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Abstract

Tree induction and logistic regression are two standard, off-the-shelf methods for building
models for classification. We present a large-scale experimental comparison of logistic regression
and tree induction, assessing classification accuracy and the quality of rankings based on class-
membership probabilities. We use a learning-curve analysis to examine the relationship of these
measures to the size of the training set. The results of the study show several things. (1) Contrary
to some prior observations, logistic regression does not generally outperform tree induction. (2)
More specifically, and not surprisingly, logistic regression is better for smaller training sets and tree
induction for larger data sets. Importantly, this often holds for training sets drawn from the same
domain (that is, the learning curves cross), so conclusions about induction-algorithm superiority on
a given domain must be based on an analysis of the learning curves. (3) Contrary to conventional
wisdom, tree induction is effective at producing probability-based rankings, although apparently
comparatively less so for a given training-set size than at making classifications. Finally, (4) the
domains on which tree induction and logistic regression are ultimately preferable can be character-
ized surprisingly well by a simple measure of the separability of signal from noise.

Keywords: decision trees, learning curves, logistic regression, ROC analysis, tree induction

1. Introduction

In this paper1 we compare two popular approaches for learning binary classification models. We
combine a large-scale experimental comparison with an examination of learning curves2 to assess
the algorithms’ relative performance. The average data-set size is larger than is usual in machine-
learning research, and we see behavioral characteristics that would be overlooked when comparing
algorithms only on smaller data sets (such as most in the UCI repository; see Blake and Merz, 2000).

More specifically, we examine several dozen large, two-class data sets, ranging from roughly
one thousand examples to two million examples. We assess performance based on classification
accuracy, and based on the area under the ROC curve (which measures the ability of a classification

1. A previous version of this paper appeared as: Perlich, C., F. Provost, and J.S. Simonoff, 2001. “Tree Induction vs.
Logistic Regression: A Learning-curve Analysis.” CeDER Working Paper IS-01-02, Stern School of Business, New
York University, NY, NY 10012.

2. As we describe in detail, learning curves compare the generalization performance (for example, classification accu-
racy) obtained by an induction algorithm as a function of training-set size.

c©2003 Claudia Perlich, Foster Provost and Jeffrey S. Simonoff.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at New York University

https://core.ac.uk/display/162460448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PERLICH, PROVOST AND SIMONOFF

model to score cases by likelihood of class membership). We compare two basic algorithm types
(logistic regression and tree induction), including variants that attempt to address the algorithms’
shortcomings.

We selected these particular algorithms for several reasons. First, they are popular with data ana-
lysts, machine learning researchers, and statisticians (logistic regression also with econometricians).
Second, they all can produce class-probability estimates. Third, they typically are competitive off
the shelf (they usually perform relatively well with no parameter tuning). In fact, logistic regres-
sion has been shown to be extremely competitive with other learning methods (Lim, Loh, and Shih,
2000), as we discuss in detail. Off-the-shelf methods are especially useful for non-experts, and also
can be used reliably as learning components in larger systems. For example, a Bayesian network
learner has a different probability learning subtask at each node; manual parameter tuning for each
is infeasible, so automatic (push-button) techniques typically are used (Friedman and Goldszmidt,
1996).

Until recently few machine learning research papers considered logistic regression in compara-
tive studies. C4.5 (Quinlan, 1993) has been the typical benchmark learning algorithm. However, the
study by Lim, Loh, and Shih (2000) shows that on UCI data sets, logistic regression beats C4.5 in
terms of classification accuracy. We investigate this phenomenon carefully, and our results suggest
that this is due, at least in part, to the small size of the UCI data sets. When applied to larger data
sets, learning methods based on C4.5 often are more accurate.

Our investigation has three related goals.

1. To compare the broad classes of tree induction and logistic regression. The literature contains
various anecdotal and small-scale comparisons of these two approaches, but no systematic
investigation that includes several very large data sets. We also compare, on the same footing
and on large data sets, different variants of these two families, including Laplace “smoothing”
of probability estimation trees, model selection applied to logistic regression, biased (“ridge”)
logistic regression, and bagging applied to both methods.

2. To assess whether tree induction can be competitive for producing rankings of cases based on
the estimated probability of class membership.

3. To compare the learning curves of the different algorithms, in order to explore the relationship
between training-set size and induction algorithm. Learning curves allow us to see patterns
(when they exist) that depend on training-set size and that are common across different data
sets.

We draw several conclusions from the learning-curve analysis.

• Not surprisingly, logistic regression performs better for smaller data sets and tree induction
performs better for larger data sets.

• This relationship holds (often) even for data sets drawn from the same domain—that is, the
learning curves cross. Therefore, drawing conclusions about one algorithm being better than
anotherfor a particular domainis questionable without an examination of the learning curves.
This can call into question several common practices, including using cross-validation or
hold-out testing to choose the “more accurate” learning algorithm for a data set. (The crossing
of learning curves implies that the bias of the cross-validation estimates (Kohavi, 1995) will
be different for the different models.)
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• Tree-based probability estimation models often outperform logistic regression for producing
probability-based rankings, especially for larger data sets.

• The data sets for which each class of algorithm performs better can be characterized (remark-
ably consistently) by a measure of the difficulty of separating signal from noise.

The rest of the paper is structured as follows. First we give some background information for
context. We then describe the basic experimental setup, including the data sets that we use, the
evaluation metrics, the method of learning curve analysis, and the particular implementations of the
learning algorithms. Next we present the results of two sets of experiments, done individually on
the two classes of algorithms, to assess the sensitivity of performance to the algorithm variants (and
therefore the necessity of these variants). We use this analysis to select a subset of the methods
for the final analysis. We then present the final analysis, comparing across the algorithm families,
across different data sets, and across different training-set sizes.

The upshot of the analysis is that there seem to be clear conditions under which each type of
algorithm is preferable. Tree induction is preferable for larger training-set sizes for which the classes
can be separated well. Logistic regression is preferable for smaller training-set sizes and where the
classes cannot be separated well (we discuss the notion of separability in detail below). We were
surprised that the relationship is so clear, given that we do not know of its having been reported
previously in the literature. However, it fits well with basic knowledge (and our assumptions) about
tree induction and logistic regression. We discuss this and further implications at the close of the
paper.

2. Background

The machine learning literature contains many studies comparing the performance of different in-
ductive algorithms, or algorithm variants, on various benchmark data sets. The purpose of these
studies typically is (1) to investigate which algorithms are better generally, or (2) to demonstrate
that a particular modification to an algorithm improves its performance. For example, Lim, Loh,
and Shih (2000) present a comprehensive study of this sort, showing the differences in accuracy,
running time, and model complexity of several dozen algorithms on several dozen data sets.

Papers such as this seldom consider carefully the size of the data sets to which the algorithms
are being applied. Does the relative performance of the different learning methods depend on the
size of the data set?

More than a decade ago in machine learning research, the examination of learning curves was
commonplace (see, for example, Kibler and Langley, 1988), but usually on single data sets (notable
exceptions being the study by Shavlik, Mooney, and Towell, 1991, and the work of Catlett, 1991).
Now learning curves are presented only rarely in comparisons of learning algorithms.3

The few cases that exist draw conflicting conclusions, with respect to our goals. Domingos and
Pazzani (1997) compare classification-accuracy learning curves of naive Bayes and the C4.5RULES

rule learner (Quinlan, 1993). On synthetic data, they show that naive Bayes performs better for
smaller training sets and C4.5RULES performs better for larger training sets (the learning curves
cross). They discuss that this can be explained by considering the different bias/variance profiles

3. Learning curves also are found in the statistical literature (Flury and Schmid, 1994) and in the neural network litera-
ture (Cortes et al., 1994). They have been analyzed theoretically, using statistical mechanics (Watkin, Rau, and Biehl,
1993; Haussler, Kearns, Seung, and Tishby, 1996).
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of the algorithms for classification (zero/one loss). Roughly speaking,4 variance plays a more crit-
ical role than estimation bias when considering classification accuracy. For smaller data sets, naive
Bayes has a substantial advantage over tree or rule induction in terms of variance. They show that
this is the case even when (by their construction) the rule learning algorithm has no bias. As ex-
pected, as larger training sets reduce variance, C4.5RULES approaches perfect classification. Brain
and Webb (1999) perform a similar bias/variance analysis of C4.5 and naive Bayes. They do not
examine whether the curves cross, but do show on four UCI data sets that variance is reduced con-
sistently with more data, but bias is not. These results do not directly examine logistic regression,
but the bias/variance arguments do apply: logistic regression, a linear model, should have higher
bias but lower variance than tree induction. Therefore, one would expect that their learning curves
might cross.

However, the results of Domingos and Pazzani were generated from synthetic data where the
rule learner had no bias. Would we see such behavior on real-world domains? Kohavi (1996) shows
classification-accuracy learning curves of tree induction (using C4.5) and of naive Bayes for nine
UCI data sets. With only one exception, either naive Bayes or tree induction dominates (that is, the
performance of one or the other is superior consistently for all training-set sizes). Furthermore, by
examining the curves, Kohavi concludes that “In most cases, it is clear that even with much more
data, the learning curves will not cross” (pp. 203–204).

We are aware of only one learning-curve analysis that compares logistic regression and tree
induction. Harris–Jones and Haines (1997) compare them on two business data sets, one real and
one synthetic. For these data the learning curves cross, suggesting (as they observe) that logistic
regression is preferable for smaller data sets and tree induction for larger data sets. Our results
generally support this conclusion.

3. Experimental Setup

As mentioned above, the fundamental analytical tool that we use is the learning curve. Learning
curves represent the generalization performance of the models produced by a learning algorithm, as
a function of the size of the training set. Figure 1 shows two typical learning curves. For smaller
training-set sizes the curves are steep, but the increase in accuracy lessens for larger training-set
sizes. Often for very large training-set sizes this standard representation obscures small, but non-
trivial, gains. Therefore to visualize the curves we use two transformations. First we use a log scale
on the horizontal axis. Second, we start the graph at the accuracy of the smallest training-set size
(rather than at zero). The transformation of the learning curves in Figure 1 is shown in Figure 2.

We produce learning curves for variants of tree induction and logistic regression based on 36
data sets. We now describe these data sets, the measures of accuracy we use (for the vertical axes
of the learning curve plots), the technical details of how learning curves are produced, and the
implementations of the learning algorithms and variants.

