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The Optimal Dynamic Investment Policy

for a Fund Manager

Compensated with an Incentive Fee

Abstract

This paper solves the investment problem of a risk averse fund manager compensated with
an incentive fee, a call option on the assets he controls. The optimal policy leads to all-or-
nothing outcomes: the manager ends up either deep in or deep out of the money. The optimal
trading strategy involves dynamically adjusting asset volatility as asset value changes. As
assets grow large, the manager moderates portfolio risk. For example, if the manager has
constant relative tisk aversion, volatility converges to the Merton constant. On the other
hand, as asset value goes to zero, portfolio volatility goes to infinity.






1 Introduction

Fund managers and other intermediaries paid with convex compensation schemes play
an important role in financial markets. This paper provides a rigorous description
of the effect of option—l‘ike compensation on these managers’ investment policies. 1
present the optimal dynamic investment policy for a risk averse fund manager who
receives an incentive fee that he cannot hedge in his personal account. This result
represents the first step in determining equilibrium asset prices in an economy where
option-compensated managers determine trading strategies for other investors. The
solution technique, concavifying the objective function, applies to other problems in
which option payoffs appear in the objective function.

An incentive fee is a share, for example, 15%, in the positive part of the returns
on the client’s portfolio net of some benchmark. Such a fee structure is typical for
hedge fund and pension fund managers. Grinblatt and Titman (1989) study the fund
manager’s investment problem under the assumption that the manager can hedge the
fee in his personal portfolio, so that his objective is to maximize the fee’s market value.
With this objective, the manager wants to maximize volatility and the problem has no
solution. By contrast, this paper assumes that the manager cannot hedge the fee in
his private account because shorting securities that he purchases on his client’s behalf
is a breach of fiduciary duty. This means the manager’s objective is to maximize his
expected utility of the incentive fee.

The paper begins with the investment problem of manager who earns an incentive
fee only once. 1 cast the problem in a standard continuous-time financial market and
use martingale methods to find the unique optimal investment policy for a manager
with general concave utility and a general benchmark portfolio.! Under the optimal

policy, the fund has an all-or-nothing payoff, either in the money or zero. The policy is

1Starks (1987) studies the portfolio manager’s problem in a mean-variance framework and concludes
that an asymmetric incentive fee will induce the manager to choose a higher beta than he would choose

with a symmetric fee.



also a long-shot in the sense that the probability of bankruptcy is high, but the payoff,
if in the money, is in the money by some strictly positive amount.

For the cases of constant relative and absolute risk averse utility functions with
either the riskless asset or the market portfolio as benchmarks, I provide closed-form
expressions for the optimal trading strategy. Rather than maximizing portfolio risk, the
manager dynamically adjusts volatility in response to changes in the asset value over
time. As the manager accumulates profits, so that he begins gambling with his own
money, he moderates portfolio risk. For example, if the manager has constant relative
risk averse utility and the benchmark is riskless, volatility converges to the Merton
(1969, 1971) constant as fund value grows large. On the other hand, as bankruptcy
approaches, portfolio volatility approaches infinity.

Consistent with these dynamics, Brown, Harlow, and Starks (1996) find evidence in
the mutual fund industry that managers with relatively poor performance in the first
half of their performance evaluation period increase fund volatility in the second half
of the period more than managers who have done well. While, in a given year, mutual
fund managers typically earn a fixed proportion of initial asset value, Sirri and Tufano
(1992) show that new money tends to flow into winning funds faster than old money
flows out of losers, making mutual fund managers’ long run compensation convex in
fund performance even though there is no explicit incentive fee. Similarly, Chevalier
and Ellison (1995) estimate a nonlinear relationship between one year’s performance
and the next year’s flow of new money for a large set of mutual funds and find that,
for young funds, the function is relatively flat for moderately poor performance and
then increasing for better performance. They conclude that this provides incentives
for funds with moderately poor performance to gamble to recover losses. Then they
study the relationship between performance from January to September and changes in
portfolio riskiness from September to December and find that funds that are somewhat
behind do tend to increase risk.

Finally, the paper solves the multi-period investment problem of a manager with



constant relative risk aversion who earns a new incentive fee every year until retirement.
In any given year prior to the last, the optimal investment policy limits the downside
risk, and thus forgoes some upside potential, in order to proteét the value of future
incentive fees. Nevertheless, the policy is one of extreme outcomes: the manager’s
option finishes either deep in the money, or deep out of the money.

The paper proceeds as follows. Section 2 presents the single-period model. Sec-
tion 2.1 describes the manager’s preferences and opportunity set, section 2.2 uses mar-
tingale methods to transform the manager’s dynamic trading problem strategy into
a static problem of choosing aﬁ optimal random terminal portfolio value, section 2.3
solves the transformed problem, and sections 2.4 and 2.5 give examples of the optimal
trading strategy. Section 2.6 explores implications of the results for contract theory.

Section 3 presents the multi-period model, and section 4 concludes.

