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Abstract

Ballester, Calvó-Armengol, and Zenou (2006, Econometrica, 74/5, pp.
1403-17) show that in a network game with local payoff complementarities,
together with global uniform payoff substitutability and own concavity effects,
the intercentrality measure identifies the key player - a player who, once re-
moved, leads to the optimal change in overall activity. In this paper we search
for the key group in such network games, whose members are, in general, dif-
ferent from the players with the highest individual intercentralities. Thus the
quest for a single target is generalized to a group selection problem targeting
an arbitrary number of players, where the key group is identified by a group
intercentrality measure. We show that the members of a key group are rather
nonredundant actors, i.e., they are largely heterogenous in their patterns of
ties to the third parties.
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1 Introduction

One of the important topics in the sociology literature is the problem of identification

of a key actor in social networks. Different measures of network centralities were

proposed for this purpose, such as centralities of degree, closeness, betweenness, and

information (see e.g., Sabidussi 1966, Freeman 1977, 1979, Stephenson and Zelen

1989). Other often used centralities include status measure or rank prestige index

(Katz 1953), the eigenvector based measure (Bonacich 1972, 1991), and the related

centrality in Bonacich (1987).1 These ideas of finding the ”most important” actors

in a social network have been applied to a large number of substantive applications

across different disciplines.

However, recently Everett and Borgatti (1999, 2005) proposed new measures of

a network group centralities of degree, closeness, and betweenness to account for the

fact that optimal selection of a set of k actors is quite different from selecting the k

actors with the largest individual centralities. The inconsistency of the individual

and group centralities is termed as the ”ensemble issue” in Borgatti (2006), who

interprets this by a redundancy principle inherent to a network (see also Burt 1992).

That is, for example, two actors with the largest individual centralities cannot be

optimal set (target) of two individuals if they ”are redundant with respect to their

liaising role – they are equivalent in that they connect the same third parties to

each other” (p. 24), or these actors are structurally equivalent, meaning that they

are connected to the same third parties. Borgatti (2006), in particular, shows that

depending on the situation, one needs to use certain measures of centralities. For

instance, he distinguishes between the ”Key Player Problem/Negative” (KPP-Neg)

and ”Key Player Problem/Positive” (KPP-Pos). Given a social network, the aim

of the KPP-Neg is finding a set of k nodes which, if removed, would maximally

disrupt the network, while that of the KPP-Pos is finding a set of k nodes maximally

connected to all other nodes.2 Similar optimization problem, termed KPP-Com, is

1A thorough discussion of centrality and many more references can be found in Wasserman and
Faust (1994, pp. 169-219).

2In practice KPP-Neg, for example, arises whenever it is needed to immunize or quarantine
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defined in Puzis et al. (2007), which finds the group with the maximal potential of

controlling traffic in communication networks. All in all, the existence of such a large

number of ”importance” indicators implies that there is not a systematic criterion

to choose the ”right” measure of network centrality for each particular situation.

From an economic point of view the important feature of network games is that

actors’ payoffs depend on each other through network embeddedness. A set of play-

ers each choose a level of some activity in a game, where there are negative global

externalities (e.g., competition) and local positive externalities (e.g., learning, col-

laboration) that come through the network. This system has feedback effects, which

are taken into account in the Nash equilibrium activity levels that are dependent

on the underlying network topology. Recently, this network game was analyzed by

Ballester et al. (2006), who show that its individual equilibrium levels of agents are

proportional to their Katz-Bonacich centrality measures, hence provide to the sta-

tus measure of Katz (1953) and the network centrality measure of Bonacich (1987)

behavioral foundation ”singling [them] out from the vast catalogue of network mea-

sures” (p. 1404).3 Ballester et al. (2006) also propose a new measure of network

centrality, named intercentrality measure, that finds a key player with the maximum

influence on overall activity. Unlike the Katz-Bonacich (KB) centrality measure, in-

tercentrality measure is derived from the planner’s optimality concern, and not from

strategic considerations of players, hence internalizes all the network payoff exter-

nalities of agents on each other. In particular, it is shown that the key player is not

necessarily the player with the highest equilibrium outcome.

In this paper we extend the intercentrality measure from a single player tar-

get to a group index. The planner may target certain players by removing them

from the network of local interactions, which causes a complete modification of the

a subset of population in order to optimally contain the epidemic, or in a military context, to
neutralize a small number of actors in a criminal network in order to maximally disrupt its func-
tioning. KPP-Pos arises, for example, in a public health context, when a health agency wishes to
optimally spread information about health promoting practices and attitudes using a small subset
of population, or in a military context, when one needs to select an optimal set of actors to quickly
diffuse information/misinformation to all criminals.

3As will be shown later, the two centrality measures are affine transformations of each other.
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distribution of individual outcomes. To characterize the optimal group target, we

generalize the individual intercentrality measure to a group intercentrality measure.

Hence, k (> 1) players with the highest group intercentrality of order k comprise the

key group, whose elimination from the network results in the maximum impact on

overall activity. And similar to the above discussions on the individual and group

centralities in the sociology literature, it is true that the key group of k players is, in

general, quite different from the k players with the highest individual intercentrality

measures.4 Like the individual intercentrality measure, the group intercentrality is

obtained from the planner’s optimality (collective) concerns. The removal of more

than one players from a network has two effects. First, less players contribute to the

aggregate equilibrium outcome (direct effect), and, second, the network geometry is

modified, implying that the remaining players adopt different actions (indirect ef-

fect). These effects are fully taken into account in the group intercentrality measure,

which considers not only the individual KB centralities of the group-members, but

also their contributions to the KB centralities of players outside the group.

