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Abstract

In this paper, we develop the theoretical and empirical properties of a new class of multi-

variate GARCH models capable of estimating large time-varying covariance matrices, Dynamic

Conditional Correlation Multivariate GARCH. We show that the problem of multivariate con-

ditional variance estimation can be simplified by estimating univariate GARCH models for

each asset, and then, using transformed residuals resulting from the first stage, estimating a

conditional correlation estimator. The standard errors for the first stage parameters remain

consistent, and only the standard errors for the correlation parameters need be modified. We

use the model to estimate the conditional covariance of up to 100 assets using S&P 500 Sector In-

dices and Dow Jones Industrial Average stocks, and conduct specification tests of the estimator

using an industry standard benchmark for volatility models. This new estimator demonstrates

very strong performance especially considering ease of implementation of the estimator.
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1 Introduction

While univariate GARCH models have met with widespread empirical success, the problems as-

sociated with the estimation of multivariate GARCH models with time-varying correlations have

constrained researchers to estimating models with either limited scope or considerable restrictions.

Large time-varying covariance matrices are needed in portfolio management and optimization,

models of the term structure of treasuries or commodities, and large vector autoregressions. In

this paper we describe a model which can be used to estimate extremely large time-varying co-

variance matrices and describe the theoretical properties of the Dynamic Conditional Correlation

(DCC) Multivariate GARCH model, first introduced in Engle (2001). This class of MV-GARCH

models differs from other specifications in that univariate GARCH models are estimated for each

asset series, and then, using the standardized residuals resulting from the first step, a time varying

correlation matrix is estimated using a simple specification. This parameterization preserves the

simple interpretation of univariate GARCH models with an easy to compute correlation estimator.

This multi-stage estimation requires modifying the standard errors of the parameters, however the

Bollerslev-Wooldridge standard errors for each univariate GARCH model remain consistent, and

only the asymptotic covariance of the parameters of the correlation estimator need be modified.

Bollerslev, Engle and Wooldridge (1988) originally proposed the multivariate GARCH model in

the familiar half-vec (vech) form which provided a very general framework for multivariate volatility

models. The full unrestricted model requires O(k4) parameters to be estimated by maximum

likelihood, where k is the number of time series being modelled. A simpler model, the diagonal

vech was also proposed which allows for non-zero coefficients only on own lagged effects and cross

products, reducing the numbers of parameters needing to be estimated to O(k2). The diagonal

specification allows for a relatively straightforward interpretation, as each series has a GARCH-like

specification. However, deriving the restrictions necessary on the parameters to ensure the positive

definiteness of the conditional covariance becomes extremely difficult as k grows to even a moderate

size.

Bollerslev (1990) introduced the constant conditional correlation multivariate GARCH spec-

ification,where univariate GARCH models are estimated for each asset and then the correlation

matrix is estimated using the standard closed form MLE correlation estimator using transformed

residuals. The assumption of constant correlation makes estimating a large model feasible and en-

sures that the estimator is positive definite, simply requiring each univariate conditional variance

to be non-zero and the correlation matrix to be of full rank. However, the constant correlation

estimator, as proposed, does not provide a method to construct consistent standard errors using
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the multi-stage estimation process. Bollerslev finds the notion of constant correlation plausible,

yet recent papers by Tsui and Yu (1999) have found that constant correlation can be rejected for

ceratin assets. Bera (1996) and Tse (2000) both have developed tests for constant correlation, the

former being a bivariate test while the latter is a more general multivariate LM test.

The BEKK formulation, proposed in Engle and Kroner (1995), developed a general quadratic

form for the conditional covariance equation which eliminated the problem of assuring the positive

definiteness of the conditional covariance estimate of the original vech model. In order for the

BEKK model to be fully general, the number of parameters needing to be estimated is O(k4), but

a standard BEKK estimation will involve O(k2) parameters. Other more tractable formulations of

the BEKK model include diagonal and scalar which place restrictions on certain parameters to be

equal to zero, although these restrictions are typically rejectable. In addition to the large number of

parameters needing to be estimated for the general form, the exact interpretation of the individual

coefficients is difficult to discern.

Recently, Alexander (2000) has demonstrated the use of factor GARCH models, as first outlined

Engle, Ng, and Rothschild (1990), for estimation of large covariance matrices. Factor or Orthog-

onal MV-GARCH models provide a method for estimating any dynamic covariance matrix using

only univariate GARCH models. Alexander shows how a limited number of factors can explain a

significant amount of the volatility in certain cases. However, this approach, while reducing the

numbers of parameters estimated to o(k), is limited by both the difficulty in interpreting the co-

efficients on the univariate GARCH models and the poor performance for less correlated systems

such as equities.

Engle (2001) proposed a new class of estimator that both preserves the ease of estimation of

Bollerslev’s constant correlation model yet allows for correlations to change over time. Dynamic

Conditional Correlation MV-GARCH preserves the parsimony of univariate GARCH models of in-

dividual assets’ volatility with a simple GARCH-like time varying correlation. Further, the number

of parameters estimated using maximum likelihood is O(k), a considerable improvement over both

the vech and the BEKK models. More importantly, the number of parameters requiring simulta-

neous estimation is O(1). The focus of the current paper is to explore both the theoretical and

empirical properties of the DCC MV-GARCH model when estimating large conditional covariance

matrices.

Tse and Tsui (1998) have also proposed a dynamic correlation multivariate GARCH model,

however no attempt has been made to allow for separate estimation of the univariate GARCH

processes and the dynamic correlation estimator. In addition, by not allowing for reversion to the

unconditional correlation in the correlation estimator, the number of parameters needing to be
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simultaneously estimated is O(k2), and is only slightly less than the typical BEKK formulation.

While this estimator does possess a straight forward interpretation of the coefficients, it still will

require simultaneous estimation of 32 parameters in a 5 asset model, and 167 parameters in a 15

asset model.

The paper is organized as follows. The second section outlines the model in detail and discusses

the estimation procedure used. Section three establishes the asymptotic consistency and normality

of the parameters, discusses the modified mispecification robust standard errors, provides a modified

likelihood-ratio test that is valid under either two stage estimation or model mispecification, and

discusses using a one-step Newton-Raphson iteration to achieve full efficiency. Section four describes

an easy to implement test for constant correlation requiring only the estimation of a restricted VAR.

Section five describes the data used and provides empirical results where systems with up to 100

assets are estimated. In section six specification checks and benchmark comparisons are conducted,

section seven describes multi-step forecasting with the DCC model, and section eight concludes and

outlines area of future research.

2 Model

The multivariate GARCH model proposed assumes that returns from k assets are conditionally

multivariate normal with zero expected value and covariance matrix Ht.1 The returns can be

either mean zero or the residuals from a filtered time series.2

rt|Ft−1 ∼ N(0,Ht)

and

Ht ≡ DtRtDt

where Dt is the k×k diagonal matrix of time varying standard deviations from univariate GARCH

models with
√

hit on the ith diagonal, and Rt is the time varying correlation matrix. The log-

likelihood of this estimator can be written:
1The assumptions of multivariate normality is not required for consistency and asymptotic normality of the

estimated parameters. When the returns have non-Gaussian innovations, the DCC estimator can be interpreted as a

quasi-maximum likelihood estimator.
2The standard errors of the model will not depend on the choice of filtration (ARMA, demeaning), as the cross

partial derivative of the log-likelihood with respect to the mean and the variance parameters has expectation zero

when using the normal likelihood.
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L = −1
2

T∑

t=1

(k log(2π) + log(|Ht|) + r′tH
−1
t rt)

= −1
2

T∑

t=1

(k log(2π) + log(|DtRtDt|) + r′tD
−1
t R−1

t D−1
t rt)

= −1
2

T∑

t=1

(k log(2π) + 2 log |Dt|+ log(|Rt|) + ε′tR
−1
t εt)

where εt ∼ N(0, Rt) are the residuals standardized by their conditional standard deviation. We

propose to write the elements of Dt as univariate GARCH models, so that

hit = ωi +
Pi∑

p=1

αipr
2
it−p +

Qi∑

q=1

βiqhit−q (1)

for i = 1, 2, . . . , k with the usual GARCH restrictions for non-negativity and stationarity being

imposed, such as non-negativity of variances and
∑Pi

p=1 αip +
∑Qi

q=1 βiq < 1. The subscripts are

present on the individual P and Q for each series to indicate that the lag lengths chosen need not

be the same. The specification of the univariate GARCH models is not limited to the standard

GARCH (p,q), but can include any GARCH process with normally distributed errors that sat-

isfies appropriate stationarity conditions and non-negativity constraints. The proposed dynamic

correlation structure is:

Qt = (1−
M∑

m=1

αm −
N∑

n=1

βn)Q̄ +
M∑

m=1

αm(εt−mε′t−m) +
N∑

n=1

βnQt−n (2)

Rt = Q∗
t
−1QtQ

∗
t
−1

where Q̄ is the unconditional covariance of the standardized residuals resulting from the first stage

estimation, and

Q∗
t =




√
q11 0 0 . . . 0

0
√

q22 0 . . . 0
...

