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Extended Abstract

This paper studies the asymptotic and finite-sample performance of penalized re-

gression methods when different selectors of the regularization parameter are used under

the assumption that the true model is, or is not, included among the candidate model.

In the latter setting, we relax assumptions in the existing theory to show that several

classical information criteria are asymptotically efficient selectors of the regularization

parameter. In both settings, we assess the finite-sample performance of these as well

as other common selectors and demonstrate that their performance can suffer due to

sensitivity to the number of variables that are included in the full model. As alterna-

tives, we propose two corrected information criteria which are shown to outperform the

existing procedures while still maintaining the desired asymptotic properties.

In the non-true model world, we relax the assumption made in the literature that

the true error variance is known or that a consistent estimator is available to prove

that Akaike’s information criterion (AIC), Cp and Generalized cross-validation (GCV )

themselves are asymptotically efficient selectors of the regularization parameter and
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we study their performance in finite samples. In classical regression, AIC tends to

select overly complex models when the dimension of the maximum candidate model is

large relative to the sample size. Simulation studies suggest that AIC suffers from the

same shortcomings when used in penalized regression. We therefore propose the use of

the classical AICc as an alternative. In the true model world, a similar investigation

into the finite sample properties of BIC reveals analogous overfitting tendencies and

leads us to further propose the use of a corrected BIC (BICc). In their respective

settings (whether the true model is, or is not, among the candidate models), BICc

and AICc have the desired asymptotic properties and we use simulations to assess their

performance, as well as that of other selectors, in finite samples for penalized regressions

fit using the Smoothly clipped absolute deviation (SCAD) and Least absolute shrinkage

and selection operator (Lasso) penalty functions. We find that AICc and 10-fold cross-

validation outperform the other selectors in terms of squared error loss, and BICc

avoids the tendency of BIC to select overly complex models when the dimension of the

maximum candidate model is large relative to the sample size.

KEY WORDS: Akaike information criterion; Bayesian information criterion; Least ab-

solute shrinkage and selection operator; Model selection/ Variable Selection; Penalized

regression; Smoothly clipped absolute deviation.

1 Introduction

Regularized (or penalized) regression methods have been widely used in recent years due to

the increased availability of large data sets. In classical regression, variable selection (looking

over all possible sets of predictors in a model) is commonly done using the Leaps and Bounds

algorithm (Furnival and Wilson, 1974) but this method becomes infeasible when the number

of predictors is much larger than 30 (Hastie et al., 2009). In contrast, in regularized regression

increasing the amount of regularization increases the number of estimated coefficients that are

set equal to zero thus performing “automatic” variable selection through the data-dependent

choice of the regularization parameter, λ. For most penalty functions efficient algorithms
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exist to compute the estimated models over a regularization path making it possible to do

variable selection in high dimensions.

The performance of the estimated model heavily depends on the choice of the regulariza-

tion parameter. In regularized regression several classical model selection procedures have

been heuristically applied as selectors of this parameter including information criteria such

as Akaike’s information criterion (AIC; Akaike, 1973), the Bayesian information criterion

(BIC; Schwarz, 1978), and Generalized cross-validation (GCV ; Craven and Wahba, 1978)

as well as data based selection procedures such as k-fold cross-validation (see, e.g., Fan and

Li, 2001, Zou et al., 2007, Wang et al., 2007, and Zhang et al., 2010 for applications of these

selectors to penalized regression estimators). The statistical properties of these model selec-

tion procedures have been widely studied in the context of classical regression and an ongoing

research problem is to determine if these properties carry over to the context of penalized

regression.

The asymptotic performance of model selection procedures can be studied under two im-

portant and distinct settings: (1) when the true model is not among the candidate models

(the “non-true model world”) and (2) when the true model is among the candidate models

(the “true model world”). In the non-true model world a reasonable goal is efficient model

selection, meaning that we would like to select the model that asymptotically performs the

best amongst the candidate models. In contrast, in the true-model world most of the lit-

erature focuses on consistent model selection, meaning that the probability that the true

model is chosen is asymptotically 1. Although the non-true model world has been exten-

sively studied in classical regression (e.g., Shibata, 1981, Li, 1987, Hurvich and Tsai, 1989,

1991, Shao, 1997, and Burnham and Anderson, 2002) the majority of the research on model

selection in penalized regression has focused on the true model world (e.g., Leng et al., 2006,

Zou et al., 2007, and Wang et al., 2007). We feel that the non-true model world is more

realistic in many situations since the data-generating process is likely to be too complex to

know exactly. This setting should be of particular interest to researchers and data analysts in
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areas such as social science and environmental health where a large number of predictors are

expected to influence the dependent variable (too many to include in model fitting; Gelman,

2010) as well as machine learning where the goal is typically not to uncover the true data

generating process but rather to find a model that can predict well.

To study model selection in regularized regression we consider the model

yn = µn + εn

where yn = (y1, . . . , yn)T is the n× 1 response vector, µn = (µ1, . . . , µn)T is a n× 1 unknown

mean vector and the entries of the n × 1 error vector εn are independent and identically

distributed (iid) with mean 0 and variance σ2. The mean vector is estimated by µ̂n(λ) =

Xnβ̂n(λ) where Xn = (x1, . . . ,xn)T is a n×dn matrix of predictors and β̂n(λ) is the estimator

which minimizes the penalized least squares function

1

n

n∑
i=1

(yi − xiβ)2 +
dn∑
j=1

pλ(|βj|)

with respect to β ∈ Rdn where dn is the total number of predictors. This function consists

of the residual sum of squares plus a penalty term which penalizes against model complexity

and the size of the estimated coefficients, where the amount of penalization is controlled

through the choice of λ. The minimum and maximum values that λ takes on are denoted by

λmin and λmax, respectively.

Recently, Zhang et al. (2010) (hereafter ZLT) explored the use of the Generalized infor-

mation criterion (Nishii, 1984),

GICLS
κn (λ) =

1

n

{
n∑
i=1

(yi − xiβ̂n(λ))2 + κnσ
2dfn(λ)

}
,

for choosing the regularization parameter λ for non-concave penalized estimators in both

the non-true model world and the true-model world. Here dfn(λ) is the effective degrees of
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freedom. They showed that “AIC-type” versions of GICLS
κn (κn → 2) are efficient in the

former case, while “BIC-type” versions of GICLS
κn (κn →∞ and κn/

√
n→ 0) are consistent

in the latter case. Unfortunately, the formula for GICLS
κn includes the true error variance,

σ2, and their proofs operate under the assumption that this is known or that a consistent

estimator is available. If the true model is not included in the set of candidate models then

a consistent estimator of the true error variance may not be known (Shao, 1997) making the

efficiency proofs of ZLT not applicable in practice.

This motivates us to extend the ZLT results in various ways. First, we show that the

feasible version of GICLS
2 , which corresponds to the well-known Cp measure (Mallows, 1973),

is in fact efficient in the non-true model world. Second, we show that AIC and GCV , which

do not require a consistent estimator of σ2, are also efficient. Third, we show that although

several model selection procedures may be asymptotically optimal, performance varies in

finite samples. Specifically, we study performance when the number of predictors is allowed

to be large relative to the sample size and show that AIC, BIC, Cp, and GCV all have a

tendency to sometimes catastrophically overfit (lead to λ values approaching 0). In classical

regression Hurvich and Tsai (1989) showed that AIC has a tendency to select overly complex

models when the dimension of the maximum candidate model is large relative to the sample

size and, recently, Chen and Chen (2008) showed that BIC suffers from the same issues.

Hurvich and Tsai (1989) proposed a corrected version of AIC (AICc) and we further propose

the corrected BIC (BICc) which is a simple analogue of AICc for the true model world.