In Section 2 we characterize the optimal target selection task, both the key

player and the key group problems. Section 3 applies the measures to an example of

covert networks that characterize the organizational structure of the large terrorist

organizations. It is shown that the k-top actors (k > 1) with the largest inter-

centrality measures do not necessarily comprise the key group of size k. Further,

using the hierarchical agglomerative cluster analysis we show that the members of

the key groups are less structurally equivalent (i.e., more heterogenous in their pat-

terns of ties to the third parties) than other sets of players of the same size. Section

4 contains concluding remarks. All proofs are given in the Appendix.

4In a simple criminal network model, Ballester et al. (2004) show that the sequential optimal
pair does not give the key group of two criminals.
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2 Optimal target selection problem

In what follows, we briefly present Ballester et al. (2006, henceforth BCZ) model and

their proposed intercentrality measure, and then extend the problem to an optimal

search of groups consisting of an arbitrary number of players.

2.1 Key player search

Each player i = 1, . . . , n selects an effort xi ≥ 0 and gets the bilinear payoff5

ui(x) = αixi +
1

2
σiix

2
i +

∑
j 6=i

σijxixj, (1)

which is strictly concave in own effort, ∂2ui/∂x2
i = σii < 0, hence marginal utility

of player i is decreasing in own action. We set αi = α > 0 and σii = σ for all

i = 1, . . . , n. The network payoff (relative) complementarities across all pairs of

actors are reflected by the cross-derivatives ∂2ui/∂xi∂xj = σij for i 6= j. That is,

marginal utility of actor i is increasing in actor j’s effort if σij > 0, implying that i

and j efforts are strategic complements. Reciprocally, σij < 0 means that these two

efforts are strategic substitutes from i’s perspective.

Now the matrix of cross-effects Σ = [σij] is decomposed into an idiosyncratic

effect, a global substitutability effect, and a local complementarity effect as follows:6

Σ = −βI − γU + λG, (2)

where β > 0, γ ≥ 0, λ > 0, and I and U denote, respectively, the n-square identity

matrix, and the n-square matrix of ones. The matrix G = [gij] with gij = (σij +γ)/λ

for i 6= j and gii = 0 is interpreted as an adjacency matrix of the network g of relative

5Adopting usual convention, matrices are given in bold, uppercase letters; vectors in bold,
lowercase letters; and scalars in italic lowercase letters. Vectors are columns by definition, and
transposition is indicated by a prime.

6See BCZ (2006) for details on derivation of (2). Within the model γ reflects the global substi-
tutability of efforts across all pairs of players, λ > 0 is the highest possible relative complementarity
for all pairs of players, and σ = −β − γ.
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payoff complementarities across all pairs of players. By construction, 0 ≤ gij ≤ 1.

In this subsection, we focus on symmetric matrices such that σij = σji ∈ {σ, σ} for

all i 6= j with σ ≤ 0, thus G is a symmetric (0, 1) matrix, and g is an undirected and

unweighted network. An idiosyncratic effect, −βI, specific for each player, reflects

(part of) the concavity in own efforts. The global interaction effect, −γU , gives a

uniform substitutability in efforts across all pairs of players. The local interaction

effect, λG, reflects a relative complementarity in efforts, which can be heterogenous

across different pairs of actors. Further, the strength of local interactions relative

to own concavity is denoted by a = λ/β.

Denote the largest eigenvalue of G by µ(G) > 0. Then if aµ(G) < 1, the matrix

B(g, a) = (I − aG)−1 =
∑+∞

k=0 akGk is well defined,7 and its coefficients bij(g, a)

count the number of paths in g starting at i and ending at j, where paths of length

k are weighted by ak. Hence, the parameter a in this interpretation is a decay factor

that scales down the weight of longer paths. Let denote the summation vector of

ones by ı. The vector of Katz-Bonacich (KB) centralities of parameter a in g is

b(g, a) = B(g, a)ı, and its i-th component bi(g, a) =
∑n

j=1 bij(g, a) indicates the

total number of direct and indirect paths in g that start from position i.8 Note that,

by definition, bii(g, a) ≥ 1, hence bi(g, a) ≥ 1, with equality holding when player i

is an isolate.9

From Theorem 1 in BCZ (2006) follows that for aµ(G) < 1, the unique in-

terior Nash equilibrium of the network game is x∗(Σ) = α
β+γb(g,a)

b(g, a), where

b(g, a) =
∑n

i=1 bi(g, a).10 This shows that the individual equilibrium outcomes are

7This follows from Theorem III* in Debreu and Herstein (1953, p. 601).
8In fact, Bonacich (1987) defines the network centrality measure by the vector h(g, a, b) =

b(I−aG)−1Gı, where the parameter b ”affects only the length of the vector [h(g, a, b)]”(p. 1173).
It is not difficult to show that b(g, a) = ı+ah(g, a, 1). This measure is directly related to the Katz
(1953) network status measure k(g, a) = a(I −G)−1Gı, since k(g, a) = ah(g, a, 1) = b(g, a)− ı.

9Or when a = 0, which is not allowed in this network game.
10The condition aµ(G) < 1 for existence and uniqueness requires the payoff complementarity

(size and pattern of positive synergies), λµ(G), to be smaller than own concavity, β. This in-
terpretation holds since λ measures the level of positive cross-effects, whereas µ(G) captures the
population-wide pattern of these positive cross-effects. Or in terms of the decomposition given in
(2), the equilibrium exists, is unique and interior, only when the positive feed-back loops +λG are
dampened by own concavity −βI.
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proportional to the KB centrality measures. Thus, the planner may only shift the

distribution of individual outcomes by changing the exogenous payoff parameters.