3.1 Data Sets

We selected 36 data sets representing binary classification tasks. In order to get learning curves
of a reasonable length, each data set was required to have at least 700 observations. To this end,
we chose many of the larger data sets from the UCI data repository (Blake and Merz, 2000) and

4. Please see the detailed treatment of statistical bias and variance for zero/one loss by Friedman (1997).
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Figure 1: Typical learning curves
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Figure 2: Log-scale learning curves
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from other learning repositories. We selected data drawn from real domains and avoided synthetic
data. The rest were obtained from practitioners with real classification tasks with large data sets.
Appendix B gives source details for all of the data sets.

We only considered tasks of binary classification, which facilitates the use of logistic regression
and allows us to compute the area under the ROC curve, described below, which we rely on heavily
in the analysis. Some of the two-class data sets are constructed from data sets originally having more
classes. For example, the Letter-A data set and the Letter-V data set are constructed by taking the
UCI letter data set, and using as the positive class instances of the letter “a” or instances of vowels,
respectively. Finally, because of problems encountered with some of the learning programs, and the
arbitrariness of workarounds, we avoided missing data for numerical variables. If missing values
occurred in nominal values we coded them explicitly C4.5 has a special facility to deal with missing
values, coded as “?”. In order to keep logistic regression and tree induction comparable, we chose
a different code and modeled missing values explicitly as a nominal value. Only two data sets
contained missing numerical data (Downsize and Firm Reputation). In those cases we excluded
rows or imputed the missing value using the mean for the other variable values in the record. For a
more detailed explanation see Appendix B.

Table 1 shows the specification of the 36 data sets used in this study, including the maximum
training size, the number of variables, the number of nominal variables, the total number of param-
eters (1 for a continuous variable, number of nominal values minus one for each nominal variable),
and the base rate (“prior”) of the more prevalent class (in the training set).

3.2 Evaluation Metrics

We compare performance using two evaluation metrics. First, we use classification accuracy (equiv-
alently, undifferentiated error rate): the number of correct predictions on the test data divided by
the number of test data instances. This has been the standard comparison metric used in studies of
classifier induction in the machine learning literature.

Classification accuracy obviously is not an appropriate evaluation criterion for all classification
tasks (Provost, Fawcett, and Kohavi, 1998). For this work we also want to evaluate and compare
different methods with respect to their estimates of class probabilities. One alternative to classifi-
cation accuracy is to use ROC (Receiver Operating Characteristic) analysis (Swets, 1988), which
compares visually the classifiers’ performance across the entire range of probabilities. For a given
binary classifier that produces a score indicating likelihood of class membership, its ROC curve de-
picts all possible tradeoffs between true-positive rate (TP) and false-positive rate (FP). Specifically,
any classification threshold on the score will classify correctly an expected percentage of truly pos-
itive cases as being positive (TP) and will classify incorrectly an expected percentage of negative
examples as being positive (FP). The ROC curve plots the observedTP versusFP for all possible
classification thresholds. Provost and Fawcett (Provost and Fawcett, 1997, 2001) describe how pre-
cise, objective comparisons can be made with ROC analysis. However, for the purpose of this study,
we want to evaluate the class probability estimates generally rather than under specific conditions
or under ranges of conditions. In particular, we concentrate on how well the probability estimates
can rank cases by their likelihood of class membership. There are many applications where such
ranking is more appropriate than binary classification.

Knowing nothing about the task for which they will be used, which probabilities are generally
better for ranking? In the standard machine learning evaluation paradigm, the true class proba-
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Table 1: Data sets

Data set Max Training Variables Nominal Total Prior
Abalone 2304 8 0 8 0.5
Adult 38400 14 8 105 0.78
Ailerons 9600 12 0 12 0.5
Bacteria 32000 10 8 161 0.69
Bookbinder 3200 10 0 10 0.84
CalHous 15360 10 0 10 0.5
CarEval 1120 6 6 21 0.7
Chess 1600 36 36 36 0.5
Coding 16000 15 15 60 0.5
Connects 8000 29 29 60 0.91
Contra 1120 9 7 24 0.93
Covertype 256000 12 2 54 0.7
Credit 480 15 8 35 0.5
Diabetes 320 8 0 8 0.65
DNA 2400 180 180 180 0.5
Downsize 800 15 0 15 0.75
Firm 12000 20 0 20 0.81
German 800 20 17 54 0.7
IntCensor 16000 12 7 50 0.58
IntPrivacy 10900 15 15 78 0.62
IntShopping 12800 15 15 78 0.6
Insurance 6400 80 2 140 0.83
Intrusion 256000 40 6 51 0.8
Letter–A 16000 16 0 16 0.96
Letter–V 16000 16 0 16 0.8
Mailing 160000 9 4 16 0.94
Move 2400 10 10 70 0.5
Mushroom 6400 22 22 105 0.5
Nurse 10240 8 8 23 0.66
Optdigit 4800 64 0 64 0.9
Pageblock 4480 10 0 10 0.9
Patent 1200000 6 2 447 0.57
Pendigit 10240 16 0 16 0.9
Spam 3500 57 0 57 0.6
Telecom 12800 49 0 49 0.62
Yeast 1280 8 0 8 0.7
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bility distributions are not known. Instead, a set of instances is available, labeled with the true
class, and comparisons are based on estimates of performance from these data. The Wilcoxon(-
Mann-Whitney) nonparametric test statistic is appropriate for this comparison (Hand, 1997). The
Wilcoxon measures, for a particular classifier, the probability that a randomly chosen class-0 case
will be assigned a higher class-0 probability than a randomly chosen class-1 case. Therefore higher
Wilcoxon score indicates that the probability ranking is generally better. Note that this evaluation
side-steps the question of whether the probabilities are well calibrated.5

Another metric for comparing classifiers across a wide range of conditions is the area under
the ROC curve (AUR) (Bradley, 1997); AUR measures the quality of an estimator’s classification
performance, averaged across all possible probability thresholds. The AUR is equivalent to the
Wilcoxon statistic (Hanley and McNeil, 1982), and is also essentially equivalent to the Gini coeffi-
cient (Hand, 1997). Therefore, for this work we report the AUR when comparing class probability
estimation.

It is important to note that AUR judges the relative quality of the entire probability-based rank-
ing. It may be the case that for a particular threshold (e.g., the top 10 cases) a model with a lower
AUR in fact is desirable.

3.3 Producing Learning Curves

In order to obtain a smooth learning curve with a maximum training sizeNmax and test sizeT we
perform the following steps 10 times and average the resulting curves. The same training and test
sets were used for all of the learning methods.

(1) Draw an initial sampleSall of sizeNmax+T from the original data set. (We chose the test size
T to be between one-quarter and one-third of the original size of the data set.)

(2) Split the setSall randomly into a test setStest of sizeT and keep the remainingNmax observa-
tions as a data poolStrain-sourcefor training samples.

(3) Set the initial training sizeN to approximately 5 times the number of parameters in the logistic
model.

(4) Sample a training setStrain with the current training sizeN from the data poolStrain-source.

(5) Remove all data from the test setStest that have nominal values that did not appear in the
training set. Logistic regression requires the test set to contain only those nominal values that
have been seen previously in the training set. If the training sample did not contain the value
“blue” for the variable color, for example, logistic regression cannot estimate a parameter for
this dummy variable and will produce an error message and stop execution if a test example
with color = “blue” appears. In comparison C4.5 splits the example probabilistically, and
sends weighted (partial) examples to descendent nodes; for details see Quinlan (1993). We
therefore remove all test examples that have new nominal values fromStest and createStest,N

5. An inherently good probability estimator can be skewed systematically, so that although the probabilities are not ac-
curate, they still rank cases equivalently. This would be the case, for example, if the probabilities were squared. Such
an estimator will receive a high Wilcoxon score. A higher Wilcoxon score indicates that, with proper recalibration,
the probabilities of the estimator will be better. Probabilities can be recalibrated empirically, for example as described
by Sobehart et al. (2000) and by Zadrozny and Elkan (2001).
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for this particularN. The amount of data rejected in this process depends on the distribution
of nominal values, and the size of the test set and the current training set. However, we usually
lose less than 10% of our test set.

(6) Train all models on the training setStrain and obtain their predictions for the current test set
Stest,N. Calculate the evaluation criteria for all models.

(7) Repeat steps 3 to 6 for increasing training sizeN up toNmax.

All samples in the outlined procedure are drawn without replacement. After repeating these
steps 10 times we have for each method and for each training-set size 10 observations of each
evaluation criterion. The final learning curves of the algorithms in the plots connect the means of
the 10 evaluation-criterion values for each training-set size. We use the standard deviation of these
values as a measure of the inherent variability of each evaluation criterion across different training
sets of the same size, constructing error bars at each training-set size representing± one standard
deviation. In the evaluation we consider two models as different for a particular training-set size if
the mean for neither falls within the error bars of the other.

We train all models on the same training data in order to reduce variation in the performance
measures due to sampling of the training data. By the same argument we also use the same test set
for all different training-set sizes (for each of the ten learning curves), as this decreases the variance
and thereby increases the smoothness of the learning curve.

3.4 Implementation

In this section we describe the implementations of the learning methods. Appendix A describes tree
induction and logistic regression in detail, including the variants studied below.

3.4.1 TREE INDUCTION

To build classification trees we used C4.5 (Quinlan, 1993) with the default parameter settings. To
obtain probability estimates from these trees we used the frequency scores at the leaves. Our second
algorithm, C4.5-PET (Probability Estimation Tree), uses C4.5 without pruning and estimates the
probabilities as Laplace-corrected frequency scores (Provost and Domingos, 2003). The third algo-
rithm in our comparison, BPET, performs a form of bagging (Breiman, 1996) using C4.5. Specifi-
cally, averaged-baggingestimates 10 unpruned trees from 10 bootstrap subsamples of the training
data and predicts the mean of the probabilities.6 Details of the implementations are summarized in
Table 2.

3.4.2 LOGISTIC REGRESSION

Logistic regression was performed using the SAS program PROC LOGISTIC. A few of the data
sets exhibited quasicomplete separation, in which there exists a linear combination of the predictors
β′x such thatβ′xi ≥ 0 for all i whereyi = 0 andβ′xi ≤ 0 for all i whereyi = 1, with equality holding
for at least one observation withyi = 0 and at least one observation withyi = 1.7 In this situation a

6. This is in contrast to standard bagging, for which votes are tallied from the ensemble of models and the class with the
majority/plurality is predicted. Averaged-bagging allows us both to perform probability estimation and to perform
classification (thresholding the estimates at 0.5).

