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ABSTRACT
This paper addresses the repeated acquisition of labels for data
items when the labeling is imperfect. We examine the improve-
ment (or lack thereof) in data quality via repeated labeling,
and focus especially on the improvement of training labels
for supervised induction. With the outsourcing of small tasks
becoming easier, for example via Rent-A-Coder or Amazon’s
Mechanical Turk, it often is possible to obtain less-than-expert
labeling at low cost. With low-cost labeling, preparing the
unlabeled part of the data can become considerably more
expensive than labeling. We present repeated-labeling strate-
gies of increasing complexity, and show several main results.
(i) Repeated-labeling can improve label quality and model
quality, but not always. (ii) When labels are noisy, repeated
labeling can be preferable to single labeling even in the tradi-
tional setting where labels are not particularly cheap. (iii) As
soon as the cost of processing the unlabeled data is not free,
even the simple strategy of labeling everything multiple times
can give considerable advantage. (iv) Repeatedly labeling a
carefully chosen set of points is generally preferable, and we
present a robust technique that combines different notions
of uncertainty to select data points for which quality should
be improved. The bottom line: the results show clearly that
when labeling is not perfect, selective acquisition of multiple
labels is a strategy that data miners should have in their
repertoire; for certain label-quality/cost regimes, the benefit
is substantial.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; I.5.2 [Design
Methodology]: Classifier design and evaluation

General Terms
Algorithms, Design, Experimentation, Management, Measure-
ment, Performance

Keywords
data selection, data preprocessing
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1. INTRODUCTION
There are various costs associated with the preprocessing

stage of the KDD process, including costs of acquiring features,
formulating data, cleaning data, obtaining expert labeling of
data, and so on [31, 32]. For example, in order to build a model
to recognize whether two products described on two web pages
are the same, one must extract the product information from
the pages, formulate features for comparing the two along
relevant dimensions, and label product pairs as identical or
not; this process involves costly manual intervention at several
points. To build a model that recognizes whether an image
contains an object of interest, one first needs to take pictures
in appropriate contexts, sometimes at substantial cost.

This paper focuses on problems where it is possible to ob-
tain certain (noisy) data values (“labels”) relatively cheaply,
from multiple sources (“labelers”). A main focus of this paper
is the use of these values as training labels for supervised mod-
eling.1 For our two examples above, once we have constructed
the unlabeled example, for relatively low cost one can obtain
non-expert opinions on whether two products are the same
or whether an image contains a person or a storefront or a
building. These cheap labels may be noisy due to lack of
expertise, dedication, interest, or other factors. Our ability to
perform non-expert labeling cheaply and easily is facilitated
by on-line outsourcing systems such as Rent-A-Coder2 and
Amazon’s Mechanical Turk,3 which match workers with ar-
bitrary (well-defined) tasks, as well as by creative labeling
solutions like the ESP game.4

In the face of noisy labeling, as the ratio increases between
the cost of preprocessing a data point and the cost of labeling
it, it is natural to consider repeated labeling : obtaining multiple
labels for some or all data points. This paper explores whether,
when, and for which data points one should obtain multiple,
noisy training labels, as well as what to do with them once
they have been obtained.

Figure 1 shows learning curves under different labeling qual-
ities for the mushroom data set (see Section 4.1). Specifically,
for the different quality levels of the training data,5 the fig-
ure shows learning curves relating the classification accuracy
of a Weka J48 model [34] to the number of training data.
This data set is illustrative because with zero-noise labels
one can achieve perfect classification after some training, as
demonstrated by the q = 1.0 curve.

Figure 1 illustrates that the performance of a learned model

1
This setting is in direct contrast to the setting motivating active learn-

ing and semi-supervised learning, where unlabeled points are relatively
inexpensive, but labeling is expensive.
2
http://www.rentacoder.com

3
http://www.mturk.com

4
http://www.espgame.org

5
The test set has perfect quality with zero noise.
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Figure 1: Learning curves under different quality lev-
els of training data (q is the probability of a label
being correct).

depends both on the quality of the training labels and on
the number of training examples. Of course if the training
labels are uninformative (q = 0.5), no amount of training data
helps. As expected, under the same labeling quality, more
training examples lead to better performance, and the higher
the quality of the training data, the better the performance
of the learned model. However, the relationship between the
two factors is complex: the marginal increase in performance
for a given change along each dimension is quite different for
different combinations of values for both dimensions. To this,
one must overlay the different costs of acquiring only new
labels versus whole new examples, as well as the expected
improvement in quality when acquiring multiple new labels.