But what the planner can also do is to manipulate the network geometry, in which

case the distribution of individual outcomes is completely modified. In this sense,

the policy relevant issue studied in BCZ (2006) is removing one player, and identi-

fying the network optimal target. Denote by G−i (resp. Σ−i) the new adjacency

matrix (resp. matrix of cross-effects) derived from G (resp. Σ) by setting to zero all

of its i-th row and column elements. The resulting network is g−i. Then the plan-

ner’s problem is picking the appropriate player i from the population, such that its

removal from the initial network g gives the highest possible reduction in aggregate

equilibrium level. Formally, the problem is max{x∗(Σ) − x∗(Σ−i)|i = 1, . . . , n},

where x∗(Σ) = ı′x∗(Σ), which is equivalent to

min{x∗(Σ−i)|i = 1, . . . , n}. (3)

The key player i∗ is a solution to (3). The intercentrality of player i of parameter

a in g is defined as11

ci(g, a) = bi(g, a) +
∑
j 6=i

[
bj(g, a)− bj(g

−i, a)
]

=
bi(g, a)2

bii(g, a)
. (4)

While the KB centrality of actor i counts the number of direct and indirect paths

in g stemming from i, from (4) it is easy to see that the ”intercentrality counts the

total number of such paths that hit i; it is the sum of i’s Bonacich centrality and

i’s contribution to every other player’s Bonacich centrality” (BCZ, 2006, p. 1411).

Theorem 3 in BCZ (2006) shows that the key player i∗ has the highest intercentrality,

i.e., ci∗(g, a) ≥ ci(g, a) for all i = 1, . . . , n. In their Example 1, the authors show

that the most central player (according to the KB centrality measure) is not the key

11The last part of (4) follows from Lemma 1 in BCZ (2006). Straight algebra of the mid-
dle expression in (4) gives an alternative expression for the intercentrality measure as ci(g, a) =
b(g, a)−b(g−i, a)+1. One is added in the last expression as all the i-th row (and column) elements
of B(g−i, a) will be zero except its diagonal elements being bii(g−i, a) = 1, hence bi(g−i, a) = 1.
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player for relatively large a. This follows since then indirect effects matter and, as

the intercentrality takes into account both a player’s centrality and his contribution

to the centrality of the others, key player with the highest joint direct and indirect

effect on aggregate outcome might be well other than the most central player.

2.2 Key group search

In this section we wish to generalize the key player problem studied in BCZ (2006)

to a group target selection problem. Thus, the planner’s objective is now opti-

mally reducing the aggregate equilibrium outcome by picking k appropriate players

i1, i2, . . . , ik (is 6= ir) from the population, where 1 ≤ k ≤ n. Unlike the previous

section, we analyze the more general setting, where the matrix of cross-effects, Σ,

can also be asymmetric. This expands the application of this analysis to the key

group search in directed and/or valued graphs as well that are characterized by the

network g having an asymmetric adjacency matrix G, which is not necessarily a

(0,1) matrix. Formally, the planner solves max{x∗(Σ)− x∗(Σ−{i1,...,ik})|i1, . . . , ik =

1, . . . , n; ir 6= is}, which is equivalent to

min{x∗(Σ−{i1,...,ik})|i1, . . . , ik = 1, . . . , n; ir 6= is}, (5)

where Σ−{i1,...,ik} is the new matrix of cross-effects obtained from Σ by setting to

zero all its i1-th, . . ., ik-th rows and columns elements. The resulting network and

adjacency matrix are g−{i1,...,ik} and G−{i1,...,ik}, respectively. Let {i∗1, . . . , i∗k} be a

solution to (5), which we call the key group of size k.

Definition 1. Consider a network g with adjacency matrix G and a scalar a such

that B(g, a) = [I − aG]−1 is well defined and nonnegative. The k-th order group

intercentrality of players i1, . . . , ik (ir 6= is) of parameter a in g is

c{i1,...,ik}(g, a) = ı′BE (E′BE)
−1

E′b,
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where E is the n × k matrix defined as E = (ei1 , . . . , eik) with eir being the ir-th

column of the identity matrix, and 1 ≤ k ≤ n.

The interpretation of the group intercentrality is exactly the same as that of the

individual intercentrality measure in (4), but now the target is a group of players.12

The k-th order group intercentrality of players i1, . . . , ik can be rewritten as (this

follows from the proof of Theorem 1)

c{i1,...,ik}(g, a) =

ik∑
r=i1

br(g, a) +
∑

j 6=i1,...,ik

[
bj(g, a)− bj(g

−{i1,...,ik}, a)
]
,

which counts not only the total number of (weighted) paths in g that stem from

positions i1, . . . , ik (i.e., the KB centralities of players i1, . . . , ik), but also the total

number of paths that hit these players. In other words, it is the sum of the KB

centralities of all members of the group {i1, . . . , ik}, and their contributions to every

other player’s KB centrality.13

The following important identity characterizes all the path changes in a network

when a group of k nodes is removed.14

Lemma 1. Let B = [I − aG]−1 be well defined and nonnegative. Let eir be the

ir-th column of the identity matrix, and B−{i1,...,ik} = [I − aG−{i1,...,ik}]−1, where

1 ≤ k ≤ n. Then the identity B −B−{i1,...,ik} = BE (E′BE)−1 E′B −EE′ always

holds, where E is the n× k matrix defined as E = (ei1 , . . . , eik).

Using Lemma 1 we establish the following result that gives the solution to the

problem (5) in terms of the k-th order group intercentrality measure.

12It is important to note that players i1, . . . , ik can be arbitrarily ordered in the matrix E. Note
that for simplicity, wherever needed, we suppress the expression (g, a).

13Given the fact that bi1(g
−{i1,...,ik}, a) = . . . = bik

(g−{i1,...,ik}, a) = 1, straight algebra gives an
alternative expression for the k-th order group intercentrality measure as c{i1,...,ik}(g, a) = b(g, a)−
b(g−{i1,...,ik}, a) + k > 0. The positivity holds since the denser pattern of local complementarities
always gives strictly higher aggregate activity level (Theorem 2, BCZ, 2006). This also implies that
if one sets a = 0, then obviously b(g, 0) = b(g−{i1,...,ik}, 0) = n implying that c{i1,...,ik}(g, 0) = k
for all k = 1, . . . , n.