2 One-Period Model

At time zero, the client hires the manager for a fixed length of time T', and agrees to pay
him an incentive fee. The manager’s total terminal wealth, Y, is equal to his incentive
fee plus a constant, K, that includes any fixed fees and personal wealth. Letting X,

represent fund value and B; represent the value of a benchmark portfolio at time ¢,

Y=C¥(XT—BT)++K s (1)

where 0 < « < 1. The manager chooses an investment policy to maximize his expected

utility of terminal wealth.

2.1 Assumptions

The manager’s utility function U is strictly increasing, strictly concave, at least twice
continuously differentiable, and defined on a domain containing (0,00). U" is non-

decreasing and U’(W) approaches zero as W approaches infinity. Consequently, the



function I = U'~! is a well-defined, strictly decreasing, convex, continuously differ-
entiable function from (0,00) onto a range containing (0, 00). For example, both the
constant absolute and relative risk averse classes of utility functions satisfy these hy-
potheses.

The financial market consists of a riskless asset with interest rate r, and n risky

assets. The risky asset prices, P;,i = 1,...,n are diffusion processes governed by the
equations
dP;
?'t- = (r+ ) dt + ol dWt
it

where y; € R and o; € R™ are constants and W is standard n-dimensional Brownian
motion defined on a complete probability space (Q, F,P). Let u = (p1,..., ) € R,
let o be the matrix whose ith row is o/, and assume that o is nondegenerate. Let
{F.} denote the P-augmentation of the filtration generated by the Brownian motion;
F, represents the manager’s information at time 2.

A trading strategy for the manager is an n-dimensional process {r,:0<t < T}
whose ith component, ;, is the value of the holdings of risky asset ¢ in the portfolio
at time ¢. An admissible trading strategy, =, must be progressively measurable with
respect to {F;}, must prevent fund value from falling below zero, and must satisfy
JT||mel|? dt < oo, a.s. Under an admissible trading strategy , portfolio value evolves

according to

dX, = (rX; + mp)dt + mo dW, . (2)
The benchmark portfolio value, B;, is a geometric Brownian motion that can be
replicated with a self-financing trading strategy involving the market securities:

— = (r+ngp)dt + mgo dWt, (3)

where g is a constant known to the manager. For example, the most typical bench-
mark is cash: 7z = 0. Another benchmark of interest is the market portfolio, repre-

sented here as the mean-variance efficient portfolio: 75 = (c0’) ™ .



2.2 The Manager’s Investment Problem

The manager’s dynamic problem is to choose an admissible trading strategy for the

fund to maximize his expected utility of terminal wealth:

mgx EU(CY(XT - BT)+ + K)
subject to  dX; = (rX; + mp) dt + mo dW,
and X, >0Vtel0,T]. (4)

Using martingale methods, I recast (4) as a static problem of choosing an optimal

terminal fund value:?

max EU(a(XT - Br)" + K)
T

subject to Elr Xt £ Xo

and XT Z 0. (5)

where (; is the “pricing kernal” or “state price density” defined by (: = e=mt=0"Welelf*e/2

and 0 = o7 p.

The Market Value of the Incentive Fee

We know from first principles that the convexity of the incentive fee makes risky strate-
gies relatively more attractive to the manager. This section develops an expression for
the market value of the incentive fee that quantifies this effect simply and illuminates
the key difference between the manager’s problem and the standard investment prob-
lem. The market value expression also has implications for the efficiency of the contract
explored in section 2.6.

Observe that under an optimal policy, Xr € {0} U (Br,00), a.s.: whenever Xt

takes on values in (0, Br), it uses resources without adding to utility, so an optimal

2See, for example, Harrison and Kreps (1979), Harrison and Pliska (1981), Pliska (1986), Karatzas,
Lehoczky, and Shreve (1987), and Cox and Huang (1989) for the development of these methods and

their application to optimal portfolio choice. See also the review article Karatzas (1989).
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choice cannot do so with positive probability. In addition, an optimal policy satisfies
the budget constraint in problem 5 with equality. These necessary conditions have
implications for the market value of the incentive fee. By the market value of the
incentive fee a(Xr — Br), ] mean the initial value of a self-financing trading strategy
that replicates it. It is well known that this value can be expressed as E{e T a(Xr —
Br)*}, where P is the usual equivalent martingale measure defined by % = e T{r.
The proposition below simplifies this expression.

The proposition makes use of another equivalent probability measure, PEB, defined
by j—;;— = %fCT- Whereas, under the usual martingale measure P, asset prices are
martingales when measured with a riskless money market account as numeraire, under
the alternative measure PB, asset prices are martingales when measured with the
benchmark portfolio as numeraire. For example, if the benchmark portfolio is the
reciprocal of the pricing kernal, a representation of the market portfolio, then PB = P,

the true probability measure.

Proposition 1 If X7 € {0}U(Br,0), a.s., E{e7TXr} = Xo, and E{e~"TBr = Bo},
then
B{eTa(Xr = Br)*} = a(Xo — Bo+ BoP?{Xr = 0}) . (6)

Proof
E{e~Ta(Xr — Br)*} = E{e 7 Ta(X1 — Br)lix;z>Br}} » (7)

where 14 = 1 whenever A occurs and 14 = 0 otherwise.
E{C_TTXTl{XT>BT}} = E{e—TTXT} = Xp , (8)

E{e_TTBTl{xT>BT}} = BOPB{XT > Br}, (9)

and the result follows.

