed with an

algebra of subsets of S.10,11 It is assumed that exactly one state can be realized, which is

unknown to the DM when she makes her choice. Subsets of S are called events and are denoted

by E . The complementary event, Ec, consists of all states s ∈ S not contained in E . The set of

events, Ξ, is a σ-algebra of subsets of S. Define X to be the set of consequences, where, since

this paper mostly deals with monetary outcomes, consequences are confined to real numbers,

X ⊆ R.12

An act is a function from states into consequences, f : S → X, describing the resulting

consequence associated with each state s ∈ S. The set of all possible acts is denoted F . An

act f ∈ F is represented as a sequence of j = 1, . . . , n pairs

f = (E1 : x1, · · · , Ej : xj, · · · , En : xn) ,

where xj is the consequence if event Ej occurs, i.e., xj is the outcome under each state s ∈ Ej, and

(E1, . . . , En) is a partition of the state space S. Acts, designating state-contingent consequences,

are assumed to be equipped with complete sign-ranking with respect to outcomes,

x1 ≤ · · · ≤ xk−1 ≤ xk ≤ xk+1 ≤ · · · ≤ xn,

for some 1 ≤ k ≤ n. That is, all consequences are ranked not only with respect to each other,

but also with respect to the neutral consequence xk, called the reference point.13 Sometimes,

when the context is clear, the act f with a vector of outcomes (x1, . . . , xn) is referred to as a

random variable, possibly without specified probabilities, and designated xj = f (sj) by fj.

10To simplify our exposition, whenever possible our results are proved in static discrete settings; however all
of the presented results can be applied to dynamic continuous settings.

11Following Wakker and Tversky (1993), Wakker (2010, Appendix G) and Kothiyal el al. (2011), the state
space, S, can consist of an infinite number of states.

12Both sets S and X are assumed to be nonempty.
13It is common to assume that the reference point is the status quo, exogenously given. In the financial

world, when consequences are returns rather than quantitative outcomes, a natural objective reference point
can possibly be 0 or the risk-free rate.
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All consequences x ∈ X are interpreted either as a gain or as a loss with respect to the

designated reference point xk ∈ X. Any consequence xj ∈ X is a loss if xj ≤ xk and a gain if

xk < xj. The cumulative events of loss and gain are, thus, defined by L = E1 ∪ · · · ∪ Ek and

G = Ek+1 ∪ · · · ∪ En, respectively. To shorten our notations the conventions EJ = E1 ∪ · · · ∪ Ej
and EJ ···T = Ej ∪ · · · ∪ Et are used to denote cumulative events.14

Capacities are the DM’s subjective probabilities of cumulative events. A capacity Q is a

function on 2S assigning each event A ⊆ S with a number Q (A), satisfying Q (∅) = 0, Q (S) = 1

and if A ⊂ B ⊂ S then 0 ≤ Q(A) ≤ Q(B); that is, capacities are monotonic. The probability

of any loss event 1 ≤ j ≤ k is defined by

π−
j = Q(E1 ∪ · · · ∪ Ej)−Q(E1 ∪ · · · ∪ Ej−1)

and the probability of any gain event k + 1 ≤ j ≤ n is defined by

π+
j = Q(Ej ∪ · · · ∪ En)−Q(Ej+1 ∪ · · · ∪ En) ,

where E0 = En+1 = ∅. It is important to note that the probabilities, π, do not necessarily add

up to unity.15 Because Q (·) can be nonlinear, π need not be additive. That is, if A ∩ B = ∅

usually Q (A ∪B) ̸= Q(A) + Q (B).16

The domain of preference relation, %, is the nondegenerated set of acts F and the relations

≺, ≻, ∼, -, and % are defined as usual. An act yielding the same consequence for any state

s ∈ S is called a constant act and is designated by its constant consequence x ∈ X. The

certainty equivalent (CE) of an act f ∈ F is a constant act, x ∈ F , such that f ∼ x.

Let V be a real function V : F → R assigning to each act f ∈ F a value V (f) such that

V (f) =
k∑
j=1

[Q (E1···J)−Q(E1···J−1)] U (xj) +
n∑

j=k+1

[Q (EJ ···N)−Q(EJ+1···N)] U (xj) , (1)

where U : X → R is a strictly increasing continuous utility function satisfying U (xk) = 0.

Similarly, the value of an act with an infinite support is defined by17

V (f) = −
∫ k

−∞
Q
({
s ∈ S

∣∣ U(fs) < t
})
dt+

∫ ∞

k

Q
({
s ∈ S

∣∣ U(fs) > t
})
dt. (2)

Assume that the preference relation, %, on the set of acts F is truly mixed and satisfies: weak

ordering, monotonicity, continuity, gain-loss consistency, sign-tradeoff consistency. Wakker

14Similarly, these notational conventions are applied to other variables, such as PJ = P(E1 ∪ · · · ∪ Ej) and
PJ···T = P(Ej ∪ · · · ∪ Et).

15To save on notations, π refers to both π− and π+.
16Similarly, capacities can be applied directly to consequences, without specifying an underlying state space,

i.e., Q (c ≤ x ≤ c), where c and c are constants; see Jaffray (1989).
17Considering an infinite support, notations are abused and k stands for xk.
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(2010, Theorem 12.3.5) proves that % can be represented by the real function V such that

V (f) ≥ V (g) iff f % g, for any f, g ∈ F .18

Caution 2.1. To apply the Choquet integration,
∫
S fdQ, over negative values it is assumed that

there exists a constant value C ≥ |x1| such that gj = fj + C ≥ 0 for any event Ej ∈ Ξ and the

integration, thus, takes the form
∫
S gdQ− C.

The utility function, U (·), characterizes the DM’s preferences toward risk. A concave func-

tion implies risk aversion and a convex function implies risk loving. The utility function U (·)

is unique up to an affine transformation and takes the form −U(−x) for negative outcomes.

The concept of ambiguity aversion asserts that individuals are sensitive to probabilities.

Moreover, as subjective probabilities, Q, are shaped by the nonlinear ways in which individuals

process them they are nonadditive. The next section models the way individuals perceive

probabilities and the impact of ambiguity and attitude toward it on perceived probabilities.

2.3 The directing space

Probabilities over the subordinated space are assumed to be random and dominated by un-

observable events in a separate latent space, called a directing space. The meaning of shadow

probability arises from the randomness of probabilities themselves. While making her choice,

the DM does not know which event will be realized, either in the subordinated space or in

the directing space, which means that she knows neither the realized outcome nor the realized

probabilities of outcomes.

Objective probabilities P of events E ∈ Ξ occurring in the subordinated space are random and

governed by directing events ε in a (finite or infinite) state space Ω, called the directing space.

A directing event ε = {ω1, . . . , ωt} is a subset of Ω, where ω1, . . . , ωt ∈ Ω are directing states.

The set of directing events Σ is a σ-algebra of subsets of Ω and (ε1, . . . , εm) is a partition

of the directing space Ω, i.e., εi ∩ εl = ∅, ∀i ̸= l. A consequence of event εi is an additive

probability measure Pi over the subordinated space S, where Pi stands for P
(
·
∣∣ εi). P denotes

the set of consequential probability measures. In a finite subordinated space the probability

measure Pi takes the form of a probability vector Pi = (Pi,1, . . . ,Pi,j, . . . ,Pi,n), assigning to

each subordinated event its probability, where Pi,j stands for P
(
Ej
∣∣ εi).

A directing act, f̂ , is a function from the directing space into the set of probability measures,

18Alternative axiomatizations that could be adopted are Tversky and Kahneman (1992), Wakker and Tversky
(1993), Chew and Wakker (1996) and Kothiyal et al. (2011).
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f̂ : Ω → P, describing the resulting probability measure associated with each directing state

ω ∈ Ω. The set of directing acts is denoted F̂ . For simplicity’s sake, when possible, directing

acts are assumed to take a finite number of values. A directing act f̂ ∈ F̂ is defined by a

sequence i = 1, . . . ,m of pairs

f̂ = (ε1 : P1, . . . , εi : Pi, . . . , εm : Pm) ,

where Pi is the probability measure of event εi occuring. A directing act induces an event-wise

directing act which assigns each subordinated event Ej with its possible probabilities. That is,

f̂j = (ε1 : P1,j, . . . , εi : Pi,j . . . , εm : Pm,j) ,

where f̂j stands for f̂ (Ej). The set of event j’s directing acts is denoted F̂j. When the context

is clear, f̂j is referred to as directing act and the index j designates the event. In this context,

f̂j is simply considered as a random variable formulating the random probability of event Ej. A

constant directing act associates any directing event with the same probability measure P. A

subordinated act f associated with a constant directing act can be viewed as a roulette lottery,

i.e., all probabilities are perfectly known.

A second-order capacity (second-order probability) χ (·) on 2Ω assigns to each directing

event ε ⊆ Ω a number χ (ε), satisfying χ (∅) = 0, χ (Ω) = 1, and if A ⊂ B ⊂ Ω then

0 ≤ χ (A) ≤ χ (B). It is important to note that χ (·) need not be additive; However, to save on

notations and without loss of generality, it is considered to be additive such that
∑m

i=1 χi = 1,

where χi denotes χ (εi). Figure 1 provides a diagrammatic representation of the two spaces:

the subordinated space and the directing space, and the relation between them.

Any subordinated act f ∈ F is associated with a directing act f̂ ∈ F̂ . The DM’s preferences

can be considered as if they are applied to pairs
(
f, f̂
)
, i.e., preferences over a subset of F ×F̂ .

However, as explained in the next section, decisions in our model are made in two separate

phases, such that these preference can be broken down into two independent preferences: %
over F and %2 over F̂ . We conclude this subsection by relating our model to a more Savage-

style structure. The objects of choice in Savage-type theory would be all measurable functions

from the product space S × Ω to the outcome space X.19 Preferences over these objects of

choice (Savage-acts) are then taken as primitive in this framework.