14Lemma 1 in BCZ (2006, p.1411) is a particular case of our Lemma 1 with k = 1 and G being
a symmetric adjacency matrix.
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Theorem 1. If aµ(G) < 1, the key group of size k {i∗1, . . . , i∗k} that solves the

problem min{x∗(Σ−{i1,...,ik})|i1, . . . , ik = 1, . . . , n; ir 6= is} has the highest k-th order

group intercentrality of parameter a in g, where 1 ≤ k ≤ n, i.e., c{i∗1,...,i∗k}(g, a) ≥

c{i1,...,ik}(g, a) for all i1, . . . , ik = 1, . . . , n with ir 6= is.

We shall note that Theorem 3 and Remark 5 in BCZ (2006) are particular cases

of our Theorem 1 when k = 1 and the matrix of cross-effects Σ is, respectively,

symmetric and asymmetric. This follows since with k = 1 the group intercentrality

in Definition 1 boils down to

c{i}(g, a) = ı′Bei (e
′
iBei)

−1
e′ib =

ı′Bei · bi(g, a)

bii(g, a)
,

which is the intercentrality of player i when Σ is not symmetric (Remark 5 in BCZ,

2006, p.1412).

When the matrix of cross-effects is symmetric, then bkj(g, a) = bjk(g, a) for all

k and all j, i.e., B = B′. Hence, we have ı′B = ı′B′ = (Bı)′ = b′, implying that

for a symmetric adjacency matrix G the group intercentrality of players i1, . . . , ik in

Definition 1 can be rewritten as

csym
{i1,...,ik}(g, a) = b′E (E′BE)

−1
E′b. (6)

Then it immediately follows that with k = 1 the above measure is simply the

individual intercentrality measure given in (4).15

If we set k = n and choose the ordering of players removed such that E = I, the

group intercentrality in Definition 1 boils down to c{1,2,...,n}(g, a) = ı′B (B)−1 b =

ı′b = b(g, a), which is the sum of the KB centralities of all n players. Different

ordering of the n players results in a different permutation matrix E of order n, but

it will always give exactly the same outcome.16 This is not surprising, since when we

15Using the analytical formula of the inverse matrix it can be shown, for instance, that the
second-order group intercentrality of players i and j (6= i) of parameter a in g with symmetric G
is c{i,j}(g, a) = (bjjb

2
i + biib

2
j − 2bijbibj)/(biibjj − bijbji).

16Similarly, using the alternative formulation of the group intercentrality of c{i1,...,ik}(g, a) =
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are interested in a group of all players, there are no outside actors left, hence there do

not exist any other payoff externalities agents exert on non-members. Recall that

namely those externalities are internalized by the intercentrality measure, which

makes the last different from the KB centrality measure. But as with k = n there

are no other externalities to account for, the group intercentrality is nothing else

than the sum of the KB centralities of all players.

The above observation also implies that if the network g consists of two separate

(independent) subnetworks, then the group intercentrality of all players from one of

the subnetworks is just equal to the sum of the KB centralities of players from that

group. Mathematically, this can be proved as follows. Let the network g consists of

two clusters (I and II), and no player in cluster I has a link to any of the players in

cluster II, and vice versa, no player in cluster II has a link to any player of cluster

I. That is, in terms of partitioned matrices we have

B =

[
I − a

 Gk Okt

Otk Gt

 ]−1

=

 Bk Okt

Otk Bt

 ,

where, for example, Gk is the k-square adjacency matrix of all k players in cluster

I, Okt is the k× t null matrix, Bk = (Ik − aGk)
−1, and k + t = n. To find the group

intercentrality of all players in cluster I, let take E′ = [Ik Okt]. Note that in this

case the vector of KB centralities is equal to

b = Bı =

 bk

bt

 ,

where, for example, bt = Btıt is the vector of KB centralities of all players in

cluster II. Then using the group intercentrality formula in Definition 1 and the above

partitioned matrix B, one can by simple matrix multiplication easily verify that the

group intercentrality of all k players from cluster I is c{i1,...,ik} = ı′kbk. Similarly, the

b(g, a)−b(g−{i1,...,ik}, a)+k (see fn. 13) it is easy to confirm that for k = n we have c{i1,...,in}(g, a) =
b(g, a), since then b(g−{1,...,n}, a) = ı′(I − aO)−1ı = n.

11



t-th order intercentrality of all t players from cluster II is equal to c{ik+1,...,in} = ı′tbt,

where now we have to redefine E such that 1’s appear in rows corresponding to

the players of cluster II only. This result make sense, since when group outsiders

do not have any link with insiders, then there also cannot be any kind of payoff

externalities that group-members exert on outsiders. Of course, this result does not

hold anymore, if the group consists of players from both subnetworks.

Corollary 1. If aµ(G) < 1, the key group of size k {i∗1, . . . , i∗k} that solves the

problem max{x∗(Σ−{i1,...,ik})|i1, . . . , ik = 1, . . . , n; ir 6= is} has the lowest k-th order

group intercentrality of parameter a in g, where 1 ≤ k ≤ n, i.e., c{i∗1,...,i∗k}(g, a) ≤

c{i1,...,ik}(g, a) for all i1, . . . , ik = 1, . . . , n with ir 6= is.

3 Application to a convert network example

In this section in the example of a covert network we show that the key group of

size k (> 1) does not necessarily include all the k players with the highest individ-

ual intercentrality measures, and the key groups’ members are rather nonredundant

actors. The red team, or the covert network consists of a set of small, but largely

interconnected agents with little links between the sets, which mimics the organi-

zational structure of the large terrorist organizations (see e.g., Krebs 2002). An

example of (a small part of) such a network is given in Figure 1, which consists of

three densely intraconnected groups of six players that are also weakly connected to

each other.