In addition, when the assets have the all-or-nothing terminal distribution described

above, the manager’s terminal wealth Y from equation 1 is invertible for the terminal



fund value X7: Y =K => Xr=0and Y > K = Xr = Br+ (Y — K)/a. Thus we

can think of Y as the manager’s choice variable and rewrite problem 5 as

max EU(Y)
subject to‘ E(7Y < a(Xo— Bo + BO'PB{Y =K} + K
and Y 2>K. (10)

So the manager’s problem is like the standard terminal wealth problem except that
his budget, a(Xo — Bo + BoPE{Y = K}) + K is a function of his strategy-a “longer-

shot” has more value.

2.3 The Optimal Terminal Portfolio Value

I solve problem 5 by concavifying the objective function. The concavification of a
function u, if it exists, is the smallest concave function that dominates u.3 The solution
proceeds as follows. First I construct a concavification of the objective function in
problem 5. Then I solve (5) with the concavified objective function using standard
methods. Then I show that the policy that is optimal for the concavified objective
function is also optimal for the true objective function because it never takes on values

where the two functions disagree.

Define u : R x (0,00) — R by

i w(z,b)= Ula(z —b)*+K) forz=20,

—00 otherwise. (11)
In terms of u, the manager’s problem 1s
II)l(aX Eu(XT, BT) subject to E{rXr < Xo . (12)
T

Because of the option-like incentive fee, the objective function u is not concave in the

choice variable z. The dotted line in figure 1 plots u as a function of z. For each b,

3Gee Aumann and Perles (1965) for a formal definition.
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however, u(-,b) has a concavification (-, b), illustrated by the dashed line in figure 1.

Roughly speaking, the function @ builds a bridge over the kink in u.

2.3.1 The Concavified Objective Function

The concavified objective function replaces part of the original function with a chord
drawn between £ = 0 and another point, £ = Z > b, chosen to make the slope of
the chord equal to the slope of u at Z, so that the resulting function is concave. For

example, in figure 1, b = 1 and £ = 1.4472. To prove the existence of such an z in

general, let u/(z,b) = 8—“3%—’91, for z > b, and let

f(z,b) = u(z,b) — u(0,b) — zu'(z, b) (13)
for all b> 0 and = > b.
Lemma 1 For every b, there exists a unique = > b such that f(z,b) = 0.
Proof Fizbandletz >b. f(z,b) =U(a(z—b)+ K)-U(K)—azU'(a(z—b)+ K) is
strictly increasing in z, for its derivative with respect to z is —a*zU" (a(z—b)+ K) > 0.

Asz — b, f(z,b) > —azU'(K) < 0. As z — o0, f(z,b) approaches a strictly positive

limit, possibly infinity. To see this, rewrite f as
f(z,b) = [U(a(z —=b)+ K) = U(K) —a(z — b)U'(a(z — b) + K)] — abU'(a(z — D) + K) .

The term in brackets above is strictly positive and increasing for all x > b, while the
remaining term above approaches zero as x approaches co. Therefore, f(-,b) has a

unique zero on (b, 00).

Let £(b) be the unique z > b such that f(z,b) = 0. Then @ : R x (0,00) — R defined
by
u(z,b) = —0o0 forz <0
u(0) + u'(2(b),0)z for 0 < z < z(b)
u(z, b) for z > z(b) (14)



is concave in z. Furthermore, (z,b) 2 u(z,b) for all (z,b) € R x (0,00) and (z,b) =
u(z, b) for z = 0 and for all z > Z(b).

Now I introduce what is essentially the derivative of u with respect to z. The
concavification % is not differentiable at = 0 but we can define a set-valued function
%' on [0,00) x (0,c0) by

@'(z,b) = (o0,u'(Z(b),b)} forz =0
{u'(£(b),0)} for 0 <z < £(b)
{u'(z,b)} for z > Z(b) . (15)

Then, for every ¢’ € R and every m € #'(z,b), @(z',b) — i(z,b) < m(z’ — z). Strict

inequality holds whenever z > #(b) and z’ # z.*

2.3.2 The Optimal Policy

Karatzas, Lehoczky and Shreve (1987) and Cox and Huang (1989) show that in the
standard investment problem, with no incentive fee, optimal random terminal wealth
sets marginal utility equal to a multiple of the pricing kernal, where the multiple is
determined by the budget constraint. The candidate policy we construct next does
essentially the same for the concavified objective function. It turns out that this
candidate is optimal for the true objective function.

To construct this candidate, I define an inverse function for @'(-,b), ¢ : (0,00) X

(0, 00) — [0700)7 by

i(y,8) = [(I(y/a) = K)/a + blliycurizmo) - (16)
The function i is the inverse of @ in the sense that y € @/(:(y, b), b) for all b > 0.
Next, let X()\) = EC7i(M(r, Br) for A > 0. X(}) is just the market value of the
policy ¢(A(r, Br). Assume that

| X(A) < oo forall A. (17)

4For each b, @#'(-,b) is what is formally called the subdifferential of 4(-,b). See Rockafellar (1970,
p.214-215).



