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Abstract

We study the (perfect Bayesian) equilibrium of a model of learning over a general so-
cial network. Each individual receives a signal about the underlying state of the world,
observes the past actions of a stochastically-generated neighborhood of individuals, and
chooses one of two possible actions. The stochastic process generating the neighborhoods
defines the network topology (social network). The special case where each individual
observes all past actions has been widely studied in the literature. We characterize
pure-strategy equilibria for arbitrary stochastic and deterministic social networks and
characterize the conditions under which there will be asymptotic learning—that is, the
conditions under which, as the social network becomes large, individuals converge (in
probability) to taking the right action. We show that when private beliefs are unbounded
(meaning that the implied likelihood ratios are unbounded), there will be asymptotic
learning as long as there is some minimal amount of “expansion in observations”. Our
main theorem shows that when the probability that each individual observes some other
individual from the recent past converges to one as the social network becomes large, un-
bounded private beliefs are sufficient to ensure asymptotic learning. This theorem there-
fore establishes that, with unbounded private beliefs, there will be asymptotic learning
in almost all reasonable social networks. We also show that for most network topologies,
when private beliefs are bounded, there will not be asymptotic learning. In addition, in
contrast to the special case where all past actions are observed, asymptotic learning is
possible even with bounded beliefs in certain stochastic network topologies.
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1 Introduction

How is dispersed and decentralized information held by a large number of individuals ag-
gregated? Imagine a situation in which each of a large number of individuals has a noisy
signal about an underlying state of the world. This state of the world might concern,
among other things, earning opportunities in a certain occupation, the quality of a new
product, the suitability of a particular political candidate for office or payoff-relevant ac-
tions taken by the government. If signals are unbiased, the combination—aggregation—
of the information of the individuals will be sufficient for the society to “learn” the true
underlying state. The above question can be formulated as the investigation of what
types of behaviors and communication structures will lead to this type of information
aggregation.

Condorcet’s Jury Theorem provides a natural benchmark, where sincere (truthful)
reporting of their information by each individual is sufficient for aggregation of informa-
tion by a law of large numbers argument (Condorcet, 1788). Against this background,
a number of papers, most notably Bikchandani, Hirshleifer and Welch (1992), Banerjee
(1992) and Smith and Sorensen (2000), show how this type of aggregation might fail in
the context of the (perfect) Bayesian equilibrium of a dynamic game: when individuals
act sequentially, after observing the actions of all previous individuals (agents), many
reasonable situations will lead to the wrong conclusion with positive probability.

An important modeling assumption in these papers is that each individual observes
all past actions. In practice, individuals are situated in complex social networks, which
provide their main source of information. For example, Granovetter (1973), Montgomery
(1991), Munshi (2003) and Iaonnides and Loury (2004) document the importance of
information obtained from the social network of an individual for employment outcomes.
Besley and Case (1994), Foster and Rosenzweig (1995), Munshi (2004), and Udry and
Conley (2001) show the importance of the information obtained from social networks
for technology adoption. Jackson (2006, 2007) provide excellent surveys of the work on
the importance of social networks in many diverse situations. In this paper, we address
how the structure of social networks, which determines the information that individuals
receive, affects equilibrium information aggregation.

We start with the canonical sequential learning problem, except that instead of full
observation of past actions, we allow for a general social network connecting individuals.
More specifically, a large number of agents sequentially choose between two actions. An
underlying state determines the payoffs of these two actions. Each agent receives a
signal on which of these two actions yields a higher payoff. Preferences of all agents are
aligned in the sense that, given the underlying state of the world, they all prefer the
same action. The game is characterized by two features: (i) the signal structure, which
determines how informative the signals received by the individuals are; (ii) the social
network structure, which determines the observations of each individual in the game.
We model the social network structure as a stochastic process that determines each
individual’s neighborhood. Each individual only observes the (past) actions of agents
in his neighborhood. Motivated by the social network interpretation, throughout it is
assumed that each individual knows the identity of the agents in his neighborhood (e.g.,
he can distinguish whether the action observed is by a friend or neighbor or by some
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outside party). Nevertheless, the realized neighborhood of each individual as well as his
private signal are private information.

We also refer to the stochastic process generating neighborhoods as the network
topology of this social network. For some of our results, it will be useful to distinguish
between deterministic and stochastic network topologies. With deterministic network
topologies, there is no uncertainty concerning the neighborhood of each individual and
these neighborhoods are common knowledge. With stochastic network topologies, there
is uncertainty about these neighborhoods.

The environment most commonly studied in the previous literature is the full obser-
vation network topology, which is the special case where all past actions are observed.
Another deterministic special case is the network topology where each individual ob-
serves the actions of the most recent M ≥ 1 individuals. Other relevant social networks
include stochastic topologies in which each individual observes a random subset of past
actions, as well as those in which, with a high probability, each individual observes the
actions of some “influential” group of agents, who may be thought of as “leaders” or the
media.

We provide a systematic characterization of the conditions under which there will be
equilibrium information aggregation in social networks. We say that there is information
aggregation or equivalently asymptotic learning, when, in the limit as the size of the
social network becomes arbitrarily large, individual actions converge (in probability) to
the action that yields the higher payoff. We say that asymptotic learning fails if, as the
social network becomes large, the correct action is not chosen (or more formally, the
lim inf of the probability that the right action is chosen is strictly less than 1).

Two concepts turn out to be crucial in the study of information aggregation in social
networks. The first is whether the likelihood ratio implied by individual signals is always
finite and bounded away from 0.1 Smith and Sorensen (2000) refer to beliefs that satisfy
this property as bounded (private) beliefs. With bounded beliefs, there is a maximum
amount of information in any individual signal. In contrast, when there exist signals
with arbitrarily high and low likelihood ratios, (private) beliefs are unbounded. Whether
bounded or unbounded beliefs provide a better approximation to reality is partly an
interpretational and partly an empirical question. Smith and Sorensen’s main result is
that when each individual observes all past actions and private beliefs are unbounded,
information will be aggregated and the correct action will be chosen asymptotically. In
contrast, the results in Bikchandani, Hirshleifer and Welch (1992), Banerjee (1992) and
Smith and Sorensen (2000) indicate that with bounded beliefs, there will not be asymp-
totic learning (or information aggregation). Instead, as emphasized by Bikchandani,
Hirshleifer and Welch (1992) and Banerjee (1992), there will be “herding” or “infor-
mational cascades,” where individuals copy past actions and/or completely ignore their
own signals.

The second key concept is that of a network topology with expanding observations.
To describe this concept, let us first introduce another notion: a finite group of agents is
excessively influential if there exists an infinite number of agents who, with probability

1The likelihood ratio is the ratio of the probabilities or the densities of a signal in one state relative
to the other.
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uniformly bounded away from 0, observe only the actions of a subset of this group. For
example, a group is excessively influential if it is the source of all information (except
individual signals) for an infinitely large component of the social network. If there exists
an excessively influential group of individuals, then the social network has nonexpanding
observations, and conversely, if there exists no excessively influential group, the network
has expanding observations. This definition implies that most reasonable social networks
have expanding observations, and in particular, a minimum amount of “arrival of new
information ” in the social network is sufficient for the expanding observations property.2

For example, the environment studied in most of the previous work in this area, where
all past actions are observed, has expanding observations. Similarly, a social network
in which each individual observes one uniformly drawn individual from those who have
taken decisions in the past or a network in which each individual observes his immedi-
ate neighbor all feature expanding observations. Note also that a social network with
expanding observations need not be connected. For example, the network in which even-
numbered [odd-numbered] individuals only observe the past actions of even-numbered
[odd-numbered] individuals has expanding observations, but is not connected. A simple,
but typical, example of a network with nonexpanding observations is the one in which
all future individuals only observe the actions of the first K < ∞ agents.

Our main results in this paper are presented in four theorems.

1. Theorem 1 shows that there is no asymptotic learning in networks with nonexpand-
ing observations. This result is not surprising, since information aggregation is not
possible when the set of observations on which (an infinite subset of) individuals
can build their decisions remains limited forever.

2. Our most substantive result, Theorem 2, shows that when (private) beliefs are un-
bounded and the network topology is expanding, there will be asymptotic learning.
This is a very strong result (particularly if we consider unbounded beliefs to be a
better approximation to reality than bounded beliefs), since almost all reasonable
social networks have the expanding observations property. This theorem, for ex-
ample, implies that when some individuals, such as “informational leaders,” are
overrepresented in the neighborhoods of future agents (and are thus “influential,”
though not excessively so), learning may slow down, but asymptotic learning will
still obtain as long as private beliefs are unbounded.

The idea of the proof of Theorem 2 is as follows. We first establish a strong
improvement principle under unbounded beliefs, whereby in a network where each
individual has a single agent in his neighborhood, he can receive a strictly higher
payoff than this agent and this improvement remains bounded away from zero as
long as asymptotic learning has not been achieved. We then show that the same
insight applies when individuals stochastically observe one or multiple agents (in
particular, with multiple agents, the improvement is no less than the case in which
the individual observes a single agent from the past). Finally, the property that the

2Here, “arrival of new information” refers to the property that the probability of each individual
observing the action of some individual from the recent past converges to one as the social network
becomes arbitrarily large.
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network topology has expanding observations is sufficient for these improvements
to accumulate to asymptotic learning.

3. Theorem 3 presents a partial converse to Theorem 2. It shows that for the most
common deterministic and stochastic networks, bounded private beliefs are in-
compatible with asymptotic learning. It therefore generalizes existing results on
asymptotic learning, for example, those in Bikchandani, Hirshleifer and Welch
(1992), Banerjee (1992), and Smith and Sorensen (2000) to general networks.

4. Our final main result, Theorem 4, establishes that asymptotic learning is possible
with bounded private beliefs for certain stochastic network topologies. In these
cases, there is sufficient arrival of new information (incorporated into the “social
belief”) because some agents make decisions on the basis of limited observations.
As a consequence, even bounded private beliefs may aggregate and lead to asymp-
totic learning. This finding is particularly important, since it shows how moving
away from simple network structures has major implications for equilibrium learn-
ing dynamics.

The rest of the paper is organized as follows. The next section discusses the re-
lated literature and clarifies the contribution of our paper. Section 3 introduces the
model. Section 4 formally introduces the concepts of bounded and unbounded beliefs,
and network topologies with expanding and nonexpanding observations. This section
then presents our main results, Theorems 1-4, and discusses some of their implications
(as well as presenting a number of corollaries to facilitate interpretation). The rest of
the paper characterizes the (pure-strategy) perfect Bayesian equilibria of the model pre-
sented in Section 3 and provides proofs of these theorems. Section 5 presents a number
of important results on the characterization of pure-strategy equilibria. Section 6 occu-
pies the bulk of the paper and provides a detailed proof of Theorem 2, which involves
the statement and proof of several lemmas. Section 7 provides a proof of Theorem 3,
while Section 8 shows how asymptotic learning is possible with bounded private beliefs.
Section 9 concludes. Appendices A and B contain proofs omitted from the main text,
including the proof of Theorem 1.

2 Related Literature

The literature on social learning is vast. Roughly speaking, the literature can be sep-
arated according to two criteria: whether learning is Bayesian or myopic, and whether
individuals learn from communication of exact signals or from the payoffs of others, or
simply from observing others’ actions. Typically, Bayesian models focus on learning
from past actions, while most, but not all, myopic learning models focus on learning
from communication.

Bikchandani, Hirshleifer and Welch (1992) and Banerjee (1992) started the litera-
ture on learning in situations in which individuals are Bayesian and observe past actions.
Smith and Sorensen (2000) provide the most comprehensive and complete analysis of
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this environment. Their results and the importance of the concepts of bounded and un-
bounded beliefs, which they introduced, have already been discussed in the introduction
and will play an important role in our analysis in the rest of the paper. Other important
contributions in this area include, among others, Welch (1992), Lee (1993), Chamley and
Gale (1994), and Vives (1997). An excellent general discussion is contained in Bikchan-
dani, Hirshleifer and Welch (1998). These papers typically focus on the special case of
full observation network topology in terms of our general model.

The two papers most closely related to ours are Banerjee and Fudenberg (2004) and
Smith and Sorensen (1998). Both of these papers study social learning with sampling of
past actions. In Banerjee and Fudenberg, there is a continuum of agents and the focus
is on proportional sampling (whereby individuals observe a “representative” sample of
the overall population). They establish that asymptotic learning is achieved under mild
assumptions as long as the sample size is no smaller than two. The existence of a
continuum of agents is important for this result since it ensures that the fraction of
individuals with different posteriors evolves deterministically. Smith and Sorensen, on
the other hand, consider a related model with a countable number of agents. In their
model, as in ours, the evolution of beliefs is stochastic. Smith and Sorensen provide
conditions under which asymptotic learning takes place.

A crucial difference between Banerjee and Fudenberg and Smith and Sorensen, on
the one hand, and our work, on the other, is the information structure. These papers
assume that “samples are unordered” in the sense that individuals do not know the
identity of the agents they have observed. In contrast, as mentioned above, our setup
is motivated by a social network and assumes that individuals have stochastic neigh-
borhoods, but know the identity of the agents in their realized neighborhood. We view
this as a better approximation to learning in social networks. In addition to its descrip-
tive realism, this assumption leads to a sharper characterization of the conditions under
which asymptotic learning occurs. For example, in Smith and Sorensen’s environment,
asymptotic learning fails whenever an individual is “oversampled,” in the sense of being
overrepresented in the samples of future agents. In contrast, in our environment, asymp-
totic learning occurs when the network topology features expanding observations (and
private beliefs are unbounded). Expanding observations is a much weaker requirement
than “non-oversampling.” For example, when each individual observes agent 1 and a
randomly chosen agent from his predecessors, the network topology satisfies expanding
observations, but there is oversampling.3

Other recent work on social learning includes Celen and Kariv (2004) who study
Bayesian learning when each individual observes his immediate predecessor, Gale and
Kariv (2003) who generalize the payoff equalization result of Bala and Goyal (1998) in
connected social networks (discussed below) to Bayesian learning, and Callander and
Horner (2006), who show that it may be optimal to follow the actions of agents that
deviate from past average behavior.

The second branch of the literature focuses on non-Bayesian learning, typically with
agents using some reasonable rules of thumb. This literature considers both learning from

3This also implies that, in the terminology of Bala and Goyal, a “royal family” precludes learning
in Smith and Sorensen’s model, but not in ours, see below.
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past actions and from payoffs (or directly from beliefs). Early papers in this literature
include Ellison and Fudenberg (1993, 1995), which show how rule-of-thumb learning can
converge to the true underlying state in some simple environments. The papers most
closely related to our work in this genre are Bala and Goyal (1998, 2001), DeMarzo,
Vayanos and Zwiebel (2003) and Golub and Jackson (2007). These papers study non-
Bayesian learning over an arbitrary, connected social network. Bala and Goyal (1998)
establish the important and intuitive payoff equalization result that, asymptotically,
each individual must receive a payoff equal to that of an arbitrary individual in his
“social network,” since otherwise he could copy the behavior of this other individual.
Our paper can be viewed as extending Bala and Goyal’s results to a situation with
Bayesian learning. A similar “imitation” intuition plays an important role in our proof
of asymptotic learning with unbounded beliefs and unbounded observations.