Table 1 gives the KB centrality, individual and group intercentrality measures

for a = 0.1.17 Since the graph of the network is undirected, we use the symmetric

intercentrality measure given in (6).18 Although players 4, 11 and 13 have the highest

number of direct links (i.e., six direct contacts each), player 13 is the most central

player (it has the highest KB centrality), while player 4 is the key player (it has the

17The largest eigenvalue of the network in Figure 1 is equal to 4.894, hence the values of a ∈
(0, 0.204) results in a well-defined and nonnegative matrix B.

18Our MATLAB program to compute the group intercentrality measures is given in the Ap-
pendix.
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Figure 1: The red team, or the covert network

highest intercentrality). This outcome was already shown in a different example in

BCZ (2006, Table 1), which implies that the most central player is not necessarily

an optimal target for the social planner who seeks the key player - a player with the

highest joint direct and indirect impact on aggregate equilibrium outcome.

Turning our attention to the key group problem, Table 1 clearly demonstrates

that the key group of size 2 consists of actors 4 and 11, and does not include one of the

2-top players (i.e, actor 13) in the ranking of the individual intercentrality measures.

Note that both players 4 and 13 are also the most central players indicated by their

respective KB centralities. In this example, the key group of size 3 includes all three

players with the largest intercentrality (and KB centrality) measures. However,

again in case of a group of size 4 not all the players with the highest intercentralities

(and centralities) comprise the key group. Together with the players from the key

group of size 3, the place of actor 16 is taken by players 2, 3, and 5, respectively, in

three key groups of size 4 with equal intercentrality measures. Moreover, the set of
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Table 1: Centrality and intercentrality measures

Rank Player bi Player csym
{i} Group of size 2 csym

{i1,i2}

1 (key) 13 2.161 4 4.282 {4,11} 8.307
2 4 2.156 13 4.269 {4,13} 8.297
3 11 2.130 11 4.152 {11,13} 8.284
4 16 2.009 16 3.748 {4,12} 7.954

Group of size 3 csym
{i1,i2,i3}

1 (key) {4,11,13} 12.196
2 {2,11,13}, {5,11,13} 11.716
3 {4,11,15}, {4,11,17} 11.679
4 {4,7,13}, {4,9,13} 11.671

Group of size 4 csym
{i1,i2,i3,i4}

1 (key) {2,4,11,13}, {3,4,11,13}, {4,5,11,13} 14.685
2 {4,7,11,13}, {4,9,11,13}, {4,11,13,15}, {4,11,13,17} 14.575
3 {1,4,11,13}, {4,6,11,13}, {4,6,7,13}, {4,6,9,13} 14.320
4 {2,11,13,16}, {5,11,13,16} 14.311

Note that the intercentralities of all possible groups of size k ∈ [1, 4] were computed, which mathematically amount
to the combinations of n = 18 players taken k at a time, Cn

k = n!/(k!(n − k)!). Hence, all 18, 153, 816, and 3060
groups of size k = 1, . . . , 4 were considered, respectively.

four players with the highest intercentrality measures appears only in the fifth rank

with csym
{4,11,13,16} = 14.254 (which is not shown in Table 1).

The lack of coincidence between the composition of the key group and the rank-

ing based on the key player problem is due to the redundancy principle inherent to

the majority real life networks, a topic largely studied in the sociology literature.

Arguing that the information and control benefits of a large and diverse network

are more than those of a small and homogeneous network, Burt (1992, p.17), for

example, states: ”What matters is the number of nonredundant contacts. Contacts

are redundant to the extent that they lead to the same people, and so provide the

same information benefits.” In general, redundancy of players in a network may be

with respect to adjacency, distance, and bridging (see e.g., Borgatti 2006). One of

the measures of redundancy is the notion of structural equivalence of nodes that

reflects their similarity in terms of linkages to the third parties.

To compare our results of the key group problem with the notion of structural

equivalence of players, we use the hierarchical agglomerative cluster analysis to iden-

tify groups of players that are similar in their patterns of ties to all other players (see

e.g., Lattin et al. 2003, Chapter 8). Cluster analysis partitions actors to subgroups of

14



perfectly or approximately structurally equivalent members. Each actor is initially

considered as a singleton cluster, and then clusters are successively joined until all

players merge into a single cluster. The process starts with constructing a so-called

similarity matrix of players. We measure similarity of a pair of players by counting

the proportion of their matches to all other alters.19 The resulting similarity matrix

is given in Table 2. The number 0.94 in the cell (2,1), for example, means that

actors 1 and 2 have the same tie (present or absent) to other actors 94% of the time.

Hence, the higher this score the more similar are the players in a particular pair.

