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Abstract

This paper provides a theory of “family network,” in contrast to “local externalities,”

to explain the geographic concentration of industry. For many industries, one most im-

portant source of entrants is spinoffs, who typically locate near parent firms and benefit

from knowledge linkage and business relation within the family network. As a result, firms

are more likely to enter and less likely to exit if they are associated with a large family.

Using a unique dataset of US automobile industry in its early years, we identify six his-

torically important production centers and sixty spinoff families. Our empirical analysis

disentangles the effect of “family networks” from other “local externalities,” and provides

strong evidence that it was the former rather than the latter that caused the geographic

concentration of US automobile production.
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1 Introduction

Geographic concentrations of individual industries are striking features of the economic land-

scape. The agglomeration of high-tech industries in Silicon Valley and automobile industry

in Detroit are two classic examples. Many recent studies have attempted to investigate why

agglomerations took place, and hope to shed light on the nature of increasing-return technolo-

gies and spillovers that are thought to be important driving forces of endogenous growth and

international trade.

Most existing literature (e.g., Fujita et. al. 1999; Quigley 1998, Krugman 1997, Henderson

1988) suggests that agglomerations are the result of positive local spillovers. While individual

firms are perfectly competitive and subject to constant returns to scale, the agglomeration of

economic activity generates externalities that raise the productivity of all firms in a particular

industry that share a given geographic location. These externalities are assumed and their

sources are not specified. Proposed mechanisms, following Marshall (1920), include knowledge

spillovers, joint development and use of human capital, the attraction of suppliers and service

firms to the region, and cooperation in R&D. Despite of the differences in details, all of these

mechanisms lead to the fact that regions with already a large number of firms in a certain

industry become attractive for further firms of this industry.

Meanwhile, congestion costs, associated with limited local supplies of housing or other non-

traded goods or factors, work against agglomeration. For example, as agglomeration forms, the

price of housing is bid up in the area. To attract workers, firms must compensate workers for

the relatively high cost of living. The productivity of labor in agglomerated regions then has

to justify these higher wages. Therefore, costs associated with congestion, act as a centrifugal

force which prevents economic activity from becoming too agglomerated.

In this paper, we seek a better understanding of agglomerations by investigating the network

effects within each family of spinoff firms. For many industries, one most important source of

entrants is spinoffs, who work as employees for existing firms and later start their own business
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in the same industry. Spinoffs typically locate near the parents, and benefit from knowledge

linkage and business relation within the family network. As a result, firms are more likely to

enter and less likely to exit if they are associated with a large family. Therefore, geographic

concentrations of individual industries could be driven mainly by this “family network effect,”

a special local externality within the family network.

Using a unique dataset of US automobile industry, we test the “family network effect”

against other “local externalities” in terms of their contribution to the geographic agglomer-

ation. The former is closely related with the spinoff process, and depends crucially on the

heritage and network of each individual spinoff family. In contrast, the latter simply depends

on the total number of firms in each location. Our empirical findings suggest that it was

the “family network effect” rather than other “local externalities” that caused the geographic

concentration of US automobile production. In fact, after we control for the “family network

effect,” the other “local externalities” show negative effects on agglomeration, which means

congestion.

Related to our paper, Klepper (2007) investigates spinoffs and the evolution of Detroit as

the capital of the US automobile industry. He explains the agglomeration in Detroit using a

theory that disagreements lead employees to spin off from incumbent firms. Our paper differs

from Klepper (2007) in several important aspects. First, we empirically disentangle the effects

from local externalities, which is emphasized by the economic geography literature, and the

effects from family networks through spinoffs. For this purpose, we use our data to identify six

historically important automobile production centers to isolate location specific characteristics

or spillovers. Second, we construct a theoretical model that depends heavily on the industry

selection effect similar to Hopenhayn (1992), in which incumbents and potential spinoffs make

decisions based on their quality and location-specifics.

It is noteworthy that our theory, like many other previous studies, explains why conglom-

eration form, but not necessarily predict where they will form. In our framework, all locations
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are ex ante identical such that it is not pre-determined that which regions will be home to

industry clusters and which will not. In reality, the natural features of regions are likely to

impact industry location. And we do find some evidence that the location specific effects play

some roles (see also Ellison and Glaeser 1999).

