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Mariann Ollár and Marzena Rostek†
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Abstract

The literature on information aggregation predicts that market growth unambigu-

ously reduces uncertainty about the value of traded goods. The results were developed

within the classical model, which assumes that traders’ values for the exchanged good

are determined by fundamental (common) shocks. At the same time, design innovation

in contemporaneous markets seems to exploit demand interdependence among agents

with similar tastes or common information sharing (e.g., Facebook ads, the practice of

customer targeting). This paper demonstrates that with heterogeneous interdependence

among agents’ values or noise in signals about values, opportunities to innovate in smal-

ler or less connected (in the network-theoretic sense) markets may dominate those in

larger or better connected markets.

JEL Classification: D44, D82, L13, G14

Keywords: Interdependent values and noise, Network, Link Formation, Innovation,

Information Aggregation, Divisible Good Auction, Commonality

1 Introduction

This paper examines how innovation in demand creation – broadly understood as the intro-

duction of new goods or innovations in targeting or advertising – interacts with information

aggregation. An important idea in economic theory and practical market design is that innov-

ation can reduce, and is often motivated by, agents’ uncertainty about the quality of exchanged

goods.1 In particular, existing literature on information aggregation in markets suggests that

∗We gratefully acknowledge the financial support of this research through the NET Institute

(www.NETinst.org).
†University of Wisconsin-Madison, Department of Economics, 1180 Observatory Drive, Madison, WI 53706,

U.S.A.; E-mails: ollar@wisc.edu; mrostek@ssc.wisc.edu.
1Other, often related motives for innovation include the creation of demand for new goods and services and

the bundling of product characteristics.
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increasing market size weakens incentives to innovate: Existing literature’s goal has been to

examine whether the market mechanism is capable of aggregating all payoff-relevant inform-

ation in the economic system. The main result has been establishing that this happens under

general conditions. The full aggregation result implies that the equilibrium uncertainty about

product quality decreases as new market participants contribute new information.2

The classical predictions have been developed for a particular structure of interdependence

in agents’ preferences, assuming that a fundamental value exists by which demands for the

exchanged good for all traders are determined (i.e., the fundamental value or mixed values

assumption). Consequently, market participants’ demands comove in the same way, with

fundamental (common) shocks. The fundamental-value model precludes any heterogeneity in

demand interdependence, whether due to inherent tastes (i.e., the primitive which determines

agents’ inherent values for the good) or information-sharing technology (i.e., noise in signals

about values present as agents learn through common sources or communicate). More ab-

stractly, such shocks impact groups of traders, but not the market as a whole. Instead, values

are assumed to be common to all traders and signal noise is i.i.d. Indeed, design innovation in

contemporaneous markets seems to exploit interdependence among agents with similar tastes

or common information sharing (e.g., Facebook ads, customer targeting).3 4

This project shows that heterogeneously interdependent demands (through tastes or in-

formation sharing) change the predictions of the classical model: Opportunities to innovate

in smaller or less connected (in the network-theoretic sense) markets may dominate those in

large or better connected markets.

Results: The paper examines trade-offs in information aggregation occurring between small

and large as well as sparsely or locally connected and better connected markets. Specific-

ally, we show that in markets in which demands are heterogeneously correlated, uncertainty

about product quality (as measured by the lack of information aggregation) may not be in-

creasing with market size or greater connectivity among agents’ values or noise. In fact, for

economically relevant information structures, equilibrium uncertainty may exhibit arbitrary,

non-monotone behavior. The paper develops the necessary and sufficient conditions on the

information structure under which uncertainty about product quality and, hence, incentives

2The literature on information aggregation has focused on large market environments — within the rational

expectations or strategic, double-auction settings, and established limit results, as the number of traders grows

large. Examining how market growth impacts information aggregation requires a model with an arbitrary,

finite number of traders, which is a less explored setting. Still, all existing results demonstrate that markets

are informationally efficient (Dubey, Geanakoplos, and Shubik (1987); Ostrovsky (2009); Vives (2011); Vives

(2008) provides a review). Rostek and Weretka (2011) are an exception.
3For a review of the growing literature on interdependence in traders’ demands for assets in financial

markets, see Veldkamp (2011, Chapter 8).
4Targeting has recently been studied by Athey and Gans (2010), Bar Isaac, Caruana, and Cunat (2010),

Levin and Milgrom (2010), Bergemann and Bonatti (2011).
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to innovate are monotone in market size.

A key question that arises in the empirical literature is whether the demand comovements

across markets or traders are driven by interdependence in values or noise. We establish

conditions under which interdependence in demands due to preferences versus information

can be separated. Unlike the fundamental-value model, with heterogeneously interdependent

demands, separating the impact of values and noise is critical for determining whether and

how efficiency and product innovation can be enhanced through appropriate policy response

or market design.

The absence of monotonicity in learning about asset quality in general suggests that

product design and targeting aimed at smaller, segmented, or less connected markets can

improve agents’ learning. Thus, the efficiency and profitability of innovation may improve

when markets become segmented or decentralized.