Table 2: Similarity matrix of the red team in Figure 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1.00
2 0.94 1.00
3 0.88 0.94 1.00
4 0.75 0.81 0.88 1.00
5 0.94 1.00 0.94 0.81 1.00
6 0.94 0.88 0.81 0.69 0.88 1.00
7 0.44 0.38 0.44 0.31 0.38 0.50 1.00
8 0.50 0.44 0.50 0.38 0.44 0.56 0.94 1.00
9 0.44 0.38 0.44 0.31 0.38 0.50 1.00 0.94 1.00
10 0.56 0.50 0.56 0.44 0.50 0.63 0.88 0.94 0.88 1.00
11 0.38 0.44 0.50 0.38 0.44 0.44 0.94 0.88 0.94 0.81 1.00
12 0.44 0.38 0.44 0.31 0.38 0.50 0.88 0.94 0.88 0.88 0.81 1.00
13 0.38 0.31 0.38 0.50 0.31 0.31 0.44 0.50 0.44 0.44 0.38 0.44 1.00
14 0.63 0.56 0.50 0.50 0.56 0.56 0.44 0.50 0.44 0.56 0.38 0.56 0.75 1.00
15 0.44 0.38 0.44 0.56 0.38 0.38 0.38 0.44 0.38 0.50 0.31 0.50 0.94 0.81 1.00
16 0.56 0.50 0.44 0.44 0.50 0.50 0.38 0.44 0.38 0.50 0.31 0.50 0.81 0.94 0.88 1.00
17 0.44 0.38 0.44 0.56 0.38 0.38 0.38 0.44 0.38 0.50 0.31 0.50 0.94 0.81 1.00 0.88 1.00
18 0.50 0.44 0.50 0.50 0.44 0.44 0.44 0.50 0.44 0.56 0.38 0.56 0.88 0.88 0.94 0.94 0.94 1.00

Next the cluster analysis starts from n clusters of size 1 and at each stage of the

process finds the two ”closest” (most homogenous) clusters and join them together.

This process continues until one cluster of size n remains. This hierarchical sequence

of merging clusters is visually depicted by a tree diagram, also called a dendrogram.

We have used the average link criteria for forming clusters, which computes the

similarity of the average scores in the newly formed cluster to all other clusters.20

19We also used a matrix of Euclidian distances to measure the ”distance” or ”dissimilarity”
between the tie profiles of each pair of actors. The outcome of the cluster analysis totally coincides
with that using proportion of matches in a similarity matrix.

20There are two other basic criteria for forming clusters: single link and complete link. The
single (complete) method computes similarities on the base of the similarity of the member of the
new cluster that is most (least) similar to each other clusters. While the single link approach is
too myopic, the complete link method tends to give highly separated diagrams with tightly bound
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The tree diagram of the cluster analysis of the above-illustrated covert network is

given in Figure 2.

Figure 2: Hierarchical dendrogram of the covert network in Figure 1

As can be seen from Figure 2, nonoverlapping clusters are a product of the

hierarchical agglomerative cluster analysis, i.e., the smaller clusters are subsumed

within successively larger clusters at higher levels of agglomeration. It is clear that

higher values of agglomeration indicate lower structural equivalence, less similarity,

or greater within-cluster ”distance”. However, for our purposes we are not inter-

ested in choosing the level of agglomeration that provides ”best” representation of

the number of structurally equivalent positions in the network. Instead we aim at

confirming or rejecting our conjecture that the key group includes less structurally

equivalent (rather heterogenous) players.

The dendrogram in Figure 2 identifies two clusters at relatively high agglomer-

ation level: {7, 8, 9, 10, 11, 12} and the rest subsuming the second cluster. Note that

the two actors with the highest individual intercentrality measures (i.e., players 4

and 13) are both members of the second cluster, hence are more homogenous than a

clusters. Hence, the average linkage is a sort of compromise between the single and the complete
linkages. ”Some author prefer [average approach] because it comes closest to fitting a tree that
satisfies a least squares minimization criterion” (Lattin et al. 2003, p. 282).
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pair of players from the two different clusters. As we expected the key group of size

2 consists of players 4 and 11 that are part of the two different clusters, thus being

less redundant with respect to each other than the pair {4, 13}. Moreover, within

these two clusters, respectively, actors 4 and 11 are less similar to all other members,

which is shown by the fact that they join their clusters only at the highest level of

agglomeration. Similarly, the relatively higher level of similarity produces three clus-

ters: A = {1, 2, 3, 4, 5, 6}, B = {7, 8, 9, 10, 11, 12}, and C = {13, 14, 15, 16, 17, 18}.

Within these clusters the (relatively) less structural equivalent actors (shown by the

length of the line until it joins some cluster) are, respectively, players 4, 11, and 13.21

And as Table 1 shows namely these actors comprise the key group of size 3. Still

higher similarity level (lower agglomeration level) disaggregate cluster A into two

sets of relatively homogenous players by identifying actor 4 being one cluster and the

rest comprising the second, while remaining clusters B and C unchanged. Hence,

our key group of size 4 besides actors 4, 11, 13 picks one player from the remaining

part of cluster A, i.e., from {1, 2, 3, 5, 6}. This coincidence of the key group problem

and cluster analysis can be also shown for larger size of the key group and lower level

of agglomeration, which confirm our expectation that the key groups’ members are

rather nonredundant with respect to each other in terms of their linking patterns in

a network.

However, we should note that the key group selection problem is not identical

to a sequential key player problem, although in our case it happened that all the

members of the key group of size k are included in the key group of size k + 1.

This is a mere coincidence (hence we compared the results to those from the cluster

analysis) and does not hold in general. Thus, in general, comparing the key group

21Note that according to the dendrogram in Figure 2 in cluster C the least structural equivalent
actor is player 18, however, player 13 is taken as a key group member instead. This shows that
using only cluster analysis for finding key groups would be misleading, since the right candidate
for the key group should have not only diverse direct linking structure, but also diverse indirect
impact on the rest of the system. Another reason why cluster analysis cannot exactly determine
the key group members is that different criteria for forming clusters may very well give different
outcomes. Despite this inconsistency, however, the key group problem and the cluster analysis are
related in a sense that the key group members are less structurally equivalent, hence individually
should be a part of different clusters.
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outcomes to those from the hierarchical agglomerative cluster analysis makes little

sense, since in the last case once actors are part of a group they will never leave it and

only additional different actors join the group at the higher level of agglomeration.