DeMarzo, Vayanos and Zwiebel and Golub and Jackson also study similar environ-
ments and derive consensus-type results, whereby individuals in the connected compo-
nents of the social network will converge to similar beliefs. They provide characterization
results on which individuals in the social network will be influential and investigate the
likelihood that the consensus opinion will coincide with the true underlying state. Golub
and Jackson, in particular, show that social networks where some individuals are “influ-
ential” in the sense of being connected to a large number of people make learning more
difficult or impossible. A similar result is also established in Bala and Goyal, where
they show that the presence of a royal family, i.e., a small set of individuals observed
by everyone, precludes learning. This both complements and contrasts with our results.
In our environment, an excessively influential group of individuals prevents learning,
but influential agents in Golub and Jackson’s sense or Bala and Goyal’s royal family
are not excessively influential and still allow asymptotic learning. This is because with
Bayesian updating over a social network, individuals recognize who the oversampled
individuals or the royal family are and accordingly adjust the weight they give to their
action/information.

The literature on the information aggregation role of elections is also related, since
it revisits the original context of Condorcet’s Jury Theorem. This literature includes,
among others, the papers by Austen-Smith and Banks (1996), Feddersen and Pesendorfer
(1996, 1997), McLennan (1998), Myerson (1998, 2000), and Young (1988). Most of these
papers investigate whether dispersed information will be accurately aggregated in large
elections. Although the focus on information aggregation is common, the set of issues
and the methods of analysis are very different, particularly since, in these models, there
are no sequential decisions.

Finally, there is also a literature in engineering, which studies related problems,
especially motivated by aggregation of information collected by decentralized sensors.
These include Cover (1969), Papastavrou and Athans (1990), Lorenz, Marciniszyn and,
Steger (2007), and Tay, Tsitsiklis and Win (2007). The work by Papastavrou and Athans
contains a result that is equivalent to the characterization of asymptotic learning with
the observation of the immediate neighbor.
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3 Model

A countably infinite number of agents (individuals), indexed by n ∈ N, sequentially
make a single decision each. The payoff of agent n depends on an underlying state of
the world θ and his decision. To simplify the notation and the exposition, we assume
that both the underlying state and decisions are binary. In particular, the decision of
agent n is denoted by xn ∈ {0, 1} and the underlying state is θ ∈ {0, 1}. The payoff of
agent n is

un (xn, θ) =

{
1 if xn = θ
0 if xn 6= θ.

Again to simplify notation, we assume that both values of the underlying state are
equally likely, so that P(θ = 0) = P(θ = 1) = 1/2.

The state θ is unknown. Each agent n ∈ N forms beliefs about this state from a
private signal sn ∈ S (where S is a metric space or simply a Euclidean space) and from
his observation of the actions of other agents. Conditional on the state of the world θ,
the signals are independently generated according to a probability measure Fθ. We refer
to the pair of measures (F0,F1) as the signal structure of the model. We assume that F0

and F1 are absolutely continuous with respect to each other, which immediately implies
that no signal is fully revealing about the underlying state. We also assume that F0 and
F1 are not identical, so that some signals are informative. These two assumptions on
the signal structure are maintained throughout the paper and will not be stated in the
theorems explicitly.

In contrast to much of the literature on social learning, we assume that agents do
not necessarily observe all previous actions. Instead, they observe the actions of other
agents according to the structure of the social network. To introduce the notion of a social
network, let us first define a neighborhood. Each agent n observes the decisions of the
agents in his (stochastically-generated) neighborhood, denoted by B(n).4 Since agents
can only observe actions taken previously, B(n) ⊆ {1, 2, ..., n− 1}. Each neighborhood
B(n) is generated according to an arbitrary probability distribution Qn over the set of
all subsets of {1, 2, ..., n − 1}. We impose no special assumptions on the sequence of
distributions {Qn}n∈N except that the draws from each Qn are independent from each
other for all n and from the realizations of private signals. The sequence {Qn}n∈N is the
network topology of the social network formed by the agents. The network topology is
common knowledge, whereas the realized neighborhood B(n) and the private signal sn

are the private information of agent n. We say that {Qn}n∈N is a deterministic network
topology if the probability distribution Qn is a degenerate (Dirac) distribution for all n.
Otherwise, that is, if {Qn} for some n is nondegenerate, {Qn}n∈N is a stochastic network
topology.

A social network consists of a network topology {Qn}n∈N and a signal structure
(F0,F1).

Example 1 Here are some examples of network topologies.

4If n′ ∈ B(n), then agent n not only observes the action of n′, but also knows the identity of this
agent.
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Figure 1: The figure illustrates the world from the perspective of agent 7. Agent 7
knows her private signal s7, her realized neighborhood, B(7) = {4, 6} and the decisions
of agents 4 and 6, x4 and x6. She also knows the probabilistic model {Qn}n<7 for
neighborhoods of all agents n < 7.

1. If {Qn}n∈N assigns probability 1 to neighborhood {1, 2..., n− 1} for each n ∈ N,
then the network topology is identical to the canonical one studied in the previous
literature where each agent observes all previous actions (e.g., Banerjee (1992),
Bikchandani, Hirshleifer and Welch (1992), Smith and Sorensen (2000)).

2. If {Qn}n∈N assigns probability 1/(n − 1) to each one of the subsets of size 1 of
{1, 2..., n− 1} for each n ∈ N, then we have a network topology of random sampling
of one agent from the past.

3. If {Qn}n∈N assigns probability 1 to neighborhood {n− 1} for each n ∈ N, then
we have a network topology where each individual only observes his immediate
neighbor (also considered in a different context in the engineering literature by
Papastavrou and Athans (1990)).

4. If {Qn}n∈N assigns probability 1 to neighborhoods that are subsets of {1, 2, ..., K}
for each n ∈ N for some K ∈ N. In this case, all agents observe the actions of at
most K agents.

5. Figure 1 depicts an arbitrary stochastic topology until agent 7. The thickness of
the lines represents the probability with which a particular agent will observe the
action of the corresponding preceding agent.

Given the description above, it is evident that the information set In of agent n is
given by her signal sn, her neighborhood B(n), and all decisions of agents in B(n), that
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is,
In = {sn, B(n), xk for all k ∈ B(n)}. (1)

The set of all possible information sets of agent n is denoted by In. A strategy for
individual n is a mapping σn : In → {0, 1} that selects a decision for each possible
information set. A strategy profile is a sequence of strategies σ = {σn}n∈N. We use the
standard notation σ−n = {σ1, . . . , σn−1, σn+1, . . .} to denote the strategies of all agents
other than n and also (σn, σ−n) for any n to denote the strategy profile σ. Given a
strategy profile σ, the sequence of decisions {xn}n∈N is a stochastic process and we
denote the measure generated by this stochastic process by Pσ.

Definition 1 A strategy profile σ∗ is a pure-strategy Perfect Bayesian Equilibrium
of this game of social learning if for each n ∈ N, σ∗n maximizes the expected payoff of
agent n given the strategies of other agents σ∗−n.

In the rest of the paper, we focus on pure-strategy Perfect Bayesian Equilibria, and
simply refer to this as “equilibrium” (without the pure-strategy and the Perfect Bayesian
qualifiers).

Given a strategy profile σ, the expected payoff of agent n from action xn = σn(In) is
simply Pσ(xn = θ | In). Therefore, for any equilibrium σ∗, we have

σ∗n(In) ∈ arg max
y∈{0,1}

P(y,σ∗−n)(y = θ | In). (2)

We denote the set of equilibria (pure-strategy Perfect Bayesian Equilibria) of the game
by Σ∗. It is clear that Σ∗ is nonempty. Given the sequence of strategies {σ∗1, . . . , σ∗n−1},
the maximization problem in (2) has a solution for each agent n and each In ∈ In.
Proceeding inductively, and choosing either one of the actions in case of indifference
determines an equilibrium. We note the existence of equilibrium here.

Proposition 1 There exists a pure-strategy Perfect Bayesian Equilibrium.

Our main focus is whether equilibrium behavior will lead to information aggregation.
This is captured by the notion of asymptotic learning, which is introduced next.

Definition 2 Given a signal structure (F0,F1) and a network topology {Qn}n∈N, we say
that asymptotic learning occurs in equilibrium σ if xn converges to θ in probability
(according to measure Pσ), that is,

lim
n→∞

Pσ(xn = θ) = 1.

Notice that asymptotic learning requires that the probability of taking the correct
action converges to 1. Therefore, asymptotic learning will fail when, as the network
becomes large, the limit inferior of the probability of all individuals taking the correct
action is strictly less than 1.

Our goal in this paper is to characterize conditions on social networks—on signal
structures and network topologies—that ensure asymptotic learning.
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4 Main Results

In this section, we present our main results on asymptotic learning, in particular, Theo-
rems 1-4, and we discuss some of the implications of these theorems. The proofs of the
results stated in this section are provided in the rest of the paper.

We start by introducing the key properties of network topologies and signal struc-
tures that impact asymptotic learning. Intuitively, for asymptotic learning to occur,
the information that each agent receives from other agents should not be confined to a
bounded subset of agents. This property is established in the following definition. For
this definition and throughout the paper, if the set B(n) is empty, we set maxb∈B(n) b = 0.

Definition 3 The network topology has expanding observations if for all K ∈ N,
we have

lim
n→∞

Qn

(
max

b∈B(n)
b < K

)
= 0.

If the network topology does not satisfy this property, then we say it has nonexpanding
observations.

Recall that the neighborhood of agent n is a random variable B(n) (with values in the
set of subsets of {1, 2, ..., n−1}) and distributed according to Qn. Therefore, maxb∈B(n) b
is a random variable that takes values in {0, 1, ..., n − 1}. The expanding observations
condition can be restated as the sequence of random variables {maxb∈B(n) b}n∈N converg-
ing to infinity in probability. Similarly, it follows from the preceding definition that the
network topology has nonexpanding observations if and only if there exists some K ∈ N
and some scalar ε > 0 such that

lim sup
n→∞

Qn

(
max

b∈B(n)
b < K

)
≥ ε.

An alternative restatement of this definition might clarify its meaning. Let us refer to
a finite set of individuals C as excessively influential if there exists a subsequence of
agents who, with probability uniformly bounded away from zero, observe the actions of
a subset of C. Then, the network topology has nonexpanding observations if and only
if there exists an excessively influential group of agents. Note also that if there is a
minimum amount of arrival of new information in the network, so that the probability
of an individual observing some other individual from the recent past goes to one as the
network becomes large, then the network topology will feature expanding observations.
This discussion therefore highlights that the requirement that a network topology has
expanding observations is quite mild and most social networks satisfy this requirement.

When the topology has nonexpanding observations, there is a subsequence of agents
that draws information from the first K decisions with positive probability (uniformly
bounded away from 0). It is then intuitive that network topologies with nonexpanding
observations will preclude asymptotic learning. Our first theorem states this result.
Though intuitive, the proof of this result is somewhat long and not essential for the rest
of the argument and is thus provided in Appendix A.
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Theorem 1 Assume that the network topology {Qn}n∈N has nonexpanding observations.
Then, there exists no equilibrium σ ∈ Σ∗ with asymptotic learning.

This theorem states the intuitive result that with nonexpanding observations, asymp-
totic learning will fail. This result is not surprising, since asymptotic learning requires
the aggregation of the information of different individuals. But a network topology with
nonexpanding observations does not allow such aggregation. Intuitively, nonexpanding
observations, or equivalently the existence of an excessively influential group of agents,
imply that infinitely many individuals will observe finitely many actions with positive
probability and this will not enable them to aggregate the dispersed information collec-
tively held by the entire social network.

The main question is then whether, once we exclude network topologies with nonex-
panding observations, what other conditions need to be imposed to ensure asymptotic
learning. To answer this question and state our main theorem, we need to introduce
one more notion. Following Smith and Sorensen (2000), we define private beliefs as the
posterior that the true state is θ = 1 given individual signal sn. We will see below
that private beliefs will play a key role in the characterization of equilibrium behavior.
For now, let dF0/dF1 denote the Radon-Nikodym derivative of the measures F0 and F1

(recall that these are absolutely continuous with respect to each other). If F0 and F1

have densities, then for each j ∈ {0, 1}, dFj can be replaced by the density of Fj. If
both measures have atoms at some s ∈ S, then dF0/dF1(s) = F0(s)/F1(s).

Definition 4 The signal structure has bounded private beliefs if there exists some
0 < m, M < ∞ such that the Radon-Nikodym derivative dF0/dF1 satisfies

m <
dF0

dF1

(s) < M,

for almost all s ∈ S under measure (F0 + F1)/2. The signal structure has unbounded
private beliefs if for any S ′ contained in S with probability 1 under measure (F0+F1)/2,
we have

inf
s∈S′

dF0

dF1

(s) = 0, and sup
s∈S′

dF0

dF1

(s) = ∞.

Bounded private beliefs imply that there is a maximum amount of information that
an individual can derive from his private signal. Conversely, unbounded private beliefs
correspond to a situation where an agent can receive an arbitrarily strong signal about
the underlying state (see Section 5.2 for a more detailed discussion of this property).
Smith and Sorensen (2000) show that, in the special case of full observation network
topology, there will be asymptotic learning if and only if private beliefs are unbounded.

The following theorem shows that for general network topologies, unbounded pri-
vate beliefs play a similar role. In particular, unbounded private beliefs and expanding
observations are sufficient for asymptotic learning in all equilibria.

Theorem 2 Assume that the signal structure (F0,F1) has unbounded private beliefs and
the network topology {Qn}n∈N has expanding observations. Then, asymptotic learning
occurs in every equilibrium σ ∈ Σ∗.

11



The proof of this theorem, which is provided in Section 6, takes up a large part of
the remainder of this paper. However, many of its implications can be discussed before
presenting a detailed proof.

Theorem 2 is quite a striking result. It implies that unbounded private beliefs are
sufficient for asymptotic learning for most (but not all) network topologies. In particu-
lar, the condition that the network topology has expanding observations is fairly mild
and only requires a minimum amount of arrival of recent information to the network.
Social networks in which each individual observes all past actions, those in which each
observes just his neighbor, and those in which each individual observes M ≥ 1 agents
independently and uniformly drawn from his predecessors are all examples of network
topologies with expanding observations. Theorem 2 therefore implies that unbounded
private beliefs are sufficient to guarantee asymptotic learning in social networks with
these properties and many others.

Nevertheless, there are interesting network topologies where asymptotic learning does
not occur even with unbounded private signals. The following corollary to Theorems
1 and 2 shows that for an interesting class of stochastic network topologies, there is a
critical topology at which there is a phase transition—that is, for all network topologies
with greater expansion of observations than this critical topology, there will be asymp-
totic learning and for all topologies with less expansion, asymptotic learning will fail.
The proof of this corollary is also provided in Section 6.

Corollary 1 Assume that the signal structure (F0,F1) has unbounded private beliefs.
Assume also that the network topology is given by {Qn}n∈N such that

Qn(m ∈ B(n)) =
A

(n− 1)C
for all n and all m < n,

where, given n, the draws for m,m′ < n are independent and A and C are positive
constants. If C < 1 then asymptotic learning occurs in all equilibria. If C ≥ 1, then
asymptotic learning does not occur in any equilibrium.