This paper makes several contributions. First, under gradu-
ally weakening assumptions, we assess the impact of repeated-
labeling on the quality of the resultant labels, as a function
of the number and the individual qualities of the labelers.
We derive analytically the conditions under which repeated-
labeling will be more or less effective in improving resultant
label quality. We then consider the effect of repeated-labeling
on the accuracy of supervised modeling. As demonstrated in
Figure 1, the relative advantage of increasing the quality of la-
beling, as compared to acquiring new data points, depends on
the position on the learning curves. We show that even if we
ignore the cost of obtaining the unlabeled part of a data point,
there are times when repeated-labeling is preferable compared
to getting labels for unlabeled examples. Furthermore, when
we do consider the cost of obtaining the unlabeled portion,
repeated-labeling can give considerable advantage.

We present a comprehensive experimental analysis of the
relationships between quality, cost, and technique for repeated-
labeling. The results show that even a straightforward, round-
robin technique for repeated-labeling can give substantial
benefit over single-labeling. We then show that selectively
choosing the examples to label repeatedly yields substantial
extra benefit. A key question is: How should we select data
points for repeated-labeling? We present two techniques based
on different types of information, each of which improves over
round-robin repeated labeling. Then we show that a technique
that combines the two types of information is even better.

Although this paper covers a good deal of ground, there is
much left to be done to understand how best to label using
multiple, noisy labelers; so, the paper closes with a summary
of the key limitations, and some suggestions for future work.

2. RELATED WORK
Repeatedly labeling the same data point is practiced in

applications where labeling is not perfect (e.g., [27, 28]). We
are not aware of a systematic assessment of the relationship
between the resultant quality of supervised modeling and
the number of, quality of, and method of selection of data
points for repeated-labeling. To our knowledge, the typi-

cal strategy used in practice is what we call “round-robin”
repeated-labeling, where cases are given a fixed number of
labels—so we focus considerable attention in the paper to this
strategy. A related important problem is how in practice to
assess the generalization performance of a learned model with
uncertain labels [28], which we do not consider in this paper.
Prior research has addressed important problems necessary for
a full labeling solution that uses multiple noisy labelers, such
as estimating the quality of labelers [6, 26, 28], and learning
with uncertain labels [13, 24, 25]. So we treat these topics
quickly when they arise, and lean on the prior work.

Repeated-labeling using multiple noisy labelers is different
from multiple label classification [3, 15], where one example
could have multiple correct class labels. As we discuss in
Section 5, repeated-labeling can apply regardless of the number
of true class labels. The key difference is whether the labels
are noisy. A closely related problem setting is described by
Jin and Ghahramani [10]. In their variant of the multiple
label classification problem, each example presents itself with
a set mutually exclusive labels, one of which is correct. The
setting for repeated-labeling has important differences: labels
are acquired (at a cost); the same label may appear many
times, and the true label may not appear at all. Again, the
level of error in labeling is a key factor.

The consideration of data acquisition costs has seen in-
creasing research attention, both explicitly (e.g., cost-sensitive
learning [31], utility-based data mining [19]) and implicitly, as
in the case of active learning [5]. Turney [31] provides a short
but comprehensive survey of the different sorts of costs that
should be considered, including data acquisition costs and
labeling costs. Most previous work on cost-sensitive learning
does not consider labeling cost, assuming that a fixed set of
labeled training examples is given, and that the learner cannot
acquire additional information during learning (e.g., [7, 8, 30]).

Active learning [5] focuses on the problem of costly label
acquisition, although often the cost is not made explicit. Ac-
tive learning (cf., optimal experimental design [33]) uses the
existing model to help select additional data for which to
acquire labels [1, 14, 23]. The usual problem setting for active
learning is in direct contrast to the setting we consider for
repeated-labeling. For active learning, the assumption is that
the cost of labeling is considerably higher than the cost of
obtaining unlabeled examples (essentially zero for “pool-based”
active learning).

Some previous work studies data acquisition cost explicitly.
For example, several authors [11, 12, 16, 17, 22, 32, 37] study
the costly acquisition of feature information, assuming that
the labels are known in advance. Saar-Tsechansky et al. [22]
consider acquiring both costly feature and label information.

None of this prior work considers selectively obtaining mul-
tiple labels for data points to improve labeling quality, and the
relative advantages and disadvantages for improving model
performance. An important difference from the setting for
traditional active learning is that labeling strategies that use
multiple noisy labelers have access to potentially relevant addi-
tional information. The multisets of existing labels intuitively
should play a role in determining the examples for which to
acquire additional labels. For example, presumably one would
be less interested in getting another label for an example that
already has a dozen identical labels, than for one with just
two, conflicting labels.

3. REPEATED LABELING: THE BASICS
Figure 1 illustrates that the quality of the labels can have

a marked effect on classification accuracy. Intuitively, using



repeated-labeling to shift from a lower-q curve to a higher-q
curve can, under some settings, improve learning considerably.
In order to treat this more formally, we first introduce some
terminology and simplifying assumptions.