4 Conclusion

In this paper we show that in a network game with local payoff complementarities

together with global uniform payoff substitutability and own concavity effects, the

group intercentrality measure identifies the key group - a set of player which, once

removed, has the optimal impact on the overall activity level. This generalizes the

key player problem in Ballester et al. (2006) from a search of a single player to a

group selection problem targeting an arbitrary number of players. In the applica-

tion of intercentrality measures to an example of a covert network it is shown that

players with the highest individual intercentrality (and centrality) measures do not

necessarily comprise the key group. This is because in a network players may be

redundant with respect to each other, i.e., some actors might be quite similar to

each other in terms of their linking structure. Therefore, it is expected the the key

group members consists of relatively nonredundant players, which is confirmed by

comparing the results of the key group identification problem and the hierarchical

agglomerative cluster analysis.

The possible empirical applications of the group intercentrality measure, depend-

ing on the research question and the network content, will aim at finding a group of

players of certain size with biggest (or smallest) influence over the overall activity

level. Thus the measure is particularly useful for addressing such kind of issues in

economics literature, since the notions of competition and complementarity due to

the network embeddedness are explicitly taken into account. Just a few examples

include the analysis of crime networks (Ballester et al. 2004, Calvó-Armengol and

Zenou 2004), conformism and social norms (Bernheim 1994, Akerlof 1997), firms’

collaboration networks (Goyal and Moraga-González 2001, Goyal and Joshi 2003),
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networks of interlocking directorates (Dooley 1969, Mizruchi 1996, Heemskerk and

Schnyder 2008), and coauthor networks (Goyal et al. 2006).22

The final remark is that this analysis is not restricted to linear-quadratic utilities

that incorporates linearly the players’ actions externalities. In a general utility

function that captures nonlinear externalities, a decomposition similar to (2) can

be made. This in turn implies that the first-order approximation of the levels of

players’ actions will correspond to the Katz-Bonacich centrality measures. Also the

entire analysis was made for a given network. Endogenizing the network decision

is possible in a two-stage game, where in the first stage players decide whether to

stay in the network or leave it for some outside option. In the second stage the

network game is played by the remaining actors. This is particularly useful for the

analysis of the effect of different policies in addressing the same issue. Such study

was undertaken by Ballester et al. (2004), who show that the policy of increasing

wages raises the effectiveness of another policy (the key player policy) in reducing

crime.

22See also Temurshoev (2008), who applies the idea of the key group search to the framework
of input-output analysis, where the key group of sectors are found on the base of a hypothetical
extraction method.
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Appendix

Proof of Lemma 1. From the monotonicity of the largest eigenvalue with the coeffi-
cients of the matrix it follows that µ(G) ≥ µ(G−{i1,...,ik}).23 Thus, when B is well
defined and nonnegative, so is B−{i1,...,ik} for all i1, . . . , ik = 1, . . . , n (ir 6= is). For
simplicity sake, define Qk ≡ I −

∑k
s=1 eise

′
is

and A ≡ aG. It is easy to verify that
A−{i1,...,ik} = aG−{i1,...,ik} = QkAQk, and QkQk = Qk, i.e., Qk is an idempotent matrix.
Further, we will use the well-known formula of the inverse of a sum of matrices (see e.g.,
Henderson and Searle 1981):

(X −UD−1Z)−1 = X−1 + X−1U(D −ZX−1U)−1ZX−1. (A1)

Employing (A1) yields24

B−{i1,...,ik} = (I −QkAQk)−1 = I + Qk(A−1 −Qk)−1Qk. (A2)

Equation (A1) also implies that B = (I−A)−1 = I+(A−1−I)−1, hence (A−1−I)−1 =
B − I. Thus, again using (A1) with X = A−1 − I and U = −

∑k
s=1 eise

′
is
≡ −Σ,

the inverse in the rhs of (A2) can be rewritten as
[
A−1 − I + Σ

]−1 = B − I − (B −
I)Σ [I + (B − I)Σ]−1 (B − I). Plugging this back in (A2) yields

B−{i1,...,ik} = I + Qk(B − I)Qk −Qk(B − I)Σ [I + (B − I)Σ]−1 (B − I)Qk. (A3)

Next, without loss of generality, we partition the matrices B and B−{i1,...,ik} is such
a way that the k removed players constitute their upper left submatrices. Then from the
theory of partitioned matrices it follows that the matrix [I + (B − I)Σ]−1 in the rhs of
(A3) is equal to[

I +
(

Bkk − Ik Okt

Btk Ott

)]−1

=
[

Bkk Okt

Btk It

]−1

=
[

B−1
kk Okt

−BtkB
−1
kk It

]
, (A4)

where, for example, It is the t-dimensional identity matrix, Okt is the k × t null matrix,
and k + t = n.

The other terms in (A3) can be written as follows.

(B − I)Qk =
[

Bkk − Ik Bkt

Btk Btt − It

] [
Okk Okt

Otk It

]
=

[
Okk Bkt

Otk Btt − It

]
, (A5)

Qk(B − I)Qk =
[

Okk Okt

Otk It

] [
Okk Bkt

Otk Btt − It

]
=

[
Okk Okt

Otk Btt − It

]
, (A6)

Qk(B − I)Σ =
[

Okk Okt

Btk Btt − It

] [
Ik Okt

Otk Ott

]
=

[
Okk Okt

Btk Ott

]
. (A7)

Now plugging (A4)-(A7) in (A3) after simple algebra gives

B−{i1,...,ik} =
[

Ik Okt

Otk Btt −BtkB
−1
kk Bkt

]
,

23This follows from Theorem I* in Debreu and Herstein (1953, p. 600).
24We should note that the inverse matrix A−1 might not exist, when, for example, some actor

is an isolate. But it is used just as an analytical tool to derive our main equation (A3), which does
not include this inverse matrix.
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which implies that

B −B−{i1,...,ik} =
[

Bkk − Ik Bkt

Btk BtkB
−1
kk Bkt

]
=

[
BkkB

−1
kk Bkk − Ik BkkB

−1
kk Bkt

BtkB
−1
kk Bkk BtkB

−1
kk Bkt

]
.