The paper is organized as follows. In section 2, we provide a simple industry equilibrium

model with spinoff entries. The model shows the geographic concentration of industry is

mainly driven by the agglomeration of firms from major spinoff families. In section 3, we test

our theory using a dataset of US automobile industry. The dataset is unique in the sense

that it helps to uncover the heritage of each spinoff firm, which allows us to distinguish the

“family network effect” from other “local externalities.” Our findings suggest that the “family

network effect” rather than other “local externalities” caused the geographic concentration of

US automobile production. Section 4 concludes.

2 Model of Spinoffs and Family Network

In this section, we provide a simple industry equilibrium model with spinoff entries. We assume

a potential spinoff entrant shares the same quality with all other firms in the family. Here the

“family” is defined as all spinoff firms who share the same ancestor, including the ancestor who

may not be a spinoff himself. Hence, all firms in the family are of the same quality. To the

extent that this family-specific quality may result from knowledge sharing or business relation

within the family network, we may regard it as a special form of “local externality”.1

2.1 Individual Firm’s Problem

Time is discrete and indexed by t = 1, 2, 3, ...,∞. The model industry comprises of firms of

different quality s ∈ [0, s̄] located at various production centers j. For simplicity, we assume
1Note our model may also be consistent with alternative interpretations without refering to externality, for

example, spinoffs inherit ability from parents.
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that a firm starting at center j will operate at the same location for the rest of its life.2 The

industry structure at each period t can be summarized by mt. Each of its element mt(s, j) is

the total mass of firms of quality s at location j.

At the beginning of period t, all incumbent firms engage in product market competition by

taking industry price p as given. Each firm decides on the optimal quantity of output based on

its quality and location characteristics. Their period profit is determined by π(s; j, p), where j

denotes the firm’s location characteristics (not changing overtime), p is the industry price at

period t.

Once incumbent firms obtain their profit, they decide whether to stay in this industry or

to leave by taking some outside options φx . The distribution of these outside options is i.i.d.

across firms. Thus we have the incumbent’s problem defined as:

V C(s; j, p̄) = β

Z
V (s; j, p̄, φx0)dF (φx0)

V (s; j, p̄, φx) = π(s; j, p) +max{V C, φx}

Notice here that we have been abstract in defining the sequence of the industry price p̄. We

will defer the discussion of this after we define the entrants’ decisions.

The industry potential entrants at each production center make their entry decisions at the

same time that incumbents are making their exit decisions. However, there are two different

types of entrants. The first type, which we call De Novo entrants, are the entrepreneurs who

have never worked in this industry. We assume that De Novo entrants don’t know their type

before they enter and they are randomly allocated to an location j with probability μ(s, j).

Once they pay the fixed sunk cost φe, they have their initial draw of type s from distribution

μ(s, j). Their total mass of entry M solves the free-entry condition

Z
s
V C(s; j, p̄)dμ(s, j) = φe.

2This can be justified, for example, by the costs of relocation.
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Finally, each incumbent also has a probability γ of giving birth to a potential spinoff each

period. We assume the potential spinoff entrant shares the same quality s with all other firms

in the family, and knows his quality while making his entry decision. If he doesn’t choose to

start a firm at current period, his opportunity is foregone once for all. These potential spinoffs

will enter if their value of entry is higher their random outside option φx, i.e.

V C(s; j, p̄) ≥ φx.

2.2 Transition of Industry Structure and Price

Let’s first define the transition of the mass of firms of quality s in market j, with current

industry price p. It depends on the number of exits, spinoffs, and De Novo entries at each

state (s, j). Explicitly, we have

mt+1(s, j) = mt(s, j)(1 + γ)χt +Mμ(s, j),

where χt = Φ
x(V C(s; j, p̄)) is probability of staying, given the cumulative distribution Φx of

the industry outside option.

Next, we will also need to define the industry output market. Aggregate demand is given

by the inverse demand function D−1(Q). Industry price will satisfy each period such that

p = D−1{
Z

q(s, j, p)mt(s, j)}.

2.3 Industry Equilibrium

We define the industry equilibrium by a bounded sequence of pt, mt, χt, and Mt such that:

(1). χt solves incumbent firms and potential spinoffs’ dynamic optimization problem.

