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Abstract

This paper studies foundational issues in securities markets models

with �xed costs of trading, i.e. transactions costs that are bounded

regardless of the transaction size, such as: �xed brokerage fees, invest-

ment taxes, operational and processing costs, or opportunity costs.

We show that the absence of free lunches in such models is equiva-

lent to the existence of a family of absolutely continuous probability

measures for which the normalized securities price processes are mar-

tingales, conditional on any possible future event. This is a weaker

condition than the absence of free lunches in frictionless models, which

is equivalent to the existence of an equivalent martingale measure.

We also show that the only arbitrage free pricing rules on the set of

attainable contingent claims are those that are equal to the sum of

an expected value with respect to any absolutely continuous martin-

gale measure and of a bounded �xed cost functional. Moreover, these

pricing rules are the only ones to be viable as models of economic

equilibrium.
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1 Introduction

The Fundamental Theorem of Asset Pricing, which originates in the Arrow-
Debreu model (Debreu [1959]) and is further formalized in (among others)
Cox and Ross (1976), Harrison and Kreps (1979), Harrison and Pliska (1981),
Du�e and Huang (1986), Dybvig and Ross (1987), Dalang, Morton and
Willinger (1989), Back and Pliska (1990), and Delbaen and Schachermayer
(1994), asserts that the absence of free lunch in a frictionless securities market
model is equivalent to the existence of an equivalent martingale measure for
the normalized securities price processes. The only arbitrage free and viable
pricing rule on the set of attainable contingent claims, which is a linear space,
is then equal to the expected value with respect to any equivalent martingale
measure.

In this paper, we study some foundational issues in the theory of asset
pricing in securities markets models with �xed trading costs. Transaction
costs are said to be �xed in the sense that they are bounded regardless of
the transaction size. Such �xed costs include for example �xed brokerage
fees, brokerage arrangements where marginal fees go to zero beyond a given
volume that is reset periodically (such arrangements are common in the in-
dustry), �xed investment taxes to gain access to a market (such as a for-
eign market), operational and processing costs that typically exhibit strong
economies of scale (e.g. through automation), �xed costs involved in setting
up an o�ce and obtaining access to information, and the opportunity cost of
looking at a market or of doing a speci�c trade. We �nd that the absence of
free lunches in models with �xed trading costs is equivalent to the existence
of a family of \absolutely continuous" probability measures1 for which the
normalized (by a numeraire) securities price processes are martingales, con-
ditional on any possible future event. Note that this is a weaker condition
than the existence of an equivalent martingale measure (as in frictionless
markets) because in this case the martingale measures are only required to
be absolutely continuous. As in the Fundamental Theorem of Asset Pricing,
we �nd that the absence of free lunches is also equivalent to the existence of
a family of nonnegative state price densities and to the existence of a family

1Let (
; F; P ) be a given probability space. We say that another probability measure
Q de�ned on the same probability space ê (
; F; P ) is absolutely continuous with respect
to P , and we shall write Q << P; if for all event A in F satisfying P (A) = 0 we have
Q (A) = 0:
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of continuous weakly positive linear operators. We de�ne admissible pric-
ing rules on the set of attainable contingent claims as the price functionals
that are arbitrage free and are lower than or equal to the surreplication cost
(i.e. the lowest cost of dominating a given payo�). Indeed, no rational agent
would pay more than its surreplication cost for a contingent claim since there
is a cheaper way to achieve at least the same payo� using a trading strategy.
We then show that the only admissible pricing rules on the set of attain-
able contingent claims are those that are equal to the sum of an expected
value with respect to any absolutely continuous martingale measure and of
a bounded �xed cost functional. Moreover, these pricing rules are the only
ones to be viable as models of economic equilibrium, i.e. such that there
exist some price-taking maximizing agents who are happy with their initial
endowment, and hence for whom supply is equal to demand.

A simple example can illustrate our main result. Consider a model where
two securities, denoted by A and B; can be traded at two dates 0 and 1
and in two possible states of the world s1 and s2 at date 1: Security A; the
numeraire, is normalized to be always worth one unit of account and security
B has a value of 1 at date 0 and a value of 1 or 2 at date 1 in state s1 or s2
respectively (all in numeraire units). In the perfect market case, this model
yields an arbitrage opportunity which consists in buying one unit of B and
selling one unit of A at date 0 at a zero investment cost, and closing the
position at date 1 at a pro�t in state s1 and at no loss in state s2: If we
introduce �xed trading costs, this arbitrage opportunity disappears since the
investment required at date 0 by the strategy is not zero anymore but is
equal to the �xed cost. According to the Fundamental Theorem of Asset
Pricing, there cannot exist an equivalent martingale measure. Nevertheless,
the probability Q de�ned on the set S = fs1; s2g of the possible states of
the world at date 1 by Q (s1) = 1 and Q (s2) = 0 is an absolutely continuous
martingale measure for securities A and B:

There is an existing body of literature that studies transaction costs and
other market frictions. For instance, Jouini and Kallal (1995a) studies pro-
portional transaction costs and �nds that a bid-ask price process is arbitrage
free if and only if there exists an equivalent probability measure that trans-
forms some process between the normalized bid and ask price processes into
a martingale. Jouini and Kallal (1995b) studies the case of short sales con-
straints and shortselling costs (as well as di�erent borrowing and lending
rates) and �nds that the absence of arbitrage is equivalent to the existence
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of an equivalent supermartingale measure. The set of expected values of the
payo� of a contingent claim with respect to all the martingale (resp. super-
martingale) measures is an interval and coincides with the set of its possible
prices compatible with arbitrage and economic equilibrium. The characteris-
tic of this class of frictions is that they lead to a pricing rule that is sublinear,
i.e. positively homogeneous and subadditive, and since this is not the case
for �xed transaction costs they require a speci�c analysis. Also, Cvitanic
and Karatzas (1993 and 1996) study the optimal hedging problem in a dif-
fusion model with portfolios constrained to belong to a given convex set and
proportional transaction costs respectively. Pham and Touzi (1996) studies
the case of constraints that take the form of closed convex cones in �nite
discrete time.2 As far as �xed transaction costs are concerned Du�e and
Sun (1990), Grossman and Laroque (1990) and Morton and Pliska (1995),
among others, have studied the optimal portfolio problem with transaction
fees that are proportional to the size of the overall portfolio (as opposed to
the size of the speci�c transaction).

The remainder of the paper is organized as follows. Section 2 describes our
securities markets model with �xed trading costs. Section 3 characterizes the
absence of free lunches in such a model. Section 4 characterizes the arbitrage
free and viable pricing rules. Section 5 concludes.

2 The model with �xed costs

The securities market model consists of a set T = [0; T ] of trading dates,
where T denotes the terminal date for all economic activity; a complete
probability space (
; F; P ) ; where the set 
 represents all possible states
of the world; an information structure which describes how information is
revealed to agents, given by a �ltration F = fFtgt2T with F0 = f;;
g
and FT = F ; n + 1 traded securities 0; :::; n and a (n+ 1)-dimensional, F -
adapted process Z = fZt; t 2 Tg with component processes Z0; :::; Zn where
Zk
t represents the price of security k at time t: We assume that for all t;

Z0
t = 1; which means that the riskless rate is equal to zero. Note that this

assumption amounts to a normalization of all securities prices by a numeraire,

2Other papers on market frictions include Magill and Constantinides (1976), Constan-
tinides (1986), Dybvig and Ross (1986), Prisman (1986), Ross (1987), Taksar et al. (1988),
He and Pearson (1991), Bensaid et al. (1992), Hindy (1995) and Jouini and Kallal (1999).
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and can be made without any loss of generality as long as at least one of the
securities has a positive price at any time. In the remainder of the paper
we shall refer to the 0th security as the riskless asset. We also make the
technical assumption3 that for any trading date t in T; Zt is in L

1 (
; Ft; P ) :
A trading strategy is a (n+ 1)-dimensional F -adapted process � =

f�t; t 2 Tg with component processes �0t ; :::; �
n
t where �kt represents the quan-

tity of security k held at time t. The vector �t represents the agent's portfolio
at time t and its components may take negative as well as positive values.
Hence, 4 V �

t = �t �Zt is the market value of the portfolio �t at date t and we

call the process V � =
n
V �
t ; t 2 T

o
the value process for the strategy �: Let ��t

denote for each date t the vector (�1t ; :::; �
n
t ) of quantities of risky securities

held at time t. As in Harrison and Kreps (1979), we only consider simple
strategies, i.e., strategies such that: for all t; �t � Zt is inL

1 (
; Ft; P ); agents
may trade only at a �nite number of dates (although that number can be
arbitrarily large) that must be speci�ed in advance.5 Note that simple strate-
gies are natural in our context because we shall assume that agents incur a
�xed transaction cost each time they trade.