This holds for both constant absolute and relative risk aversion with either the risk-
less asset and market portfolio as benchmarks. Then X()) is continuous and strictly
decreasing, X(\) — oo as A — 0, and X(}) — 0 as A — oo. Therefore, there exists a

unique A\* > 0 such that X(A*) = Xo.

Proposition 2 Under assumption (17), X3 = i(A\*(r, Br) is the unique optimal solu-
tion to problem (12).

Proof If X' is any other feasible strategy that is not almost surely equal to X7, then

E{u(X', Br) — u(Xz, Br)}

E{u(X', Br) - i(X7, Br)}

< E{a(X', Br) - i(X3, Br)}
< EQGr(X - X3}
< A(BCrX' = Xo) <0.

Notice that the optimal policy is one of extremes. The incentive fee is either as far
out of the money as possible, or else it is in the money by at least a(2(Br) — Br) > 0.
It does not pay for the manager to be just marginally in the money, since he must

expend substantial resources to bring fund value into the money at all.

2.4 Typical Benchmarks

Phe most typical benchmark is a constant, or, in other words, a riskless portfolio. If
the manager is measured against a riskless benchmark, By = Boe'T, the manager’s

optimal terminal fund value is
X} = [(I(Mlr/a) = K)/a+ Boe li¢reay » (18)

where \; solves E{ri(A(r, Boe'T) = Xp and 2z, = aU’(a(:E(Boe’T) — Boe™T)/ ). A plot
of the optimal terminal wealth X} as a function of the state price density (7 appears

in figure 2. In the figure, the critical value of (7 is z, = 1.2373. Optimal terminal

10



wealth X1 is greater than 4 = 1.4472 and decreasing in {7 until {7 hits z;. Then X1
jumps from & down to zero.

Another possible benchmark is a market index such as the S&P 500. A represen-
tation for a market index in this model is the portfolio M, = 1/(;, because risk averse
investors solving standard investment /consumption problems in this framework always
divide their portfolios between M and the riskless asset. With By/{r as the benchmark,
the manager’s optimal terminal fund value is a simple function of the pricing kernal,

similar to that with the riskless benchmark. Let A, solve E(7i(Mr, Bo/(1) = Xo and
let g(Cr) = w/(&(Bo/(r), Bo/(T) — A2l

Proposition 3 Under assumption 17, the optimal policy for problem (12) with bench-
mark Br = Bo/(r is

X2 = [(I(Aolr/a) — K) /e + Bo/(r)licrez) »

where z5 is the unique zero of g.

Proof Given proposition (1), it remains only to show that g(lr) >0 <= (1< 2z,
for some constant z,. g cannot be nonpositive everywhere, by construction of Ay, and

g(¢r) — —o0 as (r — o0, 50, by continuity, g must have a zero.

Bo/¢? __Bo/Cr
&(Bo/{r) Z(Bo/(T)

so, whenever g < 0, g is decreasing. Therefore, g has a unique zero, z,, and g((r) >

g'(¢r) = 9((r) Aa(1 ),

0 < (1 <22

2.5 Examples of Optimal Trading Strategies

This section takes the benchmark to be either the riskless asset or the market portfolio
and derives closed-form expressions for the manager’s optimal trading strategy in the
cases of constant absolute and relative risk aversion. At issue is whether or not we may
use [to’s lemma to obtain a stochastic differential equation for the optimal portfolio

value process, X;, despite the fact that X7 is a discontinuous function of (7.
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With both benchmarks, final portfolio value X7 = ({r) for some function v :
(0,00) — R. Therefore, intermediate portfolio value, X; = E(((r/{;)XF|F), is equal
to z*(t,(,) for some function z* : [0,T) x (0,00) — R, because ( is a Markov Process.
Set z*(T,¢) = ¥(¢). I the function z* : [0,T] x (0,00) — R were continuous on
[0,T] x (0,00) and C*? on [0,T") x (0,00), then we could apply Ito’s lemma to get an
expression for dz* and identify the resulting diffusion coefficient with the quantity 7o

from (2). This would yield the following equation for the optimal trading strategy:

W: = p(t7<t) = —'CtxZ(ta Ct)z_lp‘ ’ (19)

where p : [0,T) x (0,00) — R", z{ is the partial derivative of z* with respect to its
second argument, and the matrix £ = oo’ is the covariance matrix of instantaneous
stock returns.®

In the case of the manager’s optimal policy, z*(7, -) is not continuous. Nevertheless,
in the cases of constant absolute and relative risk aversion, z* is C'*? on [0, T') x (0, c0),
so (2) holds, with X = X~ and 7~ defined by (19), for all ¢t < T. In addition, for
all values of { # z;, ¢ = 1 for the riskless benchmark and i = 2 for the market
benchmark, z*(-,{) is continuous on [0,7]. Furthermore, p(-,() defined by (19) has
a continuous extension to [0,7]. Letting 7* be given by this extension, X7 = Xo +
JT(r X + 72'u)ds + [T n*'0 dW, a.s. because the equality holds for all ¢ < T and
both the wealth process and the integrals are almost surely path-continuous on [0, T].
Therefore, equation 19 is valid for all ¢ < T and permits a closed-form expression for

the optimal trading strategy.