...
...

...
...

0 0 0 . . .
√

qkk




so that Q∗
t is a diagonal matrix composed of the square root of the diagonal elements of Qt.

The typical element of Rt will be of the form ρijt = qijt√
qiiqjj

. The following useful result from
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linear algebra simplifies finding the necessary conditions for Rt to be positive definite and hence a

correlation matrix.3

Proposition 1 (Positive Definiteness) A square matrix, A, is positive definite if and only if

B = A∗−1AA∗−1,as defined above, is positive definite.

Proof: See Appendix

Proposition 1 establishes that for positive definiteness of Rt, we only need to ensure Qt is

positive definite. Applying this proposition, we can describe a set of sufficient conditions for Ht to

be uniformly positive definite.

Proposition 2 (Positive Definiteness of DCC) If the following univariate GARCH parameter

restrictions (Equation 1) are satisfied for all asset series i ∈ [1, . . . , k]:

a. ωi > 0

b. αip ∀p ∈ [1, . . . , Pi] and βiq ∀q ∈ [1, . . . , Qi] are such that hit will be positive with probability

one.4

c. hi0 > 0

d. The roots of 1−∑Pi
p=1 αipZ

p +
∑Qi

q=1 βiqZ
q lie outside the unit circle.

and the DCC parameters satisfy (Equation 2):

e. αm ≥ 0 ∀m ∈ [1, . . . , Mi]

f. βn ≥ 0 ∀n ∈ [1, . . . , Ni]

g.
∑M

m=1 αm +
∑N

n=1 βn < 1

h. The minimum eigenvalue of R̄ > δ > 0

Then Ht will be positive definite for all t.

Proof: Each hit will be strictly positive as each is a sum of (weakly)positive parts, with ωi strictly

positive. Qt will be positive definite for all t as it is a weighted average of a positive definite matrix

(Q̄), a positive semi-definite matrices (εε′t) and a positive definite matrices Qt−1, and Q0 is positive

definite by Assumption h.

Essentially, the requirements for positive definiteness of the conditional covariance are the same

for the DCC model as for a univariate GARCH process. The restrictions on parameters in Propo-

sition 2 are not necessary, only sufficient to guarantee positive definiteness for Ht.
3A correlation matrix is defined as a real, symmetric positive semi-definite matrix, with ones on the diagonal
4Exact conditions are complicated and can be found in Nelson and Cao (1992)
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3 Estimation and Standard Errors

The DCC model was designed to allow for two stage estimation, where in the first stage uni-

variate GARCH models are estimated for each residual series, and in the second stage, residuals,

transformed by their standard deviation estimated during the first stage, are used to estimate the

parameters of the dynamic correlation. The likelihood used in the first stage involves replacing

Rt with Ik, an identity matrix of size k. Let the parameters of the model, θ, be written in two

groups (φ1, φ2, . . . , φk, ψ) = (φ, ψ), where the elements of φi correspond to the parameters of the

univariate GARCH model for the ith asset series, φi = (ω, α1i, . . . , αPii, β1i, . . . , βQii). The resulting

first stage quasi-likelihood function is:

QL1(φ|rt) = −1
2

T∑

t=1

(
k log(2π) + log(|Ik|) + 2 log(|Dt|) + r′tD

−1
t IkD

−1
t rt

)
(3)

= −1
2

T∑

t=1

(
k log(2π) + 2 log(|Dt|) + r′tDt

−2rt

)
(4)

= −1
2

T∑

t=1

(
k log(2π) +

k∑

n=1

(
log(hit) +

r2
it

hit

))
(5)

= −1
2

k∑

n=1

(
T log(2π) +

T∑

t=1

(
log(hit) +

r2
it

hit

))
(6)

which is simply the sum of the log-likelihoods of the individual GARCH equations for the assets.

Once the first stage has been estimated, the second stage is estimated using the correctly specified

likelihood, conditioning on the parameters estimated in the first stage likelihood:

QL2(ψ|φ̂, rt) = −1
2

T∑

t=1

(k log(2π) + 2 log |Dt|+ log(|Rt|) + r′tD
−1
t R−1

t D−1
t rt) (7)

= −1
2

T∑

t=1

(k log(2π) + 2 log |Dt|+ log(|Rt|) + ε′tR
−1
t εt) (8)

Since we are conditioning on φ̂, the only portion of the log-likelihood that will influence the

parameter selection is log(|Rt|) + ε′tR
−1
t εt, and in estimation of the DCC parameters, it is often

easier to exclude the constant terms and simply maximize:

QL∗2(ψ|φ̂, rt) = −1
2

T∑

t=1

(log(|Rt|) + ε′tR
−1
t εt)
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Newey and McFadden (1994) have provided a proof for the asymptotic distribution for two-stage

GMM estimators. The proofs for consistency and asymptotic normality of the parameter estimates

of the two stage DCC estimator closely follow the results presented for GMM. The following set

of assumptions are sufficient to establish the consistency of the parameters estimated using this

two stage procedure, in addition to standard assumptions guaranteeing the completeness of the

probability space and measurability of the quasi-likelihood functions.

A 1 θ0 = (φ0, ψ0) is interior in Θ = Φ × Ψ, and Θ is compact, and θ0 satisfies the conditions of

Proposition 2.

A 2 φ0 uniquely maximizes E[ln f1(r, φ)] (Equation 3) and ψ0 uniquely maximizes E[ln f2(r, θ)]

(Equation 7) where r = (r1, ...rt) is a strictly stationary, ergodic series.

A 3 ln f1(r, φ) and ln f2(r, φ, ψ), the first and second stage quasi log-likelihoods, are twice contin-

uously differentiable on θ0.

A 4 E[supφ∈Φ ‖ ln f1(r, φ)‖] and E[supθ∈Θ ‖ ln f2(r, θ‖] exist and are finite.

Theorem 1 (Consistency) Under assumptions A1 - A4, φ̂n
p→ φ0 and (φ̂n, ψ̂)n = θ̂n

p→ θ0.

Details of the proof can be found in Newey and McFadden. The conditions for consistency are

very weak and will be satisfied by numerous data generating processes. We now will add sufficient

regularity conditions to allow for asymptotic normality of the estimated parameters. The following

two additional assumptions are needed for this result:

A 5 (i)E[∇φ ln f1(rt, φ0)] = 0 and E[‖∇φ ln f1(rt, φ0)‖2] < ∞
(ii)E[∇θ ln f2(rt, θ0)] = 0 and E[‖∇θ ln f2(rt, θ0)‖2] < ∞

A 6 (i) A11 = E[∇φφ ln f1(rt, φ0)] is O (1) and negative definite.

(ii) A22 = E[∇ψψ ln f2(rt, θ0)] is O (1) and negative definite.

Using these assumptions the following theorem establishes the asymptotic distribution of the

two stage estimation process used in estimating DCC-MVGARCH models.

Theorem 2 (Asymptotic Normality) Under assumption A1 - A6, for {f1t} and {f2t},
√

n(θ̂n − θ̂0)
A∼ N(0, A0

−1B0A0
′−1)
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where

A0 =

[
∇φφ ln f1(φ0) 0

∇φψ ln f2(θ0) ∇ψψ ln f2(θ0)

]
=

[
A11 0

A12 A22

]

and

B0 = var

[
n∑

t=1

(n−1/2∇′φ ln f1(rt, φ0), n−1/2∇′ψ ln f2(rt, φ0, ψ0)}
]

=

[
B11 B12

B12 B22

]

Following from the theorem, the asymptotic variance of θ̂n is given by A0
−1B0A0

−1. Apply-

ing the partitioned inverse theorems for square matrices, the asymptotic variances of the GARCH

parameters for each asset, φ̂n are the standard Bollerslev-Wooldridge robust covariance matrix

estimators given by A011
−1B011A011

−1.5 The asymptotic variance of the second stage DCC pa-

rameters is however a much more complicated formula involving all of the parameters. Further,

the asymptotic variance of the parameters is (weakly) greater in this case than would be the case

where A0φψ was a zero matrix, due to the loss of efficiency in estimating the parameters separately.