(2). Potential De Novo entrants Mt satisfy zero profit condition.

(3). pt clears product market each period.
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(4). mt is defined recursively given m0, Mt, and χt

Following immediately Hopenhayn (1992), there exists a competitive equilibrium, where

the path of industry price p̄ is deterministic given initial industry structure m0. Particularly,

there exists a stationary equilibrium, defined as an output price p∗ ≥ 0, a mass of entrants

M∗, a measure of incumbents m∗(s, j), and policy function χ∗, such that for pt = p∗, mt = m∗,

Mt =M∗, and χt = χ∗ is an equilibrium from m0 = m∗.

2.4 Model Implications

The model has the following testable implications.

Proposition 1 A potential spinoff firm is more likely to enter and less likely to exit if it

belongs to a high quality family.

Proof. Given π(s; j, p) is strictly increasing in s, continuous, and bounded, standard dynamic

programming arguments can be used to show that V C(s; j, p̄) is continuous in s and for p̄ >

0 strictly increasing in s. Thus we know that for each period t, Φx(V C(s; j, p̄)) is strictly

increasing in s, given the same production location j.

Proposition 2 High-quality incumbents have higher probability of producing spinoff firms.

Proof. This is straightforward because all incumbents have the same probability γ of having

a potential spinoff, while the spinoff’s probability of entering χ∗ is increasing in s.

Proposition 3 The higher the family quality, the bigger the family size.

Proof. As shown above, higher quality incumbents produce more spinoffs on average. Mean-

while, the incumbents of a higher-quality family have lower probability of exit.

Proposition 4 If there is positive entry and exit in the stationary equilibrium, spinoff firms

have lower probability to exit than De Novo entrant, given the same location j.
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Proof. The stationary distribution is defined bym∗ = m∗(1+γ)χ∗+M∗μ, som∗ = M∗

1−(1+γ)χ∗μ.

The distribution of spinoff firms is m∗χ∗ = M∗χ∗

1−(1+γ)χ∗μ. Since χ
∗ is strictly increasing in s,

the distribution of the abilities of spinoff firms strictly dominates that of the De Novo entrant

firms, which is μ.

3 Empirical Analysis

In this section, we estimate/test our model using a unique dataset of the US automobile indus-

try. The dataset includes US companies that sold at least one automobile to the public during

the first 75 years of the industry (1895-1969), a total of 780 firms with their entrepreneurial

and geographic characteristics.

3.1 Data Sources

The data sources come from several industry references. First, Smith (1968) provides a list

of every make of automobile produced commercially in the United States from 1895 through

1969.3 The book lists the firm that manufactured each car make, the firm’s location, the years

that the car make was produced, and any reorganizations and ownership changes that the

firm underwent. Smith’s list of car makes was then used to derive entry, exit and geographic

location of firms.4

Second, Kimes (1996) provides comprehensive information for every automobile make pro-

duced in the US from 1890 through 1942. Using Kimes (1996), we are able to collect additional

biographical information about the entrepreneurs who founded and ran each individual firm.

An entrepreneur was then categorized into one of the following three groups: De Alio entrants,

Spinoff entrants and De Novo entrants. The first group includes entrepreneurs who had prior

experience in related industries before starting an automobile firm. The second group includes

entrepreneurs who had worked as employees in existing automobile firms before starting their

3The original book published in 1968 was updated to include information up to 1969.
4The entry and exit dates are based on the first and last year of commercial production.
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Figure 1: The Evolution of US Automobile Industry: 1895-1969

own. The last group includes those with no identifiable background information. Kime’s in-

formation was then used to derive family linkage between individual firms, in other words, we

construct family trees for each spinoff firm.

Third, Bailey (1971) provides a list of leading automobile makes from 1896-1970 based on

top-15 annual sales. This allows us to identify top automobile producers during those periods.