Approach: The new predictions owe to the paper’s modeling contribution: a tractable model

of markets (one-sided or double auctions) with an arbitrary number of traders and a rich class

of interdependencies in values and noise. All traders are Bayesian and strategic; in partic-

ular, there are no noise traders. Cast in a linear-normal setting, as a key innovation, the

model permits heterogeneous correlations in values and noise in signals. The model accom-

modates aspects of heterogeneity such as interdependence in values and noise that varies with

“distance” (e.g., geographical or social proximity), group-dependence in values or noise, and

characteristics of network connectivity (degree distribution).

Other Related Literature: Rostek andWeretka (2011) study information aggregation in

auctions with heterogeneous comovements exclusively in values. This paper instead considers

the interaction between information aggregation and innovation and how it depends on market

size and technology generating information among agents, and concerns markets in which both

values and signal noise are heterogeneously interdependent.5

The paper also contributes to the literature on price formation in social networks, albeit

in a very special class of networks. Research examining how details of the underlying network

impact properties of prices is typically restricted to a monopolist selling to buyers embedded in

a social network (a divisible good in Candogan et al. (2011) or an indivisible good in Hartline

et al. (2008) and Akhlaghpour et al. (2010)). We further allow network models based on a

double auction, thereby accommodating markets in which both sellers and buyers are part of

the social network.

Furthermore, the existing economic network models concerning information aggregation

typically do not study the question in a market context. For example, in Acemoglu, Dahleh,

5To the best of our knowledge, apart from spatial models, our model is the first to accommodate a large

class of heterogeneity in the interdependence of signal noise.
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Lobel, and Ozdaglar (2010), the agents’ goal is to uncover the true value by sequentially

updating their decisions based on direct observations of their peers’ decisions. Our framework

allows analysis of how the market price itself aggregates information.

2 Model and Equilibrium

2.1 A Market with Heterogeneously Interdependent Demands

Consider a market for a perfectly divisible good (e.g., an asset) with  traders. Each trader 

has a quasilinear utility which is quadratic in the quantity of the asset.

() =  − 

2
2  (1)

Each trader is uncertain about how much the asset is worth. Trader uncertainty is captured

by the randomness of the intercepts of marginal utility functions . That is, each trader 

observes only a noisy signal of the true value,  =  + . Random vector { }∈ is jointly
normally distributed, noise  has expectation  () and variance 

2
, the same for all , 

has expectation  () and variance 
2
. Values and noise are uncorrelated, for all  . The

variance ratio 2 ≡ 2
2
 measures the relative importance of noise in the signal. The  × 

variance-covariance matrix of the joint distribution of values {}∈ , normalized by variance
2, specifies the matrix of preference correlations,

C ≡

⎛⎜⎜⎜⎜⎝
1 12  1

21 1  2
...

...
. . .

...

1 2  1

⎞⎟⎟⎟⎟⎠ =
©
 ( ) 

2


ª

 (2)

The  ×  variance-covariance matrix of the joint distribution of noise {}∈ , normalized by
variance 2, specifies the matrix of noise correlations,

C ≡

⎛⎜⎜⎜⎜⎝
1 12  1

21 1  2
...

...
. . .

...

1 2  1

⎞⎟⎟⎟⎟⎠ =
©
 ( ) 

2


ª

 (3)

We use the word attribute when referring to either bidder value or noise,  ∈ { }, for
each . We allow comovements of values  and noise 


 to be heterogeneous across all pairs

of agents in the market. We impose one restriction: for each trader , his attribute  is on

average correlated with other traders’ attributes ,  6= , in the same way; that is, for each
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,
1

 − 1
X
 6=

 = ̄ and
1

 − 1
X
 6=

 = ̄ (4)

Intuitively, the average correlation statistic for each attribute measures how each bidder

attribute correlates on average with the other bidders’ attributes. For some interpretations,

it will be useful to express the model in terms of total average correlations,  = 1


P
∈ 


 =

1

(1 + ( − 1) ̄),  =  . Let  ≡ 1 − 1 ( − 1) be an index of auction size;  ∈ [01].
For a sequence of auctions indexed by market size , commonality function ̄ () specifies

commonality ̄ for any market size.

2.2 Interdependent Demands: Examples

The theoretical framework described thus far fits a range applications. Here, we present several

examples of equicommonal markets, motivated by applications in industrial organization,

social networks, and financial markets. We use the word attribute when referring to either

values or noise. All models in this section are well-defined as long as they define appropriate

correlation matrices (positive semidefiniteness, symmetry, correlations between −1 and 1).
We begin with the classical model.6

Model 1 (Fundamental) The attribute of each of  bidders is determined by a common

shock plus an idiosyncratic (i.i.d.) shock. Therefore, pairwise correlations of attributes across

bidders are the same;  =   0 for all  6= . As a new bidder enters the auction, his

correlation with each of the other bidders’ attributes is equal to . The commonality function,