In addition to having modified standard errors, a likelihood-ratio test with r restrictions will

not typically be χ2
r. Both Foutz and Srivastave (1977) and Liang and Self (1996) have discussed

likelihood ratio testing when either the distributional assumption is incorrect or a model is estimated

in multiple steps. Both of these results demonstrate when the Information Matrix Equality does not

hold, i.e. A0 −B0
p9 0, then the asymptotic distribution will be a weighted sum of r independent

χ2
1 variables where the weights will not necessarily be unity. In this case, where the limiting

distribution of the parameters is known (Theorem 2), Foutz and Srivastave have shown that to test

the null of H0 : θ ∈ Θr against H1 : θ ∈ Θ that

−2 ln λ = −2 ln

max
θ ∈ Θ {∏T

i−1 f(rt, θ)}
max

θ ∈ Θr {
∏T

i−1 f(rt, θ)}
d→ C

where

C ∼ c(θ0)1χ2
1 + c(θ0)2χ2

1 + . . . + c(θ0)rχ
2
1

where c(θ0)i is the ith eigenvalue of W (θ0)M(θ0), W (θ0) = (−Ã1 + Ã2Ã
−1
4 Ã3) and M(θ0) is the

upper r× r matrix of Ã−1B̃Ã−1, where Ã is A, as defined in theorem 2, with the rows and columns

of the restricted parameters interchanged, so that the first r rows and columns of Ã correspond to

the standard errors of the restricted parameters being tested and B̃ is similarly defined. In testing

one restriction, we have (W (θ0)M(θ0))−1λ̂ ∼ χ2
1. Another useful result is that the expectation

5A011
−1B011A011

−1 will be a block diagonal matrix with the covariance matrix for the ith univariate GARCH

model on the ith diagonal block.
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of the scores of the full loglikelood, evaluated at the estimated parameters from the first stage

estimate, is zero, and thus the parameters of the two stage process have the same limit as the one

stage process. Proposition three details this claim.

Proposition 3 (Univariate GARCH specification) If Et−1(r2
it) = hit, then the expectation of

the partial gradient with respect to φ of the second-stage log-likelihood evaluated at the parameters

estimated using the first-stage log-likelihood is zero, i.e. E(∇φ ln f2(r, φ̂1(·), ψ̂2(·)) = 0.

Proof: See Appendix

While the parameters are consistent and asymptotically normal with a known covariance, they

are not fully efficient as both sets of parameters are estimated using LIML. However, due a result

from Pagan (1986) and others, we know that when an estimate is root-n consistent, that a fully

efficient estimate requires only one step using a Newton-Raphson algorithm that involves using the

second stage likelihood to obtain consistent estimates of the first and second derivatives.6 Lemma

one gives an exact statement of the one step efficiency for the DCC estimator.

Lemma 1 (One Step Efficiency) If θ̂1 = θ̂2S+Âθθ
−1 ̂∇θ ln f2(r, φ0, ψ0) where Âθθ is a consistent

estimate of the second derivative of the QL2 and ̂∇θ ln f2(r, φ0, ψ0) is a consistent estimate of the

gradient of QL2, then T 1/2(θ̂1 − θ0) has the same limiting distribution as T 1/2(θ̂ − θ0), where θ̂1

would is a one step efficient estimator and θ̂ is a standard one-stage estimator.

Proof: See Pagan (1996)

4 Testing for Constant Correlation

One of the primary motivations for this paper is that the correlations between assets are not constant

through time. Testing models for constant correlation has proven to be a difficult problem, as

testing for dynamic correlation with data that have time-varying volatilities can result in misleading

conclusions, which can lead to rejecting constant correlation when it is true due to misspecified

volatility models. Tse (1998), testing a null of constant conditional correlation against an ARCH in

correlation alternative, and Bera (1996), testing a null of constant conditional correlation against

a diffuse alternative, have provided test statistics for testing a null of constant correlation against

an alternative of a dynamic correlation structure. One short coming of both of these tests is

that they do not generalize well to higher dimensions. We propose a test that only requires a
6Estimates of the derivatives can be easily computed form the second stage likelihood function numerically.

10



consistent estimate of the constant conditional correlation, and can be implemented using a vector

autoregression.

We are interested in testing the null of constant correlation against an alternative of dynamic

conditional correlation. However, there is a significant difficulty in conducting this test as the

decay parameters (βi) in the DCC estimator are unidentified under the standard null hypothesis

and must be treated as nuisance parameters. There are two ways to treat this. One is to merely

test the null against an alternative with a specific coefficient for beta β. This test can be conducted

using standard likelihood ratio test with the usual properties of LR testing holding, however it may

lack power if the chosen coefficient for β is far form the truth. However, this is an unnecessarily

restrictive test as it should not be necessary to identify β. Andrews and Ploberger (1994) establish

a procedure by which tests with unidentified parameters can be conducted and only recently has

this framework been extended to cases where the parameter unidentified under the null can be on

the boundary of the parameter space. Implementing this type of test is very difficult as it requires

many optimizations and monte carlo critical values. The test we propose is

H0 : Rt = R̄ ∀t ∈ T

against

Ha : vech(Rt) = vech(R̄) + β1vech(Rt−1) + β2vech(Rt−2) + . . . βpvech(Rt−p)

The testing procedure is as follows. Estimate the univariate GARCH processes and stan-

dardize the residuals for each series. Then estimate the correlation of the standardized residuals,

and jointly standardize the vector of univariate standardized residuals by the symmetric square

root decomposition of the R̄.7 Under the null of constant correlation, these residuals should

be IID with a variance covariance matrix given by Ik.
8 The artificial regressions will be a re-

gression of the outer products of the residuals on a constant and lagged outer products. Let

Yt = vechu
[
(R̄−1/2D−1

t rt)(R̄−1/2D−1
t rt)′ − Ik

]
where R̄−1/2D−1

t rt is a k by 1 vector of residuals

jointly standardized under the null, and vechu is a modified vech which only selects elements above

the diagonal. The vector autoregression is
7While the E(εtε

′
t) is a correlation matrix, in finite samples this is never going to occur. In practice it is more

efficient to use R̄ as the covariance matrix in place of the correlation matrix. By using a correlation matrix, the test

is further weakened as the test is also sensitive to the standardized variance of the univariate GARCH processes not

being unity.
8A limitation of this test is that it cannot differentiate between a dynamic correlation structure and misspecified

conditional heteroscedasticity of the univariate series. However, this test is designed to test if the standardized

residuals have a constant correlation, and not necessarily if the DGP has a constant correlation.
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Yt = α + β1Yt−1 + . . . + βsYt−s + ηt

Under the null the constant and all of the lagged parameters in the model should be zero.

In order to estimate the test statistic, all that is necessary to do is to make the T × 1 vector of

outer-products for each univariate regressand and the T × s + 1 matrix of regressors including

the constant for each set of regressors. Then the parameters can be estimated by stacking the

k(k − 1)/2 vectors of regressands and regressors and performing a seemingly unrelated regression.

The test can then be conducted as δ̂X′Xδ̂′
σ̂2 which is asymptotically χ2

(s+1), where δ̂ are the estimated

regression parameters.9 In every model considered in this paper, we reject the null of a constant

correlation in favor of a dynamic structure.

5 Empirical Results

The data used in this paper consist of 100 S&P 500 Sector Indices including the S&P 500 Composite

and the 30 Dow Jones Industrial Average stocks plus the average. Both data series were from

January 1, 1994 until December 31, 1999, and were provided by Datastream. All days that the

market was closed were removed, with the number of days removed being either eight or nine,

depending on the year.10 After removing these days there were 1509 observations for the sample.

The model used in the empirical section was a simple DCC (1,1)-MVGARCH where each of

the univariate GARCH models estimated for the conditional variances was selected by finding the

minimum of the AIC allowing for P < 4 and Q < 3.11 In addition, an integrated form of this model

was estimated where λ = 1− β = α was imposed. The models were built in an expanding fashion

so that the three asset model included the assets of the two asset model plus an additional asset,

the four asset model nested the three asset model, and so forth.12

Table 1 summarizes the estimated α̂ and β̂ of the mean reverting model for different numbers of

assets using the S&P indices, as well as the value of the statistic derived from a corrected likelihood
9If the covariance of the standardized residuals is used in place of the correlation, the intercept will necessarily be

zero, and the test could be conducted as (k)(k − 1)TR2 from the regression which should be χ2
(s).