19The product space can alternatively be defined by S× P.
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Figure 1: The two spaces

3 Ambiguity

The main idea at the basis of our model is that risk and risk preferences apply to the subor-

dinated space, whereas ambiguity and preferences concerning it apply to the directing space.

The model assumes two differentiated phases in the decision-making process: probability fram-

ing and valuation. In the framing phase, based on the information she has and her preferences

concerning ambiguity, the DM forms a representation of her subjective probabilities for all the

events which are relevant to her decision. Then, in the valuation phase, based on her preferences

concerning risk, the DM assesses the value of each act and chooses accordingly. Separating the

decision process to two sequential phases, where each phase is related to a different space,

allows us to distinguish between risk and ambiguity and between the preferences concerning

them. This section concentrates on the implications of the directing space for ambiguity and

preferences concerning it along the process of framing probabilities.

3.1 Attitudes toward ambiguity

The DM is assumed to have a (second-order) preference relation, %2, over the set of directing

acts, F̂ . Although the DM does not have a direct choice over directing acts, her subjective

perception of likelihoods, resulting from an aversion to or love of ambiguity, derives from the

nature of the directing acts. Directing acts are latent and cannot be chosen independently

of subordinated acts. As a result second-order preferences concerning the directing acts are
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unobservable. In some decision problems, however, second-order preferences can be inferred

from observable choices over acts in the subordinated space, for example, when the DM chooses

between two alternatives with identical subordinated acts but different directing acts.

It is important to emphasize that even though preferences with respect to the directing acts

are not observable they are not as unfamiliar as they might first appear. For example, in the

Ellsberg urn experiment, directing acts may be considered as bets on the composition of the

urn. In portfolio investment in mean-variance space, directing acts can be viewed as bets on

the means, variances and covariances of the investment opportunities (see Izhakian (2011)).

Similarly, directing acts in model uncertainty applications can be considered as bets about the

true values of the parameters of the model.

Attitude toward ambiguity can be characterized by the DM’s preferences over random prob-

abilities of events and their expected probabilities, i.e., preferences over directing acts and

constant directing acts. An ambiguity-averse DM prefers the expectations of the random prob-

abilities over the random probabilities themselves. An ambiguity-loving DM prefers the random

probabilities over their expectations and an ambiguity-neutral DM is indifferent between them.

The next definition settles this idea formally.

Definition 3.1. Let a directing act be f̂j = (ε1 : P1,j, . . . , εm : Pm,j) and its related constant

directing act be
¯̂
fj = (ε1 : E [Pj] , . . . , εm : E [Pj]) , where E [Pj] =

∑m
i=1 χiPi,j is the expected

probability of event Ej with respect to the second-order capacities χ. Ambiguity aversion (loving)

as regards event Ej is defined by
¯̂
fj %2 f̂j (

¯̂
fj -2 f̂j) and ambiguity neutrality is defined by

¯̂
fj ∼2 f̂j.

20

This definition focuses on preferences concerning ambiguity that related to single events.

Section 4 aggregates these preferences to preferences over entire acts. A DM is said to be

ambiguity averse if
¯̂
fj %2 f̂j for any Ej ∈ Ξ. Ambiguity-loving DMs and ambiguity-neutral

DMs are defined similarly. Definition 3.1 can be applied to formulate different attitudes toward

ambiguity for different subsets of events; for example, ambiguity loving for losses and ambiguity

aversion for gains. Although it allows the flexibility of DMs having different attitudes for

different events, it is assumed that the DM is consistent with respect to her attitudes toward

ambiguity and, thus, her attitude might vary only across events of gain and loss.

It is important to note that ambiguity and attitude toward it consider only the probabilities

and not consequences. The type and the magnitude of a consequence resulting from an event are

20Strict preferences toward ambiguity can be defined similarly.

12



related neither to subjective preferences toward ambiguity nor to objective degree of ambiguity.

To illustrate this notion consider an event with unknown probability of losing $100. Changing

the magnitude of this loss to $10 or to $1000 does not have any effect on the degree of ambiguity.

The next theorem ties the DM’s preferences concerning ambiguity to a functional represen-

tation.

Theorem 3.2. Let v : F̂j → R be a real function assigning a value v
(
f̂j

)
to each directing

act f̂j ∈ F̂j, such that

v
(
f̂j

)
=

m∑
i=1

[χ (ε1 ∪ · · · ∪ εi)− χ (ε1 ∪ · · · ∪ εi−1)]ψ (Pi,j) ,

where ε0 = ∅ and ψ : [0, 1] → R is a strictly increasing continuous function.21 Assume that the

preference relation, %2, on the set of acts F̂j satisfies: weak ordering, monotonicity, continuity

and sign-tradeoff consistency. The preference %2 can then be represented by the function v,

such that v
(
f̂j

)
≥ v (ĝj) iff f̂j %2 ĝj, for any f̂j, ĝj ∈ F̂j.

The proof of Theorem 3.2 is directly derived by Wakker (2010, Theorem 12.3.5).22 The func-

tion ψ (·), referred to as a probability-sake (sake for short) function, forms the DM’s attitude

toward ambiguity. Similarly to preferences concerning risk, there are three types of preferences

concerning ambiguity: ambiguity aversion, ambiguity loving and ambiguity neutrality. Ambi-

guity neutrality takes the form of a linear sake function ψ (·), ambiguity aversion the form of a

concave sake function and ambiguity loving the form of a convex sake function.

Two special types of preferences concerning ambiguity can be defined. Constant relative

ambiguity aversion (CRAA), which takes the functional form ψ (P) = P1−η

1−η , and constant ab-

solute ambiguity aversion (CAAA), which takes the functional form ψ (P) = − e−ηP

η
, where η is

the coefficient of ambiguity aversion. With this notion of ambiguity and preferences concerning

it, we suggest the following definition of subjective probabilities.

Model 3.3. The subjective probability Q(Ej) of any event Ej ∈ Ξ is formed by23

Q(Ej) = ψ−1

(
m∑
i=1

χ (εi)ψ
(
P
(
Ej
∣∣ εi))) . (3)

It can be easily observed that, in fact, Equation (3) models the certainty equivalent, in terms

of probabilities, of the random probability of a subordinated event Ej. The subjective proba-

21This theorem provides the general form where capacities, χ, are nonadditive.
22Preferences %2 and their utility representation over the directing space are degenerated in the sense that

no distinction of losses from gains is made, such that true mixing and gain-loss consistency are not enforced.
23Considering a directing space with an infinite support, subjective probabilities are formed in a manner

similar to Equation (2).
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bilities of an ambiguity-neutral DM are equal to the expected probabilities of each event, taken

with respect to the second-order probabilities, i.e., Q (Ej) = E [Pj]. Probabilities, in this case,

are additive and the certainty-equivalent probabilities are equal to the expected probabilities.

The subjective probabilities of an ambiguity-averse DM are lower than the expected probabili-

ties, i.e., Q (Ej) < E [Pj], which results in subadditive probabilities. The subjective probabilities

of an ambiguity-loving DM are greater than the expected probabilities, i.e., Q (Ej) > E [Pj],

which results in superadditive probabilities.

The subjective probabilities as formed by Model 3.3 provide a reason for the nonadditivity,

which is arbitrary in CEU and CPT. This result coincides with the nonadditive priors of Gilboa

(1987) and Schmeidler (1989). Recall that in shadow theory, before evaluating any subordinated

act f ∈ F associated with the subordinated space, S, the DM’s preferences over directing acts,

F̂ , associated with the directing space, Ω, serve to shape her subjective probabilities, Q,

assigned to each subordinated event Ej ∈ Ξ. Formally, given the subjective probabilities of

Equation (3), they are integrated into Equation (1) to obtain the value of an act f .

Model 3.4. In shadow theory, the value of any act f ∈ F with a finite support is

V (f) =
k∑
j=1

[
ψ−1

(
m∑
i=1

χiψ (Pi,1···J)

)
− ψ−1

(
m∑
i=1

χiψ (Pi,1···J−1)

)]
U(xj) +

n∑
j=k+1

[
ψ−1

(
m∑
i=1

χiψ (Pi,J ···N)

)
− ψ−1

(
m∑
i=1

χiψ (Pi,J+1···N)

)]
U(xj) ,

and the value of any act with an infinite support is

V (f) = −
∫ k

−∞
ψ−1

(
m∑
i=1

χiψ
(
Pi
({
s ∈ S

∣∣ U(f) < t
})))

dt

+

∫ ∞

k

ψ−1

(
m∑
i=1

χiψ
(
Pi
({
s ∈ S

∣∣ U(f) > t
})))

dt.

The functional representation of the DM’s aggregate preferences, proposed by Model 3.4,

makes a complete distinction between beliefs and preferences and between risk and ambiguity.

First-order beliefs are formed by the random probability measures Pi=1,...m; second-order beliefs

are formed by the probability measure χ; preferences concerning risk are formed by the utility

function U (·); and preferences concerning ambiguity are formed by the sake function ψ (·).

The separation attained by Model 3.4 allows for isolating and studying the distinct impact of

each component on values of acts. However, even more important, it enables the simplification

of this model to an applicable form such that the degree of ambiguity can be measured, as

proposed later. This simplification paves the way for empirical studies to test the impact of
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ambiguity using the data.

Risk and ambiguity preferences, in Model 3.4, can be different for losses and for gains. Thus,

the functional representation for losses can take the form U (·) = U− (·) and ψ (·) = ψ− (·), and

for gains U (·) = U+ (·) and ψ (·) = ψ+ (·). Different utility functions, U− (·) and U+ (·), can

capture, for example, loss aversion.24 Different sake functions, ψ− (·) and ψ+ (·), can capture,

for example, ambiguity loving for losses and ambiguity aversion for gains.25 Pessimism and

optimism can also be incorporated into Model 3.4 by the distortions w− (Q) and w+ (Q) of

the subjective probabilities Q of losses and gains, respectively. Pessimism holds if worsening

the rank increases the weighting assigned by w (·), i.e., bigger weights are assigned for worse

ranks.26 Optimism holds if improving the rank increases the weighting assigned by w (·), i.e.,

bigger weights are assigned for better ranks. In principle, a DM in this extension can exhibit

ambiguity aversion while still having an optimistic perception of likelihoods.