Given the class of network topologies in this corollary, C < 1 implies that as the
network becomes large, there will be sufficient expansion of observations. In contrast,
for C ≥ 1, stochastic process Qn does not place enough probability on observing recent
actions and the network topology is nonexpanding. Consequently, Theorem 1 applies
and there is no asymptotic learning.

To highlight the implications of Theorems 1 and 2 for deterministic network topolo-
gies, let us introduce the following definition.

Definition 5 Assume that the network topology is deterministic. Then, we say a finite
sequence of agents π is an information path of agent n if for each i, πi ∈ B(πi+1) and
the last element of π is n. Let π(n) be an information path of agent n that has maximal
length. Then, we let L(n) denote the number of elements in π(n) and call it agent n’s
information depth.

Intuitively, the concepts of information path and information depth capture the
intuitive notion of how long the “trail” of the information in the neighborhood of an

12



individual is. For example, if each individual observes only his immediate neighbor
(i.e., B(n) = {n − 1} with probability one), each will have a small neighborhood, but
the information depth of a high-indexed individual will be high (or the “trail” will be
long), because the immediate neighbor’s action will contain information about the signals
of all previous individuals. The next corollary shows that with deterministic network
topologies, asymptotic learning will occur if only if the information depth (or the trail
of the information) increases without bound as the network becomes larger.

Corollary 2 Assume that the signal structure (F0,F1) has unbounded private beliefs.
Assume that the network topology is deterministic. Then, asymptotic learning occurs
for all equilibria if the sequence of information depths {L(n)}n∈N goes to infinity. If the
sequence {L(n)}n∈N does not go to infinity, then asymptotic learning does not occur in
any equilibrium.

In the full observation network topology, bounded beliefs imply lack of asymptotic
learning. One might thus expect a converse to Theorem 2, whereby asymptotic learning
fails whenever signals are bounded. Under general network topologies, learning dynam-
ics turn out to be more interesting and richer. The next theorem provides a partial
converse to Theorem 2 and shows that for a wide range of deterministic and stochastic
network topologies, bounded beliefs imply no asymptotic learning. However, somewhat
surprisingly, Theorem 4 will show that the same is not true with more general stochastic
network topologies.

Theorem 3 Assume that the signal structure (F0,F1) has bounded private beliefs. If
the network topology {Qn}n∈N satisfies one of the following conditions,

(a) B(n) = {1, . . . , n− 1} for all n,

(b) |B(n)| ≤ 1 for all n, or

(c) there exists some constant M such that |B(n)| ≤ M for all n and

lim
n→∞

max
b∈B(n)

b = ∞ with probability 1,

then, asymptotic learning does not occur in any equilibrium σ ∈ Σ∗.

This theorem implies that in most common deterministic and stochastic network
topologies, bounded private beliefs imply lack of asymptotic learning. The proof of
Theorem 3 is presented in Section 7. Although Part (a) of this theorem is already
proved by Smith and Sorensen (2000), we provide an alternative proof that highlights
the importance of the concepts emphasized here.

The following corollary, which is also proved in Section 7, illustrates the implica-
tions of Theorem 3. It shows that, when private beliefs are bounded, there will be no
asymptotic learning (in any equilibrium) in stochastic networks with random sampling.

Corollary 3 Assume that the signal structure (F0,F1) has bounded private beliefs. As-
sume that each agent n samples M agents uniformly and independently among {1, ..., n−
1}, for some M ≥ 1. Then, asymptotic learning does not occur in any equilibrium
σ ∈ Σ∗.

13



We next show that with general stochastic topologies asymptotic learning is possible.
Let us first define the notion of a nonpersuasive neighborhood.

Definition 6 A finite set B ⊂ N is a nonpersuasive neighborhood in equilibrium
σ ∈ Σ∗ if

Pσ (θ = 1|xk = yk for all k ∈ B) ∈ (
β, β

)

for any set of values yk ∈ {0, 1} for each k. We denote the set of all nonpersuasive
neighborhoods by Uσ.

A neighborhood B is nonpersuasive in equilibrium σ ∈ Σ∗ if for any set of decisions
that agent n observes, his behavior may still depend on his private signal. A nonper-
suasive neighborhood is defined with respect to a particular equilibrium. However, it is
straightforward to see that B = ∅, i.e., the empty neighborhood, is nonpersuasive in any
equilibrium. Moreover the set B = {1} is nonpersuasive as long as Pσ(θ = 1|x1 = 1) < β
and Pσ(θ = 1|x1 = 0) > β. It can be verified that this condition is equivalent to

G1(1/2) < min

{(
β

1− β

)
G0(1/2),

(
β

1− β

)
G0(1/2) +

1− 2β

1− β

}
.

Our main theorem for learning with bounded beliefs, which we state next, provides a
class of stochastic social networks where asymptotic learning takes place for any signal
structure. The proof of this theorem is presented in Section 6.

Theorem 4 Let (F0,F1) be an arbitrary signal structure. Let M be a positive integer
and let C1, ..., CM be sets such that Ci ∈ Uσ for all i = 1, . . . , M for some equilibrium
σ ∈ Σ∗. For each i = 1, . . . , M , let {ri(n)} be a sequence of non-negative numbers such
that

lim
n→∞

M∑
i=1

ri(n) = 0 and
∞∑

n=1

M∑
i=1

ri(n) = ∞, (3)

with
∑M

i=1 ri(n) ≤ 1 for all n and ri(n) = 0 for all n ≤ maxb∈Ci
b. Assume the network

topology satisfies

B(n) =

{
Ci, with probability ri(n) for each i from 1 to M ,

{1, 2, ..., n− 1}, with probability 1−∑M
i=1 ri(n).

Then, asymptotic learning occurs in equilibrium σ.

Clearly, this theorem could have been stated with Ci = ∅ for all i = 1, . . . , m, which
would correspond to agent n making a decision without observing anybody else’s action
with some probability r(n) =

∑M
i=1 ri(n) ≤ 1.

This is a rather surprising result, particularly in view of existing results in the liter-
ature, which generate herds and information cascades (and no learning) with bounded
beliefs. This theorem indicates that learning dynamics become significantly richer when
we consider general social networks. In particular, certain stochastic network topologies
enable a significant amount of new information to arrive into the network, because some
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agents make decisions with limited information (nonpersuasive neighborhoods). As a
result, the relevant information can be aggregated in equilibrium, leading to individuals’
decisions eventually converging to the right action (in probability).

It is important to emphasize the difference between this result and that in Sgroi
(2002), which shows that a social planner can ensure some degree of information ag-
gregation by forcing a subsequence of agents to make decisions without observing past
actions. With the same reasoning, one might conjecture that asymptotic learning may
occur if a particular subsequence of agents, such as that indexed by prime numbers, has
empty neighborhoods. However, there will not be asymptotic learning in this determin-
istic topology since lim infn→∞ Pσ(xn = θ) < 1. For the result that there is asymptotic
learning (i.e., lim infn→∞ Pσ(xn = θ) = 1) in Theorem 4, the feature that the network
topology is stochastic is essential.

5 Equilibrium Strategies

In this section, we provide a characterization of equilibrium strategies. We show that
equilibrium decision rules of individuals can be decomposed into two parts, one that
only depends on an individual’s private signal, and the other that is a function of the
observations of past actions. We also show why a full characterization of individual
decisions is nontrivial and motivate an alternative proof technique, relying on developing
bounds on improvements in the probability of the correct decisions, that will be used in
the rest of our analysis.

5.1 Characterization of Individual Decisions

Our first lemma shows that individual decisions can be characterized as a function of
the sum of two posteriors. These posteriors play an important role in our analysis. We
will refer to these posteriors as the individual’s private belief and the social belief.

Lemma 1 Let σ ∈ Σ∗ be an equilibrium of the game. Let In ∈ In be an information set
of agent n. Then, the decision of agent n, xn = σ(In), satisfies

xn =

{
1, if Pσ(θ = 1 | sn) + Pσ

(
θ = 1 | B(n), xk, k ∈ B(n)

)
> 1,

0, if Pσ(θ = 1 | sn) + Pσ

(
θ = 1 | B(n), xk, k ∈ B(n)

)
< 1,

and xn ∈ {0, 1} otherwise.

Proof. See Appendix B.
The lemma above establishes an additive decomposition in the equilibrium decision

rule between the information obtained from the private signal of the individual and from
the observations of others’ actions (in his neighborhood). The next definition formally
distinguishes between the two components of an individual’s information.

Definition 7 We refer to the probability Pσ(θ = 1 | sn) as the private belief of agent
n, and the probability

Pσ

(
θ = 1

∣∣ B(n), xk for all k ∈ B(n)
)
,
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as the social belief of agent n.

Notice that the social belief depends on n since it is a function of the (realized)
neighborhood of agent n.

Lemma 1 and Definition 7 imply that the equilibrium decision rule for agent n ∈ N
is equivalent to choosing xn = 1 when the sum of his private and social beliefs is greater
than 1. Consequently, the properties of private and social beliefs will shape equilibrium
learning behavior. In the next subsection, we provide a characterization for the dynamic
behavior of private beliefs, which will be used in the analysis of the evolution of decision
rules.

5.2 Private Beliefs

In this subsection, we study properties of private beliefs. Note that the private belief is
a function of the private signal s ∈ S and is not a function of the strategy profile σ since
it does not depend on the decisions of other agents. We represent probabilities that do
not depend on the strategy profile by P. We use the notation pn to represent the private
belief of agent n, i.e.,

pn = P(θ = 1 | sn).

The next lemma follows from a simple application of Bayes’ Rule.

Lemma 2 For any n and any signal sn ∈ S, the private belief pn of agent n is given by

pn =

(
1 +

dF0

dF1

(sn)

)−1

. (4)

We next define the support of a private belief. In our subsequent analysis, we will
see that properties of the support of private beliefs play a key role in asymptotic learn-
ing behavior. Since the pn are identically distributed for all n (which follows by the
assumption that the private signals sn are identically distributed), in the following, we
will use agent 1’s private belief p1 to define the support and the conditional distributions
of private beliefs.

Definition 8 The support of the private beliefs is the interval [β, β], where the end
points of the interval are given by

β = inf {r ∈ [0, 1] | P(p1 ≤ r) > 0}, and β = sup {r ∈ [0, 1] | P(p1 ≤ r) < 1}.

Combining Lemma 2 with Definition 4, we see that beliefs are unbounded if and
only if β = 1 − β = 0. When the private beliefs are bounded, there is a maximum
informativeness to any signal. When they are unbounded, agents may receive arbitrarily
strong signals favoring either state (this follows from the assumption that (F0,F1) are
absolutely continuous with respect to each other). When both β > 0 and β < 1, private
beliefs are bounded.
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We represent the conditional distribution of a private belief given the underlying
state by Gj for each j ∈ {0, 1}, i.e.,

Gj(r) = P(p1 ≤ r | θ = j). (5)

We say that a pair of distributions (G0,G1) are private belief distributions if there exist
some signal space S and conditional private signal distributions (F0,F1) such that the
conditional distributions of the private beliefs are given by (G0,G1). The next lemma
presents key relations for private belief distributions.

Lemma 3 For any private belief distributions (G0,G1), the following relations hold.

(a) For all r ∈ (0, 1), we have
dG0

dG1

(r) =
1− r

r
.

(b) We have

G0(r) ≥
(

1− r

r

)
G1(r) +

r − z

2
G1 (z) for all 0 < z < r < 1,

1−G1(r) ≥ (1−G0(r))

(
r

1− r

)
+

w − r

2
(1−G1(w)) for all 0 < r < w < 1.

(c) The ratio G0(r)/G1(r) is nonincreasing in r and G0(r)/G1(r) > 1 for all r ∈ (β, β).

The proof of this lemma is provided in Appendix B. Part (a) establishes a basic
relation for private belief distributions, which is used in some of the proofs below. The
inequalities presented in part (b) of this lemma play an important role in quantifying
how much information an individual obtains from his private signal. Part (c) will be
used in our analysis of learning with bounded beliefs.

5.3 Social Beliefs

In this subsection, we illustrate the difficulties involved in determining equilibrium learn-
ing in general social networks. In particular, we show that social beliefs, as defined in
Definition 4, may be nonmonotone, in the sense that additional observations of xn = 1
in the neighborhood of an individual may reduce the social belief (i.e., the posterior
derived from past observations that xn = 1 is the correct action).

The following example establishes this point. Suppose the private signals are such
that G0(r) = 2r − r2 and G1(r) = r2, which is a pair of private belief distributions
(G0,G1). Suppose the network topology is deterministic and for the first eight agents,
it has the following structure: B(1) = ∅, B(2) = ... = B(7) = {1} and B(8) = {1, ..., 7}
(see Figure 2).

For this social network, agent 1 has 3/4 probability of making a correct decision in
either state of the world. If agent 1 chooses the action that yields a higher payoff (i.e.,
the correct decision), then agents 2 to 7 each have 15/16 probability of choosing the
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Figure 2: The figure illustrates a deterministic topology in which the social beliefs are
nonmonotone.

correct decision. However, if agent 1 fails to choose the correct decision, then agents 2
to 7 have a 7/16 probability of choosing the correct decision. Now suppose agents 1 to
4 choose action xn = 0, while agents 5 to 7 choose xn = 1. The probability of this event
happening in each state of the world is:

Pσ(x1 = ... = x4 = 0, x5 = x6 = x7 = 1|θ = 0) =
3

4

(
15

16

)3 (
1

16

)3

=
10125

226
,

Pσ(x1 = ... = x4 = 0, x5 = x6 = x7 = 1|θ = 1) =
1

4

(
9

16

)3 (
7

16

)3

=
250047

226
.

Using Bayes’ Rule, the social belief of agent 8 is given by

[
1 +

10125

250047

]−1

w 0.961.

Now, consider a change in x1 from 0 to 1, while keeping all decisions as they are.
Then,

Pσ(x1 = 1, x2 = x3 = x4 = 0, x5 = x6 = x7 = 1|θ = 0) =
1

4

(
7

16

)3 (
9

16

)3

=
250047

226
,

Pσ(x1 = 1, x2 = x3 = x4 = 0, x5 = x6 = x7 = 1|θ = 1) =
1

4

(
1

16

)3 (
16

16

)3

=
10125

226
.

This leads to a social belief of agent 8 given by

[
1 +

250047

10125

]−1

w 0.039.
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Therefore, this example has established that when x1 changes from 0 to 1, agent 8’s
social belief declines from 0.961 to 0.039. That is, while the agent strongly believes the
state is 1 when x1 = 0, he equally strongly believes the state is 0 when x1 = 1. This
happens because when half of the agents in {2, . . . , 7} choose action 0 and the other half
choose action 1, agent n places a high probability to the event that x1 6= θ. This leads
to a nonmonotonicity in social beliefs.

Since such nonmonotonicities cannot be ruled out in general, standard approaches
to characterizing equilibrium behavior cannot be used. Instead, in the next section, we
use an alternative approach, which develops a lower bound to the probability that an
individual will make the correct decision relative to agents in his neighborhood.