3.1 Notation and Assumptions
We consider a problem of supervised induction of a (binary)

classification model. The setting is the typical one, with some
important exceptions. For each training example 〈yi, xi〉,
procuring the unlabeled “feature” portion, xi, incurs cost CU .
The action of labeling the training example with a label yi
incurs cost CL. For simplicity, we assume that each cost is
constant across all examples. Each example 〈yi, xi〉 has a true
label yi, but labeling is error-prone. Specifically, each label
yij comes from a labeler j exhibiting an individual labeling
quality pj , which is Pr(yij = yi); since we consider the case
of binary classification, the label assigned by labeler j will be
incorrect with probability 1− pj .

In the current paper, we work under a set of assumptions
that allow us to focus on a certain set of problems that arise
when labeling using multiple noisy labelers. First, we assume
that Pr(yij = yi|xi) = Pr(yij = yi) = pj , that is, individual
labeling quality is independent of the specific data point being
labeled. We sidestep the issue of knowing pj : the techniques we
present do not rely on this knowledge. Inferring pj accurately
should lead to improved techniques; Dawid and Skene [6] and
Smyth et al. [26, 28] have shown how to use an expectation-
maximization framework for estimating the quality of labelers
when all labelers label all available examples. It seems likely
that this work can be adapted to work in a more general
setting, and applied to repeated-labeling. We also assume
for simplicity that each labeler j only gives one label, but
that is not a restrictive assumption in what follows. We
further discuss limitations and directions for future research
in Section 5.

3.2 Majority Voting and Label Quality
To investigate the relationship between labeler quality, num-

ber of labels, and the overall quality of labeling using multiple
labelers, we start by considering the case where for induction
each repeatedly-labeled example is assigned a single “inte-
grated” label ŷi, inferred from the individual yij ’s by majority
voting. For simplicity, and to avoid having to break ties, we
assume that we always obtain an odd number of labels. The
quality qi = Pr(ŷi = yi) of the integrated label ŷi will be
called the integrated quality. Where no confusion will arise,
we will omit the subscript i for brevity and clarity.

3.2.1 Uniform Labeler Quality
We first consider the case where all labelers exhibit the same

quality, that is, pj = p for all j (we will relax this assumption
later). Using 2N + 1 labelers with uniform quality p, the
integrated labeling quality q is:

q = Pr(ŷ = y) =

N∑
i=0

(
2N + 1

i

)
· p2N+1−i · (1− p)i (1)

which is the sum of the probabilities that we have more correct
labels than incorrect (the index i corresponds to the number
of incorrect labels).

Not surprisingly, from the formula above, we can infer that
the integrated quality q is greater than p only when p > 0.5.
When p < 0.5, we have an adversarial setting where q < p,
and, not surprisingly, the quality decreases as we increase the
number of labelers.

Figure 2 demonstrates the analytical relationship between
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Figure 2: The relationship between integrated label-
ing quality, individual quality, and the number of la-
belers.
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Figure 3: Improvement in integrated quality com-
pared to single-labeling, as a function of the number
of labelers, for different labeler qualities.

the integrated quality and the number of labelers, for differ-
ent individual labeler qualities. As expected, the integrated
quality improves with larger numbers of labelers, when the
individual labeling quality p > 0.5; however, the marginal
improvement decreases as the number of labelers increases.
Moreover, the benefit of getting more labelers also depends
on the underlying value of p. Figure 3 shows how integrated
quality q increases compared to the case of single-labeling, for
different values of p and for different numbers of labelers. For
example, when p = 0.9, there is little benefit when the number
of labelers increase from 3 to 11. However, when p = 0.7,
going just from single labeling to three labelers increases in-
tegrated quality by about 0.1, which in Figure 1 would yield
a substantial upward shift in the learning curve (from the
q = 0.7 to the q = 0.8 curve); in short, a small amount of
repeated-labeling can have a noticeable effect for moderate
levels of noise.

Therefore, for cost-effective labeling using multiple noisy
labelers we need to consider: (a) the effect of the integrated
quality q on learning, and (b) the number of labelers required
to increase q under different levels of labeler quality p; we will
return to this later, in Section 4.

3.2.2 Different Labeler Quality
If we relax the assumption that pj = p for all j, and allow

labelers to have different qualities, a new question arises:
what is preferable: using multiple labelers or using the best
individual labeler? A full analysis is beyond the scope (and
space limit) of this paper, but let us consider the special case
that we have a group of three labelers, where the middle
labeling quality is p, the lowest one is p− d, and the highest
one is p+ d. In this case, the integrated quality q is:

(p− d) · p · (p+ d) + (p− d) · p · (1− (p+ d))+

(p− d) · (1− p) · (p+ d) + (1− (p− d)) · p · (p+ d) =

−2p3 + 2pd2 + 3p2 − d2



0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.5 0.6 0.7 0.8 0.9 1
Individual labeling quality p

M
ax

im
um

 d

Figure 4: Repeated-labeling improves quality when d
is below the curve (see text).