10There were at least 8 days removed each year:New Year’s Day, President’s Day, Good Friday, Memorial Day,

Independence Day, Labor Day, Thanksgiving Day, and Christmas Day. In addition in 1994, the markets were closed

for President Nixon’s funeral, and in 1998 and 1999, the markets were closed on Martin Luther King’s Day
11The data were not filtered other than simple subtraction of the mean.
12The S&P 500 was included as the first asset for the models estimated S&P 500 data with the remaining assets

entering in alphabetical order, while the Dow Jones Industrial Average was included as the 31st asset in the DJIA

models. There was no perfectly redundant asset in the 31 asset Dow Jones model as the DJIA uses variable weights.
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ratio test that tests H0 : α = 1− β and thus the correlations have an integrated structure. T-stats

are reported for each coefficient using the mispecification robust standard errors in parenthesis.

Table 1 also reports the estimated λ̂ and the modified LR statistic of the test of the null of an

integrated model against an alternative of a mean reverting model.13 For every model with more

than six assets, the estimated λ̂ was on the boundary, and the test statistic is most likely not

distributed χ2
1.

14 Also, the mean reverting model was preferred to the integrated model for all data

sets, with the rejection of the integrated model occurring at the 0.1% level for all models. The

estimated parameters imply a highly persistent correlation, with a half-life of innovation of 21 days

for the 10 asset model.

Table 2 presents the estimated parameters for the Dow Jones Industrial Average stocks. All of

the coefficients of the mean reverting models were significant at the 5% level, with most significant

at the 1% level. The estimated integrated parameter λ̂ was in all instances estimated at the

boundary of 0. The typical estimated set of parameters had slow decay (β̂ > .97) with a small

news parameter (α̂ < .01). For all models, we reject the null of constant correlation in favor of

dynamic conditional correlation at the 1% level based on the likelihood ratio test statistic.

To ensure that the expanding data sets used in estimation were not driving the results that the

parameters seem to settle down and are contained in a fairly narrow range, we estimated 10 models

where the data series were chosen at random from the 100 data series of the S&P 500 indices used

in the paper. Figure 1 contains the estimated α̂ and β̂ for the ten models. The α̂ range from 0.004

to 0.013 while the β̂ range from 0.86 to 0.98. None of the models produced parameters which were

constrained on the boundary of α + β ≤ 1. Comparing this to the estimated coefficient of 0.0255

and 0.9410 for the 10 asset model estimated using the S&P 500 indices, these have a slightly less

dynamic structure and generally more persistence, most likely due to the correlation structure of

the different sector indices and the S&P 500 index. We also estimated the integrated model on these

same ten pairs of assets, finding the estimated parameter to be on the boundary for all but one of

the models. For the one set of assets where the integrated model did not estimate the parameter on

the boundary, the null of an integrated moving average was rejected in favor of an alternative mean

reverting model at 0.001%. We feel that the evidence does not provide support for the integrated

version as all models considered preferred the mean reverting model using the LR test. In writing

this paper, we considered using a longer sample of 10 years. When estimating models with ten
13The nuisance parameter is only present for the test of the mean reverting model against an alternative of a

constant correlation, and is not present for either the null of an integrated model against the alternative of constant

correlation, or a null of mean reverting against an alternative of an integrated model.
14When λ̂ = 0, the test can be interpreted as a test of H0 : α = 0, β = 0 against a DCC.
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years of data, we found that the integrated model typically had a coefficient that was significantly

different from zero, although the mean reverting model was preferred to the integrated model for

this data length as well. One possible explanation for this phenomena is that there are breaks

in the unconditional correlation, which allow the integrated model to fit better than a constant

correlation model over longer horizons. This line of research is beyond the scope of this paper, and

will be saved for future work.

Finally, we estimated a variety of specifications for the DCC model, allowing for more lags of

both the news term (α) and the decay term (β). Table 3 contains the corrected likelihood ratio

results for both the S&P and the Dow assets. The models estimated were DCC (2,1), DCC (2,2),

and DCC (3,2), where the first number represents the number of α lags included. The models of

the Dow assets never preferred a longer lag length, with most parameters estimated as zero. The

likelihoods improved when using the (3,2) specification, however none were significant. The original

specification was always preferred to the (2,1) specification for all S&P assets models. The DCC

(2,2) was preferred to the DCC (1,1) for the 25 asset model, and 10 of the 12 models estimated

with the DCC (3,2) rejected the null of a DCC (1,1) process. However, upon inspection of the

fitted correlations, the larger models typically generated correlation which were much noisier than

the original model, although with dynamics that remained the same.

Figure 2 contains a plot of the cumulative returns of 4 S&P 500 indices, while figure 3 plot

the time-varying correlations of the S&P 500 composite and 3 sector indices. The correlations

range form 0.2 to 0.8 over the course of the sample. Figure 4 contains the estimated variances

and covariances for these stocks over the sample period. The variances for each series are simply

the result of the univariate GARCH specifications. Figure 5, contains the minimum variance

portfolio weights for these same four assets.15 For the first 3 years of the sample, the weights are

relatively constant with a high loading in the S&P 500 index and slight shorts in most of the others.

However, in the latter periods of the sample, the weights become extremely volatile and include a

short position in the S&P 500 index and a weeight greater than 1 in the S&P 500 Auto Parts index.

Figure 6 contains the dynamic correlations of the first four Dow Jones Industrial Average stocks.

Consistent with the smaller news parameter estimated for this model, the conditional correlations

are less volatile than the four asset S&P 500 model. However, there do appear to be periods where

the correlation is above the unconditional correlation for hundreds of days.
15The procedure used to construct minimum variance weights is discussed in section 6.

14



6 Specification Testing

In order to test the specification of the DCC model, we propose to examine the model’s performance

using three methods: the standard deviation of portfolios of returns standardized by the portfolio

standard deviation implied by the conditional variance estimate, Value-at-Risk performance, and

relative performance to the industry standard RiskMetrics exponential smoother. The first test we

conducted involved testing the variance of returns of portfolios against the predicted variance. We

use three different portfolio weighting methods: equally weighted, value weighted, and minimum

variance portfolio weighted. The minimum variance portfolio is of particular interest as the weights

on the assets are determined by the estimated variance covariance matrix. We feel that if a

particular estimated conditional covariance estimate is misspecified, that the minimum variance

portfolio should exacerbate the short coming. The time-varying weights on the minimum variance

portfolio were calculated using

wt =
H−1

t ι

Ct

where

Ct ≡ ι′H−1
t ι

and where Ht is the one-step ahead forecast of the conditional covariance constructed at time t−1,

and ι is a k by 1 vector of ones. There was no limit on short selling, however no portfolio ever took

an extreme position. The portfolio weights of the value weighted portfolio were calculated using

the following formula:

wt+1 =
wt(1 + rt)
(1 + rt)′ι

where rt is a k by 1 vector of time t asset returns with w0 = k−1ι. Finally a simple equally weighted

portfolio was used where the weights were wt = k−1ι. If the model was correctly specified for the

conditional covariance, then we would expect that the variance of any portfolio with weights wt

would be w′tHtwt. To test this hypothesis we used a symmetric confidence interval with α/2 prob-

ability in each tail.16 Portfolio variances which are too small relative to the predicted variance are

indication of excess correlation while variances which are too big indicate underestimation of the

correlation. When standardized by their estimated standard deviations, all assets had standard-

ized (by univariate GARCH processes) residual variance that were in the 95% confidence interval

16Confidence intervals were constructed to find a and b such that
R a

0
f(u)du =

R∞
b

f(u)du , σ : { (t−1)s2

b
≤ σ ≤

(t−1)s2

a
} where f(u) is the probability density function of a χ2

t−1.
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centered at 1 for both the S&P 500 indices and the DJIA stocks. The RiskMetrics EWMA variance

estimator is

Ht = .06ete
′
t + .94Ht−1

where H0 can be taken to be the sample covariance matrix or a presample data selection to begin

the smoother. The primary advantage of the RiskMetrics model is that it is extremely easy to

estimate, given that it has no parameters to estimate. According to RiskMetrics, the parameter

choice has been calibrated using extensive model selection. The obvious drawback to the model is

that it has no estimated parameters, and that it forces all assets have the same smoothing coefficient

(.94) irrespective of the type of asset. The RiskMetrics model is widely used in industry, especially

for portfolio Value-at-Risk.