6 Learning with Unbounded Private Beliefs and Ex-

panding Observations

This section presents a proof of our main result, Theorem 2. The proof follows by com-
bining several lemmas and propositions provided in this section. In the next subsection,
we show that the expected utility of an individual is no less than the expected utility of
any agent in his realized neighborhood. Though useful, this is a relatively weak result
and is not sufficient to establish that asymptotic learning will take place in equilibrium.
Subsection 6.2 provides the key result for the proof of Theorem 2. It focuses on the
case in which each individual observes the action of a single agent and private beliefs
are unbounded. Under these conditions, it establishes (a special case of) the strong im-
provement principle, which shows that the increase in expected utility is bounded away
from zero (as long as social beliefs have not converged to the true state). Subsection
6.3 generalizes the strong improvement principle to the case in which each individual
has a stochastically-generated neighborhood, potentially consisting of multiple (or no)
agents. Subsection 6.4 then presents the proof of Theorem 2, which follows by combin-
ing these results with the fact that the network topology has expanding observations, so
that the sequence of improvements will ultimately lead to asymptotic learning. Finally,
subsection 6.5 provides proofs of Corollaries 1 and 2, which were presented in Section 4.

6.1 Information Monotonicity

As a first step, we show that the ex-ante probability of an agent making the correct
decision (and thus his expected payoff) is no less than the probability of any of the
agents in his realized neighborhood making the correct decision.

Proposition 2 (Information Monotonicity) Let σ ∈ Σ∗ be an equilibrium. For any
agent n and neighborhood B, we have

Pσ(xn = θ | B(n) = B) ≥ max
b∈B

Pσ(xb = θ).
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Proof. See Appendix B.
Information monotonicity is similar to the (expected) welfare improvement principle

in Banerjee and Fudenberg (2004) and in Smith and Sorensen (1998), and the imitation
principle in Gale and Kariv (2003) and is very intuitive. However, it is not sufficiently
strong to establish asymptotic learning. To ensure that, as the network becomes large,
decisions converge (in probability) to the correct action, we need strict improvements.
This will be established in the next two subsections.

6.2 Observing a Single Agent

In this subsection, we focus on a specific network topology where each agent observes
the decision of a single agent. For this case, we provide an explicit characterization
of the equilibrium, and under the assumption that private beliefs are unbounded, we
establish a preliminary version of the strong improvement principle, which provides a
lower bound on the increase in the ex-ante probability that an individual will make a
correct decision over his neighbor’s probability (recall that for now there is a single agent
in each individual’s neighborhood, thus each individual has a single “neighbor”). This
result will be generalized to arbitrary networks in the next subsection.

For each n and strategy profile σ, let us define Y σ
n and Nσ

n as the probabilities of
agent n making the correct decision conditional on state θ. More formally, these are
defined as

Y σ
n = Pσ(xn = 1 | θ = 1), Nσ

n = Pσ(xn = 0 | θ = 0).

The unconditional probability of a correct decision is then

1

2
(Y σ

n + Nσ
n ) = Pσ(xn = θ). (6)

We also define the thresholds Lσ
n and Uσ

n in terms of these probabilities:

Lσ
n =

1−Nσ
n

1−Nσ
n + Y σ

n

, Uσ
n =

Nσ
n

Nσ
n + 1− Y σ

n

. (7)

The next proposition shows that the equilibrium decisions are fully characterized in
terms of these thresholds.

Proposition 3 Let B(n) = {b} for some agent n. Let σ ∈ Σ∗ be an equilibrium, and
let Lσ

b and Uσ
b be given by Eq. (7). Then, agent n’s decision xn in equilibrium σ satisfies

xn =





0, if pn < Lσ
b

xb, if pn ∈ (Lσ
b , U

σ
b )

1, if pn > Uσ
b .

The proof is omitted since it is an immediate application of Lemma 1 [use Bayes’
Rule to determine Pσ(θ = 1|xb = j) for each j ∈ {0, 1}].

Note that the sequence {(Un, Ln)} only depends on {(Yn, Nn)}, and is thus determin-
istic. This reflects the fact that each individual recognizes the amount of information
that will be contained in the action of the previous agent, which determines his own
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Figure 3: The equilibrium decision rule when observing a single agent, illustrated on the
private belief space.

decision thresholds. Individual actions are still stochastic since they are determined by
whether the individual’s private belief is below Lb, above Ub, or in between (see Figure
3).

Using the structure of the equilibrium decision rule, the next lemma provides an
expression for the probability of agent n making the correct decision conditional on his
observing agent b < n, in terms of the private belief distributions and the thresholds Lσ

b

and Uσ
b .

Lemma 4 Let B(n) = {b} for some agent n. Let σ ∈ Σ∗ be an equilibrium, and let Lσ
b

and Uσ
b be given by Eq. (7). Then,

Pσ(xn = θ | B(n) = {b})
=

1

2

[
G0(L

σ
b ) +

(
G0(U

σ
b )−G0(L

σ
b )

)
Nσ

b + (1−G1(U
σ
b )) +

(
G1(U

σ
b )−G1(L

σ
b )

)
Y σ

b

]
.

Proof. By definition, agent n receives the same expected utility from all his possible
equilibrium choices. We can thus compute the expected utility by supposing that the
agent will choose xn = 0 when indifferent. Then, the expected utility of agent n (the
probability of the correct decision) can be written as

Pσ(xn = θ | B(n) = {b})
= Pσ(pn ≤ Lσ

b | θ = 0)P(θ = 0) + Pσ(pn ∈ (Lσ
b , U

σ
b ], xb = 0 | θ = 0)P(θ = 0)

+Pσ(pn > Uσ
b | θ = 1)P(θ = 1) + Pσ(pn ∈ (Lσ

b , U
σ
b ], xb = 1 | θ = 1)P(θ = 1).

The result then follows using the fact that pn and xb are conditionally independent given
θ and the notation for the private belief distributions [cf. Eq. (5)].
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Using the previous lemma, we next strengthen Proposition 2 and provide a lower
bound on the amount of improvement in the ex-ante probability of making the correct
decision between an agent and his neighbor.

Lemma 5 Let B(n) = {b} for some agent n. Let σ ∈ Σ∗ be an equilibrium, and let Lσ
b

and Uσ
b be given by Eq. (7). Then,

Pσ(xn = θ | B(n) = {b}) ≥ Pσ(xb = θ) +
(1−Nσ

b )Lσ
b

8
G1

(
Lσ

b

2

)

+
(1− Y σ

b )(1− Uσ
b )

8

[
1−G0

(
1 + Uσ

b

2

)]
.

Proof. In Lemma 3(b), let r = Lσ
b , z = Lσ

b /2, so that we obtain

(1−Nσ
b )G0(L

σ
b ) ≥ Y σ

b G1(L
σ
b ) +

(1−Nσ
b )Lσ

b

4
G1

(
Lσ

b

2

)
.

Next, again using Lemma 3(b) and letting r = Uσ
b and w = (1 + Uσ

b )/2, we have

(1− Y σ
b )[1−G1(U

σ
b )] ≥ Nσ

b [1−G0(
σ
b )] +

(1− Y σ
b )(1− Uσ

b )

4

[
1−G0

(
1 + Uσ

b

2

)]
.

Combining the preceding two relations with Lemma 4 and using the fact that Y σ
b +Nσ

b =
2 Pσ(xb = θ) [cf. Eq. (6)], the desired result follows.

The next lemma establishes that the lower bound on the amount of improvement
in the ex-ante probability is uniformly bounded away from zero for unbounded private
beliefs and when Pσ(xb = θ) < 1, i.e., when asymptotic learning is not achieved.

Lemma 6 Let B(n) = {b} for some n. Let σ ∈ Σ∗ be an equilibrium, and denote
α = Pσ(xb = θ). Then,

Pσ(xn = θ | B(n) = {b}) ≥ α +
(1− α)2

8
min

{
G1

(
1− α

2

)
, 1−G0

(
1 + α

2

)}
.

Proof. We consider two cases separately.

Case 1: Nσ
b ≤ α. From the definition of Lσ

b and the fact that Y σ
b = 2α − Nσ

b [cf. Eq.
(6)], we have

Lσ
b =

1−Nσ
b

1− 2Nσ
b + 2α

.

Since σ is an equilibrium, we have α ≥ 1/2, and thus the right hand-side of the preceding
inequality is a nonincreasing function of Nσ

b . Since Nσ
b ≤ α, this relation therefore

implies that Lσ
b ≥ 1− α. Combining the relations 1−Nσ

b ≥ 1− α and Lσ
b ≥ 1− α, we

obtain
(1−Nσ

b )Lσ
b

8
G1

(
Lσ

b

2

)
≥ (1− α)2

8
G1

(
1− α

2

)
. (8)
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Case 2: Nσ
b ≥ α. Since Y σ

b + Nσ
b = 2α, this implies that Y σ

b ≤ α. Using the definition
of Uσ

b and a similar argument as the one above, we obtain

(1− Y σ
b )(1− Uσ

b )

8

[
1−G0

(
1 + Uσ

b

2

)]
≥ (1− α)2

8

[
1−G0

(
1 + α

2

)]
. (9)

Combining Eqs. (8) and (9), we obtain

(1−Nσ
b )Lσ

b

8
G1

(
Lσ

b

2

)
+

(1− Y σ
b )(1− Uσ

b )

8

[
1−G0

(
1 + Uσ

b

2

)]

≥ (1− α)2

8
min

{
G1

(
1− α

2

)
, 1−G0

(
1 + α

2

)}
,

where we also used the fact that each term on the left hand-side of the preceding in-
equality is nonnegative. Substituting this into Lemma 5, the desired result follows.

The preceding lemma characterizes the improvements in the probability of making
the correct decision between an agent and his neighbor. To study the limiting behavior
of these improvements, we introduce the function Z : [1/2, 1] → [1/2, 1] defined by

Z(α) = α +
(1− α)2

8
min

{
G1

(
1− α

2

)
, 1−G0

(
1 + α

2

)}
. (10)

Lemma 6 establishes that for n, which has B(n) = {b}, we have

Pσ(xn = θ|B(n) = {b}) ≥ Z (Pσ(xb = θ)) , (11)

i.e., the function Z acts as an improvement function for the evolution of the probability
of making the correct decision. The function Z(·) has several important properties,
which are formally stated in the next lemma.

Lemma 7 The function Z : [1/2, 1] → [1/2, 1] given in (10) satisfy the following prop-
erties:

(a) The function Z has no upwards jumps. That is, for any α ∈ [1/2, 1],

Z(α) = lim
r↑α

Z(r) ≥ lim
r↓α

Z(r).

(b) For any α ∈ [1/2, 1], Z(α) ≥ α.

(c) If the private beliefs are unbounded, then for any α ∈ [1/2, 1), Z(α) > α.

Proof. Since G0 and G1 are cumulative distribution functions, they cannot have down-
wards jumps, i.e., for each j ∈ {0, 1}, limr↑αGj(r) ≤ limr↓αGj(r) for any α ∈ [1/2, 1],
establishing Part (a). Part (b) follows from the fact that cumulative distribution func-
tions take values in [0, 1]. For Part (c), suppose that for some α ∈ [1/2, 1), Z(α) = α.
This implies that

min

{
G1

(
1− α

2

)
, 1−G0

(
1 + α

2

)}
= 0. (12)
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However, from the assumption on the private beliefs, we have that for all α ∈ (0, 1) and
any j ∈ {0, 1}, Gj(α) ∈ (0, 1), contradicting Eq. (12).

The properties of the Z function will be used in the analysis of asymptotic learning
in general networks in subsection 6.3. The analysis of asymptotic learning requires
the relevant improvement function to be both continuous and monotone. However,
Z does not necessarily satisfy these properties. We next construct a related function
Z : [1/2, 1] → [1/2, 1] that satisfies these properties and can be used as the improvement
function in the asymptotic analysis. Let Z be defined as:

Z(α) =
1

2

(
α + sup

r∈[1/2,α]

Z(r)

)
. (13)

This function shares the same “improvement” properties as Z, but is also nondecreasing
and continuous. The properties of the function Z(·) stated in the following lemma.

Lemma 8 The function Z : [1/2, 1] → [1/2, 1] given in (13) satisfy the following prop-
erties:

(a) For any α ∈ [1/2, 1], Z(α) ≥ α.

(b) If the private beliefs are unbounded, then for any α ∈ [1/2, 1), Z(α) > α.

(c) The function Z is increasing and continuous.

Proof. Parts (a) and (b) follow immediately from Lemma 7, parts (b) and (c) respec-
tively. The function supr∈[1/2,α]Z(r) is nondecreasing and the function α is increasing,
therefore the average of these two functions, which is Z, is an increasing function, es-
tablishing the first part of part (c).

We finally show that Z is a continuous function. We first show Z(α) is continuous
for all α ∈ [1/2, 1). To obtain a contradiction, assume that Z is discontinuous at
some α∗ ∈ [1/2, 1). This implies that supr∈[1/2,α]Z(r) is discontinuous at α∗. Since

supr∈[1/2,α]Z(r) is a nondecreasing function, we have

lim
α↓α∗

sup
r∈[1/2,α]

Z(r) > sup
r∈[1/2,α∗]

Z(r),

from which it follows that there exists some ε > 0 such that for any δ > 0

sup
r∈[1/2,α∗+δ]

Z(r) > Z(α) + ε for all α ∈ [1/2, α∗).

This contradicts the fact that the function Z does not have an upward jump [cf. Lemma
7 (a)], and establishes the continuity of Z(α) for all α ∈ [1/2, 1). The continuity of the
function Z(α) at α = 1 follows from part (a).

The next proposition shows that the function Z is also a (strong) improvement
function for the evolution of the probability of making the correct decision.
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Proposition 4 (Strong Improvement Principle) Let B(n) = {b} for some n. Let σ ∈ Σ∗

be an equilibrium. Then, we have

Pσ(xn = θ | B(n) = {b}) ≥ Z (Pσ(xb = θ)) . (14)

Proof. Let α denote Pσ(xb = θ). If Z (α) = α, then the result follows immediately from
Proposition 2. Suppose next that Z (α) > α. This implies that Z(α) < supr∈[1/2,α]Z(r).
Therefore, there exists some α ∈ [1/2, α] such that

Z(α) > Z(α). (15)

We next show that Pσ(xn = θ|B(n) = b) ≥ Z(α). Agent n can always (privately)
make the information from his observation of xb coarser (i.e., not observe xb according
to some probability). Let the observation thus generated by agent n be denoted by x̃b,
and suppose that it is given by

x̃b =





xb, with probability (2α− 1)/(2α− 1)
0, with probability (α− α)/(2α− 1)
1, with probability (α− α)/(2α− 1),

where the realizations of x̃b are independent from agent n’s information set. Next observe
that Pσ(x̃b = θ) = α. Then, Lemma 6 implies that Pσ(xn = θ|B(n) = b) ≥ Z(α). Since
Z(α) > Z(α) [cf. Eq. (15)], the desired result follows.

6.3 Learning from Multiple Agents

In this subsection, we generalize the results of the previous subsection to an arbitrary
network topology. We first present a stronger version of the information monotonicity
relation (cf. Proposition 2), where the amount of improvement is given by the improve-
ment function Z defined in Eq. (14). Even though a full characterization of equilibrium
decisions in general network topologies is a nontractable problem (recall the discussion
in subsection 5.3), it is possible to establish an analogue of Proposition 4, that is, a
generalized strong improvement principle, which provides a lower bound on the amount
of increase in the probabilities of making the correct decision. The idea of the proof
is to show that improvements can be no less than the case in which each individual’s
neighborhood consisted of a single agent.