When is this quantity greater than that of the best labeler
p+ d? We omit the derivation for brevity, but Figure 4 plots
the values of d that satisfy this relationship. If d is below the
curve, using multiple labelers improves quality; otherwise, it
is preferable to use the single highest-quality labeler.

3.3 Uncertainty-preserving Labeling
Majority voting is a simple and straightforward method for

integrating the information from multiple labels, but clearly
with its simplicity comes a potentially serious drawback: in-
formation is lost about label uncertainty. In principle, an
alternative is to move to some form of “soft” labeling, with
the multiset of labels resulting in a probabilistic label for an
example [25]. One concern with soft labeling is that even
in cases where, in principle, modeling techniques should be
able to incorporate soft labeling directly (which would be true
for techniques such as naive Bayes, logistic regression, tree
induction, and beyond), existing software packages do not
accommodate soft labels. Fortunately, we can finesse this.

Consider the following straightforward method for integrat-
ing labels. For each unlabeled example xi, the multiplied
examples (ME) procedure considers the multiset of existing
labels Li = {yij}. ME creates one replica of xi labeled by
each unique label appearing in Li. Then, for each replica,
ME assigns a weight 1/|Li|, where |Li| is the number of oc-
currences of this label in Li. These weighted replicas can be
used in different ways by different learning algorithms, e.g., in
algorithms that take weights directly (such as cost-sensitive
tree [29]), or in techniques like naive Bayes that naturally incor-
porate uncertain labels. Moreover, any importance-weighted
classification problem can be reduced to a uniform-weighted
classification problem [35], often performing better than hand-
crafted weighted-classification algorithms.

4. REPEATED-LABELING AND MODELING
The previous section examined when repeated-labeling can

improve quality. We now consider when repeated-labeling
should be chosen for modeling. What is the relationship
to label quality? (Since we see that for p = 1.0 and p =
0.5, repeated-labeling adds no value.) How cheap (relatively
speaking) does labeling have to be? For a given cost setting, is
repeated-labeling much better or only marginally better? Can
selectively choosing data points to label improve performance?

4.1 Experimental Setup
Practically speaking, the answers to these questions rely on

the conditional distributions being modeled, and so we shift to
an empirical analysis based on experiments with benchmark
data sets.

To investigate the questions above, we present experiments
on 12 real-world datasets from [2] and [36]. These datasets
were chosen because they are classification problems with a
moderate number of examples, allowing the development of

Data Set #Attributes #Examples Pos Neg

bmg 41 2417 547 1840
expedia 41 3125 417 2708
kr-vs-kp 37 3196 1669 1527

mushroom 22 8124 4208 3916
qvc 41 2152 386 1766
sick 30 3772 231 3541

spambase 58 4601 1813 2788
splice 61 3190 1535 1655

thyroid 30 3772 291 3481
tic-tac-toe 10 958 332 626
travelocity 42 8598 1842 6756
waveform 41 5000 1692 3308

Table 1: The 12 datasets used in the experiments:
the numbers of attributes and examples in each, and
the split into positive and negative examples.

learning curves based on a large numbers of individual experi-
ments. The datasets are described in Table 1. If necessary,
we convert the target to binary (for thyroid we keep the nega-
tive class and integrate the other three classes into positive;
for splice, we integrate classes IE and EI; for waveform, we
integrate class 1 and 2.)

For each dataset, 30% of the examples are held out, in
every run, as the test set from which we calculate general-
ization performance. The rest is the “pool” from which we
acquire unlabeled and labeled examples. To simulate noisy
label acquisition, we first hide the labels of all examples for
each dataset. At the point in an experiment when a label is
acquired, we generate a label according to the labeler quality
p: we assign the example’s original label with probability p
and the opposite value with probability 1− p.

After obtaining the labels, we add them to the training
set to induce a classifier. For the results presented, models
are induced with J48, the implementation of C4.5 [21] in
WEKA [34]. The classifier is evaluated on the test set (with
the true labels). Each experiment is repeated 10 times with
a different random data partition, and average results are
reported.

4.2 Generalized Round-robin Strategies
We first study the setting where we have the choice of either:

• acquiring a new training example for cost CU +CL, (CU
for the unlabeled portion, and CL for the label), or

• get another label for an existing example for cost CL.