We denote by ct the positive �xed transaction cost paid at date t if trading
has occurred in any of the risky securities and c = fct; t 2 Tg : If agents do
not trade in any of the risky securities at time t; then we assume that they
do not incur any transaction cost. The transaction cost is �xed in the sense
that it is bounded regardless of the amount of securities traded, i.e. for all t
there exists some real number Ct such that 0 < ct < Ct P a.s.. We assume
that the process c is F -adapted, which means that agents only know at time
t the past and current values of the �xed trading cost but nothing more. We
also allow the �xed transaction costs to depend upon the trading strategy
(and not to be necessarily strictly positive at each trading date), i.e., to each
simple strategy � with trading dates t0; :::; tN = T is associated a nonnegative
transaction cost process c� =

�
c�t
�
t2ft0;:::;tNg

with c�t = C (t; (�t0)t0�t) such that:

� for any simple trading strategies � and �0, such that �� = �0, we have
c� = c�

0

and agents do not pay any �xed transaction cost if they do not

3We recall that L1 (
; F; P ) denotes the set of measurable random variables with �nite
expected value with respect to P:

4For all (x; y) in Rd �Rd for some positive real number d, we let x � y =
P

d

i=1
xiyi.

5The extension to trading dates that are stopping times (instead of being speci�ed in
advance) is straightforward.
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trade the risky securities, i.e. for any simple strategy � with trading
dates t0; :::tN ;

c�ti1(��ti=��ti�1 )
= 0 for all i with 1 � i � N

c�t01(��t0=0) = 0; c�T1(��T=0) = 0

c�t = 0 for all t =2 ft0; :::; tNg .

� for any date t, there exists a positive random variable ct such that for
any simple strategy � with trading dates t0; :::tN ;

c�t1(��t 6=0;��ti=0 for all ti<t) � ct1(��t 6=0;��ti=0 for all ti<t)
for all i with 1 � i � N;

i.e., the �rst time real trading occurs, the �xed cost must be positive.

Or,

there exists a positive real number " such that for any simple strategy
� with trading dates t0; :::tN ;

X

ftig
c�ti � "

i.e., the cumulative transaction cost from the �rst to the last trading
date must be greater than some positive constant.

� for all t, there exists a positive real number Ct such that for any simple
strategy �

c�t � Ct

i.e., the transaction cost is bounded at each date. This implies that
for any simple strategy � with trading dates t0; :::tN , the cumulative
transaction cost

P
ftig c

�
ti
is smaller than or equal to some constant (that

depends on the strategy � only, and not on the state of the world).

We could indi�erently assume that for any strategy � and any trading

date t; the transaction cost at time t is such that c��t
�
!�!1 0, which

means that the transaction cost per unit of security traded goes to zero
as the amount traded becomes arbitrarily large.
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Note that these conditions are consistent with a large class of transaction
costs that can be identi�ed in �nancial markets. They include �xed brokerage
fees or brokerage arrangements where marginal fees go to zero beyond a
given volume that is reset periodically (such arrangements are common in
the industry), and �xed investment taxes to gain access to a market such as a
foreign market. They also include operational and trade processing costs that
typically exhibit strong economies of scale (especially if these tasks have been
automated), and �xed costs incurred in setting up an o�ce and obtaining
access to price or other relevant information. Also, the opportunity cost of
focusing on a market or of doing a speci�c trade can be viewed as a �xed
cost.

In order to get some of our results, we shall need the following additional
assumption6 (that we shall mention each time it is needed):

Assumption A : There exists a real number C such that for every strategy
�;
P

t2T c
�
t < C.

This means that, under Assumption A, the cumulative transaction costs
of any trading strategy are assumed to be bounded by a constant. Note that
this condition is automatically satis�ed in a discrete time model with a �nite
or in�nite number of states of the world (as long as transaction costs are
bounded at each time), but a �nite number of possible trading dates. It is
also automatically satis�ed in a model where there is a �xed cost to access
a market such as a �xed investment tax, a �xed cost for setting up infor-
mation technology or a trade processing department, or a �xed opportunity
cost of looking at a market. It is also consistent with a situation where the
�xed transaction costs consist in brokerage fees with a brokerage arrange-
ment where transactions go free beyond a certain volume which is reset on a
periodical basis (this type of arrangement is common in the industry).

Agents transfer wealth from all dates and events (for contingent wealth)
to the terminal date using the traded securities, subject to paying the �xed
transaction costs. In doing so they use self-�nancing strategies de�ned as
follows. Let i be a date in T and let B be an event in Fi (in the remainder
of the paper we shall always suppose that P (B) 6= 0): We then have:

6For instance, we shall need Assumption A when we use the same de�nition of free
lunch as in Kreps (1981). However, we shall also introduce an alternative de�nition of free
lunch for which Assumption A is not required for any of our results.
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De�nition 2.1 A self �nancing simple strategy from the date i and the event
B is a strategy � that is null before the date i and outside the event B =n
��i 6= 0

o
; and such that there exist trading dates t0; :::; tN ; with i = t0 � ::: �

tN = T; for which � (t; !) is a:s: constant over each interval [tk�1; tk[ and
satis�es

�tk � Ztk + c�tk � �tk�1 � Ztk for k = 1; :::; N � 1

and
�T � ZT + c�T = �tN�1 � ZT :

This means that a self-�nancing simple strategy does not require any
additional investment beyond what is required at the initial date: purchases
of securities as well as transaction costs after the initial date are �nanced by
the sale of other securities. Let Si;B denote the set of such strategies. We
also have:

De�nition 2.2 A frictionless self �nancing simple strategy from the date i
and the event B is a strategy � that is null before the date i and outside the
event B and such that there exist trading dates t0; :::; tN with i = t0 � ::: �
tN = T for which � (t; !) is a:s: constant over each interval [tk�1; tk[ and
satis�es �tk � Ztk = �tk�1 � Ztk a:s: P for k = 1; :::; N .

This means that a frictionless self �nancing simple strategy is a self �-
nancing simple strategy in an otherwise identical economy where there are
no transaction costs. Let W i;B denote the set of such strategies.

3 Arbitrage opportunities and free lunches

3.1 Arbitrage opportunities

An arbitrage opportunity is a trading strategy that yields a positive gain
in some circumstances without a countervailing threat of loss in any other
circumstances. A free lunch is the possibility of getting arbitrarily close to
an arbitrage opportunity. We shall de�ne two concepts of arbitrage oppor-
tunities as follows :

De�nition 3.1 1. An arbitrage opportunity with �xed costs (AO1) is a
strategy � such that there exist (i; j) in T, 0 � i � j � T , an event
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B in Fi, for which �� is null after date j, � belongs to Si;B, V �
i + c�i �

0 on B, V �
j � 0 and either V �

i + c�i or V �
j is di�erent from 0.