3.2 Ambiguous probabilities

The goal of this section is to simplify Model 3.4 to a friendlier applicative form. Using this

simplified form, it is then proved that the ambiguity associated with an event can be measured

by the variance of its probability. For these purposes the following notations are introduced.

Let

pj = E [Pj] =
m∑
i=1

χiPi,j

be the expected probability of event Ej and

ζ2j = Var [Pj] =
m∑
i=1

χi (Pi,j − pj)
2

be its variance. The covariance of the probability of two events Ej and El is defined by

ζj,l = Cov [Pj,Pl] =
m∑
i=1

χi (Pi,j − pj) (Pi,l − pl) .

Now, to simplify the exposition of Model 3.4 and make it more applicable, subjective prob-

abilities, Q (·), are approximated by taking a second-order Taylor approximation around their

expectations.27 Since this approximation deals with probabilities, a condition on the sake func-

24Loss aversion is modeled by a steeper utility function for losses than for gains (see, for example, Barberis
and Huang (2001)). Some behavioral studies report risk aversion for gains and risk seeking for losses (see, for
example, Wang and Fischbeck (2004) and Abdellaoui et al. (2008)).

25Some behavioral study document ambiguity loving for losses and ambiguity aversion for gains (see, for
example, Dobbs (1991) and Bier and Connell (1994)).

26To simplify notation, the weighting function w is used in reference to both w− and w+.
27The same method is applied by Arrow (1965) and Pratt (1964) to outcomes within the expected utility
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tion ψ (·) is enforced to assure that the approximated subjective probabilities are nonnegative.

Theorem 3.5. Assume a continuous twice-differentiable sake function ψ (·), satisfying
1

2

(
ψ′′ (pl)

ψ′ (pl)
ζ2l −

ψ′′ (pj∪l)

ψ′ (pj∪l)
ζ2j∪l

)
≤ pj, (4)

for any events Ej, El ∈ Ξ, where j ∪ l stands for Ej ∪ El. The subjective probability of event Ej
is then

Q(Ej) ≈ pj +
1

2

ψ′′ (pj)

ψ′ (pj)
ζ2j .

Similarly, the subjective probability of a cumulative event EJ ···T = Ej∪· · ·∪Et is Q (EJ ···T ) ≈

pJ ···T + 1
2
ψ′′(pJ···T )
ψ′(pJ···T )

ζ2J ···T . Theorem 3.5 characterizes the DM’s capacities, which satisfy Q (∅) = 0

and Q (S) = 1. Lemma A.1 proves that if A ⊂ B ⊂ S then Q (A) ≤ Q(B) and, thus,

Q (·) is a capacity. Condition (4) implies that the coefficient of ambiguity aversion, −ψ′′(·)
ψ′(·) , is

bounded, such that −2
pj
ζ2j

≤ −ψ′′(pj)

ψ′(pj)
≤ 2

pj
ζ2j

and −2
pj

ζ2j+2ζj,l
≤ −ψ′′(pj)

ψ′(pj)
≤ 2

pj
ζ2j+2ζj,l

. It restricts the

level of ambiguity aversion (the concavity of ψ) such that the marginal probability premium

(defined below) of an event must be lower than the marginal expected probability of that

event. This condition assures that the approximated probability, Q (·), is nonnegative and that

the probability of an event is not lower than the probability of any of its sub-events. This

condition, however, is required only for the purpose of approximation and it is not enforced

over the precise subjective probabilities defined in Equation (3). Henceforth it is assumed that

the sake function ψ (·) falls under Condition (4).

The following definition establishes a new terminology.

Definition 3.6. The expression

φj = −1

2

ψ′′ (pj)

ψ′ (pj)
ζ2j

is referred to as the probability premium of event Ej and ζ2j is referred to as the ambiguity

of event j (e-ambiguity for short). The expression −ψ′′(pj)

ψ′(pj)
is referred to as the coefficient of

absolute ambiguity aversion and −pj ψ
′′(pj)

ψ′(pj)
is referred to as the coefficient of relative ambiguity

aversion.28

The probability premium is composed of two components: the DM’s preferences concerning

ambiguity, framed by −ψ′′(·)
ψ′(·) , and the degree of e-ambiguity, measured by ζ2. Preferences

framework, whereas in this case it is applied to consequential probabilities. The method is restricted to the
case of small consequences, ant is applicable in the current model since consequences are probabilities ranging
between 0 and 1.

28These definitions are equivalent to the Arrow-Pratt coefficient of absolute risk aversion and coefficient of
relative risk aversion, respectively.
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concerning ambiguity can be aversion (−ψ′′(·)
ψ′(·) > 0) loving (−ψ′′(·)

ψ′(·) < 0) or neutrality (−ψ′′(·)
ψ′(·) =

0). Clearly a higher ambiguity aversion or a higher degree of e-ambiguity implies a greater

probability premium and a lower subjective probability. When the probability of an event is

perfectly known, its e-ambiguity is zero, i.e, ζ2 = 0, and thus is the probability premium.

When the DM is ambiguity neutral then −ψ′′(·)
ψ′(·) = 0, which also implies a zero probability

premium. Subadditive probabilities are obtained when the DM exhibits ambiguity aversion,

i.e., ψ
′′(·)
ψ′(·) < 0, and superadditive probabilities when she exhibits ambiguity loving, i.e., ψ

′′(·)
ψ′(·) > 0.

It is important to note that by Condition (4) the coefficient of absolute ambiguity aversion is

bounded, such that for a high enough level of ambiguity aversion the subjective probability of

each event tends to zero.

In general, the subjective probability measure, Q (·), is nonadditive, that is

Q (E1 ∪ · · · ∪ Et ∪ Et+1 ∪ · · · ∪ Ej) ̸= Q(E1 ∪ · · · ∪ Et) + Q (Et+1 ∪ · · · ∪ Ej) .

This measure has an additive component, the expected probability

p (E1 ∪ · · · ∪ Et ∪ Et+1 ∪ · · · ∪ Ej) = p (E1 ∪ · · · ∪ Et) + p (Et+1 ∪ · · · ∪ Ej) ,

with an additional nonadditive component, the probability premium. The source of nonaddi-

tivity is the e-ambiguity, measured by ζ21···j, which in most cases satisfies

ζ21···J ̸= ζ21···T−1 + ζ2T ···J .

The ambiguities of two events (e-ambiguities) are not independent.29 Nonadditivity is caused

by the correlation between the probabilities of events. Since e-ambiguity is the variance of

the possible probabilities of the event, the e-ambiguity of a union of events comprises the

covariances between the probabilities of its sub-events. For example, the e-ambiguity of a

union of two events is the sum of the e-ambiguity of each event, plus twice the covariance

between the probabilities of these events, as the next proposition proves.

Proposition 3.7. For any 1 < t < j ≤ n, e-ambiguity satisfies

ζ21···J = ζ21···T + ζ2T+1···J + 2ζ1···T,T+1···J .

A special case of e-ambiguity arises when considering an event E and its complement event

Ec, since the e-ambiguity of their union equals zero, i.e., ζ2S = 0. The next lemma applies to

this case.

29One can write ϕ (Ej , El) = 1
2

(
ψ′′(pj∪l)
ψ′(pj∪l)

ζ2j∪l −
ψ′′(pl)
ψ′(pl)

ζ2l −
ψ′′(pj)
ψ′(pj)

ζ2j

)
to obtain the Möbius transform of two

events (see, for example, Chateauneuf and Jaffray (1989) and Grabisch et al. (2000)).
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Lemma 3.8. The covariance between the probability of event E ∈ Ξ and the probability of its

complement event Ec ∈ Ξ satisfies

Cov [P (E) ,P (Ec)] = −Var [P (E)] = −Var [P (Ec)] ,

and thus ζ2S = 0.

The results of Proposition 3.7 and Lemma 3.8 coincide with the findings of support the-

ory of Tversky and Koehler (1994) and Rottenstreich and Tversky (1997). Support theory

demonstrates that the judged probability of an event generally increases when its description is

unpacked into disjoint components and decreases by unpacking the alternative description. One

can easily conclude from Proposition 3.7 that, when ζ1···T,T+1···J < 0 and DMs are ambiguity

averse, unpacking an event into disjoint components increases its probability. The conclusion

arising from the behavioral findings of support theory is that the probabilities of events in the

same state space are negatively correlated.

Now that we have studied some essential properties of e-ambiguity, Model 3.4 can be sim-

plified such that the value of an act f takes the form

V (f) =
k∑
j=1

[pj − φ1···J + φ1···J−1] U (xj) +
n∑

j=k+1

[pj − φJ ···N + φJ+1···N ] U (xj) , (5)

where φJ ···T = −1
2
ψ′′(pJ···T )
ψ′(pJ···T )

ζ2J ···T . Recall that attitude toward ambiguity can be different for

gains and for losses. Thus, the coefficient of ambiguity attitude can take the form −ψ′′
L(p1···J )

ψ′
L(p1···J )

for any loss event 1 ≤ j ≤ k and −ψ′′
G(p1···J )

ψ′
G(p1···J )

for any gain event k + 1 ≤ j ≤ n.

Example 3.9. Assume an ambiguity-averse DM who exhibits CAAA. Since p is additive and

−ψ′′(·)
ψ′(·) = η, one can verify that the value of an act f in Equation (5) is simplified to

V (f) =
n∑
j=1

pjU(xj)−
1

2
η

k∑
j=1

[
ζ21···J − ζ21···J−1

]
U(xj)−

1

2
η

n∑
j=k+1

[
ζ2J ···N − ζ2J+1···N

]
U(xj) .

The first component of the value function is the conventional expected utility. The last two

components are the disutility caused to an ambiguity-averse DM by the presence of ambiguity.