We assume for this section that examples are selected from the
unlabeled pool at random and that repeated-labeling selects
examples to re-label in a generalized round-robin fashion:
specifically, given a set L of to-be-labeled examples (a subset
of the entire set of examples) the next label goes to the example
in L with the fewest labels, with ties broken according to some
rule (in our case, by cycling through a fixed order).

4.2.1 Round-robin Strategies, CU � CL

When CU � CL, then CU + CL u CL and intuitively it
may seem that the additional information on the conditional
label distribution brought by an additional whole training
example, even with a noisy label, would outweigh the cost-
equivalent benefit of a single new label. However, Figure 1
suggests otherwise, especially when considered together with
the quality improvements illustrated in Figure 3.

Figure 5 shows the generalization performance of repeated-
labeling with majority vote (MV ) compared to that of single
labeling (SL), as a function of the number of labels acquired
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Figure 5: Comparing the increase in accuracy for the
mushroom data set as a function of the number of
labels acquired, when the cost of an unlabeled exam-
ple is negligible, i.e., CU = 0. Repeated-labeling with
majority vote (MV ) starts with an existing set of ex-
amples and only acquires additional labels for them,
and single labeling (SL) acquires additional examples.
Other data sets show similar results.

for a fixed labeler quality. Both MV and SL start with the
same number of single-labeled examples. Then, MV starts
acquiring additional labels only for the existing examples,
while SL acquires new examples and labels them.

Generally, whether to invest in another whole training exam-
ple or another label depends on the gradient of generalization
performance as a function of obtaining another label or a
new example. We will return to this when we discuss future
work, but for illustration, Figure 5 shows scenarios for our
example problem, where each strategy is preferable to the
other. From Figure 1 we see that for p = 0.6, and with 100
examples, there is a lot of headroom for repeated-labeling to
improve generalization performance by improving the overall
labeling quality. Figure 5(a) indeed shows that for p = 0.6,
repeated-labeling does improve generalization performance
(per label) as compared to single-labeling new examples. On
the other hand, for high initial quality or steep sections of the
learning curve, repeated-labeling may not compete with sin-
gle labeling. Figure 5(b) shows that single labeling performs
better than repeated-labeling when we have a fixed set of 50
training examples with labeling quality p = 0.8. Particularly,
repeated-labeling could not further improve its performance
after acquiring a certain amount of labels (cf., the q = 1 curve
in Figure 1).

The results for other datasets are similar to Figure 5: un-
der noisy labels, and with CU � CL, round-robin repeated-
labeling can perform better than single-labeling when there
are enough training examples, i.e., after the learning curves
are not so steep (cf., Figure 1).

4.2.2 Round-robin Strategies, General Costs
We illustrated above that repeated-labeling is a viable alter-

native to single-labeling, even when the cost of acquiring the
“feature” part of an example is negligible compared to the cost
of label acquisition. However, as described in the introduction,
often the cost of (noisy) label acquisition CL is low compared
to the cost CU of acquiring an unlabeled example. In this
case, clearly repeated-labeling should be considered: using
multiple labels can shift the learning curve up significantly.
To compare any two strategies on equal footing, we calcu-
late generalization performance “per unit cost” of acquired
data; we then compare the different strategies for combining
multiple labels, under different individual labeling qualities.

We start by defining the data acquisition cost CD:

CD = CU · Tr + CL ·NL (2)

to be the sum of the cost of acquiring Tr unlabeled examples
(CU · Tr), plus the cost of acquiring the associated NL labels
(CL · NL). For single labeling we have NL = Tr, but for
repeated-labeling NL > Tr.

We extend the setting of Section 4.2.1 slightly: repeated-
labeling now acquires and labels new examples; single label-
ing SL is unchanged. Repeated-labeling again is generalized
round-robin: for each new example acquired, repeated-labeling
acquires a fixed number of labels k, and in this case NL = k·Tr.
(In our experiments, k = 5.) Thus, for round-robin repeated-
labeling, in these experiments the cost setting can be de-
scribed compactly by the cost ratio ρ = CU

CL
, and in this case

CD = ρ · CL · Tr + k · CL · Tr, i.e.,

CD ∝ ρ+ k (3)

We examine two versions of repeated-labeling, repeated-labeling
with majority voting (MV ) and uncertainty-preserving repeated-
labeling (ME), where we generate multiple examples with dif-
ferent weights to preserve the uncertainty of the label multiset
as described in Section 3.3.

Performance of different labeling strategies: Figure 6
plots the generalization accuracy of the models as a function of
data acquisition cost. Here ρ = 3, and we see very clearly that
for p = 0.6 both versions of repeated-labeling are preferable to
single labeling. MV and ME outperform SL consistently (on
all but waveform, where MV ties with SL) and, interestingly,
the comparative performance of repeated-labeling tends to
increase as one spends more on labeling.