̄ () = , is constant in , and the average correlation is decreasing in ,

 () =
1 + ( − 1) 




Model 2 (Spatial)  bidders are located on a circle. Bidders’ attributes correlate propor-

tionally to the distance between them. If the shortest distance between bidders  and  is

 (measured by the length of the shortest path between them, the length between immediate

neighbors being 1), then  =  , where  ∈ (0 1) is a decay parameter. As a new bidder
enters the auction, the circle’s circumference increases by one. The commonality function

(assuming an odd ), ̄ () = (1− ) 2
³
1− 

1
2

1
1−
´
 (1− ), is decreasing in , and the

average correlation is decreasing in ,

 () =
1 + 

1− 
· 1− 


2




6For a more thorough interpretation of the first three models, see Rostek and Weretka (2011).
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Model 3 (Group) There are two groups of equal size 
2
. Attributes are perfectly correlated

within groups ( = 1 if  and  belong to the same group) and correlated  ∈ [−1 1] across
groups ( =  if  and  belong to different groups).7 New bidders increase both group sizes;

their attributes are perfectly correlated within their own group and correlated  with attributes

of the other group. The commonality function ̄ () = ((2− )+ ) 2 is decreasing in ,

and the average correlation is constant in ,

 () =
1 + 

2


Adopting an explicit networks interpretation, we turn to applications with a fixed auc-

tion size, , examining comparative statics with respect to statistics describing the network

structure, indexed by  = 1 2 . The exception is the Regular Network Model, in which

both auction size and network connectivity change. The Condensing Links Model captures

the idea of a social network becoming denser as new links form between bidders; for instance,

gradual exploration of the market. The Strengthening Links Model captures that existing

correlations between agents’ attributes strengthen. The Regular Network Model describes a

regular network in which each bidder is correlated with  other bidders, becoming larger and

more connected. The Spreading Attention Model captures the idea of an increasing number

of connections while the total correlation of each bidder’s attribute is preserved as the number

of agents grows.

Model 4 (Condensing Links) There is a fixed circle of  bidders without links, but with

independent attributes. At each step , for each bidder, two new links are added to connect

the bidder to the two closest unlinked bidders, each correlated by .  is an odd, fixed number

while  ≤ ( − 1) 2. The commonality function, ̄ () = (1− ) 2
¡
1− 

¢
 (1− ), is

increasing in , and the average correlation, is increasing in ,

 () =
1 + 2 + 22 + · · ·+ 2


=
1 + 2 1−



1−




Model 5 (Strengthening Links) In the Spatial Model, introduce parameter  ( ∈ (0 1))
and fix the circle of  bidders. At each step , the correlations of every bidder’s attributes get

each multiplied by −1. The commonality function, ̄ () = (1− ) 2−
³
1− ¡−¢ 12 1

1−
´

¡
1− −

¢
,

is decreasing in k and the average correlation is decreasing in ,

 () =
1 + −

1− −
· 1−

¡
−

¢ 
2




7For example, for  ∈ [0 1], attributes are determined by a fundamental shock plus a shock that is the
same for members within a group and idiosyncratic (i.i.d.) across groups.
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Model 6 (Regular Network) In a -regular network,8 let the attributes of bidders be correl-

ated  to connected bidders and 0 to non-connected bidders. As new bidders enter the market,

both the regularity of the market and the size of the market increase (as described by an non-

decreasing function  ()). The commonality function is ̄ () = (1−  ()) ( (2−  ())  (1−  ())),

and the average correlation is

 () =
1 + 

 ()


Model 7 (Spreading Attention) In the Spatial Model with  bidders, the total correlation

of each bidder with others’ attributes is fixed and equal to 2. For each step , the correlation

of each bidder’s attribute with the 2 closest neighbors is . The commonality function (for

an odd , and  ≤ ( − 1) 2) ̄ () = (1− ) 2 is constant in , and the average correlation

is constant in ,

 () =
1 + 2




2.3 Equilibrium

In finite auctions, strategic bidders shade their bid: Relative to bid shading induced by the

decreasing marginal utility itself, bids are further affected by price inference. Equilibrium

existence in equicommonal auctions requires that interdependence, and hence bid shading, be

bounded. Proposition 1 establishes a corresponding upper bound on commonality, ̄+ ( 2),

which weakens with positively correlated information (the bound is characterized in the Ap-

pendix). Additionally, in auctions with negative correlations, value commonality has to be

strictly above the lower bound of ̄−() = − (1− )  0, which is independent of information

correlations
©

ª
6=.

9 As a necessary and sufficient condition, Proposition 1 demonstrates

that a symmetric linear Bayesian Nash equilibrium in equicommonal double auctions exists for

any triple
¡
 ̄ ̄

¢
that strictly satisfies the two bounds restricting average but not pairwise

correlations.

Proposition 1 (Equilibrium Existence) There exist bounds ̄−() and ̄+( 2) such

that, in an equicommonal double auction characterized by
¡
 ̄

¢
, a symmetric linear Bayesian

Nash equilibrium exists if, and only if, ̄−()  ̄  ̄+( 2). The symmetric equilibrium

is unique.