If the DM’s preferences toward ambiguity are CRAA, then the value of an act f is

V (f) =
n∑
j=1

pjU(xj)−
1

2
η

k∑
j=1

[
ζ21···J
p1···J

−
ζ21···J−1

p1···J−1

]
U(xj)−

1

2
η

n∑
j=k+1

[
ζ2J ···N
pJ ···N

−
ζ2J+1···N

pJ+1···N

]
U(xj) .

In both cases, if the DM is ambiguity neutral, no disutility occurs and V (f) =
∑n

j=1 pjU(xj).
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4 Ambiguity measurement

Almost any real-life decision is concerned with ambiguity. For example, what are the chances

that a date will be successful? Which job opportunity is more likely to yield the best result

for career growth? Or which investment approach is more promising for long term gain? An

important part of any decision process is first to rank the different alternatives by their degree

of ambiguity. The key point for addressing this need is to determine a well-defined measure of

ambiguity. The main goal of this section is to provide such a measure.

4.1 Ordering ambiguous events

A preliminary step in ordering acts by their degree of ambiguity is to define an order over

primitive events. This order, induced by the DM’s preferences, is defined as follows.

Definition 4.1. Let the random probabilities of events Ej, El ⊆ S, having the same expected

probability, i.e., pj = pl, be f̂j and f̂l, respectively. Event Ej is more ambiguous than event El
if f̂l %2 f̂j by any ambiguity-averse DM.

Definition 4.1 provides the subjective ordering that emerges from the DM’s preferences. An

objective ordering can be defined as follows.30

Definition 4.2. Event Ej ⊆ S is more ambiguous than event El ⊆ S if there exists a random

variable ϵ such that

Pj − pj =d Pl − pl + ϵ ≥ 0,

where =d means equal in distribution and E
[
ϵ
∣∣ Pl] = E [ϵ] = 0.31

The subjective ordering of Definition 4.1 coincides with the objective ordering of Definition

4.2, as the following proposition proves.

Proposition 4.3. Given two events Ej, El ⊆ S having the same expected probability, Definitions

4.1 and 4.2 of more ambiguous events are equivalent.

Events can also be ordered by their degree of ambiguity, measured by ζ2.

Definition 4.4. Let Ej, El ⊆ S. Event Ej is more ambiguous than event El if ζ2j ≥ ζ2l .

Definition 4.4 states that the higher the fluctuation of probability of an event is the greater

its e-ambiguity. Ordering events by ζ2 coincides with the ordering of Definitions 4.1 and 4.2 if

probabilities are equably symmetrically distributed or if the DM’s preferences toward ambiguity

30Rothschild and Stiglitz (1970) apply a similar idea for risk, with respect to outcomes.
31The condition E

[
ϵ
∣∣ Pl] = E [ϵ] means that ϵ is mean-independent of Pl, i.e., a mean-preserving spread.
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are quadratic or of the CAAA type. Formally, the probability of event Ej is said to be equably

symmetrically distributed if it satisfies Ps+i+1,j−Ps+i,j = ∆ and χs−i = χs+i, ∀i = −s, . . . , s,

where s is the point of symmetry.

Proposition 4.5. Given two events Ej, El ⊆ S having the same expected probability, Definition

4.4 is equivalent to Definitions 4.1 and 4.2 if one of the following conditions holds:

(i) The probabilities of Ej and El are equably symmetrically distributed;

(ii) The DM’s preferences toward ambiguity are of the CAAA type;

(iii) The DM’s preferences toward ambiguity are quadratic.

Henceforth, it is assumed that the probabilities of all events are equably symmetrically

distributed. If needed, at any point this assumption can be replaced by assuming CAAA or a

quadratic sake function. At this point the order of events by e-ambiguity is well defined. This

order induces only a partial order on the set of acts F . E-ambiguity induces a total order on

subsets of F satisfying the following condition.

Definition 4.6. Let the acts f, g ∈ F , whose probabilities are equably symmetrically dis-

tributed, have the same expected probabilities. Act f is more ambiguous than act g if for any

event E ⊆ S, any ambiguity-averse DM ĝ (E) %2 f̂ (E).

Assuming aversion to ambiguity, Definition 4.6 states that if for any event the random

probability associated with act g is preferred to the random probability associated with act f ,

then f is more ambiguous than g. This definition together with Proposition 4.5 implies that if

for any subset of states E ⊆ S the e-ambiguity of g is not higher than the e-ambiguity of f , i.e.,

ζ2f,E ≥ ζ2g,E , then f is more ambiguous than g.32 In other words, the idea of Definition 4.6 is

that act f is more ambiguous than act g if the probabilities associated with it are consistently

more volatile than the probabilities associated with act g.

Practically, Definition 4.6 formulates first-order stochastic dominance with respect to ambi-

guity. This definition can be rephrased as follows: act f is stochastically dominated by act g

with respect to ambiguity. Figure 2 illustrates two acts, where f is stochastically dominated

by g. The values on the y-axis are the degrees of ambiguity of the cumulative events lying on

the x-axis. Recall that the degree of ambiguity of the entire state space is always zero. Thus,

both acts have a zero degree of ambiguity for the empty event, ∅, and the state space, S.
32The notations pf,j and ζ2f,j stand for the expected probability and the e-ambiguity of event Ej under act f .
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Figure 2: First order stochastic dominance with respect to ambiguity

4.2 The ambiguity measure

The ambiguity measure introduced in this section considers symmetric acts. Formally, an act

f is said to be a symmetric act around the point of symmetry xs if its probabilities are

equably symmetrically distributed and it satisfies xs − xs−j = xs+j − xs and Pi,s−j = Pi,s+j,

∀j = −s, . . . s and ∀i = 1, . . .m. For measuring ambiguity, the more restrictive assumption

of normally distributed outcomes, which allows measuring risk by variance, can be relaxed

to symmetric distribution. The measure of ambiguity proposed in this section utilizes the

cumulative probability of loss and the cumulative probability of gain. It relies on Lemma 3.8,

which implies that the variance of the cumulative probability of loss is equal to the variance

of the cumulative probability of gain, that is, Var [PL] = Var [PG]. The next model proposes

one of the main results of this paper: a new measure of ambiguity. It asserts that the degree

of ambiguity embedded in an act can be measured by twice the sum of the variance of its

cumulative probability of loss and the variance of its cumulative probability of gain.

Model 4.7. The degree of ambiguity of act f ∈ F , denoted f2, can be measured by

f2 [f ] = 2Var [PL] + 2Var [PG] = 4Var [PL] . (6)

The normalized, to the units of probability, measure is defined by

f [f ] = 2
√

Var [PL]. (7)

The measure of ambiguity, f2, allows for ordering acts that satisfy first-order stochastic

dominance with respect to ambiguity. Theorem 4.8 below proves that, indeed, ordering ac-

cording to f2 coincides with the ordering provided by an ambiguity-averse DM. The ambiguity

measure, f2, is inspired by the insight that a probability’s fluctuation should be measured
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relative to a meaningful reference point. Since decisions are concerned with potential loss, with

a non-zero probability (truly mixed), the natural reference point is the consequence which dis-

tinguishes losses from gains. While making choices, this consequence is significant to the DM,

who is concerned about the perturbation of probabilities of loss and gain.

The minimal possible degree of ambiguity, f2 = 0, is obtained when all probabilities are

perfectly known. The maximal possible degree of ambiguity, f2 = 1, is obtained when the

probability of loss (or gain) is either 0 or 1 with equal odds. In this most extreme case,

the variance of the probability of loss attains its maximal possible value, 1
4
. Variances of

probabilities are therefore normalized by 4 to provide an ambiguity measure ranging between

0 and 1. Notice that f2 depends on a reference point, xk, which determines the set of gain

consequences and the set of loss consequences. If xk = x1 or xk = xn, i.e., outcomes are

considered either all as gain or all as loss, then the degree of ambiguity equals zero.33

If there is a reference point agreed upon by all DMs, which makes a clear distinction between

losses and gains, the ambiguity measure f2 can be considered an objective measure of ambiguity;

otherwise it is considered a subjective measure. Concerning financial assets, for example, the

risk-free rate of return can possibly be an objective reference point agreed upon by all financial

DMs.

The measure of ambiguity, f2, also takes into account the impact of the correlations between

probabilities, across-events. One can define an absolute measure of ambiguity as follow. The

absolute degree of ambiguity of act f can be measured by34

f̂2 [f ] = 4
n∑
j=1

Var [Pj] . (8)

Great caution should be exercised when using f̂2; by definition probabilities are almost always

correlated, such that f̂2 is biased in the sense that it ignores these correlations. In other words,

this measure disregards an important item of information concerning the nature of probabilities

and as a result also the nature of ambiguity.

The point to emphasize is that the measure of ambiguity f2 is not influenced by the mag-

nitude of outcomes in general and the magnitude of loss or gain in particular. Increasing or

decreasing the outcomes of an act does not change its degree of ambiguity, but it does change

its degree of risk. A decision-making process considers not only the degree of ambiguity but

33These are the only two cases in which acts are not truly mixed.
34One may consider

∑k
j=1

[
p1···Jζ

2
1···J − p1···J−1ζ

2
1···J−1

]
+
∑n
j=k+1

[
pJ···Nζ2J···N − pj+1···Nζ2j+1···N

]
as relative

measure of ambiguity (with respect to expected probabilities).
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also the degree of risk. Hence, when making choices these two factors together play a role. A

consolidated uncertainty measure, which aggregates risk and ambiguity, can be defined by

U (f) =
Var [f ]

1− f2 [f ]
,

see Izhakian (2012).