2. A frictionless strong arbitrage opportunity (AO2) is a strategy � such
that there exist (i; j) in T, 0 � i � j � T , an event B in Fi, for which
�� is null after date j; � belongs to W i;B, V �

i < 0 on B and V �
j � 0:

This means that an AO1 is a trading strategy that yields, in our model
with �xed transaction costs, a positive gain in some circumstances without
a threat of loss in other circumstances. An AO2 is a trading strategy that
yields a positive gain at the starting date and event of the trading strategy
without a countervailing threat of loss in other circumstances. We then have:

Proposition 3.1 1. There exists an AO1 if and only if there exists a net
gain arbitrage opportunity with �xed trading costs, i.e. a strategy � such
that there exist a date i in T and an event B in Fi for which � belongs
to Si;B, and

h
V �
T � V �

i � c�i
i
� 0, 6= 0 on B.

2. There exists an AO2 if and only if there exists a frictionless "-net gain
arbitrage opportunity, i.e. a strategy � such that there exist a date i in
T; an event B in Fi and a positive real number " for which � belongs
to W i;B and V �

T � V �
i � " on B.

3. There exists an AO1 if and only if there exists an AO2.

This means that the two notions of arbitrage opportunities that we have
introduced are equivalent. Also, an arbitrage opportunity in our model with
�xed transaction costs corresponds to the possibility of achieving a positive
net gain. An arbitrage opportunity in the otherwise identical frictionless
model corresponds to a net gain that is greater than some positive constant in
all states of the world. It is hence clear that the set of arbitrage opportunities
in our model with �xed transaction costs is strictly smaller than the set of
arbitrage opportunities in the frictionless model, or equivalently that the
assumption of no arbitrage in our model with �xed transaction costs is less
stringent than in the frictionless model.
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3.2 Free lunches

As in Kreps (1981), we de�ne a free lunch as the possibility of getting arbi-
trarily close to an arbitrage opportunity. More precisely, we have

De�nition 3.2 1. A free lunch with �xed costs (FL1) is a sequence (�n)n2N
of trading strategies such that there exist i in T; B in Fi; sequences
(xn)n2N and ("ni )n2Nof random variables belonging respectively to L1 (
; F; P )
and L1 (
; Fi; P ) and converging in L1 (
; F; P ) respectively to x � 0
and "i � 0 on B with x+ "i 6= 0 for which for all n;

�n is in Si;B, V �n

i + c�
n

i � �"ni on B and V �n

T � xn:

2. A frictionless strong free lunch (FL2) is a sequence (�n)n2N of trading
strategies such that there exist i in T; B in Fi and sequences (xn)n2N
and (rn)n2N of random variables belonging respectively to L1 (
; F; P )
and L1 (
; Fi; P ) and converging in L1 (
; F; P ) respectively to x � 0
and r > 0 on B for which for all n;

�n is in W i;B and satis�es V �n

i � �rn and V �n

T � xn:

3. An \asymptotic free lunch" (AsFL) is a sequence (�n)n2N of strategies
such that there exist i in T; B in Fi, a sequence (�n)n�0 of positive
real numbers and sequences (xn)n2N and ("ni )n2N of random variables
belonging respectively to L1 (
; F; P ) and L1 (
; Fi; P ) and converging
in L1 (
; F; P ) respectively to x � 0 and "i > 0 on B for which for all
n;

�n is in Si;B,
V �n

i + c�
n

i

�n
� �"ni on B and

V �n

T

�n
� xn:

This means that a free lunch is a sequence of strategies with a payo�
that converges to an arbitrage opportunity. A frictionless strong free lunch
is a sequence of strategies with a payo� that converges to a frictionless strong
arbitrage opportunity. An \asymptotic free lunch" is a sequence of strategies
that are strong free lunches when renormalized by a sequence of scaling
factors. We introduce this notion in order to avoid using Assumption A
in our characterization Theorems in the next section.

Note that, as in the de�nition of arbitrage opportunities, we could replace
the date T with any date j, satifying 0 � i � j � T for which ��n is null after
the date j. We then have
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Proposition 3.2 1. There exists a FL1 if and only if there exists a net
gain free lunch with �xed costs, i.e. a sequence (�n)n2N of strategies
such that there exist i in T; B in Fi and a sequence (xn)n2N of random
variables belonging to L1 (
; F; P ) and converging in L1 (
; F; P ) to
some x � 0; 6= 0 on B for which for all n; �n is in Si;B and V �n

T ��
V �n

i + c�
n

i

�
� xn.

2. There exists a FL2 if and only if there exists a frictionless "-net gain
free lunch, i.e., a sequence (�n)n2N of strategies such that there exist i in
T; B in Fi; a positive real number " and a sequence (xn)n2N of random
variables belonging to L1 (
; F; P ) and converging to some x � " on B
for which for all n, �n is in W i;B and satis�es V �n

T � V �n

i � xn.

This means that a free lunch corresponds to a sequence of trading strate-
gies with a payo� that converges to a positive net gain. Similarly a frictionless
strong free lunch corresponds to a sequence of trading strategies with a payo�
that converges to a net gain that is strictly positive in all states of the world.
We then have the following characterization of the absence of frictionless
strong free lunches:

Corollary 3.1 Let Ki;B =
n
V �
T � V �

i ; � 2 W i;B
o
� L1 (
; F; P ) ; the set of

possible gains from date i and event B in the frictionless model, and Ci;B =
Ki;B � L1

+; where the closure is taken in L1: Let

AB =
n
f 2 L1

+; 9" > 0 such that f � " on B
o
:

The assumption of no frictionless strong free lunch (NFL2) is equivalent to
the condition that for all i in T and B in Fi; the two convex sets Ci;B and
AB have an empty intersection.

We also have

Lemma 3.1 1. The absence of frictionless strong free lunch (NFL2) im-
plies the absence of free lunch in our model with �xed trading costs
(NFL1) :

2. Under Assumption A, the absence of free lunch in our model with �xed
costs (NFL1) and the absence of frictionless strong free lunch (NFL2)
are equivalent.
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3. The absence of \asymptotic free lunch" (NAsFL) in our model with
�xed trading costs and the absence of frictionless strong free lunch
(NFL2) are equivalent.

It is easy to see that the absence of frictionless strong free lunch implies
the absence of free lunch with �xed trading costs. But, unlike for arbitrage
opportunities, the converse is not necessarily true. Indeed, although the
number of trading dates for each trading strategy �n is �nite, it can be
arbitrarily large, and therefore so can the cumulative trading costs. Hence the
need to bound the total trading costs of any simple strategy as in Assumption
A or to consider the notion of \asymptotic free lunch". In both cases we
obtain the equivalence between the absence of strong frictionless free lunches
and the absence of free lunches in our model with �xed trading costs.

3.3 Absolutely continuous martingale measures

With the notations of corollary ??, it is easy to see, using the de�nition of the
set of self �nancing simple trading strategies in the frictionless model W i;B

and the fact that Z0
t = 1; that Ki;B =

n
V �
T � V �

i ; � 2 W i;B
o
; the set of possi-

ble gains from date i and event B in the frictionless model, is a vector space
and that it is equal to Ki;B = Lin

n
�s �

�
�Zt � �Zs

�
; �s 2 P s;B; i � s � t

o
;

where for all s � i; �Zs = (Z1
s ; :::; Z

n
s ) and where P s;B denotes the set of

n -dimensional random variables �s = (�1s ; :::; �
n
s ) that are Fs -measurable,

null outside B and before i and such that �s � �Zs is in L
1 (
; Fs; P ) :

The use of corollary ?? and of a separation theorem will now enable us
to obtain our main result: the characterization of the absence of frictionless
strong free lunches in terms of absolutely continuous martingale mesures.

Theorem 3.1 There exists no frictionless strong free lunch if and only if for
all i in T and all B in Fi; there exists an absolutely continuous probability
measure P i;Bde�ned on (
; F ), with bounded density, such that P i;B (B) = 1
and EP i;B

[Zt j Fs] = Zs for all (s; t) such that i � s � t:

We then obtain the Fundamental Theorem of Asset Pricing for securities
markets models with �xed trading costs.