Figure 7 shows the effect of the cost ratio ρ, plotting the
average improvement per unit cost of MV over SL as a function
of ρ. Specifically, for each data set the vertical differences
between the curves are averaged across all costs, and then
these are averaged across all data sets. The figure shows that
the general phenomenon illustrated in Figure 6 is not tied
closely to the specific choice of ρ = 3.

Furthermore, from the results in Figure 6, we can see that
the uncertainty-preserving repeated-labeling ME always per-
forms at least as well as MV and in the majority of the cases
ME outperforms MV. This is not apparent in all graphs, since
Figure 6 only shows the beginning part of the learning curves
for MV and ME (because for a given cost, SL uses up training
examples quicker than MV and ME). However, as the number
of training examples increases further, then (for p = 0.6) ME
outperforms MV. For example, Figure 8 illustrates for the
splice dataset, comparing the two techniques for a larger range
of costs.

In other results (not shown) we see that when labeling qual-
ity is substantially higher (e.g., p = 0.8), repeated-labeling still
is increasingly preferable to single labeling as ρ increases; how-
ever, we no longer see an advantage for ME over MV. These
results suggest that when labeler quality is low, inductive
modeling often can benefit from the explicit representation
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Figure 6: Increase in model accuracy as a function
of data acquisition cost for the 12 datasets; (p = 0.6,
ρ = 3, k = 5). SL is single labeling; MV is repeated-
labeling with majority voting, and ME is uncertainty-
preserving repeated-labeling.

of the uncertainty incorporated in the multiset of labels for
each example. When labeler quality is relatively higher, this
additional information apparently is superfluous, and straight
majority voting is sufficient.

4.3 Selective Repeated-Labeling
The final questions this paper examines are (1) whether se-

lective allocation of labeling resources can further improve per-
formance, and (2) if so, how should the examples be selected.
For example, intuitively it would seem better to augment the
label multiset {+,−,+} than to augment {+,+,+,+,+}.

4.3.1 What Not To Do
The example above suggests a straightforward procedure for

selective repeated-labeling: acquire additional labels for those
examples where the current multiset of labels is impure. Two
natural measures of purity are (i) the entropy of the multiset
of labels, and (ii) how close the frequency of the majority
label is to the decision threshold (here, 0.5). These two
measures rank the examples the same. Unfortunately, there
is a clear problem: under noise these measures do not really
measure the uncertainty in the estimation of the class label.
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Figure 7: The average improvement per unit cost
of repeated-labeling with majority voting (MV ) over
single labeling (SL).
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Figure 8: The learning curves of MV and ME with
p = 0.6, ρ = 3, k = 5, using the splice dataset.

For example, {+,+,+} is perfectly pure, but the true class
is not certain (e.g., with p = 0.6 one is not 95% confident of
the true label). Applying a small-sample shrinkage correction
(e.g., Laplace) to the probabilities is not sufficient. Figure 9
demonstrates how labeling quality increases as a function of
assigned labels, using the (Laplace-corrected) entropy-based
estimation of uncertainty (ENTROPY). For small amounts
of repeated-labeling the technique does indeed select useful
examples to label, but the fact that the estimates are not
true estimates of uncertainty hurts the procedure in the long
run—generalized round-robin repeated-labeling (GRR) from
Section 4.2 outperforms the entropy-based approach. This
happens because most of the labeling resources are wasted,
with the procedure labeling a small set of examples very many
times. Note that with a high noise level, the long-run label
mixture will be quite impure, even though the true class of
the example may be quite certain (e.g., consider the case of
600 positive labels and 400 negative labels with p = 0.6).
More-pure, but incorrect, label multisets are never revisited.

4.3.2 Estimating Label Uncertainty
For a given multiset of labels, we compute a Bayesian

estimate of the uncertainty in the class of the example. Specif-
ically, we would like to estimate our uncertainty that the true
class y of the example is the majority class ym of the multiset.
Consider a Bayesian estimation of the probability that ym
is incorrect. Here we do not assume that we know (or have
estimated well) the labeler quality,6 and so we presume the
prior distribution over the true label (quality) p(y) to be uni-
form in the [0, 1] interval. Thus, after observing Lpos positive
labels and Lneg negative labels, the posterior probability p(y)
follows a Beta distribution B(Lpos + 1, Lneg + 1) [9].

We compute the level of uncertainty as the tail probability
below the labeling decision threshold. Formally, the uncer-
tainty is equal to the CDF at the decision threshold of the Beta
distribution, which is given by the regularized incomplete beta

function Ix(α, β) =
∑α+β−1
j=a

(α+β−1)!
j!(α+β−1−j)!x

j(1 − x)α+β−1−j .

In our case, the decision threshold is x = 0.5, and α =

6
Doing so may improve the results presented below.
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Figure 10: The data quality improvement of the four
strategies (GRR, LU, MU, and LMU ) for the wave-
form dataset.