For the S&P 500 indices, the minimum variance portfolio proved to be troublesome for both the

mean reverting DCC estimator and the industry standard RiskMetrics EWMA. The standardized

variances of the minimum variance portfolios only fall with in the confidence interval for portfolios

under 5 assets using the DCC estimator, while the predicted variance of the RiskMetrics model is

uniformly too small, resulting in a portfolio standard deviation 35 times larger than what would

have been expected. For the equally weighted and value weighted portfolios, the DCC estimator

produced portfolio standard deviations insignificantly different from one for all portfolios. Further,

we reject the null that the variance is equal to one for all of the RiskMetrics generated portfolios

using equally weighting or value weighting at the 5% level. Table 4 summarizes the results for

models estimated on the S&P 500 indices.

The performance of the DCC estimator on the DJIA stocks was similar. We reject the null

that the portfolio variance is one for all of the RiskMetrics portfolios, and for the larger DCC

generated minimum variance portfolio. We are also not able to reject the hypothesis that the

portfolio standard deviations are unity for any of the value or equally weighted portfolio variances as

estimated by the DCC model. The slight better performance of DCC and slightly worse performance

of the RiskMetrics model is most likely due to the larger news parameters of the RiskMetrics model

(λ = .06). These tests on the DCC estimator show for many portfolio strategies it performs well at

fitting the portfolio variance, although the structure of the dynamics of the correlation may need

to allow for more than one news parameter as the size of the portfolio grows. Table 5 summarizes

the results of the portfolio variance diagnostic test for the DJIA stocks.

The second measure of performance used to test the empirical validity of the models was the

HIT test (Engle and Manganelli (2000)). The test is designed to test the performance of a model’s

prediction of Value-at-Risk. A series of HITs is defined as a binary variable, 1[rt<V aR(q)], where a
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hit is a return below the forecasted Value-at-Risk and q is the VaR quantile. Under the null of a

correctly specified model for Value-at-Risk, the HITs should have mean q and should be independent

of everything in the conditioning information set, including lagged HITs. An artificial regression

can be constructed to test both the mean and the independence of the HITs using OLS:

HITt − q = δ0 + δ1HITt−1 + δ2HITt−2 + . . . + δrHITt−r + δr+1V aRt + νt

The artificial regression tests the independence of a HIT from past hits and from the predicted

Value-at-Risk (which is in the time t − 1 information set).17 We constructed one step ahead

forecasts of the variance of a portfolio using the mean reverting DCC model. The 5% VaR was

defined as −1.65σ̂p where σ̂p is the forecasted portfolio standard deviation. Under the assumption

that returns are conditionally multivariate normal, this level would be appropriate. However,

all of the standardized residuals from either the S&P 500 indices or the Dow stocks reject the

null of normality using a Jarque-Bera test at the 5% level. This leptokurtosis of the univariate

returns would invalidate using the −1.65σ̂p as a test for the number of HITs. We found that when

including the constant term in the artificial regression, we were able to reject the null of a correct

VaR model for all cases. Thus, in the test conducted, we tested for independence of the HITs

without simultaneously testing if the percentage of HITs was correct by excluding the constant and

replacing q with q̂,the mean number of HITs at −1.65σ̂p. The DCC model results in a consistently

lower percentage of HITs when estimated on equally weighted portfolios of S&P 500 indices data

(Table 6). Further, even with the mean of the HITs subtracted, there was still serial correlation in

the HITs when modelled on the past 5 HITs and the forecasted VaR. The VaR performance on the

minimum variance portfolio varies from slightly better to considerably worse, with nearly 5% for

smaller portfolios to 10% when estimated on all 100 indices. This is consistent with the estimated

variance performance of the DCC on the minimum variance portfolio significantly underestimating

the variances as the number of assets increased.

The performance of the DCC model using the HIT test was better for the Dow Jones stocks

than it was for the S&P 500 indices. However, the DCC again consistently underestimated the

number of violations of Value-at-Risk for the equally weighted portfolio at the 5% level. Table 6

contains the results of the HIT testing for the DJIA 30 stocks. The performance relative to the 1%

level is much more accurate, usually falling within 20% of the anticipated level.18 The probability
17This is the out of sample version of the HIT test as presented in Engle and Manganelli. As noted in their paper,

the distribution of the HITs is not known when the same data are used for fitting the model and evaluating the HIT

test, although this test is still a useful diagnostic.
18However this difference was still significant at the 5% level.
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the HITs are independent was also better for all portfolios, however for the largest portfolios the

HITs seem to be correlated with past hits and/or contemporaneous VaR. The performance of the

minimum variance portfolio was generally worse than the equally weighted portfolio with respect

to the percentage of HITs, but better with regards to the probability of independence. We fail to

reject the null of independence of the HITs for none of the 14 portfolios at the 5% level using the

minimum variance portfolio.

The final specification test we used was to compare the results of the DCC estimator against

the estimator used widely by practitioners, the RiskMetrics exponential smoother. The comparison

was conducted using 4 criteria. The first criterion examines the percentage of HITs predicted

with each model using the equally weighted portfolio. The RiskMetrics estimator consistently

outperformed the DCC estimator in terms of the correct percentage of hits. The RiskMetrics filter

using S&P 500 indices data also performs slightly better on the HIT test, however the performance

of both estimators is inadequate by this metric, with both series having at least 11 out of 15 series

failing independence at the 5% level. A second criteria is the percentage of multivariate variance

standardized residuals which have variance in a confidence interval of one. The test relies on the

assumption that assets are multivariate normal, so

rt|Ft−1 ∼ N(0,Ht) ⇒ H
− 1

2
t rt|Ft−1 ∼ N(0, I)

The DCC estimator produced standardized residuals in the range for all models with less than

10 assets, and performed well in this metric for larger models. The RiskMetrics model produced

no standardized series in the 95% confidence interval for all of the models. This is consistent

with the standardized portfolio variance of Table 3 where the RiskMetrics estimator consistently

underestimated true variance. The final test was a Ljung-Box Q test at lag 15 of the residual to

determine if there was excess serial correlation in the squares and cross products of the covariance

standardized residuals using a 5% significance level. We found that the percentage of cross products

failing (there were (k× k + 1)/2 cross products for a given number of assets k) was relatively small

for the DCC estimator for assets with models with fewer than 10 assets , with 15% typically failing

the test for serial correlation for larger models. The RiskMetrics model standardized residual

consistently performed worse, having over 40% of the residuals failing this test for the largest

models. We also found that the percentage failing was always greater than the 5% which would

have been expected with the test at the 5% level.

The Value-at-Risk calculation using the DJIA stocks performed similarly to the S&P Indices,

with the percentage of HITs being consistently under estimated for the equally weighted portfolios

and with the RiskMetrics estimator was always closer to the expected percentage of HITs for all but
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one portfolio. In addition, the HITs generated by the RiskMetrics model only fail the independence

test for one of the 15 portfolios at the 1% level, while 7 out of the 15 DCC generated portfolios

fail the independence test at that level. However, for all assets and sizes of the models, with the

exception of one asset in the 31 asset model, the standard deviations of the returns standardized

by the square root of the estimated covariance were always in the confidence interval for the DCC

estimator. In addition, the DCC estimator significantly outperformed the RiskMetrics estimator in

terms of the Ljung-Box Q-statistics in the outer products, having fewer series fail for dependance

at lag 15 than the RiskMetrics model, usually by at least a factor of two. This provides strong

evidence in favor of the DCC model over the RiskMetrics model for assets with a less dynamic

correlation structure.

Overall, the DCC estimator performs very well. While it is not possible to directly compare the

DCC and the constant conditional correlation multivariate models using LR statistics due to an

unidentified parameter, even allowing 2 degrees of freedom, the corrected likelihood ratio statistics

using S&P index data are always greater than 80 which corresponds to a p-value of less than .001%.

The larger models estimated with the Dow Jones data also have very large likelihood ratio statistics,

typically greater then 50. The standard deviations of portfolios were also fit much better using

the DCC than the RiskMetrics model, resulting in no rejections of the null of a portfolio standard

deviation of 1 for the value or equally weighted portfolios using the S&P index data or the Dow

Jones stocks. The RiskMetrics estimator performed especially poor using the minimum variance

portfolios, possibly due to the correlation dynamics imposed by the choice of smoothing parameter.

Figure 7 contains a graph of the correlations estimated using the DCC model and the RiskMetrics

smoother for the 4 asset S&P 500 model. The RiskMetrics produced correlations are much more

volatile and imply that the correlation matrix was nearly singular at certain points in time. Further,

the DCC estimator produced multivariate standardized residuals in a confidence interval of one for

all models with less than 10 assets, and never had a rejection rate greater than 14%, while the

RiskMetrics model never produced multivariate standardized residuals in the confidence interval.