Taking the first part of the Ellsberg experiment as an example, the probability of drawing

a black (B) ball can be one of the possible values 0
90
, 1
90
, 2
90
, . . . , 60

90
. The DM, who doesn’t have

any additional information regarding which probability is more likely, assigns an equal weight

to each alternative. Considering only strictly positive outcomes as a gain ($9 in this case), the

normalized degree of ambiguity (to units of probability) of this bet is f [B] = 0.3912. In the

second part of the experiment, when betting on red or yellow (RY ), the probability of gain can

be one of the possible values 30
90
, 31
90
, . . . 90

90
, which implies that the degree of ambiguity is also

f [RY ] = 0.3912. Table 2 is a stylized description of this example, where E [x] and Var [x] are

computed using expected probabilities.

R Y B PG E [PG] E [x] Var [x] f

(R) 9 0 0 1
3

1
3 3 18 0

(B) 0 0 9 0
90 ,

1
90 ,

2
90 , . . . ,

60
90

1
3 3 18 0.3912

(RY ) 9 9 0 30
90 ,

31
90 ,

32
90 , . . . ,

90
90

2
3 6 18 0.3912

(BY ) 0 9 9 2
3

2
3 6 18 0

Table 2: The Ellsberg example

Assume now that instead of 60 black and yellow balls in an unknown proportion, the urn

contains only 30 black and yellow balls in an unknown proportion in addition to 30 red balls.

The degree of ambiguity of the bet on B decreases to f [B] = 0.2981. If the amount of balls

which may be black or yellow in an unknown proportion is 90, then the degree of ambiguity

of the bet on B increases to f [B] = 0.4377. If the urn contains only 60 balls, all of them

black or yellow in an unknown proportion, then the degree of ambiguity, which in this case is

identical for black and yellow, is f = 0.5868. If there are only 10 balls in the urn (and again the

proportion of black and yellow is unknown), then f = 0.6324. Finally, if there is only one ball

in the urn, of unknown color, then f = 1, and in the other extreme case if there is an infinite

number of balls in the urn, then f = 1√
12
. Table 3 is a stylized description of these variations.

To prove that f2 measures ambiguity, it has to be shown that indeed, given two acts with an

identical expected outcome and an identical degree of risk, an ambiguity-averse DM prefers the
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#balls R Y B PG f [B]

90 30 0, . . . , 60, 0, . . . , 60 0
90 ,

1
90 , . . .

60
90 0.3912

60 30 0, . . . , 30 0, . . . , 30 0
60 ,

1
60 , . . .

30
60 0.2981

120 30 0, . . . , 90 0, . . . , 90 0
120 ,

1
120 , . . .

90
120 0.4377

∞ 0 0 . . .∞ 0 . . .∞ 0 . . . 1 0.2886

60 0 0, . . . , 60 0, . . . , 60 0
60 ,

1
60 , . . .

60
60 0.5868

10 0 0, . . . , 10 0, . . . , 10 0
10 ,

1
10 , . . .

10
10 0.6324

1 0 0, . . . , 1 0, 1 0, 1 1

Table 3: Degrees of ambiguity

act with the lower f2. The next theorem ties f2 to the DM’s preferences concerning ambiguity.

To differentiate the impact of ambiguity, the ordering is made over acts with identical properties

except for the degree of ambiguity. That is, the acts have the same set of outcomes and the

same expected probability for each outcome, such that the only difference between them is the

dispersion of probabilities around their expected probabilities, for each event. To eliminate the

impact of preferences concerning risk, the DM is assumed to be risk neutral. Since acts are

assumed to be symmetric, with a point of symmetry xs equal to the expected outcome, it is

assumed that the reference point satisfies xk ≤ xs; otherwise, the DM will not consider these

acts.

Theorem 4.8. Assume symmetric acts f, g ∈ F , satisfying first-order stochastic dominance

with respect to ambiguity, sharing the same set of outcomes, X, and having the same expected

probability for each outcome, i.e., E [P (fj)] = E [P (gj)], ∀j = 1, . . . , n.35 Act f is more am-

biguous than act g, i.e., f2 [g] ≤ f2 [f ], iff any ambiguity-averse DM, with a reference point

xk ≤ xs, prefers g to f .

Theorem 4.8 proves that if two acts are identical except in their degree of ambiguity any

ambiguity-averse DM prefers the act with the lower f2 over the act with the higher f2, which

implies that ordering acts by f2 is identical to the ordering provided by a DM who exhibits

aversion to ambiguity.

35Here, f and g are referred to as random variables; thus, the index j designates outcome rather than event.
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5 Implementation for asset pricing

The main advantage of shadow theory, implemented by Model 3.4, is that it achieves a complete

separation of ambiguity from risk and beliefs from preferences. To demonstrate this merit, this

section presents an application of the theory to asset pricing. The prices that investors are

willing to pay for assets might be affected by the fact that they do not know the precise

probabilities of returns. They might require an additional premium, in terms of return, for

bearing ambiguity in addition to the premium they require for bearing risk. This section

models these two premiums, the risk premium and the ambiguity premium, in separated closed

forms. The empirical tests of this model conducted by Brenner and Izhakian (2011) are then

described.

5.1 The ambiguity premium

The risk premium is the premium that a DM is willing to pay for replacing a risky bet with

its expected outcome. The ambiguity premium is the premium that a DM is willing to pay for

replacing an ambiguous bet with a risky but non-ambiguous bet having an identical expected

outcome. The uncertainty premium is the total premium that a DM is willing to pay for

replacing an ambiguous bet with its expected outcome, i.e., the accumulation of risk premium

and ambiguity premium. Formally, the uncertainty premium, denoted K, is defined by

U (E [x]−K) =
k∑
j=1

[pj − (φ1···J − φ1···J−1)] U (xj) +
n∑

j=k+1

[pj − (φj···N − φJ+1···N)] U (xj) . (9)

The certainty equivalent, CE = E [x]−K, of an act f ∈ F is a constant act CE ∈ F satisfying

V (CE) = V (f). In other words, the certainty equivalent is the constant act for which the DM

is willing to exchange a risky ambiguous (uncertain) act. The next theorem approximates this

premium and separates it into risk premium and ambiguity premium.

Theorem 5.1. Assume a DM whose reference point xk is relatively close to zero, satisfying

0 ≤ xk ≤ E [x], and her preferences are characterized by a twice-differentiable utility function,

U(·), and a twice-differentiable sake function, ψ (·). The uncertainty premium is then

K ≈ −1

2

U′′ (E [x])

U′ (E [x])
Var [x]︸ ︷︷ ︸

R

−1

8

[
ψ′′ (E [PL])

ψ′ (E [PL])
+
ψ′′ (E [PG])

ψ′ (E [PG])

]
E [x]f2 [x]︸ ︷︷ ︸

A

, (10)

where R is the risk premium and A is the ambiguity premium.36

36The proof of Theorem 5.1 applies the same method as that of Arrow (1965) and Pratt (1964), while outcomes
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Concerning financial decisions, outcomes can possibly be rates of return, r. In this case, the

uncertainty premium, in terms of return, takes the form

K ≈ −1

2

U′′ (E [r])

U′ (E [r])
Var [r]− 1

8

[
ψ′′ (E [PL])

ψ′ (E [PL])
+
ψ′′ (E [PG])

ψ′ (E [PG])

]
f2 [r] . (11)

Theorem 5.1 provides a complete distinction in two aspects. First, it distinguishes between

risk premium and ambiguity premium, such that these two premiums are orthogonal. Second,

within each premium, it distinguishes between sources of premiums, i.e., preference and beliefs.

The risk premium, R ≈ −1
2
U′′(E[r])
U′(E[r])

Var [r], is the Arrow-Pratt risk premium. Independently,

a higher risk, measured by Var [r], or higher risk aversion, measured by the coefficient of absolute

risk aversion, −U′′(·)
U′(·) , both result in a higher risk premium. The degree of risk, Var [r], is a matter

of the DM’s beliefs, while risk aversion is a matter of her preferences concerning it.

The ambiguity premium, A ≈ −1
8

[
ψ′′(E[PL])
ψ′(E[PL])

+ ψ′′(E[PG])
ψ′(E[PG])

]
f2 [r], possesses attributes resem-

bling those of the risk premium, but with respect probabilities rather than to consequences.

A complete separation between beliefs about random probabilities, measured by f2, and pref-

erences concerning it, measured by the coefficient of absolute ambiguity aversion, −ψ′′(·)
ψ′(·) , is

achieved. Ambiguity aversion implies a positive ambiguity premium, since −ψ′′(·)
ψ′(·) > 0. Am-

biguity loving implies a negative ambiguity premium, since −ψ′′(·)
ψ′(·) < 0. Ambiguity neutrality

implies a zero ambiguity, since −ψ′′(·)
ψ′(·) = 0. A zero ambiguity premium is also obtained when

probabilities are perfectly known, i.e., f2 = 0. Independently, a higher degree of ambiguity or

a higher aversion to it, both increase the ambiguity premium.

As an example, the next corollary shows the different premiums in the case of a DM typified

by constant relative risk aversion (CRRA) and constant absolute ambiguity aversion (CAAA).

Corollary 5.2. Assuming a DM who is characterized by CRRA,37

U(xj) =


x1−γ
j −x1−γ

k

1−γ , γ ̸= 0

ln (xj)− ln (xk) , γ = 0
,

and CAAA,

ψ (Pi) = −e
−ηPi

η
,

then the uncertainty premium is

K ≈ γ
1

2
Var [r]︸ ︷︷ ︸
R

+ η
1

4
E [r]f2 [r]︸ ︷︷ ︸

A

.

are also restricted to be relatively small.
37A more standard formulation of CRRA, U (x) = x1−γ

1−γ for γ ̸= 1 and U (x) = ln (x) for γ = 1 otherwise, is

not always normalized to U (xk) = 0.
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When the expected probabilities of loss and gain are relatively close to 1
2
, the ambiguity

premium can be simplified to

A ≈ −1

4

ψ′′ (E [PL])

ψ′ (E [PL])
f2 [r] ,

and the expected return (equity premium) is thus

E [r] ≈ rf −
1

2

U′′ (E [r])

U′ (E [r])
Var [r]− 1

4

ψ′′ (E [PL])

ψ′ (E [PL])
f2 [r] , (12)

where rf stands for the risk-free rate of return. Brenner and Izhakian (2011) test this equation

empirically as described next.