Proposition 5 (Generalized Strong Improvement Principle) For any n ∈ N, any set
B ⊆ {1, ..., n− 1} and any equilibrium σ ∈ Σ∗, we have

Pσ (xn = θ | B(n) = B) ≥ Z
(

max
b∈B

Pσ(xb = θ)

)
.

Proof. Given an equilibrium σ ∈ Σ∗ and agent n , let hσ be a function that maps
any subset of {1, . . . , n − 1} to an element of {1, . . . , n − 1} such that for any B ⊂
{1, . . . , n− 1}, we have

hσ(B) ∈ arg max
b∈B

Pσ(xb = θ). (16)
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We define wn as the decision that maximizes the conditional probability of making the
correct decision given the private signal sn and the decision of the agent hσ(B(n)), i.e.,

wn ∈ arg max
y∈{0,1}

Pσ

(
y = θ

∣∣ sn, xhσ(B(n))

)
.

The equilibrium decision xn of agent n satisfies

Pσ(xn = θ | sn, B(n), xk, k ∈ B(n)) ≥ Pσ(wn = θ | sn, B(n), xk, k ∈ B(n)),

[cf. the characterization of the equilibrium decision rule in Eq. (2)]. Integrating over all
possible private signals and decisions of neighbors, we obtain for any B ⊂ {1, . . . , n−1},

Pσ (xn = θ | B(n) = B) ≥ Pσ (wn = θ | B(n) = B) . (17)

Because wn is an optimal choice given a single observation, Eq. (14) holds and yields

Pσ(wn = θ | B(n) = B) ≥ Z (
Pσ(xhσ(B) = θ)

)
. (18)

Combining Eqs. (16), (17) and (18) we obtain the desired result.
This proposition is a key result, since it shows that, under unbounded private beliefs,

there are improvements in payoffs (probabilities of making correct decisions) that are
bounded away from zero. We will next use this generalized strong improvement principle
to prove Theorem 2. The proof involves showing that under the expanding observations
and the unbounded private beliefs assumptions, the amount of improvement in the
probabilities of making the correct decision given by Z accumulates until asymptotic
learning is reached.

6.4 Proof of Theorem 2

The proof consists of two parts. In the first part of the proof, we construct two sequences
{αk} and {φk} such that for all k ≥ 0, there holds

Pσ(xn = θ) ≥ φk for all n ≥ αk. (19)

The second part of the proof shows that φk converges to 1, thus establishing the result.
Given some integer K > 0 and scalar ε > 0, let N(K, ε) > 0 be an integer such that

for all n ≥ N(K, ε),

Qn

(
max

b∈B(n)
b < K

)
< ε,

(such an integer exists in view of the fact that, by hypothesis, the network topology
features expanding observations). We let α1 = 1 and φ1 = 1/2 and define the sequences
{αk} and φk recursively by

αk+1 = N

(
αk,

1

2

[
1− φk

Z(φk)

])
, φk+1 =

φk + Z(φk)

2
.

Using the fact that the range of the function Z is [1/2, 1], it can be seen that φk ∈ [1/2, 1]
for all k, therefore the preceding sequences are well-defined.
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We use induction on the index k to prove relation (19). Since σ is an equilibrium,
we have

Pσ(xn = θ) ≥ 1

2
for all n ≥ 1,

which together with α1 = 1 and φ1 = 1/2 shows relation (19) for k = 1. Assume that
the relation (19) holds for an arbitrary k, i.e.,

Pσ(xj = θ) ≥ φk for all j ≥ αk. (20)

Consider some agent n with n ≥ αk+1. By integrating the relation from Lemma 5 over
all possible neighborhoods B(n), we obtain

Pσ (xn = θ) ≥ EB(n)

[
Z

(
max

b∈B(n)
Pσ(xb = θ)

)]
,

where EB(n) denotes the expectation with respect to the neighborhood B(n) (i.e., the
weighted sum over all possible neighborhoods B(n)). We can rewrite the preceding as

Pσ(xn = θ) ≥ EB(n)

[
Z

(
max

b∈B(n)
Pσ (xb = θ)

) ∣∣∣ max
b∈B(n)

b ≥ αk

]
Qn

(
max

b∈B(n)
b ≥ αk

)

+ EB(n)

[
Z

(
max

b∈B(n)
Pσ (xb = θ)

) ∣∣∣ max
b∈B(n)

b < αk

]
Qn

(
max

b∈B(n)
b < αk

)
.

Since the terms on the right hand-side of the preceding relation are nonnegative, this
implies that

Pσ(xn = θ) ≥ EB(n)

[
Z

(
max

b∈B(n)
Pσ (xb = θ)

) ∣∣∣ max
b∈B(n)

b ≥ αk

]
Qn

(
max

b∈B(n)
b ≥ αk

)
.

Since maxb∈B(n) b ≥ αk, Eq. (20) implies that

max
b∈B(n)

Pσ(xb = θ) ≥ φk.

Since the function Z is nondecreasing [cf. Lemma 8(c)], combining the preceding two
relations, we obtain

Pσ(xn = θ) ≥ EB(n)

[
Z (φk)

∣∣∣ max
b∈B(n)

b ≥ αk

]
Qn

(
max

b∈B(n)
b ≥ αk

)

= Z(φk)Qn

(
max

b∈B(n)
b ≥ αk

)
,

where the equality follows since the sequence {φk} is deterministic. Using the definition
of αk, this implies that

Pσ(xn = θ) ≥ Z (φk)
1

2

[
1 +

φk

Z(φk)

]
= φk+1,

thus completing the induction.
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We finally prove that φk → 1 as k → ∞. Since Z(α) ≥ α for all α ∈ [1/2, 1]
[cf. Lemma 8(a)], it follows from the definition of φk that {φk}k∈N is a nondecreasing
sequence. It is also bounded and therefore it converges to some φ∗. Taking the limit in
the definition of φk, we obtain

2φ∗ = 2 lim
k→∞

φk = lim
k→∞

[
φk + Z(φk)

]
= φ∗ + Z(φ∗),

where the third equality follows since Z is a continuous function [cf. Lemma 8(c)]. This
shows that φ∗ = Z(φ∗), i.e., φ∗ is a fixed point of Z. Since the private beliefs are
unbounded, the unique fixed point of Z is 1, showing that φk → 1 as k → ∞ and
completing the proof. ¥

6.5 Proofs of Corollaries 1 and 2

Proof of Corollary 1. We first show that if C ≥ 1, then the network topology has
nonexpanding observations. To show this, we set K = 1 in Definition 3 and show
that the probability of infinitely many agents having empty neighborhoods is uniformly
bounded away from 0. We first consider the case C > 1. Then, the probability that the
neighborhood of agent n + 1 is the empty set is given by

Qn+1(B(n + 1) = ∅) =

(
1− A

nC

)n

,

which converges to 1 as n goes to infinity. If C = 1, then

lim
n→∞

Qn+1(B(n + 1) = ∅) = lim
n→∞

(
1− A

n

)n

= e−A.

Therefore, for infinitely many agents, Qn+1(B(n+1) = ∅) ≥ e−A/2. The preceding show
that the network topology has nonexpanding observations for C ≥ 1, hence the result
follows from Theorem 1.

We next assume that C < 1. For any K and all n ≥ K, we have

Qn+1

(
max

b∈B(n+1)
b ≤ K

)
=

(
1− A

nC

)n−K

,

which converges to 0 as n goes to infinity. Hence the network topology is expanding in
observations and the result follows from Theorem 2. ¥
Proof of Corollary 2. We show that {L(n)}n∈N goes to infinity if and only if the de-
terministic sequence {maxb∈B(n) b}n∈N goes to infinity. Suppose first {L(n)}n∈N diverges
to infinity. Then, for every K there exists N such that for all n ≥ N , L(n) ≥ K. Note
that

L(n) ≤ 1 + max
b∈B(n)

b

because the longest information path must be a subset of the sequence (1, 2, ..., maxb∈B(n) b, n).
So, for n ≥ N , if L(n) ≥ K, then maxb∈B(n) b > K, thus proving the first part of the
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lemma. Suppose next that {maxb∈B(n) b}n∈N goes to infinity as n goes to infinity. We
show by induction that for each d ∈ N, there exists some integer Cd such that L(n) ≥ d
for all n ≥ Cd. Since L(n) ≥ 1 for all n, then C1 = 1. Assume such Cd exists for some
d. Then, we show that such a Cd+1 also exists. Since {maxb∈B(n) b}n∈N goes to infinity,
there exists some Nd such that for all n ≥ Nd,

max
b∈B(n)

b ≥ Cd.

Now, for any n ≥ Nd, there exists a path with size d up to some k ≥ Cd and then
another observation from k to n, therefore L(n) ≥ d + 1. Hence, Cd+1 = Nd. ¥

7 No Learning with Bounded Private Beliefs

In this section, we study asymptotic learning when the private beliefs are bounded. In
particular, we consider the three cases of Theorem 3 separately. For parts (a) and (b), we
sketch the proofs highlighting the intuition for why asymptotic learning does not occur
(detailed proofs are contained in Appendix B). The proofs of part (c) and Corollary 3
are presented here.

The next proposition states the result corresponding to part (a) of Theorem 3. This
result is proved in Smith and Sorensen (2000). In Appendix B, we provide an alternative
proof that illustrates the parallel with the remainder of Theorem 3.

Proposition 6 Assume that the signal structure (F0,F1) has bounded private beliefs
and B(n) = {1, . . . , n − 1} for all n. Then, asymptotic learning does not occur in any
equilibrium.

Briefly, this result follows by showing that under bounded private beliefs there exist
0 < ∆ < ∆ < 1 such that the social belief of each agent belongs to the interval [∆, ∆].
This establishes that either individuals always make use of their own signals in taking
their actions, leading to a positive probability of a mistake, or individuals follow a
potentially incorrect social belief.

The next proposition shows that asymptotic learning fails when each individual ob-
serves the action of at most one agent from the past.

Proposition 7 Assume that the signal structure (F0,F1) has bounded private beliefs and
|B(n)| ≤ 1 for all n. Then, asymptotic learning does not occur in any equilibrium.

The proof of this result follows by establishing an upper bound on the amount of
improvement in the ex-ante probability of the correct action, hence providing a converse
to the Strong Improvement Principle (cf. Propositions 4 and 5). Under bounded private
beliefs, this upper bound is uniformly bounded away from 1, establishing no learning.

Finally, the following proposition establishes Part (c) of Theorem 3.
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Proposition 8 Assume that the signal structure (F0,F1) has bounded private beliefs.
Assume that there exists some constant M such that |B(n)| ≤ M for all n and

lim
n→∞

max
b∈B(n)

b = ∞ with probability 1.

Then, asymptotic learning does not occur in any equilibrium.

Proof. We start with the following lemma, which will be used subsequently in the proof.

Lemma 9 Assume that asymptotic learning occurs in some equilibrium σ, i.e., we have
limn→∞ Pσ(xn = θ) = 1. For some constant K, let D be the set of all subsets of
{1, ..., K}. Then,

lim
n→∞

min
D∈D

Pσ(xn = θ | xk = 1, k ∈ D) = 1.

Proof. First note that since the event xk = 1 for all k ≤ K is the intersection of events
xk = 1 for each k ≤ K,

min
D∈D

Pσ(xk = 1, k ∈ D) = Pσ(xk = 1, k ≤ K).

Let ∆ = Pσ(xk = 1, k ≤ K). Fix some D̃ ∈ D. Then,

Pσ(xk = 1, k ∈ D̃) ≥ ∆ > 0,

where the second inequality follows from the fact that there is a positive probability of
the first K agents choosing xn = 1. Let A = {0, 1}|D̃|, i.e., A is the set of all possible
actions for the set of agents D̃. Then,

Pσ(xn = θ) =
∑
ak∈A

Pσ(xn = θ | xk = ak, k ∈ D̃)Pσ(xk = ak, k ∈ D̃).

Since Pσ(xn = θ) converges to 1 and all elements in the sequence Pσ(xk = 1, k ∈ D̃) are
greater than or equal to ∆ > 0, it follows that the sequence Pσ(xn = θ | xk = 1, k ∈ D̃)
also converges to 1. Hence, for each ε > 0, there exists some Nε(D̃) such that for all
n ≥ Nε(D̃),

Pσ(xn = θ | xk = 1, k ∈ D̃) ≥ 1− ε.

Therefore, for any ε > 0,

min
D∈D

Pσ(xn = θ | xk = 1, k ∈ D) ≥ 1− ε for all n ≥ max
D∈D

Nε(D),

thus completing the proof.

Proof of Proposition 8. To arrive at a contradiction, we assume that in some equi-
librium σ ∈ Σ∗, limn→∞ Pσ(xn = θ) = 1. The key part of the proof is to show that this
implies

lim
n→∞

Pσ(θ = 1 | xk = 1, k ∈ B(n)) = 1. (21)
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To prove this claim, we show that for any ε > 0, there exists some K̃(ε) such that for
any neighborhood B with |B| ≤ M and maxb∈B b ≥ K̃(ε) we have

Pσ(θ = 1 | xk = 1, k ∈ B) ≥ 1− ε. (22)

In view of the assumption that maxb∈B(n) b converges to infinity with probability 1, this
implies the desired claim (21).

For a fixed ε > 0, we define K̃(ε) as follows: We recursively construct M thresholds
K0 < ... < KM−1 and let K̃(ε) = KM−1. We consider an arbitrary neighborhood B with
|B| ≤ M and maxb∈B b ≥ KM−1, and for each d ∈ {0, ..., M − 1}, define the sets

Bd = {b ∈ B : b ≥ Kd} and Cd = {b ∈ B : b < Kd−1},

where C0 = ∅. With this construction, it follows that there exists at least one d ∈
{0, ...,M − 1} such that B = Bd ∪ Cd, in which case we say B is of type d. We show
below that for any B of type d, we have

Pσ(θ = 1 | xk = 1, k ∈ Bd ∪ Cd) ≥ 1− ε, (23)

which implies the relation in (22).
We first define K0 and show that for any B of type 0, relation (23) holds. Since

limn→∞ Pσ(xn = θ) = 1 by assumption, there exists some N0 such that for all n ≥ N0,

Pσ(xn = θ) ≥ 1− ε

2M
.

Let K0 = N0. Let B be a neighborhood of type 0, implying that B = B0 and all
elements b ∈ B0 satisfy b ≥ K0. By using a union bound, the preceding inequality
implies

Pσ(xk = θ, k ∈ B0) ≥ 1−
∑

k∈B0

Pσ(xk 6= θ) ≥ 1− ε

2
.

Hence, we have

Pσ(xk = θ, k ∈ B0 | θ = 1)
1

2
+ Pσ(xk = θ, k ∈ B0 | θ = 0)

1

2
≥ 1− ε

2
,

and for any j ∈ {0, 1},

Pσ(xk = θ, k ∈ B0 | θ = j) ≥ 1− ε. (24)

Therefore, for any such B0,

Pσ(θ = 1 | xk = 1, k ∈ B0) =

[
1 +

Pσ(xk = 1, k ∈ B0 | θ = 0)Pσ(θ = 0)

Pσ(xk = 1, k ∈ B0 | θ = 1)Pσ(θ = 1)

]−1

≥
[
1 +

ε

1− ε

]−1

= 1− ε,

showing that relation (23) holds for any B of type 0.
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We proceed recursively, i.e., given Kd−1 we define Kd and show that relation (23)
holds for any neighborhood B of type d. Lemma 9 implies that

lim
n→∞

min
D⊆{1,...,Kd−1−1}

Pσ(xn = θ | xk = 1, k ∈ D) = 1.