Theorem 3.2 The following are equivalent:
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1. There exists no \asymptotic free lunch" in our model with �xed trading
costs.

2. There exists a family of absolutely continuous martingale measures:
for all i in T and for all B in Fi; there exists an absolutely continuous
probability measure with bounded density P i;Bde�ned on (
; F ) such
that P i;B (B) = 1 and satisfying

EP i;B

[Zt j Fs] = Zs for all (s; t) with i � s � t:

3. There exists a family of nonnegative state price densities: for all i in
T and for all B in Fi, there exists a bounded random variable gi;B in
L1 (
; F; P ) with gi;B � 0; 6= 0 on B and such that for all (s; t) with
i � s � t

E
h
gi;BZt1A\B

i
= E

h
gi;BZs1A\B

i
for all A in Fs:

4. There exists a family of weakly positive7 continuous linear operators: let
Ri;B denote the set of random variables null outside B and belonging to
L1 (
; Fi; P ) : For all i in T; for all B in Fi; there exists a weakly positive
continuous linear operator �i;Bde�ned on RT;B and taking values in
Ri;B, such that there exists an event A in Fi with A � B and P (A) 6= 0
for which

�i;B
�
V �
T

�
= V �

i on A, for all � in W i;B:

Under Assumption A, these statements are all equivalent to:

5. There exists no free lunch in our model with �xed trading costs.

This means that the absence of free lunches in our model with �xed trad-
ing costs (or equivalently the absence of free lunches in the otherwise identical
frictionless model) is equivalent to the existence of a family of absolutely con-
tinuous martingale probability measures: absolutely continuous martingale
measures conditional on any possible future event. Note the di�erence with
the frictionless case where the absence of free lunches (a weaker condition
than the absence of free lunches in the model with �xed trading costs) is

7Let X denote the set of random variables on (
; F; P ) : A functional p de�ned on X
is said to be weakly positive if for all x in X such that P (x � 0) = 1; we have p (x) � 0:
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equivalent to the existence of an equivalent martingale probability measures
(a stronger condition since a family of absolutely continuous martingale mea-
sures can be derived from any equivalent martingale measure) as shown in
Harrison and Kreps (1979).

We can also obtain the slightly more general results in the spirit of Yan's
(1980) theorems ( also see Stricker (1990), among others, for an application
of Yan's theorem).

Theorem 3.3 Let K be a convex set in L1 (
; F; P ) containing 0: The fol-
lowing conditions are equivalent :

1. For all � in L1 such that � > 0; there exists a positive real number c
for which c� is not in K � L1

+:

2. There exists a positive real number c such that c1
 is not in K � L1
+:

3. There exists a random variable Z in L1 (
; F; P ) satisfying Z � 0; 6= 0
and sup�2KE [Z�] <1

We also have

Corollary 3.2 Let K denote K0;
 with

Ki;B =
n
V �
T � V �

i ; � 2 W i;B
o
= Lin

n
�s �

�
�Zt � �Zs

�
; �s is in P s;B; t � s � i

o

where for all s � i; �Zs = (Z1
s ; :::; Z

n
s ) and P s;B denotes the set of n -

dimensional random variables �s = (�1s ; :::; �
n
s ) that are Fs-measurable, null

outside B and before i; and such that �s � Zs is in L1 (
; Fs; P ) : Also, let

AB denote
n
f 2 L1

+; 9" > 0 such that f � " on Bg : The following condi-
tions are equivalent :

1. The intersection A
 \K � L1
+ is empty.

2. The random variable 1
 does not belong to K � L1
+:

3. There exists an absolutely continuous martingale measure for Z:
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This concludes our characterization of processes that admit an absolutely
continuous martingale measure - which relates to the Theorem of Asset Pric-
ing in securities markets models with �xed trading costs (note that the im-
plications 2) ) 1) in Theorems ?? and Corollary ?? are quite general and
can be useful in other contexts as well). The characterization of processes
that admit an equivalent martingale measure (or the Fundamental Theorem
of Asset Pricing in frictionless securities markets models) can be found in
Harrison and Kreps (1979), Yan (1980), Kreps (1981), Du�e and Huang
(1986), Stricker (1990) or Delbaen and Schachermayer (1994 and 1998), as
well as Back and Pliska (1988) and Dalang et al. (1980) for the discrete time
case.

We shall now exhibit an example of a process that admits a family of
absolutely continuous martingale probability measures but does not admit
any equivalent martingale probability measure.

Example (Delbaen and Schachermayer (1994)): Let W be a stan-
dard Wiener process, with its natural �ltration (Gt)0�t�1: We de�ne a local
martingale of exponential type by:

Lt = exp(�(f �W )t �
1
2
(
R t
0 f

2(u)du)) if t < 1; and
L1 = 0;

where f(t) = 1p
1�t : We de�ne the stopping time T by T = infft; Lt � 2g:

We then de�ne the price process St by:
dSt = dWt +

1p
1�tdt if t � T; and

dSt = 0 if t � T;
and the �ltration (Ft)0�t�1 = (Gmin(t;T ))0�t�1:

According to Delbaen and Schachermayer (1994), there exists a unique
probability measure Q that is absolutely continuous with respect to P and
makes the process S a martingale. It is given by dQ = LTdP: Since P [LT =
0] > 0; Q is not equivalent to P: Moreover, for all t < 1; the measures Q
and P are equivalent on Ft since the density LT is positive. It is now easy
to see that for any date t and for all event B at that date, there exists a
probability measure Qt;B given by dQt;B = LT 1B

E[LT 1B ]
dP such that Qt;B(B) = 1

and EQt;B

[SvjFu] = Su for all (u; v) with t � u � v:
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4 Pricing and viability with �xed costs

4.1 Admissible pricing rules

A contingent claim B to consumption at the terminal date T is a random
variable belonging to L1 (
; F; P ) : A contingent claim B is said to be at-
tainable (in the model without �xed cost) if there exists some frictionless
self �nancing strategy � in W 0;
 such that V �

T = B: Note that the set M of
all attainable contingent claims is a linear space. We shall now de�ne and
characterize pricing rules p (B) on M that are admissible.

De�nition 4.1 An admissible pricing rule on M is a functional p de�ned
on M , such that

1. p induces no arbitrage, i.e., it is not possible to �nd strategies �1,...,�n
in W 0;
, for which

Pn
i=1 p

�
V �i
T

�
� 0,

Pn
i=1 V

�i
T � 0 and one of the two

is nonnull.

2. p (B) � �s (B), where �s (B) := inf
n
V �
0 + c�0, � 2 S0;
, V �

T � B
o
:

Part 1 is the usual no-arbitrage condition. Part 2 says that an admissible
price for the contingent claim B must be smaller than its superreplication
price: if it is possible to obtain a payo� at least equal to B at a cost �s (B),
then no rational agent (who prefers more to less) will accept to pay more
than �s (B) for the contingent claim B: Note that since B is attainable by a
frictionless self �nancing strategy, and since the total trading costs incurred
by any strategy are bounded, there always exists at least a self �nancing (in-
clusive of transaction costs) strategy dominating B; i.e. B is also attainable
in our model with �xed trading costs.

The following Proposition characterizes the admissible pricing rules onM
through the use of the absolutely continuous martingale measures obtained
in Theorem ??.