7. Please see Appendix A for a description of logistic regression, including definitions of the terms used here.
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Table 2: Implementation Details

Name Description of Probability Estimation
C4.5 Frequency estimates using pruned tree
C4.5–PET Laplace-corrected frequency estimates using unpruned tree
BPET 10-fold averaged-bagging of Laplace-corrected frequency

estimates using unpruned tree
LR Multiple logistic regression
LRVS Logistic regression with variable selection based on signif-

icance tests
AIC Logistic regression with variable selection based on mini-

mal AIC
Ridge Ridge logistic regression
BLR 10-fold averaged-bagging of LR

unique maximum likelihood estimate does not exist, since the log-likelihood increases to a constant
as at least one parameter becomes infinite. Quasicomplete separation is more common for smaller
data sets, but it also can occur when there are many qualitative predictors that have many nominal
values, as is sometimes the case here. SAS stops the likelihood iterations prematurely with an error
flag when it identifies quasicomplete separation (So, 1995), which leads to inferior performance.
For this reason, for these data sets the logistic regression models are fit using the glm() function of
the statistical package R (Ihaka and Gentleman, 1996), since that package continues the maximum
likelihood iterations until the change in log-likelihood is below a preset tolerance level.

Logistic regression with variable selection based on significance tests was also performed using
PROC LOGISTIC. In addition, a variable selection variant using AIC (Akaike, 1974) and a ridge
logistic regression variant (le Cessie and van Houwelingen, 1992) were implemented in the statis-
tical package R.8 Due to computational constraints such as memory limits, the R-based variants do
not execute for very large data sets and so we cannot report results for those cases. Details of the
implementation are summarized in Table 2. We discuss the variable-selection procedures in more
detail below, when we present the results.

For bagged logistic regression, similarly to bagged tree induction, we used 10 subsamples, taken
with replacement, of the same size as the original training set. We estimated 10 logistic regression
models and took the mean of the probability predictions on the test set of those 10 models as the final
probability prediction for the test set. The issue of novel nominal values in the test set again creates
problems for bagged logistic regression. As was noted earlier, logistic regression requires all levels
of nominal variables that appear in the test set to have also appeared in the training set. In order to
guarantee this for each of the 10 sub-training sets, a base set was added to the 10 sub-training sets.
This base set contains at least two observations containing each nominal value appearing in the test
set.

8. These are described in detail in Appendix A
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4. Variants of Methods: Learning Curve Analysis

In this section we investigate the usefulness of the different variants of the learning algorithms. We
first focus on tree induction and then consider logistic regression.

4.1 Variants of Tree Induction

We compare the learning curves to examine the effects of pruning, the Laplace correction, and bag-
ging. C4.5 (and tree-induction generally) prunes learned trees in order to compensate for overfitting
by the tree-growing process. Error-based pruning (as in C4.5) can hurt probability estimation based
on trees, because it eliminates distinctions in estimates that would not affect classification (Provost
and Domingos, 2003). For example, two sibling leaves with probability estimates of 0.8 and 0.9
both would yield a positive classification; however, the different scores may significantly improve
the quality of rankings of cases by class-membership probability. The Laplace correction is an at-
tempt to deal with errors in scores due to the smaller samples at the leaves of unpruned trees, and
due to the overly extreme bias in the probabilities, as discussed in Appendix A. Bagging reduces
variance, which is important because variance leads to estimation errors as well as classification
errors (Friedman, 1997).

The ability of the Laplace correction and bagging to improve probability estimation of induced
trees has been noted previously. Bauer and Kohavi (1999) show improvements using mean-squared
error from the true (0/1) class; Provost, Fawcett, and Kohavi (1998) present ROC curves that show
similar results, and Provost and Domingos (2003) show similar results using AUR. Our results are
consistent with expectations.

PRUNING (C4.5 VERSUSC4.5-PET)

For classification accuracy, pruning9 improves the performance in ten cases (the win-tie-loss tally,
based on whether the mean of the error measure for one method was within the error bound of the
other, was 10-25-1). However, the improvements are small in most cases. The top plot of Figure 3
shows a typical case of accuracy learning curves (Spam data set).

The performance comparison of C4.5 and C4.5-PET is systematically reversed for producing
ranking scores (AUR). The Laplace transformation/not-pruning combination improves the AUR in
twenty-two cases and is detrimental in only two cases (IntPriv and IntCensor) (win-tie-loss: 22-
12-2). The lower plot of figure 3 shows this reversal on the same data set (Spam). Notice that, in
contrast to accuracy, the difference in AUR is considerable between C4.5 and C4.5-PET.

BAGGING (BPET VERSUSC4.5)

Averaged-bagging often improves accuracy, sometimes substantially. The win-tie-loss tally is 10-
21-5 in favor of bagging over C4.5. In terms of producing ranking scores (AUR), BPET was never
worse than C4.5, with a 24-12-0 result.

9. Recall that the Laplace correction will not change the classification decision, so the only difference between C4.5
and C4.5-PET for classification is pruning.
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Figure 3: Accuracy and AUR learning curves for the Spam data set, illustrating the performance of
variants of probability estimation trees.
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BAGGING (BPET VERSUSC4.5-PET)

The only difference between BPET and C4.5-PET is the averaged-bagging. Both use Laplace cor-
rection on unpruned trees. BPET dominates this comparison for both accuracy and probability
estimation (16-18-2 for accuracy and 15-19-2 for AUR). The two data sets where bagging hurts are
Mailing and Abalone. However, looking ahead, in both these cases tree induction did not perform
well compared to logistic regression.

Based on these results, for the comparison with logistic regression in Section 5, we use two
methods: C4.5-PET (Laplace corrected and not pruned) and BPET. Keep in mind that this may
underrepresent C4.5’s performance slightly when it comes to classification accuracy, since with
pruning regular C4.5 typically is slightly better. However, the number of runs in Section 5 is huge.
Both for comparison and for computational practicability it is important to limit the number of
learning algorithms. Moreover, we report surprisingly strong results for C4.5 below, so our choice
here is conservative.

4.2 Variants of Logistic Regression

In this section we discuss the properties of the three variants of logistic regression that we are con-
sidering (no variable selection, variable selection, and ridge regression). Our initial investigations
into variable selection were done using SAS PROC LOGISTIC, since it could be applied to very
large data sets. We investigated both forward and backward selection, although backward selec-
tion is often less successful than forward selection because the full model fit in the first step is the
model most likely to result in a complete or quasicomplete separation of response values. We did
not use the STEPWISE setting in SAS, which combines both forward and backward stepping, or
the SCORE setting, which looks at all possible regression models, because they are impracticable
computationally.

SAS also supports a variation of backward and forward stepping based on the Pearson goodness–
of–fit statisticX2 (see Appendix A, equation (4)). In the case of forward stepping the algorithm stops
adding variables whenX2 becomes insignificant (that is, the null hypothesis that the logistic regres-
sion model fits the data is not rejected), while for backward stepping variables are removed until
X2 becomes significant (that is, the null hypothesis that the logistic regression model fits the data is
rejected). Backward selection also can be done using the computational algorithm of Lawless and
Singhal (1978) to compute a first-order approximation to the remaining slope estimates for each
subsequent elimination of a variable from the model. Variables are removed from the model based
on these approximate estimates. The FAST option is extremely efficient because the model is not
refitted for every variable removed.

We do not provide details of all of the comparisons, but the overwhelming result was that vari-
able selection provided surprisingly little benefit. What benefit there was occurred in small training
sets (usually with fewer than 2000 observations). The win-tie-loss comparing logistic regression
without any variable selection to the best variable selection method, based on AUR as the error
measure (the results for accuracy are similar, however more often in favor of variable selection),
was 3-28-5 on small training sets. On large training sets the win-tie-loss was 0-36-0, meaning that
variable selection is effectively identical to simple logistic regression with no variable selection.
The FAST backward selection is particularly ineffective, with a 0-14-22 record against no variable
selection on small training sets and 0-31-5 on large sets.
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Figure 4: Accuracy learning curves of logistic regression variants for the Firm Reputation data
set, illustrating the stronger performance of model-selection-based logistic regression for
smaller sample sizes.

Model selection using AIC does better, more often resulting in improved performance relative
to using the full logistic regression model, particularly for smaller sample sizes. Evidence of this
is seen, for example, in the Adult, Bacteria, Mailing, Firm Reputation, German, Spam, and Tele-
com data sets. Figure 4, which shows the logistic regression accuracy learning curves for the Firm
Reputation data set, gives a particularly clear example, where the AIC learning curve is consistently
higher than that for ordinary logistic regression, and distinctly higher up to sample sizes of at least
1000. Corresponding plots for AUR are similar. Model selection also can lead to poorer perfor-
mance, as it does in the CalHous, Coding, and Optdigit data sets. However, as was noted earlier,
AIC-based model selection is infeasible for large data sets.10

The case for ridge logistic regression is similar, but the technique was less successful. While
ridge logistic regression was occasionally effective for small samples (see, for example, Figure 5,
which refers to the Intshop data set), for the majority of data sets using it resulted in similar or
poorer performance compared to the full regression. We will therefore not discuss it further. Note,
however, that we used one particular method of choosing the ridge parameterλ; perhaps some other
choice would have worked better, so our results should not be considered a blanket dismissal of the
idea of ridge logistic regression.

Bagging is systematically detrimental to performance for logistic regression. In contrast to the
observation regarding bagging for trees, for logistic regression bagging seems to shift the learning

10. More specifically, the stepwise implementation of the Venables and Ripley (1999) AIC-based selector is based on
the packages R or S-Plus, and use of these packaged becomes infeasible for very large data sets. Note that stepwise
variable selection in SAS is also not feasible for large data sets.
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Figure 5: Accuracy learning curves of logistic regression variants for the Internet shopping data set,
illustrating a situation where ridge logistic regression is effective for small sample sizes.

curve to the right. Note that bagging trains individual models with substantially fewer examples
(approximately 0.63n distinct original observations, wheren is the training-set size). Therefore
when the learning curve is steep, the individual models will have considerably lower accuracies
than the model learned from the whole training set. In trees, this effect is more than compensated
for by the variance reduction, usually yielding a net improvement. However, logistic regression
has little variance, so all bagging does is to average the predictions of a set of poor models (note
that bagging does seem to result in a small improvement over the accuracy produced with 63% of
the data). B¨uhlman and Yu (2002) discuss the properties of bagging theoretically, and show that it
should help for “hard threshold” methods, but not for “soft threshold” methods. Logistic regression
falls into their “soft threshold” category.