5.2 Empirical results

To demonstrate the empirical aspects of shadow theory and its explanatory power, this section

reviews the results of Brenner and Izhakian (2011). Their study employs the ambiguity measure,

f2, as an explanatory factor of the aggregate return on the stock market. They assume a

pricing representative investor, whose reference point is the risk-free rate. The return on the

stock market is assumed to be normally distributed, but the parameters, mean and variance,

governing its distribution are assumed to be random.

Using the S&P 500 intraday data, Brenner and Izhakian (2011) extract the monthly degree

of ambiguity by utilizing the following four-step methodology. The first step is sampling 20

to 22 groups, each comprising 27 observations (15-minutes returns) from the monthly data. A

group can be selected randomly or can simply be the observation of a specific day in the month.

The second step is computing the mean and variance of each group. Assuming that returns

are normally distributed, the third step is computing the probability of a negative return (loss)

for each group, using its mean and variance. At this point, for each month there are 20-22

probabilities of loss. The last step is computing the variance of these probabilities to obtain

the monthly degree of ambiguity f2.

Employing the degree of ambiguity, Brenner and Izhakian (2011) conduct a series of tests

to study its explanatory power on the stock market’s return and its relationships with other

risk factors. They show that ambiguity has a significantly negative impact on returns in both

contemporaneous and prediction testing, which means that monthly return on the stock market

is not only negatively affected by the ambiguity in the same month but also by the ambiguity

in the previous month. These results indicate that typically investors in the stock market are

ambiguity loving.
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6 Related Literature

Since the seminal works of Knight (1921) and Ellsberg (1961), utility theory research has been

making a concerted effort to treat decision processes under uncertainty and explain the violation

of expected utility theory. This effort has generated the ideas that, in the presence of ambiguity,

the DM’s belief takes the form either of multiple priors or of a single but non-additive prior. In

their max-min expected utility with multiple priors (MEU) model, Gilboa and Schmeidler (1989)

assert that an ambiguity-averse DM possesses a set of priors and evaluates her ex-ante welfare

conditional upon the worst prior. The subjective nonadditive probabilities of Gilboa (1987) and

the Choquet expected utility (CEU) of Schmeidler (1989) state that uncertainty and aversion to

it can be represented by a single subadditive prior (capacity). Tversky and Kahneman’s (1992)

CPT implements a two-sided variant of CEU with different capacities for gains and for losses.

Shadow theory’s contribution to this literature is threefold. First, it achieves a complete

separation between ambiguity and attitude toward it. Second, it provides a bridge between the

MEU discipline and the CEU and CPT disciplines. Third, it proves that capacities are not ar-

bitrary and can be explained by the presence of ambiguity and the DM’s preferences concerning

it. Capacities, in shadow theory, emerge from the randomness of probability distribution and

the nonlinear ways in which individuals may perceive these probabilities. This randomness can

be viewed as a random selection, dominated by a second-order prior, of one prior from a set of

priors.

The concept of modeling attitudes toward ambiguity by relaxing the reduction between

first-order and second-order probabilities, suggested by Segal (1987), inspires other models:

Klibanoff et al.’s (2005) smooth model of ambiguity, its recursive form, also proposed by

Klibanoff et al. (2009), its generalization to include intertemporal substitution, proposed by

Ju and Miao (2011) and Hayashi and Miao (2011), and the second-order probability sophis-

tication of Nau (2006), Chew and Sagi (2008) and Ergin and Gul (2009). Unlike our model,

in these model preferences toward ambiguity are taken with respect to expected utilities or

certainty equivalents, so that a complete distinction between the impact of risk preferences and

the impact of ambiguity preferences on decisions is not trivial. Applying preferences concerning

ambiguity to probabilities, our model achieves a complete distinction between the effects of risk

preferences and the effects of ambiguity preferences.

Shadow theory can be interpreted as a model of robustness in the presence of model uncer-
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tainty. This class of models assumes an uncertainty about the true probability law governing

the realization of states, and a DM, with her concerns about misclassification, looks for robust

decision making; see, for example, Hansen and Sragent (2001), Maccheroni et al. (2006) and

Hansen and Sargent (2007). Generally speaking, ambiguity in this line of models is formulated

by the deviation of probability from a reference probability (reference model), measured by

relative entropy.38 Shadow theory relaxes the requirement of having a reference model and

required only a reference point, which is easier to identify.

Shadow theory is also related to Siniscalchi’s (2009) vector expected utility, which assumes a

baseline probability and different sources of ambiguity with respect to expected utility. Other

models that consider reference expected utility include those of Roberts (1980), Quiggin et

al.(2004) and Grant and Polak (2007), for example, or consider a reference prior (Einhorn and

Hogarth (1986), and Gajdos et al. (2008), for example). Kopylov’s (2006) ϵ-contamination

suggests the addition of an element of confidence to the generated set of priors. Chateauneuf et

al. (2007) suggest new capacities (neo-additives) obtained from an α-max-min expected utility

with a set of priors generated by ϵ-contamination. All these models require the identification

of a reference prior, which practically is not a simple task, if it is possible at all.

In some sense shadow theory can be viewed as a special case of the phantom probability

framework suggested by Izhakian and Izhakian (2009a) and its implementation to decision

theory by Izhakian and Izhakian (2009b), where the authors suggest that observable real out-

comes and real probabilities are projections of consequences in a generalized multidimensional

space called phantom space. The norm over this space, which maps phantom probabilities to

real probabilities, can be considered as derived by preferences concerning ambiguity, which is

equivalent to the sake function in shadow theory.

This is the point to emphasize. Shadow theory differs from all of the models mentioned

above in one major aspect: ambiguity is applied directly to probabilities and not to any element

of utility. That is, it is not applied to expected utility, certainty equivalent or event-wise utility,

which are driven by preference concerning risk. In shadow theory no need arises to identify

a reference probability distribution. It provides a formal way to compare the choices of two

DMs who have different attitudes toward ambiguity, or different degrees of ambiguity; for

example, two DMs who share the same information and the same attitude toward risk but

have different levels of ambiguity sensitivity, or two DMs who share the same attitude toward

38Relative entropy is the expected log Radon-Nikodym derivative. Technically, all alternative models have to
be absolutely continuous with respect to the reference model for an entropy measure to exist.

29



risk and ambiguity but possess different information (different degrees of ambiguity). The

ability to conduct this type of comparative static is of primary importance, as it allows for the

identification of the pure effect of introducing ambiguity and attitude toward it into a model.

The behavioral decision literature documents different preferences concerning ambiguity

when facing gains, as compared to facing losses: the preferences are usually ambiguity aversion

for gains and ambiguity loving for losses (see, for example, Einhorn and Hogarth (1986), Ho

et al. (2009) and Chakravarty and Roy (2009)). Our model supports different preferences

for ambiguity for losses and gains. Interestingly, overconfidence is also linked to ambiguity.

Brenner et al. (2011) show that when exposed to ambiguity individuals are less overconfident

about the likelihood of outperforming a benchmark portfolio. In terms of shadow theory, these

results imply that individuals assign lower subjective probabilities of gain when exposed to a

higher degree of ambiguity. Practically, their results provide experimental evidence supporting

our model.

Several approaches to estimating ambiguity have been suggested in the literature. Dow

and Werlang (1992) measure uncertainty as the sum of the probability of an event and the

probability of its complement event. Assuming a normal distribution with an unknown mean,

Ui (2011) measures ambiguity by the difference between the minimal possible mean and the

true mean. Assuming a second-order belief, Maccheroni et al. (2011) measure ambiguity by

the variance of an unknown mean. Assuming a multiple-prior setting, Bewley (2011) measures

ambiguity by a critical confidence interval. Assuming mean-variance preferences, with known

variance and unknown mean, Boyle et al. (2011) also measure ambiguity using the confidence

interval α =
{
µ : (µ−µ̂)2

σ2
µ̂

≤ α2
}
, where µ̂ is the estimated value of the excess mean return, µ,

and σµ̂ is its standard error. All these studies assume that the variance of consequences is

known. Our measure of ambiguity, f2, is broader; it assumes an unknown variance and allows

all other parameters that characterize probabilities to be unknown.

In their empirical analysis, Anderson et al. (2009) and Drechsler (2011) proxy for uncer-

tainty via the degree of disagreement of professional forecasters, attributing different weights

to each forecaster. Jewitt and Mukerji (2011) investigate the ranking of ambiguous acts as

revealed by the DM’s preferences. These methods can be classified as subjective ordering by

ambiguity, while f2 can be considered as providing an objective ordering.

The implications of ambiguity regarding the equity premium have been studied mainly by

focusing on the theoretical aspects. Izhakian and Benninga (2011) add an ambiguity premium
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to the conventional risk premium and show that increasing risk aversion might result in a

lower uncertainty premium. Maccheroni et al. (2011) adjust the mean-variance model for

ambiguity and extract the ambiguity premium. Ui (2011) proves that, due to changes in

market participation, changes in risk premium and changes in ambiguity premium may have

opposite signs. Epstein and Schneider (2008) employ the max-min model to show that the

ambiguity premium depends on the idiosyncratic risk in fundamentals.39 Unlike Theorem 5.1,

in these papers a complete separation between preferences and beliefs and between risk and

ambiguity is not obtained.

7 Conclusion

In reality almost any decision involves ambiguity. It is only too natural to look for a simple

measure of ambiguity that allows for ordering uncertain alternatives by their degree of ambigu-

ity. The current paper satisfies this need by providing an ambiguity measure which can easily

be employed in empirical studies. Brenner and Izhakian (2011), for example, use this measure

to inquire into the question of whether stock prices are affected by ambiguity. Their empirical

study shows that ambiguity has a significant negative impact on stock returns. To the best of

our knowledge, this study is the first to measure ambiguity from market data, rather than in

laboratory experiments or calibrations.