Proposition 4.1 Under Assumption A and the assumption of NFL1, or
under the assumption of NAsFL, any admissible pricing rule p on M can be
written as

p (B) = EP � [B] + c (B) for all B in M

where P � is any absolutely continuous martingale measure and c(�B)
�

!�!1
0.
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This means that if B = V �
T then p(B) = V �

0 + c(B) since EP �(V �
T ) = V �

0

for any absolutely continuous martingale measure P �: Moreover, if p (�x) �
� [p (x)] for any real number � large enough, then the �xed cost c is non-
negative. And if there exists " > 0 , such that for any � large enough,
p (�x) � � [p (x)� "] , then the �xed cost c is greater than or equal to this
positive constant ". Notice that under Assumption A, i.e. if the cumulative
�xed costs incurred by any strategy are bounded by a positive real number
C, then c (B) := p (B) � EP � (B) � �s (B) � EP � (B) � C; for any abso-
lutely continuous martingale measure P �: Also, Proposition ?? implies that
p(�B)
�

!�!1 EP � [B] for any attainable contingent claim B; where P � is any
absolutely continuous martingale measure. This means that the unit price
of any attainable contingent claim B is equal to EP � [B] in the limit of large
quantities.

As usual, we say that the market is complete in the frictionless model if
any contingent claim is attainable. If the market is complete, there exists a
unique admissible pricing rule. However, in incomplete markets (i.e., if there
are some non attainable contingent claims), even in a frictionless model there
is no universal pricing concept. We can only �nd arbitrage bounds and the
pricing rules are sublinear8 lower semicontinuous functionals (see Jouini and
Kallal (1995a and 1999)). By analogy with the case of attainable contingent
claims, we de�ne an admissible pricing rule on the set of contingent claims
in the following way.

De�nition 4.2 A pricing rule on L1 (
; F; P ) is admissible if it is of the
form p (B) = � (B) + c (B) for all B in L1 (
; F; P ), where

1. � is a sublinear lower semicontinuous functional and c is such that
c(�B)
�

!�!1 0:

2. p (B) � �s (B), where �s (B) := inf
n
V �
0 + c�0, � 2 S0;
, V �

T � B
o

We then obtain the following characterization of the admissible pricing
rules.

8A functional � is sublinear if �(�x) = ��(x) and ê�(x + y) � �(x) + �(y) for all
contingent claims x; y and nonnegative real numbers �:
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Proposition 4.2 Under Assumption A and the assumption of NFL1; or
under the assumption of NAsFL, any admissible pricing rule p on L1 (
; F; P )
can be written as

p (B) = sup
P �2K

EP � [B] + c (B) for all B in M

where K denotes a convex subset of the set of all absolutely continuous mar-
tingale measures, and c is the �xed cost given in De�nition 6.

This means that any admissible sublinear lower semicontinuous functional
� can be written as the supremum of a subset of all continuous linear function-
als ~l, which lie below �, are weakly positive and such that ~l

�
V �
T

�
= V �

0 for all

� inW 0;
: It also means that p(�B)
�

!�!1 supP �2K EP � [B] for any contingent
claim B; where K is a convex subset of the set of absolutely continuous mar-
tingale measures. This means that the unit price of any attainable contingent
claim B must belong to an interval [� infP �2K EP � [�B] ; supP �2K EP � [B]] in
the limit of large quantities.

Note that since the absence of free lunch in our model with �xed trading
costs is weaker than the absence of free lunch in a frictionless model, these
theorems enable us to price contingent claims in a wider class of models. We
shall now turn to the study of the viability of such admissible pricing rules.

4.2 Viability

Agents are assumed to be characterized by their preferences on the space of
net trades R�X where X = L1 (
; F; P ). A pair (r; x) represents r units of
consumption today and x units of consumption tomorrow. Preferences are
modeled by complete and transitive binary relations � on R � X. In the
usual fashion, � denotes the strict preference de�ned from � : We also make
Assumption P: Preferences are assumed to satisfy the following three
requirements:

1. For all (r; x) 2 R � X; the set f(r0; x0) 2 R�X : (r0; x0) � (r; x)g is
convex.

2. For all (r; x) 2 R � X; the set f(r0; x0) 2 R �X : (r0; x0) � (r; x)g as
well as the set f(r0; x0) 2 R�X : (r; x) � (r0; x0)g are closed.
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3. For all (r; x) 2 R�X; r0 > 0 and x0 2 L1
+ such that there exists a real

number " > 0 with x0 � "; (r + r0; x) � (r; x) and (r; x + x0) � (r; x) :

The class of such preferences is denoted by A: Part 1 says that agents are
risk averse. Part 2 says that their preferences are continuous. Part 3 says
that agents prefer more to less.

A price system (M; p) is a subspace M of X and a linear functional
p on M: In the economy associated to this price system, agents can buy
and sell any contingent claim m 2 M at a price p (m) + c (m) in terms of
date 0 consumption where c(m) is a bounded nonnegative �xed trading cost
satisfying c(0) = 0 and c(m) > 0 if m 6= 0:

De�nition 4.3 A price system ( M; p) is said to be viable if there exist some
binary relation � satisfying Assumption P and (r�; m�) in R�M such that
c (m�) + r� + p (m�) � 0 and

(r�; m�) � (r;m)

for all (r;m) in R�M such that c (m) + r + p (m) � 0:

This de�nition is analogous to the de�nition in Harrison and Kreps (1979)
and Kreps (1981). It means that a price system is viable if there is some agent
with preferences satisfying Assumption P who can �nd an optimal net trade
subject to his budget constraint. Note that if we assume that the �xed cost
function c is subadditive, i.e. c(m1+m2) � c(m1)+c(m2) for allm1; m2 2M;
a natural assumption to make about �xed costs, then a price system is viable
if and only if there are some agents with preferences satisfying Assumption
P for whom (0; 0) is an optimal trade, 9 i.e. who are happy with their initial
endowment. This means that a price system is viable if and only if it is
compatible with economic equilibrium.

9Indeed, suppose that there exists an agent with preferences � satisfying Assumption
P and such that (r�;m�) is an optimal net trade (i.e. c (m�) + r� + p (m�) � 0 and
(r�;m�) � (r;m) for all ê (r;m) in R � M such that c (m) + r + p (m) � 0): De�ne
the preferences ~� by (r1;m1) ~� (r2;m2) if (r1 + r�;m1 +m�) ~� (r2 + r�;m2 +m�) : They
satisfy Assumption P: Also note that c (0) + 0 + p (0) = 0: Now suppose that c ( ~m) + ~r +
p ( ~m) � 0 and (~r; ~m) ~� (0; 0) ; i.e. (~r + r�; ~m+m�) � (r�;m�) : We have c ( ~m+m�) + ~r+
r�+p ( ~m+m�) = [c ( ~m+m�)�c ( ~m)�c (m�)]+c ( ~m)+~r+p ( ~m)+c (m�)+r�+p (m�) �
c ( ~m+m�)� c ( ~m)� c (m�) � 0 by subadditivity of the �xed cost functional êc:
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De�nition 4.4 A free lunch for a price system (M; p) is a sequence (mn)n2N
in M , such that there exist sequences (rn)n2N , (x

n)n2N in L1 (
; F; P ) con-
verging respectively to r � 0 and x � 0 with r+ x 6= 0; for which for all n in
N

mn � xn and c (mn) + rn + p (mn) � 0:

We shall now consider the case where M =
n
V �
T ; � in W

0;

o
; the set

of attainable contingent claims in the frictionless economy, and where the
pricing rule is the linear functional p de�ned on M by p

�
V �
T

�
= V �

0 for all

� in W 0;
. As we have seen in Proposition ??, if we want a price system
(M;�) to be compatible with the assumption of no arbitrage - which must
be the case for viable price systems as well as for price systems that admit no
free lunch - then we must have � = p: We shall now investigate the converse,
i.e. the conditions under which this price system is a viable one and the
conditions under which it admits no free lunch. But �rst let us have:

De�nition 4.5 A free lunch from time 0 in the frictionless securities mar-
ket model is a sequence (�n)n2N of simple strategies such that there exist
sequences (~xn)n2N of random variables belonging to L1 (
; F; P ) and (~rn)n2N
in RN converging respectively to x � 0 in L1 (
; F; P ) and r > 0 in R for
which for all n,

�n is in W 0;
, V �n

0 � �~rn and V �n

T � ~xn:

We then have

Theorem 4.1 The following conditions are equivalent :

1. (M; p) is viable.