In sum, our conclusion for logistic regression is quite different from that for tree induction (in
the previous section). For larger training-set sizes, which are at issue in this paper, none of the
variants improve considerably on the basic algorithm. Indeed, bagging is detrimental. Therefore,
for the following study we only consider the basic algorithm. It should be noted, however, that this
decision apparently has no effect on our conclusions concerning the relative effectiveness of logistic
regression and tree induction, since even for the smaller data sets a “which is better” assessment of
the basic logistic regression algorithm compared to tree induction is the same as that of the best
variant of logistic regression.

One other general property of logistic regression learning curves is illustrated well by Figure 2—
the leveling off of the curve as the size of the data set increases. In virtually every example examined
here, logistic regression learning curves either had leveled off at the right end, or clearly were in the
process of doing so. This is exactly what would be expected for any parametric model (where the
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Figure 6: Accuracy learning curves for the Californian housing data set, illustrating the negative
impact of bagging on logistic regression performance.

number of parameters does not grow with the sample size, such as with logistic regression). As the
data set gets larger, eventually the parameters of the model are estimated as accurately as they can
be, with standard error (virtually) zero. At this point additional data will not change anything, and
the learning curve must level off.

5. Differences Between Tree Induction and Logistic Regression: Learning Curve
Analysis

We now present our main experimental analysis. We compare the learning curve performance of the
three chosen methods, C4.5-PET (Laplace-corrected, unpruned probability estimation tree), BPET
(bagged C4.5-PET), and multiple logistic regression, as tools for building classification models and
models for class probability estimation. Here and below, we are interested in comparing the perfor-
mance of tree induction with logistic regression, so we generally will not differentiate in summary
statements between BPET and PET, but just say “C4.” In the graphs we show the performance of
all of the methods.

Table 3 summarizes the results for our 36 data sets. As indicated by the first column, each row
corresponds to a data set. The second column (Winner AUR) indicates which method gave the best
AUR for the largest training set. If the mean for one algorithm falls within the error bars for another,
a draw is declared (denoted “none”). The next column (Winner Acc) does the same for classification
accuracy. The third column indicates the maximum AUR for any method on this data set. We will
explain this presently. The final column summarizes the comparison of the learning curves. “X
dominates” means that a method of type X outperforms the other method for all training-set sizes.

226



TREE INDUCTION VS. LOGISTIC REGRESSION

“X crosses” indicates that a method of type X is not better for smaller training-set sizes, but is better
for larger training-set sizes. “Indistinguishable” means that at the end of the learning curve with the
maximal training set we cannot identify one method (logistic regression or a tree induction) as the
winner.

One data set (Adult) is classified as “Mixed.” In this case we found different results for Accuracy
(C4 crosses) and AUR (LR dominates). We discuss the reason and implications of this result more
generally in Section 5.3.

As described above, the area under the ROC curve (AUR) is a measure of how well a method
can separate the instances of the different classes. In particular, if you rank the test instances by the
scores given by the model, the better the ranking the larger the AUR. A randomly shuffled ranking
will give an AUR of (near) 0.5. A perfect ranking (perfectly separating the classes into two groups)
gives an AUR of 1.0. Therefore, the maximum AUR achieved by any method (max-AUR) can be
considered an estimation of the fundamental separability of the signal from the noise—estimated
with respect to the modeling methods available. If no method does better than random (max-AUR
= 0.5), then as far as we can tell it is not possible to separate the signal (and it does not make sense
to compare learning algorithms). If some method performs perfectly (max-AUR = 1.0), then the
signal and noise can be separated perfectly.

Max-AUR is similar to an estimation of the Bayes rate (the minimum possible misclassifica-
tion error rate), with a crucial difference: max-AUR is independent of the base rate—the marginal
(“prior”) probability of class membership—and the Bayes rate is not. This difference is crucial, be-
cause max-AUR can be used to compare different data sets with respect to the separability of signal
from noise. For example, a data set with 99.99% positive examples should engender classification
accuracy of at least 99.99%, but still might have max-AUR = 0.5 (the signal cannot be separated
from the noise). The data sets in Table 3 are presented in order of decreasing max-AUR—the most
separable at the top, and the least separable at the bottom.

We have divided the results in Table 3 into three groups, indicated by horizontal lines. The
relative performance of the classifiers appears to be fundamentally different in each group.

The topmost group, comprising Mushroom, Nurse, and Optdigit, contains three situations where
the signal-from-noise separability is extremely high. All methods quickly attain accuracy and AUR
values over .99, and are indistinguishable. The learning curves for AUR for Optdigit are shown in
Figure 7. For purposes of comparison, these data sets are “too easy,” in the sense that all methods
isolate the structure completely, very quickly. Since these data sets do not provide helpful informa-
tion about differences in effectiveness between methods, we will not consider them further.

Remarkably, the comparison of the methods for the rest of the data sets can be characterized
quite well by two aspects of the data: the separability of the signal from the noise, and the size of
the data set. As just described, we measure the signal separability using max-AUR. We consider
two cases: max-AUR≤ 0.8 (lower signal separability) and max-AUR≥ 0.85 (higher signal sepa-
rability). The max-AUR split is reflected in the lower, horizontal division in the table. No data sets
have 0.8 < max-AUR< 0.85.

5.1 Data with High Signal-from-Noise Separability

The higher signal-separability situation (max-AUR≥ 0.85) is clearly favorable for tree induction.
Of the 21 high-separability data sets, in 19 C4 clearly is better in terms of accuracy for the largest
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Table 3: Results of learning curve analyses.

Data set Winner AUR Winner Acc Max-AUR Result
Nurse none none 1 Indistinguishable
Mushrooms none none 1 Indistinguishable
Optdigit none none 0.99 Indistinguishable
Letter–V C4 C4 0.99 C4 dominates
Letter–A C4 C4 0.99 C4 crosses
Intrusion C4 C4 0.99 C4 dominates
DNA C4 C4 0.99 C4 dominates
Covertype C4 C4 0.99 C4 crosses
Telecom C4 C4 0.98 C4 dominates
Pendigit C4 C4 0.98 C4 dominates
Pageblock C4 C4 0.98 C4 crosses
CarEval none C4 0.98 C4 crosses
Spam C4 C4 0.97 C4 dominates
Chess C4 C4 0.95 C4 dominates
CalHous C4 C4 0.95 C4 crosses
Ailerons none C4 0.95 C4 crosses
Firm LR LR 0.93 LR crosses
Credit C4 C4 0.93 C4 dominates
Adult LR C4 0.9 Mixed
Connects C4 none 0.87 C4 crosses
Move C4 C4 0.85 C4 dominates
Downsize C4 C4 0.85 C4 crosses
Coding C4 C4 0.85 C4 crosses
German LR LR 0.8 LR dominates
Diabetes LR LR 0.8 LR dominates
Bookbinder LR LR 0.8 LR crosses
Bacteria none C4 0.79 C4 crosses
Yeast none none 0.78 Indistinguishable
Patent C4 C4 0.75 C4 crosses
Contra none none 0.73 Indistinguishable
IntShop LR LR 0.7 LR crosses
IntCensor LR LR 0.7 LR dominates
Insurance none none 0.7 Indistinguishable
IntPriv LR none 0.66 LR crosses
Mailing LR none 0.61 LR dominates
Abalone LR LR 0.56 LR dominates
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Figure 7: AUR learning curves for the Optdigit data set, illustrating a situation where all methods
achieve high performance quickly.

training sets (C4’s win-tie-loss record is 19-1-1). In some cases the tree learning curve dominates;
Letter-V is a good example of this situation, as shown in Figure 8.

Here the logistic regression learning curve initially is slightly steeper than that of the tree, but
the logistic regression curve quickly levels off, while the tree keeps learning, achieving far higher
accuracy than the logistic regression. Move, Pendigit, and Spam are roughly similar.

In the other situations, logistic regression’s advantage for smaller data sets extends further, so
that it is clearly better for smaller data sets, but eventually tree induction surpasses logistic regres-
sion both in terms of accuracy and AUR. Ailerons, Coding, Covertype, and Letter-A provide good
examples of this situation. The AUR curves for Covertype are shown in Figure 9.

When will one see a domination of one method, and when will there be a crossing? We do
not have a definitive answer, but it is reasonable to expect a combination of two factors. First,
how “linear” is the true concept to be learned? If there are fewer non-linearities and there is little
noise, then logistic regression will do better early on (relative to the number of parameters, of
course); tree induction will need more data to reach the necessary complexity. Second, it simply
depends on where you start looking: what is the smallest training-set size in relation to the number
of parameters? If you start with larger training sets, trees are more likely to dominate.

Are there differences between the curves for classification (accuracy) and probability rank or-
dering (AUR) for this group of data sets? Table 3 shows that logistic regression is slightly more
competitive for AUR than for accuracy, but tree induction still is far superior (AUR win-tie-loss
for C4 is 17-2-2). Generally, the shapes of the learning curves with respect to accuracy and AUR
for a given data set are similar, but the accuracy curves are shifted to the left: C4 needs fewer data
for classification than for probability estimation (again, not surprisingly). Therefore, when the C4
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Figure 8: Accuracy learning curves for the Letter-V data set, illustrating a situation where C4 dom-
inates.
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Figure 9: AUR learning curves for the Covertype data set, illustrating a situation where logistic
regression is initially a better performer, but trees eventually dominate.
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curves cross the logistic regression curves, the crossover point for accuracy comes at the same point
or earlier than the crossover point for AUR, but not later. An alternative view is that logistic regres-
sion apparently is better tuned for probability ranking than it is for classification. Given that the
method is specifically designed to model probabilities (with classification as a possible side-effect
of that probability estimation), this also is not surprising.

Evidence of this can be seen in Adult, Ailerons, and Letter-A, where the crossover points of
the AUR learning curves have not been reached (although for each, the trajectories of the curves
suggest that with more data the tree would eventually become the winner). The cases for Adult for
both accuracy and AUR are shown in Figure 10.

5.2 Data with Low Signal-from-Noise Separability

The lower signal-separability situation (max-AUR≤ 0.8) is slightly more complicated. Sometimes
it is impossible to distinguish between the performances of the methods. Examples of this (italicized
in Table 3) include Contraception, Insurance and Yeast. For these data sets it is difficult to draw any
conclusions, in terms of either accuracy or AUR, since the curves tend to be within each other’s
error bars. Figure 11 illustrates this for the Contra data set.