3.2 Industry Overview

As shown in Figure 1, the automobile industry went through a tremendous development in

its first 75 years, evolving from a small infant industry to a gigantic, concentrated, mature

industry. During the process, an industry shakeout started around 1910, as the number of

firms fell steadily from a peak of 206 in 1908 to 8 in 1942. Meanwhile, the percent of spinoff

firms continued to increase, from almost zero in 1900 to 60% in 1940. Later on, the ratio of

spinoffs started to decline but that was because some top parent firms (who are not spinoffs

themselves) of major spinoff families outlived their children.
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Figure 2: Geographic Dynamics of Automobile Firms

The industry also went through significant geographic dynamics over those years. Using the

number of firms as the criterion, we identify six historically important automobile production

centers, namely St. Louis, Chicago, Indianapolis, Detroit, Rochester and New York City.5

As shown in Figure 2, the industry initially started in Chicago and New York City before

1900. Soon after, Detroit and other centers caught up quickly (See Figure A1 in the Appendix

for maps of geographic dynamics of automobile production in the U.S. between 1900-1925).

Until the shakeout started around 1910, the number of firms in every production center grew

strongly. After that, the number of firms started to fall in most centers (except for Detroit,

where the shakeout did not start until 1918) but at different rates. Eventually, the industry

production was dominated by a few surviving Detroit firms.

The entry and exit pattern of automobile firms were also different across spinoff families.

Using the family trees that we constructed, we identify a total of 197 firms associated with

5A city is counted as an automobile production center city if it had at least five automobile producers in
year 1910. We then define the region within 100 miles of the center city as the production center, named after
the center city.
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Figure 3: Family Dynamics of Automobile Firms

60 families. Among them, Ford, GM and Oldsmobile were the three biggest families, each

generating 12-17 spinoffs (see Table A1 in the Appendix for the family trees). As expected,

most spinoffs locate near the parents: (e.g., 76% of spinoffs locate near the parents in the top

three families). Figure 3 presents the time path of firm numbers for the top three families. As

shown, each family also went through a shakeout, though the exact patterns were not quite

the same.

3.3 Regression Analysis

To summarize, our automobile dataset includes the following information:

(1) The entry year of each firm.

(2) The exit year of each firm.

(3) The type of each exit.

(4) The background of each entrepreneur: De Alio, Spinoffs or De Novo.

(5) The quality of firms in terms of producing top makes in the industry.
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(6) The location of each firm.

(7) The six automobile production centers.

(8) The family linkage for each spinoff firm.

Using the above information, we create the following dummy variables used in our re-

gressions (indexed by firm and year). Whenever needed, additional explanation is given in

parentheses.

◦ Firm Death (The firm exited in the current period).

◦ Firm Birth (The firm gave birth to a spinoff in the current period).

◦ Production Center (Seven dummies corresponding to St. Louis, Chicago, Indianapolis,

Detroit, Rochester, New York City and other places).

◦ De Alio (The firm was founded by an experienced entrant).

◦ Spinoff (The firm was founded by a spinoff entrant).

In addition, we create the following variables:

◦ Center Size (The number of firms in the production center where the firm is located).

◦ Center Top (The number of top firms in the production center where the firm is located).

◦ Family Size (The number of firms in the family to which the firm belongs).

◦ Family Top ((The number of top firms in the family to which the firm belongs).

◦ Firm Age.

◦ Year.

Tables A2 and A3 in the Appendix provide descriptive statistics of the regression variables,

both at firm×year level and firm level. From Table 1, we can see that the firm death rate is

about 17% per year and the average age of a firm is about 7 years. These are not unusual for a

growing industry. Meanwhile, the firm spinoff (birth) rate is about 2% per year. We can also

see 59% of firms are De Alio entrants, 20% are Spinoffs, and 20% firms ever made the top firm

list. On average, a location has 36 firms (the range is from 1 to 96), among which 6 of them
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are top firms (the range is from 0 to 19); a spinoff family has 1.6 member firms (the range is

from 1 to 10), and 0.5 firms are top ones (the range is from 0 to 6). From Table 2, we can

see that about 18% of all firms are spinoffs from existing firms, and one half are experienced

entrants. Among all firms, 6% of them ever made the top list.