Therefore, for any δ > 0, there exists some Kd such that for all n ≥ Kd,

min
D⊆{1,...,Kd−1−1}

Pσ(xn = θ | xk = 1, k ∈ D) ≥ 1− δε.

From the equation above and definition of Cd it follows that for any Cd,

Pσ(xn = θ | xk = 1, k ∈ Cd) ≥ 1− δε.

By a union bound,

Pσ(xk = θ, k ∈ Bd | xk = 1, k ∈ Cd) ≥ 1−
∑

k∈Bd

Pσ(xk 6= θ | xk = 1, k ∈ Cd)

≥ 1− (M − d)δε.

Repeating the argument from Eq. (24), for any j ∈ {0, 1},

Pσ(xk = θ, k ∈ Bd | θ = j, xk = 1, k ∈ Cd) ≥ 1− (M − d)δε

Pσ(θ = j | xk = 1, k ∈ Cd)
.

Hence, for any such Bd,

Pσ(θ = 1 | xk = 1, k ∈ Bd ∪ Cd)

=

[
1 +

Pσ(xk = 1, k ∈ Bd | θ = 0, xk = 1, k ∈ Cd)Pσ(θ = 0, xk = 1, k ∈ Cd)

Pσ(xk = 1, k ∈ Bd | θ = 1, xk = 1, k ∈ Cd)Pσ(θ = 1, xk = 1, k ∈ Cd)

]−1

≥

1 +

(M−d)δε
Pσ(θ=0 | xk=1, k∈Cd)

Pσ(θ = 0, xk = 1, k ∈ Cd)(
1− (M−d)δε

Pσ(θ=1 | xk=1, k∈Cd)

)
Pσ(θ = 1, xk = 1, k ∈ Cd)



−1

= 1− (M − d)δε

Pσ(θ = 1 | xk = 1, k ∈ Cd)
.

Choosing

δ =

(
1

M − d

)
min

D⊆{1,...,Kd−1−1}
Pσ(θ = 1 | xk = 1, k ∈ D),

we obtain that for any neighborhood B of type d

Pσ(θ = 1 | xk = 1, k ∈ Bd ∪ Cd) ≥ 1− ε.

This proves that Eq. (23) holds for any neighborhood B of type d, and completing the
proof of Eq. (22) and therefore of Eq. (21).
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Since the private beliefs are bounded, we have β > 0. By Eq. (21), there exists some

N such that

Pσ(θ = 1|xk = 1, k ∈ B(n)) ≥ 1− β

2
for all n ≥ N.

Suppose the first N agents choose 1, i.e., xk = 1 for all k ≤ N , which is an event with
positive probability for any state of the world θ. We now prove inductively that this
event implies that xn = 1 for all n ∈ N. Suppose it holds for some n ≥ N . Then, by
Eq. (22),

Pσ(θ = 1 | sn+1) + Pσ(θ = 1 | xk = 1, ∈ B(n + 1)) ≥ β + 1− β

2
> 1.

By Lemma 1, this implies that xn+1 = 1. Hence, we conclude there is a positive probabil-
ity xn = 1 for all n ∈ N in any state of the world, contradicting limn→∞ Pσ(xn = θ) = 1,
and completing the proof.

Proof of Corollary 3. For M = 1, the result follows from Theorem 3 part (b). For
M ≥ 2, we show that, under the assumption on the network topology, maxb∈B(n) b goes
to infinity with probability one. To arrive at a contradiction, suppose this is not true.
Then, there exists some K ∈ N and scalar ε > 0 such that

Q
(

max
b∈B(n)

b ≤ K for infinitely many n

)
≥ ε.

By the Borel-Cantelli Lemma (see, e.g., Breiman, Lemma 3.14, p. 41), this implies that

∞∑
n=1

Qn

(
max

b∈B(n)
b ≤ K

)
= ∞.

Since the samples are all uniformly drawn and independent, for all n ≥ 2,

Qn

(
max

b∈B(n)
b ≤ K

)
=

(
min{K, n− 1}

n− 1

)M

.

Therefore,

∞∑
n=1

Qn

(
max

b∈B(n)
b ≤ K

)
= 1 +

∞∑
n=1

(
min{K, n− 1}

n

)M

≤ 1 +
∞∑

n=1

(
K

n

)M

< ∞,

where the last inequality holds since M ≥ 2. Hence, we obtain a contradiction. The
result follows by using Theorem 3 part (c). ¥

8 Proof of Theorem 4

To simplify the exposition of the proof, we assume that the corresponding private belief
distributions (G0,G1) are continuous, which implies that the equilibrium is unique.
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For each n, let xn = (x1, . . . , xn) represent the sequence of decisions up to and
including xn. Let q∗(xn) denote the “social belief” when xn is observed under equilibrium
σ, i.e.,

q∗(xn) = Pσ(θ = 1 | xn).

The social belief q∗(xn) is a martingale and, by the martingale convergence theorem,
converges with probability 1 to some random variable q̂. Conditional on θ = 1, the
likelihood ratio

1− q∗(xn)

q∗(xn)
=
Pσ(θ = 0 | xn)

Pσ(θ = 1 | xn)

is also a martingale [see Doob, 1953, Eq. (7.12)]. Therefore, conditional on θ = 1, the
ratio (1−q∗(xn))/q∗(xn) converges with probability 1 to some random variable (1−q̂1)/q̂1.
In particular, we have

Eσ

[
1− q̂1

q̂1

]
< ∞,

[see Breiman, Theorem 5.14], and therefore q̂1 > 0 with probability 1. Similarly,
q∗(xn)/(1 − q∗(xn)) is a martingale conditional on θ = 0 and converges with proba-
bility 1 to some random variable q̂0/(1− q̂0), where q̂0 < 1 with probability 1. Therefore,

Pσ(q̂ > 0 | θ = 1) = 1 and Pσ(q̂ < 1 | θ = 0) = 1. (25)

The key part of the proof is to show that the support of q̂ is contained in the set {0, 1}.
This fact combined with Eq. (25) guarantees that q̂ = θ (i.e., the agents that observe
the entire history eventually know what the state of the world θ is).

To show that the support of q̂ is contained in {0, 1}, we study the evolution dynamics
of q∗(xn). Suppose xn+1 = 0. Using Bayes’ Rule twice, we have

q∗ ((xn, 0)) =
Pσ(xn+1 = 0, xn | θ = 1)∑1
j=0 Pσ(xn+1 = 0, xn | θ = j)

=

[
1 +

Pσ(xn+1 = 0, xn | θ = 0)

Pσ(xn+1 = 0, xn | θ = 1)

]−1

=

[
1 +

(
1

q∗(xn)
− 1

)
Pσ(xn+1 = 0 | θ = 0, xn)

Pσ(xn+1 = 0 | θ = 1, xn)

]−1

.

To simplify notation, let

fn(xn) =
Pσ(xn+1 = 0 | θ = 0, xn)

Pσ(xn+1 = 0 | θ = 1, xn)
, (26)

so that

q∗ ((xn, 0)) =

[
1 +

(
1

q∗(xn)
− 1

)
fn(xn)

]−1

. (27)

We next show that if q∗(xn) ≥ 1/2 for some n, we have

fn(xn) ≥ 1 + δ for some δ > 0, (28)
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which will allow us to establish a bound on the difference between q∗(xn) and q∗((xn, 0)).
By conditioning on the neighborhood B(n + 1), we have for any j ∈ {0, 1},

Pσ(xn+1 = 0 | θ = j, xn) =
M∑
i=1

ri(n + 1)Pσ(xn+1 = 0 | θ = j, xn, B(n + 1) = Ci)

+

(
1−

M∑
i=1

ri(n + 1)

)
Pσ(xn+1 = 0 | θ = j, xn, B(n + 1) = {1, ..., n}).

For each i = 1, . . . , M , we define

qi(x
n) = Pσ(θ = 1|xk, k ∈ Ci).

Using the assumption that G0 and G1 are continuous, Lemma 1 implies that

Pσ(xn+1 = 0 | θ = j, xn, B(n + 1) = Ci) = Pσ(pn+1 ≤ 1− qi(x
n) | θ = j, xn, B(n + 1) = Ci)

= Gj (1− qi(x
n)) .

Therefore,

Pσ(xn+1 = 0 | θ = j, xn) =
M∑
i=1

ri(n + 1)Gj(1− qi(x
n)) +

(
1−

M∑
i=1

ri(n + 1)
)
Gj(1− q∗(xn)).

Hence, Eq. (26) can be rewritten as

fn(xn) =

∑M
i=1 ri(n + 1)G0(1− qi(x

n)) +
(
1−∑M

i=1 ri(n + 1)
)
G0(1− q∗(xn))

∑M
i=1 ri(n + 1)G1(1− qi(xn)) +

(
1−∑M

i=1 ri(n + 1)
)
G1(1− q∗(xn))

.

LetN ⊆ N be the set of all n such that
∑M

i=1 ri(n) ∈ (0, 1). The setN has infinitely many

elements in view of the assumptions that limn→∞
∑M

i=1 ri(n) = 0 and
∑∞

n=1

∑M
i=1 ri(n) =

∞ [cf. Eq. (3)]. To simplify notation, let ωi(n) = ri(n)/(1−∑M
k=1 rk(n)) for all n ∈ N .

Note that for all n ∈ N , there exists some i such that ωi(n) > 0. Then, for any n ∈ N ,

fn(xn) =

∑M
i=1 ωi(n + 1)G0(1− qi(x

n)) +G0(1− q∗(xn))∑M
i=1 ωi(n + 1)G1(1− qi(xn)) +G1(1− q∗(xn))

. (29)

If q∗(xn) ≥ 1/2, it follows from Lemma 3(c) that

G0(1− q∗(xn)) ≥
(
G0(1/2)

G1(1/2)

)
G1(1− q∗(xn)). (30)

Furthermore, since Ci is a nonpersuasive neighborhood, we have

qi(x
n) ∈ (β, β) for all xn,
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which implies the existence of some c′i with infxn qi(x
n) = c′i > β, where the strict

inequality follows since the infimum is over a finite set. Lemma 3(c) then implies that

G0(1− qi(x
n)) ≥

(
G0(1− c′i)
G1(1− c′i)

)
G1(1− qi(x

n)). (31)

Combining Eqs. (29), (30) and (31), we see that for all n ∈ N with q∗(xn) ≥ 1/2,

fn(xn) ≥
∑M

i=1 ωi(n + 1)
(
G0(1−c′i)
G1(1−c′i)

)
G1(1− qi(x

n)) +
(
G0(1/2)
G1(1/2)

)
G1(1− q∗(xn))

∑M
i=1 ωi(n + 1)G1(1− qi(xn)) +G1(1− q∗(xn))

.

Notice the right-hand side of the equation above is merely a weighted average. Therefore,
if n ∈ N and q∗(xn) ≥ 1/2, then

fn(xn) ≥ min

{
G0(1/2)

G1(1/2)
, min
i∈{1,...,M}

G0(1− c′i)
G1(1− c′i)

}
= 1 + δ,

for some δ > 0 using Lemma 3(c), proving Eq. (28).
Combining Eq. (28) with Eq. (27) yields

q∗ ((xn, 0)) ≤
[
1 +

(
1

q∗(xn)
− 1

)
(1 + δ)

]−1

for all n ∈ N , q∗(xn) ≥ 1/2. (32)

Suppose now n ∈ N and q∗(xn) ∈ [1/2, 1− ε] for some ε > 0. We show that there exists
some constant K(δ, ε) > 0 such that

q∗(xn)− q∗ ((xn, 0)) ≥ K(δ, ε). (33)

Define g : [1/2, 1− ε] → [0, 1] as

g(q) = q −
[
1 +

(
1

q
− 1

)
(1 + δ)

]−1

.

It can be seen that g(q) is a concave function over q ∈ [1/2, 1− ε]. Let K(δ, ε) be

K(δ, ε) = inf
q∈[1/2,1−ε]

g(q) = min{g(1/2), g(1− ε)} = min

{
δ

2(2 + δ)
,
εδ(1− ε)

1 + εδ

}
> 0.

From Eq. (32), it follows that

q∗(xn)− q∗ ((xn, 0)) ≥ q∗(xn)−
[
1 +

(
1

q∗(xn)
− 1

)
(1 + δ)

]−1

≥ g (q∗(xn)) ≥ K(δ, ε),

thus proving Eq. (33).
Recall that q∗(xn) converges to q̂ with probability 1. We show that for any ε > 0,

the support of q̂ does not contain (1/2, 1− ε). Assume, to arrive at a contradiction, that
it does. Consider a sample path that converges to a value in the interval (1/2, 1 − ε).
For this sample path, there exists some N such that for all n ≥ N , q∗(xn) ∈ [1/2, 1 −
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ε]. By the Borel-Cantelli Lemma, there are infinitely many agents n within N that
observe a neighborhood Ci for some i because the neighborhoods are independent and∑∞

n=1

∑M
i=1 ri(n) = ∞. Since these are nonpersuasive neighborhoods, an infinite subset

will choose action 0. Therefore, for infinitely many n that satisfy n ≥ N and n ∈ N , by
Eq. (33),

q∗(xn+1) ≤ q∗(xn)−K(δ, ε).

But this implies the sequence q∗(xn) is not Cauchy and, therefore, contradicts the fact
that q∗(xn) is a convergent sequence. Hence, we conclude that the support of q̂ does not
contain (1/2, 1 − ε). Since this argument holds for any ε > 0, the support of q̂ cannot
contain (1/2, 1). A similar argument leads to the conclusion that the support of q̂ does
not include (0, 1/2]. Therefore, the support of q̂ is a subset of the set {0, 1}. By Eq.
(25), this implies that q̂ = θ with probability 1.

We finally show that q̂ = θ with probability 1 implies the convergence of actions xn

to θ in probability. Suppose first θ = 1. Then, q∗(xn) converges to 1 with probability 1.
Therefore, Pσ(pn+1 + q∗(xn) ≥ 1 | θ = 1) converges to 1. Therefore, for any n,

Pσ(xn = θ | θ = 1) ≥ Pσ(xn = θ | θ = 1, B(n) = {1, ..., n− 1})Q(B(n) = {1, ..., n− 1})

= Pσ(pn+1 + q∗(xn) ≥ 1|θ = 1)

(
1−

M∑
i=1

ri(n)

)
.

Since
∑M

i=1 ri(n) converges to 0, the preceding relation implies that Pσ(xn = θ | θ = 1)
converges to 1. By the same argument, Pσ(xn = θ | θ = 0) also converges to 1, thus
proving asymptotic learning occurs in equilibrium σ. ¥

9 Conclusion

In this paper, we studied the problem of Bayesian (equilibrium) learning over a general
social network. A large social learning literature, pioneered by Bikhchandani, Hirshleifer
and Welch (1992), Banerjee (1992) and Smith and Sorensen (2000), has studied equilibria
of sequential-move games, where each individual observes all past actions. The focus has
been on whether equilibria lead to aggregation of information (and thus to asymptotic
learning).