2.5.1 Constant Relative Risk Aversion

Let U(X) = £=7 where A > 0 and A # 1.

SSimilar arguments appear in Harrison and Pliska (1981, Subsection 5.3), Pliska (1986, Section 5),
Karatzas, Lehoczky, and Shreve (1987, Section 7), and Karatzas (1989, Example 5.6).

12



The Riskless Portfolio as Benchmark

For this section, set Br = Boe™T. Then portfolio value is the process

K e—-r(T—t)

X} = e T9(Br — —)N(dis) + i1/ AGIBINT-00-A1/24% (), () VAN (d,)

and the manager’s optimal trading strategy is

1 —r(T— K
e (R e T(Br - N
(/\121/(—¥)_1/'4 - K N'(d1s) 1
Br)—————= ,
eV e
where N is the standard cumulative normal distribution, dj; = Mﬂ&%ﬁ%&y@,
and dgyt = dl,t + ||9||\/T - t/A

It is easy to show that as C{—> 0, X} — 400, |m|| = +oo, and ';3:1' - E:“- On

+e—r(T—-t)(

the other hand, as (; — +o0, X} — 0, 7} — 0, but |l)1(2r|| — 0.

The Market Portfolio as Benchmark

Now set By = Bo/(r. Then portfolio value is the process

- e=r(T=1)

X2 = (Bo/ct)N(ds,t)—e-f<T-f>ZN(d3,t)+( )1-1/Ae||9“2<7-t><1-A>/2A’(A2@)—1/AN(d4,t)

a
and the manager’s optimal trading strategy is
1
A
- 4T

m={

[X? = (Bo/Gi)N(ds;) + E_T(T_t)gN(ds,t)]
(Mpzafa) M4 — K N'(ds.)

a 16/|VT —t
where d3; = ‘“(22/<=)J|f‘g|-¢“j_?i'_'_j/2><T'9, do; = dss + |10]VT — /A, and ds¢ = das +
|oNVT —t.

As ¢ — 0, X2 = 400, ||72|] = +0o0, and %2? goes either to E;l“ ifA<lorZ7'u

+ Bo/z2) + (Bo/G)N(ds )} s

if A>1. Yet as (, — +oo0, X2 — 0, 77 — 0, but ||%|] — 00.

2.5.2 Constant Absolute Risk Aversion
Now let U(W) = —e~AY where A > 0.

13



The Riskless Portfolio as Benchmark

For this section, set By = Boe™?. Then portfolio value is the process

L n 2201 2)(T 1)+ Bk eV )+ VT oy

and the manager’s optimal trading strategy is

ﬂ:'ze-r(T—t){N(dll,t) + N,(dll,t) 1 —~In aA
aA 1811\ /(T — ¢) ad XA

+ Br - K/o]}T7'y

v In(z/¢)+ (=617 /2)(T~t)
where d} , = == To/T= .

. ' ' -1 1 .
In this case, as (; — 0, X} — +o0, 7} 2aA“, %l—r — 0, while as {; — +oo,
t

' ' 1
X' —= 0,7 =0, but |24

th,|| — 00.

The Market Portfolio as Benchmark

Now set Br = By/{r. Portfolio value is the process

1 aA
—r(T—-t)[_= 1
¢ byt G

+(Bo/¢)N(ds,,) +

X = +(r = |l617/2)(T — t) + —K/a]N(d;,,)

e T-9116]|VT — ¢t
aA

N'(dg,,),

and the manager’s optimal trading strategy is

e_T(T_t)N(dll,t) e (-1 N,(dg +)

2= Bo/()N(d: —I x-!
T aA +( O/Ct) ( 5,t)+ |0||\/—T [QA /\,2 2 X/C!+C/22]} H
where dj = BELIHPLATD g g = df, + ||0||\/_—T——t..
Here, as (; — 0, X? — +oo, ||7%|| — oo, and — 1, while as {; —» +oo,

X¥ -0, 7% -0, but ||§§,H — 00.

In all cases, when the portfolio value is very high so that the manager is deep in the
money, his portfolio choice looks like the choice he would make if the performance fee
were linear, that is, if he were maximizing EU(a(Xr — Br) + K). For instance, with
the riskless asset as benchmark and constant relative risk aversion, the proportional

portfolio holdings of risky assets approach the Merton constant, g—}/ﬁ.
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The effect of the convexity of the incentive fee becomes dramatic as wealth level
falls to zero. As the manager gets farther out of the money, he takes on as much risk

as possible, subject to the constraint that wealth must be nonnegative (in all cases,

-
urs

Z¢

*

— o0, even though 77 — 0). To illustrate, figure 3 plots the proportional portfolio

holdings of risky assets as a function of portfolio value for the case of constant relative
risk aversion and the riskless benchmark.