2. (M; p) admits no free lunch.

3. There exists a weakly positive continuous linear functional � on L1 (
; F; P )
such that � jM= p and such that for all f in A = ff 2 L1; 9" > 0
such that f � " g ; we have � (f) > 0:

4. There is no free lunch from time 0.
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For each date i and each event B in Fi; we shall de�ne a price system�
M i;B; pi;B

�
where M i;B is a subspace of X and pi;B a linear functional on

M i;B. The interpretation is that in this economy, at that date i and in that
event B; agents are able to buy and sell some contingent claims m in M i;B

at a cost pi;B (m) + ci (m) in date i, event B consumption. We consider

M i;B =
n
V �
T ; � in W

i;B
o
and pi;B de�ned on M i;B by pi;B

�
V �
T

�
= V �

i and we
obtain

Theorem 4.2 The following conditions are equivalent :

1. For all i in T; for all B in Fi;
�
M i;B; pi;B

�
is viable.

2. For all i in T; for all B in Fi;
�
M i;B; pi;B

�
admits no free lunch.

3. There is no free lunch in our securities markets model with �xed trading
costs.

Therefore, the price system we have considered is viable and admits no
free lunch if and only if there is no free lunch in our model with �xed trading
costs.

5 Conclusion

In this paper, we have shown that a securities markets model with �xed trad-
ing costs admits no free lunch if and only if there exists a family of absolutely
continuous probability measures for which the normalized (by a numeraire)
price processes are martingales, conditional on any possible future event.
The main di�erence with the frictionless case is that the martingale mea-
sures only need to be absolutely continuous instead of equivalent (but we
need a whole family of martingale measures). Since the absence of arbitrage
opportunity or free lunch is a weaker condition in the presence of �xed trad-
ing costs than in the frictionless case, this result will allow future research
to consider a wider class of models. The transaction costs are assumed to be
�xed in the sense that they are bounded (regardless of the transaction size).
This is compatible with �xed brokerage fees, brokerage arrangements where
marginal fees go to zero beyond a given volume (a common arrangement in
the industry), �xed investment taxes to gain access to a market, operational
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and processing costs, �xed costs involved in setting up an o�ce and informa-
tion technology, and the opportunity cost of looking at a market or of doing
a speci�c trade. We also show that the only arbitrage free pricing rules on
the set of attainable contingent claims are those that are equal to the sum
of an expected value with respect to any absolutely continuous martingale
measure and of a bounded �xed cost functional. Moreover, these pricing
rules are the only ones to be viable as models of economic equilibrium, i.e.
such that there exist some rational agents who are happy with their initial
endowment - and hence for whom supply is equal to demand.
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Appendix

Proof of Proposition ??, We will write EAO for existence of an arbi-
trage opportunity and NAO for no arbitrage opportunity. We will denote a
net gain arbitrage opportunity with �xed costs by AO3 and a frictionless "-
net gain arbitrage opportunity by AO4. We shall prove that the four notions
of NAO are equivalent. We �rst treat the case where the �xed costs do not
depend upon the strategy.

1. NAO3 , NAO1: EAO1 ) EAO3 is immediate. EAO3 ) EAO1: we
consider the strategy ~� null before i and outside B such that for all
t � i;

~�0t = �0t +
�
�ci � V �

i

�
on B and ~�kt = �kt for all k 6= 0:

It is easy to check that ~� is in Si;B; V
~�
i + ci = 0 and V

~�
T � 0; 6= 0 on B.

2. NAO2 , NAO1: EAO1 ) EAO2: we consider the strategy ~� null
before i and outside B such that

~�i = �i and for all t > i

~�0t = �0t �
tX

j=i+1

(�j � �j�1) � Zj on B and

~�kt = �kt for all k 6= 0.

Then ~� is in W i;B, V
~�
T � 0 and as ci > 0, we have V

~�
i < 0 on B.

EAO2 ) EAO1: notice that, by considering some B0 � B, one can
replace the condition V �

i < 0 on B by either the condition \V �
i � 0; 6= 0

on B" or by the condition \there exists a positive real number " such
that V �

i � �" on B" because V �
i is Fi�measurable. So there exists � �

1 satisfying �V �
i � �C where C =

PT
k=iCk and Ck = sup!2Bck (!) :

We consider the strategy ~� null before i and outside B such that for all
t � i

~�0t = ��0t + C �
tX

j=i

cj and

~�kt = ��kt for all k 6= 0:

Then ~� is in Si;B and satis�es V
~�
i + ci = �V �

i + C � 0 on B; V
~�
T � 0:
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3. NAO2 , NAO4: EAO2 ) EAO4 is easy with the technical remark
made for the proof of EAO2 ) EAO1. EAO4 ) EAO2: we consider
the strategy ~� null before i and outside B and such that for all t � i

~�0t = �0t � V �
i � "=2 on B and

~�kt = �kt for all k 6= 0 :

Then ~� is inW i;B and satis�es V
~�
i = �("=2) < 0 on B. We have V

~�
T = 0

outside B; and V
~�
T 1B = (V

~�
T � V

~�
i )1B + V

~�
i 1B = (V �

T � V �
i )1B� ("=2)1B

so V
~�
T � "=2 on B and V

~�
T � 0.

If the costs depend upon the strategy, then EAO1 ) EAO3 is immediate.
For EA03 ) EAO4, we easily get the existence of a strategy � 2 W i;B,
V �
T � V �

i � ci on B. Then there exists a > 0, such that for B0 � fci > ag,
P (B0) > 0 and �0 � �1B0 is an AO4. The proof of EAO4 ) EAO2 remains
the same as above, as well as EAO2 ) EAO1, replacing C =

PT
k=iCk by

C 0 =
PT

k=iC
�
k .2

Proof of Proposition ?? We adopt the same notations as in the proof
of Proposition ??.

1. NFL3 , NFL1: We shall treat here the case where the �xed cost
do not depend upon the strategy. The case where the cost depends
upon the strategy is an immediate extension, replacing ci with c

�n

i each
time it is needed. EFL1 ) EFL3: There exists a sequence (�n)n�0
in Si;B for which V �n

T �
�
V �n

i + ci
�
� xn + (kni � ci) that converges to

x + (ki � ci) � 0; 6= 0. For EFL3 ) EFL1, we consider the sequence
~� of strategies ~�n null before i and outside B such that for all n in N;
for all t � i

(~�n)0t = (�n)0t +
�
�ci � V �n

i

�
on B and

(~�n)kt = (�n)kt for all k 6= 0

It is then easy to check that for all n in N; ~�n is in Si;B, V
~�n

i + ci = 0

and V
~�n

T = V �n

T �
�
V �n

i + ci
�
� xn ! x � 0; 6= 0 on B. Notice that

in the case where the cost depends upon the strategy, we use the fact
that c� = c�

0

when �� = �0.
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2. NFL2 , NFL4: EFL2 ) EFL4 is immediate since we can indif-
ferently assume r � 0; 6= 0 or r > 0 or there exists a positive real
number " such that r � " by considering for all n in N the random
variables ~rn = rn1r>0 and r̂

n = rn1r�"; and the following corresponding
strategies ~�n and �̂n such that for all t; ~�nt = �nt 1r>0; �̂

n
t = �nt 1r�". For

EFL4 ) EFL2; we consider the sequence ~� of strategies ~�n null before
i and outside B and such that for all n in N; for all t � i;

(~�n)0t = (�n)0t � V �n

i � "=2 on B and

(~�n)kt = (�n)kt for all k 6= 0:

Then for all n in N , ~�n is in W i;B and satis�es (V
~�n

T � V
~�n

i )1B =

(V �n

T � V �n

i )1B so V
~�n

T � xn ! "=2 on B: As V
~�n

i = �"=2 < 0 on B

and V
~�n

T = 0 outside B, this completes the proof.

Proof of Corollary ?? immediate using Proposition ??.