In many relevant situations, individuals obtain their information not by observing
all past actions, but from their “social network”. This raises the question of how the
structures of social networks in which individuals are situated affects learning behavior.
To address these questions, we formulated a sequential-move equilibrium learning model
over a general social network.

In our model, each individual receives a signal about the underlying state of the
world and observes the past actions of a stochastically-generated neighborhood of in-
dividuals. The stochastic process generating the neighborhoods defines the network
topology. The signal structure determines the conditional distributions of the signals
received by each individual as a function of the underlying state. The social network
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consists of the network topology and the signal structure. Each individual then chooses
one of two possible actions depending on his posterior beliefs given his signal and the
realized neighborhood. We characterized pure-strategy (perfect Bayesian) equilibria for
arbitrary stochastic and deterministic social networks, and characterized the conditions
under which there is asymptotic learning. Asymptotic learning corresponds to individual
decisions converging (in probability) to the right action as the social network becomes
large.

Two concepts turn out to be crucial in determining whether there will be asymp-
totic learning. The first is common with the previous literature. Following Smith and
Sorensen (2000), we say that private beliefs are bounded if the likelihood ratio implied
by individual signals is bounded and there is a maximum amount of information that
can be generated from these signals. Conversely, private beliefs are unbounded if the
corresponding likelihood ratio is unbounded. The second important concept is that of
expanding or nonexpanding observations. A network topology has nonexpanding ob-
servations if there exists infinitely many agents observing the actions of only a finite
subset of (excessively influential) agents. Most network topologies feature expanding
observations.

Nonexpanding observations do not allow asymptotic learning, since there exists in-
finitely many agents who do not receive sufficiently many observations to be able to
aggregate information.

Our main theorem shows that expanding observations and unbounded private signals
are sufficient to ensure asymptotic learning. Since expanding observations is a relatively
mild restriction, to the extent that unbounded private beliefs constitute a good approxi-
mation to the informativeness of individual signals, this result implies that all equilibria
feature asymptotic learning applies in a wide variety of settings. Another implication is
that asymptotic learning is possible even when there are “influential agents” or “infor-
mation leaders”, that is, individuals who are observed by many, most or even all agents
(while others may be observed not at all or much less frequently). It is only when indi-
viduals are excessively influential—loosely speaking when they act as the sole source of
information for infinitely many agents—that asymptotic learning ceases to apply.

We also provide a partial converse to this result, showing that under the most com-
mon deterministic or stochastic network topologies, bounded beliefs imply no asymptotic
learning. However, we show that asymptotic learning is possible even with bounded be-
liefs for a certain class of stochastic network topologies.

Beyond the specific results presented in this paper, we believe that the framework
developed here opens the way for a more general analysis of the structure of social
networks on learning dynamics. Among the questions that can be studied using this
framework are the following: (1) the effect of network structure on the speed (rate of
convergence) of Bayesian learning; (2) equilibrium learning when there are heterogeneous
preferences; (3) equilibrium learning when the underlying state is changing dynamically;
(4) the influence of a subset of a social network (for example, the media or interested
parties) in influencing the views of the rest as a function of the network structure. We
intend to investigate these questions in future work.
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Appendix A

9.1 Proof of Theorem 1

Suppose that the network has nonexpanding observations. This implies that there exists
some K ∈ N, ε > 0, and a subsequence of agents N such that for all n ∈ N ,

Qn

(
max

b∈B(n)
b < K

)
≥ ε. (34)

For any such agent n ∈ N , we have

Pσ(xn = θ) = Pσ

(
xn = θ

∣∣∣ max
b∈B(n)

b < K

)
Qn

(
max

b∈B(n)
b < K

)

+ Pσ

(
xn = θ

∣∣∣ max
b∈B(n)

b ≥ K

)
Qn

(
max

b∈B(n)
b ≥ K

)

≤ Pσ

(
xn = θ

∣∣∣ max
b∈B(n)

b < K

)
Qn

(
max

b∈B(n)
b < K

)
+Qn

(
max

b∈B(n)
b ≥ K

)

≤ 1− ε + εPσ

(
xn = θ

∣∣∣ max
b∈B(n)

b < K

)
, (35)

where the second inequality follows from Eq. (34).
Given some equilibrium σ ∈ Σ∗ and agent n, we define zn as the decision that

maximizes the conditional probability of making a correct decision given the private
signals and neighborhoods of the first K − 1 agents and agent n, i.e.,

zn = arg max
y∈{0,1}

Py,σ−n(y = θ | si, B(i), for i = 1, . . . , K − 1, n). (36)

We denote a particular realization of private signal si by si and a realization of neigh-
borhood B(i) by B(i) for all i. Given the equilibrium σ and the realization s1, ..., sK−1

and B(1), ..., B(K − 1), all decisions x1, . . . , xK−1 are recursively defined [i.e., they are
non-stochastic; see the definition of the information set in Eq. (1)]. Therefore, for any
B(n) that satisfies maxb∈B(n) b < K, the decision xn is also defined. By the definition
of zn [cf. Eq. (36)], this implies that

Pσ(xn = θ | si = si, B(i) = B(i), for i = 1, . . . , K − 1, n)

≤ Pσ(zn = θ | si = si, B(i) = B(i), for i = 1, . . . , K − 1, n).

By integrating over all possible s1, ..., sK−1, sn,B(1), ..., B(K − 1), this yields

Pσ(xn = θ | B(n) = B(n)) ≤ Pσ(zn = θ | B(n) = B(n)),

for any B(n) that satisfies maxb∈B(n) b < K. By integrating over all B(n) that satisfy
this condition, we obtain

Pσ

(
xn = θ

∣∣∣ max
b∈B(n)

b < K

)
≤ Pσ

(
zn = θ

∣∣∣ max
b∈B(n)

b < K

)
. (37)
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Moreover, since the sequence of neighborhoods {B(i)}i∈N is independent of θ and the
sequence of private signals {si}i∈N, it follows from Eq. (36) that the decision zn is given
by

zn = arg max
y∈{0,1}

Pσ(y = θ | s1, ..., sK−1, sn). (38)

Therefore, zn is also independent of the sequence of neighborhoods {B(i)}i∈N and we
have

Pσ

(
zn = θ

∣∣∣ max
b∈B(n)

b < K

)
= Pσ (zn = θ) .

Since the private signals have the same distribution, it follows from Eq. (38) that for
any n,m ≥ K, the random variables zn and zm have identical probability distributions.
Hence, for any n ≥ K, Eq. (38) implies that

Pσ (zn = θ) = Pσ (zK = θ) .

Combining the preceding two relations with Eq. (37), we have for any n ≥ K,

Pσ

(
xn = θ

∣∣∣ max
b∈B(n)

b < K

)
≤ Pσ

(
zn = θ

∣∣∣ max
b∈B(n)

b < K

)
= Pσ (zn = θ) = Pσ (zK = θ) .

Substituting this relation in Eq. (35), we obtain for any n ∈ N , n ≥ K,

Pσ(xn = θ) ≤ 1− ε + εPσ (zK = θ) .

Therefore,
lim inf
n→∞

Pσ(xn = θ) ≤ 1− ε + εPσ(zK = θ). (39)

We finally show that in view of the assumption that F0 and F1 are absolutely contin-
uous with respect to each other [which implies Pσ(x1 = θ) < 1], we have Pσ(zK = θ) < 1
for any given K. If Pσ(x1 = θ) < 1 holds, then we have either Pσ(x1 = θ | θ = 1) < 1 or
Pσ(x1 = θ | θ = 0) < 1. Assume without loss of generality that we have

Pσ(x1 = θ | θ = 1) < 1. (40)

Let S denote the set of all private signals such that if s1 ∈ Sσ, then x1 = 0 in equilibrium
σ. Since the first agent’s decision is a function of s1, then Eq. (40) is equivalent to

Pσ(s1 ∈ Sσ | θ = 1) > 0.

Since the private signals are conditionally independent given θ, this implies that

Pσ(si ∈ Sσ for all i ≤ K | θ = 1) = Pσ(s1 ∈ Sσ | θ = 1)K > 0. (41)

We next show that if si ∈ Sσ for all i ≤ K, then zK = 0. Using Bayes’ Rule, we have

Pσ(θ = 0 | si ∈ Sσ for all i ≤ K) =

[
1 +

Pσ(si ∈ Sσ for all i ≤ K | θ = 1)

Pσ(si ∈ Sσ for all i ≤ K | θ = 0)

]−1

=

[
1 +

∏K
i=1 Pσ(si ∈ Sσ | θ = 1)∏K
i=1 Pσ(si ∈ Sσ | θ = 0)

]−1

=

[
1 +

(
Pσ(s1 ∈ Sσ | θ = 1)

Pσ(s1 ∈ Sσ | θ = 0)

)K
]−1

, (42)
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where the second equality follows from the conditional independence of the private sig-
nals and the third equality holds since private signals are identically distributed. Ap-
plying Bayes’ Rule on the second term in parentheses in Eq. (42), this implies that

Pσ(θ = 0 | si ∈ Sσ for all i ≤ K) =

[
1 +

(
1

Pσ(θ = 0 | s1 ∈ Sσ)
− 1

)K
]−1

. (43)

Since s1 ∈ Sσ induces x1 = 0, we have Pσ(θ = 0 | s1 ∈ Sσ) ≥ 1/2. Because the function
on the right-handside of Eq. (43) is nondecreasing in Pσ(θ = 0 | s1 ∈ Sσ) for any value
in [1/2,1], we obtain

Pσ(θ = 0 | si ∈ Sσ for all i ≤ K) ≥ 1

2
.

By the definition of zK , this implies that if si ∈ Sσ for all i ≤ K, then zK = 0 (we can
let zn be equal to 0 whenever both states are equally likely given the private signals).
Combined with the fact that the event {si ∈ Sσ for all i ≤ K} has positive conditional
probability given θ = 1 under measure Pσ [cf. Eq. (41)], this implies that Pσ(zK = θ) < 1.
Substituting this relation in Eq. (39), we have

lim inf
n→∞

Pσ(xn = θ) < 1,

thus showing that asymptotic learning does not occur. ¥

41



References

[1] Austen-Smith D. and Banks J., “Information Aggregation, Rationality, and the
Condorcet Jury Theorem,” The American Political Science Review, vol. 90, no. 1,
pp. 34-45, 1996.

[2] Bala V. and Goyal S., “Learning from Neighbours,” The Review of Economic Stud-
ies, vol. 65, no. 3, pp. 595-621, 1998.

[3] Bala V. and Goyal S., “Conformism and Diversity under Social Learning,” Economic
Theory, vol. 17, pp. 101-120, 2001.

[4] Banerjee A., “A Simple Model of Herd Behavior,” The Quarterly Journal of Eco-
nomics, vol. 107, pp. 797-817, 1992.

[5] Banerjee A. and Fudenberg D., “Word-of-mouth Learning,” Games and Economic
Behavior, vol. 46, pp. 1-22, 2004.

[6] Besley T. and Case A., “Diffusion as a Learning Process: Evidence from HYV
Cotton,” Working Papers 228, Princeton University, Woodrow Wilson School of
Public and International Affairs, Research Program in Development Studies, 1994.

[7] Bikhchandani S., Hirshleifer D., and Welch I., “A Theory of Fads, Fashion, Custom,
and Cultural Change as Information Cascades,” The Journal of Political Economy,
vol. 100, pp. 992-1026, 1992.

[8] Bikhchandani S., Hirshleifer D., and Welch I., “Learning from the Behavior of
Others: Conformity, Fats, and Informational Cascades,” The Journal of Economic
Perspectives, vol. 12, pp. 151-170, 1998.

[9] Breiman L., “Probability,” Addison-Wellesley, 1968.

[10] Callander S. and Horner J., “The Wisdom of the Minority,” Northwestern mimeo,
2006.

[11] Celen B. and Kariv S., “Observational Learning Under Imperfect Information,”
Games and Economic Behavior, vol. 47, no. 1, pp. 72-86, 2004.

[12] Celen B. and Kariv S., “Distinguishing Informational Cascades from Herd Behavior
in the Laboratory,” The American Economic Review, vol. 94, no. 3, pp. 484-498,
2004.

[13] Chamley C. and Gale D., “Information Revelation and Strategic Delay in a Model
of Investment,” Econometrica, vol. 62, pp. 1065-1086, 1994.

[14] Choi S., Celen B., and Kariv S., “Learning in Networks: An Experimental Study,”
UCLA Technical Report, Dec. 2005.

[15] Condorcet N.C. , “Essai sur l’Application de l’Analyze à la Probabilité des Décisions
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Appendix B: Omitted Proofs (Not for Publication)
Proof of Lemma 1. We prove that if

Pσ(θ = 1 | sn) + Pσ

(
θ = 1 | B(n), xk for all k ∈ B(n)

)
> 1, (44)

then xn = 1. The proofs of the remaining statements follow the same line of argument.
We first show that Eq. (44) holds if and only if

Pσ(θ = 1 | In) > 1/2, (45)

therefore implying that xn = 1 by the equilibrium condition [cf. Eq. (2)]. By Bayes’
Rule, Eq. (45) is equivalent to

Pσ(θ = 1 | In) =
dPσ(In | θ = 1)Pσ(θ = 1)∑1
j=0 dPσ(In | θ = j)Pσ(θ = j)

=
dPσ(In | θ = 1)∑1
j=0 dPσ(In | θ = j)

> 1/2, (46)

where the second equality follows from the assumption that states 0 and 1 are equally
likely. Hence, Eq. (45) holds if and only if

dPσ(In | θ = 1) > dPσ(In | θ = 0). (47)

Conditional on state θ, the private signals and the observed decisions are independent,
i.e.,

dPσ(In | θ = j) = dPσ(sn | θ = j)Pσ(B(n), xk, k ∈ B(n)|θ = j).

Combining the preceding two relations, it follows that Eq. (47) is equivalent to

Pσ(B(n), xk, k ∈ B(n) | θ = 1)∑1
j=0 Pσ(B(n), xk, k ∈ B(n) | θ = j)

>
dPσ(sn | θ = 0)∑1
j=0 dPσ(sn | θ = j)

.

Since both states are equally likely, this can be rewritten as

Pσ(B(n), xk, k ∈ B(n) | θ = 1)Pσ(θ = 1)∑1
j=0 Pσ(B(n), xk, k ∈ B(n) | θ = j)Pσ(θ = j)

>
dPσ(sn | θ = 0)Pσ(θ = 0)∑1
j=0 dPσ(sn | θ = j)Pσ(θ = j)

.

Applying Bayes’ Rule on both sides of Eq. (48), we see that the preceding relation is
identical to

Pσ(θ = 1 | B(n), xk, k ∈ B(n)) > Pσ(θ = 0 | sn) = 1− Pσ(θ = 1 | sn),

completing the proof. ¥

Proof of Lemma 3.
(a) By the definition of a private belief, we have for any pn ∈ (0, 1),

P(θ = 1|sn) = P(θ = 1|pn).
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Using Bayes’ Rule, it follows that

pn = Pσ(θ = 1|pn) =
dP(pn|θ = 1)P(θ = 1)∑1
j=0 dP(pn|θ = j)P(θ = j)

=
dP(pn|θ = 1)∑1
j=0 dP(pn|θ = j)

=
dG1(pn)∑1
j=0 dGj(pn)

.