(A8)
The final result in (A8) shows that the partition of having the k eliminated players

in the upper left block diagonal matrix is quite arbitrary, hence the result holds for any
non-ordered matrix B. Moreover, the set of players i1, . . . , ik can be arbitrarily ordered
in the matrix Bkk as well. So, (A8) proves that for all h and l we have

bhl − b
−{i1,...,ik}
hl = b′h•B

−1
kk b•l − 1 · I(h = l ∈ {i1, . . . , ik}), (A9)

where b′h• = (bhi1 , . . . , bhik), and I(h = l ∈ {i1, . . . , ik}) is an indicator function that takes
value one if h = l ∈ {i1, . . . , ik} and zero otherwise. The compact matrix form of (A9) is
given in Lemma 1.

Proof of Theorem 1. When α > 0, ∂x∗(Σ−{i1,...,ik})

∂b(g−{i1,...,ik},a)
= αβ

(β+γb(g−{i1,...,ik},a))2
> 0, thus

(5) is equivalent to min{b(g−{i1,...,ik}, a)|i1, . . . , ik = 1, . . . , n; ir 6= is}, which have the
same solution as max{b(g, a) − b(g−{i1,...,ik}, a)|i1, . . . , ik = 1, . . . , n; ir 6= is}. Using the
definition of the KB centrality, Lemma 1, and the fact that ı′EE′ı = k, we have

b(g, a)− b(g−{i1,...,ik}, a) = ı′
[
B −B−{i1,...,ik}

]
ı

= ı′
[
BE

(
E′BE

)−1
E′B −EE′

]
ı = ı′BE

(
E′BE

)−1
E′Bı− k.

(A10)

Players i1, . . . , ik that maximize (A10), also maximize the first expression in its right
hand side, which is c{i1,...,ik}(g, a) in Definition 1.

21



Computation of the group intercentrality measure

In computing the group intercentrality measures, we used the following MATLAB pro-
gram.

G = load(’D:\My Documents\MatlabKeyGroup\RedTeam.txt’);

n = length(G);

mu = max(eig(G)) %the largest eigenvalue of G

I = eye(n); %the identity matrix

amax = 1/mu

a = 0.1 %choose the value of parameter a

B = inv(I-a*G);

b = B*ones(n,1); %Katz-Bonacich centralities

%%Key player problem (i.e., the key group of size 1)

c1 = inv(diag(diag(B)))*b.^2;

[C,IX] = sort(c1,’descend’);

c1 = [C,IX] %intercentrality with the identity of the player

%% Searching for the key group of size 2

t = nchoosek(n,2); %number of combinations of n players taken 2 at a time

R = zeros(t,3);

m = 1;

for i=1:n

for j=i+1:n

E = [I(:,i),I(:,j)];

c = b’*E*inv(E’*B*E)*E’*b;

R(m,:) = [c,i,j];

m = m+1;

end

end

c2 = sortrows(R,1) %2nd order group intercentrality with its members (in ascending order)

%% Searching for the key group of size 3

t = nchoosek(n,3); %number of combinations of n players taken 3 at a time

R = zeros(t,4);

m = 1;

for i=1:n

for j=i+1:n

for k=j+1:n

E = [I(:,i),I(:,j),I(:,k)];

c = b’*E*inv(E’*B*E)*E’*b;

R(m,:) = [c,i,j,k];

m = m+1;

end

end

end

c3 = sortrows(R,1) %3rd order group intercentrality with its members (in ascending order)

%% Searching for the key group of size 4

t = nchoosek(n,4); %number of combinations of n players taken 4 at a time

R = zeros(t,5);

m = 1;

for i=1:n

for j=i+1:n

for k=j+1:n

for h=k+1:n

E = [I(:,i),I(:,j),I(:,k),I(:,h)];

c = b’*E*inv(E’*B*E)*E’*b;

R(m,:) = [c,i,j,k,h];

m = m+1;

end

end

end

end

c4 = sortrows(R,1) %4th order group intercentrality with its members (in ascending order)
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The program computes the group intercentrality measures for the symmetric net-
works. Asymmetric relations in a network can be easily introduced. For example, in
computing the 3-rd order group intercentrality, one only needs to make a small change to
c = b’*E*inv(E’*B*E)*E’*b (which is equation (6)), namely write instead
c = ones(n,1)*B*E*inv(E’*B*E)*E’*b. For computing higher order group intercentral-
ity measures one just needs to add extra loops similarly.
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Calvó-Armengol, A. and Y. Zenou: 2004, ‘Social networks and crime decisions: the role
of social structure in facilitating delinquent behavior’. International Economic Review
45, 939–958.

Debreu, G. and I. N. Herstein: 1953, ‘Nonnegative square matrices’. Econometrica 21,
597–607.

Dooley, P. C.: 1969, ‘The interlocking directorate’. American Economic Review 59, 314–
323.

Everett, M. G. and S. P. Borgatti: 1999, ‘The centrality of groups and classes’. Journal
of Mathematical Sociology 23, 181–201.

Everett, M. G. and S. P. Borgatti: 2005, ‘Extending centrality’. In: S. J. Carrington,
Peter J. and W. Stanley (eds.): Models and Methods in Social Network Analysis. Cam-
bridge: Cambridge University Press, pp. 57–76.

Freeman, L. C.: 1977, ‘A set of measures of centrality based on betweenness’. Sociometry
40, 35–41.

Freeman, L. C.: 1979, ‘Centrality in social networks: conceptual clarification’. Social
Networks 1, 215–239.

Goyal, S. and S. Joshi: 2003, ‘Networks of collaboration in oligopoly’. Games and Eco-
nomic Behavior 43, 57–85.

24
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