We show that these corrected versions preserve their respective asymptotic properties, but

avoid the tendency of these methods to select overly complex models. We use Monte Carlo

simulations to illustrate the properties of these methods in finite samples and compare their

performance against the data-dependent method 10-fold CV . These results apply to a wide

range of penalized regression estimators, including both non-concave penalized estimators and

the well-known Least absolute shrinkage and selection operator (Lasso) estimator (Tibshirani,

1996).
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K-fold CV is commonly used to select tuning parameters in both the statistical and

machine learning literature. It operates by first randomly dividing the data set into k roughly

equally sized subsets, then for each subset, the prediction error is computed based on the

model fit using the data excluding that subset. The tuning parameter that minimizes the

average square error computed across the subsets is then selected. In classical regression it

has been shown that it should have the same asymptotic properties as GICLS
κn with

κn =
2k − 1

k − 1

(Shao, 1997). Applying this result, 10-fold CV should have the same asymptotic performance

as GICLS
κn with κn = 2.11 implying that its behavior should be more closely related to

the behavior of an efficient information criterion rather than a consistent one. Under the

assumption of an orthonormal design matrix, Leng et al. (2006) showed that if the Lasso

estimated model minimizes the prediction error then it will fail to select the true model with

non-zero probability. The authors noted that this suggests that k-fold CV is inconsistent,

but to our knowledge, the asymptotic properties of k-fold CV have not been fully established

in the context of penalized regression. While a rigorous extension of the classical theory for

k-fold CV is beyond the scope of this paper, the simulation results suggest that the same

asymptotic properties apply.

The remainder of the paper is organized as follows. Section 2 briefly defines the model

set-up and the model selection procedures that will be studied. Section 3 establishes the

efficiency results for Cp, AIC, GCV and AICc without the assumption that the true popu-

lation variance is known or that a consistent estimator exists, and explores the finite-sample

behavior of the different selectors. Section 4 focuses on the true model world and studies

with simulations the finite-sample performance of BIC and its corrected versions when the

number of predictors is allowed to be large relative to the sample size. Concluding remarks

are given in Section 5 and technical proofs are included in the supplementary material.
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2 Model Set-up and Definition of Terms

Adopting the notation from ZLT, we let the index set An denote the class of all candidate

models and we assume that ᾱ = {1, . . . , dn} is the largest model in An. For any α ∈ An,

we define dn(α) to be the number of predictor variables included in the candidate model.

We further define the least squares estimated mean vector by µ̂∗n(α) = Xn(α)β̂
∗
n(α) where

Xn(α) is the matrix of predictors that are included in candidate model α and β̂
∗
n(α) is the

corresponding vector of the estimated least squares coefficients. The associated projection

matrix is Hn(α) = Xn(α)(X′n(α)Xn(α))−1X′n(α). For a given λ, we define αλ to be the

model α ∈ An whose predictors are those with non-zero coefficients in the penalized estimator

β̂n(λ) and let dfn(λ) denote the effective degrees of freedom. The least squares estimated

mean vector based on the model αλ is denoted by µ̂∗n(αλ) = Xn(αλ)β̂
∗
n(αλ). In this equation,

Xn(αλ) is the matrix of predictors whose coefficients are not shrunk to zero in the penalized

estimator β̂n(λ) and β̂
∗
n(αλ) are the estimated coefficients from the least squares model fit

using these predictors. The associated projection matrix in this case is defined as Hn(αλ) =

Xn(αλ)(X
′
n(αλ)Xn(αλ))

−1X′n(αλ).

If we assume that we are in the non-true model world, then a reasonable goal is efficient

model selection. The L2 loss is commonly used to assess the predictive performance of an

estimator and is calculated as

L(β̂n(λ)) =
||µn − µ̂n(λ)||2

n
.

For the efficiency proofs we further require the following notation. In classical regression the

risk function is defined as

R(β̂
∗
n(α)) = E

(
||µn − µ̂∗n(α)||2

n

)
= ∆n(α) +

σ2dn(α)

n

where ∆n(α) = ||µn −Hn(α)µn||2/n. Letting dn(αλ) denote the number of predictors with
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non-zero coefficients in the penalized estimator β̂n(λ), we further define the function

R̃(β̂
∗
n(αλ)) = ∆n(αλ) +

σ2dn(αλ)

n

which is a random variable.

If we let λ̂n denote the regularization parameter selected by a given selection procedure,

then the procedure is defined to be asymptotically loss efficient if

L(β̂n(λ̂n))

infλ∈[0,λmax] L(β̂n(λ))
→p 1

and β̂n(λ̂n) is said to be an asymptotically loss efficient estimator. If instead it is assumed

that there exists a unique (minimal) true model, α0, in the set of candidate models then the

common goal in the literature is consistent model selection. If λ̂n denotes the regulariza-

tion parameter selected by a given selection procedure, then the procedure is defined to be

asymptotically consistent if

P (αλ̂n = α0)→ 1

and β̂n(λ̂n) is said to be an asymptotically consistent estimator.

2.1 Choice of Penalty Function

The theory and simulations presented here consider two penalized regression estimators. The

Smoothly clipped absolute deviation (SCAD) penalty function was proposed by Fan and Li

(2001). This penalty function is defined by

p′λ(β) = λ

{
I(β ≤ λ) +

(aλ− β)+
(a− 1)λ

I(β > λ)

}

for some a > 2 and β > 0. Fan and Li (2001) recommended setting the second tuning

parameter in the SCAD penalty function, a, equal to 3.7 and this is commonly done in
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practice; however, doing so will not necessarily guarantee that the SCAD objective function

is convex and can result in convergence to local, but non-global, minima. As a result, in

addition to studying the performance of SCAD with a = 3.7 (SCAD, 3.7), we study the

performance of SCAD where a = max(3.7, 1 + 1/c∗) (SCAD) where c∗ is the minimum

eigenvalue of n−1X′nXn. The latter choice will force the objective function to be convex

(Breheny and Huang, 2011).

The wide use of SCAD is mainly due to the fact that it satisfies the “oracle property.”

This means that, assuming that the true model is in the set of candidate models and subject

to certain regularity assumptions, there exists a sequence {λn} such that if λn → 0 and

√
nλn → ∞ then with probability tending to one the SCAD-estimated regression based

on the full model will correctly zero out any zero coefficients and have the same asymptotic

distribution as the least squares regression based on the correct model. This result was proven

originally for dn fixed by Fan and Li (2001) and was extended to the case where dn < n but

dn →∞ by Huang and Xie (2007). These results are for an unknown deterministic sequence

which needs to be estimated in practice.

Another common choice for the penalty function is the Lasso proposed by Tibshirani

(1996). The Lasso penalty is the L1-norm of the coefficients. Necessary and sufficient con-

ditions have been established for the Lasso to perform consistent model selection (Zhao and

Yu, 2006), but in general the Lasso produces biased estimates and does not satisfy the or-

acle property (Zou, 2006). However, in the non-true model world, the oracle property has

no meaning, since there is no true model. Further, the oracle property is an asymptotic

property. Therefore, we include the Lasso in the simulation studies.

In all examples, the Lasso regressions are fit using the R lars package (Hastie and Efron,

2011) and the SCAD regressions are fit using the R ncvreg package (Breheny and Huang,

2011). The lars package computes the entire regularization path for the Lasso and for SCAD

the models are fit over a grid of 200 λ values from λmin to λmax, where the first 100 values of

λ are fit on a log-scale and the last 100 values of λ are equally spaced. Breheny and Huang
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(2011) considered a grid of 100 λ values in their simulation studies. We have chosen a grid

that is twice as fine in order to remain closer to the theoretical assumption that all possible

values of λ are considered. In all simulations, λmax is selected so that all of the estimated

coefficients are zero and λmin is chosen to effectively produce the least squares estimate on

the full model.