Proposition 1 contributes by arguing equilibrium existence for divisible goods, allowing for

both heterogeneously interdependent values and information, and auctions with two bidders,

8A graph is -regular if each of its nodes is of degree .
9The lower bound is derived from the positive semidefiniteness of the variance-covariance matrix of the

data-generating process underlying the joint distribution of values and is binding only for commonality equal

to ̄− (·).
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provided ̄ − ̄  0.10 The bounds apply only to average correlations.

Proposition 2 derives the equilibrium bids for a class of markets characterized by ( ̄ ̄).

The following necessary and sufficient condition gives the best response of trader  with utility

(1) to the linear bids of bidders  6= : for any ,

 (| )−  = +  (5)

where  ≡ −( () )−1 ( − 1) is the slope of the residual supply defined for  by bids of
traders  6= , whose signals {} 6= determine the supply’s intercept. Using the first-order con-
dition (5), market clearing gives the equilibrium price ∗ = 1



P
∈  (| ∗). The conditional

expectation of the affine information structure is linear  (| ) = + ( + )++.

The inference coefficients ,  and + can be determined in terms of commonality and mar-

ket size from two conditions and the projection theorem. The parameter  is endogenized from

individual bids. Define  = 1− 1
−1 as the index of market size,  ∈ [0 1].

Proposition 2 (Equilibrium Bids) The equilibrium bid of trader  is

 () =
 − 

1− 




 () +

 − 

1− 




 −  − 


 (6)

where inference coefficients in the conditional expectation  (| ) are given by

 =

¡
1− ̄

¢
(1− ̄) + 2 (1− ̄)

 (7)

 = 
2

¡
̄ − ̄

¢
2 (1− ̄) (1 + ̄ ( − 1)) =

(2− )2
¡
̄ − ̄

¢
(1−  + ̄) ((1− ̄) + 2 (1− ̄))

 (8)

 = 1−  −  (9)

3 Price Inference and Demand Interdependence

3.1 Information Aggregation

Consider an agent who makes inference about the unknown  based on the privately observed

signal  and price . Informational efficiency of price is typically evaluated relative to what a

10For auctions with ̄ = 0, the bounds coincide with that of Rostek and Weretka (2011). For the Funda-

mental Value Model, the upper bound ̄+
¡
 2

¢
coincides with that derived by Vives (2009), assuming an

inelastic demand and downward-sloping bids.

Negative average correlation in demands weakens strategic interdependence among best responses, which

in the absence of price inference leads to non-existence of equilibrium for  = 2 (cf. Wilson (1979) and

Kyle (1989)), whereas positive average demand correlation amplifies via price informativeness the strategic

interdependence of best responses.
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bidder could learn about his value from the total information available in the market, measured

by the profile of all bidders’ signals,  ≡ {}∈ . The equilibrium price is privately revealing if,
for any bidder , the conditional c.d.f.’s of the posterior of  satisfy  (| ∗) =  (|) for
every state , given the corresponding equilibrium price ∗ = ∗(). Proposition 3 establishes

which auctions are efficient in this sense.

Proposition 3 (Aggregation of Private Information) In a finite double auction, the

equilibrium price is privately revealing if, and only if,  = ̄ and  = ̄ for all  6= .

Informational efficiency is a non-generic property of price in the class of information struc-

tures considered and is lost whenever information structure features heterogeneity in interde-

pendence among trader values or information. The argument behind the result can be related

to the dimensionality argument by Jordan (1983), who demonstrated that, whether price

aggregates information depends on the relative dimension of the payoff-relevant information

(signals  6= ) and price. Let us emphasize, however, that for each bidder, price does match

the dimension of the sufficient statistic for the signals of other bidders and is, thus, capable

of summarizing the information in the considered setting. A bidder’s sufficient statistic is a

weighted average signal, with the weights being functions of correlations C and C. Since the
price in an equicommonal auction reveals the equally weighted average signal ̄ (see (11)),

the learning instrument matches, for each bidder, the sufficient statistic only in auctions with

identical correlations.11

Given Proposition 3, beyond auctions with both identical correlations in values and in-

formation, the prediction that price aggregates more information in larger markets no longer

follows.

3.2 Price Informativeness

Returning to our central question, in a market with  traders, will an additional market

participant improve the informativeness of price for all traders? In the Gaussian setting, price

informativeness can be quantified through variance reduction by defining an index of price

informativeness as + ≡  (|)− (|∗)
 (|) (Rostek and Weretka (2011)), + ∈ [0 1]. A

uninformative price brings no reduction in variance beyond a private signal (+ = 0); a price

that, together with a private signal, reveals the value  to trader  and accomplishes full

reduction (+ = 1). Proposition 4 establishes the necessary and sufficient condition on an

equicommonal information structure for a new bidder to increase price informativeness. For

an auction of size  in a sequence of equicommonal auctions, let ∆̄ () be the change in

commonality that results from including an additional bidder.