Lpos + 1, β = Lneg + 1. Thus, we set:

SLU = min{I0.5(Lpos, Lneg), 1− I0.5(Lpos, Lneg)} (4)

We compare selective repeated-labeling based on SLU to
round-robin repeated-labeling (GRR), which we showed to per-
form well in Section 4.2. To compare repeated-labeling strate-
gies, we followed the experimental procedure of Section 4.2,
with the following modification. Since we are asking whether
label uncertainty can help with the selection of examples for
which to obtain additional labels, each training example starts
with three initial labels. Then, each repeated-labeling strategy
iteratively selects examples for which it acquires additional
labels (two at a time in these experiments).

Comparing selective repeated-labeling using SLU (call that
LU ) to GRR, we observed similar patterns across all twelve
data sets; therefore we only show the results for the wave-
form dataset (Figure 10; ignore the MU and LMU lines for
now, we discuss these techniques in the next section), which
are representative. The results indicate that LU performs
substantially better than GRR, identifying the examples for
which repeated-labeling is more likely to improve quality.

4.3.3 Using Model Uncertainty
A different perspective on the certainty of an example’s

label can be borrowed from active learning. If a predictive

Data Set GRR MU LU LMU

bmg 62.97 71.90 64.82 68.93
expedia 80.61 84.72 81.72 85.01
kr-vs-kp 76.75 76.71 81.25 82.55

mushroom 89.07 94.17 92.56 95.52
qvc 64.67 76.12 66.88 74.54
sick 88.50 93.72 91.06 93.75

spambase 72.79 79.52 77.04 80.69
splice 69.76 68.16 73.23 73.06

thyroid 89.54 93.59 92.12 93.97
tic-tac-toe 59.59 62.87 61.96 62.91
travelocity 64.29 73.94 67.18 72.31
waveform 65.34 69.88 66.36 70.24

average 73.65 78.77 76.35 79.46

Table 2: Average accuracies of the four strategies
over the 12 datasets, for p = 0.6. For each dataset,
the best performance is in boldface and the worst in
italics.

model has high confidence in the label of an example, perhaps
we should expend our repeated-labeling resources elsewhere.

• Model Uncertainty (MU) applies traditional active
learning scoring, ignoring the current multiset of la-
bels. Specifically, for the experiments below the model-
uncertainty score is based on learning a set of models,
each of which predicts the probability of class member-
ship, yielding the uncertainty score:

SMU = 0.5−

∣∣∣∣∣ 1

m

m∑
i=1

Pr(+|x,Hi)− 0.5

∣∣∣∣∣ (5)

where Pr(+|x,Hi) is the probability of classifying the
example x into + by the learned model Hi, and m is the
number of learned models. In our experiments, m = 10,
and the model set is a random forest [4] (generated by
WEKA).

Of course, by ignoring the label set, MU has the comple-
mentary problem to LU : even if the model is uncertain about
a case, should we acquire more labels if the existing label
multiset is very certain about the example’s class? The invest-
ment in these labels would be wasted, since they would have
a small effect on either the integrated labels or the learning.

• Label and Model Uncertainty (LMU) combines
the two uncertainty scores to avoid examples where
either model is certain. This is done by computing the
score SLMU as the geometric average of SLU and SMU .
That is:

SLMU =
√
SMU · SLU (6)

Figure 10 demonstrates the improvement in data quality
when using model information. We can observe that the LMU
model strongly dominates all other strategies. In high-noise
settings (p = 0.6) MU also performs well compared to GRR
and LU, indicating that when noise is high, using learned
models helps to focus the investment in improving quality. In
settings with low noise (p = 0.8), LMU continues to dominate,
but MU no longer outperforms LU and GRR.

4.3.4 Model Performance with Selective ML
So, finally, let us assess whether selective repeated-labeling

accelerates learning (i.e., improves model generalization per-
formance, in addition to data quality). Again, experiments
are conducted as described above, except here we compute
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Figure 11: Accuracy as a function of the number of la-
bels acquired for the four selective repeated-labeling
strategies for the 12 datasets (p = 0.6).

generalization accuracy averaged over the held-out test sets
(as described in Section 4.1). The results (Figure 11) show
that the improvements in data quality indeed do accelerate
learning. (We report values for p = 0.6, a high-noise setting
that can occur in real-life training data.7) Table 2 summarizes
the results of the experiments, reporting accuracies averaged
across the acquisition iterations for each data set, with the
maximum accuracy across all the strategies highlighted in
bold, the minimum accuracy italicized, and the grand aver-
ages reported at the bottom of the columns.