2.2 Model Selection Procedures

In addition to 10-fold CV, we study the performance of several information criteria. Specifi-

cally, we consider

AICλ = log(σ̂2
n(λ)) + 2

dfn(λ)

n
,

AICcλ = log(σ̂2
n(λ)) + 2

dfn(λ) + 1

n− dfn(λ)− 2
,

BICλ = log(σ̂2
n(λ)) + log(n)

dfn(λ)

n
,

GCVλ =
σ̂2
n(λ)

(1− dfn(λ)/n)2
,

and

Cpλ = σ̂2
n(λ) + 2

dfn(λ)σ̃2
n

n
.

In the above we define

σ̂2
n(λ) =

||yn −Xnβ̂n(λ)||2

n

and

σ̃2
n =
||yn −Xnβ̂

∗
n(ᾱ)||2

n− dn − 1
.

With the exception of 10-fold CV, all of the above model selection procedures require a

definition of the effective degrees of freedom for the penalized regression method. In what

follows, we use a heuristic definition and define the effective degrees of freedom to be the

number of non-zero coefficients in β̂n(λ) and denote this by dn(αλ). Zou et al. (2007) proved
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that the number of non-zero coefficients is an unbiased estimator of the degrees of freedom

for the Lasso. For SCAD, Fan and Li (2001) proposed setting the degrees of freedom equal

to the trace of the approximate linear projection matrix. Based on Proposition 1 from ZLT,

our efficiency proofs would still hold if this alternate definition is used.

3 Non-True Model World

We show here that assuming that the true model is not in the set of candidate models

Cpλ , AICλ, GCVλ, and AICcλ are efficient selectors of the regularization parameter. The

dimension of the full model, dn, is allowed to tend to infinity with n but it is assumed that

dn/n→ 0. The efficiency proofs operate under the same assumptions as those of ZLT, which

are presented here for completeness:

(A1) ( 1
n
X′nXn)−1 exists and its largest eigenvalue is bounded by a constant number C.

(A2) Eε4q1 <∞, for some positive integer q.

(A3) The risks of the least squares estimators β̂
∗
n(α) satisfy

∑
α∈An

(nR(β̂
∗
n(α)))−q → 0.

(A4)

sup
λ∈[0,λmax]

||bn||2

R̃(β̂
∗
n(αλ))

→p 0,

where bn is a dn × 1 vector where bn,j = p′λ(|β̂nj(λ)|)sgn(β̂nj(λ)) for all j such that

|β̂nj(λ)| > 0 and is equal to 0 otherwise.

The first three assumptions are common in the literature on model selection. Assumption

(A4) is the only assumption that involves the penalty function and the authors provided three

sufficient conditions for the assumption to be satisfied. It is important to note that although
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ZLT only studied non-concave penalty functions, if the non-zero estimated coefficients, β̂
1

n(λ),

satisfy a relationship of the form

β̂
1

n(λ) = (X′n(αλ)X
′
n(αλ))

−1Xn(αλ)yn +

(
1

n
X′n(αλ)X

′
n(αλ)

)−1
b1
n

with probability tending to 1 and (A4) is satisfied, then the efficiency proofs will hold for any

penalty function. In particular, based on Lemma 2 of Zou et al. (2007), the Lasso satisfies

this relationship and the same sufficient conditions provided by the ZLT for (A4) can be

used. Therefore, the efficiency proofs will hold for the Lasso so it is interesting to compare

the performance of the two penalty functions.

The asymptotic efficiency of Cpλ is given by the following result.

Theorem 1. Under the assumptions of ZLT and that dn/n→ 0 as n→∞, the regularization

parameter, λ̂n, selected by minimizing

Cpλ = σ̂2
n(λ) +

2dn(αλ)σ̃
2
n

n

yields an asymptotically loss efficient estimator, β̂n(λ̂n).

To further establish the efficiency of AICλ, GCVλ and AICcλ we require the following

two results.

Theorem 2. Under the assumptions of ZLT and that dn/n→ 0 as n→∞, the regularization

parameter, λ̂n, selected by minimizing

Γn(λ) = σ̂2
n(λ)

(
1 +

2dn(αλ)

n

)

yields an asymptotically loss efficient estimator, β̂n(λ̂n).

Theorem 3. Under the assumptions of Theorem 2, any information criterion that can be
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written in the form

Γ̃n(λ) = σ̂2
n(λ)

(
1 +

2dn(αλ)

n
+ δn(λ)

)
where

sup
λ∈[0,λmax]

|δn(λ)| →p 0 (C1)

and

sup
λ∈[0,λmax]

|δn(λ)|
L(β̂n(λ))

→p 0, (C2)

is an asymptotically loss efficient procedure for selecting λ.

Condition (C2) in Theorem 3 is a stronger assumption than in the analogous result

established by Theorem 4.2 in Shibata (1980) for selecting the optimal order of a linear

process, but Theorem 3 is sufficient to show that AICλ, GCVλ, and AICcλ are asymptotically

loss efficient model selection procedures for the regularization parameter. All three methods

can be shown to satisfy (C1) and (C2) using Taylor series expansions. The details are

provided in the supplementary material.

3.1 Finite Sample Performance

In this section we study the finite sample performance of the model selection procedures

discussed in Section 2.2 when the true model is not included in the set of candidate models.

The first set of simulations considers a trigonometric regression where the candidate models

are in the neighborhood of the true model but never include the true model. This example

is in line with the framework considered by Shibata (1980) and Hurvich and Tsai (1991).

The second set of simulations look at an example where there is an omitted predictor. For

example, the researcher may have access to some of the relevant predictors but may be

missing others. This is the setting that was considered by ZLT.

In all of the examples, the results are based on 1000 realizations of samples with n =

50, 100, and 150, and the selection procedures are evaluated based on their L2 loss efficiency,
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L2 loss, and the variability of the selected number of non-zero coefficients. For each realiza-

tion, if we let λ̂ denote the regularization parameter selected by a given selection procedure,

then the loss efficiency is computed as

L(β̂n(λ̂n))

minλ∈[0,λmax] L(β̂n(λ))
.

3.1.1 Trigonometric Regression

Here we consider a trigonometric example based on an example studied in Hurvich and Tsai

(1991). The true model is the model described as

yi = e4i/n + εi

for i = 1, . . . , n, where εi
iid∼ N(0, σ2). The candidate models are SCAD and Lasso penalized

regressions where the matrix of predictors, Xn = (x1
n,x

2
n), is a n×dn matrix with components

defined by

x1i,j = sin

(
2πj

n
i

)
and,

x2i,j = cos

(
2πj

n
i

)
for j = 1, . . . , dn/2 and i = 1, . . . , n. The maximum number of predictors is allowed to vary

by letting the dimension dn = 2bnc/2c. We consider values of c on the grid (0.5, 0.7, 0.9, 0.98).

Note that examining dn close to n allows study of high-dimensional data problems, and is in

the spirit of simulations performed in Tibshirani (1996) and Zou and Hastie (2005). Since

the predictor variables are orthogonal in this example, setting a = 3.7 for SCAD satisfies the

convexity constraint for all values of c.

We examine both σ2 = 50 and σ2 = 100, but the patterns for the two error variances

are similar so only the results for σ2 = 100 are reported. The average L2 loss efficiency is

presented in Table 1 for both SCAD and Lasso. For all values of c, the average loss efficiency
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of AICcλ and Cpλ tend to one as the sample size increases, while the average loss efficiency of

BICλ does not show signs of convergence. These patterns are consistent with the theoretical

results. When the number of predictor variables is small relative to the sample size, the loss

efficiency of AICλ also tends to one; however, as the number of predictors is increased, the

performance of AICλ deteriorates. Figure 1 displays boxplots of the selected number of non-

zero coefficients when n = 100 and σ2 = 100. From this plot we see that AICλ often selects a

model that is close to the full model when c is large. As the sample size is increased the full

model becomes less desirable and AICλ suffers as a result. For SCAD, GCVλ appears to suffer

from a similar problem, but to a lesser extent than AICλ. The difference in performance for

varying values of c suggests that the good asymptotic performance of AICλ and GCVλ is

strongly dependent on the fact that dn/n → 0 and these selectors may not perform well in

finite samples when this ratio is close to 1.