When the methods are distinguishable logistic regression is clearly the more effective method,
in terms of both accuracy and AUR. Ten data sets fall into this category. Logistic regression’s
win-tie-loss record here is 8-1-1 for AUR and 6-2-2 for accuracy. Examples of this are Abalone,
Bookbinder, Diabetes, and the three Internet data sets (IntCensor, IntPrivacy, and IntShopping).
Figure 12 shows this case for the IntCensor data set.

As was true in the higher signal-separability situation, logistic regression fares better (compar-
atively) with respect to AUR than with respect to accuracy. This is reflected in a more clear gap
between logistic regression and the best tree method in terms of AUR compared to accuracy; for
example, for IntPriv and Mailing logistic regression is better for AUR, but not for accuracy.

5.3 The Impact of Data-Set Size

The Patent data set is an intriguing case, which might be viewed as an exception. In particular,
although it falls into the low signal-separability category, C4 is the winner for accuracy and for
AUR. This data set is by far the largest in the study, and at an extremely large training data size the
induced tree becomes competitive and beats the logistic model. As shown in Figure 13, the curves
cross when the training sets contain more than 100,000 examples.

The impact of data-set size on these results is twofold. First, in this study we use max-AUR as
a proxy for the true (optimal) separability of signal from noise. However, even with our large data
sets, in almost no case did the AUR learning curve level off for tree induction. This suggests that
we tend to underestimate the separability.

The second impact of data-set size is on conclusions about which method is superior. We have
15 cases where the curve for one method crosses the other as the training-set size increases, and
some of the mixed cases show that one method is dominated for small training size but later reaches
the same performance level. In all of those cases the conclusion about which method is better would
have been different if only a smaller sample of the data had been available.
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Figure 10: Accuracy and AUR learning curves for the Adult data set. Trees begin to outperform
logistic regression for accuracy at around 10,000 examples, while they have not yet
outperformed it for AUR at 40,000 examples.
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Figure 11: AUR learning curves for the Contra data set, illustrating low signal separability and
indistinguishable performance.
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Figure 12: AUR learning curves for the IntCensor data set, illustrating a situation where logistic
regression dominates.
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Figure 13: AUR learning curves for the the Patent data set, illustrating a situation where tree induc-
tion surpasses logistic regression for extremely large training-set sizes.

6. Discussion and Implications

Let us consider these results in the context of prior work. A comprehensive experimental study of
the performance of induction algorithms is described by Lim, Loh, and Shih (2000). They show
that averaged over 32 data sets, logistic regression outperforms C4.5. Specifically, the classification
error rate for logistic regression is 7% lower than that of C4.5. Additionally, logistic regression was
the second best algorithm in terms of consistently low error rates: it is not significantly different
from the minimum error rate (of the 33 algorithms they compare) on 13 of the 32 data sets. The
only algorithm that fared better (15/32) was a complicated spline-based logistic regression that was
extremely expensive computationally. In comparison, C4.5 was the 17th best algorithm in these
terms, not differing from the minimum error rate on only 7 of the data sets.

Our results clarify and augment the results of that study. First of all, we use bagging, which
improves the performance of C4.5 consistently. More importantly, Lim et al. concentrate on UCI
data sets without considering data-set size. Their training-set sizes are relatively small; specifically,
their average training-set size is 900 (compare with an average of 60000 at the right end of the
learning curves of the present study; median=12800).11 Although C4 would clearly “win” a straight
comparison over all of the data sets in our study, examining the learning curves shows that C4 often
needs more data than logistic regression to achieve its ultimate classification accuracy.

This leads to a more general observation, which bears on many prior studies by machine learning
researchers comparing induction algorithms on fixed-size training sets. In only 14 of 36 cases

11. Furthermore, 16 of their data sets were created by adding noise to the other 16. However, this does not seem to be
the reason for the dominance of logistic regression.
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Figure 14: AUR learning curves for the Bacteria data set. The AUR of Bacteria has already reached
0.79 and tree induction has not leveled off. One could speculate that BPET will achieve
AUR>0.8.

does one method dominate for the entire learning curve. Thus, it is not appropriate to conclude
from a study with a single training-set size that one algorithm is “better” (in terms of predictive
performance) than anotherfor a particular domain. Rather, such conclusions must be tempered by
examining whether the learning curves have reached plateaus. If not, one only can conclude that
for the particular training-set size used, one algorithm performs better than another. This also has
implications for practices such as using hold-out sets for comparison, as discussed below.

In this study of two standard learning methods we can see a clear criterion for when each algo-
rithm is preferable: C4 for high-separability data and logistic regression for low-separability data.
Curiously, the two clear exceptions in the low signal-separability case (the cases where C4 beats
logistic regression), Patent and Bacteria, may not be exceptions at all; it may simply be that we still
do not have enough data and we underestimate the true max-AUR. For both of these cases, the C4
learning curves do not seem to be leveling off even at the largest training-set sizes. Figure 13 shows
this for the Patent data set and Figure 14 shows this for the Bacteria data set. In both cases, given
more training data, the maximum AUR seems likely to exceed 0.8; therefore, these data may actu-
ally fall into the high signal-separability category. If that were so, the C4-tie-LR record for accuracy
for the high-separability data sets would be 21-1-1, and for the (large-enough) low-separability data
sets 0-2-6.

We have found only one prior study that suggests such a criterion. Ennis, Hinton, Naylor,
Revow, and Tibshirani (1998) compare various learning methods on a medical data set, and logistic
regression beats decision trees. Their data set is of moderate size (in the context of this paper) with
a training set of 27220 examples; max-AUR= 0.82, making it a borderline case in our comparison.
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They do not show learning curves, so we cannot conclude whether tree induction would perform
better with more data. However, they state clearly (pp. 2507-8), “We suspect that adaptive non-
linear methods are most useful in problems with high signal-to-noise ratio, sometimes ocurring in
engineering and physical science. In human studies, the signal-to-noise ratio is often quite low (as
it is here), and hence the modern methods may have less to offer.”

We are not aware of this seemingly straightforward relationship being shown in previous ex-
perimental comparisons, even though studies have compared logistic regression to tree induction.
Many comparative studies simply have not looked for such relationships. However, some have.
Notably, the Statlog project (King, Feng, and Sutherland, 1995) looked specifically at the charac-
teristics of the data that indicate the preferability of different types of induction algorithms. They
include tree induction and logistic regression in their comparison, and relate the differences in their
performances to the skew and kurtosis of the predictor variables, which relate to the (multivari-
ate) normality of the data. Thus, not surprisingly, tree induction should be preferable when the
distributional assumptions of the logistic regression are not satisfied. In theory, logistic regression
should be preferable when they are—and indeed, for simulated data generated by multivariate class-
conditional Normal models with equal covariance matrices, for which logistic regression is the right
model, the performance of logistic regression approaches the Bayes rate and the true max-AUR, as
expected. Tree induction never outperforms logistic regression.

However, given enough data, tree-based models can approximate non-axis-parallel class-probability
boundaries arbitrarily closely (see the demonstration by Provost and Domingos, 2003). So, even
when logistic regression is the right model, with enough data tree induction may be able to perform
comparably, and generalization performance will be indistinguishable. If in addition, the correct
logistic-regression model can separate the classes cleanly, then the indistinguishable generalization
performance will be very good (as for the top three data sets in Table 3).

For data sets for which the logistic regression model is inadequate, when separability is high,
the highly nonlinear nature of tree induction allows it to identify and exploit additional structure. On
the other hand, when separability is low, the massive search performed by tree induction leads it to
identify noise as signal, resulting in a deterioration of performance. It is a statistical truism that “All
models are wrong, but some are useful” (Box, 1979, p. 202); this is particularly true when the signal
is too difficult to distinguish from the noise to allow identification of the “correct” relationship.
The general curve-crossing patterns we see concur with prior simulation studies showing learned
linear models out-performing more complex learned models for small data sets, even when the more
complex models better represent the true concept to be learned (Flury and Schmid, 1994; Domingos
and Pazzani, 1997).

A limitation of our study is that we used the default parameters of C4.5. For example, the “-m”
parameter specifies when to stop splitting, based on the size of leaves. Quinlan (1993) notes that
the default value may not be best for noisy data. Therefore, one might speculate that with a better
parameter setting, C4.5 might be more competitive with logistic regression for the low-separability
data. Although the focus of this paper was the “off-the-shelf” algorithms, we have experimented
systematically with the “-m” parameter on a large, high-noise data set (Mailing). The results do not
draw our current conclusions into question.

How can these results be used by practitioners with data to analyze? The results show convinc-
ingly that learning curves must be examined if experiments are being run on a different training-set
size than that which will be used to produce the production models. For example, a practitioner
typically experiments on data samples to determine which learning methods to use, and then scales
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Figure 15: Accuracy learning curves for a hybrid model on the California Housing data set.

up the analysis. These results show clearly that this practice can be misleading for many domains,
if the relative shapes of the learning curves are not taken into account as well.

We also believe that the signal-separability categorization can be useful in cases where one
wants to reduce the computational burden of comparing learning algorithms on large data.12 In
particular, consider the following strategy.

1. Run C4.5-PET with the maximally feasible training-set size. For example, use all of the data
available or all that will run well in main memory. C4.5 typically is a very fast induction
alternative (cf., Lim, Loh, and Shih, 2000).

2. If the resultant AUR is high (0.85 or greater) continue to explore tree-based (or other non-
parametric) options (for example, BPET, or methods that can deal with more data than can fit
in main memory (Provost and Kolluri, 1999)).

3. If the resultant AUR is low, try logistic regression.

An alternative strategy is to build a hybrid model. Figure 15 shows the performance of tree
induction on the California Housing data set, where tree building takes the probability estimation
from a logistic regression model as an additional input variable. Note that the hybrid model tracks
with each model in its region of dominance. In fact, around the crossing point, the hybrid model is
substantially better than either alternative. While we are not aware of this particular hybrid model
being proposed, nor this type of learning-curve performance being observed, there has been prior
work on combining tree induction and logistic regression, for example using logistic models at the
nodes of the tree and using leaf identifiers as dummies in the logistic regression (Steinberg and
Cardell, 1998). A full review is beyond the scope of this article.