In the following analysis, we ran logit regressions using firm-year observations with Firm

Death or Firm Birth as the dependent variable. As suggested by our theory, to the extent

that each firm’s outside options φx is logistically distributed, our exercises are equivalent to

estimating firms’ policy function of entry and exit. The data range we use is from 1895-1942,

including 776 firms and 4472 firm-year observations.6

3.3.1 Firm Death Analysis

Table 1 presents the regression results with Firm Death as the dependent variable. The findings

support the implications of our model.

First, the variable “Family Size” has a negative coefficient as predicted by Propositions 1

and 3. The coefficient is always statistically significant at 0.1% level in various model specifi-

cations. The magnitude of the coefficient is also economically significant: The corresponding

odds ratio implies that the relative death rate of firm will drop by 14% as the number of firms

in a family increases by one. Given the fact that firms are of different size in reality, we also

try “Family Top” as an alternative measure. Again, it has a negative coefficient as predicted

by Propositions 1 and 3. The coefficient is also statistically significant at 0.1% level, and the

odds ratio implies that the relative death rate of firm will drop by 36% as the number of top

firms in a family increases by one.

Second, the variable “Spinoff” has a negative coefficient as predicted by Proposition 4.

However, whether the coefficient is statistically significant or not depends on model specifica-

tions. Particularly, when we include “Family Top” instead of “Family Size” into the regression,

6Given the information provided in Kimes (1996), we collect biographical information about the entrepreneurs
up to 1942, before the US entered the WWII.
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Table 1. Logit Regressions on Firm Death Rates 

  

Firm Death (1) (2) (3) (4) (5) (6) 

De Alio   -0.479*** -0.474*** -0.515*** -0.506*** 
   (0.096) (0.096) (0.097) (0.098) 
Spinoff   -0.330** -0.166 -0.340** -0.182 
   (0.146) (0.139) (0.150) (0.143) 
St. Louis 0.015 0.292 0.415 0.287 0.133 0.179 
 (0.239) (0.271) (0.274) (0.258) (0.317) (0.271) 
Chicago -0.107 0.099 0.108 -0.009 -0.075 -0.050 
 (0.140) (0.169) (0.171) (0.153) (0.204) (0.161) 
Indianapolis -0.560*** -0.385** -0.321* -0.489*** -0.516** -0.561*** 
 (0.155) (0.175) (0.176) (0.164) (0.203) (0.173) 
Detroit -0.422*** -0.381*** -0.245** -0.643** -0.295** -0.462 
 (0.110) (0.112) (0.116) (0.268) (0.120) (0.309) 
Rochester -0.253 0.007 0.041 -0.162 -0.192 -0.207 
 (0.196) (0.230) (0.231) (0.202) (0.263) (0.206) 
New York  0.213* 0.418*** 0.432*** 0.261** 0.278 0.261* 
 (0.127) (0.158) (0.160) (0.131) (0.185) (0.134) 
Center Size  0.006** 0.006**  0.001  
  (0.003) (0.003)  (0.004)  
Family Size    -0.140***  -0.149***  
   (0.040)  (0.042)  
Center Top    0.043*  0.024 
    (0.023)  (0.027) 
Family Top    -0.439***  -0.441*** 
    (0.069)  (0.070) 
Firm Age -0.054*** -0.053*** -0.050*** -0.038*** -0.051*** -0.042*** 
 (0.009) (0.009) (0.009) (0.009) (0.010) (0.010) 
Year 0.026*** 0.031*** 0.037*** 0.031***   
 (0.006) (0.007) (0.007) (0.007)   
Constant 51.462*** 61.627*** 71.370*** 60.502*** -1.472*** -1.610*** 
 (12.086) (13.188) (13.881) (13.309) (0.420) (0.397) 
Year 
Dummies         Y Y 
 
Observations 4458 4458 4458 4458 4364 4364 

 
Note: Standard errors are in parentheses under coefficient values. One, two and three * indicate statistical 
significance at the 10, 5 and 1% levels, respectively. 
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the coefficient of “Spinoff” is no longer significant. One interpretation is that the “Family Top”

is a better measure of the quality of the family so that it captures the difference between Spinoff

and De Novo firms.

Third, the variable “Center Size” has a positive coefficient, and it is statistically significant.

This suggests that there is no local positive externality, but rather local congestions. We also

try “Local Top” as an alternative measure. As expected, it has a larger positive coefficient

than that of “Center Size,” which implies top firms in a location cause bigger congestions.