Figure 2 presents boxplots of the L2 loss for the 1000 realizations when n = 100. AICλ

clearly suffers as c is increased and BICλ is outperformed by the remaining methods. From

Figure 1 we see that BICλ generally selects a model that is more parsimonious than the

optimal model, but when the number of parameters is large relative to the sample size it

also has some tendency to pick models with dimension close to dn. Furthermore, we see that

the model dimension selected by Cpλ and GCVλ varies widely when the number of predictor

variables is large, while AICcλ and 10-fold CV are generally more stable in their choices.

15



Table 1: Average L2 Loss Efficiency over 1000 simulations for the exponential model.

σ2 = 100
SCAD Lasso

Info. Crit. n c=.5 c=.7 c=.9 c=.98 c=.5 c=.7 c=.9 c=.98
10-fold CV 50 1.08 1.25 1.31 1.33 1.03 1.14 1.25 1.32

100 1.07 1.16 1.14 1.16 1.03 1.10 1.14 1.19
150 1.06 1.15 1.11 1.13 1.03 1.08 1.11 1.16

AICλ 50 1.06 1.13 1.40 1.92 1.02 1.10 1.28 1.82
100 1.06 1.11 1.60 2.44 1.03 1.08 1.34 2.15
150 1.04 1.10 1.75 2.83 1.02 1.07 1.37 2.41

AICcλ 50 1.08 1.20 1.34 1.38 1.04 1.24 1.47 1.49
100 1.07 1.13 1.19 1.22 1.04 1.14 1.24 1.28
150 1.05 1.11 1.16 1.18 1.03 1.11 1.19 1.22

BICλ 50 1.13 1.35 1.57 1.85 1.08 1.40 1.70 1.78
100 1.13 1.39 1.56 1.74 1.11 1.52 1.69 1.69
150 1.12 1.42 1.59 1.61 1.11 1.61 1.72 1.66

Cpλ 50 1.07 1.15 1.24 1.48 1.02 1.12 1.19 1.38
100 1.06 1.11 1.23 1.44 1.03 1.09 1.12 1.24
150 1.05 1.10 1.22 1.43 1.03 1.08 1.10 1.22

GCVλ 50 1.07 1.15 1.27 1.59 1.03 1.14 1.21 1.30
100 1.06 1.11 1.28 1.73 1.03 1.10 1.14 1.23
150 1.05 1.10 1.29 1.83 1.03 1.09 1.12 1.21
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Figure 1: Comparison of model selection procedures based on the number of non-zero coef-
ficients (includes intercept) in the selected model over 1000 simulations for the exponential
model with n = 100 and σ2 = 100. The maximum number of predictors is varied by letting
dn = 2bnc/2c.
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(e) SCAD, c=.9
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(g) SCAD, c=.98
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Figure 2: Comparison of model selection procedures based on L2 Loss over 1000 simulations
for the exponential model with n = 100 and σ2 = 100. The maximum number of predictors
is varied by letting dn = 2bnc/2c. In order to make it easier to compare the procedures, the
limits of the vertical axis are specified so that all the boxes and whiskers appear but some of
the outliers are not shown.
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From Figure 2 we can also compare the performance of SCAD and the Lasso. Based on

minimum loss, the difference between SCAD and Lasso is significant based on a signed rank

test, though neither method is the clear winner, with SCAD outperforming the Lasso for

c = .5, .9, and .98 and the Lasso outperforming SCAD when c = .7. Still, it is striking that
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from a practical point of view the predictive accuracies of the two methods are very similar.

Overall, the sensitivity to the value of c clearly hurts the performance of AICλ and can also

negatively impact the performance of Cpλ and GCVλ. The impact on the latter two is more

noticeable when looking at SCAD, but in both cases the extreme variability in the size of

the selected model is undesirable. As a result, we recommend the use of AICc or 10-fold CV

which are less sensitive to the closeness of dn to n. 10-fold CV outperforms AICc for the

Lasso, and for SCAD, AICcλ outperforms 10-fold CV when c = .7, while the opposite is true

when c = .9 and .98. The difference in performance in these cases is statistically significant

based on a signed rank test.

3.1.2 Omitted Predictor

Here we study an example based on example 2 in ZLT where there is an omitted predictor.

The true model is defined as

yi = 3xi,1 + 1.5xi,2 + 2xi,10 + .2xi,13 + εi

where εi
iid∼ N(0, σ2 = 16). We let Xn be the n× (dn + 1) matrix of predictors where the x′is

are simulated from a multivariate normal distribution with mean 0 and variance-covariance

matrix Σ where Σi,j = ρ|i−j| for ρ = 0 and 0.5. The candidate models are SCAD and Lasso

penalized regressions based on Xn except with the 13th column removed so that the true

model is never included in the set of candidate models.

In both examples the number of superfluous variables included in the candidate models

is allowed to vary by letting the dimension dn = 2bnc/2c. For this example we consider

values of c on the grid (0.5, 0.7, 0.9, 0.98). In this example setting a = 3.7 will not satisfy the

convexity constraint for all values of c. Therefore, we further compare the case where a = 3.7

(SCAD, a = 3.7) to the case where a = max (3.7, 1 + 1/c∗) (SCAD).

We first consider Figure 3 which presents boxplots comparing the three estimators based

on loss when n = 100 and ρ = 0.5. From these plots it is immediately clear that all of the
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information criteria perform better when a is allowed to be data-dependent, while 10-fold

CV performs well regardless of the choice of a. One possible explanation for this is that all

of the information criteria under consideration were derived for use in classical least squares

regression so they should perform well assuming that the estimated models are close to the

corresponding OLS models. When the second tuning parameter of SCAD is fixed at 3.7, the

objective function is not necessarily convex so the SCAD-estimated models may be very far

from the OLS models. On the other hand, 10-fold CV is a general model selection procedure

which should work in a variety of settings. In general, we recommend using a data-dependent

choice of a since it requires little additional cost and can greatly improve the performance of

all of the information criteria.

Focusing only on the data-dependent choice of a, we see that the performance of the

model selection procedures is similar for both SCAD and Lasso. Based on minimum loss,

the difference between SCAD and Lasso is statistically significant based on a signed rank

test, though again neither method is the clear winner with SCAD outperforming the Lasso

for c = .5, .7, and .9 and the Lasso outperforming SCAD when c = .98. Figure 4 presents

boxplots of the selected number of non-zero coefficients. As was the case with the exponential

model, AICλ has a strong tendency to select models that contain almost all of the predictor

variables and the dimension of the models selected by Cpλ and GCVλ become extremely

variable as c is increased. In contrast, 10-fold CV and AICcλ are less sensitive to the number

of predictor variables included in the model. In Figure 3 it is clear that this sensitivity to

the value of c impacts the performance of the model selection procedures, and as a result

10-fold CV and AICcλ outperform the other procedures. We use a signed rank test to test

the hypothesis that the performances of 10-fold CV and AICcλ are equal. This test produces

p-values equal to 0.0734, 0.0000, 0.6429, and 0.5286 for SCAD and 0.0153, 0.9736, 0.0144,

0.1880 for the Lasso for c = .5, .7, .9, and .98, respectively, suggesting that the performances

of the two methods are comparable.

In order to study the asymptotic behavior of the selection procedures, Table 2 presents
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the average loss efficiencies. The patterns are similar for both values of ρ so only the results

for ρ = 0.5 are reported. In general, the loss efficiencies of AICcλ , Cpλ , and GCVλ tend to 1,

while the loss efficiency of BICλ does not show signs of convergence. Also, the results again

show that AICλ performs poorly when the number of predictor variables is large relative to

the sample size. Overall, the results corroborate the theoretical findings, but reinforce that

the finite sample performance of asymptotically equivalent methods may vary greatly.

Table 2: Average L2 Loss Efficiency over 1000 simulations for the model with an omitted
predictor.