12. For example, we found during this study that, depending on what package is being used, logistic regression often
takes an excessively long time to run, even on only moderately large data sets.
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Another limitation of this study is that by focusing on the AUR, we are only examining proba-
bility ranking, not probability estimation. Logistic regression could perform better in the latter task,
since that is what the method is designed for.

7. Conclusion

By using real data sets of very different sizes, with different levels of noise, we have been able to
identify several broad patterns in the relative performance of tree induction and logistic regression.
In particular, we see that the highly nonlinear nature of trees allows tree induction to exploit structure
when the signal separability is high. On the other hand, the smoothness (and resultant low variance)
of logistic regression allows it to perform well when signal separability is low.

Within the logistic regression family, we see that once the training sets are reasonably large,
standard multiple logistic regression is remarkably robust, in the sense that different variants we
tried do not improve performance (and bagging hurts performance). In contrast, within the tree
induction family the different variants continue to make a difference across the entire range of
training-set sizes: bagging usually improves performance, pruning helps for classification, and not
pruning plus Laplace smoothing helps for scoring.13 Other approaches to reducing the variability
of tree methods have also been suggested, and it is possible that these improvements would carry
over to the problems and data sets examined here; see, for example, the work of Bloch, Olshen, and
Walker (2002), Chipman, George, and McCulloch (1998), Hastie and Pregibon (1990), and LeBlanc
and Tibshirani (1998).

We also have shown that examining learning curves is essential for comparisons of induction
algorithms in machine learning. Without examining learning curves, claims of superior performance
on particular “domains” are questionable at best. To emphasize this point, we calculated the C4-tie-
LR records that would be achieved on this (same) set of domains, if data-set sizes had been chosen
particularly well for each method. For accuracy, we can achieve a C4-tie-LR record of 22-13-1
by choosing data-set sizes favorable to C4. By choosing data-set sizes favorable to LR, we can
achieve a record of 8-14-14. Similarly, for AUR, choosing well for C4 we can achieve a record
of 23-11-2. Choosing well for LR we can achieve a record of 10-9-17. Therefore, it clearly is not
appropriate, from simple studies with one data-set size (as with most experimental comparisons),
to draw conclusions that one algorithm is better than the other for the corresponding domains or
tasks. These results concur with recent results (Ng and Jordan, 2001) comparing discriminative and
generative versions of the same model (viz., logistic regression and naive Bayes), which show that
learning curves often cross.

These results also call into question the practice of experimenting with smaller data sets (for ef-
ficiency reasons) to choose the best learning algorithm, and then “scaling up” the learning with the
chosen algorithm. The apparent superiority of one method over another for one particular sample
size does not necessarily carry over to larger samples (from the same domain). Similarly, con-
clusions from experimental studies conducted with certain training-set/test-set partitions (such as
two-thirds/one-third) many not even generalize to the source data set! Consider Patent, as shown in
Figure 13.

A corollary observation is that even for very large data-set sizes, the slope of the learning curves
remains distinguishable from zero. Catlett (1991) concluded that learning curves continue to grow,

13. On the other hand, the tree-learning program (C4.5, that is) is remarkably robust when it comes to running on different
data sets. The logistic regression packages require much more hand-holding.
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on several large-at-the-time data sets (the largest with fewer than 100,000 training examples).14

Provost and Kolluri (1999) suggest that this conclusion should be revisited as the size of data sets
that can be processed (feasibly) by learning algorithms increases. Our results provide a contem-
porary reiteration of Catlett’s. On the other hand, our results seemingly contradict conclusions
or assumptions made in some prior work. For example, Oates and Jensen (1997) conclude that
classification-tree learning curves level off, and Provost, Jensen, and Oates (1999) replicate this
finding and use it as an assumption of their sampling strategy. Technically, the criterion for a curve
to have reached a plateau in these studies is that there be less than a certain threshold (one per-
cent) increase in accuracy from the accuracy with the largest data-set size; however, the conclusion
often is taken to mean that increases in accuracycease. Our results show clearly that this latter
interpretation is not appropriate even for our largest data-set sizes.

Finally, before undertaking this study, we had expected to see crossings in curves—in particular,
to see the tree induction’s relative performance improve for larger training-set sizes. We did not
expect such a clean-cut characterization of the performance of the learners in terms of the data sets’
signal separability. Neither did we expect such clear evidence that the notion of how large a data
set is must take into account the separability of the data. Looking forward, we believe that reviving
the learning curve as an analytical tool in machine learning research can lead to other important,
perhaps surprising insights.
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Appendix A. Appendix: Algorithms for the Analysis of Binary Data

We describe here tree induction and logistic regression in more detail, including several variants
examined in this paper. The particular implementations used are described in detail in Section 3.4.

14. Note that Catlett’s large data set was free of noise.
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A.1 Tree Induction for Classification and Probability Estimation

The terms “decision tree” and “classification tree” are used interchangeably in the literature. We use
“classification tree” here, in order that we can distinguish between trees intended to produce clas-
sifications, and those intended to produce estimations of class probability (“probability estimation
trees”). When we are talking about the building of these trees, which for our purposes is essentially
the same for classification and probability estimation, we simply say “tree induction.”

A.1.1 BASIC TREE INDUCTION

Classification-tree learning algorithms are greedy, “recursive partitioning” procedures. They begin
by searching for the single predictor variablexτ1 that best partitions the training data (as determined
by some measure). This first selected predictor,xτ1, is theroot of the learned classification tree.
Oncexτ1 is selected, the training data are partitioned into subsets satisfying the values of the variable.
Therefore, ifxτ1 is a binary variable, the training data set is partitioned into two subsets.

The classification-tree learning algorithm proceeds recursively, applying the same procedure to
each subset of the partition. The result is a tree of predictor variables, each splitting the data further.
Different algorithms use different criteria to evaluate the quality of the splits produced by various
predictors. Usually, the splits are evaluated by some measure of the “purity” of the resultant subsets,
in terms of the outcomes. For example, consider the case of binary predictors and binary outcome:
a maximally impure split would result in two subsets, each with the same ratio of the contained
examples havingy = 0 and havingy = 1 (the class labels). On the other hand, a pure split would
result in two subsets, one having ally = 0 examples and the other having ally = 1 examples.

Different classification-tree learning algorithms also use different criteria for stopping growth.
The most straightforward method is to stop when the subsets are pure. On noisy, real-world data,
this often leads to very large trees, so often other stopping criteria are used (for example, stop if
there are not at least two child subsets containing a predetermined, minimum number of examples,
or stop if a statistical hypothesis test cannot conclude that there is a significant difference between
the subsets and the parent set). The data subsets produced by the final splits are called theleavesof
the classification tree. More accurately, the leaves are defined intensionally by the conjunction of
conditions along the path from the root to the leaf. For example, if binary predictors defining the
nodes of the tree are numbered by a (depth-first) pre-order traversal, and predictor values are ordered
numerically, the first leaf would be defined by the logical formula:(xτ1 = 0)∧(xτ2 = 0)∧·· ·∧(xτd =
0), whered is the depth of the tree along this path.

An alternative method for controlling tree size is toprune the classification tree. Pruning in-
volves starting at the leaves, and working upward toward the root (by convention, classification
trees grow downward), repeatedly asking the question: should the subtree rooted at this node be re-
placed by a leaf? As might be expected, there are many pruning algorithms. We use C4.5’s default
pruning mechanism Quinlan (1993).

Classifications also are produced by the resultant classification tree in a recursive manner. A new
example is compared toxτ1, at the root of the tree; depending on the value of this predictor in the
example, it is passed to the subtree rooted at the corresponding node. This procedure recurses until
the example is passed to a leaf node. At this point a decision must be made as to the classification
to assign to the example. Typically, the example is predicted to belong to the most prevalent class
in the subset of the training data defined by the leaf. It is useful to note that the logical formulae
defined by the leaves of the tree form a mutually exclusive partition of the example space. Thus, the
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classification procedure also can be considered as the determination of which leaf formula applies
to the new example (and the subsequent assignment of the appropriate class label).

A.1.2 LAPLACE-CORRECTEDPROBABILITY ESTIMATION TREES(PETS)

A straightforward method of producing an estimate of the probability of class membership from
a classification tree is to use the frequency of the class at the corresponding leaf, resulting in a
probability estimation tree (PET). For example, if the leaf matching a new example containsp
positive examples andn negative examples, then the frequency-based estimate would predict the
probability of membership in the positive class to bepp+n.

It has been noted (see, for example, the discussion by Provost and Domingos, 2003) that
frequency-based estimates of class-membership probability, computed from classification-tree leaves,
are not always accurate. One reason for this is that the tree-growing algorithm searches for ever-
more pure leaves. This search process tends to produce overly extreme probability estimates. This
is especially the case for leaves covering few training examples. Consider, for example, the prob-
lem with the frequency-based method of probability estimation if a leaf covers only five training
instances, all of which are of the positive class. The frequency-based estimator gives an estimate of
1.0 (5/5), which (especially given the small number of instances) does not seem reasonable.

To produce better class-probability estimates, “smoothing” can be used at the leaves. A detailed
investigation of smoothing methods is beyond the scope of this paper. However, the use of “Laplace”
smoothing has been shown to be effective, and is quite simple.

The so-called Laplace estimate (or Laplace correction, or Laplace smoothing) works as follows
(described for the general case ofC classes). Assume there arep examples of the class in question
at a leaf,N total examples at the leaf, andC total classes. The frequency-based estimate presented
above calculates the estimated probability asp

N . The Laplace estimate calculates the estimated

probability as p+1
N+C . Thus, while the frequency estimate yields a probability of 1.0 from thep =

5,N = 5 leaf, for a two-class problem the Laplace estimate yields a probability of5+1
5+2 = 0.86. The

Laplace correction can be viewed as a form of Bayesian estimation of the expected parameters of a
multinomial distribution using a Dirichlet prior (Buntine, 1991). It effectively incorporates a prior
probability of 1

C for each class (note that with zero examples the estimated probability of each class
is 1

C). This may or may not be desirable for a specific problem; however, practitioners have found
the Laplace correction worthwhile. To our knowledge, the Laplace correction was introduced in
machine learning by Niblett (1987). Clark and Boswell (1991) incorporated it into the CN2 rule
learner, and its use is now widespread. The Laplace correction (and variants) has been used for tree
learning by some researchers and practitioners (Pazzani et al., 1994, Bradford et al., 1998, Provost,
Fawcett, and Kohavi, 1998, Bauer and Kohavi, 1999, Danyluk and Provost, 2001), but others still
use frequency-based estimates.