Because of the assumption that no signal is completely informative, i.e., pn /∈ {0, 1}, we
can rewrite this equation as

dG0

dG1

(pn) =
1− pn

pn

,

completing the proof.

(b) For any p ∈ (0, 1),

G0(p) =

∫ p

r=0

dG0(r) =

∫ p

r=0

1− r

r
dG1(r) =

(
1− p

p

)
G1(p) +

∫ p

r=0

(
1

r
− 1

p

)
dG1(r),

where the second equality follows from part (a) of this lemma. We can provide a lower
bound on the last integral as

∫ p

r=0

(
1

r
− 1

p

)
dG1(r) ≥

∫ z

r=0

(
1

r
− 1

p

)
dG1(r) ≥

∫ z

r=0

(
1

z
− 2

z + p

)
dG1(r) ≥ p− z

2
G1 (z) ,

for any z ∈ (0, p). Equivalently, the second relation is obtained by

1−G1(p) =

∫ 1

r=p

dG1(r) =

∫ 1

r=p

r

1− r
dG0(r)

= (1−G0(p))

(
p

1− p

)
+

∫ 1

r=p

(
r

1− r
− p

1− p

)
dG0(r),

where the following bound is valid for any p < w < 1,

∫ 1

r=p

(
r

1− r
− p

1− p

)
dG0(r) ≥

∫ 1

r=w

(
r

1− r
− p

1− p

)
dG0(r)

≥
∫ 1

r=w

(
w

1− w
− p + w

2− p− w

)
dG0(r) ≥ w − p

2
(1−G0(w)).

(c) From part (a), we have for any r ∈ (0, 1),

G0(r) =

∫ r

x=0

dG0(x) =

∫ r

x=0

(
1− x

x

)
dG1(x) ≥

∫ r

x=0

(
1− r

r

)
dG1(x) =

(
1− r

r

)
G1(r).

(48)
Using part (a) again,

d

(
G0(r)

G1(r)

)
=

dG0(r)G1(r)−G0(r)dG1(r)

(G1(r))
2

=
dG1(r)

(G1(r))
2

[(
1− r

r

)
G1(r)−G0(r)

]
.
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Since G1(r) > 0 for r > β, dG1(r) ≥ 0 and the term in brackets above is non-positive
by Eq. (48), we have

d

(
G0(r)

G1(r)

)
≤ 0,

thus proving the ratio G0(r)/G1(r) is non-increasing.
We now show that

G0(r) ≥ G1(r) for all r ∈ [0, 1]. (49)

From Eq. (48), we obtain that Eq. (49) is true for r ≤ 1/2. For r > 1/2,

1−G0(r) =

∫ 1

x=r

dG0(x) =

∫ 1

x=r

(
1− x

x

)
dG1(x) ≤

∫ 1

x=r

dG1(x) = 1−G1(r),

thus proving Eq. (49).
We proceed to prove the second part of the lemma. Suppose G0(r)/G1(r) = 1 for

some r < β. Suppose first r ∈ (1/2, β). Then,

G0(1) = G0(r) +

∫ 1

x=r

dG0(x)

= G1(r) +

∫ 1

x=r

dG0(x)

= G1(r) +

∫ 1

x=r

(
1− x

x

)
dG1(x)

≥ G1(r) +

(
1− r

r

) ∫ 1

x=r

dG1(x)

≥ G1(r) +

(
1− r

r

)
[1−G1(r)] ,

which yields a contradiction unless G1(r) = 1. However, G1(r) = 1 implies r ≥ β – also a
contradiction. Now, suppose r ∈ (β, 1/2]. Since the ratio G0(r)/G1(r) is non-increasing,
this implies that for all x ∈ (r, 1], G0(x)/G1(x) ≤ 1. Combined with Eq. (49), this yields
G0(x)/G1(x) = 1 for all x ∈ (r, 1], which yields a contradiction for x ∈ (1/2, β). ¥

Proof of Proposition 2. Let h : {(n, B(n)) : n ∈ N, B(n) ⊆ {1, 2, ..., n − 1}} → N
be an arbitrary function that maps an agent and a neighborhood of the agent into an
element of the neighborhood, i.e., h(n,B(n)) ∈ B(n). In view of the characterization
of the equilibrium decision xn [cf. Eq. (2)], it follows that for any private signal sn,
neighborhood B(n) ⊆ {1, 2, ..., n− 1}, and decisions xk, k ∈ B(n), we have

Pσ(xn = θ | sn, B(n), xk, k ∈ B(n)) ≥ Pσ(xh(n,B(n)) = θ | sn, B(n), xk, k ∈ B(n)).

By integrating over all possible private signals and decisions of agents in the neighbor-
hood, we obtain that for any n and any B(n) = B,

Pσ(xn = θ | B(n) = B) ≥ Pσ(xh(n,B(n)) = θ | B(n) = B) = Pσ(xh(n,B) = θ),
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where the equality follows by the assumption that each neighborhood is generated inde-
pendently from all other neighborhoods. By taking the maximum over all functions h,
we obtain

Pσ(xn = θ | B(n) = B) ≥ max
b∈B

Pσ(xb = θ),

showing the desired relation. ¥

Proof of Proposition 6. The proof consists of two steps. We first show that the
lower and upper supports of the social belief qn = Pσ(θ = 1|x1, ..., xn−1) are bounded
away from 0 and 1. We next show that this implies that xn does not converge to θ in
probability.

Let xn−1 = (x1, ..., xn−1) denote the sequence of decisions up to and including n− 1.
Let ϕσ,xn−1(qn, xn) represent the social belief qn+1 given the social belief qn and the
decision xn, for a given strategy σ and decisions xn−1. We use Bayes’ Rule to determine
the dynamics of the social belief. For any xn−1 compatible with qn, and xn = x with
x ∈ {0, 1}, we have

ϕσ,xn−1(qn, x) = Pσ(θ = 1 | xn = x, qn, x
n−1)

=

[
1 +

Pσ(xn = x, qn, xn−1, θ = 0)

Pσ(xn = x, qn, xn−1, θ = 1)

]−1

=

[
1 +

Pσ(qn, xn−1 | θ = 0)

Pσ(qn, xn−1 | θ = 1)

Pσ(xn = x | qn, xn−1, θ = 0)

Pσ(xn = x | qn, xn−1, θ = 1)

]−1

=

[
1 +

(
1

qn

− 1

)
Pσ(xn = x | qn, xn−1, θ = 0)

Pσ(xn = x | qn, xn−1, θ = 1)

]−1

. (50)

Let ασ,xn−1 denote the probability that agent n chooses x = 0 in equilibrium σ when he
observes history xn−1 and is indifferent between the two actions. Let

G−j (r) = lim
s↑r
Gj(s),

for any r ∈ [0, 1] and any j ∈ {0, 1}. Then, for any j ∈ {0, 1},
Pσ(xn = 0 | qn, xn−1, θ = j) = Pσ(pn < 1− qn | qn, θ = j)

+ ασ,xn−1Pσ(pn = 1− qn | qn, θ = j)

= G−j (1− qn) + ασ,xn−1

[
Gj(1− qn)−G−j (1− qn)

]
.

From Lemma 3(a), dG0/dG1(r) = (1− r)/r for all r ∈ [0, 1]. Therefore,

1− r

r
≤ G0(r)

G1(r)
, and

G−0 (r)

G−1 (r)
≤ 1− β

β
.

Hence, for any ασ,xn−1 ,

Pσ(xn = 0 | qn, x
n−1, θ = 0)

Pσ(xn = 0 | qn, xn−1, θ = 1)
=

G−0 (1− qn) + ασ,xn−1

[
G0(1− qn)−G−0 (1− qn)

]

G−1 (1− qn) + ασ,xn−1

[
G1(1− qn)−G−0 (1− qn)

]

∈
[

qn

1− qn

,
1− β

β

]
.
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Combining this with Eq. (50), we obtain

ϕσ,xn−1(qn, 0) ∈
[(

1 +

(
1

qn

− 1

)(
1− β

β

))−1

,

(
1 +

(
1

qn

− 1

)(
qn

1− qn

))−1
]

=

[
βqn

1− β − qn + 2βqn

,
1

2

]

Note that
βqn

1−β−qn+2βqn
is an increasing function of qn and if qn ∈ [1− β, 1− β], then this

function is minimized at 1− β. This implies that

ϕσ,xn−1(qn, 0) ∈
[

β(1− β)

−β + β + 2β(1− β)
,
1

2

]
=

[
∆,

1

2

]
,

where ∆ is a constant strictly greater than 0. An analogous argument for xn = 1
establishes that there exists some ∆ < 1 such that if qn ∈ [1− β, 1− β], then

ϕσ,xn−1(qn, 1) ∈
[
1

2
, ∆

]
.

We next show that qn ∈ [∆, ∆] for all n. Suppose this is not true. Let N be the first
agent such that

qN ∈ [0, ∆) ∪ (∆, 1] (51)

in some equilibrium and some realized history. Then, qN−1 ∈ [0, 1 − β) ∪ (1 − β, 1]
because otherwise, the dynamics of qn implies a violation of Eq. (51) for any xN−1. But
note that if qN−1 < 1− β, then by Lemma 1 agent N − 1 chooses action xN−1 = 0 and,
thus by Eq. (50),

qN =

[
1 +

(
1

qN−1

− 1

)
Pσ(xN−1 = 0 | qN−1, x

N−2, θ = 0)

Pσ(xN−1 = 0 | qN−1, xN−2, θ = 1)

]−1

=

[
1 +

(
1

qN−1

− 1

)
1

1

]−1

= qN−1.

By the same argument, if qN−1 > 1−β, we have that qN = qN−1. Therefore, qN = qN−1,
which contradicts the fact that N is the first agent that satisfies Eq. (51).

We next show that qn ∈ [∆, ∆] for all n implies that xn does not converge in proba-
bility to θ. Let yk denote a realization of xk. Then, for any n and any sequence of yk’s,
we have

Pσ(θ = 1, xk = yk for all k ≤ n) ≤ ∆Pσ(xk = yk for all k ≤ n),

Pσ(θ = 0, xk = yk for all k ≤ n) ≤ (1−∆)Pσ(xk = yk for all k ≤ n).

By summing the preceding relations over all yk for k < n, we obtain

Pσ(θ = 1, xn = 1) ≤ ∆Pσ(xn = 1) and Pσ(θ = 0, xn = 0) ≤ (1−∆)Pσ(xn = 0).
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Therefore, for any n, we have

Pσ(xn = θ) ≤ ∆Pσ(xn = 1) + (1−∆)Pσ(xn = 0) ≤ max{∆, 1−∆} < 1,

which completes the proof. ¥

Proof of Proposition 7. The first step is the following lemma.

Lemma 10 Let B(n) = {b} for some n. We define

f(β, β) = max

{
1− β

2(1− β)
,
3

2
− 1

2β

}
, (52)

where β and β are the lower and upper supports of the private beliefs (cf. Definition 8).

Let σ be an equilibrium. Assume that Pσ(xb = θ) ≤ f(β, β). Then, we have

Pσ(xn = θ | B(n) = {b}) ≤ f(β, β).

Proof. We first assume that Pσ(xb = θ) = f(β, β) and show that this implies

Uσ
b ≥ β, and Lσ

b ≤ β, (53)

where Uσ
b and Lσ

b are defined in Eq. (7). We can rewrite Uσ
b as

Uσ
b =

Nσ
b

1− 2Pσ(xb = θ) + 2Nσ
b

=
Nσ

b

1− 2f(β, β) + 2Nσ
b

.

This is a decreasing function of Nσ
b and, therefore,

Uσ
b ≥

1

1− 2f(β, β) + 2
.

Using f(β, β) ≥ 3
2
− 1

2β
, the preceding relation implies Uσ

b ≥ β. An analogous argument

shows that Lσ
b ≤ β.

Since the support of the private beliefs is [β, β], using Lemma 3 and Eq. (53), there
exists an equilibrium σ′ = (σ′n, σ−n) such that xn = xb with probability one (with respect
to measure Pσ′). Since this gives an expected payoff Pσ′(xn = θ |B(n) = b) = Pσ(xb = θ),
it follows that, Pσ(xn = θ | B(n) = b) = Pσ(xb = θ). This establishes the claim that

if Pσ(xb = θ) = f(β, β), then Pσ(xn = θ | B(n) = {b}) = f(β, β). (54)

We next assume that Pσ(xb = θ) < f(β, β). To arrive at a contradiction, suppose
that

Pσ(xn = θ | B(n) = {b}) > f(β, β). (55)

Now consider a hypothetical situation where agent n observes a private signal generated
with conditional probabilities (F0,F1) and a coarser version of the observation xb, i.e.,
the random variable x̃b distributed according to

P(x̃b = 1 | θ = 1) = 1−Y σ
b

[
1− f(β, β)

Pσ(xb = θ)

]
and P(x̃b = 0 | θ = 0) = 1−Nσ

b

[
1− f(β, β)

Pσ(xb = θ)

]
.
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It follows from the preceding conditional probabilities that P(x̃b = θ) = f(β, β). We
assume that agent n uses the equilibrium strategy σn. Using a similar argument as in
the proof of Eq. (54), this implies that

P(xn = θ | B(n) = {b}) = f(β, β). (56)

Let z be a binary random variable with values {0, 1} and is generated independent of θ
with probabilities

P(z = 1) = 1− 2Y σ
b

Pσ(xb = θ)
and P(z = 0) = 1− 2Nσ

b

Pσ(xb = θ)
.

This implies that P(z = j | θ = j) = P(z = j) for j ∈ {0, 1}. Using x̃b with prob-

ability 1
1+f(β,β)

[
2 +

(Y σ
b −1)Pσ(xb=θ)

Y σ
b

]
and z otherwise generates the original observation

(random variable) xb. Therefore, from Eq. (55), P(xn = θ|B(n) = {b}) > f(β, β), which
contradicts Eq. (56), and completes the proof.

Let f be defined in Eq. (52). We show by induction that

Pσ(xn = θ) ≤ f(β, β) for all n. (57)

Suppose that for all agents up to n−1 the preceding inequality holds. Since |B(n)| ≤ 1,
we have

Pσ(xn = θ) = Pσ(xn = θ | B(n) = ∅)Qn(B(n) = ∅) (58)

+
n−1∑

b=1

Pσ(xn = θ | B(n) = b)Qn(B(n) = {b})

≤ Pσ(xn = θ | B(n) = ∅)Qn(B(n) = ∅) +
n−1∑

b=1

f(β, β)Qn(B(n) = {b}),

where the inequality follows from the induction hypothesis and Lemma 10. Note that
having B(n) = ∅ is equivalent to observing a decision b such that Pσ(xb = θ) = 1/2.
Since 1/2 ≤ f(β, β), Lemma 10 implies that Pσ(xn = θ|B(n) = ∅) ≤ f(β, β). Combined
with Eq. (58), this completes the induction.

Since the private beliefs are bounded, i.e., β > 0 and β < 1, we have f(β, β) < 1
[cf. Eq. (52)]. Combined with Eq. (57), this establishes that lim infn→∞ Pσ(xn = θ) < 1,
showing that asymptotic learning does not occur at any equilibrium σ. ¥
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