ρ = .5
SCAD SCAD, a = 3.7 Lasso

Info. Crit. n c=.5 c=.7 c=.9 c=.98 c=.5 c=.7 c=.9 c=.98 c=.5 c=.7 c=.9 c=.98
10-fold CV 50 – 1.48 1.38 1.46 – 1.74 1.61 1.57 – 1.40 1.40 1.46

100 1.89 1.42 1.27 1.28 2.14 1.66 1.54 1.48 1.34 1.31 1.28 1.30
150 1.54 1.40 1.24 1.21 1.67 1.64 1.48 1.43 1.29 1.27 1.23 1.23

AICλ 50 – 1.90 3.42 6.17 – 2.16 4.59 6.94 – 1.57 2.84 6.09
100 1.92 2.00 4.07 9.43 2.33 2.87 7.86 12.04 1.43 1.52 3.21 9.37
150 1.73 2.03 4.13 12.40 2.05 3.24 11.91 18.91 1.36 1.48 2.95 2.95

AICcλ 50 – 1.56 1.35 1.28 – 1.81 2.47 3.36 – 1.32 1.28 1.25
100 1.83 1.59 1.25 1.24 2.21 2.12 3.52 5.54 1.37 1.29 1.22 1.21
150 1.64 1.60 1.25 1.21 1.92 2.46 4.24 8.77 1.32 1.28 1.21 1.21

BICλ 50 – 1.60 1.62 3.77 – 1.71 2.39 5.46 – 1.42 1.45 3.58
100 1.69 1.51 1.49 1.60 1.78 1.85 1.98 3.29 1.35 1.40 1.40 1.48
150 1.59 1.60 1.53 1.51 1.70 1.87 1.95 2.04 1.38 1.41 1.42 1.42

Cpλ 50 – 1.72 1.87 2.77 – 1.98 3.02 4.27 – 1.42 1.66 2.73
100 1.87 1.74 1.62 2.48 2.26 2.41 4.33 6.04 1.41 1.40 1.48 2.46
150 1.67 1.83 1.50 2.15 1.99 2.75 5.34 8.10 1.35 1.36 1.39 1.39

GCVλ 50 – 1.73 1.92 2.28 – 2.01 3.61 5.76 – 1.42 1.52 2.08
100 1.88 1.79 1.60 1.63 2.26 2.51 6.07 10.00 1.41 1.40 1.44 1.60
150 1.67 1.81 1.52 1.41 2.00 2.91 8.31 16.01 1.34 1.36 1.36 1.36
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Figure 3: Comparison of model selection procedures based on L2 Loss over 1000 simulations
for the model with an omitted predictor with n = 100 and ρ = 0.5. The maximum number
of predictors is varied by letting dn = 2bnc/2c. In order to make it easier to compare the
procedures, the limits of the vertical axis are specified so that all the boxes and whiskers
appear but some of the outliers are not shown.
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Figure 4: Comparison of model selection procedures based on the number of non-zero coeffi-
cients (includes intercept) in the selected model over 1000 simulations for the model with an
omitted predictor with n = 100 and ρ = 0.5. The maximum number of predictors is varied
by letting dn = 2bnc/2c.
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4 True Model World

In this section we turn our attention to the finite-sample performance of the model selection

procedures when the true model is included in the set of candidate models. Under certain

regularity conditions and the assumption that dn is fixed, Wang et al. (2007) proved that

BICλ is a consistent selector of the regularization parameter for SCAD-penalized regression.

In classical regression it has been shown that BIC has a tendency to select overly complex

models when the number of predictors is large relative to the sample size. Chen and Chen

(2008) discussed the poor performance of BIC from a Bayesian perspective in the context

of classical regression. In the supplementary material, Theorem 4 computes the probability

that an information criterion will select the full model over the true model in classical linear

regression. This can be used to further demonstrate a finite-sample overfitting property of

BIC. For example, if n = 50, dn = 46, and d0 = 3, then the probability that BIC will select

the full model over the true model is 0.1819 and if n = 100, dn = 90, and d0 = 3, then the

probability that BIC will select the full model over the true model is 0.0017. This simple

calculation clearly demonstrates that BIC has the potential to catastrophically overfit when

the number of predictor variables is large relative to the sample size, particularly when the

sample size is small.

Although the above calculation is done in the context of classical regression, simulations

suggest that BICλ suffers from the same issues when used as a selector of the regularization

parameter for SCAD and the Lasso. This motivates us to study the finite sample performance

of two corrected versions of BICλ. The first is the corrected BICλ (BICcλ),

BICcλ = log(σ̂2
n(λ)) + log(n)

(dfn(λ) + 1)

n− dfn(λ)− 2
, (1)

which is a simple analogue of AICcλ where the 2 has been replaced by log(n). The consistency

proof of Wang et al. (2007) can be applied to BICcλ to establish that the corrected version
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preserves the desired asymptotic properties. The second is the Modified BICcλ (MBICλ),

MBICλ = log(σ̂2
n(λ)) + log(n)

dfn(λ)

n
log(log(dn)), (2)

proposed by Wang et al. (2009). The authors proved that MBICλ performs consistent

model selection when dn → ∞ in SCAD-penalized regression where it is assumed that the

limn→∞ sup(dn/n
κ∗) < 1 for some κ∗ < 1. Again, in what follows, we define the dfn(λ) to be

dn(αλ).

If we consider these procedures in the context of classical regression then we can perform

the same probability calculation. If n = 50, dn = 46, and d0 = 3, then the probability

that BICc and MBIC will select the full model over the true model is 0.0000 and 0.0249,

respectively, and if n = 100, dn = 90, and d0 = 3, then the probability that BICc and MBIC

will select the full model over the true model is 0.0000 for both procedures. This suggests

that MBIC still has some tendency to overfit but only in the most extreme settings, while

BICc does not suffer from this issue.

The following simulations study the finite-sample performance of these two methods as

well as the methods described in Section 2.2 when the number of predictors is allowed to

be large relative to the sample size. The set-up for the simulation is based on the example

studied in Wang et al. (2007). We define σ2 = 9 and

β = (3, 1.5, 0, 0, 2, 0, . . . , 0)T

where the number of superfluous variables in β is allowed to vary by letting the dimension

dn = 2bnc/2c. We consider values of c on the grid (0.5, 0.7, 0.9, 0.98). The xi’s are simulated

from a multivariate normal distribution with mean 0 and variance-covariance matrix Σ where

Σi,j = ρ|i−j| for ρ = 0 and 0.5. The results are based on 1000 realizations of samples with

n=50, 100, and 150. The selection procedures are evaluated based on the number of times

the true model is selected, the L2 Loss of the selected estimated models, and the selected
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number of non-zero coefficients.

The patterns for the two values are ρ are similar so only the results for ρ = 0.5 are

reported. The distribution of the selected models under each scenario is presented in Tables

3 and 4. Taking into account that our definition of degrees of freedom is different from Wang

et al. (2007), the results appear to be fairly consistent with previous findings when c = .5.

Furthermore, the results appear to be consistent with Wang et al. (2009) who found that

sample sizes that are around 1600 are required before the percentage of times that the true

model is selected is close to 100%.

Comparing the model selection procedures, the consistent criteria, BICλ, BICcλ , and

MBICλ, select the true model more frequently than the efficient criteria, AICλ, AICcλ , Cpλ ,

which is consistent with the theoretical results. Based on the simulations, 10-fold CV does

not appear to behave like a consistent model selection procedure and has a strong tendency to

overfit. This further supports the conjecture that its properties from classical regression still

hold in the context of penalized regression. Focusing on the consistent selection procedures,

both BICcλ and MBICλ select the true model more frequently than BICλ in all of the cases

considered and from the tables it is clear that BICλ has a tendency to select models that

are close to the full model when dn is large relative to n. MBICλ also seems to suffer from

this behavior but only in the most extreme setting when n = 50 and dn = 46. In contrast

BICcλ does not have this tendency to sometimes catastrophically overfit.