The manager’s trading position becomes very unstable if he is near the money as the
evaluation date draws near. As (; vibrates around the critical point 2;, the manager’s
portfolio 7™ oscillates between zero and a strictly positive value. Thus, small changes
in the value of the market portfolio precipitate large trades as the manager alternates

between the desire to gamble and the need to remain solvent.

2.6 The Cost of the Incentive Fee Contract

Although the paper focuses on the manager’s investment problem, the results have some
implications for contract theory. The cofollary below shows that a linear performance
fee in this model would give the manager greater utility at lower cost to the client. If
the client were a profit-maximizer, then the incentive fee would be a costly form of risk-
sharing. For example, to the extent that the problem of a corporate manager choosing
an optimal leverage policy bears any resemblance to the problem considered here,
and to the extent that firms are profit-maximizers, the use of options as compensation
il-lstead of restricted shares of stock incurs this cost. This does not mean that the option-
like compensation scheme is not optimal for a profit-maximizing principal, however,
because the model does not take the manager’s choice of effort into consideration.
The presence of this cost merely suggests that to be optimal, convex compensation
schemes must compensate by better motivating managers to exert effort on behalf of

their clients. Although the principal-agent literature does not find that convex sharing

rules are necessarily best,® the widespread use of option compensation for corporate

6The optimal shape of the sharing rule can be arbitrary. See Holmstrom and Hart (1987).
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managers suggests that options have better incentive effects than stock, which outweigh

their risk-sharing costs.

Corollary There ezists a linear performance fee that has lower cost to the client than

the incentive fee and gives the manager greater expected utility.

Proof Letp = PB{X: > 0}and let o = o —pBo/Xo. Under any investment policy,
the linear fee o/ X1, has the same market value as the optimized incentive fee. Under
the optimal policy, the linear fee gives the manager strictly greater ezpected utility.

Indeed, letting y = o X1 + K, the manager’s problem is

max EU(y)
subject to  Elry < a(Xo — pBo) + K
and y2>2K. (20)

This is just like the incentive fee problem, (10), without the constraint on the probability
of bankruptcy. Relazing that constraint allows the manager to achieve a better policy.
Reducing o just slightly will still leave the manager better off than he is under the

incentive fee and will cost the client less.

3  Multi-Period Model

With the one-time incentive fee in the last section, the manager chooses an all-or-
nothing policy: he either substantially outperforms the benchmark, or else bankrupts
the client. This solution seems unrealistic given that real managers play a repeated
game and probably try to avoid bankrupting their clients. This section addresses this
limitation by presenting a simple model of the optimal investment policy for a manager
who gets a new incentive fee every year. The result is that the manager limits downside
risk, and thus forgoes some upside potential, in order to preserve the value of future

incentive fees. Nevertheless, his optimal policy is still one of extremes.
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The model abstracts from some of the features of the multi-period problem real
managers face. Most importantly, the model does not incorporate flows of new money
that respond to past performance, and therefore, does not incérpora’ce a reputation
effect. To do so would involve building an equilibrium model that is beyond the scope
of the paper.

In addition, the model assumes that each year the incentive fee is reset at the money.
Generally, managers more must make up losses from previous periods before earning
an incentive fee in the current period. This would make the benchmark or strike price
of any year’s incentive fee the all-time high value of the fund. However, some funds
periodically renew long term contracts, resetting the strike price of the incentive fee to
the current fund level. For example, the prospectus of E.F. Hutton Commodity Limited
Partnership II (1980) states, “In each fiscal quarter, each advisor will be paid, as an
incentive fee, 12.5% of . .. the excess of net asset value .. .as of the last day of such fiscal
quarter ...over the highest net asset value as of the last day of any preceding fiscal
quarter.” However, the prospectus states further that “upon termination of the current
advisors’ contracts (12 months following commencement of trading operations), the
partnership may employ other advisory services whose compensation may be calculated
without regard to losses incurred by the current advisors .. .the partnership may renew
its relationship with any of the advisors on the same or different terms ...” Elton,
Gruber, and Rentzler (1987) note that with “the basing of incentive fees on shorter-

term performance, incentive fees can be high even with poor long-term performance.”

3.1 Assumptions

The manager controls a fund with time t value X;. At the end of each year, t =
1,2,...,T, he receives and consumes a total fee equal to a fixed proportion of the fund
value at the beginning of the year, apX;—1, plus an incentive fee, a;(X; — RoXi-1)
where Ry is a constant. I assume for simplicity that the client pays the manager fees

out of a separate account. The manager trades in the continuous-time financial market
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described in section 2.1. He has constant relative risk aversion with coefficient A,
A > 0,A # 1. He chooses an investment policy to maximize his expected discounted
lifetime utility. The value function for his problem at any year t = 0,1,...,T—1is

T—t-1
Vi(z) = max 3" BE{U(coXesj + ar(Xepjy1 — RoXey;) )| Fe}

{ms,1<s<T} §=0

subject to  dX, = (rX,+mu)ds + modW, ; X; =z
and X,>0Vse[t,T], (21)

where 0 < B8 < 1. Martingale methods transform this problem to

T-t-1
> FE{U(coXesj + o1 Xeqj(Regjer — Ro)*)|Fe}
j=0

subject to Xepjr1 = Ripjn X5 Xe =2,

Vile) =

E{ o RiyjnlFers} <1,
Gt

and Rt+JZOV]=1,2,,T—t (22)

3.2 Reduction to a One-Period Problem

With constant relative risk averse utility, the multi-period problem 22 reduces to a

single-period problem.