A.1.3 PETS AND PRUNING

In any comparison of tree induction to logistic regression using their probability estimates, we also
have to consider the effect of pruning. In particular, the pruning stage typically tries to find a small,
high-accuracy tree. The problem for PETs is that pruning removes both of two types of distinc-
tions made by the classification tree: (i) false distinctions—those that were found simply because
of “overfitting” idiosyncrasies of the training data set, where removal is desirable, and (ii) distinc-
tions that indeed generalize (entropy in fact is reduced), and in fact will improve class probability
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estimation, but do not improve accuracy, where removal is undesirable. This is discussed in detail
by Provost and Domingos (2003), who also show that pruning indeed can substantially reduce the
quality of the probability estimates. When inducing PETs, we therefore consider unpruned trees
with Laplace smoothing.

A.1.4 BAGGING

It is well known that trees suffer from high variability, in the sense that small changes in the data can
lead to large changes in the tree—and, potentially, corresponding changes in probability estimates
(and therefore in class labels). Bagging (bootstrap aggregating) was introduced by Breiman (1996)
to address this problem, and has been shown to often work well in practice (Bauer and Kohavi,
1999). Bagging produces an ensemble classifier by selectingB different training data sets using
bootstrap sampling (Efron and Tibshirani, 1993): samplingN data points with replacement from a
set ofN total data points. Models are induced from each of theB training sets. For classification,
the prediction is taken to be the majority (plurality) vote of theB models.

We use a variant of bagging that applies to class probability estimation as well as classification.
Specifically, to produce an estimated probability of class membership, the probability estimates
from theB models are averaged. For classification, the class with the highest estimated membership
probability is chosen.

A.2 Logistic Regression

In this section we describe the variants of logistic regression studied here.

A.2.1 BASIC MULTIPLE LOGISTIC REGRESSION

The standard statistical approach to modeling binary data is logistic regression. Logistic regression
is a member of the class of generalized linear models, a broad set of models designed to generalize
the usual linear model to target variables of many different types (McCullagh and Nelder, 1989;
Hosmer and Lemeshow, 2000). The usual (least squares) linear model hypothesizes that an observed
target valueyi is normally distributed, with mean

E(yi) = β0+ β1x1i + · · ·+ βpxpi (1)

and varianceσ2. That is, the model specifies an appropriate distribution foryi (in this case, the
normal) and the way that the predictors relate to the mean ofyi (in this case, the linear relationship
(1)).

In contrast, the logistic regression model hypothesizes a linear model for the log-odds, ln[pi/(1−
pi)]. This results in the following form for the probabilities:

pi =
exp(β0 + β1x1i + · · ·+ βpxpi)

1+exp(β0 + β1x1i + · · ·+ βpxpi)
. (2)

Equation (2) implies an intuitively appealing S-shaped curve for probabilities. This guarantees
estimated probabilities in the interval(0,1), and is consistent with the idea that the effect of a
predictor onP(y = 1) is larger when the estimated probability is near .5 than when it is near 0 or 1.
The maximum likelihood estimates of the parameterβ̂ maximize the log-likelihood
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L =
n

∑
i=1

[yi ln pi +(1−yi) ln(1− pi)], (3)

wherepi is based on (2). The standard algorithm for computing these estimates (and the one used
here) is iteratively reweighted least squares, also known as Fisher scoring. Define the notation “(k)”
to represent a parameter, or function of a parameter, evaluated using the results at thekth iteration
of the algorithm. The(k+1)st iteration of Fisher scoring is based on

β̂
(k+1)

= (X′W(k)X)−1X′W(k)z(k),

whereX is the matrix of predictor variables (including a column of ones for the intercept),X′ is the
transpose of that matrix,

W(k) = diag




[(
∂pi

∂ηi

)(k)
]2

/[p(k)
i (1− p(k)

i )]


 ,

and
η(k)

i = β(k)
0 + β(k)

1 x1i + · · ·+ β(k)
p xpi,

using the notation diag(ci) to represent the matrix withith diagonal element equal toci and zero
elsewhere, andz(k) = Xβ(k) + r (k), where

r(k)
i = (yi − p(k)

i )
(

∂ηi

∂pi

)(k)

.

That is,β̂
(k+1)

is the weighted least squares estimate ofβ in a regression ofz(k) on X. The weights
change at each iteration with the new estimate ofβ. Further details on the algorithm used in the
analyses in this paper can be found in SAS Institute (2000), chapter 39.

Substitutingβ̂ into (2) gives estimates ofpi = P(yi = 1). Logistic regression also can be used for
classification by assigning an observation to group 1 if ˆp is greater than some cutoff (for example,
.5, although other cutoffs might be more sensible in some circumstances).

A reader from an artificial intelligence background might consider logistic regression to be a de-
generate (single-node) neural network: a linear combination of the predictor variables, run through
a sigmoid function, and for classification the resultant score would be compared to a threshold.

A.2.2 RIDGE LOGISTIC REGRESSION

It is well known that linear regression models, including logistic linear regression models, become
unstable when they include many predictor variables relative to the sample size. This translates
into poor predictions when the model is applied to new data. There are two general approaches
to addressing this problem: (i) adjusting the regression estimates, reducing variance but increasing
bias, or (ii) using a variable selection method (in statistical parlance, a “model selection” method)
that attempts to identify the important variables in a model (with only the important variables used
in the analysis).

Regression estimates are typically adjusted by shrinking the correlation matrix of the predictor
variables (the matrix of pairwise correlations of the variables) towards a fixed point by adding a
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constantλ (the ridge parameter) to the diagonal elements of the matrix, reducing ill-conditioning
of the matrix, and thereby improving the stability of the estimate. The method was introduced in
the context of least squares regression by Hoerl and Kennard (1970), and was adapted to logistic
regression by le Cessie and van Houwelingen (1992). Hoerl, Kennard, and Baldwin (1975) proposed
an automatic method of choosingλ based on Bayesian arguments that can be adapted to the logistic
regression framework. Taken together, the ridge logistic estimate is calculated in the following way:

1. Fit the logistic regression model using maximum likelihood, leading to the estimateβ̂. Con-
struct standardized coefficients by defining

β̂s
j =

β̂ j

sj
, j = 1, . . . , p,

wheresj is the standard deviation of the values in the training data for thejth predictor. Let
β̂∗ equalβ̂ with the intercept̂β0 omitted.

2. Construct the PearsonX2 statistic based on the training data,

X2 =
N

∑
i=1

(yi − p̂i)2

p̂i(1− p̂i)
. (4)

This is a measure of the variability of the observed response values relative to the fitted prob-
abilities from the original logistic regression.

3. Define

λ =
(

p
N− p−1

)
X2

∑p
j=1(β̂s

j)2
.

This is the value towards which the slope estimates are shrunk.

4. LetZ be theN× (p−1) matrix of centered and scaled predictors, with

z j =
x j −Xj

sj
.

Let Ω = Z′VZ, whereV is diag[p̂i(1− p̂i)], the N×N diagonal matrix withith diagonal
element ˆpi(1− p̂i).

Then the ridge logistic regression estimate equals(β̂R
0 , β̂R), where

β̂R = (Ω+diag(2λ))−1Ωβ̂∗

and

β̂R
0 = β̂0 +

p

∑
j=1

(β̂∗j − β̂R
j )Xj .

Ridge regression also has a Bayesian interpretation, based on a multivariate normal prior dis-
tribution for βR with zero mean. More complex Bayesian analyses are possible; see, for example,
Jaakkola and Jordan (2000).
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A.2.3 VARIABLE SELECTION FORLOGISTIC REGRESSION

Variable selection methods attempt to balance the goodness-of-fit of a model with considerations
of parsimony. However this is done, in theory one could look at all possible logistic regression
models to find the “best” one, but this becomes computationally prohibitive whenp is large. For
this reason, it is more typical to use a stepwise procedure, where candidate models are based on
adding or removing a term from the current “best” model. The starting candidate model can be
based on using all of the predictors, or it can be the model with no variables, with subsequent
models based on omitting a variable from the current candidate model or adding a variable that is
not in the model.

There are two typical approaches to deciding whether a variable should enter or leave the current
“best” model. The most common is based on the statistical significance of a coefficient for a variable
(either already in the model or not in the model), with insignificant variables being dropped and
significant ones being added one at a time. When forward selection is used (adding variables to
simple models), the significance test is based on the score test of significance (which does not
require fitting the model with a variable added to assess the worth of the additional variable), while
when backward selection is used (removing variables from complex models), the significance test
is based on the Wald test (which does not require fitting the model with a variable removed to assess
the worth of the variable).

A flaw in this approach is that it does not directly address the crucial balance of goodness–of–fit
versus parsimony. Doing so requires a measure that explicitly quantifies this balance, and we also
investigate the properties of model selection based on the information measure AIC. Akaike (1974)
proposed AIC for this purpose based on information considerations.15 Using this method, the “best”
model among the set of models being considered minimizes

AIC =−2(maximized log-likelihood)+2(number of parameters).

More complex models result in a greater maximized log-likelihood, but at the cost of more param-
eters, so minimizing AIC attempts to find a model that fits well, but is not overly complex. In
the logistic regression framework the maximized log-likelihood isL from (3), while the number of
parameters in the model isp+1, the number of predictors in the model plus the intercept.

The stepwise method based on AIC that we use is based on thestepAIC function of Venables
and Ripley (1999). The starting candidate model is based on using all of the predictors. Subsequent
models are based on omitting a variable from the current candidate model or adding a variable that
is not in the model, with the choice based on minimizing AIC. The final model is found when adding
or omitting a variable does not reduce AIC further. Note that this is not the same as controlling a
stepwise procedure on the basis of the statistical significance of a coefficient for a variable, since
AIC is based on an information measure, not a frequentist tail probability.