Proof of Lemma ??

1. For NFL2 ) NFL1, we prove the implication NFL2 ) NFL3, which
is immediate using the fact that ci > 0 (or that c�

n

i � ci > 0 in the
case where the cost depends upon the strategy) and changing a strategy
belonging to Si;B into a strategy belonging to W i;B by proceding like
in the proof of Proposition ??.

2. Under Assumption A, NFL1 ) NFL2: suppose there is a FL2; in the
form of a sequence (�n)n2N of simple strategies like in De�nition ??.
As we have seen in the proof of Proposition ??, we can indi�erently
assume that r � 0; 6= 0 or r > 0 or there exists a positive real number
" such that r � " by considering for all n in N the random variables
~rn = rn1r>0 and r̂

n = rn1r�"; and the following corresponding strategies
~�n and �̂n such that for all t; ~�nt = �nt 1r>0; �̂

n
t = �nt 1r�". So there exists a

real number � � 1 such that �r > C where C denotes the real number
in the additional Assumption A:We consider a sequence ~� of strategies
~�n such that

~�n is in Si;B

(~�n)kt = �(�n)kt for all k 6= 0 and for all t � i

(~�n)0i = �(�n)0i + C � ci:
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We then have for all n;

V
~�n

i = �V �n

i + C � ci

so V
~�n

i + (�rn � C + ci) � 0 with (�rn � C + ci) � ci ! �r � C > 0:
We can choose ~� such that for all n

V
~�n

T � �V �n

i � �xn with �xn ! �x � 0

so the sequence ~� constitutes a free lunch with �xed costs.

3. NAsFL, NFL2: EFL2 ) EAsFL: here again, we can assume that
r is (strictly) greater than some positive real number " on B. The �xed
cost at each date is supposed to be bounded (ct < Ct in the case where
the �xed cost does not depend on the strategy and c�t < Ct in the case
where the �xed cost depends upon the strategy). Then for all n, there
exists �n such that �n" is greater than the cumulative �xed costs of
any simple strategy with the same trading dates as �n so that for all
n, there exists a strategy ~�n in Si;B for which

V
~�n

i = �nV
�n

i + �n"� Ci

V
~�n

T � �nV
�n

T � �nx
n.

We get

V
~�n

i + c
~�n

i

�n
= V �n

i + "+
c
~�n

i � Ci

�n
� �rn + "! �r + " < 0

V
~�n

T

�n
� xn ! x

EAsFL) EFL2: by investing at each date the �xed cost in the risk-
less asset, we obtain a sequence (~�n)n�0 of strategies in W i;B. Letting
for all n, �0n := �n

�n
, we obtain a sequence (�0n)n�0 of strategies in W

i;B

such that

V �0n

i � �"ni ! �"i < 0 on B

V �0n

T � xn ! x � 0
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Proof of Theorem ?? First notice that the existence of such a family
of probability measures is equivalent to the existence of a family of random
variables denoted by gi;B in L1 (
; F; P ) satisfying gi;B � 0; 6= 0 on B and

such that for all (s; t) with i � s � t and for all A in Fs; E
h
gi;BZt1A\B

i
=

E
h
gi;BZs1A\B

i
: the equivalence is easily obtained by taking gi;B = dP i;B=dP

and by de�ning P i;B by

P i;B (A) =
E
h
gi;B1A\B

i

E [gi;B1B]
for all A in Fs:

1) Assume �rst the existence of such a family of martingale measures and
of a sequence (�n)n2N of strategies such that there exist i in T and B in Fi

for which for all n, �n is in W i;B. Let
�
i = tn0 ; t

n
1 ; :::; t

n
Nn

= T
�
denote the

trading dates of the simple strategy �n. Then using the de�nition of V �n , the
fact that �n is a frictionless self �nancing strategy, the martingale property
of P i;B and the fact that �n is null outside B, we have for all n;

EP i;B
h
V �n

T j Fi
i

= EP i;B

[�nT � ZT j Fi]

= EP i;B
h
�ntn

Nn�1
� ZT j Fi

i

= EP i;B
h
�ntn

Nn�1
� EP i;B

h
ZT j Ftn

Nn�1

i
j Fi

i

= EP i;B
h
V �n

tn
Nn�1

j Fi
i

so that for all n,

EP i;B
h
V �n

T j Fi
i
= ::: = EP i;B

h
V �n

i j Fi
i
= V �n

i on B a:s: P i;B

and
EP i;B

h
(V �n

T � V �n

i )1B j Fi
i
= 0:

Then for all A in Fi; for all n in N , E
h
gi;B(V �n

T � V �n

i )1B\A
i
= 0. Now

it is impossible to have V �n

T � V �n

i � xn with xn!L1x � " on B be-

cause this would lead to 0 = E
h
gi;B(V �n

T � V �n

i )1B
i
� E

h
gi;Bxn1B

i
and

E
h
gi;Bxn1B

i
! E

h
gi;Bx1B

i
> 0 -because gi;B is assumed to be bounded-:

there exists no frictionless "-net gain free lunch, which using Proposition ??,
completes the proof of the �rst implication.
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2) Conversely, assume there exists no frictionless strong free lunch. As
we have seen in Corollary ??, if Ci;B = Ki;B � L1

+ and

AB =
n
f 2 L1

+; 9" > 0 such that f � " on B
o
;

the condition of no frictionless strong free lunch is equivalent to the condition
that for all i in T and for all B in Fi;

Ci;B \ AB = ;:

For each �xed (i; B), we apply a strict separation theorem in L1 (
; F; P )
to the closed convex set Ci;B and the compact set f1Bg to �nd gi;B in
L1 (
; F; P ) and two real numbers � and � with � < � such that

gi;B jCi;B� � < � <
D
1B; g

i;B
E
:

The random variable gi;B is bounded from above on Ci;B and therefore on
L1
�, so g

i;B � 0: As 0 belongs to Ci;B and Ci;B is a convex cone, we can take

� = 0: Then
D
1B; g

i;B
E
> 0 so gi;B 6= 0 on B. As 0 belongs to L1

+; we have

gi;B jKi;B� 0 and we even get the equality because Ki;B is a vector space. For
all s � i, for all A in Fs, we consider for all k in f1; :::; ng, the n -dimensional
random variable �s;A;k 2 P s;B given by

�ks;A;k = 1A\B

�ls;A;k = 0 for all l 6= k:

As Ki;B =Lin
n
�s �

�
�Zt � �Zs

�
; �s 2 P s;B; i � s � t

o
, we get that for all k in

f0; :::; ng, for all (s; t) with i � s � t and for all A in Fs, we have

Zk
t 1A\B � Zk

s 1A\B 2 Ki;B.

Then for all (s; t) with i � s � t, for all A in Fs we obtain

E
h
gi;B (Zt � Zs) 1A\B

i
= 0

or E
h
gi;BZt1A\B

i
= E

h
gi;BZs1A\B

i
:

Proof of Theorem ?? 1)) 2): see Theorem ??.
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2)) 3): consider gi;B = dP i;B=dP:
3) ) 4): let i in T and B in Fi be �xed. We will write g for gi;B and � for
�i;B: We can assume g = 0 outside B. As g � 0; 6= 0 on B; the same is true
for the random variable E [g j Fi] and there exists a positive real number �
such that P (E [g j Fi] � �) > 0: Let A = fE [g j Fi] � �g : Then A belongs
to Fi; A � B and P (A) 6= 0: We de�ne an operator � on RT;B by

� (C) =
E [gC j Fi]

E [g j Fi]
1A for all C 2 RT;B.

The linear operator � is linear, continuous and takes values in Ri;B. If C � 0;
gC � 0 so � is weakly positive. Only the last condition remains to be checked.