11The generic inefficiency result is not driven by equilibrium symmetry.
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Proposition 4 (Informational Impact) Fix , ̄ and ̄ − ̄  0 (̄ − ̄  0). A

threshold   0 (respectively,   0) exists such that, in any auction that satisfies  = ̄

and  = ̄,  6= , the contribution of an additional bidder to price informativeness is strictly

positive if, and only if, ∆
¡
̄ − ̄

¢
()   (respectively, ∆

¡
̄ − ̄

¢
()  ).

It is useful to express price informativeness in terms of the total average correlations,

+ =
2
¡
 − 

¢2
( + 2) [1−  + 2 (1− )]

 (10)

The average correlations in values and noise affect price informativeness + individually

and not just as a difference ̄ − ̄. In particular, the relative importance of demand interde-

pendence through values versus noise, as captured by 2, also matters. Similarly, ̄ impacts

the inference coefficients (8) and (7) in ways ̄ does not.

We report two sufficient conditions on the monotonicity of price informativeness. Let

0 ≡ ∆+

∆
be the change in variable  resulting from increasing ,  ∈ N++, by one.

Proposition 5 (Sufficient Condition for Monotone Price Informativeness 1) Assume

that ,  are increasing and    (  ). Price informativeness + increases in the

number of bidders  if, 0


 0


³
0


 0


´
.

Note that the sufficient condition does not depend on 2. Ranking growth rates (
 0


 0

)

is equivalent to the condition
(−)0

− 
(+2)

0

+2
, which ranks the growth rate of the difference

between the two average correlations versus that of the signal variance.

Proposition 6 (Sufficient Condition for Monotone Price Informativeness 2) Assume

that +2  1+2

2
and    (  ). Price informativeness + increases in the number

of bidders  if, 0


 0


³
0


 0


´
.

3.3 Price Informativeness in Applications

The analysis thus far demonstrates that, in markets with heterogeneously interdependent val-

ues and/or noise, market growth or increasing connectivity of agents’ attributes measured by

the number or strength of links may have a non-monotone, essentially arbitrary, impact on

price informativeness (Proposition 4 and (10)). In this section, we illustrate how price inform-

ativeness is affected by market growth or changes in network connectivity in the examples

from Section 2.2.

Let us interpret Proposition 4 geometrically. For each value of + ∈ [0 1], construct
a +-curve consisting of all combinations of the average correlations

¡
 

¢
for which price

informativeness equals + (Figure 1). For + = 0, price is uninformative; this happens if, and

10



only if,  = , and the 0-curve corresponds to the 45-degree line. For an informative price,

+  0, a +-curve consists of two segments, placed on the opposite sides of the 45 degree

line. Price informativeness increases for curves located further away from the 0-curve and the

1-curve corresponding to points (0 1) and (1 0). The two schedules of each +-curve comprise

the average correlations
¡
 

¢
and

¡
1−  1− 

¢
. If 2 = 1, then price informativeness is

exchangeable in  and ; hence, +-curves are symmetric with respect to the 45 degree line.

A sequence of auctions is represented by a sequence of points
¡
 ()   ()

¢
in the case of

increasing  or
¡
 ()   ()

¢
in the case of increasing  – tracing values of +.

In an application in which attributes’ correlations are modeled as a Fundamental Value

with Fundamental Noise, price informativeness is always increasing (Figure 2).12 The con-

vexity of the price informativeness, +, with respect to market size depends on the sign of

̄ + 2̄,13 which is always positive in the fundamental models. Thus, the “marginal” price

informativeness, which is nonnegative, is always diminishing. Insofar as this translates into

diminishing welfare, a welfare trade-off may exist, depending on participation costs.14

In markets with Fundamental Value and Group Noise, price informativeness can increase

(when ̄ ≤ ), decrease (when ̄  1+
2
), or exhibit a U-shape, dropping to zero for an

intermediate market size. In markets with Fundamental Value and Spatial Noise, depending

on the relative correlation of value and noise, price informativeness may increase to reach a

maximum value in a small market, then, as the market grows further, diminish to zero to

increase again (e.g., when ̄ = 02 and  = 09); when ̄ = 06 and  = 08, the small

market maximum is local while price informativeness is maximal in the large limit market.

Turning to network models, when the link formation corresponds to a Condensing Network

for Values with a Condensing Network for Noise, price informativeness is always increasing

in the number of links in values and noise. This is surprising given that, in general, the

average correlations in value and in noise work against each other.15 One can show that the

12To determine monotonicity, price informativeness of the Fundamental Value with Fundamental Noise can

be written as

+ =
2
¡
̄ − ̄

¢2³
1+2

−1 + ̄ + 2̄
´ ¡
1− ̄ + 2 (1− ̄)

¢ 
13The second derivative of price informativeness with respect to market size in the Fundamental Value and

Fundamental Noise model is (treating  as a real number)

+00 = − ¡̄ + 2̄
¢ 22

¡
1 + 2

¢ ¡
̄ − ̄

¢2¡
1− ̄ + 2 (1− ̄)

¢ ¡
1 + 2 + ( − 1) ¡̄ + 2̄

¢¢3 
14In markets with negative uniform correlations in values and noise, the marginal price informativeness is

increasing in market size; thus, no such trade-off occurs.
15If   , when  is held fixed, an increase in  decreases price informativeness and when  is held fixed,

an increase in  increases informativeness. On the other hand, if   , when  is held fixed, an increase

in  decreases price informativeness and when  is held fixed, an increase in  increases informativeness.