Finally, the DCC estimator typically produces residuals with less serial dependence at lag 15 then

the RiskMetrics estimator using a Ljung-Box Q statistics on the standardized outer-products of

the residuals.

7 Multi-Step Ahead Forecasting

Forecasting covariances is a requirement of GARCH models. Most GARCH models provide an easy

to implement method to generate r-step ahead forecasts. For instance, the r-step ahead forecast
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of a standard GARCH (1,1) is given by

ht+r =
r−2∑

i=1

ω(α + β)i + (α + β)r−1ht+1

However, the DCC evolution process is a non-linear process, where

Qt+r = (1− α− β)Q̄ + α[εt+r−1ε
′
t+r−1] + βQt+r−1

where Et[εt+r−1ε
′
t+r−1] = Et[Rt+r−1] and Rt+r = Q∗

t+r
−1Qt+rQ

∗
t+r

−1. Thus, the r-step ahead

forecast of the correlation cannot be directly solved forward to provide a convenient method for

forecasting. In examining methods to overcome this difficulty, two forecasts seem to be the most

natural, each requiring a different set of approximations. The first technique proposed would be to

generate the r-step ahead forecast of Q by making the approximation that Et[εt+1ε
′
t+1] ≈ Qt+1 for

i ∈ [1, . . . , r]. Using this approximation, we then have the r-step ahead forecast of Qt is

Et[Qt+r] =
r−2∑

i=0

(1− α− β)Q̄(α + β)i + (α + β)r−1Qt+1

and Rt+r = Q∗
t+r

−1Qt+rQ
∗
t+r

−1. An alternative approximation would be that Q̄ ≈ R̄ and that

Et[Qt+1] ≈ Et[Rt+1]. Using this approximation, we can forecast Rt+r directly using the relationship

Et[Rt+r] =
r−2∑

i=0

(1− α− β)R̄(α + β)i + (α + β)r−1Rt+1

In order to test which of these approximations performs best (if either), a Monte Carlo ex-

periment was conducted. In the Monte Carlo, 1000 days of bivariate normal data were simulated

using α = .01, β = .98, and varying the unconditional correlation over the set [−0.8,−0.5, 0, 0.35,

0.5, 0.65, 0.8, 0.9]. At the 750th observation, Q750, r750, and R750 were saved. Forecasts were then

constructed for days 751 through 1000 using the two methods described above. In order to study

these two forecasting techniques, we treated α̂ β̂, and R̄ as known, setting each parameter to the

value used to simulate the data, to avoid the effects of parameter estimation uncertainty. With

these parameters, the half life of an innovation would be 68 days. Figure 8 contains a plot of the

bias of the two forecasting methods. The first observation is that both of the forecasting techniques

produce forecasts with a very small bias. This bias is generally toward 1 (or -1 for the series with

negative unconditional correlation). The forecast produced by solving forward for Qt+r (the dash-

dotted line) was always closer to 1 (or -1) and consequently more biased. The method for solving

Rt+r forward had better bias properties for almost all correlations and horizons. Also of interest
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is that both forecasts appear to be unbiased when the unconditional correlation is zero, and that

they make essentially the same forecast when the unconditional correlation is zero.

Figure 9 contains a plot of the ratio of the MSFE of the forecast produced by solving Rt forward

directly divided by the forecast produced by solving Qt forward, then transforming the final Qt+r

to a correlation matrix. Neither forecast seems to produce uniformly less MSFE of the first fifty

days. For certain unconditional correlations, the forecast which solves Qt forward produces better

MSE (represented by a value greater than 1), yet this performance is hardly uniform. The ratio of

the MSFEs is extremely close to 1, despite the lower bias produced by the Rt forecast because the

bias squared was typically at least three orders of magnitude smaller than the variance. Finally,

figure 10 contains a fan plot of the density of the forecast errors. Two observations can be made

from this figure. First, as the unconditional approaches 1 (or -1), the variance of the forecast

errors decreases. Second, the amount of skewness in the distribution of errors increases as the

unconditional correlation increases. This is not surprising given that correlations are bounded

between 1 and -1. While neither of these two techniques significantly outperformed the other, it

would seem that a logical choice for forecasting would be the method that directly solves forward

Rt. Not only is this method easier to implement, it appears that it also suffers less bias.

8 Conclusion

This paper presents a class of estimators which join the simplicity and empirical success of univariate

GARCH processes with an easy to estimate and interpret dynamic correlation estimator. A two

step estimator is shown to be consistent and asymptotically normal and a consistent estimator

of standard errors is provided. These depend on the cross partial derivatives of the second stage

likelihood with respect to the first and second stage parameters in addition to the typical Bollerslev-

Wooldridge robust standard errors. Ensuring the positive definiteness of the estimator is also

shown to be easy to achieve as it simply requires using the same restrictions as univariate GARCH

processes, and in the DCC(1,1) case could be treated as a scalar BEKK model for the correlation

using the standard quadratic form to allow estimation without lower bounds on the parameters. In

addition to the two stage process, a fully efficient estimation procedure is outlined which involves

a single Newton-Raphson step from the original consistent estimates.

A simple test is presented to test the null of constant correlation against an alternative of

dynamic conditional correlation. This test involves running a simple restricted VAR which can

be easily estimated by OLS. Specification testing provided a solid picture that this estimator is

comparable in performance to the industry standard benchmark RiskMetrics for large models and
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outperforms RiskMetrics model for small size volatility models. We also feel that this estimator

could be easily improved upon by considering different parameterizations of the conditional cor-

relation estimator, although this is beyond the scope of the present paper. The real strength of

the DCC estimation process is the flexibility it provides in modelling the dynamics of the volatility

process. While no attempt has been made in this paper, it would be easy to allow for asymmetric

affects in volatility. In addition, the theory of DCC specification can be easy extended to include

exogenous factors in the correlation model or alternative parameterizations. In particular, it would

be of interest to investigate whether correlation between assets is caused by either the volatility or

correlations of other assets.
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Figure 1: Graph of α̂ (left) and β̂ for 10 portfolios randomly selected from the 100 S&P Indices.

The models were strictly mean reverting in the sense that α + β < 1 for all models.
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H0 : α = 1− β H0 : λ = 0

No.of Assets α̂ β̂ χ2 value P-value λ̂ χ2 value P-value

2 0.0335 0.9559 10.7490 0.0010 0.0305 90.1908 0.0000

(2.96) (60.20) (3.5079)

3 0.0266 0.9531 30.9750 0.0000 0.0198 61.9264 0.0000

(2.34) (38.13) (4.4168)

4 0.0163 0.9688 50.5591 0.0000 0.0144 43.3558 0.0000

(4.33) (112.83) (5.5370)

5 0.0123 0.9719 81.6736 0.0000 0.0108 3.7207 0.0537

(6.09) (168.13) (5.0889)

6 0.0103 0.9732 83.8247 0.0000 0.0000 0.0000 1.0000

(6.34) (172.13) (0.0000)

7 0.0101 0.9746 125.6139 0.0000 0.0000 0.0000 1.0000

(7.74) (224.44) (0.0000)

8 0.0097 0.9718 122.1910 0.0000 0.0000 0.0000 1.0000

(6.95) (164.23) (0.0000)

9 0.0090 0.9688 115.1191 0.0000 0.0000 0.0000 1.0000

(5.78) (116.99) (0.0000)

10 0.0255 0.9410 832.5525 0.0000 0.0000 0.0000 1.0000

(3.26) (28.85) (0.0000)

15 0.0176 0.9539 1012.6965 0.0000 0.0000 0.0000 1.0000

(3.70) (43.10) (0.0000)

20 0.0133 0.9662 1246.8991 0.0000 0.0000 0.0000 1.0000

(3.51) (57.48) (0.0000)

25 0.0097 0.9696 1099.0391 0.0000 0.0000 0.0000 1.0000

(3.27) (60.69) (0.0000)

50 0.0072 0.9643 1644.6180 0.0000 0.0000 0.0000 1.0000

(5.56) (85.47) (0.0000)

75 0.0052 0.9597 1571.7479 0.0000 0.0000 0.0000 1.0000

(9.85) (98.65) (0.0000)

100 0.0049 0.9497 2100.8853 0.0000 0.0000 0.0000 1.0000

(14.58) (154.53) (0.0000)

Table 1: Parameters Estimated on the S&P 500 Indices. The numbers in parentheses are robust T-

statistics. The leftmost χ2 value is for the null of integrated DCC against an alternative of dynamic

conditional correlation, while the rightmost is for the null of constant conditional correlation against

an alternative of a integrated dynamic conditional correlation.
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H0 : α = 1− β H0 : λ = 0