Notice �rst that for all i � s � t, E [gZt j Fs] 1A = ZsE [g j Fs] 1A. Now,
for all � in W i;B with trading dates denoted by (i = t0; t1; :::; tN = T ), we
have

�
�
V �
T

�
=

E [g�T � ZT j Fi]

E [g j Fi]
1A

=
E
h
�TN�1 � E

h
gZT j FTN�1

i
j Fi

i

E [g j Fi]
1A

=
E
h
V �
TN�1

E
h
g j FTN�1

i
j Fi

i

E [g j Fi]
1A

so �
�
V �
T

�
= �

�
V �
TN�1

�
= ::: = V �

i 1A:

4)) 1): consider a sequence (�n)n2N of strategies such that there exist i in
T and B in Fi such that for all n; �n is in W i;B: For all n in N; we then have
1A�

i;B
�
V �n

T � V �n

i

�
= 0: Now it is impossible to have V �n

T � V �n

i � xn with

xn!L1x � " on B because this would lead to 0 = 1A�
i;B

�
V �n

T � V �n

i

�
�

1A�
i;B (xn) because �i;B is linear and weakly positive; as �i;B is continuous,

1A�
i;B (xn) ! 1A�

i;B (x) � 1A�
i;B ("1A) � "1A because 1A�

i;B (1A) = 1A: a
contradiction.
1), 5): see Lemma ??

Proof of Theorem ?? 1)) 2) is immediate.
2) ) 3): using a strict separation theorem exactly like in the proof of our
main theorem, we get that there exists a random variable Z in L1 (
; F; P )
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such that

� 2 K;� 2 L1
+ sup
�2K;�2L1

+

E [Z (� � �)] < cE [Z1
] .:

As 0 belongs to K; replacing � by a� with a � 0; we get Z � 0: We have
Z 6= 0; because if Z = 0; then cE [Z1
] = 0 and we would get 0 < 0: Taking
� = 0; we obtain sup�2KE [Z�] < cE [Z1
] <1:
3) ) 1): Suppose 1) does not hold; then there exists � in L1; � > 0 such
that for all n in N�; n� is in K � L1

+. As n� is in K � L1
+, for all n in N�;

there is a sequence (�pn)p2N such that n� = limp �
p
n and for all n; for all p;

there is �pn in K satisfying �pn � �pn: Then E [Z�pn] � E [Z�pn] and as Z is
uniformly bounded, E [Z�pn]!pE [Zn�] = nE [Z�] ! 1 so condition 3) is
not satis�ed.

Proof of Corollary ?? 1) ) 2) is obvious. 2) ) 3) and 3) ) 1) are in
the proof of our main theorem.2

Proof of Proposition ??: we have assumed that there is no arbitrage in
the primitive market, so that if two frictionless self �nancing strategies � and
�0 are such that V �

T = V �0

T , then V �
0 = V �0

0 . We de�ne onM a linear functional

l given by l
�
V �
T

�
= V �

0 . Now it is easy to see that for all B in M ,

lim
�!+1

�s (�B)

�
= lim

�!+1

��s (��B)

�
= l (B)

Since there is no arbitrage, we must have p (B) � �p (�B) so that

��s (�B) � �p (�B) � p (B) � �s (B) ,

and the price functional p can be written as the sum of a continuous lin-
ear functional and a �xed cost, i.e., for all B, p (B) = l (B) + c (B) where
c(�B)
�

!�!1 0.
If we assume that p (�x) < � [p (x)], then the �xed cost is nonnegative;

moreover, if we assume that there exists " > 0, such that for a large enough
�, p (�x) < � [p (x)� "], then the �xed cost c is greater than or equal to this
positive constant ". Notice that c (B) := p (B)� l (B) � �s (B)� l (B) � C.

Consequently, the fair price p (B) associated with any attainable contin-
gent claim B is given by

p (B) = EP � [B] + a �xed cost
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where P � is any absolutely continuous martingale measure.

Proof of Proposition ?? Since � is a sublinear lower semicontinuous
functional de�ned on a vector space, it can be written as the supremum of
all continuous linear functionals lying below it,

� (x) = sup
~l��;~l cont. lin. funct.

~l (x) .

We �rst show that ~l
�
V �
T

�
= V �

0 for � 2 W 0;
. Since ~l + c lies below the

superreplication price, it satis�es ~l
�
V �
T

�
+ c

�
V �
T

�
� V �

0 + C, so that for all

positive real number �,
~l(V ��

T )
�

+
c(V ��

T )
�

�
V ��
0

�
+ C

�
and letting � go to 1,

~l
�
V �
T

�
� V �

0 . In the same way, we obtain ~l
�
�V �

T

�
� �V �

0 , which gives us

~l
�
V �
T

�
= V �

0 :

It is easy to see that ~l is weakly positive. Indeed, for all B � 0, �s (B) � 0
so that ~l (B) � 0 and for all B � 0, ~l (B) � 0.

According to the following Lemma, there is a one-to-one correspondence
between absolutely continuous martingale measures with bounded density P �

and weakly positive continuous linear functionals ~l such that ~l
�
V �
T

�
= V �

0 .

The functional � can therefore be written in the form � (x) = supP �2K EP � [x]
where K denotes a convex subset of the set of all absolutely continuous
martingale measures.

Proof of the Lemma Let P � be such that for all B in F; P � (B) =
p (1B). As there exists a strategy in W 0;
 with terminal value V �

T = 1

and initial value V �

0 = 1; we have p (1
) = 1; as p is assumed to be weakly
positive and sublinear, P � takes values in [0; 1]; as -according to the remark
preceding the lemma- p is continuous and linear, P � is a probability measure.
As p (0) = 0; we get P � << P: As p is a continuous linear functional on
L1 (
; F; P ) ; there exists g in L1 (
; F; P ) such that for all b in L1 (
; F; P ),
p (b) = E [gb] : Then EP � [b] = E [gb] = p (b) so for all strategy � in W 0;
;

EP �
h
V �
T

i
= p

�
V �
T

�
= V �

0 so for all (s; t) with s � t;

EP � [(Zt � Zs) 1A] = 0 for all A in Fs

or Z is a P ��martingale.
Conversely let p be de�ned by p (b) = EP � [b] for all b in L1 (
; F; P ) :

Then p is linear, continuous because dP �=dP belongs to L1 (
; F; P ) ; weakly
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positive because, as P � is absolutely continuous with respect to P , we have
g = dP �=dP � 0. Finally, for all strategy � in W 0;
 , p

�
V �
T

�
= EP �

h
V �
T

i
=

V �
0 :
Proof of Theorem ?? (3), (4) is equivalent to (1), (4) for i = 0 and
B = 
 in Theorem ??.
(2) , (4): (4) ) (2): we take ~rn = rn + " that converges to r + " > 0 and
~xn = xn: (2)) (4): there is a real number � � 1 such that �r > C: We get

V ��n

0 + c
�
V ��n

T

�
� V ��n

0 + C � C � �~rn with C � �~rn ! C � �r < 0 and

V ��n

T � �~xn with �~xn ! �x � 0 so that
�
V ��n

T

�
n2N is a free lunch for (M; p).

(1), (3): (1)) (4): suppose there is a free lunch (�n)n2N : we can assume
V �n

T � ~xn + " for some " > 0; V �n

0 � �C. Since (r�; m�) is optimal, and

r� + c
�
V �n+��

T

�
+ V �n+��

0 � r� + V ��

0 + V �n

0 + C � �c
�
V ��

T

�
� 0, we have

(r�; m�) �
�
r�; V �n+��

T

�
. So for all n, (r�; m�) �

�
r�; ~xn + "+ V ��

T

�
because

� is increasing and V �n

T � ~xn+ " which gives, using the fact that preferences
are continuous, (r�; m�) � (r�; x+ "+m�): a contradiction.
(3) ) (1): We de�ne � by (r; x) � (r0; x0) , r + � (x) � r0 + � (x0). Then
one can show that � belongs to A and that (0; 0) is optimal.

Proof of Theorem ?? We proceed exactly like in the proof of Theorem
??
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