For a helpful visualization, see the price informativeness map in Figure 1.
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attribute with the higher average correlation gives rise to a higher growth rate in the average

correlation.16 Similarly, in networks with Strengthening Links for Values and Strengthening

Links for Noise, price informativeness is always increasing due to the fact that the attribute

with the higher average correlation gives rise to the higher growth rate, while both average

correlations are increasing,17 which, along with increasing average correlations, by Proposition

5 implies the monotonicity.

In networks described by Regular Network for Value with Regular Network for Noise,

although connectedness of the network, , increases, this does not necessarily increase price

informativeness as the market grows. Price informativeness may diminish for a small number

of individual links for small market sizes, achieve a minimum at a non-zero level, and increase

with further increases in  and  (this is the case for small markets,  ≤ 10, with  = 2,

 = 0099 and  = 08). For fixed market size,  () = , price informativeness is monotone

by Proposition 5 for positive ,18 and by Proposition 6 for negative .19
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Appendix

Proof: Proposition 2 (Equilibrium Bids) Imposing market clearing on conditions(5),

the equilibrium price satisfies ∗ = 1


P
∈  (| ∗). Using the conditional expectations
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 (| ) = + ( + ) +  + , the equilibrium price is

∗ =
+ ( + )

1− 
+



1− 
̄ (11)

where ̄ = 1


P
∈ . By (11), random vector (  

∗) is jointly normally distributed,⎛⎜⎝ 



∗

⎞⎟⎠ = N

⎡⎢⎣
⎛⎜⎝  ()

 ()

 ()

⎞⎟⎠ 

⎛⎜⎝ 2 2  ( 
∗)

2 2 + 2  ( 
∗)

 (∗ )  (∗ )   (∗)

⎞⎟⎠
⎤⎥⎦  (12)

Covariances of the joint distribution are given by

 ( 
∗) =

1





1− 

¡
1 + ( − 1) ̄¢2 (13)

 ( 
∗) ==

1





1− 

¡
1 + 2 + ( − 1) ¡̄ + ̄2

¢¢
2 (14)

and

  (∗) =
1



µ


1− 

¶2 ¡
1 + 2 + ( − 1) ¡̄ + ̄2

¢¢
2 (15)

Applying the projection theorem20 and the method of undetermined coefficients yields determ-

ines the inference coefficients  and , (7) and (8), respectively. By  () =  () =  (),

coefficient , (??), is obtained. By (5), the equilibrium bid is

 () =
1

(− ( () )−1 ( − 1)) [ () +  − (1− ) ]  (16)

where  ()  is constant in the linear equilibrium. Solving the price derivative of (16) for

the bid slope gives  ()  = − ( − ) , and the equilibrium bids (6). Q.E.D.

Proof: Proposition 1 (Existence of Equilibrium) (Only if ) The bid profile (6),  ∈ ,

from Proposition 2 constitutes an equilibrium with downward-sloping bids only if the slope of

the residual supply  satisfies∞    0. This implies     −∞, which, by (8), requires

̄ 6= − (1− )  (17)

20Let  and  be random vectors such that ( ) ∼ (Σ), where

 ≡
µ




¶
and Σ ≡

µ
Σ Σ
Σ Σ

¶


are partitional expectations and variance covariance matrix and Σ is positive definite. The distribution of

 conditional on  is normal and given by (|) ∼ ( +ΣΣ
−1
(− )Σ −ΣΣ−1Σ).
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Since for any random vector {}∈ , ̄ ≥ − (1− ) holds, the lower bound on the commonality

then follows from condition (17): ̄  − (1− ) ≡ ̄− (). The upper bound derives from

condition   , which by (8) is equivalent to

(2− )2
¡
̄ − ̄

¢
(1−  + ̄) ((1− ̄) + 2 (1− ̄))

 

and

̄ 
2 − (2− )2 +

q
[(2− )2 − 2]

2
+ 4 [ (1−  + 2) + 2 (1− )2̄]

2
≡ ̄+

¡
 2

¢


For  = 0, define the upper bound ̄+ (0 2) as the limit of ̄+ ( 2) as  → 0, ̄+ (0 2) ≡
0. (If ) Fix bids (6) for bidders  6= . For any commonality ̄ such that ̄−()  ̄ 

̄+( 2), the first-order condition (5) is then necessary and sufficient for optimality of the

bid (6), for any price, for each . Therefore, the bids from Proposition 2 constitute a unique

symmetric linear Bayesian Nash equilibrium. Q.E.D.