Lemma 2
r1-4
_ Vi(e) = ey (23
for a positive constant c;, defined recursively by
— R.)F)1-A . 1-A
Ct:(l—A)ma.X E{(a0+al(R Ro) ) +/8‘-'H-1R }
R 1-A
subject to E{(R} <1 and R>0; (24)
er= 0 (25)

where { = (3.
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Proof By backward induction:

apz + (R — 1-4
VT_l(m)='m}%x E{( + onz(R R°)+) }

1-A
subject to  E{CR} <1and R20 (26)
-4 (a0 + a1 (R — Ro)*)! 4
=171 _‘A(l—A)mI%X E{ 0 1(1—A ") }
subject to  E{(R} <1land R20 (27)
ZEl_A
=cr- . 2
cr 174 ( 8)
Now suppose Vipa(z) = ct+1$1—1_:%. Then
_ R4 1-4
‘/t(x) — max E{ (aox + alx(R RO) ) + ,BC1+1(R.'L') }
R 1-A
subject to  E{(R}<1and R20 (29)
.'EI—A (ao + al(R — RO)+)1—A + ﬂct+lRl—A
= oA mgx 2 1-A )
subject to E{(R} <land R20 (30)
e
Thus, each year, the manager’s problem is of the form
max Ev(R)
subject to  E{(R}<1land R20 (32)
where v : (0,00) — R is defined by
_ R+\1-4 1-A
o(R) = (a0 + on(R — Ro)*)'™* + Be(R) (33)

1-A

for some positive constant ¢ which varies from year to year.

3.3 Optimal Random Fund Return

As before, the option-like payoff of the incentive fee makes the objective function v
nonconcave. The dotted line in figure 4 plots v as a function of the choice variable R.

Again, v has a concavification v represented by the dashed line in figure 4. Concavifying
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v amounts to replacing part of v by a chord between points R; and Ry, 0 < R; < Ry <
R;, chosen to make the slope of the chord equal to the slope of v at the points R; and
R3, so that the resulting function is concave. For example, in figure 4, R; = 0.2126
and R, = 1.3557 serve as the endpoints of a “bridge” over the kink point Ry = 1 that
renders the resulting function concave. In general, the points R; and R, are defined

by the equations

BcU'(Ry) = aqU'(ag + aa(Ra — Ro)) + BcU'(Ry)
U(ao) + ﬁCU(Rl) -+ ,BCUI(Rl)(RQ - Rl) = U(ao + al(R2 - R())) + ,BCU(Rz) . (34)

Using an argument similar to that in the proof of lemma 1, it is not hard to show that
such an R; and R, exist uniquely for any utility function U satisfying the conditions

of section 2.1, not just constant relative risk averse utility. Now define ¢ : (0,00) = R

by

9(R) = v(R;)+v'(R1)(R— R;) whenever Ry < R < R, and (35)
v(R) otherwise. (36)
Note that
5(B) = v'(Ry) =v'(R;) whenever By < R < R, and (37)
v'(R) otherwise. (38)

To construct the optimal policy for problem 32, define an inverse function j : (0,00) —

R for ¢’ by
Jyy)= R, for y = ¥'(R;) and (39)
?"1(y) otherwise. (40)
Then 9'(j(y)) = y. Note that j is monotonically decreasing and has a jump disconti-
nuity at y = 9'(Ry).
The optimal policy for problem 32 is R* = j(A*() where \* solves E{(j(1*()}.

The proof is virtually identical to that of propostion 2. Figure 5 plots the optimal
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return policy R* as a function of the state price density (. As figure 5 shows, R~
decreases monotonically to Ry, then jumps down to R; at the critical value of { and
then continues to decrease monbtonically, approaching zero as {" goes to infinity.

It is not hard to show that as the value of ¢ increases to infinity, the points B, and
R, monotonically approach Ro. Thus, the greater the value of future incentive fees, the
smoother the current policy will be. The change in the optimal policy as retirement
approaches depends on the behavior of ¢; over time. In the case of log utility (4 = 1),
the manager’s time ¢ value function is Vi(z) = ¢ log(z) + a; where a; is a constant
and ¢; = Z?;ot‘l 7. Therefore, ¢; decreases over time, and the optimal policy becomes

increasingly risky as retirement draws near.

4 Conclusion

This paper presents the optimal investment policy for a risk averse manager who is
paid with an option on the assets he controls. With a one-time fee, the assets optimally
have an all-or-nothing distribution of outcomes: either deep in the money or zero. The
policy is also a long-shot in the sense that the probability of bankruptcy is relatively
high, but the payoff, if nonzero, is quite large. In a multi-period setting, the manager
limits downside risk to protect the value of future compensation, but the essence of the
solution, that the manager does not want to end up too near the money, remains the
same.