To construct a useful measure of ambiguity, the paper introduces a novel model of decision

making under ambiguity, called shadow probability theory, generalizing Schmeidler’s (1989)

Choquet expected utility and Tversky and Kahneman’s (1992) cumulative prospect theory.

Shadow theory assumes that probabilities of observable events are random and dominated by

second-order unobservable events, modeled by two separated state spaces. The structure of

two separated spaces allows for a complete distinction between risk and ambiguity and between

preferences and beliefs. The degree of ambiguity and the decision maker’s attitude toward it are

then measured with respect to one space, while risk and risk attitude apply to the second space.

In this model, subjective probabilities are framed by the nonlinear ways in which individuals

may process probabilities. Perceived probabilities are nonadditive: ambiguity aversion results in

a subadditive subjective probability measure, while ambiguity loving results in a superadditive

39Chen and Epstein (2002) extend the MEU model to continuous-time recursive multiple-priors utility and
demonstrate a separation between ambiguity premium and risk premium. Segal and Spivak (1990) also analyze
the ambiguity premium, which they call a premium of order 2.
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measure.

Ambiguity in shadow theory takes the form of probability perturbation with respect to a

reference point that distinguishes losses from gains. This concept provides a natural ambiguity

measure, f2, which proved to be empirically testable. The measure of ambiguity, f2, is simply

four times the variance of the probability of loss (or gain). The present paper demonstrates

the merits of this new model by incorporating ambiguous probabilities into the basic asset

pricing model. It generalizes the Arrow-Pratt theory and clearly differentiates between the risk

premium and the ambiguity premium, which can both be measured empirically. The measure

of ambiguity, introduced in this paper, is an important tool that paves the way for studying

the empirical and behavioral implications of ambiguity for finance and economics.
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A Appendix

Lemma A.1. Assume a sake function ψ (·) satisfing
1

2

(
ψ′′ (pA)

ψ′ (pA)
ζ2A − ψ′′ (pA∪B)

ψ′ (pA∪B)
ζ2A∪B

)
≤ pB,

for any events A,B ⊆ S. If A ⊂ B then Q(A) ≤ Q(B).

Proof of Lemma A.1. Writing C = A ∪B, then by Theorem 3.5

Q (C)−Q(A) = pA + pB +
1

2

ψ′′ (pC)

ψ′ (pC)
ζ2C − pA − 1

2

ψ′′ (pA)

ψ′ (pA)
ζ2A

= pB +
1

2

ψ′′ (pA∪B)

ψ′ (pA∪B)
ζ2A∪B − 1

2

ψ′′ (pA)

ψ′ (pA)
ζ2A,

which, by the assumption of the Lemma, is non-negative.

Lemma A.2. Assume two equably symmetric directing acts y, z ∈ F̂ with identical means.

Let µky and µkz be the kth moment around 0 of y and z respectively, then µky (µ
2
z)

k
2 = µkz

(
µ2
y

) k
2

for any even k.

Proof of Lemma A.2. Without loss of generality, assume E [y] = E [z] = 0.40 Let Y =

yi+1 − yi and Z = zi+1 − zi, and recall that, since y and z share the same probability space,

χ (yi) = χ (zi), ∀i = 1, . . . ,m. The 2kth moments of y and z can then be written as
∑
χi (iY )2k

and
∑
χi (iZ)

2k, respectively, where χi is the probability of the εi. Now,
(
µ2
y

) 2k
2 can be written

as
(∑

χi (iY )2
)k

and (µ2
z)

2k
2 can be written as

(∑
χi (iZ)

2)k. Finally
µky (µ

2
z)

k
2 =

∑
χi (iY )2k

(∑
χi (iZ)

2)k = (Y Z)2k 2k+1
∑
χii

2k (
∑
χii

2)
k

=
∑
χi (iZ)

2k (∑χi (iY )2
)k

= µkz
(
µ2
y

) k
2 .

Lemma A.3. Assume two equably symmetric directing acts y, z ∈ F̂ with an identical mean,

E [z] = E [y]. If λ = σz
σy

then z =d λy.

Proof of Lemma A.3. Without loss of generality, assume E [y] = E [z] = 0. To show that

=d it has to be proved that y and z have an identical characteristic function. Writing the

characteristic function of z

ϕz (t) =
∑m

l=1 e
itzlχ (zl) dz =

∑m
l=1 χ (zl) + it

∑m
l=1 zlχ (zl) +

1
2
(it)2

∑m
l=1 z

2
l χ (zl) + · · ·

=
∑∞

k=0
(it)k

k!
µkz = 1 + itµ1

z − 1
2
t2µ2

z − 1
3!
it3µ3

z +
1
4!
t4µ4

z + · · · ,
(13)

40Since E [y] = E [z], y and z can be adjusted such that they can be referred to as having E [y] = E [z] = 0.
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where µkz , the kth moment around 0, and µ0
z ≡ 1 are assumed to exist and be finite. The

second equality is by the power series of the exponential function. For the third equality, see

Abramowitz and Stegun (1972, p. 928). Writing the kth moment of λy around 0

µkλy =
m∑
l=1

(λyl)
k χ (yl) =

σkz
σky
µky.

Since E [y] = E [z] = 0 then, when k is even σky =
(
µ2
y

) k
2 and σkz = (µ2

z)
k
2 , and when k is odd

µky = µkz = 0 . Note that the outcome spaces of z and λy are identical. Lemma A.2 implies that

for an equably symmetric distribution µkλy = µky
(µ2z)

k
2

(µ2y)
k
2
= µkz for any k. Therefore, by Equation

(13) ϕz (t) = ϕλy (t), which implies z =d λy.

Proof of Theorem 3.5. The subjective probability, Q (Ej), of event Ej ∈ Ξ can be written

Q (Ej) = ψ−1 (ψ (pj − φj)) = ψ−1

(
m∑
i=1

χiψ (Pi,j)

)
, (14)

for some φj. Taking the first-order Taylor approximation of ψ (pj − φj) around pj yields

ψ (pj − φj) ≈ ψ (pj) + ψ′ (pj) (pj − φj − pj) = ψ (pj)− φjψ
′ (pj) . (15)

Ignoring the weighted summation in the RHS of Equation (14) for the moment, the second-order

Taylor approximation of ψ (Pi,j) around pj is

ψ (Pi,j) ≈ ψ (pj) + ψ′ (pj) (Pi,j − pj) +
1

2
ψ′′ (pj) (Pi,j − pj)

2 .

Since ψ (pj), ψ
′ (pj) and ψ

′′ (pj) are constants, applying the weighted sum yields
m∑
i=1

χiψ (Pi,j) ≈ ψ (pj) +
1

2
ψ′′ (pj) ζ

2
j . (16)

Equating (15) to (16) and organizing terms yields

φj = −1

2

ψ′′ (pj)

ψ′ (pj)
ζ2j .

Substituting φj into Equation (14) proves the theorem.

Proof of Proposition 3.7. By definition

ζ21···J =
m∑
i=1

χi (Pi,1···J − p1···J)
2 .

Since P is additive and so is p,

ζ21···J =
m∑
i=1

χi [(Pi,1···T − p1···T ) + (Pi,T+1···J − pT+1···J)]
2 .
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Therefore,

ζ21···J =
m∑
i=1

χi (Pi,1···T − p1···T )
2 +

m∑
i=1

χi (Pi,T+1···J − pT+1···J)
2 +

2
m∑
i=1

χi (Pi,1···T − p1···T ) (Pi,T+1···J − pT ···J)

= ζ21···T + ζ2T+1···J + 2ζ1···T,T+1···J .

Proof of Lemma 3.8. Since Pi = Pi (E) is additive, Pci = Pi (Ec) = 1−Pi. The covariance

between P (E) and P (Ec) takes the form

Cov [P (E) ,P (Ec)] =
m∑
i=1

χi (Pi − p) (Pci − pc) =
m∑
i=1

χi (Pi − p) (p− Pi) ,

and therefore

Cov [P (E) ,P (Ec)] = −Var [P (E)] .

The second equality is obtained by

Var [P (E)] =
m∑
i=1

χi (Pi − p)2 =
m∑
i=1

χi (P
c
i − pc)2 = Var [P (Ec)] .

Proof of Proposition 4.3. This proof considers ambiguity aversion; the proof for ambigu-

ity loving is similar. Let z = Pj−pj and y = Pl−pl. Assume that z is more ambiguous than y,

then by Definition 4.2 z =d y + ϵ. The DM’s preferences %2, characterized by the sake utility

ψ : [0, 1] → R (see Theorem 3.2), provides

E [ψ (z)] = E
[
E
[
ψ (y + ϵ)

∣∣ y]] .
Ignoring the expectation on the RHS for the moment, ambiguity aversion formed by a concave

ψ, implies

E [ψ (y + ϵ)] ≤ ψ (E [y + ϵ]) = ψ (y) .

Taking expectations yields E [ψ (z)] ≤ E [ψ (y)]. Hence, f̂l %2 f̂j.

For the opposite direction, let f̂l %2 f̂j. Then E [ψ (z)] ≤ E [ψ (y)]. It needs to be shown

that there exists an ϵ satisfying Definition 4.2. The proof considers two directing events. The

same approach can then be extended to any number of events. Let z and y take two possible

values, (z1, z2) and (y1, y2), with probabilities (α, 1− α) and (β, 1− β), respectively. Without

loss of generality, assume that z1 ≥ y1 ≥ y2 ≥ z2. The random variable ϵ can be constructed
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by ϵ1 = (z1 − y1, z2 − y1) with probabilities
(
y1−z2
z1−z2 ,

z1−y1
z1−z2

)
and ϵ2 = (z1 − y2, z2 − y2) with

probabilities
(
y2−z2
z1−z2 ,

z1−y2
z1−z2

)
. It can be easily verified that the probabilities of ϵ1 and ϵ2 are all

positive, E
[
ϵ1
∣∣ y1] = 0 and E

[
ϵ2
∣∣ y2] = 0. Therefore, y and ϵ are mean-independent and

E [z] = E [y + ϵ] = 0. The probability that y + ϵ = z1 is

β
y1 − z2
z1 − z2

+ (1− β)
y2 − z2
z1 − z2

. (17)

Since y and z have the same expectation, β = z2−y2+α(z1−z2)
y1−y2 . This implies that the probability

that y + ϵ = z1 in Equation (17) is equal to α, and the probability that y + ϵ = z2 is equal to

1− α. That is, z =d y + ϵ.