It is also interesting to compare the overall performance of the modeling procedures.

Although asymptotically the Lasso is known to not satisfy the “oracle property,” in the

simulations the Lasso outperforms SCAD in terms of selecting the true model in some settings,

specifically when the number of predictors is large relative to the sample size. Also, when the

predictor variables are correlated and the number of predictors is large relative to the sample

size the simulations suggest that a data dependent choice of the a can improve performance.

Although the true model is included in the set of candidate models, a data analyst may be

more interested in predictive performance than in finding the true model. Figure 5 presents
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boxplots comparing the procedures based on the L2 loss of the selected models for n = 100

and ρ = 0.5. These plots also include the loss experienced when the oracle estimate (the

least squares model fit using the three true predictors) is used. Using signed rank tests to

compare loss performance, 10-fold CV performs as well as the consistent selection procedures

when c = .5 and performs significantly better when c = .7, .9, and .98 for all three modeling

procedures. AICcλ also has good performance as a selector of the regularization parameter

for SCAD with a data-dependent choice of a and the Lasso. The difference between 10-

fold CV and AICcλ is not statistically significant in these cases. Figure 6 presents boxplots

comparing the selected number of non-zero coefficients. Although the true model includes

only three predictors, these plots suggest that predictive performance can be improved by

selecting and estimating based on a more complex model and that 10-fold CV and AICcλ

are more successful at selecting models with dimensions that are closer to the optimal model

than are the consistent model selection procedures. It should be noted here that the good

performance of an overly complex model is at least partly due to the bias of the penalized

estimates since the oracle estimate outperforms all of the other methods, with some sort of

bias/variance tradeoff also possibly involved.

Overall, the results indicate that a data analyst can benefit from using either BICcλ or

MBICλ instead of BICλ since they are less sensitive to the number of superfluous predictors

that are included in the model, and we would recommend using BICcλ when the number

of predictors is very close to the sample size. Furthermore, these simulations suggest that

the cost of using 10-fold CV or AICcλ in the true model world is less than the cost of using

BICλ in a non-true model world. Therefore, when in doubt of which setting you are in, we

recommend using 10-fold CV or AICcλ .
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Table 3: Comparison of the distributions of the selected models over 1000 simulations for
the true model world example with correlated predictors. A model is considered underfitted
if it does not contain the true model and is considered correct if the true model is selected,
and the maximum number of predictors is varied by letting dn = 2bnc/2c.

c = .5
SCAD SCAD, a = 3.7 Lasso

Number of Excess Predictors Number of Excess Predictors Number of Excess Predictors
Info. Crit. Underfit Correct 1− 5 6− 10 11− 20 21− 30 30+ Underfit Correct 1− 5 6− 10 11− 20 21− 30 30+ Underfit Correct 1− 5 6− 10 11− 20 21− 30 30+
n = 50

10-fold CV 108 285 607 0 0 0 0 143 292 565 0 0 0 0 21 10 969 0 0 0 0
AICλ 138 364 498 0 0 0 0 165 362 473 0 0 0 0 41 294 665 0 0 0 0
AICcλ 161 421 418 0 0 0 0 195 411 394 0 0 0 0 49 375 576 0 0 0 0
BICλ 203 491 306 0 0 0 0 274 450 276 0 0 0 0 78 487 435 0 0 0 0
BICcλ 221 537 242 0 0 0 0 303 480 217 0 0 0 0 101 559 340 0 0 0 0
Cpλ 147 392 461 0 0 0 0 178 382 440 0 0 0 0 41 322 637 0 0 0 0
GCVλ 145 392 463 0 0 0 0 177 381 442 0 0 0 0 41 321 638 0 0 0 0
MBICλ 164 418 418 0 0 0 0 199 407 394 0 0 0 0 49 376 575 0 0 0 0

n = 100
10-fold CV 5 175 788 32 0 0 0 15 281 687 17 0 0 0 0 0 947 53 0 0 0
AICλ 5 258 737 0 0 0 0 8 378 614 0 0 0 0 0 144 850 6 0 0 0
AICcλ 7 289 704 0 0 0 0 9 425 566 0 0 0 0 0 185 812 3 0 0 0
BICλ 27 488 485 0 0 0 0 44 585 371 0 0 0 0 2 433 565 0 0 0 0
BICcλ 37 527 436 0 0 0 0 58 611 331 0 0 0 0 2 500 498 0 0 0 0
Cpλ 6 272 722 0 0 0 0 9 403 588 0 0 0 0 0 159 836 5 0 0 0
GCVλ 6 269 725 0 0 0 0 9 397 594 0 0 0 0 0 153 842 5 0 0 0
MBICλ 20 456 524 0 0 0 0 38 554 408 0 0 0 0 1 364 635 0 0 0 0

n = 150
10-fold CV 1 211 763 25 0 0 0 2 330 644 24 0 0 0 0 0 895 105 0 0 0
AICλ 0 312 670 18 0 0 0 1 422 570 7 0 0 0 0 128 817 55 0 0 0
AICcλ 0 340 651 9 0 0 0 1 464 533 2 0 0 0 0 150 820 30 0 0 0
BICλ 7 607 386 0 0 0 0 14 710 276 0 0 0 0 0 453 546 1 0 0 0
BICcλ 7 631 362 0 0 0 0 15 732 253 0 0 0 0 0 483 517 0 0 0 0
Cpλ 0 330 657 13 0 0 0 1 442 552 5 0 0 0 0 132 823 45 0 0 0
GCVλ 0 323 666 11 0 0 0 1 439 555 5 0 0 0 0 135 823 42 0 0 0
MBICλ 5 591 404 0 0 0 0 13 699 288 0 0 0 0 0 436 563 1 0 0 0

c = .7
SCAD SCAD, a = 3.7 Lasso

Number of Excess Predictors Number of Excess Predictors Number of Excess Predictors
Info. Crit. Underfit Correct 1− 5 6− 10 11− 20 21− 30 30+ Underfit Correct 1− 5 6− 10 11− 20 21− 30 30+ Underfit Correct 1− 5 6− 10 11− 20 21− 30 30+
n = 50

10-fold CV 82 122 741 55 0 0 0 187 114 650 49 0 0 0 39 4 807 150 0 0 0
AICλ 75 98 657 170 0 0 0 167 100 641 92 0 0 0 54 92 678 176 0 0 0
AICcλ 105 186 682 27 0 0 0 232 163 589 16 0 0 0 68 180 726 26 0 0 0
BICλ 132 298 558 12 0 0 0 290 256 449 5 0 0 0 114 315 560 11 0 0 0
BICcλ 161 399 440 0 0 0 0 320 350 330 0 0 0 0 142 428 430 0 0 0 0
Cpλ 87 124 697 92 0 0 0 211 128 611 50 0 0 0 56 130 723 91 0 0 0
GCVλ 87 119 700 94 0 0 0 200 126 621 53 0 0 0 58 128 729 85 0 0 0
MBICλ 132 297 559 12 0 0 0 290 255 450 5 0 0 0 112 313 564 11 0 0 0

n = 100
10-fold CV 5 98 734 144 19 0 0 21 109 794 62 14 0 0 0 0 708 247 45 0 0
AICλ 2 90 521 261 126 0 0 8 135 468 293 96 0 0 1 72 583 248 96 0 0
AICcλ 7 137 670 165 21 0 0 19 188 591 178 24 0 0 0 109 726 154 11 0 0
BICλ 23 392 578 7 0 0 0 80 364 546 9 1 0 0 3 392 601 4 0 0 0
BICcλ 23 463 513 1 0 0 0 99 403 497 1 0 0 0 4 452 543 1 0 0 0
Cpλ 5 112 600 217 66 0 0 15 165 554 213 53 0 0 0 91 648 212 49 0 0
GCVλ 4 106 587 236 67 0 0 13 157 533 242 55 0 0 0 86 651 217 46 0 0
MBICλ 23 472 504 1 0 0 0 102 410 487 1 0 0 0 4 462 533 1 0 0 0