No.of Assets α̂ β̂ χ2 value P-value λ̂ χ2 value P-value

2 0.0104 0.9642 2.9885 0.0839 0.0000 0.0000 1.0000

(1.27) (43.58) (0.00)

3 0.0038 0.9679 1.2988 0.2544 0.0000 0.0000 1.0000

(0.90) (44.96) (0.00)

4 0.0048 0.9627 3.6213 0.0570 0.0000 0.0000 1.0000

(1.70) (81.11) (0.00)

5 0.0042 0.9672 5.5486 0.0185 0.0000 0.0000 1.0000

(2.14) (95.01) (0.00)

6 0.0043 0.9639 7.7226 0.0055 0.0000 0.0000 1.0000

(2.55) (65.33) (0.00)

7 0.0061 0.9690 26.7969 0.0000 0.0000 0.0000 1.0000

(3.69) (68.47) (0.00)

8 0.0061 0.9778 51.5646 0.0000 0.0000 0.0000 1.0000

(4.34) (61.85) (0.00)

9 0.0061 0.9768 63.2891 0.0000 0.0000 0.0000 1.0000

(5.15) (58.43) (0.00)

10 0.0066 0.9770 93.3452 0.0000 0.0000 0.0000 1.0000

(5.44) (55.87) (0.00)

15 0.0048 0.9690 70.3416 0.0000 0.0000 0.0000 1.0000

(2.67) (54.66) (0.00)

20 0.0044 0.9626 84.9840 0.0000 0.0000 0.0000 1.0000

(4.45) (76.16) (0.00)

25 0.0047 0.9384 92.5593 0.0000 0.0000 0.0000 1.0000

(5.12) (60.12) (0.00)

30 0.0043 0.9118 81.6511 0.0000 0.0000 0.0000 1.0000

(4.74) (26.97) (0.00)

31 0.0059 0.9441 252.2591 0.0000 0.0000 0.0000 1.0000

(8.62) (88.50) (0.00)

Table 2: Parameters Estimated on the Dow Jones Industrial Average Stocks. The numbers in

parentheses are robust T-statistics. The leftmost χ2 value is for the null of integrated DCC against

an alternative of dynamic conditional correlation, while the rightmost is for the null of constant

conditional correlation against an alternative of a integrated dynamic conditional correlation.
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S & P assets Dow assets

No.of Assets DCC (2,1) DCC (2,2) DCC (3,2) DCC (2,1) DCC (2,2) DCC (3,2)

2 1.4654 4.7682 11.5884∗ 0.0073 2.7891 6.5251

3 0.5825 5.3769 13.4353∗ 0.0073 0.4521 1.1840

4 1.5316 4.8220 7.8573 0.4276 0.3018 2.5090

5 0.4124 5.0408 17.0898∗ 0.0000 0.8375 4.2364

6 0.1304 3.6116 9.9360∗ 0.0000 0.3382 3.1993

7 0.0936 2.9785 15.6030∗ 0.0000 2.4545 5.9331

8 0.0000 0.1521 9.3299∗ 0.0000 1.5234 3.4858

9 0.0000 0.2382 4.8142 0.0000 3.0485 5.3958

10 0.0000 0.0169 18.8947∗ 0.0000 1.1618 5.0438

15 0.0000 2.0201 11.9072∗ 0.0000 0.5200 6.7282

20 0.0000 8.2936 19.5614∗ 0.0000 0.4654 3.3290

25 0.0000 10.6189∗ 21.2871∗ 0.0086 0.0000 5.2352

30 - - - 0.0298 0.4725 9.6378

31 - - - 0.0000 1.3408 9.7959

Table 3: Table of likelihood ratio statistics for alternative forms of the DCC estimator.

No. of Assets DCC MVP RM MVP DCC Equal RM Equal DCC Value RM Value

2 1.0271∗ 1.0917∗∗ 0.9967 1.0509∗ 0.9930 1.0478∗

3 1.0342∗ 1.1238∗∗ 0.9908 1.0421∗ 0.9888 1.0409∗

4 1.0386∗ 1.1600∗∗ 0.9899 1.0431∗ 0.9881 1.0415∗

5 1.0424∗ 1.1949∗∗ 0.9881 1.0419∗ 0.9883 1.0408∗

6 1.0504∗∗ 1.2311∗∗ 0.9855 1.0395∗ 0.9856 1.0385∗

7 1.0663∗∗ 1.2757∗∗ 0.9856 1.0397∗ 0.9867 1.0397∗

8 1.0726∗∗ 1.3188∗∗ 0.9852 1.0398∗ 0.9869 1.0401∗

9 1.0753∗∗ 1.3573∗∗ 0.9851 1.0419∗ 0.9860 1.0415∗

10 1.1299∗∗ 1.4261∗∗ 0.9868 1.0423∗ 0.9883 1.0422∗

15 1.2707∗∗ 1.6540∗∗ 0.9842 1.0433∗ 0.9858 1.0435∗

20 1.3380∗∗ 1.9362∗∗ 0.9830 1.0431∗ 0.9871 1.0423∗

25 1.3627∗∗ 2.2994∗∗ 0.9767 1.0435∗ 0.9814 1.0425∗

50 1.5459∗∗ 6.1302∗∗ 0.9778 1.0491∗∗ 0.9810 1.0476∗

75 1.6471∗∗ 11.2570∗∗ 0.9781 1.0507∗∗ 0.9830 1.0494∗∗

100 1.7794∗∗ 35.8968∗∗ 0.9777 1.0514∗∗ 0.9831 1.0497∗∗

Table 4: Standard Deviation of different portfolios (VP, Equally weighted, and value weighted)

using the S&P 500 Indices. (∗ indicates significantly different from 1 at the 5% level, ∗∗ indicates

significantly different from 1 at the 1% level)
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No. of Assets DCC MVP RM MVP DCC Equal RM Equal DCC Value RM Value

2 1.0113 1.1120∗∗ 0.9881 1.0531∗∗ 0.9876 1.0519∗∗

3 1.0090 1.1502∗∗ 0.9901 1.0521∗∗ 0.9908 1.0496∗∗

4 1.0121 1.1825∗∗ 0.9901 1.0549∗∗ 0.9921 1.0539∗∗

5 1.0160 1.2139∗∗ 0.9885 1.0483∗ 0.9912 1.0454∗

6 1.0234 1.2451∗∗ 0.9845 1.0476∗ 0.9884 1.0457∗

7 1.0252 1.2891∗∗ 0.9846 1.0475∗ 0.9905 1.0466∗

8 1.0281 1.3447∗∗ 0.9830 1.0459∗ 0.9883 1.0444∗

9 1.0285 1.3790∗∗ 0.9837 1.0453∗ 0.9905 1.0437∗

10 1.0355 1.4142∗∗ 0.9826 1.0435∗ 0.9896 1.0419∗

15 1.0454∗ 1.6613∗∗ 0.9814 1.0459∗ 0.9901 1.0452∗

20 1.0715∗∗ 1.9195∗∗ 0.9780 1.0454∗ 0.9879 1.0441∗

25 1.0783∗∗ 2.2456∗∗ 0.9795 1.0464∗ 0.9932 1.0450∗

30 1.0906∗∗ 2.6087∗∗ 0.9799 1.0448∗ 0.9945 1.0445∗

31 1.2689∗∗ 2.7048∗∗ 0.9778 1.0449∗ 0.9917 1.0445∗

Table 5: Standard Deviation of the minimum variance portfolio created from the estimated VCV of

the DJIA 30 stocks (∗ indicates significantly different from 1 at the 5% level, ∗∗ indicates significantly

different from 1 at the 1% level)

% of HITs(Equal) Probability % of HITs (MVP) Probability

No. of Assets 5% 1% Independent. 5% 1% Independent

2 4.83 1.52 0.0048 5.29 1.92 0.0360

3 4.57 1.26 0.0030 5.36 2.05 0.0005

4 4.04 1.26 0.0309 5.29 1.99 0.0032

5 4.04 1.39 0.0004 5.16 1.85 0.0595

6 4.17 1.19 0.0177 5.36 2.05 0.1359

7 3.90 1.32 0.0468 5.69 1.85 0.0040

8 4.10 1.32 0.1013 5.76 1.85 0.0179

9 4.37 1.39 0.0445 5.69 2.12 0.0242

10 4.57 1.39 0.0222 6.02 2.38 0.0238

15 4.63 1.26 0.0212 7.81 3.64 0.0304

20 4.30 1.26 0.0014 8.07 3.77 0.0004

25 4.43 1.26 0.0132 8.93 4.24 0.0003

50 4.17 1.52 0.0002 9.23 5.76 0.0035

75 4.30 1.59 0.0002 10.71 6.42 0.0004

100 4.04 1.65 0.0009 13.70 7.08 0.0030

Table 6: Value-at-Risk violations and HIT regression results for S&P 500 Indices for an equally

weighted and a minimum variance portfolio
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% of HITs(Equal) Probability % of HITs (MVP) Probability