Proof: Proposition 3 (Aggregation of Private Information) (Only if ) Assume

that the equilibrium price is privately revealing, that is, the posterior distributions coincide,

 (| ∗) =  (|) for every  and , given the equilibrium price ∗ = ∗ (). Fix . Since

the price is a deterministic function of the average signal (by (11)),  (| ∗) =  (| ̄)
holds.

Applying the projection theorem to ( ),  (| ̄) = 0 +  · , where  =  for all

  6=  in the vector of constants  = (1  2   ). Equality  (| ̄) =  (|) for all
 implies that the coefficients multiplying each ,  ∈ , are the same in the two conditional

expectations. Hence, in  (|), the coefficients satisfy  =  for all   6= .

Let Σ ≡ 2C+2C be the variance-covariance matrix of signals {}∈ and let Σ =

{ ( )}∈ be the row vector of covariances. Using the positive semidefiniteness of C and
C, and hence Σ, and applying the projection theorem, coefficients  ∈  in expectation

 (|) are characterized by  = ΣΣ
−1
 . For any  6= , write the  row of (Σ)


=

Σ as,  ( ) =
P

∈ ( ( ) +  ( ))  . Using  ( ) =  ( ) and

 =  for all   6= , the  row can be written as

 ( ) = 

ÃX
 6=

 ( ) +
X
 6=

 ( )

!
+
¡
 − 

¢
( ( ) +  ( )) 

(18)
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(18) gives

 ( ) =
 ( − 1)

¡
2̄

 + 2̄

¢

1− ¡ − 
¢ +

¡
 − 

¢
 ( )

1− ¡ − 
¢  (19)

Applying the projection theorem to (  ̄), coefficients ̄ ∈ 2 in expectation  (| ̄)
are characterized by ̄ = Σ(̄)Σ

−1
(̄)(̄)

, the first row of which is

 ( ) =
¡
2 + 2

¢
 +  ( ̄) ̄ (20)

By (19) and (20), and since  =  for all   6= ,  ( ) =  ( ) for all   6= 

and hence, by equicommonality of C,  = ̄ for all  6= . Since the argument holds for any

, it follows that  = ̄ for all pairs  ,  6= . Then, by (19) and equicommonality of C,
 = ̄ for all  6= , and  = ̄ for all pairs  ,  6= . (If ) The argument from Rostek

and Weretka (2011) applies. Q.E.D.

Proof: Proposition 4 (Informational Impact) The projection theorem gives conditional

variances   (|) and   (| ∗), from which price informativeness + is derived.

  (|) = 2 −
4

2 + 2

  (| ∗) = 2 −
4  (

∗)− 22 (∗ )  ( ∗) + (2 + 2) [ ( 
∗)]2

(2 + 2)  (
∗)− [ (∗ )]2



+ ≡   (|)−   (| ∗)
  (|)

=
1

2

"
(1 + 2)

2
[ ( 

∗)]2 + [ ( ∗)]
2 − 2 (1 + 2)  (∗ )  ( ∗)

(2 + 2)  (
∗)− [ (∗ )]2

#

Substituting from (13), (14), and (??), and using 2 = 2
2
, we have

+ =
2
¡
̄ − ̄

¢2
(1 + 2)

2
(1− ) +  (̄ + ̄2) (1 + 2)− (̄ + ̄2)

2
=

2
¡
 − 

¢2
( + 2) [1−  + 2 (1− )]



(21)

Let  ≡ ̄ − ̄. Given ̄, equation (21) is quadratic in  and has roots

 =
+ (1 + 2) ( − 2̄)± (1 + 2)

q
+22 + 4+

£
(1− )

¡
2 + +

¢
+ 2̄ ( − ̄)

¤
2
¡
2 + +

¢ 

(22)

For any + ∈ [0 1] and  ∈ [0 1), (22) gives the values of  that induce price informat-
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iveness equal to +. For +  0, equation (21) has a positive and a negative root. For a

fixed pair
¡
 ̄

¢
and the corresponding +, the threshold  is determined as the change in

 that maintains constant the value of price informativeness + with an additional trader,

whose inclusion increases  by ∆ ≡ 1 [ ( − 1)] = (1− )
2
 (2− ). Using (22) for   0,

threshold  can be found,

 =
(1 + 2)

2
¡
2 + +

¢ ∙+∆ +

q
+2 ( +∆)

2
+ 4+

£
(1−  −∆)

¡
2 + +

¢
+ 2̄ ( −∆ − ̄)

¤
q
+22 + 4+

£
(1− )

¡
2 + +

¢
+ 2̄ ( − ̄)

¤


The positive root in (22) is decreasing in  and increasing in +, hence   0. The threshold

for   0 is derived analogously. Q.E.D.