n = 150
10-fold CV 1 86 726 156 30 1 0 2 134 778 77 7 2 0 0 0 637 262 91 10 0
AICλ 1 93 527 177 196 6 0 3 194 401 202 200 0 0 0 69 546 239 134 12 0
AICcλ 1 135 639 154 70 1 0 5 244 501 167 83 0 0 0 100 674 180 46 0 0
BICλ 5 505 489 1 0 0 0 26 522 449 3 0 0 0 0 436 563 1 0 0 0
BICcλ 5 541 453 1 0 0 0 29 561 409 1 0 0 0 0 477 523 0 0 0 0
Cpλ 1 117 598 164 118 2 0 3 225 471 182 119 0 0 0 79 602 225 91 3 0
GCVλ 1 109 589 171 128 2 0 3 222 455 198 122 0 0 0 79 600 228 91 2 0
MBICλ 8 590 402 0 0 0 0 40 596 363 1 0 0 0 0 554 446 0 0 0 0
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Table 4: Comparison of the distributions of the selected models over 1000 simulations for
the true model world example with correlated predictors. A model is considered underfitted
if it does not contain the true model and is considered correct if the true model is selected,
and the maximum number of predictors is varied by letting dn = 2bnc/2c.

c = .9
SCAD SCAD, a = 3.7 Lasso

Number of Excess Predictors Number of Excess Predictors Number of Excess Predictors
Info. Crit. Underfit Correct 1− 5 6− 10 11− 20 21− 30 30+ Underfit Correct 1− 5 6− 10 11− 20 21− 30 30+ Underfit Correct 1− 5 6− 10 11− 20 21− 30 30+
n = 50

10-fold CV 68 66 584 193 85 4 0 251 62 580 99 6 2 0 60 5 568 248 107 12 0
AICλ 64 26 197 99 303 311 0 139 11 70 199 532 49 0 62 27 242 141 257 271 0
AICcλ 102 126 656 102 14 0 0 250 93 349 236 72 0 0 100 132 664 96 8 0 0
BICλ 142 276 509 44 22 7 0 305 193 299 128 73 2 0 147 288 515 33 13 4 0
BICcλ 195 400 404 1 0 0 0 350 309 330 11 0 0 0 197 411 391 1 0 0 0
Cpλ 80 77 484 161 162 36 0 221 72 272 261 171 3 0 75 81 503 169 146 26 0
GCVλ 75 67 476 182 167 33 0 184 25 194 296 296 5 0 66 65 533 189 132 15 0
MBICλ 186 372 422 14 4 2 0 344 278 301 61 16 0 0 188 373 425 9 4 1 0

n = 100
10-fold CV 1 45 522 251 152 27 2 39 44 581 270 66 0 0 0 0 458 303 202 32 5
AICλ 8 19 187 109 128 96 453 28 12 36 22 148 421 333 1 23 221 138 158 118 341
AICcλ 2 69 591 229 103 6 0 38 58 373 104 294 129 4 0 69 613 224 92 2 0
BICλ 7 292 684 15 2 0 0 132 195 623 29 20 1 0 4 365 614 16 1 0 0
BICcλ 7 388 601 4 0 0 0 158 237 596 6 3 0 0 6 443 549 2 0 0 0
Cpλ 4 45 424 211 187 77 52 34 50 293 88 295 218 22 0 48 440 218 195 67 32
GCVλ 4 37 421 236 201 63 38 31 30 144 60 286 378 71 0 41 440 242 195 65 17
MBICλ 10 524 465 1 0 0 0 205 294 499 2 0 0 0 10 561 428 1 0 0 0

n = 150
10-fold CV 0 46 474 260 175 37 8 8 47 563 294 83 5 0 0 0 398 303 229 60 10
AICλ 0 21 200 125 143 79 432 6 11 33 6 17 106 821 0 25 228 162 174 101 310
AICcλ 0 58 497 267 153 24 1 8 64 403 122 110 183 110 0 58 503 265 153 21 0
BICλ 0 355 632 13 0 0 0 51 330 609 10 0 0 0 0 428 563 9 0 0 0
BICcλ 0 393 605 2 0 0 0 55 375 566 4 0 0 0 1 472 526 1 0 0 0
Cpλ 0 50 392 247 190 69 52 12 63 337 103 94 182 209 0 44 397 248 197 78 36
GCVλ 0 46 383 246 213 70 42 7 34 144 52 68 201 494 0 40 385 242 232 71 30
MBICλ 0 596 404 0 0 0 0 92 493 415 0 0 0 0 1 623 376 0 0 0 0

c = .98
SCAD SCAD, a = 3.7 Lasso

Number of Excess Predictors Number of Excess Predictors Number of Excess Predictors
Info. Crit. Underfit Correct 1− 5 6− 10 11− 20 21− 30 30+ Underfit Correct 1− 5 6− 10 11− 20 21− 30 30+ Underfit Correct 1− 5 6− 10 11− 20 21− 30 30+
n = 50

10-fold CV 86 43 489 222 122 32 6 287 47 467 183 13 1 2 76 2 483 252 155 24 8
AICλ 104 1 10 2 10 17 856 172 1 0 4 42 156 625 84 3 9 3 10 20 871
AICcλ 121 97 637 129 16 0 0 288 50 228 175 242 17 0 124 115 614 134 13 0 0
BICλ 135 131 272 20 5 7 430 259 53 110 35 99 129 315 131 157 278 21 5 11 397
BICcλ 219 372 409 0 0 0 0 371 265 350 14 0 0 0 220 375 405 0 0 0 0
Cpλ 106 92 289 99 115 88 211 255 73 161 76 235 129 71 109 104 279 99 115 90 204
GCVλ 82 39 370 183 132 61 133 240 3 24 51 316 274 92 80 43 382 196 135 78 86
MBICλ 198 328 341 6 1 1 125 333 208 226 29 37 52 115 200 343 341 5 1 1 109

n = 100
10-fold CV 1 34 445 270 185 50 15 49 22 490 309 128 1 1 1 0 381 333 200 65 20
AICλ 20 2 6 1 2 2 967 86 1 0 0 0 3 910 12 1 11 1 5 2 968
AICcλ 0 64 571 240 113 12 0 45 25 232 67 152 314 165 1 62 559 248 116 14 0
BICλ 9 283 675 18 2 2 11 140 157 528 23 24 29 99 6 351 617 16 2 1 7
BICcλ 10 349 636 5 0 0 0 185 217 587 10 1 0 0 11 438 547 4 0 0 0
Cpλ 2 53 323 165 158 78 221 64 39 248 55 96 221 277 1 59 334 164 160 72 210
GCVλ 0 33 349 229 218 95 76 68 2 10 7 21 158 734 0 32 379 225 202 94 68
MBICλ 14 526 459 1 0 0 0 256 276 467 1 0 0 0 15 564 421 0 0 0 0