The results are satisfying. The two methods that incorpo-
rate label uncertainty (LU and LMU ) are consistently better
than round-robin repeated-labeling, achieving higher accu-
racy for every data set. (Recall that in the previous section,
round-robin repeated-labeling was shown to be substantially
better than the baseline single labeling in this setting.) The
performance of model uncertainty alone (MU ), which can be
viewed as the active learning baseline, is more variable: in
three cases giving the best accuracy, but in other cases not

7
From [20]: “No two experts, of the 5 experts surveyed, agreed upon

diagnoses more than 65% of the time. This might be evidence for
the differences that exist between sites, as the experts surveyed had
gained their expertise at different locations. If not, however, it raises
questions about the correctness of the expert data.”

even reaching the accuracy of round-robin repeated-labeling.
Overall, combining label and model uncertainty (LMU ) is
the best approach: in these experiments LMU always out-
performs round-robin repeated-labeling, and as hypothesized,
generally it is better than the strategies based on only one
type of uncertainty (in each case, statistically significant by a
one-tailed sign test at p < 0.1 or better).

5. CONCLUSIONS, LIMITATIONS, AND FU-
TURE WORK

Repeated-labeling is a tool that should be considered when-
ever labeling might be noisy, but can be repeated. We showed
that under a wide range of conditions, it can improve both
the quality of the labeled data directly, and the quality of
the models learned from the data. In particular, selective
repeated-labeling seems to be preferable, taking into account
both labeling uncertainty and model uncertainty. Also, when
quality is low, preserving the uncertainty in the label multisets
for learning [25] can give considerable added value.

Our focus in this paper has been on improving data quality
for supervised learning; however, the results have implica-
tions for data mining generally. We showed that selective
repeated-labeling improves the data quality directly and sub-
stantially. Presumably, this could be helpful for many data
mining applications.

This paper makes important assumptions that should be
visited in future work, in order for us to understand practical
repeated-labeling and realize its full benefits.

• For most of the work we assumed that all the labelers
have the same quality p and that we do not know p. As
we showed briefly in Section 3.2.2, differing qualities com-
plicates the picture. On the other hand, good estimates
of individual labelers’ qualities inferred by observing the
assigned labels [6, 26, 28] could allow more sophisticated
selective repeated-labeling strategies.

• Intuitively, we might also expect that labelers would
exhibit higher quality in exchange for a higher payment.
It would be interesting to observe empirically how indi-
vidual labeler quality varies as we vary CU and CL, and
to build models that dynamically increase or decrease
the amounts paid to the labelers, depending on the qual-
ity requirements of the task. Morrison and Cohen [18]
determine the optimal amount to pay for noisy infor-
mation in a decision-making context, where the amount
paid affects the level of noise.

• In our experiments, we introduced noise to existing,
benchmark datasets. Future experiments, that use real
labelers (e.g., using Mechanical Turk) should give a
better understanding on how to better use repeated-
labeling strategies in a practical setting. For example,
in practice we expect labelers to exhibit different levels
of noise and to have correlated errors; moreover, there
may not be sufficiently many labelers to achieve very
high confidence for any particular example.

• In our analyses we also assumed that the difficulty of la-
beling an example is constant across examples. In reality,
some examples are more difficult to label than others and
building a selective repeated-labeling framework that ex-
plicitly acknowledges this, and directs resources to more
difficult examples, is an important direction for future
work. We have not yet explored to what extent tech-
niques like LMU (which are agnostic to the difficulty of



labeling) would deal naturally with example-conditional
qualities.

• We also assumed that CL and CU are fixed and indivisi-
ble. Clearly there are domains where CL and CU would
differ for different examples, and could even be broken
down into different acquisition costs for different features.
Thus, repeated-labeling may have to be considered in
tandem with costly feature-value acquisition. Indeed,
feature-value acquisition may be noisy as well, so one
could envision a generalized repeated-labeling problem
that includes both costly, noisy feature acquisition and
label acquisition.

• In this paper, we consider the labeling process to be a
noisy process over a true label. An alternative, practi-
cally relevant setting is where the label assignment to a
case is inherently uncertain. This is a separate setting
where repeated-labeling could provide benefits, but we
leave it for future analysis.

• In our repeated-labeling strategy we compared repeated-
labeling vs. single labeling, and did not consider any
hybrid scheme that can combine the two strategies. A
promising direction for future research is to build a
“learning curve gradient”-based approach that decides
dynamically which action will give the highest marginal
accuracy benefit for the cost. Such an algorithm would
compare on-the-fly the expected benefit of acquiring new
examples versus selectively repeated-labeling existing,
noisy examples and/or features.

Despite these limitations, we hope that this study provides a
solid foundation on which future work can build. Furthermore,
we believe that both the analyses and the techniques intro-
duced can have immediate, beneficial practical application.
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