Proof of Proposition 4.5. Let z = Pj − pj and y = Pl − pl.

(i) Assume that Definition 4.2 holds. The condition Pj − pj =d Pl − pl + ϵ implies that

Var [Pj] = Var [Pl] + Var [ϵ], which means that ζ2j ≥ ζ2l .

For the opposite direction assuming that Definition 4.4 holds such that ζ2j ≥ ζ2l . One can define

λ =
ζj
ζl

= σz
σy

≥ 1. Since z and y are equably symmetric distributed and E [z] = E [y] = 0,

λy is also equably symmetric distributed with zero mean, λ2Var [y] = Var [z] and by Lemma

A.3 z =d λy. Write x + y = α (x+ λy) + (1− α)x, where α = 1
λ
and x is a random variable

satisfying E [x] = 0. By the Jensen inequality ψ (x+ y) ≥ αψ (x+ λy)+(1− α)ψ (x). Applying

expectation for both sides yields

E [ψ (x+ y)] ≥ αE [ψ (x+ λy)] + (1− α) E [ψ (x)] . (18)

Since λ ≥ 1, By Definition 4.2, x+λy is more ambiguous than x, thus E [ψ (x)] ≥ E [ψ (x+ λy)].

Together with (18), this implies E [ψ (x+ y)] ≥ E [ψ (x+ λy)]. Let x = 0. Then E [ψ (y)] ≥

E [ψ (λy)] = E [ψ (z)], which means y %2 z.

(ii) Let ψ (z) = −e−ηz. Taking a second-order Taylor approximation around z = 0 yields

ψ (z) ≈ −1+ ηz− 1
2
η2z2. Since E [z] = 0, taking expectation yields E [ψ (z)] ≈ −1− 1

2
η2Var [z].

This means that y %2 z iff Var [y] ≤ Var [z]. That is, iff ζ2l ≤ ζ2j .

(iii) Let ψ (z) = − (z − α)2, where z ≤ α for some α. The expected sake function is E [ψ (z)] =

−
(
Var [z] + (E [z]− α)2

)
. Since E [z] = E [y] = 0, then y %2 z iff Var [y] ≤ Var [z]. That is, iff

ζ2l ≤ ζ2j .

Proof of Model 4.7. Assume two symmetric acts with an identical expected outcome and

the same expected probabilities. The first equality is derived by Theorem 4.8, which proves

that any ambiguity-averse DM prefers the act with the lower f2 over the act with the higher
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f2. The second equality is obtained by the fact that the variance of the probability of loss

equals the variance of the probability of gain (Lemma 3.8).

Proof of Theorem 4.8. Assume that f2 [g] ≤ f2 [f ]. By Equation (5) the value assigned

by a risk-neutral DM to act g is

V (g) =
n∑
j=1

pjxj +
1

2

k∑
j=1

[
ψ′′ (p1···J)

ψ′ (p1···J)
ζ21···J −

ψ′′ (p1···J−1)

ψ′ (p1···J−1)
ζ21···J−1

]
xj +

1

2

n∑
j=k+1

[
ψ′′ (pJ ···N)

ψ′ (pJ ···N)
ζ2J ···N − ψ′′ (pJ+1···N)

ψ′ (pJ+1···N)
ζ2J+1···N

]
xj.

Since f2 [g] ≤ f2 [f ] and act f is first-order stochastically dominated by act g, by Proposition

4.5, any Ej ⊆ S satisfies ζ2f,j = ζ2g,j + Var [ϵ], where ϵ and Pj are mean-independent. The

subjective probability of event Ej ⊆ S under act f is, thus,

Q (Ej) = pj +
1

2

ψ′′ (pj)

ψ′ (pj)

(
ζ2j +Var [ϵ]

)
.

Therefore, the value of act f is

V (f) =
n∑
j=1

pjxj +

1

2

k∑
j=1

[
ψ′′ (p1···J)

ψ′ (p1···J)

(
ζ21···J +Var [ϵ1···J ]

)
− ψ′′ (p1···J−1)

ψ′ (p1···J−1)

(
ζ21···J−1 +Var [ϵ1···J−1]

)]
xj +

1

2

n∑
j=k+1

[
ψ′′ (pJ ···N)

ψ′ (pJ ···N)

(
ζ2J ···N +Var [ϵJ ···N ]

)
− ψ′′ (pJ+1···N)

ψ′ (pJ+1···N)

(
ζ2J+1···N +Var [ϵJ+1···N ]

)]
xj,

which implies that

V (f)− V (g) =
1

2

k∑
j=1

[
ψ′′ (p1···J)

ψ′ (p1···J)
Var [ϵ1···J ]−

ψ′′ (p1···J−1)

ψ′ (p1···J−1)
Var [ϵ1···J−1]

]
xj + (19)

1

2

n∑
j=k+1

[
ψ′′ (pJ ···N)

ψ′ (pJ ···N)
Var [ϵJ ···N ]−

ψ′′ (pJ+1···N)

ψ′ (pJ+1···N)
Var [ϵJ+1···N ]

]
xj.

Organizing the terms of Equation (19) yields

V (f)− V (g) =
1

2

ψ′′ (p1···K)

ψ′ (p1···K)
Var [ϵ1···K ] xk +

1

2

k−1∑
j=1

ψ′′ (p1···J)

ψ′ (p1···J)
Var [ϵ1···J ] (xj − xj+1) + (20)

1

2

ψ′′ (pK+1···N)

ψ′ (pK+1···N)
Var [ϵK+1···N ]xk+1 +

1

2

n∑
j=k+2

ψ′′ (pJ ···N)

ψ′ (pJ ···N)
Var [ϵJ ···N ] (xj − xj−1) .

Since the DM is ambiguity averse, i.e., ψ′′(pJ···N )
ψ′(pJ···N )

< 0 for any 1 ≤ j ≤ n, and 0 ≤ (xj+1 − xj),

the second component in the first line of Equation (20) is positive, while the second component

in the second line of Equation (20) is negative. Because acts are symmetric with xk ≤ xs, the

absolute value of the negative component is greater than the positive component. Thus, their
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sum is negative. The first components in the first line and in the second line of Equation (20)

are both negative; therefore, V (f)− V (g) ≤ 0, which implies g % f .

For the opposite direction, assume V (g) ≥ V (f). Since all the parameters in the value

functions V (f) and V (g) of acts f and g are identical, except Var [PL], and first-order stochastic

dominance is satisfied, Equation (20) implies that Var [ϵ] ≥ 0. Thus, Var [PL] of act f is greater

than Var [PL] of act g. According to Lemma 3.8 this is also true for the probability of gain PG;

therefore, f2 [f ] ≥ f2 [g].

Proof of Theorem 5.1. The first-order Taylor approximation of the LHS of Equation (9)

with respect to E [x] is

LHS = U(E [x]−K) =
n∑
j=1

pjU(E [x]−K) ≈
n∑
j=1

pj (U (E [x])−KU′ (E [x])) .

Writing the RHS of Equation (9) as

RHS =
n∑
j=1

pjU(xj)︸ ︷︷ ︸
I

−

(
k∑
j=1

(φ1···J − φ1···J−1)U (xj) +
n∑

j=k+1

(φJ ···N − φJ+1···N)U (xj)

)
︸ ︷︷ ︸

II

,

the second-order Taylor approximation of I around E [x] is

I ≈
n∑
j=1

pj

(
U(E [x]) + U′ (E [x]) (xj − E [x]) +

1

2
U′′ (E [x]) (xj − E [x])2

)
= U(E [x]) +

1

2
U′′ (E [x]) Var [x] .

Writing

II = φ1···KU(xk) + φK+1···NU(xk+1) +
k−1∑
j=1

φ1···J [U (xj)− U(xj+1)] +
n∑

j=k+2

φJ ···N [U (xj)− U(xj−1)]

and taking the first-order Taylor approximation of II around E [x] yields41

II ≈ φ1···KU(xk) + φK+1···NU(xk+1) +
k−1∑
j=1

φ1···JU
′ (E [x]) (xj − xj+1) +

n∑
j=k+2

φJ ···NU
′ (E [x]) (xj − xj−1) .

Since outcomes are assumed to be symmetrically distributed and xk is relatively close to E [x]

II ≈ φ1···KU(xk) + φK+1···NU(xk+1) .

Because U (xk) = 0, and U (·) is almost linear around the reference point, xk, then U (xk) ≈
41Recall that φj is the probability premium, holding an order of magnitude of the variance of probability.

Thus, φj is smaller by one order of magnitude than probabilities.
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U(xk+1) ≈ U′ (E [x]) E [x].42 Therefore,

II ≈
1

4

[
−1

2

ψ′′ (pL)

ψ′ (pL)
− 1

2

ψ′′ (pG)

ψ′ (pG)

]
f2 [x] U′ (E [x]) E [x] .

Combining the LHS, the RHS, I and II, the uncertainty premium is

K ≈ −1

2

U′′ (E [x])

U′ (E [x])
Var [x]− 1

8

[
ψ′′ (pL)

ψ′ (pL)
+
ψ′′ (pG)

ψ′ (pG)

]
f2 [x] E [x] .

Proof of Corollary 5.2. CRRA implies U′ (x) = x−γ and U′′ (x) = −γx−γ−1. CAAA

implies ψ′ (qi) = e−ηqi and ψ′′ (qi) = −ηe−ηqi . Substituting in Theorem 5.1 proves the corollary.

42See, for example, Segal and Spivak (1990) and Levy et al. (2003).
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