n = 150
10-fold CV 0 30 418 266 203 59 24 13 37 457 282 199 12 0 0 0 340 299 255 74 32
AICλ 23 1 2 1 6 2 965 51 1 0 0 0 0 948 13 0 5 4 3 2 973
AICcλ 0 47 473 257 185 37 1 11 35 200 63 38 69 584 0 53 452 270 187 37 1
BICλ 0 344 645 9 2 0 0 66 267 646 12 1 0 8 0 431 556 10 3 0 0
BICcλ 0 379 620 1 0 0 0 71 299 626 4 0 0 0 1 472 525 2 0 0 0
Cpλ 0 44 355 151 161 80 209 11 60 278 55 25 46 525 0 59 338 155 178 72 198
GCVλ 0 30 337 220 237 109 67 25 2 7 3 2 10 951 0 31 315 224 251 102 77
MBICλ 1 597 402 0 0 0 0 105 436 459 0 0 0 0 1 639 360 0 0 0 0
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Figure 5: Comparison of model selection procedures based on L2 Loss over 1000 simulations
for the true model world example with n = 100 and ρ = 0.5. The maximum number of
predictors is varied by letting dn = 2bnc/2c. In order to make it easier to compare the
procedures, the limits of the vertical axis are specified so that all the boxes and whiskers
appear but some of the outliers are not shown.
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Figure 6: Comparison of model selection procedures based on the number of non-zero coef-
ficients (includes intercept) in the selected model over 1000 simulations for the true model
world example with n = 100 and ρ = 0.5. The maximum number of predictors is varied by
letting dn = 2bnc/2c.
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(b) SCAD, a = 3.7, c=.5
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(c) Lasso, c=.5
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(d) SCAD, c=.7
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(e) SCAD, a = 3.7, c=.5
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(f) Lasso, c=.7
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(g) SCAD, c=.9
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(h) SCAD, a = 3.7, c=.5
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(i) Lasso, c=.9
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(j) SCAD, c=.98
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(k) SCAD, a = 3.7, c=.5
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5 Concluding Remarks

This paper studied the asymptotic and finite sample performance of classical model selection

procedures in the context of regularized regression with and without the assumption that the

true model is included amongst the candidate models. In the non-true model world we proved

that AICλ, AICcλ , Cpλ , and GCVλ are efficient selectors of the regularization parameter and

the simulation studies yielded several interesting observations. As suspected, they showed

that BICλ is outperformed by the efficient model selection procedures and demonstrated

that AICλ, BICλ, Cpλ , and GCVλ are all sensitive to the number of predictor variables that

are included in the full model and that their performance can suffer as a result. In light

of this issue we recommend that researchers use a method that is insensitive to the number

of variables included in the model. From the simulations, 10-fold CV has the best overall

performance. However, it is 10 times more expensive to implement than using an information

criterion, the asymptotic properties of 10-fold CV are not fully understood in this context,

and the randomness involved in the procedure makes it difficult for data analysts to reproduce

results. As an alternative, data analysts can consider using AICcλ , which was shown here

to be an efficient selection procedure for the tuning parameter, and which the simulations

suggest has comparable performance to that of 10-fold CV . Lastly, the simulations suggest

that there is no clear advantage to using SCAD in a world where the “oracle property” does

not apply. Combining this with the facts that the Lasso also has the efficient ‘Lars’ algorithm

available and does not involve a second tuning parameter that can greatly impact results,

researchers may prefer to use the Lasso if they feel that they are in the non-true model world.

The simulations in the true model world demonstrated that BICλ can be outperformed by

both MBICλ and the proposed BICcλ which are less sensitive to the number of the predictor

variables that are included in the model. Furthermore, although 10-fold CV and AICcλ have

a tendency to select an overly complex model, the simulations suggest that their predictive

performance is better than that of the consistent selection procedures. Therefore, if the data

analyst is unsure about whether they are in the true model world or the non-true model
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world or if predictive power or estimation of coefficients is of primary concern we recommend

using one of these two procedures.

Although the focus of this paper was not on the second tuning parameter of SCAD,

the simulations suggest that allowing this parameter to be data-dependent can improve the

performance of the model selection procedures particularly when the goal is efficient model

selection or when the predictor variables are correlated with each other. Further investigation

into the selection of this parameter is an area for future research.

As a final remark, this paper dealt with the case when dn/n → 0 and the theoretical

results cannot be directly extended to the case when dn/n converges to something other

than zero. The latter setting has received a great deal of attention in recent literature (in

particular dn � n) and is an area for future investigation.

References

Akaike, H. (1973). Information Theory and an Extension of the Maximum Likelihood Prin-

ciple. In International Symposium on Information Theory, 2 nd, Tsahkadsor, Armenian

SSR, pages 267–281.

Breheny, P. and Huang, J. (2011). Coordinate Descent Algorithms for Nonconvex Penalized

Regression, with Applications to Biological Feature Selection. The Annals of Applied

Statistics, 5(1):232–253.

Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A

Practical Information-Theoretic Approach. Springer.

Chen, J. and Chen, Z. (2008). Extended Bayesian Information Criteria for Model Selection

with Large Model Spaces. Biometrika, 95(3):759–771.

Craven, P. and Wahba, G. (1978). Smoothing Noisy Data with Spline Functions. Numerische

Mathematik, 31(4):377–403.

36



Fan, J. and Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and its

Oracle Properties. Journal of the American Statistical Association, 96(456):1348–1360.

Furnival, G. M. and Wilson, R. W. (1974). Regression by Leaps and Bounds. Technometrics,

16(4):499–511.

Gelman, A. (2010). Bayesian Statistics Then and Now. Statistical Science, 25(2):162–165.

Hastie, T. and Efron, B. (2011). lars: Least Angle Regression, Lasso and Forward Stagewise.

R package version 0.9-8.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning:

Data Mining, Inference, and Prediciton. Springer Series in Statistics. Springer, 2 edition.

Huang, J. and Xie, H. (2007). Asymptotic Oracle Properties of SCAD-Penalized Least

Squares Estimators. Lecture Notes-Monograph Series, 55:149–166.

Hurvich, C. M. and Tsai, C.-L. (1989). Regression and Time Series Model Selection in Small

Samples. Biometrika, 76(2):297–307.

Hurvich, C. M. and Tsai, C.-L. (1991). Bias of the Corrected AIC Criterion for Underfitted

Regression and Time Series Models. Biometrika, 78(3):499–509.

Leng, C., Lin, Y., and Wahba, G. (2006). A Note on the Lasso and Related Procedures in

Model Selection. Statistica Sinica, 16:1273–1284.

Li, K.-C. (1987). Asymptotic Optimality for Cp, CL, Cross-Validation and Generalized

Cross-Validation: Discrete Index Set. The Annals of Statistics, 15(3):958–975.

Mallows, C. L. (1973). Some Comments on Cp. Technometrics, 15(4):661–675.

Nishii, R. (1984). Asymptotic Properties of Criteria for Selection of Variables in Multiple

Regression. The Annals of Statistics, 12(2):758–765.

37



Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461–

464.

Shao, J. (1997). An Asymptotic Theory for Linear Model Selection. Statistica Sinica, 7:221–

264.

Shibata, R. (1980). Asymptotically Efficient Selection of the Order of the Model for Esti-

mating Parameters of a Linear Process. The Annals of Statistics, 8(1):147–164.

Shibata, R. (1981). An Optimal Selection of Regression Variables. Biometrika, 68(1):45–54.

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal

Statistical Society B, 58(1):267–288.

Wang, H., Li, B., and Leng, C. (2009). Shrinkage Tuning Parameter Selection with a Diverg-

ing Number of Parameters. Journal of the Royal Statistical Society B, 71:671–683.

Wang, H., Li, R., and Tsai, C.-L. (2007). Tuning Parameter Selectors for the Smoothly

Clipped Absolute Deviation Method. Biometrika, 94(3):553–568.

Zhang, Y., Li, R., and Tsai, C.-L. (2010). Regularization Parameter Selections via General-

ized Information Criterion. Journal of the American Statistical Association, 105(489):312–

323.

Zhao, P. and Yu, B. (2006). On Model Selection Consistency of Lasso. Journal of Machine

Learning Research, 7:2541–2563.

Zou, H. (2006). The Adaptive Lasso and Its Oracle Properties. Journal of the American

Statistical Association, 101(476):1418–1429.

Zou, H. and Hastie, T. (2005). Regularization and Variable Selection via the Elastic Net.

Journal of the Royal Statistical Society B, 67:301–320.

38



Zou, H., Hastie, T., and Tibshirani, R. (2007). On the “Degrees of Freedom” of the Lasso.

The Annals of Statistics, 35(5):2173–2192.

39