No. of Assets 5% 1% Independent. 5% 1% Independent

2 3.97 0.79 0.5241 3.84 0.99 0.2213

3 4.30 1.26 0.2116 4.17 0.99 0.9035

4 4.43 0.93 0.1374 4.10 0.99 0.1078

5 3.90 1.19 0.0162 4.17 1.39 0.1658

6 3.84 1.13 0.6381 4.30 1.46 0.5429

7 3.90 1.26 0.1130 4.30 1.32 0.5460

8 3.84 1.32 0.4277 3.90 1.52 0.2341

9 3.97 1.26 0.3687 3.90 1.59 0.5338

10 4.10 1.26 0.7277 3.97 1.59 0.4796

15 4.24 1.19 0.0684 4.37 1.79 0.1703

20 4.10 1.26 0.0757 4.83 1.99 0.5754

25 4.70 1.32 0.0737 5.43 2.05 0.8767

30 4.63 1.19 0.0128 5.43 2.25 0.1494

31 4.63 1.26 0.0047 7.41 3.51 0.3155

Table 7: Value-at-Risk violations and HIT regression results for DJIA stocks for an equally weighted

and a minimum variance portfolio

No. of Assets % HIT at 5% Pr. Independent % std. resid. in CI % failing LJ-Q

DCC RiskMetrics DCC RiskMetrics DCC RiskMetrics DCC RiskMetrics

2 4.83 5.43 0.0048 0.0098 100 0 0.0000 0.0000

3 4.57 4.70 0.0030 0.0034 100 0 0.1667 0.3333

4 4.04 4.43 0.0309 0.0391 100 0 0.2000 0.3000

5 4.04 4.63 0.0004 0.2611 100 0 0.0667 0.2000

6 4.17 5.36 0.0177 0.0059 100 0 0.0476 0.0476

7 3.90 5.16 0.0468 0.0160 100 0 0.0714 0.2143

8 4.10 5.43 0.1013 0.0210 100 0 0.1111 0.1389

9 4.37 5.43 0.0445 0.0042 100 0 0.1333 0.2444

10 4.57 5.29 0.0222 0.0727 90 0 0.1818 0.3273

15 4.63 5.10 0.0212 0.0315 93 0 0.1750 0.2500

20 4.30 4.96 0.0014 0.0064 90 0 0.1714 0.2048

25 4.43 5.10 0.0132 0.0816 88 0 0.1508 0.2523

50 4.17 5.29 0.0002 0.0457 86 0 0.1490 0.3137

75 4.30 5.29 0.0002 0.0688 90 0 0.1312 0.4277

100 4.04 5.36 0.0009 0.0283 90 0 0.1628 0.4157

Table 8: Comparison of the DCC GARCH estimated covariances and RiskMetrics estimated co-

variances using the S&P 500 Sector Indices
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No. of Assets % HIT at 5% Pr. Independent % std. resid. in CI % failing LJ-Q

DCC RiskMetrics DCC RiskMetrics DCC RiskMetrics DCC RiskMetrics

2 3.97 4.63 0.5241 0.5788 100 0 0.0000 0.0000

3 4.30 5.03 0.2116 0.8779 100 0 0.1666 0.5000

4 4.43 5.03 0.1374 0.0525 100 0 0.2000 0.5000

5 3.90 4.43 0.0162 0.0305 100 0 0.2667 0.4000

6 3.84 4.63 0.6381 0.4369 100 0 0.1429 0.3333

7 3.90 4.43 0.1130 0.1628 100 0 0.1786 0.3214

8 3.84 4.37 0.4277 0.4865 100 0 0.1111 0.2500

9 3.97 4.43 0.3687 0.6460 100 0 0.1111 0.2222

10 4.10 4.70 0.7277 0.7494 100 0 0.0909 0.1818

15 4.24 4.57 0.0684 0.0847 100 0 0.0667 0.1500

20 4.10 4.77 0.0757 0.0252 100 0 0.0667 0.1429

25 4.70 4.70 0.0737 0.1274 100 0 0.0646 0.1600

30 4.63 4.43 0.0128 0.4364 100 0 0.0495 0.1441

31 4.63 4.43 0.0047 0.4367 96 0 0.0665 0.1472

Table 9: Comparison of the DCC GARCH estimated covariances and RiskMetrics estimated co-

variances using the Dow Jones Industrial Average Stocks
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9 Appendix

Proof of Proposition 1:

Assume A is positive definite. Further, B = A∗−1′AA∗−1 where A∗ is as defined in section 2. Since

A is real, symmetric and positive definite, we know there exists a cholesky factorization A = P ′P

where P is upper triangular. Rewriting

B = A∗−1′P ′PA∗−1 = (PA∗−1)′(PA∗−1)

Finally, we know that (PA∗−1) has full rank as it is the product of a diagonal matrix and a

triangular matrix,both with non-zero diagonal elements, and will necessarily be a triangular matrix

with nonzero diagonal elements. Using a familiar result form Linear Algebra, that X ′X is positive

definite if and only if the X has full rank, thus B is positive definite. The proof assuming B is real,

symmetric and positive definite follows directly replacing A with B and A∗−1 with A∗.

¤

Proof of Proposition 3:

QL2(rt) = −1
2

T∑

t=1

(k log(2π) + 2 log |Dt|+ log(|Rt|) + (r′tD
−1
t R−1

t D−1
t rt)

Differentiating QL2 with respect to the parameter vector (φ1, φ2, . . . , φk)′, we have

∂QL2

∂φ
=

∂QL2

∂Ht

∂Ht

∂φ

where Ht is a k by 1 vector (h1t h2t . . . hkt)′. Rewriting,

QL2 = −1
2
Tk log(2π)− 1

2

T∑

t=1

log(h1t)− 1
2

T∑

t=1

log(h2t) + . . .

−1
2

T∑

t=1

log(hkt)− 1
2

T∑

t=1

(log(|Rt|) + (r′tD
−1
t R−1

t D−1
t rt))

Making a change of variables uit = h
− 1

2
it , with Ut a column vector of uit, the likelihood becomes

QL2 = −1
2
Tk log(2π)− 1

2

T∑

t=1

log(u−2
1t )− 1

2

T∑

t=1

log(u−2
2t ) + . . .
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−1
2

T∑

t=1

log(u−2
kt ) +

T∑

t=1

(Utr̃t)R−1
t (Utr̃t)

where r̃t is a diagonal matrix with ith element rit. Differentialting this with respect to Ut, we have

∂QL2

∂Ut
= 2U−1

t − 2r̃tR
−1
t r̃tUt

where U−1
t denotes an element by element inverse of Ut. And differentiating with respect to Ht

∂QL2

∂Ut

∂Ut

∂Ht
= 2




h
− 3

2
1t 0 . . . 0

0 h
− 3

2
1t . . . 0

...
...

...
...

0 . . . 0 h
− 3

2
1t







h
1
2
1t

h
1
2
2t
...

h
1
2
kt



− 2




h
− 3

2
1t 0 . . . 0

0 h
− 3

2
1t . . . 0

...
...

...
...

0 . . . 0 h
− 3

2
1t




r̃tR
−1
t r̃t




h
− 1

2
1t

h
− 1

2
2t
...

h
− 1

2
kt




And since we have Et−1(r2
it) = hit, we can rewrite as

∂QL2

∂Ut

∂Ut

∂Ht
= 2




h−1
1t

h−1
2t
...

h−1
kt



− 2




h−1
1t 0 . . . 0

0 h−1
1t . . . 0

...
...

...
...

0 . . . 0 h−1
1t




ẽtR
−1
t et

by dividing the rt by ht. Now that Rt is an estimate of the correlation between standardized

residuals, and from scoring conditions on the estimate of Rt, we have Et−1(ẽtR
−1
t et) = ι, and

finally differentiating with respect to θ, we have

∂QL2

∂Ut

∂Ut

∂Ht

∂Ht

∂θ
= 2







h−1
1t

h−1
2t
...

h−1
kt



−




h−1
1t 0 . . . 0

0 h−1
2t . . . 0

...
...

...
...

0 . . . 0 h−1
kt




ι




∂Ht

∂θ
= 0
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