The martingale approach sheds light on the manager’s preference for a long-shot by
revealing that the market value of the option is an increasing function of the probability
of bankruptcy under a martingale measure. This relationship implies that the contract
‘s inefficient in the sense that lower cost linear contracts exist that give the manager
greater expected utility.

Explicit expressions for the optimal trading strategy for constant relative and ab-

solute risk averse utility functions with either the riskless asset or the market portfolio
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as benchmarks show how the manager dynamically adjusts volatility as asset value
changes. When the manager is near the money, small changes in the value of the
mean-variance efficient portfolio lead to large trades as the ménager alternates be-
tween the desire to gamble and the need to remain solvent. As asset value grows large,
the manager moderates portfolio risk. On the other hand; as bankruptcy approaches,

portfolio volatility approaches infinity.
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| Figure 1

Fund Manager’s Single-Period Incentive Fee Problem:

Original and Concavified Objective Functions

(z) = U(a(z — b)* + K), the dotted line,

The manager’s utility function U 1is
= 0.03. The

Plots of the manager’s objective function u

and its concavification #(z), the dashed line.
constant relative risk averse with coefficient 2, o = 0.15, b =1, and K

concavification replaces part of the original function with a chord drawn from the point
z = 0 to the point z = & = 1.4472 chosen to make the slope of the chord match the

slope of the original function at & so that the resulting function is concave.

Manager’s objective functions u and U

0
T
5 p—
d/
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25



Figure 2
Fund Manager’s Single-Period Incentive Fee Problem:
Optimal Random Terminal Fund Value

Plot of the manager’s optimal random terminal fund value X7} as a function of the state
price density (7. The random variable X7 maximizes EU(a(Xr — Br)* + K) subject
to E{7 Xt < Xo and X1 > 0. The manager’s utility function U is constant relative risk
averse with coefficient 2, « = 0.15, Br = 1, K = 0.03, X, = 1. The state price density
is (r = e~ "T=Wr=0’T/2 yhere r = 0, § = 0.4, T = 1, and Wy is Brownian motion at
time T. The nonconcavity of the objective function makes the optimal terminal fund
value a discontinuous function of (7. At the critical level {7 = 1.2373, X} jumps from

z = 1.4472 to zero.

Optimal terminal fund value X7}

144721+

1.23726

State price density (T
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Figure 3
Fund Manager’s Single-Period Incentive Fee Problem:
Optimal Trading Strategy

Plot of the manager’s optimal proportion of fund value invested in the risky asset, %‘;1:,
as a function of fund value, X}, one year prior to the evaluation date T. Terminal fund
value X+ maximizes EU(a(X1 — Br)t 4+ K) subject to E(r X7 < Xo and X1 > 0. The
manager’s utility function U is constant relative risk averse with coefficient 2, a = 0.15,
Br =1, K = 0.03, Xo = 1. Intermediate fund value is X! = Et{%X,}-} where the
state price density process is (; = e—Tt=0Wi=02t/2 ith r = 0, § = 0.4, and W, Brownian
motion at time t. The Sharpe ratio 8 on the risky asset is £ where the risky asset’s
excess expected return g = 0.08 and its volatility ¢ = 0.2. As fund value X} grows
large, the proportion of the fund invested in the risky asset approaches the Merton
constant 4% = 1 that would be optimal in a standard investment problem with no
incentive fee. As fund value X} approaches zero, the proportion of the fund invested

in the risky asset, and thus fund volatility, go to infinity.

Optimal proportion of fund value in risky asset )E{Er

Intermediate fund value X}



Figure 4
Fund Manager’s Multi-Period Incentive Fee Problem:

Original and Concavified Objective Functions

Plots of the manager’s objectix./e function v(R) = U(ao + a1(R — Ro)*) + BcU(R),
the dotted line, and its concavification ©(R), the dashed line. The manager’s utility
function U is constant relative risk averse with coefficient 2, ag = 0.03, oy = 0.15,
Ry =1, 8 =1, and ¢ = 1. The concavification replaces part of the original function
with a chord drawn from the point R; = 0.2126 to the point R; = 1.3557 chosen to

make the slope of the chord match the slope of the original function at R; and R, so

that the resulting function is concave.
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Figure 5
Fund Manager’s Multi-Period Incentive Fee Problem:
Optimal Random Fund Return

Plot of the manager’s optimal random terminal fund value R* as a function of the state
price density (. The random variable R* maximizes E{U(ao+c1(R— Ro)")+BcU(R)},
subject to E(R <1 and R 2 0. The manager’s utility function U is constant relative
risk averse with coefficient 2, ag = 0.03, 1 = 0.15,Ro=1,=1,andc=1. The state
price density is { = e~T=0W1-8/2 where r = 0, 6 = 0.4, and W is Brownian motion at
time 1. The nonconcavity of the objective function makes the optimal terminal fund
value a discontinuous function of (7. At the critical level ¢ = 1.2371, R* jumps from

Optimal fund return R

1.355671
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