Fourth, among all six location dummies, three are statistically significant (Detroit, Indi-

anapolis and New York). Particularly, the two dummies “Detroit” and “Indianapolis” have

negative coefficients, which suggest some location-specific advantage. In contrast, “New York”

has a positive coefficient, which suggests some location-specific disadvantage.

Finally, the variables “De Alio” and “Firm Age” both have negative coefficients and sta-

tistically significant. This is consistent with the explanation that firm age and experience

indicate its quality. Meanwhile, we use the variable “Year” to capture the changing threshold

of surviving in the industry. As expected, the coefficient is positive and statistically significant.

3.3.2 Firm Birth Analysis

Table 2 presents the regression results with Firm Birth as the dependent variable. The findings

also support the implications of our model.

First, the variable “Family Size” has a positive coefficient as predicted by Propositions 1 and

3. The coefficient is always statistically significant at 0.1% level in various model specifications.

The magnitude of the coefficient is economically significant: The corresponding odds ratio

implies that the relative birth rate of firm will increase by 40% as the number of firms in a

family increases by one. We also try “Family Top” as an alternative measure. The result is

similar.

Second, without controlling for “family network effect,” the variable “Center Size” has

a positive coefficient and it is statistically significant. This seems to suggest local positive
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 Table 2. Logit Regressions on Firm Birth Rates 
  

Firm Birth (1) (2) (3) (4) (5) (6) 
St. Louis -0.144 1.038 0.294 -0.015 -1.135 -0.797 
 (1.045) (1.160) (1.155) (1.069) (1.220) (1.084) 
Chicago 0.620 1.529** 0.996* 0.699 -0.019 0.241 
 (0.461) (0.607) (0.598) (0.483) (0.651) (0.497) 
Indianapolis 0.306 1.088* 0.736 0.457 -0.286 -0.122 
 (0.481) (0.593) (0.579) (0.492) (0.634) (0.516) 
Detroit 1.299*** 1.575*** 0.673* 0.265 0.415 2.147*** 
 (0.334) (0.365) (0.395) (0.615) (0.384) (0.763) 
Rochester 0.752 1.815*** 1.264* 0.832 0.067 0.511 
 (0.513) (0.690) (0.674) (0.523) (0.764) (0.534) 
New York 0.883** 1.758*** 1.195** 0.853** 0.332 0.788* 
 (0.413) (0.564) (0.544) (0.418) (0.603) (0.422) 
Center Size  0.022*** 0.012  -0.015  
  (0.009) (0.009)  (0.013)  
Family Size    0.333***  0.338***  
   (0.044)  (0.047)  
Center Top    0.056  -0.125* 
    (0.049)  (0.064) 
Family Top    0.324***  0.341*** 
    (0.067)  (0.069) 
Firm Age 0.029 0.039* 0.057** 0.033 0.072*** 0.055** 
 (0.020) (0.021) (0.022) (0.021) (0.023) (0.022) 
Year -0.027 -0.016 -0.051** -0.039**   
 (0.019) (0.021) (0.022) (0.019)   
Constant 47.347 24.187 91.663** 69.611* 4.557*** -4.828*** 
  (35.527) (40.241) (42.260) (36.980) (1.143) (1.056) 
Year  
Dummies     Y Y 
Observations 4472 4472 4472 4472 4121 4121 

 
Note: Standard errors are in parentheses under coefficient values. One, two and three * indicate statistical 
significance at the 10, 5 and 1% levels, respectively. 
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externalities. However, after we control for “Family Size” or “Family Top”, the coefficient of

“Center Size” or “Center Top” lost its statistical significance. Moreover, when we introduce

year dummies, their coefficients turn negative, which again suggests local congestions.

Third, three location dummies (Detroit, Rochester and New York) show positive signs,

which suggest some advantage of encouraging spinoff entries. However, these coefficients are

not always statistically significant across different model specifications.

Finally, the variable “Firm Age” has positive coefficient and statistically significant. This

is consistent with the explanation that firm age indicates its quality. Meanwhile, we use the

variable “Year” to capture the changing threshold of entering the industry. As excepted, the

coefficient is positive and statistically significant.