Proof: Proposition 5 (Sufficient Condition for Monotone Price Informative-

ness)

+ ()− + ( − 1)  0
is equivalent to

¡
 − 

¢2 ¡
−1 + 2−1

¢ £
1− −1 + 2

¡
1− −1

¢¤− ¡−1 − −1
¢2 ¡

 + 2
¢ £
1−  + 2 (1− )

¤¡
 + 2

¢ ¡
−1 + 2−1

¢  0

since
¡
 + 2

¢ ¡
−1 + 2−1

¢
 0, we have

¡
 − 

¢2 h¡
−1 + 2−1

¢ ¡
1 + 2

¢− ¡−1 + 2−1
¢2i

(23)


¡
−1 − −1

¢2 h¡
 + 2

¢ ¡
1 + 2

¢− ¡ + 2
¢2i

¡
 − 

¢2 ¡
−1 + 2−1

¢ £¡
1 + 2

¢− ¡−1 + 2−1
¢¤


¡
−1 − −1

¢2 ¡
 + 2

¢ £¡
1 + 2

¢− ¡ + 2
¢¤


For + ()− + ( − 1)  0, it is sufficient that

 + 2  −1 + 2−1

 − −1 + 2
¡
 − −1

¢
 0 (24)

Q.E.D.
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Special cases:

If ̄ = 0, then

 =
1− ̄

1− ̄ + 2


 =
(2− ) 2̄

(1−  + ̄) (1− ̄ + 2)
= 

(2− ) 2̄

(1− ̄) (1−  + ̄)


If ̄ = 0, then

 =
1

1 + 2 (1− ̄)


 =
− (2− )2̄

(1− ) (1 + 2 (1− ̄))
= −(2− )

(1− )
2̄



Alternative conditions for monotonicity of price informativeness:21 (1) Assume that

̄ and ̄ do not change with . + ()− + ( − 1)  0 if, and only if,

2
¡
̄ − ̄

¢2
(1 + 2)

[(1 + 2)− (̄ + 2̄)]

1

[(1 + 2) + ( − 1) (̄ + 2̄)] [(1 + 2) + ( − 2) (̄ + 2̄)]
 0

which is equivalent to£¡
1 + 2

¢
+ ( − 1) ¡̄ + 2̄

¢¤ £¡
1 + 2

¢
+ ( − 2) ¡̄ + 2̄

¢¤
 0

If ̄ ̄  0, then + () − + ( − 1)  0. If ̄ ̄  0, then for  = 2, + () −
+ ( − 1)  0, for  = 3, parameter values matter, then for  large enough, + () −
+ ( − 1)  0.

Next, allow ̄ and ̄ to change with .

21Another once but improper:

+ =
22£

(1 + 2)
¡
1−  + ̄

¢
+ 

¤ £
(1 + 2)

¡
1− ̄

¢− 
¤

=
( − 1)22£

(1 + 2)
¡
1 + ( − 1) ̄¢+  ( − 1)¤ £(1 + 2)

¡
1− ̄

¢− 
¤

Differentiating with respect to , we obtain

+0 =
22

(1 + 2)
£¡
1 + ( − 1) ̄¢+  ( − 1)¤2 £(1 + 2)

¡
1− ̄

¢− 
¤

where we used that
¡
1 + 2

¢ ¡
1− ̄

¢−   0.
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+ () =
( − 1)2 ¡̄ ()− ̄ ()

¢2
[(1 + 2) + ( − 1) (̄ () + ̄ ()2)] [(1 + 2)− (̄ () + ̄ ()2)]

(2) If  − −1  −2
¡
 − −1

¢
, then + ()− + ( − 1)  0 if¡

 + 2
¢
+
¡
−1 + 2−1

¢
 1 + 2 (25)

Using  − −1  −2
¡
 − −1

¢
, (25) gives  + 2 

1+2

2


If  − −1  −2
¡
 − −1

¢
, then + ()− + ( − 1)  0 if¡

 + 2
¢
+
¡
−1 + 2−1

¢
 1 + 2 (26)

Using  − −1  −2
¡
 − −1

¢
, (26) gives  + 2 

1+2

2
.

Proof : Back to (23), for + ()− + ( − 1)  0, it is sufficient thath¡
−1 + 2−1

¢ ¡
1 + 2

¢− ¡−1 + 2−1
¢2i


h¡
 + 2

¢ ¡
1 + 2

¢− ¡ + 2
¢2i£¡

 + 2
¢− ¡−1 + 2−1

¢¤ £¡
 + 2

¢
+
¡
−1 + 2−1

¢¤


£¡
 + 2

¢− ¡−1 + 2−1
¢¤ ¡
1 + 

If
¡
 + 2

¢

¡
−1 + 2−1

¢
, then for + ()− + ( − 1)  0, it is sufficient that¡

 + 2
¢
+
¡
−1 + 2−1

¢
 1 + 2

 + 2 
1 + 2

2


If
¡
 + 2

¢

¡
−1 + 2−1

¢
, then for + ()− + ( − 1)  0, it is sufficient that¡

 + 2
¢
+
¡
−1 + 2−1

¢
 1 + 2

 + 2 
1 + 2

2


Q.E.D.
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