15. The acronym AIC, when originally proposed by Akaike, referred to “An Information Criterion,” but it has become
more commonly interpreted as representing “Akaike’s Information Criterion.” Another common model selection
criterion is the Bayesian Information Criterion BIC, originally proposed in Schwarz (1978). AIC is what is termed
an “efficient” model selection criterion, in which it is assumed that the “true” model, if it even exists, is too complex
to be among the candidate models being examined. The goal is to find the best approximating model; that is, the
model among the ones looked at that is “closest” to the true model (in the sense of Kullback–Leibler divergence). In
contrast, BIC is a “consistent” model selection criterion, which means that if the true model is among those being
looked at, as the sample size gets larger, this true model will be chosen by BIC with probability approaching one.
This latter viewpoint is not relevant in the current context, since we do not believe that the true relationship is a linear
logistic one. See Burnham and Anderson (2002) for extensive discussion of this point.
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A.2.4 BAGGING LOGISTIC REGRESSIONMODELS

Bagging has been applied widely to machine learning techniques, but it has rarely been applied
to statistical tools such as logistic regression. This is not unreasonable, since bagging is designed
to address high variability of a method, and logistic regression models (for example) are generally
much more stable than those produced by machine learning tools like tree induction. Still, that does
not mean that bagging cannot be applied to methods like logistic regression, and for completeness
we include bagged logistic regression in our set of variants of logistic regression. Application to
logistic regression is straightforward, and parallels application to probability trees. That is, one
createsB random subsamples with replacement from the original data set and estimates for each of
them the logistic model. The prediction for an observation is the mean of theB predictions. More
details are given in Section 3.4.2

Appendix B. Data Sets

ADULT

This census income database was donated by Ron Kohavi to the UCI repository. The task is to
predict whether income exceeds $50K/yr based on census data. We have selected a subset of 14
variables with the main goal to reduce the complexity of the problem but not with specific attention
towards the predictive power of a variable.

AILERONS

This data set addresses a control problem, namely flying an F16 aircraft. The attributes describe the
status of the airplane, while the goal is to predict the discretized control action on the aileron of the
aircraft. Seehttp://www.liacc.up.pt/ ∼ltorgo/RT/ .

BACTERIA

This data set is extracted from a hospital information system in a municipal hospital, which includes
information about clinical environments, names of detected bacteria, and characteristics of detected
bacteria. This data was used in the KDD Challenge 2000 at the Fourth Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD2000) and was donated by Dr. Shusaku Tsumoto
from the Department of Medical Informatics, Shimane Medical University. We selected a subset of
10 variables since most of the original 161 variables contained many missing data, and we predict
whether bacteria were found or not.

BOOKBINDER

This data set comes as an example with the Marketing Engineering Software by G. Lilien and A.
Rangaswamy (http://www.mktgeng.com ). The task is to predict the choice of a customer based
on previous shopping activity.

CALIFORNIAN HOUSING

This data can be found on the RT homepage (see the Ailerons data set). The original task is to predict
the price of a house with a given specification. We discretized the output variable into> $130000
and≤ $130000 to form a classification task.
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CAR EVALUATION

This UCI data set is special since it has for each possible combination of nominal values of the
variables (all six are categorical) exactly one output, acceptable or not acceptable. It was derived
from a simple hierarchical decision model.

CHESS

This is a UCI data set that represents chess end-games. It has six nominal attributes and the classi-
fication task is to predict whether the player won or did not win.

CODING

The protein coding region (PCR) data set (courtesy of Craven and Shavlik, 1993) contains DNA
nucleotide sequences and their binary classifications (coding or noncoding). Each sequence has 15
nucleotides with four different values per nucleotide. If the 15 nucleotides represent 5 codons which
are part of a known protein, the sequence is labeled coding.

CONNECT

This data set was donated to the UCI collection by John Tromp. The task is to classify from legal
8-ply positions of a connect-4 game whether the player wins or loses. We excluded the 3rd class of
draw from the original data set as well as nominal variables with fewer than 10 instances for any of
their values.

CONTRACEPTION

This data set is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey and is
available from the UCI collection. The subjects are married women who were either not pregnant
or did not know if they were pregnant at the time of interview. The problem is to predict the
current contraceptive method choice (no use or use) of a woman based on her demographic and
socioeconomic characteristics.

COVERTYPE

This is one of the largest UCI classification data sets with originally more than 500,000 observations.
The data were donated by Jock A. Blackard and Colorado State University. The goal is to classify
the forest cover type (tree type) based on cartographic variables. We keep only the two main classes
of the original seven tree types in our sample: Spruce-Fir and Lodgepole Pine, which together
accounted for 85% of the data.

CREDIT

This data set was donated by J.R. Quinlan and can be obtained from the UCI repository or from the
StatLog project under the name Australian Credit Approval. The goal is to predict credit approval.
No detailed information is available about the meaning of the input variables available, and all
attribute names and values have been changed to meaningless symbols to protect confidentiality of
the data.
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MAILING -KDD CUP 98

This data set was used in the 1998 KDD Cup and is available from UCI. The objective of the
analysis is to identify response to a fundraising campaign by a nonprofit organization. For our study
we selected a preprocessed subset of nine demographic and historical response variables based on
the reports of the Cup winners.

DIABETES

This data set was used in the StatLog project and can be found at
http://www.liacc.up.pt/ML/statlog/datasets.html . The task is to predict whether a pa-
tient tests positive for diabetes based on eight personal and clinical variables.

DNA

This data set was originally called Splice and is part of the UCI Molecular Biology data set. The
goal is to classify a sequence of 60 nucleotides as boundary elements or nonboundary. There are two
types of boundary elements: donors and acceptors which we combined for our classification goal
into one category. The 60 nucleotides are coded as 3 binary dummies for the 4 possible nucleotides.

DOWNSIZE

This data set was created for a study by Wiesenfeld, Brockner, and Martin (1999) on the perception
of fairness in organizational downsizing. We use a subset of 15 questions about the perceived pro-
cedural justice of the downsizing with response levels from 1–7 (“very little” to “a great deal”) to
predict the response of general job satisfaction. The predictors are treated as numerical variables.
Records with more than three missing values where excluded. For up to three missing values per
record we substituted the mean of values of the other variables in the record, based on the observa-
tion that there was a high correlation between the variables.

FIRM REPUTATION

This data set is from the RQGold 2000 survey, sponsored by the Reputation Institute and conducted
by Harris International (Fombrun, Gardberg, and Sever, 2000). The classification task is to pre-
dict whether the response to the overall reputation rating of a company is greater than 3 given a
scale from 1 (equals “very bad” reputation) to 7 (equals “very good” reputation). As independent
variables we used the responses to 17 questions that classified the company in terms of innovation,
competitiveness, profitability and so on. Those variables were on a 1–7 scale from “Does not de-
scribe the company” to “Describes the company very well.” As was the case for the Downsize data,
we treated the variables as numerical and replaced up to three missing values by the observation
mean.

GERMAN CREDIT

This StatLog data set is similar to the Credit data set, where a classification of credit approval is
based on personal information, banking information, purpose of credit, and previous credit.
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INSURANCE

The Insurance Company Benchmark was used in the CoIL 2000 Challenge and contains information
on customers of an insurance company. The data consists of 86 variables and includes product usage
data and socio-demographic data derived from geographic codes. The classification task is to predict
whether a customer would be interested in buying a caravan insurance policy.

INTERNET CENSOR

This data was derived from parts of a survey conducted by the Graphics and Visualization Unit at
Georgia Tech from October 10 to November 16, 1997. For full details of the survey see
http://www.cc.gatech.edu/gvu/user surveys/survey-1997-10/ . The task is to predict the
subject’s position on Internet censorship based on personal information and political position.

INTERNET PRIVACY

This data set comes from the same survey as Internet Censor but from a different section with focus
on use of personal data provided by the visitor of a site for personalization and direct marketing.

INTERNET SHOP

This is another data set derived from the 1997 Internet survey from GVU. The focus of this section
was the willingness to use online shopping based on browsing behavior and general use of the
Internet for information, news, financial services.

INTRUSION/KDD CUP 99

This data set was used for The Third International Knowledge Discovery and Data Mining Tools
Competition, and is available from the UCI repository. The competition task was to classify com-
puter connections as bad connections (“intrusions” or “attacks”) or normal connections.

LETTER-A

The objective of this UCI data set is to identify one (A) of the 26 capital letters in the English
alphabet based on 16 mathematically derived features of the digital image.

LETTER-V

This is the same data set as Letter-A but now the task is to identify vowels.

MOVE

This data set was originally used by William Cohen at AT&T. The task is to classify video game
moves as random or not random. A more detailed description is given by Cohen (1995).

MUSHROOMS

This UCI data set classifies mushrooms into definitely edible or potentially poisonous by combining
the original three classes of definitely poisonous, unknown edibility and not recommended into
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potentially poisonous. The independent variables are mushroom features such as color, size, and
shape.

NURSE

This data set was derived from a hierarchical decision model originally developed to rank appli-
cations for nursery schools based on the occupations of parents and the child’s nursery, family
structure and financial standing, and social and health picture of the family. The data are available
from the UCI repository.

OPTDIGIT

The UCI optical digit recognition data were modified to a binary classification task by categorizing
the output as 0 or other. The data are based on normalized bitmaps of hand-written digits.

PAGEBLOCK

The problem in this UCI data set consists of classifying all of the blocks of the page layout of
a document that has been detected by a segmentation process. Originally the problem had five
classes: text, pictures, graphic, horizontal, and vertical lines. The binary classification task is to
distinguish between text and nontext sections based on heights, length and area of the block, and
measures of the distribution of black pixels.

PATENT

This data set is the most complex and with two million observations is the largest one used for this
study. The data are issued by the U.S. Patent and Trademark Office to Micropatent, and contain
the information from the front page of every patent granted since 1975. We selected a subset of the
available variables: year, country origin, number of assignees, U.S. classification code, and number
of US references. To reduce the complexity we grouped the country of origin into six categories:
U.S., Europe, Canada, Australia, Japan and Other. The classification task is to predict whether a
patent has received international references.

PENDIGIT

This UCI data set is similar to the Optdigit data. The goal is to classify handwritten digits as 0 or
not 0 based on sampled x and y input coordinates from a pressure sensitive table.

SPAM

This collection of e-mails is also part of the UCI collection. The goal is to build a spam filter
that identifies spam mail like advertisements, chain letters and pornography based on features like:
frequent words, consecutive capital letters, total number of capital letters and so on.

TELECOM

This is a commercial application described in Weiss and Indurkhya (1995). The data describe a
telecommunication problem and can be found athttp://www.cs.su.oz.au/ ∼nitin . They are
also available from the RT homepage. In order to obtain a classification task we discretized the con-
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tinuous output into class 0 fory = 0 and class 1 fory≥ 0. All independent variables are continuous
and there is no further information available.

YEAST

This UCI data set was donated by Paul Horton and the task is to predict the cellular localization
sites of proteins based on eight continuous variables from various biomolecular models and an
access number to the SWISS-PROT database.
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