4 Conclusion

This paper provides a theory of “family network” to explain the geographic concentration of

industry. In contrast to the traditional view that spatial agglomeration of industry is caused by

“local externalities”, we find that the “family network effect” could actually been the driving

force.

For many industries, one most important source of entrants is spinoffs, who work as em-

ployees for existing firms and later start their own business in the same industry. Spinoffs

typically locate near the parents, and benefit from knowledge linkage and business relation

within the family network. As a result, firms are more likely to enter and less likely to exit if

they are associated with a large family.

Using a unique dataset of US automobile industry in its early years, we identify six his-

torically important production centers and sixty spinoff families. Our empirical analysis then

disentangles the effect of “family networks” from other “local externalities.” In fact, after we

control for the “family network effect,” other “local externalities” show negative effects on firm

entry and survival, which means local congestions. This provides strong evidence that it was

16



the former rather than the latter that caused the geographic concentration of US automobile

production. Although we do not explicitly specify in our analysis the source of the “family

network effect” and whether it has to be an externality or not, we have clearly shown that

family-specific effects play a central role in the geographic concentration of industry.
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Figure A1. Geographic Dynamics of US Auto Production Centers
(1900-1925)
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Table A1. Spinoff Trees of Top US Auto Producer Families

Gardner (1920 -  1931)

Monroe (1914 -  1920)

DeVaux (1931 -  1933)

Flint (1902 -  1903)

Ajax (1925 -  1926)

American Motors Corp. (1954 -  )

Lafeyette (1920 -  1924)

Farmack (1915 -  1916) Drexel (1917 -  1917)

Chrysler (1924 -  )

Daniels (1915 -  1923)

Lincoln (1920 -  1922)

Little (1911 -  1913)

Olympian (1916 -  1920)

Paige-Detroit (1919 -  1928)

Welch-Detroit (1909 -  1909)

Earl (1921 -  1923)

Edwards-Knight (1912 -  1913)

Motorette (1910 -  1911)

Spartan (1910 -  1910)

Chalmers (1906 -  1921) Saxon (1913 -  1922) Liberty (1916 -  1923)

Northern (1902 -  1908) King (1911 -  1923)

Hudson (1909 -  1954)

Neilson (1907 -  1907)

Nelson (1916 -  1920)

Owen (1909 -  1910)

Reo (1904 -  1936)

Warren-Detroit (1909 -  1914)

Columbia (1916 -  1924)

Everitt (1909 -  1912)

Hanson (1919 -  1923)

Rickenbacker (1922 -  1926)

Emerson (1917 -  1918) Campbell (1918 -  1919)

Hupp-Yates (1910 -  1916)

R.C.H. (1911 -  1916)

Gray (1922 -  1926)

Wills St. Claire (1922 -  1927)

-  1917)

-  )Ford (1903

E-M-F (1908

(1917

Hupmobile (1909

Chevrolet (1911

-  )

Maxwell (1904

Durant (1921

Nash

General Motors (1908

Oldsmobile (1901

-  1921)Briscoe (1914

-  1918)

-  1931)

-  1954)

-  1940)

-  1910)

-  1925)
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Table A2. Data Summary Statistics (Firm×Year Level) 

 
  
Variable Obs Mean Std. Dev. Min Max 
Firm Death 4472 0.17 0.38 0 1 
Firm Birth 4472 0.02 0.14 0 1 
De Alio 4472 0.59 0.49 0 1 
Spinoff 4472 0.20 0.40 0 1 
Top Firm  4472 0.20 0.40 0 1 
Center Size 4472 35.81 23.66 1 96 
Family Size 4472 1.56 1.59 1 10 
Center Top 4472 6.04 5.64 0 19 
Family Top 4472 0.50 1.16 0 6 
Firm Age 4472 6.85 7.18 1 43 
Year  4472 1913 8 1895 1942 

 
 
 
 

  
Table A3. Data Summary Statistics (Firm Level) 

 
  
Variable Obs Mean Std. Dev. Min Max 
De Alio 776 0.52 0.50 0 1 
Spinoff 776 0.18 0.38 0 1 
Top Firm  776 0.06 0.24 0 1 
Entry Year  776 1908 6 1895 1939 
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